rcu: Move rcu_barrier_completion to rcu_state structure
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / rcutree.c
CommitLineData
64db4cff
PM
1/*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
a71fca58 28 * Documentation/RCU
64db4cff
PM
29 */
30#include <linux/types.h>
31#include <linux/kernel.h>
32#include <linux/init.h>
33#include <linux/spinlock.h>
34#include <linux/smp.h>
35#include <linux/rcupdate.h>
36#include <linux/interrupt.h>
37#include <linux/sched.h>
c1dc0b9c 38#include <linux/nmi.h>
8826f3b0 39#include <linux/atomic.h>
64db4cff 40#include <linux/bitops.h>
9984de1a 41#include <linux/export.h>
64db4cff
PM
42#include <linux/completion.h>
43#include <linux/moduleparam.h>
44#include <linux/percpu.h>
45#include <linux/notifier.h>
46#include <linux/cpu.h>
47#include <linux/mutex.h>
48#include <linux/time.h>
bbad9379 49#include <linux/kernel_stat.h>
a26ac245
PM
50#include <linux/wait.h>
51#include <linux/kthread.h>
268bb0ce 52#include <linux/prefetch.h>
3d3b7db0
PM
53#include <linux/delay.h>
54#include <linux/stop_machine.h>
64db4cff 55
9f77da9f 56#include "rcutree.h"
29c00b4a
PM
57#include <trace/events/rcu.h>
58
59#include "rcu.h"
9f77da9f 60
64db4cff
PM
61/* Data structures. */
62
f885b7f2 63static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
88b91c7c 64
037b64ed 65#define RCU_STATE_INITIALIZER(sname, cr) { \
6c90cc7b 66 .level = { &sname##_state.node[0] }, \
037b64ed 67 .call = cr, \
af446b70 68 .fqs_state = RCU_GP_IDLE, \
64db4cff
PM
69 .gpnum = -300, \
70 .completed = -300, \
6c90cc7b
PM
71 .onofflock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.onofflock), \
72 .orphan_nxttail = &sname##_state.orphan_nxtlist, \
73 .orphan_donetail = &sname##_state.orphan_donelist, \
74 .fqslock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.fqslock), \
64db4cff
PM
75 .n_force_qs = 0, \
76 .n_force_qs_ngp = 0, \
6c90cc7b 77 .name = #sname, \
64db4cff
PM
78}
79
037b64ed
PM
80struct rcu_state rcu_sched_state =
81 RCU_STATE_INITIALIZER(rcu_sched, call_rcu_sched);
d6714c22 82DEFINE_PER_CPU(struct rcu_data, rcu_sched_data);
64db4cff 83
037b64ed 84struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh, call_rcu_bh);
6258c4fb 85DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
b1f77b05 86
27f4d280
PM
87static struct rcu_state *rcu_state;
88
f885b7f2
PM
89/* Increase (but not decrease) the CONFIG_RCU_FANOUT_LEAF at boot time. */
90static int rcu_fanout_leaf = CONFIG_RCU_FANOUT_LEAF;
91module_param(rcu_fanout_leaf, int, 0);
92int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
93static int num_rcu_lvl[] = { /* Number of rcu_nodes at specified level. */
94 NUM_RCU_LVL_0,
95 NUM_RCU_LVL_1,
96 NUM_RCU_LVL_2,
97 NUM_RCU_LVL_3,
98 NUM_RCU_LVL_4,
99};
100int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
101
b0d30417
PM
102/*
103 * The rcu_scheduler_active variable transitions from zero to one just
104 * before the first task is spawned. So when this variable is zero, RCU
105 * can assume that there is but one task, allowing RCU to (for example)
106 * optimized synchronize_sched() to a simple barrier(). When this variable
107 * is one, RCU must actually do all the hard work required to detect real
108 * grace periods. This variable is also used to suppress boot-time false
109 * positives from lockdep-RCU error checking.
110 */
bbad9379
PM
111int rcu_scheduler_active __read_mostly;
112EXPORT_SYMBOL_GPL(rcu_scheduler_active);
113
b0d30417
PM
114/*
115 * The rcu_scheduler_fully_active variable transitions from zero to one
116 * during the early_initcall() processing, which is after the scheduler
117 * is capable of creating new tasks. So RCU processing (for example,
118 * creating tasks for RCU priority boosting) must be delayed until after
119 * rcu_scheduler_fully_active transitions from zero to one. We also
120 * currently delay invocation of any RCU callbacks until after this point.
121 *
122 * It might later prove better for people registering RCU callbacks during
123 * early boot to take responsibility for these callbacks, but one step at
124 * a time.
125 */
126static int rcu_scheduler_fully_active __read_mostly;
127
a46e0899
PM
128#ifdef CONFIG_RCU_BOOST
129
a26ac245
PM
130/*
131 * Control variables for per-CPU and per-rcu_node kthreads. These
132 * handle all flavors of RCU.
133 */
134static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
d71df90e 135DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
15ba0ba8 136DEFINE_PER_CPU(int, rcu_cpu_kthread_cpu);
5ece5bab 137DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
d71df90e 138DEFINE_PER_CPU(char, rcu_cpu_has_work);
a26ac245 139
a46e0899
PM
140#endif /* #ifdef CONFIG_RCU_BOOST */
141
0f962a5e 142static void rcu_node_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
a46e0899
PM
143static void invoke_rcu_core(void);
144static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
a26ac245 145
4a298656
PM
146/*
147 * Track the rcutorture test sequence number and the update version
148 * number within a given test. The rcutorture_testseq is incremented
149 * on every rcutorture module load and unload, so has an odd value
150 * when a test is running. The rcutorture_vernum is set to zero
151 * when rcutorture starts and is incremented on each rcutorture update.
152 * These variables enable correlating rcutorture output with the
153 * RCU tracing information.
154 */
155unsigned long rcutorture_testseq;
156unsigned long rcutorture_vernum;
157
b1420f1c
PM
158/* State information for rcu_barrier() and friends. */
159
b1420f1c 160static DEFINE_MUTEX(rcu_barrier_mutex);
b1420f1c 161
fc2219d4
PM
162/*
163 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
164 * permit this function to be invoked without holding the root rcu_node
165 * structure's ->lock, but of course results can be subject to change.
166 */
167static int rcu_gp_in_progress(struct rcu_state *rsp)
168{
169 return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
170}
171
b1f77b05 172/*
d6714c22 173 * Note a quiescent state. Because we do not need to know
b1f77b05 174 * how many quiescent states passed, just if there was at least
d6714c22 175 * one since the start of the grace period, this just sets a flag.
e4cc1f22 176 * The caller must have disabled preemption.
b1f77b05 177 */
d6714c22 178void rcu_sched_qs(int cpu)
b1f77b05 179{
25502a6c 180 struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
f41d911f 181
e4cc1f22 182 rdp->passed_quiesce_gpnum = rdp->gpnum;
c3422bea 183 barrier();
e4cc1f22 184 if (rdp->passed_quiesce == 0)
d4c08f2a 185 trace_rcu_grace_period("rcu_sched", rdp->gpnum, "cpuqs");
e4cc1f22 186 rdp->passed_quiesce = 1;
b1f77b05
IM
187}
188
d6714c22 189void rcu_bh_qs(int cpu)
b1f77b05 190{
25502a6c 191 struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
f41d911f 192
e4cc1f22 193 rdp->passed_quiesce_gpnum = rdp->gpnum;
c3422bea 194 barrier();
e4cc1f22 195 if (rdp->passed_quiesce == 0)
d4c08f2a 196 trace_rcu_grace_period("rcu_bh", rdp->gpnum, "cpuqs");
e4cc1f22 197 rdp->passed_quiesce = 1;
b1f77b05 198}
64db4cff 199
25502a6c
PM
200/*
201 * Note a context switch. This is a quiescent state for RCU-sched,
202 * and requires special handling for preemptible RCU.
e4cc1f22 203 * The caller must have disabled preemption.
25502a6c
PM
204 */
205void rcu_note_context_switch(int cpu)
206{
300df91c 207 trace_rcu_utilization("Start context switch");
25502a6c 208 rcu_sched_qs(cpu);
cba6d0d6 209 rcu_preempt_note_context_switch(cpu);
300df91c 210 trace_rcu_utilization("End context switch");
25502a6c 211}
29ce8310 212EXPORT_SYMBOL_GPL(rcu_note_context_switch);
25502a6c 213
90a4d2c0 214DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
29e37d81 215 .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
23b5c8fa 216 .dynticks = ATOMIC_INIT(1),
90a4d2c0 217};
64db4cff 218
e0f23060 219static int blimit = 10; /* Maximum callbacks per rcu_do_batch. */
64db4cff
PM
220static int qhimark = 10000; /* If this many pending, ignore blimit. */
221static int qlowmark = 100; /* Once only this many pending, use blimit. */
222
3d76c082
PM
223module_param(blimit, int, 0);
224module_param(qhimark, int, 0);
225module_param(qlowmark, int, 0);
226
13cfcca0
PM
227int rcu_cpu_stall_suppress __read_mostly; /* 1 = suppress stall warnings. */
228int rcu_cpu_stall_timeout __read_mostly = CONFIG_RCU_CPU_STALL_TIMEOUT;
229
f2e0dd70 230module_param(rcu_cpu_stall_suppress, int, 0644);
13cfcca0 231module_param(rcu_cpu_stall_timeout, int, 0644);
742734ee 232
64db4cff 233static void force_quiescent_state(struct rcu_state *rsp, int relaxed);
a157229c 234static int rcu_pending(int cpu);
64db4cff
PM
235
236/*
d6714c22 237 * Return the number of RCU-sched batches processed thus far for debug & stats.
64db4cff 238 */
d6714c22 239long rcu_batches_completed_sched(void)
64db4cff 240{
d6714c22 241 return rcu_sched_state.completed;
64db4cff 242}
d6714c22 243EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
64db4cff
PM
244
245/*
246 * Return the number of RCU BH batches processed thus far for debug & stats.
247 */
248long rcu_batches_completed_bh(void)
249{
250 return rcu_bh_state.completed;
251}
252EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
253
bf66f18e
PM
254/*
255 * Force a quiescent state for RCU BH.
256 */
257void rcu_bh_force_quiescent_state(void)
258{
259 force_quiescent_state(&rcu_bh_state, 0);
260}
261EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
262
4a298656
PM
263/*
264 * Record the number of times rcutorture tests have been initiated and
265 * terminated. This information allows the debugfs tracing stats to be
266 * correlated to the rcutorture messages, even when the rcutorture module
267 * is being repeatedly loaded and unloaded. In other words, we cannot
268 * store this state in rcutorture itself.
269 */
270void rcutorture_record_test_transition(void)
271{
272 rcutorture_testseq++;
273 rcutorture_vernum = 0;
274}
275EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
276
277/*
278 * Record the number of writer passes through the current rcutorture test.
279 * This is also used to correlate debugfs tracing stats with the rcutorture
280 * messages.
281 */
282void rcutorture_record_progress(unsigned long vernum)
283{
284 rcutorture_vernum++;
285}
286EXPORT_SYMBOL_GPL(rcutorture_record_progress);
287
bf66f18e
PM
288/*
289 * Force a quiescent state for RCU-sched.
290 */
291void rcu_sched_force_quiescent_state(void)
292{
293 force_quiescent_state(&rcu_sched_state, 0);
294}
295EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
296
64db4cff
PM
297/*
298 * Does the CPU have callbacks ready to be invoked?
299 */
300static int
301cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
302{
303 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL];
304}
305
306/*
307 * Does the current CPU require a yet-as-unscheduled grace period?
308 */
309static int
310cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
311{
fc2219d4 312 return *rdp->nxttail[RCU_DONE_TAIL] && !rcu_gp_in_progress(rsp);
64db4cff
PM
313}
314
315/*
316 * Return the root node of the specified rcu_state structure.
317 */
318static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
319{
320 return &rsp->node[0];
321}
322
64db4cff
PM
323/*
324 * If the specified CPU is offline, tell the caller that it is in
325 * a quiescent state. Otherwise, whack it with a reschedule IPI.
326 * Grace periods can end up waiting on an offline CPU when that
327 * CPU is in the process of coming online -- it will be added to the
328 * rcu_node bitmasks before it actually makes it online. The same thing
329 * can happen while a CPU is in the process of coming online. Because this
330 * race is quite rare, we check for it after detecting that the grace
331 * period has been delayed rather than checking each and every CPU
332 * each and every time we start a new grace period.
333 */
334static int rcu_implicit_offline_qs(struct rcu_data *rdp)
335{
336 /*
2036d94a
PM
337 * If the CPU is offline for more than a jiffy, it is in a quiescent
338 * state. We can trust its state not to change because interrupts
339 * are disabled. The reason for the jiffy's worth of slack is to
340 * handle CPUs initializing on the way up and finding their way
341 * to the idle loop on the way down.
64db4cff 342 */
2036d94a
PM
343 if (cpu_is_offline(rdp->cpu) &&
344 ULONG_CMP_LT(rdp->rsp->gp_start + 2, jiffies)) {
d4c08f2a 345 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "ofl");
64db4cff
PM
346 rdp->offline_fqs++;
347 return 1;
348 }
64db4cff
PM
349 return 0;
350}
351
9b2e4f18
PM
352/*
353 * rcu_idle_enter_common - inform RCU that current CPU is moving towards idle
354 *
355 * If the new value of the ->dynticks_nesting counter now is zero,
356 * we really have entered idle, and must do the appropriate accounting.
357 * The caller must have disabled interrupts.
358 */
4145fa7f 359static void rcu_idle_enter_common(struct rcu_dynticks *rdtp, long long oldval)
9b2e4f18 360{
facc4e15 361 trace_rcu_dyntick("Start", oldval, 0);
99745b6a 362 if (!is_idle_task(current)) {
0989cb46
PM
363 struct task_struct *idle = idle_task(smp_processor_id());
364
facc4e15 365 trace_rcu_dyntick("Error on entry: not idle task", oldval, 0);
9b2e4f18 366 ftrace_dump(DUMP_ALL);
0989cb46
PM
367 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
368 current->pid, current->comm,
369 idle->pid, idle->comm); /* must be idle task! */
9b2e4f18 370 }
aea1b35e 371 rcu_prepare_for_idle(smp_processor_id());
9b2e4f18
PM
372 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
373 smp_mb__before_atomic_inc(); /* See above. */
374 atomic_inc(&rdtp->dynticks);
375 smp_mb__after_atomic_inc(); /* Force ordering with next sojourn. */
376 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
c44e2cdd
PM
377
378 /*
379 * The idle task is not permitted to enter the idle loop while
380 * in an RCU read-side critical section.
381 */
382 rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
383 "Illegal idle entry in RCU read-side critical section.");
384 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),
385 "Illegal idle entry in RCU-bh read-side critical section.");
386 rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),
387 "Illegal idle entry in RCU-sched read-side critical section.");
9b2e4f18 388}
64db4cff
PM
389
390/**
9b2e4f18 391 * rcu_idle_enter - inform RCU that current CPU is entering idle
64db4cff 392 *
9b2e4f18 393 * Enter idle mode, in other words, -leave- the mode in which RCU
64db4cff 394 * read-side critical sections can occur. (Though RCU read-side
9b2e4f18
PM
395 * critical sections can occur in irq handlers in idle, a possibility
396 * handled by irq_enter() and irq_exit().)
397 *
398 * We crowbar the ->dynticks_nesting field to zero to allow for
399 * the possibility of usermode upcalls having messed up our count
400 * of interrupt nesting level during the prior busy period.
64db4cff 401 */
9b2e4f18 402void rcu_idle_enter(void)
64db4cff
PM
403{
404 unsigned long flags;
4145fa7f 405 long long oldval;
64db4cff
PM
406 struct rcu_dynticks *rdtp;
407
64db4cff
PM
408 local_irq_save(flags);
409 rdtp = &__get_cpu_var(rcu_dynticks);
4145fa7f 410 oldval = rdtp->dynticks_nesting;
29e37d81
PM
411 WARN_ON_ONCE((oldval & DYNTICK_TASK_NEST_MASK) == 0);
412 if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE)
413 rdtp->dynticks_nesting = 0;
414 else
415 rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
4145fa7f 416 rcu_idle_enter_common(rdtp, oldval);
64db4cff
PM
417 local_irq_restore(flags);
418}
8a2ecf47 419EXPORT_SYMBOL_GPL(rcu_idle_enter);
64db4cff 420
9b2e4f18
PM
421/**
422 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
423 *
424 * Exit from an interrupt handler, which might possibly result in entering
425 * idle mode, in other words, leaving the mode in which read-side critical
426 * sections can occur.
64db4cff 427 *
9b2e4f18
PM
428 * This code assumes that the idle loop never does anything that might
429 * result in unbalanced calls to irq_enter() and irq_exit(). If your
430 * architecture violates this assumption, RCU will give you what you
431 * deserve, good and hard. But very infrequently and irreproducibly.
432 *
433 * Use things like work queues to work around this limitation.
434 *
435 * You have been warned.
64db4cff 436 */
9b2e4f18 437void rcu_irq_exit(void)
64db4cff
PM
438{
439 unsigned long flags;
4145fa7f 440 long long oldval;
64db4cff
PM
441 struct rcu_dynticks *rdtp;
442
443 local_irq_save(flags);
444 rdtp = &__get_cpu_var(rcu_dynticks);
4145fa7f 445 oldval = rdtp->dynticks_nesting;
9b2e4f18
PM
446 rdtp->dynticks_nesting--;
447 WARN_ON_ONCE(rdtp->dynticks_nesting < 0);
b6fc6020
FW
448 if (rdtp->dynticks_nesting)
449 trace_rcu_dyntick("--=", oldval, rdtp->dynticks_nesting);
450 else
451 rcu_idle_enter_common(rdtp, oldval);
9b2e4f18
PM
452 local_irq_restore(flags);
453}
454
455/*
456 * rcu_idle_exit_common - inform RCU that current CPU is moving away from idle
457 *
458 * If the new value of the ->dynticks_nesting counter was previously zero,
459 * we really have exited idle, and must do the appropriate accounting.
460 * The caller must have disabled interrupts.
461 */
462static void rcu_idle_exit_common(struct rcu_dynticks *rdtp, long long oldval)
463{
23b5c8fa
PM
464 smp_mb__before_atomic_inc(); /* Force ordering w/previous sojourn. */
465 atomic_inc(&rdtp->dynticks);
466 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
467 smp_mb__after_atomic_inc(); /* See above. */
468 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
7cb92499 469 rcu_cleanup_after_idle(smp_processor_id());
4145fa7f 470 trace_rcu_dyntick("End", oldval, rdtp->dynticks_nesting);
99745b6a 471 if (!is_idle_task(current)) {
0989cb46
PM
472 struct task_struct *idle = idle_task(smp_processor_id());
473
4145fa7f
PM
474 trace_rcu_dyntick("Error on exit: not idle task",
475 oldval, rdtp->dynticks_nesting);
9b2e4f18 476 ftrace_dump(DUMP_ALL);
0989cb46
PM
477 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
478 current->pid, current->comm,
479 idle->pid, idle->comm); /* must be idle task! */
9b2e4f18
PM
480 }
481}
482
483/**
484 * rcu_idle_exit - inform RCU that current CPU is leaving idle
485 *
486 * Exit idle mode, in other words, -enter- the mode in which RCU
487 * read-side critical sections can occur.
488 *
29e37d81 489 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
4145fa7f 490 * allow for the possibility of usermode upcalls messing up our count
9b2e4f18
PM
491 * of interrupt nesting level during the busy period that is just
492 * now starting.
493 */
494void rcu_idle_exit(void)
495{
496 unsigned long flags;
497 struct rcu_dynticks *rdtp;
498 long long oldval;
499
500 local_irq_save(flags);
501 rdtp = &__get_cpu_var(rcu_dynticks);
502 oldval = rdtp->dynticks_nesting;
29e37d81
PM
503 WARN_ON_ONCE(oldval < 0);
504 if (oldval & DYNTICK_TASK_NEST_MASK)
505 rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
506 else
507 rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
9b2e4f18
PM
508 rcu_idle_exit_common(rdtp, oldval);
509 local_irq_restore(flags);
510}
8a2ecf47 511EXPORT_SYMBOL_GPL(rcu_idle_exit);
9b2e4f18
PM
512
513/**
514 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
515 *
516 * Enter an interrupt handler, which might possibly result in exiting
517 * idle mode, in other words, entering the mode in which read-side critical
518 * sections can occur.
519 *
520 * Note that the Linux kernel is fully capable of entering an interrupt
521 * handler that it never exits, for example when doing upcalls to
522 * user mode! This code assumes that the idle loop never does upcalls to
523 * user mode. If your architecture does do upcalls from the idle loop (or
524 * does anything else that results in unbalanced calls to the irq_enter()
525 * and irq_exit() functions), RCU will give you what you deserve, good
526 * and hard. But very infrequently and irreproducibly.
527 *
528 * Use things like work queues to work around this limitation.
529 *
530 * You have been warned.
531 */
532void rcu_irq_enter(void)
533{
534 unsigned long flags;
535 struct rcu_dynticks *rdtp;
536 long long oldval;
537
538 local_irq_save(flags);
539 rdtp = &__get_cpu_var(rcu_dynticks);
540 oldval = rdtp->dynticks_nesting;
541 rdtp->dynticks_nesting++;
542 WARN_ON_ONCE(rdtp->dynticks_nesting == 0);
b6fc6020
FW
543 if (oldval)
544 trace_rcu_dyntick("++=", oldval, rdtp->dynticks_nesting);
545 else
546 rcu_idle_exit_common(rdtp, oldval);
64db4cff 547 local_irq_restore(flags);
64db4cff
PM
548}
549
550/**
551 * rcu_nmi_enter - inform RCU of entry to NMI context
552 *
553 * If the CPU was idle with dynamic ticks active, and there is no
554 * irq handler running, this updates rdtp->dynticks_nmi to let the
555 * RCU grace-period handling know that the CPU is active.
556 */
557void rcu_nmi_enter(void)
558{
559 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
560
23b5c8fa
PM
561 if (rdtp->dynticks_nmi_nesting == 0 &&
562 (atomic_read(&rdtp->dynticks) & 0x1))
64db4cff 563 return;
23b5c8fa
PM
564 rdtp->dynticks_nmi_nesting++;
565 smp_mb__before_atomic_inc(); /* Force delay from prior write. */
566 atomic_inc(&rdtp->dynticks);
567 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
568 smp_mb__after_atomic_inc(); /* See above. */
569 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
64db4cff
PM
570}
571
572/**
573 * rcu_nmi_exit - inform RCU of exit from NMI context
574 *
575 * If the CPU was idle with dynamic ticks active, and there is no
576 * irq handler running, this updates rdtp->dynticks_nmi to let the
577 * RCU grace-period handling know that the CPU is no longer active.
578 */
579void rcu_nmi_exit(void)
580{
581 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
582
23b5c8fa
PM
583 if (rdtp->dynticks_nmi_nesting == 0 ||
584 --rdtp->dynticks_nmi_nesting != 0)
64db4cff 585 return;
23b5c8fa
PM
586 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
587 smp_mb__before_atomic_inc(); /* See above. */
588 atomic_inc(&rdtp->dynticks);
589 smp_mb__after_atomic_inc(); /* Force delay to next write. */
590 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
64db4cff
PM
591}
592
9b2e4f18
PM
593#ifdef CONFIG_PROVE_RCU
594
64db4cff 595/**
9b2e4f18 596 * rcu_is_cpu_idle - see if RCU thinks that the current CPU is idle
64db4cff 597 *
9b2e4f18 598 * If the current CPU is in its idle loop and is neither in an interrupt
34240697 599 * or NMI handler, return true.
64db4cff 600 */
9b2e4f18 601int rcu_is_cpu_idle(void)
64db4cff 602{
34240697
PM
603 int ret;
604
605 preempt_disable();
606 ret = (atomic_read(&__get_cpu_var(rcu_dynticks).dynticks) & 0x1) == 0;
607 preempt_enable();
608 return ret;
64db4cff 609}
e6b80a3b 610EXPORT_SYMBOL(rcu_is_cpu_idle);
64db4cff 611
c0d6d01b
PM
612#ifdef CONFIG_HOTPLUG_CPU
613
614/*
615 * Is the current CPU online? Disable preemption to avoid false positives
616 * that could otherwise happen due to the current CPU number being sampled,
617 * this task being preempted, its old CPU being taken offline, resuming
618 * on some other CPU, then determining that its old CPU is now offline.
619 * It is OK to use RCU on an offline processor during initial boot, hence
2036d94a
PM
620 * the check for rcu_scheduler_fully_active. Note also that it is OK
621 * for a CPU coming online to use RCU for one jiffy prior to marking itself
622 * online in the cpu_online_mask. Similarly, it is OK for a CPU going
623 * offline to continue to use RCU for one jiffy after marking itself
624 * offline in the cpu_online_mask. This leniency is necessary given the
625 * non-atomic nature of the online and offline processing, for example,
626 * the fact that a CPU enters the scheduler after completing the CPU_DYING
627 * notifiers.
628 *
629 * This is also why RCU internally marks CPUs online during the
630 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
c0d6d01b
PM
631 *
632 * Disable checking if in an NMI handler because we cannot safely report
633 * errors from NMI handlers anyway.
634 */
635bool rcu_lockdep_current_cpu_online(void)
636{
2036d94a
PM
637 struct rcu_data *rdp;
638 struct rcu_node *rnp;
c0d6d01b
PM
639 bool ret;
640
641 if (in_nmi())
642 return 1;
643 preempt_disable();
2036d94a
PM
644 rdp = &__get_cpu_var(rcu_sched_data);
645 rnp = rdp->mynode;
646 ret = (rdp->grpmask & rnp->qsmaskinit) ||
c0d6d01b
PM
647 !rcu_scheduler_fully_active;
648 preempt_enable();
649 return ret;
650}
651EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
652
653#endif /* #ifdef CONFIG_HOTPLUG_CPU */
654
9b2e4f18
PM
655#endif /* #ifdef CONFIG_PROVE_RCU */
656
64db4cff 657/**
9b2e4f18 658 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
64db4cff 659 *
9b2e4f18
PM
660 * If the current CPU is idle or running at a first-level (not nested)
661 * interrupt from idle, return true. The caller must have at least
662 * disabled preemption.
64db4cff 663 */
9b2e4f18 664int rcu_is_cpu_rrupt_from_idle(void)
64db4cff 665{
9b2e4f18 666 return __get_cpu_var(rcu_dynticks).dynticks_nesting <= 1;
64db4cff
PM
667}
668
64db4cff
PM
669/*
670 * Snapshot the specified CPU's dynticks counter so that we can later
671 * credit them with an implicit quiescent state. Return 1 if this CPU
1eba8f84 672 * is in dynticks idle mode, which is an extended quiescent state.
64db4cff
PM
673 */
674static int dyntick_save_progress_counter(struct rcu_data *rdp)
675{
23b5c8fa 676 rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
f0e7c19d 677 return (rdp->dynticks_snap & 0x1) == 0;
64db4cff
PM
678}
679
680/*
681 * Return true if the specified CPU has passed through a quiescent
682 * state by virtue of being in or having passed through an dynticks
683 * idle state since the last call to dyntick_save_progress_counter()
684 * for this same CPU.
685 */
686static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
687{
7eb4f455
PM
688 unsigned int curr;
689 unsigned int snap;
64db4cff 690
7eb4f455
PM
691 curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
692 snap = (unsigned int)rdp->dynticks_snap;
64db4cff
PM
693
694 /*
695 * If the CPU passed through or entered a dynticks idle phase with
696 * no active irq/NMI handlers, then we can safely pretend that the CPU
697 * already acknowledged the request to pass through a quiescent
698 * state. Either way, that CPU cannot possibly be in an RCU
699 * read-side critical section that started before the beginning
700 * of the current RCU grace period.
701 */
7eb4f455 702 if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
d4c08f2a 703 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "dti");
64db4cff
PM
704 rdp->dynticks_fqs++;
705 return 1;
706 }
707
708 /* Go check for the CPU being offline. */
709 return rcu_implicit_offline_qs(rdp);
710}
711
13cfcca0
PM
712static int jiffies_till_stall_check(void)
713{
714 int till_stall_check = ACCESS_ONCE(rcu_cpu_stall_timeout);
715
716 /*
717 * Limit check must be consistent with the Kconfig limits
718 * for CONFIG_RCU_CPU_STALL_TIMEOUT.
719 */
720 if (till_stall_check < 3) {
721 ACCESS_ONCE(rcu_cpu_stall_timeout) = 3;
722 till_stall_check = 3;
723 } else if (till_stall_check > 300) {
724 ACCESS_ONCE(rcu_cpu_stall_timeout) = 300;
725 till_stall_check = 300;
726 }
727 return till_stall_check * HZ + RCU_STALL_DELAY_DELTA;
728}
729
64db4cff
PM
730static void record_gp_stall_check_time(struct rcu_state *rsp)
731{
732 rsp->gp_start = jiffies;
13cfcca0 733 rsp->jiffies_stall = jiffies + jiffies_till_stall_check();
64db4cff
PM
734}
735
736static void print_other_cpu_stall(struct rcu_state *rsp)
737{
738 int cpu;
739 long delta;
740 unsigned long flags;
9bc8b558 741 int ndetected;
64db4cff 742 struct rcu_node *rnp = rcu_get_root(rsp);
64db4cff
PM
743
744 /* Only let one CPU complain about others per time interval. */
745
1304afb2 746 raw_spin_lock_irqsave(&rnp->lock, flags);
64db4cff 747 delta = jiffies - rsp->jiffies_stall;
fc2219d4 748 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
1304afb2 749 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
750 return;
751 }
13cfcca0 752 rsp->jiffies_stall = jiffies + 3 * jiffies_till_stall_check() + 3;
1304afb2 753 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 754
8cdd32a9
PM
755 /*
756 * OK, time to rat on our buddy...
757 * See Documentation/RCU/stallwarn.txt for info on how to debug
758 * RCU CPU stall warnings.
759 */
a858af28 760 printk(KERN_ERR "INFO: %s detected stalls on CPUs/tasks:",
4300aa64 761 rsp->name);
a858af28 762 print_cpu_stall_info_begin();
a0b6c9a7 763 rcu_for_each_leaf_node(rsp, rnp) {
3acd9eb3 764 raw_spin_lock_irqsave(&rnp->lock, flags);
9bc8b558 765 ndetected += rcu_print_task_stall(rnp);
3acd9eb3 766 raw_spin_unlock_irqrestore(&rnp->lock, flags);
a0b6c9a7 767 if (rnp->qsmask == 0)
64db4cff 768 continue;
a0b6c9a7 769 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
9bc8b558 770 if (rnp->qsmask & (1UL << cpu)) {
a858af28 771 print_cpu_stall_info(rsp, rnp->grplo + cpu);
9bc8b558
PM
772 ndetected++;
773 }
64db4cff 774 }
a858af28
PM
775
776 /*
777 * Now rat on any tasks that got kicked up to the root rcu_node
778 * due to CPU offlining.
779 */
780 rnp = rcu_get_root(rsp);
781 raw_spin_lock_irqsave(&rnp->lock, flags);
782 ndetected = rcu_print_task_stall(rnp);
783 raw_spin_unlock_irqrestore(&rnp->lock, flags);
784
785 print_cpu_stall_info_end();
786 printk(KERN_CONT "(detected by %d, t=%ld jiffies)\n",
64db4cff 787 smp_processor_id(), (long)(jiffies - rsp->gp_start));
9bc8b558
PM
788 if (ndetected == 0)
789 printk(KERN_ERR "INFO: Stall ended before state dump start\n");
790 else if (!trigger_all_cpu_backtrace())
4627e240 791 dump_stack();
c1dc0b9c 792
1ed509a2
PM
793 /* If so configured, complain about tasks blocking the grace period. */
794
795 rcu_print_detail_task_stall(rsp);
796
64db4cff
PM
797 force_quiescent_state(rsp, 0); /* Kick them all. */
798}
799
800static void print_cpu_stall(struct rcu_state *rsp)
801{
802 unsigned long flags;
803 struct rcu_node *rnp = rcu_get_root(rsp);
804
8cdd32a9
PM
805 /*
806 * OK, time to rat on ourselves...
807 * See Documentation/RCU/stallwarn.txt for info on how to debug
808 * RCU CPU stall warnings.
809 */
a858af28
PM
810 printk(KERN_ERR "INFO: %s self-detected stall on CPU", rsp->name);
811 print_cpu_stall_info_begin();
812 print_cpu_stall_info(rsp, smp_processor_id());
813 print_cpu_stall_info_end();
814 printk(KERN_CONT " (t=%lu jiffies)\n", jiffies - rsp->gp_start);
4627e240
PM
815 if (!trigger_all_cpu_backtrace())
816 dump_stack();
c1dc0b9c 817
1304afb2 818 raw_spin_lock_irqsave(&rnp->lock, flags);
20133cfc 819 if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall))
13cfcca0
PM
820 rsp->jiffies_stall = jiffies +
821 3 * jiffies_till_stall_check() + 3;
1304afb2 822 raw_spin_unlock_irqrestore(&rnp->lock, flags);
c1dc0b9c 823
64db4cff
PM
824 set_need_resched(); /* kick ourselves to get things going. */
825}
826
827static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
828{
bad6e139
PM
829 unsigned long j;
830 unsigned long js;
64db4cff
PM
831 struct rcu_node *rnp;
832
742734ee 833 if (rcu_cpu_stall_suppress)
c68de209 834 return;
bad6e139
PM
835 j = ACCESS_ONCE(jiffies);
836 js = ACCESS_ONCE(rsp->jiffies_stall);
64db4cff 837 rnp = rdp->mynode;
bad6e139 838 if ((ACCESS_ONCE(rnp->qsmask) & rdp->grpmask) && ULONG_CMP_GE(j, js)) {
64db4cff
PM
839
840 /* We haven't checked in, so go dump stack. */
841 print_cpu_stall(rsp);
842
bad6e139
PM
843 } else if (rcu_gp_in_progress(rsp) &&
844 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
64db4cff 845
bad6e139 846 /* They had a few time units to dump stack, so complain. */
64db4cff
PM
847 print_other_cpu_stall(rsp);
848 }
849}
850
c68de209
PM
851static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr)
852{
742734ee 853 rcu_cpu_stall_suppress = 1;
c68de209
PM
854 return NOTIFY_DONE;
855}
856
53d84e00
PM
857/**
858 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
859 *
860 * Set the stall-warning timeout way off into the future, thus preventing
861 * any RCU CPU stall-warning messages from appearing in the current set of
862 * RCU grace periods.
863 *
864 * The caller must disable hard irqs.
865 */
866void rcu_cpu_stall_reset(void)
867{
868 rcu_sched_state.jiffies_stall = jiffies + ULONG_MAX / 2;
869 rcu_bh_state.jiffies_stall = jiffies + ULONG_MAX / 2;
870 rcu_preempt_stall_reset();
871}
872
c68de209
PM
873static struct notifier_block rcu_panic_block = {
874 .notifier_call = rcu_panic,
875};
876
877static void __init check_cpu_stall_init(void)
878{
879 atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block);
880}
881
64db4cff
PM
882/*
883 * Update CPU-local rcu_data state to record the newly noticed grace period.
884 * This is used both when we started the grace period and when we notice
9160306e
PM
885 * that someone else started the grace period. The caller must hold the
886 * ->lock of the leaf rcu_node structure corresponding to the current CPU,
887 * and must have irqs disabled.
64db4cff 888 */
9160306e
PM
889static void __note_new_gpnum(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
890{
891 if (rdp->gpnum != rnp->gpnum) {
121dfc4b
PM
892 /*
893 * If the current grace period is waiting for this CPU,
894 * set up to detect a quiescent state, otherwise don't
895 * go looking for one.
896 */
9160306e 897 rdp->gpnum = rnp->gpnum;
d4c08f2a 898 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpustart");
121dfc4b
PM
899 if (rnp->qsmask & rdp->grpmask) {
900 rdp->qs_pending = 1;
e4cc1f22 901 rdp->passed_quiesce = 0;
121dfc4b
PM
902 } else
903 rdp->qs_pending = 0;
a858af28 904 zero_cpu_stall_ticks(rdp);
9160306e
PM
905 }
906}
907
64db4cff
PM
908static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
909{
9160306e
PM
910 unsigned long flags;
911 struct rcu_node *rnp;
912
913 local_irq_save(flags);
914 rnp = rdp->mynode;
915 if (rdp->gpnum == ACCESS_ONCE(rnp->gpnum) || /* outside lock. */
1304afb2 916 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
9160306e
PM
917 local_irq_restore(flags);
918 return;
919 }
920 __note_new_gpnum(rsp, rnp, rdp);
1304afb2 921 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
922}
923
924/*
925 * Did someone else start a new RCU grace period start since we last
926 * checked? Update local state appropriately if so. Must be called
927 * on the CPU corresponding to rdp.
928 */
929static int
930check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
931{
932 unsigned long flags;
933 int ret = 0;
934
935 local_irq_save(flags);
936 if (rdp->gpnum != rsp->gpnum) {
937 note_new_gpnum(rsp, rdp);
938 ret = 1;
939 }
940 local_irq_restore(flags);
941 return ret;
942}
943
d09b62df
PM
944/*
945 * Advance this CPU's callbacks, but only if the current grace period
946 * has ended. This may be called only from the CPU to whom the rdp
947 * belongs. In addition, the corresponding leaf rcu_node structure's
948 * ->lock must be held by the caller, with irqs disabled.
949 */
950static void
951__rcu_process_gp_end(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
952{
953 /* Did another grace period end? */
954 if (rdp->completed != rnp->completed) {
955
956 /* Advance callbacks. No harm if list empty. */
957 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[RCU_WAIT_TAIL];
958 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL];
959 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
960
961 /* Remember that we saw this grace-period completion. */
962 rdp->completed = rnp->completed;
d4c08f2a 963 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuend");
20377f32 964
5ff8e6f0
FW
965 /*
966 * If we were in an extended quiescent state, we may have
121dfc4b 967 * missed some grace periods that others CPUs handled on
5ff8e6f0 968 * our behalf. Catch up with this state to avoid noting
121dfc4b
PM
969 * spurious new grace periods. If another grace period
970 * has started, then rnp->gpnum will have advanced, so
971 * we will detect this later on.
5ff8e6f0 972 */
121dfc4b 973 if (ULONG_CMP_LT(rdp->gpnum, rdp->completed))
5ff8e6f0
FW
974 rdp->gpnum = rdp->completed;
975
20377f32 976 /*
121dfc4b
PM
977 * If RCU does not need a quiescent state from this CPU,
978 * then make sure that this CPU doesn't go looking for one.
20377f32 979 */
121dfc4b 980 if ((rnp->qsmask & rdp->grpmask) == 0)
20377f32 981 rdp->qs_pending = 0;
d09b62df
PM
982 }
983}
984
985/*
986 * Advance this CPU's callbacks, but only if the current grace period
987 * has ended. This may be called only from the CPU to whom the rdp
988 * belongs.
989 */
990static void
991rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
992{
993 unsigned long flags;
994 struct rcu_node *rnp;
995
996 local_irq_save(flags);
997 rnp = rdp->mynode;
998 if (rdp->completed == ACCESS_ONCE(rnp->completed) || /* outside lock. */
1304afb2 999 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
d09b62df
PM
1000 local_irq_restore(flags);
1001 return;
1002 }
1003 __rcu_process_gp_end(rsp, rnp, rdp);
1304afb2 1004 raw_spin_unlock_irqrestore(&rnp->lock, flags);
d09b62df
PM
1005}
1006
1007/*
1008 * Do per-CPU grace-period initialization for running CPU. The caller
1009 * must hold the lock of the leaf rcu_node structure corresponding to
1010 * this CPU.
1011 */
1012static void
1013rcu_start_gp_per_cpu(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
1014{
1015 /* Prior grace period ended, so advance callbacks for current CPU. */
1016 __rcu_process_gp_end(rsp, rnp, rdp);
1017
1018 /*
1019 * Because this CPU just now started the new grace period, we know
1020 * that all of its callbacks will be covered by this upcoming grace
1021 * period, even the ones that were registered arbitrarily recently.
1022 * Therefore, advance all outstanding callbacks to RCU_WAIT_TAIL.
1023 *
1024 * Other CPUs cannot be sure exactly when the grace period started.
1025 * Therefore, their recently registered callbacks must pass through
1026 * an additional RCU_NEXT_READY stage, so that they will be handled
1027 * by the next RCU grace period.
1028 */
1029 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1030 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
9160306e
PM
1031
1032 /* Set state so that this CPU will detect the next quiescent state. */
1033 __note_new_gpnum(rsp, rnp, rdp);
d09b62df
PM
1034}
1035
64db4cff
PM
1036/*
1037 * Start a new RCU grace period if warranted, re-initializing the hierarchy
1038 * in preparation for detecting the next grace period. The caller must hold
1039 * the root node's ->lock, which is released before return. Hard irqs must
1040 * be disabled.
e5601400
PM
1041 *
1042 * Note that it is legal for a dying CPU (which is marked as offline) to
1043 * invoke this function. This can happen when the dying CPU reports its
1044 * quiescent state.
64db4cff
PM
1045 */
1046static void
1047rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
1048 __releases(rcu_get_root(rsp)->lock)
1049{
394f99a9 1050 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
64db4cff 1051 struct rcu_node *rnp = rcu_get_root(rsp);
64db4cff 1052
037067a1 1053 if (!rcu_scheduler_fully_active ||
afe24b12
PM
1054 !cpu_needs_another_gp(rsp, rdp)) {
1055 /*
1056 * Either the scheduler hasn't yet spawned the first
1057 * non-idle task or this CPU does not need another
1058 * grace period. Either way, don't start a new grace
1059 * period.
1060 */
1061 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1062 return;
1063 }
b32e9eb6 1064
afe24b12 1065 if (rsp->fqs_active) {
b32e9eb6 1066 /*
afe24b12
PM
1067 * This CPU needs a grace period, but force_quiescent_state()
1068 * is running. Tell it to start one on this CPU's behalf.
b32e9eb6 1069 */
afe24b12
PM
1070 rsp->fqs_need_gp = 1;
1071 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1072 return;
1073 }
1074
1075 /* Advance to a new grace period and initialize state. */
1076 rsp->gpnum++;
d4c08f2a 1077 trace_rcu_grace_period(rsp->name, rsp->gpnum, "start");
af446b70
PM
1078 WARN_ON_ONCE(rsp->fqs_state == RCU_GP_INIT);
1079 rsp->fqs_state = RCU_GP_INIT; /* Hold off force_quiescent_state. */
64db4cff 1080 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
64db4cff 1081 record_gp_stall_check_time(rsp);
1304afb2 1082 raw_spin_unlock(&rnp->lock); /* leave irqs disabled. */
64db4cff 1083
64db4cff 1084 /* Exclude any concurrent CPU-hotplug operations. */
1304afb2 1085 raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */
64db4cff
PM
1086
1087 /*
b835db1f
PM
1088 * Set the quiescent-state-needed bits in all the rcu_node
1089 * structures for all currently online CPUs in breadth-first
1090 * order, starting from the root rcu_node structure. This
1091 * operation relies on the layout of the hierarchy within the
1092 * rsp->node[] array. Note that other CPUs will access only
1093 * the leaves of the hierarchy, which still indicate that no
1094 * grace period is in progress, at least until the corresponding
1095 * leaf node has been initialized. In addition, we have excluded
1096 * CPU-hotplug operations.
64db4cff
PM
1097 *
1098 * Note that the grace period cannot complete until we finish
1099 * the initialization process, as there will be at least one
1100 * qsmask bit set in the root node until that time, namely the
b835db1f
PM
1101 * one corresponding to this CPU, due to the fact that we have
1102 * irqs disabled.
64db4cff 1103 */
a0b6c9a7 1104 rcu_for_each_node_breadth_first(rsp, rnp) {
1304afb2 1105 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
b0e165c0 1106 rcu_preempt_check_blocked_tasks(rnp);
49e29126 1107 rnp->qsmask = rnp->qsmaskinit;
de078d87 1108 rnp->gpnum = rsp->gpnum;
d09b62df
PM
1109 rnp->completed = rsp->completed;
1110 if (rnp == rdp->mynode)
1111 rcu_start_gp_per_cpu(rsp, rnp, rdp);
27f4d280 1112 rcu_preempt_boost_start_gp(rnp);
d4c08f2a
PM
1113 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
1114 rnp->level, rnp->grplo,
1115 rnp->grphi, rnp->qsmask);
1304afb2 1116 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
64db4cff
PM
1117 }
1118
83f5b01f 1119 rnp = rcu_get_root(rsp);
1304afb2 1120 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
af446b70 1121 rsp->fqs_state = RCU_SIGNAL_INIT; /* force_quiescent_state now OK. */
1304afb2
PM
1122 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1123 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
64db4cff
PM
1124}
1125
f41d911f 1126/*
d3f6bad3
PM
1127 * Report a full set of quiescent states to the specified rcu_state
1128 * data structure. This involves cleaning up after the prior grace
1129 * period and letting rcu_start_gp() start up the next grace period
1130 * if one is needed. Note that the caller must hold rnp->lock, as
1131 * required by rcu_start_gp(), which will release it.
f41d911f 1132 */
d3f6bad3 1133static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
fc2219d4 1134 __releases(rcu_get_root(rsp)->lock)
f41d911f 1135{
15ba0ba8 1136 unsigned long gp_duration;
afe24b12
PM
1137 struct rcu_node *rnp = rcu_get_root(rsp);
1138 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
15ba0ba8 1139
fc2219d4 1140 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
0bbcc529
PM
1141
1142 /*
1143 * Ensure that all grace-period and pre-grace-period activity
1144 * is seen before the assignment to rsp->completed.
1145 */
1146 smp_mb(); /* See above block comment. */
15ba0ba8
PM
1147 gp_duration = jiffies - rsp->gp_start;
1148 if (gp_duration > rsp->gp_max)
1149 rsp->gp_max = gp_duration;
afe24b12
PM
1150
1151 /*
1152 * We know the grace period is complete, but to everyone else
1153 * it appears to still be ongoing. But it is also the case
1154 * that to everyone else it looks like there is nothing that
1155 * they can do to advance the grace period. It is therefore
1156 * safe for us to drop the lock in order to mark the grace
1157 * period as completed in all of the rcu_node structures.
1158 *
1159 * But if this CPU needs another grace period, it will take
1160 * care of this while initializing the next grace period.
1161 * We use RCU_WAIT_TAIL instead of the usual RCU_DONE_TAIL
1162 * because the callbacks have not yet been advanced: Those
1163 * callbacks are waiting on the grace period that just now
1164 * completed.
1165 */
1166 if (*rdp->nxttail[RCU_WAIT_TAIL] == NULL) {
1167 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1168
1169 /*
1170 * Propagate new ->completed value to rcu_node structures
1171 * so that other CPUs don't have to wait until the start
1172 * of the next grace period to process their callbacks.
1173 */
1174 rcu_for_each_node_breadth_first(rsp, rnp) {
1175 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1176 rnp->completed = rsp->gpnum;
1177 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1178 }
1179 rnp = rcu_get_root(rsp);
1180 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1181 }
1182
1183 rsp->completed = rsp->gpnum; /* Declare the grace period complete. */
d4c08f2a 1184 trace_rcu_grace_period(rsp->name, rsp->completed, "end");
af446b70 1185 rsp->fqs_state = RCU_GP_IDLE;
f41d911f
PM
1186 rcu_start_gp(rsp, flags); /* releases root node's rnp->lock. */
1187}
1188
64db4cff 1189/*
d3f6bad3
PM
1190 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
1191 * Allows quiescent states for a group of CPUs to be reported at one go
1192 * to the specified rcu_node structure, though all the CPUs in the group
1193 * must be represented by the same rcu_node structure (which need not be
1194 * a leaf rcu_node structure, though it often will be). That structure's
1195 * lock must be held upon entry, and it is released before return.
64db4cff
PM
1196 */
1197static void
d3f6bad3
PM
1198rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
1199 struct rcu_node *rnp, unsigned long flags)
64db4cff
PM
1200 __releases(rnp->lock)
1201{
28ecd580
PM
1202 struct rcu_node *rnp_c;
1203
64db4cff
PM
1204 /* Walk up the rcu_node hierarchy. */
1205 for (;;) {
1206 if (!(rnp->qsmask & mask)) {
1207
1208 /* Our bit has already been cleared, so done. */
1304afb2 1209 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1210 return;
1211 }
1212 rnp->qsmask &= ~mask;
d4c08f2a
PM
1213 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
1214 mask, rnp->qsmask, rnp->level,
1215 rnp->grplo, rnp->grphi,
1216 !!rnp->gp_tasks);
27f4d280 1217 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
64db4cff
PM
1218
1219 /* Other bits still set at this level, so done. */
1304afb2 1220 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1221 return;
1222 }
1223 mask = rnp->grpmask;
1224 if (rnp->parent == NULL) {
1225
1226 /* No more levels. Exit loop holding root lock. */
1227
1228 break;
1229 }
1304afb2 1230 raw_spin_unlock_irqrestore(&rnp->lock, flags);
28ecd580 1231 rnp_c = rnp;
64db4cff 1232 rnp = rnp->parent;
1304afb2 1233 raw_spin_lock_irqsave(&rnp->lock, flags);
28ecd580 1234 WARN_ON_ONCE(rnp_c->qsmask);
64db4cff
PM
1235 }
1236
1237 /*
1238 * Get here if we are the last CPU to pass through a quiescent
d3f6bad3 1239 * state for this grace period. Invoke rcu_report_qs_rsp()
f41d911f 1240 * to clean up and start the next grace period if one is needed.
64db4cff 1241 */
d3f6bad3 1242 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
64db4cff
PM
1243}
1244
1245/*
d3f6bad3
PM
1246 * Record a quiescent state for the specified CPU to that CPU's rcu_data
1247 * structure. This must be either called from the specified CPU, or
1248 * called when the specified CPU is known to be offline (and when it is
1249 * also known that no other CPU is concurrently trying to help the offline
1250 * CPU). The lastcomp argument is used to make sure we are still in the
1251 * grace period of interest. We don't want to end the current grace period
1252 * based on quiescent states detected in an earlier grace period!
64db4cff
PM
1253 */
1254static void
e4cc1f22 1255rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastgp)
64db4cff
PM
1256{
1257 unsigned long flags;
1258 unsigned long mask;
1259 struct rcu_node *rnp;
1260
1261 rnp = rdp->mynode;
1304afb2 1262 raw_spin_lock_irqsave(&rnp->lock, flags);
e4cc1f22 1263 if (lastgp != rnp->gpnum || rnp->completed == rnp->gpnum) {
64db4cff
PM
1264
1265 /*
e4cc1f22
PM
1266 * The grace period in which this quiescent state was
1267 * recorded has ended, so don't report it upwards.
1268 * We will instead need a new quiescent state that lies
1269 * within the current grace period.
64db4cff 1270 */
e4cc1f22 1271 rdp->passed_quiesce = 0; /* need qs for new gp. */
1304afb2 1272 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1273 return;
1274 }
1275 mask = rdp->grpmask;
1276 if ((rnp->qsmask & mask) == 0) {
1304afb2 1277 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1278 } else {
1279 rdp->qs_pending = 0;
1280
1281 /*
1282 * This GP can't end until cpu checks in, so all of our
1283 * callbacks can be processed during the next GP.
1284 */
64db4cff
PM
1285 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1286
d3f6bad3 1287 rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
64db4cff
PM
1288 }
1289}
1290
1291/*
1292 * Check to see if there is a new grace period of which this CPU
1293 * is not yet aware, and if so, set up local rcu_data state for it.
1294 * Otherwise, see if this CPU has just passed through its first
1295 * quiescent state for this grace period, and record that fact if so.
1296 */
1297static void
1298rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
1299{
1300 /* If there is now a new grace period, record and return. */
1301 if (check_for_new_grace_period(rsp, rdp))
1302 return;
1303
1304 /*
1305 * Does this CPU still need to do its part for current grace period?
1306 * If no, return and let the other CPUs do their part as well.
1307 */
1308 if (!rdp->qs_pending)
1309 return;
1310
1311 /*
1312 * Was there a quiescent state since the beginning of the grace
1313 * period? If no, then exit and wait for the next call.
1314 */
e4cc1f22 1315 if (!rdp->passed_quiesce)
64db4cff
PM
1316 return;
1317
d3f6bad3
PM
1318 /*
1319 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
1320 * judge of that).
1321 */
e4cc1f22 1322 rcu_report_qs_rdp(rdp->cpu, rsp, rdp, rdp->passed_quiesce_gpnum);
64db4cff
PM
1323}
1324
1325#ifdef CONFIG_HOTPLUG_CPU
1326
e74f4c45 1327/*
b1420f1c
PM
1328 * Send the specified CPU's RCU callbacks to the orphanage. The
1329 * specified CPU must be offline, and the caller must hold the
1330 * ->onofflock.
e74f4c45 1331 */
b1420f1c
PM
1332static void
1333rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
1334 struct rcu_node *rnp, struct rcu_data *rdp)
e74f4c45
PM
1335{
1336 int i;
e5601400 1337
b1420f1c
PM
1338 /*
1339 * Orphan the callbacks. First adjust the counts. This is safe
1340 * because ->onofflock excludes _rcu_barrier()'s adoption of
1341 * the callbacks, thus no memory barrier is required.
1342 */
a50c3af9 1343 if (rdp->nxtlist != NULL) {
b1420f1c
PM
1344 rsp->qlen_lazy += rdp->qlen_lazy;
1345 rsp->qlen += rdp->qlen;
1346 rdp->n_cbs_orphaned += rdp->qlen;
a50c3af9
PM
1347 rdp->qlen_lazy = 0;
1348 rdp->qlen = 0;
1349 }
1350
1351 /*
b1420f1c
PM
1352 * Next, move those callbacks still needing a grace period to
1353 * the orphanage, where some other CPU will pick them up.
1354 * Some of the callbacks might have gone partway through a grace
1355 * period, but that is too bad. They get to start over because we
1356 * cannot assume that grace periods are synchronized across CPUs.
1357 * We don't bother updating the ->nxttail[] array yet, instead
1358 * we just reset the whole thing later on.
a50c3af9 1359 */
b1420f1c
PM
1360 if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
1361 *rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
1362 rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
1363 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
a50c3af9
PM
1364 }
1365
1366 /*
b1420f1c
PM
1367 * Then move the ready-to-invoke callbacks to the orphanage,
1368 * where some other CPU will pick them up. These will not be
1369 * required to pass though another grace period: They are done.
a50c3af9 1370 */
e5601400 1371 if (rdp->nxtlist != NULL) {
b1420f1c
PM
1372 *rsp->orphan_donetail = rdp->nxtlist;
1373 rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
e5601400 1374 }
e74f4c45 1375
b1420f1c
PM
1376 /* Finally, initialize the rcu_data structure's list to empty. */
1377 rdp->nxtlist = NULL;
1378 for (i = 0; i < RCU_NEXT_SIZE; i++)
1379 rdp->nxttail[i] = &rdp->nxtlist;
1380}
1381
1382/*
1383 * Adopt the RCU callbacks from the specified rcu_state structure's
1384 * orphanage. The caller must hold the ->onofflock.
1385 */
1386static void rcu_adopt_orphan_cbs(struct rcu_state *rsp)
1387{
1388 int i;
1389 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
1390
a50c3af9 1391 /*
b1420f1c
PM
1392 * If there is an rcu_barrier() operation in progress, then
1393 * only the task doing that operation is permitted to adopt
1394 * callbacks. To do otherwise breaks rcu_barrier() and friends
1395 * by causing them to fail to wait for the callbacks in the
1396 * orphanage.
a50c3af9 1397 */
b1420f1c
PM
1398 if (rsp->rcu_barrier_in_progress &&
1399 rsp->rcu_barrier_in_progress != current)
1400 return;
1401
1402 /* Do the accounting first. */
1403 rdp->qlen_lazy += rsp->qlen_lazy;
1404 rdp->qlen += rsp->qlen;
1405 rdp->n_cbs_adopted += rsp->qlen;
8f5af6f1
PM
1406 if (rsp->qlen_lazy != rsp->qlen)
1407 rcu_idle_count_callbacks_posted();
b1420f1c
PM
1408 rsp->qlen_lazy = 0;
1409 rsp->qlen = 0;
1410
1411 /*
1412 * We do not need a memory barrier here because the only way we
1413 * can get here if there is an rcu_barrier() in flight is if
1414 * we are the task doing the rcu_barrier().
1415 */
1416
1417 /* First adopt the ready-to-invoke callbacks. */
1418 if (rsp->orphan_donelist != NULL) {
1419 *rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
1420 *rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
1421 for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
1422 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
1423 rdp->nxttail[i] = rsp->orphan_donetail;
1424 rsp->orphan_donelist = NULL;
1425 rsp->orphan_donetail = &rsp->orphan_donelist;
1426 }
1427
1428 /* And then adopt the callbacks that still need a grace period. */
1429 if (rsp->orphan_nxtlist != NULL) {
1430 *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
1431 rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
1432 rsp->orphan_nxtlist = NULL;
1433 rsp->orphan_nxttail = &rsp->orphan_nxtlist;
1434 }
1435}
1436
1437/*
1438 * Trace the fact that this CPU is going offline.
1439 */
1440static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
1441{
1442 RCU_TRACE(unsigned long mask);
1443 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
1444 RCU_TRACE(struct rcu_node *rnp = rdp->mynode);
1445
1446 RCU_TRACE(mask = rdp->grpmask);
e5601400
PM
1447 trace_rcu_grace_period(rsp->name,
1448 rnp->gpnum + 1 - !!(rnp->qsmask & mask),
1449 "cpuofl");
64db4cff
PM
1450}
1451
1452/*
e5601400 1453 * The CPU has been completely removed, and some other CPU is reporting
b1420f1c
PM
1454 * this fact from process context. Do the remainder of the cleanup,
1455 * including orphaning the outgoing CPU's RCU callbacks, and also
1456 * adopting them, if there is no _rcu_barrier() instance running.
e5601400
PM
1457 * There can only be one CPU hotplug operation at a time, so no other
1458 * CPU can be attempting to update rcu_cpu_kthread_task.
64db4cff 1459 */
e5601400 1460static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
64db4cff 1461{
2036d94a
PM
1462 unsigned long flags;
1463 unsigned long mask;
1464 int need_report = 0;
e5601400 1465 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
b1420f1c 1466 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
e5601400 1467
2036d94a 1468 /* Adjust any no-longer-needed kthreads. */
e5601400
PM
1469 rcu_stop_cpu_kthread(cpu);
1470 rcu_node_kthread_setaffinity(rnp, -1);
2036d94a 1471
b1420f1c 1472 /* Remove the dead CPU from the bitmasks in the rcu_node hierarchy. */
2036d94a
PM
1473
1474 /* Exclude any attempts to start a new grace period. */
1475 raw_spin_lock_irqsave(&rsp->onofflock, flags);
1476
b1420f1c
PM
1477 /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
1478 rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
1479 rcu_adopt_orphan_cbs(rsp);
1480
2036d94a
PM
1481 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
1482 mask = rdp->grpmask; /* rnp->grplo is constant. */
1483 do {
1484 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1485 rnp->qsmaskinit &= ~mask;
1486 if (rnp->qsmaskinit != 0) {
1487 if (rnp != rdp->mynode)
1488 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1489 break;
1490 }
1491 if (rnp == rdp->mynode)
1492 need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
1493 else
1494 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1495 mask = rnp->grpmask;
1496 rnp = rnp->parent;
1497 } while (rnp != NULL);
1498
1499 /*
1500 * We still hold the leaf rcu_node structure lock here, and
1501 * irqs are still disabled. The reason for this subterfuge is
1502 * because invoking rcu_report_unblock_qs_rnp() with ->onofflock
1503 * held leads to deadlock.
1504 */
1505 raw_spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
1506 rnp = rdp->mynode;
1507 if (need_report & RCU_OFL_TASKS_NORM_GP)
1508 rcu_report_unblock_qs_rnp(rnp, flags);
1509 else
1510 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1511 if (need_report & RCU_OFL_TASKS_EXP_GP)
1512 rcu_report_exp_rnp(rsp, rnp, true);
64db4cff
PM
1513}
1514
1515#else /* #ifdef CONFIG_HOTPLUG_CPU */
1516
b1420f1c
PM
1517static void rcu_adopt_orphan_cbs(struct rcu_state *rsp)
1518{
1519}
1520
e5601400 1521static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
e74f4c45
PM
1522{
1523}
1524
e5601400 1525static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
64db4cff
PM
1526{
1527}
1528
1529#endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
1530
1531/*
1532 * Invoke any RCU callbacks that have made it to the end of their grace
1533 * period. Thottle as specified by rdp->blimit.
1534 */
37c72e56 1535static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
64db4cff
PM
1536{
1537 unsigned long flags;
1538 struct rcu_head *next, *list, **tail;
b41772ab 1539 int bl, count, count_lazy, i;
64db4cff
PM
1540
1541 /* If no callbacks are ready, just return.*/
29c00b4a 1542 if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
486e2593 1543 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
4968c300
PM
1544 trace_rcu_batch_end(rsp->name, 0, !!ACCESS_ONCE(rdp->nxtlist),
1545 need_resched(), is_idle_task(current),
1546 rcu_is_callbacks_kthread());
64db4cff 1547 return;
29c00b4a 1548 }
64db4cff
PM
1549
1550 /*
1551 * Extract the list of ready callbacks, disabling to prevent
1552 * races with call_rcu() from interrupt handlers.
1553 */
1554 local_irq_save(flags);
8146c4e2 1555 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
29c00b4a 1556 bl = rdp->blimit;
486e2593 1557 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
64db4cff
PM
1558 list = rdp->nxtlist;
1559 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
1560 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
1561 tail = rdp->nxttail[RCU_DONE_TAIL];
b41772ab
PM
1562 for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
1563 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
1564 rdp->nxttail[i] = &rdp->nxtlist;
64db4cff
PM
1565 local_irq_restore(flags);
1566
1567 /* Invoke callbacks. */
486e2593 1568 count = count_lazy = 0;
64db4cff
PM
1569 while (list) {
1570 next = list->next;
1571 prefetch(next);
551d55a9 1572 debug_rcu_head_unqueue(list);
486e2593
PM
1573 if (__rcu_reclaim(rsp->name, list))
1574 count_lazy++;
64db4cff 1575 list = next;
dff1672d
PM
1576 /* Stop only if limit reached and CPU has something to do. */
1577 if (++count >= bl &&
1578 (need_resched() ||
1579 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
64db4cff
PM
1580 break;
1581 }
1582
1583 local_irq_save(flags);
4968c300
PM
1584 trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
1585 is_idle_task(current),
1586 rcu_is_callbacks_kthread());
64db4cff
PM
1587
1588 /* Update count, and requeue any remaining callbacks. */
64db4cff
PM
1589 if (list != NULL) {
1590 *tail = rdp->nxtlist;
1591 rdp->nxtlist = list;
b41772ab
PM
1592 for (i = 0; i < RCU_NEXT_SIZE; i++)
1593 if (&rdp->nxtlist == rdp->nxttail[i])
1594 rdp->nxttail[i] = tail;
64db4cff
PM
1595 else
1596 break;
1597 }
b1420f1c
PM
1598 smp_mb(); /* List handling before counting for rcu_barrier(). */
1599 rdp->qlen_lazy -= count_lazy;
1600 rdp->qlen -= count;
1601 rdp->n_cbs_invoked += count;
64db4cff
PM
1602
1603 /* Reinstate batch limit if we have worked down the excess. */
1604 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
1605 rdp->blimit = blimit;
1606
37c72e56
PM
1607 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
1608 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
1609 rdp->qlen_last_fqs_check = 0;
1610 rdp->n_force_qs_snap = rsp->n_force_qs;
1611 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
1612 rdp->qlen_last_fqs_check = rdp->qlen;
1613
64db4cff
PM
1614 local_irq_restore(flags);
1615
e0f23060 1616 /* Re-invoke RCU core processing if there are callbacks remaining. */
64db4cff 1617 if (cpu_has_callbacks_ready_to_invoke(rdp))
a46e0899 1618 invoke_rcu_core();
64db4cff
PM
1619}
1620
1621/*
1622 * Check to see if this CPU is in a non-context-switch quiescent state
1623 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
e0f23060 1624 * Also schedule RCU core processing.
64db4cff 1625 *
9b2e4f18 1626 * This function must be called from hardirq context. It is normally
64db4cff
PM
1627 * invoked from the scheduling-clock interrupt. If rcu_pending returns
1628 * false, there is no point in invoking rcu_check_callbacks().
1629 */
1630void rcu_check_callbacks(int cpu, int user)
1631{
300df91c 1632 trace_rcu_utilization("Start scheduler-tick");
a858af28 1633 increment_cpu_stall_ticks();
9b2e4f18 1634 if (user || rcu_is_cpu_rrupt_from_idle()) {
64db4cff
PM
1635
1636 /*
1637 * Get here if this CPU took its interrupt from user
1638 * mode or from the idle loop, and if this is not a
1639 * nested interrupt. In this case, the CPU is in
d6714c22 1640 * a quiescent state, so note it.
64db4cff
PM
1641 *
1642 * No memory barrier is required here because both
d6714c22
PM
1643 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
1644 * variables that other CPUs neither access nor modify,
1645 * at least not while the corresponding CPU is online.
64db4cff
PM
1646 */
1647
d6714c22
PM
1648 rcu_sched_qs(cpu);
1649 rcu_bh_qs(cpu);
64db4cff
PM
1650
1651 } else if (!in_softirq()) {
1652
1653 /*
1654 * Get here if this CPU did not take its interrupt from
1655 * softirq, in other words, if it is not interrupting
1656 * a rcu_bh read-side critical section. This is an _bh
d6714c22 1657 * critical section, so note it.
64db4cff
PM
1658 */
1659
d6714c22 1660 rcu_bh_qs(cpu);
64db4cff 1661 }
f41d911f 1662 rcu_preempt_check_callbacks(cpu);
d21670ac 1663 if (rcu_pending(cpu))
a46e0899 1664 invoke_rcu_core();
300df91c 1665 trace_rcu_utilization("End scheduler-tick");
64db4cff
PM
1666}
1667
64db4cff
PM
1668/*
1669 * Scan the leaf rcu_node structures, processing dyntick state for any that
1670 * have not yet encountered a quiescent state, using the function specified.
27f4d280
PM
1671 * Also initiate boosting for any threads blocked on the root rcu_node.
1672 *
ee47eb9f 1673 * The caller must have suppressed start of new grace periods.
64db4cff 1674 */
45f014c5 1675static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *))
64db4cff
PM
1676{
1677 unsigned long bit;
1678 int cpu;
1679 unsigned long flags;
1680 unsigned long mask;
a0b6c9a7 1681 struct rcu_node *rnp;
64db4cff 1682
a0b6c9a7 1683 rcu_for_each_leaf_node(rsp, rnp) {
64db4cff 1684 mask = 0;
1304afb2 1685 raw_spin_lock_irqsave(&rnp->lock, flags);
ee47eb9f 1686 if (!rcu_gp_in_progress(rsp)) {
1304afb2 1687 raw_spin_unlock_irqrestore(&rnp->lock, flags);
0f10dc82 1688 return;
64db4cff 1689 }
a0b6c9a7 1690 if (rnp->qsmask == 0) {
1217ed1b 1691 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
64db4cff
PM
1692 continue;
1693 }
a0b6c9a7 1694 cpu = rnp->grplo;
64db4cff 1695 bit = 1;
a0b6c9a7 1696 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
394f99a9
LJ
1697 if ((rnp->qsmask & bit) != 0 &&
1698 f(per_cpu_ptr(rsp->rda, cpu)))
64db4cff
PM
1699 mask |= bit;
1700 }
45f014c5 1701 if (mask != 0) {
64db4cff 1702
d3f6bad3
PM
1703 /* rcu_report_qs_rnp() releases rnp->lock. */
1704 rcu_report_qs_rnp(mask, rsp, rnp, flags);
64db4cff
PM
1705 continue;
1706 }
1304afb2 1707 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 1708 }
27f4d280 1709 rnp = rcu_get_root(rsp);
1217ed1b
PM
1710 if (rnp->qsmask == 0) {
1711 raw_spin_lock_irqsave(&rnp->lock, flags);
1712 rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
1713 }
64db4cff
PM
1714}
1715
1716/*
1717 * Force quiescent states on reluctant CPUs, and also detect which
1718 * CPUs are in dyntick-idle mode.
1719 */
1720static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1721{
1722 unsigned long flags;
64db4cff 1723 struct rcu_node *rnp = rcu_get_root(rsp);
64db4cff 1724
300df91c
PM
1725 trace_rcu_utilization("Start fqs");
1726 if (!rcu_gp_in_progress(rsp)) {
1727 trace_rcu_utilization("End fqs");
64db4cff 1728 return; /* No grace period in progress, nothing to force. */
300df91c 1729 }
1304afb2 1730 if (!raw_spin_trylock_irqsave(&rsp->fqslock, flags)) {
64db4cff 1731 rsp->n_force_qs_lh++; /* Inexact, can lose counts. Tough! */
300df91c 1732 trace_rcu_utilization("End fqs");
64db4cff
PM
1733 return; /* Someone else is already on the job. */
1734 }
20133cfc 1735 if (relaxed && ULONG_CMP_GE(rsp->jiffies_force_qs, jiffies))
f96e9232 1736 goto unlock_fqs_ret; /* no emergency and done recently. */
64db4cff 1737 rsp->n_force_qs++;
1304afb2 1738 raw_spin_lock(&rnp->lock); /* irqs already disabled */
64db4cff 1739 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
560d4bc0 1740 if(!rcu_gp_in_progress(rsp)) {
64db4cff 1741 rsp->n_force_qs_ngp++;
1304afb2 1742 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
f96e9232 1743 goto unlock_fqs_ret; /* no GP in progress, time updated. */
64db4cff 1744 }
07079d53 1745 rsp->fqs_active = 1;
af446b70 1746 switch (rsp->fqs_state) {
83f5b01f 1747 case RCU_GP_IDLE:
64db4cff
PM
1748 case RCU_GP_INIT:
1749
83f5b01f 1750 break; /* grace period idle or initializing, ignore. */
64db4cff
PM
1751
1752 case RCU_SAVE_DYNTICK:
64db4cff
PM
1753 if (RCU_SIGNAL_INIT != RCU_SAVE_DYNTICK)
1754 break; /* So gcc recognizes the dead code. */
1755
f261414f
LJ
1756 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1757
64db4cff 1758 /* Record dyntick-idle state. */
45f014c5 1759 force_qs_rnp(rsp, dyntick_save_progress_counter);
1304afb2 1760 raw_spin_lock(&rnp->lock); /* irqs already disabled */
ee47eb9f 1761 if (rcu_gp_in_progress(rsp))
af446b70 1762 rsp->fqs_state = RCU_FORCE_QS;
ee47eb9f 1763 break;
64db4cff
PM
1764
1765 case RCU_FORCE_QS:
1766
1767 /* Check dyntick-idle state, send IPI to laggarts. */
1304afb2 1768 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
45f014c5 1769 force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
64db4cff
PM
1770
1771 /* Leave state in case more forcing is required. */
1772
1304afb2 1773 raw_spin_lock(&rnp->lock); /* irqs already disabled */
f96e9232 1774 break;
64db4cff 1775 }
07079d53 1776 rsp->fqs_active = 0;
46a1e34e 1777 if (rsp->fqs_need_gp) {
1304afb2 1778 raw_spin_unlock(&rsp->fqslock); /* irqs remain disabled */
46a1e34e
PM
1779 rsp->fqs_need_gp = 0;
1780 rcu_start_gp(rsp, flags); /* releases rnp->lock */
300df91c 1781 trace_rcu_utilization("End fqs");
46a1e34e
PM
1782 return;
1783 }
1304afb2 1784 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
f96e9232 1785unlock_fqs_ret:
1304afb2 1786 raw_spin_unlock_irqrestore(&rsp->fqslock, flags);
300df91c 1787 trace_rcu_utilization("End fqs");
64db4cff
PM
1788}
1789
64db4cff 1790/*
e0f23060
PM
1791 * This does the RCU core processing work for the specified rcu_state
1792 * and rcu_data structures. This may be called only from the CPU to
1793 * whom the rdp belongs.
64db4cff
PM
1794 */
1795static void
1796__rcu_process_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
1797{
1798 unsigned long flags;
1799
2e597558
PM
1800 WARN_ON_ONCE(rdp->beenonline == 0);
1801
64db4cff
PM
1802 /*
1803 * If an RCU GP has gone long enough, go check for dyntick
1804 * idle CPUs and, if needed, send resched IPIs.
1805 */
20133cfc 1806 if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
64db4cff
PM
1807 force_quiescent_state(rsp, 1);
1808
1809 /*
1810 * Advance callbacks in response to end of earlier grace
1811 * period that some other CPU ended.
1812 */
1813 rcu_process_gp_end(rsp, rdp);
1814
1815 /* Update RCU state based on any recent quiescent states. */
1816 rcu_check_quiescent_state(rsp, rdp);
1817
1818 /* Does this CPU require a not-yet-started grace period? */
1819 if (cpu_needs_another_gp(rsp, rdp)) {
1304afb2 1820 raw_spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags);
64db4cff
PM
1821 rcu_start_gp(rsp, flags); /* releases above lock */
1822 }
1823
1824 /* If there are callbacks ready, invoke them. */
09223371 1825 if (cpu_has_callbacks_ready_to_invoke(rdp))
a46e0899 1826 invoke_rcu_callbacks(rsp, rdp);
09223371
SL
1827}
1828
64db4cff 1829/*
e0f23060 1830 * Do RCU core processing for the current CPU.
64db4cff 1831 */
09223371 1832static void rcu_process_callbacks(struct softirq_action *unused)
64db4cff 1833{
300df91c 1834 trace_rcu_utilization("Start RCU core");
d6714c22
PM
1835 __rcu_process_callbacks(&rcu_sched_state,
1836 &__get_cpu_var(rcu_sched_data));
64db4cff 1837 __rcu_process_callbacks(&rcu_bh_state, &__get_cpu_var(rcu_bh_data));
f41d911f 1838 rcu_preempt_process_callbacks();
300df91c 1839 trace_rcu_utilization("End RCU core");
64db4cff
PM
1840}
1841
a26ac245 1842/*
e0f23060
PM
1843 * Schedule RCU callback invocation. If the specified type of RCU
1844 * does not support RCU priority boosting, just do a direct call,
1845 * otherwise wake up the per-CPU kernel kthread. Note that because we
1846 * are running on the current CPU with interrupts disabled, the
1847 * rcu_cpu_kthread_task cannot disappear out from under us.
a26ac245 1848 */
a46e0899 1849static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
a26ac245 1850{
b0d30417
PM
1851 if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active)))
1852 return;
a46e0899
PM
1853 if (likely(!rsp->boost)) {
1854 rcu_do_batch(rsp, rdp);
a26ac245
PM
1855 return;
1856 }
a46e0899 1857 invoke_rcu_callbacks_kthread();
a26ac245
PM
1858}
1859
a46e0899 1860static void invoke_rcu_core(void)
09223371
SL
1861{
1862 raise_softirq(RCU_SOFTIRQ);
1863}
1864
64db4cff
PM
1865static void
1866__call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
486e2593 1867 struct rcu_state *rsp, bool lazy)
64db4cff
PM
1868{
1869 unsigned long flags;
1870 struct rcu_data *rdp;
1871
0bb7b59d 1872 WARN_ON_ONCE((unsigned long)head & 0x3); /* Misaligned rcu_head! */
551d55a9 1873 debug_rcu_head_queue(head);
64db4cff
PM
1874 head->func = func;
1875 head->next = NULL;
1876
1877 smp_mb(); /* Ensure RCU update seen before callback registry. */
1878
1879 /*
1880 * Opportunistically note grace-period endings and beginnings.
1881 * Note that we might see a beginning right after we see an
1882 * end, but never vice versa, since this CPU has to pass through
1883 * a quiescent state betweentimes.
1884 */
1885 local_irq_save(flags);
394f99a9 1886 rdp = this_cpu_ptr(rsp->rda);
64db4cff
PM
1887
1888 /* Add the callback to our list. */
2655d57e 1889 rdp->qlen++;
486e2593
PM
1890 if (lazy)
1891 rdp->qlen_lazy++;
c57afe80
PM
1892 else
1893 rcu_idle_count_callbacks_posted();
b1420f1c
PM
1894 smp_mb(); /* Count before adding callback for rcu_barrier(). */
1895 *rdp->nxttail[RCU_NEXT_TAIL] = head;
1896 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
2655d57e 1897
d4c08f2a
PM
1898 if (__is_kfree_rcu_offset((unsigned long)func))
1899 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
486e2593 1900 rdp->qlen_lazy, rdp->qlen);
d4c08f2a 1901 else
486e2593 1902 trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
d4c08f2a 1903
2655d57e
PM
1904 /* If interrupts were disabled, don't dive into RCU core. */
1905 if (irqs_disabled_flags(flags)) {
1906 local_irq_restore(flags);
1907 return;
1908 }
64db4cff 1909
37c72e56
PM
1910 /*
1911 * Force the grace period if too many callbacks or too long waiting.
1912 * Enforce hysteresis, and don't invoke force_quiescent_state()
1913 * if some other CPU has recently done so. Also, don't bother
1914 * invoking force_quiescent_state() if the newly enqueued callback
1915 * is the only one waiting for a grace period to complete.
1916 */
2655d57e 1917 if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
b52573d2
PM
1918
1919 /* Are we ignoring a completed grace period? */
1920 rcu_process_gp_end(rsp, rdp);
1921 check_for_new_grace_period(rsp, rdp);
1922
1923 /* Start a new grace period if one not already started. */
1924 if (!rcu_gp_in_progress(rsp)) {
1925 unsigned long nestflag;
1926 struct rcu_node *rnp_root = rcu_get_root(rsp);
1927
1928 raw_spin_lock_irqsave(&rnp_root->lock, nestflag);
1929 rcu_start_gp(rsp, nestflag); /* rlses rnp_root->lock */
1930 } else {
1931 /* Give the grace period a kick. */
1932 rdp->blimit = LONG_MAX;
1933 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
1934 *rdp->nxttail[RCU_DONE_TAIL] != head)
1935 force_quiescent_state(rsp, 0);
1936 rdp->n_force_qs_snap = rsp->n_force_qs;
1937 rdp->qlen_last_fqs_check = rdp->qlen;
1938 }
20133cfc 1939 } else if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
64db4cff
PM
1940 force_quiescent_state(rsp, 1);
1941 local_irq_restore(flags);
1942}
1943
1944/*
d6714c22 1945 * Queue an RCU-sched callback for invocation after a grace period.
64db4cff 1946 */
d6714c22 1947void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
64db4cff 1948{
486e2593 1949 __call_rcu(head, func, &rcu_sched_state, 0);
64db4cff 1950}
d6714c22 1951EXPORT_SYMBOL_GPL(call_rcu_sched);
64db4cff
PM
1952
1953/*
486e2593 1954 * Queue an RCU callback for invocation after a quicker grace period.
64db4cff
PM
1955 */
1956void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1957{
486e2593 1958 __call_rcu(head, func, &rcu_bh_state, 0);
64db4cff
PM
1959}
1960EXPORT_SYMBOL_GPL(call_rcu_bh);
1961
6d813391
PM
1962/*
1963 * Because a context switch is a grace period for RCU-sched and RCU-bh,
1964 * any blocking grace-period wait automatically implies a grace period
1965 * if there is only one CPU online at any point time during execution
1966 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to
1967 * occasionally incorrectly indicate that there are multiple CPUs online
1968 * when there was in fact only one the whole time, as this just adds
1969 * some overhead: RCU still operates correctly.
1970 *
1971 * Of course, sampling num_online_cpus() with preemption enabled can
1972 * give erroneous results if there are concurrent CPU-hotplug operations.
1973 * For example, given a demonic sequence of preemptions in num_online_cpus()
1974 * and CPU-hotplug operations, there could be two or more CPUs online at
1975 * all times, but num_online_cpus() might well return one (or even zero).
1976 *
1977 * However, all such demonic sequences require at least one CPU-offline
1978 * operation. Furthermore, rcu_blocking_is_gp() giving the wrong answer
1979 * is only a problem if there is an RCU read-side critical section executing
1980 * throughout. But RCU-sched and RCU-bh read-side critical sections
1981 * disable either preemption or bh, which prevents a CPU from going offline.
1982 * Therefore, the only way that rcu_blocking_is_gp() can incorrectly return
1983 * that there is only one CPU when in fact there was more than one throughout
1984 * is when there were no RCU readers in the system. If there are no
1985 * RCU readers, the grace period by definition can be of zero length,
1986 * regardless of the number of online CPUs.
1987 */
1988static inline int rcu_blocking_is_gp(void)
1989{
1990 might_sleep(); /* Check for RCU read-side critical section. */
1991 return num_online_cpus() <= 1;
1992}
1993
6ebb237b
PM
1994/**
1995 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
1996 *
1997 * Control will return to the caller some time after a full rcu-sched
1998 * grace period has elapsed, in other words after all currently executing
1999 * rcu-sched read-side critical sections have completed. These read-side
2000 * critical sections are delimited by rcu_read_lock_sched() and
2001 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
2002 * local_irq_disable(), and so on may be used in place of
2003 * rcu_read_lock_sched().
2004 *
2005 * This means that all preempt_disable code sequences, including NMI and
2006 * hardware-interrupt handlers, in progress on entry will have completed
2007 * before this primitive returns. However, this does not guarantee that
2008 * softirq handlers will have completed, since in some kernels, these
2009 * handlers can run in process context, and can block.
2010 *
2011 * This primitive provides the guarantees made by the (now removed)
2012 * synchronize_kernel() API. In contrast, synchronize_rcu() only
2013 * guarantees that rcu_read_lock() sections will have completed.
2014 * In "classic RCU", these two guarantees happen to be one and
2015 * the same, but can differ in realtime RCU implementations.
2016 */
2017void synchronize_sched(void)
2018{
fe15d706
PM
2019 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2020 !lock_is_held(&rcu_lock_map) &&
2021 !lock_is_held(&rcu_sched_lock_map),
2022 "Illegal synchronize_sched() in RCU-sched read-side critical section");
6ebb237b
PM
2023 if (rcu_blocking_is_gp())
2024 return;
2c42818e 2025 wait_rcu_gp(call_rcu_sched);
6ebb237b
PM
2026}
2027EXPORT_SYMBOL_GPL(synchronize_sched);
2028
2029/**
2030 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
2031 *
2032 * Control will return to the caller some time after a full rcu_bh grace
2033 * period has elapsed, in other words after all currently executing rcu_bh
2034 * read-side critical sections have completed. RCU read-side critical
2035 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
2036 * and may be nested.
2037 */
2038void synchronize_rcu_bh(void)
2039{
fe15d706
PM
2040 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2041 !lock_is_held(&rcu_lock_map) &&
2042 !lock_is_held(&rcu_sched_lock_map),
2043 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
6ebb237b
PM
2044 if (rcu_blocking_is_gp())
2045 return;
2c42818e 2046 wait_rcu_gp(call_rcu_bh);
6ebb237b
PM
2047}
2048EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
2049
3d3b7db0
PM
2050static atomic_t sync_sched_expedited_started = ATOMIC_INIT(0);
2051static atomic_t sync_sched_expedited_done = ATOMIC_INIT(0);
2052
2053static int synchronize_sched_expedited_cpu_stop(void *data)
2054{
2055 /*
2056 * There must be a full memory barrier on each affected CPU
2057 * between the time that try_stop_cpus() is called and the
2058 * time that it returns.
2059 *
2060 * In the current initial implementation of cpu_stop, the
2061 * above condition is already met when the control reaches
2062 * this point and the following smp_mb() is not strictly
2063 * necessary. Do smp_mb() anyway for documentation and
2064 * robustness against future implementation changes.
2065 */
2066 smp_mb(); /* See above comment block. */
2067 return 0;
2068}
2069
236fefaf
PM
2070/**
2071 * synchronize_sched_expedited - Brute-force RCU-sched grace period
2072 *
2073 * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
2074 * approach to force the grace period to end quickly. This consumes
2075 * significant time on all CPUs and is unfriendly to real-time workloads,
2076 * so is thus not recommended for any sort of common-case code. In fact,
2077 * if you are using synchronize_sched_expedited() in a loop, please
2078 * restructure your code to batch your updates, and then use a single
2079 * synchronize_sched() instead.
3d3b7db0 2080 *
236fefaf
PM
2081 * Note that it is illegal to call this function while holding any lock
2082 * that is acquired by a CPU-hotplug notifier. And yes, it is also illegal
2083 * to call this function from a CPU-hotplug notifier. Failing to observe
2084 * these restriction will result in deadlock.
3d3b7db0
PM
2085 *
2086 * This implementation can be thought of as an application of ticket
2087 * locking to RCU, with sync_sched_expedited_started and
2088 * sync_sched_expedited_done taking on the roles of the halves
2089 * of the ticket-lock word. Each task atomically increments
2090 * sync_sched_expedited_started upon entry, snapshotting the old value,
2091 * then attempts to stop all the CPUs. If this succeeds, then each
2092 * CPU will have executed a context switch, resulting in an RCU-sched
2093 * grace period. We are then done, so we use atomic_cmpxchg() to
2094 * update sync_sched_expedited_done to match our snapshot -- but
2095 * only if someone else has not already advanced past our snapshot.
2096 *
2097 * On the other hand, if try_stop_cpus() fails, we check the value
2098 * of sync_sched_expedited_done. If it has advanced past our
2099 * initial snapshot, then someone else must have forced a grace period
2100 * some time after we took our snapshot. In this case, our work is
2101 * done for us, and we can simply return. Otherwise, we try again,
2102 * but keep our initial snapshot for purposes of checking for someone
2103 * doing our work for us.
2104 *
2105 * If we fail too many times in a row, we fall back to synchronize_sched().
2106 */
2107void synchronize_sched_expedited(void)
2108{
2109 int firstsnap, s, snap, trycount = 0;
2110
2111 /* Note that atomic_inc_return() implies full memory barrier. */
2112 firstsnap = snap = atomic_inc_return(&sync_sched_expedited_started);
2113 get_online_cpus();
1cc85961 2114 WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id()));
3d3b7db0
PM
2115
2116 /*
2117 * Each pass through the following loop attempts to force a
2118 * context switch on each CPU.
2119 */
2120 while (try_stop_cpus(cpu_online_mask,
2121 synchronize_sched_expedited_cpu_stop,
2122 NULL) == -EAGAIN) {
2123 put_online_cpus();
2124
2125 /* No joy, try again later. Or just synchronize_sched(). */
2126 if (trycount++ < 10)
2127 udelay(trycount * num_online_cpus());
2128 else {
2129 synchronize_sched();
2130 return;
2131 }
2132
2133 /* Check to see if someone else did our work for us. */
2134 s = atomic_read(&sync_sched_expedited_done);
2135 if (UINT_CMP_GE((unsigned)s, (unsigned)firstsnap)) {
2136 smp_mb(); /* ensure test happens before caller kfree */
2137 return;
2138 }
2139
2140 /*
2141 * Refetching sync_sched_expedited_started allows later
2142 * callers to piggyback on our grace period. We subtract
2143 * 1 to get the same token that the last incrementer got.
2144 * We retry after they started, so our grace period works
2145 * for them, and they started after our first try, so their
2146 * grace period works for us.
2147 */
2148 get_online_cpus();
2149 snap = atomic_read(&sync_sched_expedited_started);
2150 smp_mb(); /* ensure read is before try_stop_cpus(). */
2151 }
2152
2153 /*
2154 * Everyone up to our most recent fetch is covered by our grace
2155 * period. Update the counter, but only if our work is still
2156 * relevant -- which it won't be if someone who started later
2157 * than we did beat us to the punch.
2158 */
2159 do {
2160 s = atomic_read(&sync_sched_expedited_done);
2161 if (UINT_CMP_GE((unsigned)s, (unsigned)snap)) {
2162 smp_mb(); /* ensure test happens before caller kfree */
2163 break;
2164 }
2165 } while (atomic_cmpxchg(&sync_sched_expedited_done, s, snap) != s);
2166
2167 put_online_cpus();
2168}
2169EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
2170
64db4cff
PM
2171/*
2172 * Check to see if there is any immediate RCU-related work to be done
2173 * by the current CPU, for the specified type of RCU, returning 1 if so.
2174 * The checks are in order of increasing expense: checks that can be
2175 * carried out against CPU-local state are performed first. However,
2176 * we must check for CPU stalls first, else we might not get a chance.
2177 */
2178static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
2179{
2f51f988
PM
2180 struct rcu_node *rnp = rdp->mynode;
2181
64db4cff
PM
2182 rdp->n_rcu_pending++;
2183
2184 /* Check for CPU stalls, if enabled. */
2185 check_cpu_stall(rsp, rdp);
2186
2187 /* Is the RCU core waiting for a quiescent state from this CPU? */
5c51dd73
PM
2188 if (rcu_scheduler_fully_active &&
2189 rdp->qs_pending && !rdp->passed_quiesce) {
d25eb944
PM
2190
2191 /*
2192 * If force_quiescent_state() coming soon and this CPU
2193 * needs a quiescent state, and this is either RCU-sched
2194 * or RCU-bh, force a local reschedule.
2195 */
d21670ac 2196 rdp->n_rp_qs_pending++;
6cc68793 2197 if (!rdp->preemptible &&
d25eb944
PM
2198 ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs) - 1,
2199 jiffies))
2200 set_need_resched();
e4cc1f22 2201 } else if (rdp->qs_pending && rdp->passed_quiesce) {
d21670ac 2202 rdp->n_rp_report_qs++;
64db4cff 2203 return 1;
7ba5c840 2204 }
64db4cff
PM
2205
2206 /* Does this CPU have callbacks ready to invoke? */
7ba5c840
PM
2207 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
2208 rdp->n_rp_cb_ready++;
64db4cff 2209 return 1;
7ba5c840 2210 }
64db4cff
PM
2211
2212 /* Has RCU gone idle with this CPU needing another grace period? */
7ba5c840
PM
2213 if (cpu_needs_another_gp(rsp, rdp)) {
2214 rdp->n_rp_cpu_needs_gp++;
64db4cff 2215 return 1;
7ba5c840 2216 }
64db4cff
PM
2217
2218 /* Has another RCU grace period completed? */
2f51f988 2219 if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
7ba5c840 2220 rdp->n_rp_gp_completed++;
64db4cff 2221 return 1;
7ba5c840 2222 }
64db4cff
PM
2223
2224 /* Has a new RCU grace period started? */
2f51f988 2225 if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
7ba5c840 2226 rdp->n_rp_gp_started++;
64db4cff 2227 return 1;
7ba5c840 2228 }
64db4cff
PM
2229
2230 /* Has an RCU GP gone long enough to send resched IPIs &c? */
fc2219d4 2231 if (rcu_gp_in_progress(rsp) &&
20133cfc 2232 ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies)) {
7ba5c840 2233 rdp->n_rp_need_fqs++;
64db4cff 2234 return 1;
7ba5c840 2235 }
64db4cff
PM
2236
2237 /* nothing to do */
7ba5c840 2238 rdp->n_rp_need_nothing++;
64db4cff
PM
2239 return 0;
2240}
2241
2242/*
2243 * Check to see if there is any immediate RCU-related work to be done
2244 * by the current CPU, returning 1 if so. This function is part of the
2245 * RCU implementation; it is -not- an exported member of the RCU API.
2246 */
a157229c 2247static int rcu_pending(int cpu)
64db4cff 2248{
d6714c22 2249 return __rcu_pending(&rcu_sched_state, &per_cpu(rcu_sched_data, cpu)) ||
f41d911f
PM
2250 __rcu_pending(&rcu_bh_state, &per_cpu(rcu_bh_data, cpu)) ||
2251 rcu_preempt_pending(cpu);
64db4cff
PM
2252}
2253
2254/*
2255 * Check to see if any future RCU-related work will need to be done
2256 * by the current CPU, even if none need be done immediately, returning
8bd93a2c 2257 * 1 if so.
64db4cff 2258 */
aea1b35e 2259static int rcu_cpu_has_callbacks(int cpu)
64db4cff
PM
2260{
2261 /* RCU callbacks either ready or pending? */
d6714c22 2262 return per_cpu(rcu_sched_data, cpu).nxtlist ||
f41d911f 2263 per_cpu(rcu_bh_data, cpu).nxtlist ||
30fbcc90 2264 rcu_preempt_cpu_has_callbacks(cpu);
64db4cff
PM
2265}
2266
b1420f1c
PM
2267/*
2268 * RCU callback function for _rcu_barrier(). If we are last, wake
2269 * up the task executing _rcu_barrier().
2270 */
24ebbca8 2271static void rcu_barrier_callback(struct rcu_head *rhp)
d0ec774c 2272{
24ebbca8
PM
2273 struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
2274 struct rcu_state *rsp = rdp->rsp;
2275
2276 if (atomic_dec_and_test(&rsp->barrier_cpu_count))
7db74df8 2277 complete(&rsp->barrier_completion);
d0ec774c
PM
2278}
2279
2280/*
2281 * Called with preemption disabled, and from cross-cpu IRQ context.
2282 */
2283static void rcu_barrier_func(void *type)
2284{
037b64ed 2285 struct rcu_state *rsp = type;
06668efa 2286 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
d0ec774c 2287
24ebbca8 2288 atomic_inc(&rsp->barrier_cpu_count);
06668efa 2289 rsp->call(&rdp->barrier_head, rcu_barrier_callback);
d0ec774c
PM
2290}
2291
d0ec774c
PM
2292/*
2293 * Orchestrate the specified type of RCU barrier, waiting for all
2294 * RCU callbacks of the specified type to complete.
2295 */
037b64ed 2296static void _rcu_barrier(struct rcu_state *rsp)
d0ec774c 2297{
b1420f1c
PM
2298 int cpu;
2299 unsigned long flags;
2300 struct rcu_data *rdp;
24ebbca8 2301 struct rcu_data rd;
b1420f1c 2302
24ebbca8 2303 init_rcu_head_on_stack(&rd.barrier_head);
b1420f1c 2304
e74f4c45 2305 /* Take mutex to serialize concurrent rcu_barrier() requests. */
d0ec774c 2306 mutex_lock(&rcu_barrier_mutex);
b1420f1c
PM
2307
2308 smp_mb(); /* Prevent any prior operations from leaking in. */
2309
d0ec774c 2310 /*
b1420f1c
PM
2311 * Initialize the count to one rather than to zero in order to
2312 * avoid a too-soon return to zero in case of a short grace period
2313 * (or preemption of this task). Also flag this task as doing
2314 * an rcu_barrier(). This will prevent anyone else from adopting
2315 * orphaned callbacks, which could cause otherwise failure if a
2316 * CPU went offline and quickly came back online. To see this,
2317 * consider the following sequence of events:
2318 *
2319 * 1. We cause CPU 0 to post an rcu_barrier_callback() callback.
2320 * 2. CPU 1 goes offline, orphaning its callbacks.
2321 * 3. CPU 0 adopts CPU 1's orphaned callbacks.
2322 * 4. CPU 1 comes back online.
2323 * 5. We cause CPU 1 to post an rcu_barrier_callback() callback.
2324 * 6. Both rcu_barrier_callback() callbacks are invoked, awakening
2325 * us -- but before CPU 1's orphaned callbacks are invoked!!!
d0ec774c 2326 */
7db74df8 2327 init_completion(&rsp->barrier_completion);
24ebbca8 2328 atomic_set(&rsp->barrier_cpu_count, 1);
b1420f1c
PM
2329 raw_spin_lock_irqsave(&rsp->onofflock, flags);
2330 rsp->rcu_barrier_in_progress = current;
2331 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
2332
2333 /*
2334 * Force every CPU with callbacks to register a new callback
2335 * that will tell us when all the preceding callbacks have
2336 * been invoked. If an offline CPU has callbacks, wait for
2337 * it to either come back online or to finish orphaning those
2338 * callbacks.
2339 */
2340 for_each_possible_cpu(cpu) {
2341 preempt_disable();
2342 rdp = per_cpu_ptr(rsp->rda, cpu);
2343 if (cpu_is_offline(cpu)) {
2344 preempt_enable();
2345 while (cpu_is_offline(cpu) && ACCESS_ONCE(rdp->qlen))
2346 schedule_timeout_interruptible(1);
2347 } else if (ACCESS_ONCE(rdp->qlen)) {
037b64ed 2348 smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
b1420f1c
PM
2349 preempt_enable();
2350 } else {
2351 preempt_enable();
2352 }
2353 }
2354
2355 /*
2356 * Now that all online CPUs have rcu_barrier_callback() callbacks
2357 * posted, we can adopt all of the orphaned callbacks and place
2358 * an rcu_barrier_callback() callback after them. When that is done,
2359 * we are guaranteed to have an rcu_barrier_callback() callback
2360 * following every callback that could possibly have been
2361 * registered before _rcu_barrier() was called.
2362 */
2363 raw_spin_lock_irqsave(&rsp->onofflock, flags);
2364 rcu_adopt_orphan_cbs(rsp);
2365 rsp->rcu_barrier_in_progress = NULL;
2366 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
24ebbca8 2367 atomic_inc(&rsp->barrier_cpu_count);
b1420f1c 2368 smp_mb__after_atomic_inc(); /* Ensure atomic_inc() before callback. */
24ebbca8
PM
2369 rd.rsp = rsp;
2370 rsp->call(&rd.barrier_head, rcu_barrier_callback);
b1420f1c
PM
2371
2372 /*
2373 * Now that we have an rcu_barrier_callback() callback on each
2374 * CPU, and thus each counted, remove the initial count.
2375 */
24ebbca8 2376 if (atomic_dec_and_test(&rsp->barrier_cpu_count))
7db74df8 2377 complete(&rsp->barrier_completion);
b1420f1c
PM
2378
2379 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
7db74df8 2380 wait_for_completion(&rsp->barrier_completion);
b1420f1c
PM
2381
2382 /* Other rcu_barrier() invocations can now safely proceed. */
d0ec774c 2383 mutex_unlock(&rcu_barrier_mutex);
b1420f1c 2384
24ebbca8 2385 destroy_rcu_head_on_stack(&rd.barrier_head);
d0ec774c 2386}
d0ec774c
PM
2387
2388/**
2389 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
2390 */
2391void rcu_barrier_bh(void)
2392{
037b64ed 2393 _rcu_barrier(&rcu_bh_state);
d0ec774c
PM
2394}
2395EXPORT_SYMBOL_GPL(rcu_barrier_bh);
2396
2397/**
2398 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
2399 */
2400void rcu_barrier_sched(void)
2401{
037b64ed 2402 _rcu_barrier(&rcu_sched_state);
d0ec774c
PM
2403}
2404EXPORT_SYMBOL_GPL(rcu_barrier_sched);
2405
64db4cff 2406/*
27569620 2407 * Do boot-time initialization of a CPU's per-CPU RCU data.
64db4cff 2408 */
27569620
PM
2409static void __init
2410rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
64db4cff
PM
2411{
2412 unsigned long flags;
2413 int i;
394f99a9 2414 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
27569620
PM
2415 struct rcu_node *rnp = rcu_get_root(rsp);
2416
2417 /* Set up local state, ensuring consistent view of global state. */
1304afb2 2418 raw_spin_lock_irqsave(&rnp->lock, flags);
27569620
PM
2419 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
2420 rdp->nxtlist = NULL;
2421 for (i = 0; i < RCU_NEXT_SIZE; i++)
2422 rdp->nxttail[i] = &rdp->nxtlist;
486e2593 2423 rdp->qlen_lazy = 0;
27569620 2424 rdp->qlen = 0;
27569620 2425 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
29e37d81 2426 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
9b2e4f18 2427 WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
27569620 2428 rdp->cpu = cpu;
d4c08f2a 2429 rdp->rsp = rsp;
1304afb2 2430 raw_spin_unlock_irqrestore(&rnp->lock, flags);
27569620
PM
2431}
2432
2433/*
2434 * Initialize a CPU's per-CPU RCU data. Note that only one online or
2435 * offline event can be happening at a given time. Note also that we
2436 * can accept some slop in the rsp->completed access due to the fact
2437 * that this CPU cannot possibly have any RCU callbacks in flight yet.
64db4cff 2438 */
e4fa4c97 2439static void __cpuinit
6cc68793 2440rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptible)
64db4cff
PM
2441{
2442 unsigned long flags;
64db4cff 2443 unsigned long mask;
394f99a9 2444 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
64db4cff
PM
2445 struct rcu_node *rnp = rcu_get_root(rsp);
2446
2447 /* Set up local state, ensuring consistent view of global state. */
1304afb2 2448 raw_spin_lock_irqsave(&rnp->lock, flags);
64db4cff 2449 rdp->beenonline = 1; /* We have now been online. */
6cc68793 2450 rdp->preemptible = preemptible;
37c72e56
PM
2451 rdp->qlen_last_fqs_check = 0;
2452 rdp->n_force_qs_snap = rsp->n_force_qs;
64db4cff 2453 rdp->blimit = blimit;
29e37d81 2454 rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
c92b131b
PM
2455 atomic_set(&rdp->dynticks->dynticks,
2456 (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
7cb92499 2457 rcu_prepare_for_idle_init(cpu);
1304afb2 2458 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
64db4cff
PM
2459
2460 /*
2461 * A new grace period might start here. If so, we won't be part
2462 * of it, but that is OK, as we are currently in a quiescent state.
2463 */
2464
2465 /* Exclude any attempts to start a new GP on large systems. */
1304afb2 2466 raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */
64db4cff
PM
2467
2468 /* Add CPU to rcu_node bitmasks. */
2469 rnp = rdp->mynode;
2470 mask = rdp->grpmask;
2471 do {
2472 /* Exclude any attempts to start a new GP on small systems. */
1304afb2 2473 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
64db4cff
PM
2474 rnp->qsmaskinit |= mask;
2475 mask = rnp->grpmask;
d09b62df 2476 if (rnp == rdp->mynode) {
06ae115a
PM
2477 /*
2478 * If there is a grace period in progress, we will
2479 * set up to wait for it next time we run the
2480 * RCU core code.
2481 */
2482 rdp->gpnum = rnp->completed;
d09b62df 2483 rdp->completed = rnp->completed;
06ae115a
PM
2484 rdp->passed_quiesce = 0;
2485 rdp->qs_pending = 0;
e4cc1f22 2486 rdp->passed_quiesce_gpnum = rnp->gpnum - 1;
d4c08f2a 2487 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuonl");
d09b62df 2488 }
1304afb2 2489 raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
64db4cff
PM
2490 rnp = rnp->parent;
2491 } while (rnp != NULL && !(rnp->qsmaskinit & mask));
2492
1304afb2 2493 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
64db4cff
PM
2494}
2495
d72bce0e 2496static void __cpuinit rcu_prepare_cpu(int cpu)
64db4cff 2497{
f41d911f
PM
2498 rcu_init_percpu_data(cpu, &rcu_sched_state, 0);
2499 rcu_init_percpu_data(cpu, &rcu_bh_state, 0);
2500 rcu_preempt_init_percpu_data(cpu);
64db4cff
PM
2501}
2502
2503/*
f41d911f 2504 * Handle CPU online/offline notification events.
64db4cff 2505 */
9f680ab4
PM
2506static int __cpuinit rcu_cpu_notify(struct notifier_block *self,
2507 unsigned long action, void *hcpu)
64db4cff
PM
2508{
2509 long cpu = (long)hcpu;
27f4d280 2510 struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
a26ac245 2511 struct rcu_node *rnp = rdp->mynode;
64db4cff 2512
300df91c 2513 trace_rcu_utilization("Start CPU hotplug");
64db4cff
PM
2514 switch (action) {
2515 case CPU_UP_PREPARE:
2516 case CPU_UP_PREPARE_FROZEN:
d72bce0e
PZ
2517 rcu_prepare_cpu(cpu);
2518 rcu_prepare_kthreads(cpu);
a26ac245
PM
2519 break;
2520 case CPU_ONLINE:
0f962a5e
PM
2521 case CPU_DOWN_FAILED:
2522 rcu_node_kthread_setaffinity(rnp, -1);
e3995a25 2523 rcu_cpu_kthread_setrt(cpu, 1);
0f962a5e
PM
2524 break;
2525 case CPU_DOWN_PREPARE:
2526 rcu_node_kthread_setaffinity(rnp, cpu);
e3995a25 2527 rcu_cpu_kthread_setrt(cpu, 0);
64db4cff 2528 break;
d0ec774c
PM
2529 case CPU_DYING:
2530 case CPU_DYING_FROZEN:
2531 /*
2d999e03
PM
2532 * The whole machine is "stopped" except this CPU, so we can
2533 * touch any data without introducing corruption. We send the
2534 * dying CPU's callbacks to an arbitrarily chosen online CPU.
d0ec774c 2535 */
e5601400
PM
2536 rcu_cleanup_dying_cpu(&rcu_bh_state);
2537 rcu_cleanup_dying_cpu(&rcu_sched_state);
2538 rcu_preempt_cleanup_dying_cpu();
7cb92499 2539 rcu_cleanup_after_idle(cpu);
d0ec774c 2540 break;
64db4cff
PM
2541 case CPU_DEAD:
2542 case CPU_DEAD_FROZEN:
2543 case CPU_UP_CANCELED:
2544 case CPU_UP_CANCELED_FROZEN:
e5601400
PM
2545 rcu_cleanup_dead_cpu(cpu, &rcu_bh_state);
2546 rcu_cleanup_dead_cpu(cpu, &rcu_sched_state);
2547 rcu_preempt_cleanup_dead_cpu(cpu);
64db4cff
PM
2548 break;
2549 default:
2550 break;
2551 }
300df91c 2552 trace_rcu_utilization("End CPU hotplug");
64db4cff
PM
2553 return NOTIFY_OK;
2554}
2555
bbad9379
PM
2556/*
2557 * This function is invoked towards the end of the scheduler's initialization
2558 * process. Before this is called, the idle task might contain
2559 * RCU read-side critical sections (during which time, this idle
2560 * task is booting the system). After this function is called, the
2561 * idle tasks are prohibited from containing RCU read-side critical
2562 * sections. This function also enables RCU lockdep checking.
2563 */
2564void rcu_scheduler_starting(void)
2565{
2566 WARN_ON(num_online_cpus() != 1);
2567 WARN_ON(nr_context_switches() > 0);
2568 rcu_scheduler_active = 1;
2569}
2570
64db4cff
PM
2571/*
2572 * Compute the per-level fanout, either using the exact fanout specified
2573 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
2574 */
2575#ifdef CONFIG_RCU_FANOUT_EXACT
2576static void __init rcu_init_levelspread(struct rcu_state *rsp)
2577{
2578 int i;
2579
f885b7f2 2580 for (i = rcu_num_lvls - 1; i > 0; i--)
64db4cff 2581 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
f885b7f2 2582 rsp->levelspread[0] = rcu_fanout_leaf;
64db4cff
PM
2583}
2584#else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
2585static void __init rcu_init_levelspread(struct rcu_state *rsp)
2586{
2587 int ccur;
2588 int cprv;
2589 int i;
2590
2591 cprv = NR_CPUS;
f885b7f2 2592 for (i = rcu_num_lvls - 1; i >= 0; i--) {
64db4cff
PM
2593 ccur = rsp->levelcnt[i];
2594 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
2595 cprv = ccur;
2596 }
2597}
2598#endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
2599
2600/*
2601 * Helper function for rcu_init() that initializes one rcu_state structure.
2602 */
394f99a9
LJ
2603static void __init rcu_init_one(struct rcu_state *rsp,
2604 struct rcu_data __percpu *rda)
64db4cff 2605{
b6407e86
PM
2606 static char *buf[] = { "rcu_node_level_0",
2607 "rcu_node_level_1",
2608 "rcu_node_level_2",
2609 "rcu_node_level_3" }; /* Match MAX_RCU_LVLS */
64db4cff
PM
2610 int cpustride = 1;
2611 int i;
2612 int j;
2613 struct rcu_node *rnp;
2614
b6407e86
PM
2615 BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
2616
64db4cff
PM
2617 /* Initialize the level-tracking arrays. */
2618
f885b7f2
PM
2619 for (i = 0; i < rcu_num_lvls; i++)
2620 rsp->levelcnt[i] = num_rcu_lvl[i];
2621 for (i = 1; i < rcu_num_lvls; i++)
64db4cff
PM
2622 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
2623 rcu_init_levelspread(rsp);
2624
2625 /* Initialize the elements themselves, starting from the leaves. */
2626
f885b7f2 2627 for (i = rcu_num_lvls - 1; i >= 0; i--) {
64db4cff
PM
2628 cpustride *= rsp->levelspread[i];
2629 rnp = rsp->level[i];
2630 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
1304afb2 2631 raw_spin_lock_init(&rnp->lock);
b6407e86
PM
2632 lockdep_set_class_and_name(&rnp->lock,
2633 &rcu_node_class[i], buf[i]);
f41d911f 2634 rnp->gpnum = 0;
64db4cff
PM
2635 rnp->qsmask = 0;
2636 rnp->qsmaskinit = 0;
2637 rnp->grplo = j * cpustride;
2638 rnp->grphi = (j + 1) * cpustride - 1;
2639 if (rnp->grphi >= NR_CPUS)
2640 rnp->grphi = NR_CPUS - 1;
2641 if (i == 0) {
2642 rnp->grpnum = 0;
2643 rnp->grpmask = 0;
2644 rnp->parent = NULL;
2645 } else {
2646 rnp->grpnum = j % rsp->levelspread[i - 1];
2647 rnp->grpmask = 1UL << rnp->grpnum;
2648 rnp->parent = rsp->level[i - 1] +
2649 j / rsp->levelspread[i - 1];
2650 }
2651 rnp->level = i;
12f5f524 2652 INIT_LIST_HEAD(&rnp->blkd_tasks);
64db4cff
PM
2653 }
2654 }
0c34029a 2655
394f99a9 2656 rsp->rda = rda;
f885b7f2 2657 rnp = rsp->level[rcu_num_lvls - 1];
0c34029a 2658 for_each_possible_cpu(i) {
4a90a068 2659 while (i > rnp->grphi)
0c34029a 2660 rnp++;
394f99a9 2661 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
0c34029a
LJ
2662 rcu_boot_init_percpu_data(i, rsp);
2663 }
64db4cff
PM
2664}
2665
f885b7f2
PM
2666/*
2667 * Compute the rcu_node tree geometry from kernel parameters. This cannot
2668 * replace the definitions in rcutree.h because those are needed to size
2669 * the ->node array in the rcu_state structure.
2670 */
2671static void __init rcu_init_geometry(void)
2672{
2673 int i;
2674 int j;
cca6f393 2675 int n = nr_cpu_ids;
f885b7f2
PM
2676 int rcu_capacity[MAX_RCU_LVLS + 1];
2677
2678 /* If the compile-time values are accurate, just leave. */
2679 if (rcu_fanout_leaf == CONFIG_RCU_FANOUT_LEAF)
2680 return;
2681
2682 /*
2683 * Compute number of nodes that can be handled an rcu_node tree
2684 * with the given number of levels. Setting rcu_capacity[0] makes
2685 * some of the arithmetic easier.
2686 */
2687 rcu_capacity[0] = 1;
2688 rcu_capacity[1] = rcu_fanout_leaf;
2689 for (i = 2; i <= MAX_RCU_LVLS; i++)
2690 rcu_capacity[i] = rcu_capacity[i - 1] * CONFIG_RCU_FANOUT;
2691
2692 /*
2693 * The boot-time rcu_fanout_leaf parameter is only permitted
2694 * to increase the leaf-level fanout, not decrease it. Of course,
2695 * the leaf-level fanout cannot exceed the number of bits in
2696 * the rcu_node masks. Finally, the tree must be able to accommodate
2697 * the configured number of CPUs. Complain and fall back to the
2698 * compile-time values if these limits are exceeded.
2699 */
2700 if (rcu_fanout_leaf < CONFIG_RCU_FANOUT_LEAF ||
2701 rcu_fanout_leaf > sizeof(unsigned long) * 8 ||
2702 n > rcu_capacity[MAX_RCU_LVLS]) {
2703 WARN_ON(1);
2704 return;
2705 }
2706
2707 /* Calculate the number of rcu_nodes at each level of the tree. */
2708 for (i = 1; i <= MAX_RCU_LVLS; i++)
2709 if (n <= rcu_capacity[i]) {
2710 for (j = 0; j <= i; j++)
2711 num_rcu_lvl[j] =
2712 DIV_ROUND_UP(n, rcu_capacity[i - j]);
2713 rcu_num_lvls = i;
2714 for (j = i + 1; j <= MAX_RCU_LVLS; j++)
2715 num_rcu_lvl[j] = 0;
2716 break;
2717 }
2718
2719 /* Calculate the total number of rcu_node structures. */
2720 rcu_num_nodes = 0;
2721 for (i = 0; i <= MAX_RCU_LVLS; i++)
2722 rcu_num_nodes += num_rcu_lvl[i];
2723 rcu_num_nodes -= n;
2724}
2725
9f680ab4 2726void __init rcu_init(void)
64db4cff 2727{
017c4261 2728 int cpu;
9f680ab4 2729
f41d911f 2730 rcu_bootup_announce();
f885b7f2 2731 rcu_init_geometry();
394f99a9
LJ
2732 rcu_init_one(&rcu_sched_state, &rcu_sched_data);
2733 rcu_init_one(&rcu_bh_state, &rcu_bh_data);
f41d911f 2734 __rcu_init_preempt();
09223371 2735 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
9f680ab4
PM
2736
2737 /*
2738 * We don't need protection against CPU-hotplug here because
2739 * this is called early in boot, before either interrupts
2740 * or the scheduler are operational.
2741 */
2742 cpu_notifier(rcu_cpu_notify, 0);
017c4261
PM
2743 for_each_online_cpu(cpu)
2744 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
c68de209 2745 check_cpu_stall_init();
64db4cff
PM
2746}
2747
1eba8f84 2748#include "rcutree_plugin.h"