rcu: Prevent uninitialized string in RCU CPU stall info
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / rcutree.c
CommitLineData
64db4cff
PM
1/*
2 * Read-Copy Update mechanism for mutual exclusion
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright IBM Corporation, 2008
19 *
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
23 *
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
26 *
27 * For detailed explanation of Read-Copy Update mechanism see -
a71fca58 28 * Documentation/RCU
64db4cff
PM
29 */
30#include <linux/types.h>
31#include <linux/kernel.h>
32#include <linux/init.h>
33#include <linux/spinlock.h>
34#include <linux/smp.h>
35#include <linux/rcupdate.h>
36#include <linux/interrupt.h>
37#include <linux/sched.h>
c1dc0b9c 38#include <linux/nmi.h>
8826f3b0 39#include <linux/atomic.h>
64db4cff 40#include <linux/bitops.h>
9984de1a 41#include <linux/export.h>
64db4cff
PM
42#include <linux/completion.h>
43#include <linux/moduleparam.h>
44#include <linux/percpu.h>
45#include <linux/notifier.h>
46#include <linux/cpu.h>
47#include <linux/mutex.h>
48#include <linux/time.h>
bbad9379 49#include <linux/kernel_stat.h>
a26ac245
PM
50#include <linux/wait.h>
51#include <linux/kthread.h>
268bb0ce 52#include <linux/prefetch.h>
3d3b7db0
PM
53#include <linux/delay.h>
54#include <linux/stop_machine.h>
64db4cff 55
9f77da9f 56#include "rcutree.h"
29c00b4a
PM
57#include <trace/events/rcu.h>
58
59#include "rcu.h"
9f77da9f 60
64db4cff
PM
61/* Data structures. */
62
b668c9cf 63static struct lock_class_key rcu_node_class[NUM_RCU_LVLS];
88b91c7c 64
4300aa64 65#define RCU_STATE_INITIALIZER(structname) { \
e99033c5 66 .level = { &structname##_state.node[0] }, \
64db4cff
PM
67 .levelcnt = { \
68 NUM_RCU_LVL_0, /* root of hierarchy. */ \
69 NUM_RCU_LVL_1, \
70 NUM_RCU_LVL_2, \
cf244dc0
PM
71 NUM_RCU_LVL_3, \
72 NUM_RCU_LVL_4, /* == MAX_RCU_LVLS */ \
64db4cff 73 }, \
af446b70 74 .fqs_state = RCU_GP_IDLE, \
64db4cff
PM
75 .gpnum = -300, \
76 .completed = -300, \
e99033c5 77 .onofflock = __RAW_SPIN_LOCK_UNLOCKED(&structname##_state.onofflock), \
b1420f1c
PM
78 .orphan_nxttail = &structname##_state.orphan_nxtlist, \
79 .orphan_donetail = &structname##_state.orphan_donelist, \
e99033c5 80 .fqslock = __RAW_SPIN_LOCK_UNLOCKED(&structname##_state.fqslock), \
64db4cff
PM
81 .n_force_qs = 0, \
82 .n_force_qs_ngp = 0, \
4300aa64 83 .name = #structname, \
64db4cff
PM
84}
85
e99033c5 86struct rcu_state rcu_sched_state = RCU_STATE_INITIALIZER(rcu_sched);
d6714c22 87DEFINE_PER_CPU(struct rcu_data, rcu_sched_data);
64db4cff 88
e99033c5 89struct rcu_state rcu_bh_state = RCU_STATE_INITIALIZER(rcu_bh);
6258c4fb 90DEFINE_PER_CPU(struct rcu_data, rcu_bh_data);
b1f77b05 91
27f4d280
PM
92static struct rcu_state *rcu_state;
93
b0d30417
PM
94/*
95 * The rcu_scheduler_active variable transitions from zero to one just
96 * before the first task is spawned. So when this variable is zero, RCU
97 * can assume that there is but one task, allowing RCU to (for example)
98 * optimized synchronize_sched() to a simple barrier(). When this variable
99 * is one, RCU must actually do all the hard work required to detect real
100 * grace periods. This variable is also used to suppress boot-time false
101 * positives from lockdep-RCU error checking.
102 */
bbad9379
PM
103int rcu_scheduler_active __read_mostly;
104EXPORT_SYMBOL_GPL(rcu_scheduler_active);
105
b0d30417
PM
106/*
107 * The rcu_scheduler_fully_active variable transitions from zero to one
108 * during the early_initcall() processing, which is after the scheduler
109 * is capable of creating new tasks. So RCU processing (for example,
110 * creating tasks for RCU priority boosting) must be delayed until after
111 * rcu_scheduler_fully_active transitions from zero to one. We also
112 * currently delay invocation of any RCU callbacks until after this point.
113 *
114 * It might later prove better for people registering RCU callbacks during
115 * early boot to take responsibility for these callbacks, but one step at
116 * a time.
117 */
118static int rcu_scheduler_fully_active __read_mostly;
119
a46e0899
PM
120#ifdef CONFIG_RCU_BOOST
121
a26ac245
PM
122/*
123 * Control variables for per-CPU and per-rcu_node kthreads. These
124 * handle all flavors of RCU.
125 */
126static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
d71df90e 127DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
15ba0ba8 128DEFINE_PER_CPU(int, rcu_cpu_kthread_cpu);
5ece5bab 129DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
d71df90e 130DEFINE_PER_CPU(char, rcu_cpu_has_work);
a26ac245 131
a46e0899
PM
132#endif /* #ifdef CONFIG_RCU_BOOST */
133
0f962a5e 134static void rcu_node_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
a46e0899
PM
135static void invoke_rcu_core(void);
136static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
a26ac245 137
4a298656
PM
138/*
139 * Track the rcutorture test sequence number and the update version
140 * number within a given test. The rcutorture_testseq is incremented
141 * on every rcutorture module load and unload, so has an odd value
142 * when a test is running. The rcutorture_vernum is set to zero
143 * when rcutorture starts and is incremented on each rcutorture update.
144 * These variables enable correlating rcutorture output with the
145 * RCU tracing information.
146 */
147unsigned long rcutorture_testseq;
148unsigned long rcutorture_vernum;
149
b1420f1c
PM
150/* State information for rcu_barrier() and friends. */
151
152static DEFINE_PER_CPU(struct rcu_head, rcu_barrier_head) = {NULL};
153static atomic_t rcu_barrier_cpu_count;
154static DEFINE_MUTEX(rcu_barrier_mutex);
155static struct completion rcu_barrier_completion;
156
fc2219d4
PM
157/*
158 * Return true if an RCU grace period is in progress. The ACCESS_ONCE()s
159 * permit this function to be invoked without holding the root rcu_node
160 * structure's ->lock, but of course results can be subject to change.
161 */
162static int rcu_gp_in_progress(struct rcu_state *rsp)
163{
164 return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
165}
166
b1f77b05 167/*
d6714c22 168 * Note a quiescent state. Because we do not need to know
b1f77b05 169 * how many quiescent states passed, just if there was at least
d6714c22 170 * one since the start of the grace period, this just sets a flag.
e4cc1f22 171 * The caller must have disabled preemption.
b1f77b05 172 */
d6714c22 173void rcu_sched_qs(int cpu)
b1f77b05 174{
25502a6c 175 struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
f41d911f 176
e4cc1f22 177 rdp->passed_quiesce_gpnum = rdp->gpnum;
c3422bea 178 barrier();
e4cc1f22 179 if (rdp->passed_quiesce == 0)
d4c08f2a 180 trace_rcu_grace_period("rcu_sched", rdp->gpnum, "cpuqs");
e4cc1f22 181 rdp->passed_quiesce = 1;
b1f77b05
IM
182}
183
d6714c22 184void rcu_bh_qs(int cpu)
b1f77b05 185{
25502a6c 186 struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
f41d911f 187
e4cc1f22 188 rdp->passed_quiesce_gpnum = rdp->gpnum;
c3422bea 189 barrier();
e4cc1f22 190 if (rdp->passed_quiesce == 0)
d4c08f2a 191 trace_rcu_grace_period("rcu_bh", rdp->gpnum, "cpuqs");
e4cc1f22 192 rdp->passed_quiesce = 1;
b1f77b05 193}
64db4cff 194
25502a6c
PM
195/*
196 * Note a context switch. This is a quiescent state for RCU-sched,
197 * and requires special handling for preemptible RCU.
e4cc1f22 198 * The caller must have disabled preemption.
25502a6c
PM
199 */
200void rcu_note_context_switch(int cpu)
201{
300df91c 202 trace_rcu_utilization("Start context switch");
25502a6c 203 rcu_sched_qs(cpu);
cba6d0d6 204 rcu_preempt_note_context_switch(cpu);
300df91c 205 trace_rcu_utilization("End context switch");
25502a6c 206}
29ce8310 207EXPORT_SYMBOL_GPL(rcu_note_context_switch);
25502a6c 208
90a4d2c0 209DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
29e37d81 210 .dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
23b5c8fa 211 .dynticks = ATOMIC_INIT(1),
90a4d2c0 212};
64db4cff 213
e0f23060 214static int blimit = 10; /* Maximum callbacks per rcu_do_batch. */
64db4cff
PM
215static int qhimark = 10000; /* If this many pending, ignore blimit. */
216static int qlowmark = 100; /* Once only this many pending, use blimit. */
217
3d76c082
PM
218module_param(blimit, int, 0);
219module_param(qhimark, int, 0);
220module_param(qlowmark, int, 0);
221
13cfcca0
PM
222int rcu_cpu_stall_suppress __read_mostly; /* 1 = suppress stall warnings. */
223int rcu_cpu_stall_timeout __read_mostly = CONFIG_RCU_CPU_STALL_TIMEOUT;
224
f2e0dd70 225module_param(rcu_cpu_stall_suppress, int, 0644);
13cfcca0 226module_param(rcu_cpu_stall_timeout, int, 0644);
742734ee 227
64db4cff 228static void force_quiescent_state(struct rcu_state *rsp, int relaxed);
a157229c 229static int rcu_pending(int cpu);
64db4cff
PM
230
231/*
d6714c22 232 * Return the number of RCU-sched batches processed thus far for debug & stats.
64db4cff 233 */
d6714c22 234long rcu_batches_completed_sched(void)
64db4cff 235{
d6714c22 236 return rcu_sched_state.completed;
64db4cff 237}
d6714c22 238EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
64db4cff
PM
239
240/*
241 * Return the number of RCU BH batches processed thus far for debug & stats.
242 */
243long rcu_batches_completed_bh(void)
244{
245 return rcu_bh_state.completed;
246}
247EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
248
bf66f18e
PM
249/*
250 * Force a quiescent state for RCU BH.
251 */
252void rcu_bh_force_quiescent_state(void)
253{
254 force_quiescent_state(&rcu_bh_state, 0);
255}
256EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
257
4a298656
PM
258/*
259 * Record the number of times rcutorture tests have been initiated and
260 * terminated. This information allows the debugfs tracing stats to be
261 * correlated to the rcutorture messages, even when the rcutorture module
262 * is being repeatedly loaded and unloaded. In other words, we cannot
263 * store this state in rcutorture itself.
264 */
265void rcutorture_record_test_transition(void)
266{
267 rcutorture_testseq++;
268 rcutorture_vernum = 0;
269}
270EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
271
272/*
273 * Record the number of writer passes through the current rcutorture test.
274 * This is also used to correlate debugfs tracing stats with the rcutorture
275 * messages.
276 */
277void rcutorture_record_progress(unsigned long vernum)
278{
279 rcutorture_vernum++;
280}
281EXPORT_SYMBOL_GPL(rcutorture_record_progress);
282
bf66f18e
PM
283/*
284 * Force a quiescent state for RCU-sched.
285 */
286void rcu_sched_force_quiescent_state(void)
287{
288 force_quiescent_state(&rcu_sched_state, 0);
289}
290EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
291
64db4cff
PM
292/*
293 * Does the CPU have callbacks ready to be invoked?
294 */
295static int
296cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
297{
298 return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL];
299}
300
301/*
302 * Does the current CPU require a yet-as-unscheduled grace period?
303 */
304static int
305cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
306{
fc2219d4 307 return *rdp->nxttail[RCU_DONE_TAIL] && !rcu_gp_in_progress(rsp);
64db4cff
PM
308}
309
310/*
311 * Return the root node of the specified rcu_state structure.
312 */
313static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
314{
315 return &rsp->node[0];
316}
317
64db4cff
PM
318/*
319 * If the specified CPU is offline, tell the caller that it is in
320 * a quiescent state. Otherwise, whack it with a reschedule IPI.
321 * Grace periods can end up waiting on an offline CPU when that
322 * CPU is in the process of coming online -- it will be added to the
323 * rcu_node bitmasks before it actually makes it online. The same thing
324 * can happen while a CPU is in the process of coming online. Because this
325 * race is quite rare, we check for it after detecting that the grace
326 * period has been delayed rather than checking each and every CPU
327 * each and every time we start a new grace period.
328 */
329static int rcu_implicit_offline_qs(struct rcu_data *rdp)
330{
331 /*
2036d94a
PM
332 * If the CPU is offline for more than a jiffy, it is in a quiescent
333 * state. We can trust its state not to change because interrupts
334 * are disabled. The reason for the jiffy's worth of slack is to
335 * handle CPUs initializing on the way up and finding their way
336 * to the idle loop on the way down.
64db4cff 337 */
2036d94a
PM
338 if (cpu_is_offline(rdp->cpu) &&
339 ULONG_CMP_LT(rdp->rsp->gp_start + 2, jiffies)) {
d4c08f2a 340 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "ofl");
64db4cff
PM
341 rdp->offline_fqs++;
342 return 1;
343 }
64db4cff
PM
344 return 0;
345}
346
9b2e4f18
PM
347/*
348 * rcu_idle_enter_common - inform RCU that current CPU is moving towards idle
349 *
350 * If the new value of the ->dynticks_nesting counter now is zero,
351 * we really have entered idle, and must do the appropriate accounting.
352 * The caller must have disabled interrupts.
353 */
4145fa7f 354static void rcu_idle_enter_common(struct rcu_dynticks *rdtp, long long oldval)
9b2e4f18 355{
facc4e15 356 trace_rcu_dyntick("Start", oldval, 0);
99745b6a 357 if (!is_idle_task(current)) {
0989cb46
PM
358 struct task_struct *idle = idle_task(smp_processor_id());
359
facc4e15 360 trace_rcu_dyntick("Error on entry: not idle task", oldval, 0);
9b2e4f18 361 ftrace_dump(DUMP_ALL);
0989cb46
PM
362 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
363 current->pid, current->comm,
364 idle->pid, idle->comm); /* must be idle task! */
9b2e4f18 365 }
aea1b35e 366 rcu_prepare_for_idle(smp_processor_id());
9b2e4f18
PM
367 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
368 smp_mb__before_atomic_inc(); /* See above. */
369 atomic_inc(&rdtp->dynticks);
370 smp_mb__after_atomic_inc(); /* Force ordering with next sojourn. */
371 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
c44e2cdd
PM
372
373 /*
374 * The idle task is not permitted to enter the idle loop while
375 * in an RCU read-side critical section.
376 */
377 rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
378 "Illegal idle entry in RCU read-side critical section.");
379 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),
380 "Illegal idle entry in RCU-bh read-side critical section.");
381 rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),
382 "Illegal idle entry in RCU-sched read-side critical section.");
9b2e4f18 383}
64db4cff
PM
384
385/**
9b2e4f18 386 * rcu_idle_enter - inform RCU that current CPU is entering idle
64db4cff 387 *
9b2e4f18 388 * Enter idle mode, in other words, -leave- the mode in which RCU
64db4cff 389 * read-side critical sections can occur. (Though RCU read-side
9b2e4f18
PM
390 * critical sections can occur in irq handlers in idle, a possibility
391 * handled by irq_enter() and irq_exit().)
392 *
393 * We crowbar the ->dynticks_nesting field to zero to allow for
394 * the possibility of usermode upcalls having messed up our count
395 * of interrupt nesting level during the prior busy period.
64db4cff 396 */
9b2e4f18 397void rcu_idle_enter(void)
64db4cff
PM
398{
399 unsigned long flags;
4145fa7f 400 long long oldval;
64db4cff
PM
401 struct rcu_dynticks *rdtp;
402
64db4cff
PM
403 local_irq_save(flags);
404 rdtp = &__get_cpu_var(rcu_dynticks);
4145fa7f 405 oldval = rdtp->dynticks_nesting;
29e37d81
PM
406 WARN_ON_ONCE((oldval & DYNTICK_TASK_NEST_MASK) == 0);
407 if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE)
408 rdtp->dynticks_nesting = 0;
409 else
410 rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
4145fa7f 411 rcu_idle_enter_common(rdtp, oldval);
64db4cff
PM
412 local_irq_restore(flags);
413}
8a2ecf47 414EXPORT_SYMBOL_GPL(rcu_idle_enter);
64db4cff 415
9b2e4f18
PM
416/**
417 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
418 *
419 * Exit from an interrupt handler, which might possibly result in entering
420 * idle mode, in other words, leaving the mode in which read-side critical
421 * sections can occur.
64db4cff 422 *
9b2e4f18
PM
423 * This code assumes that the idle loop never does anything that might
424 * result in unbalanced calls to irq_enter() and irq_exit(). If your
425 * architecture violates this assumption, RCU will give you what you
426 * deserve, good and hard. But very infrequently and irreproducibly.
427 *
428 * Use things like work queues to work around this limitation.
429 *
430 * You have been warned.
64db4cff 431 */
9b2e4f18 432void rcu_irq_exit(void)
64db4cff
PM
433{
434 unsigned long flags;
4145fa7f 435 long long oldval;
64db4cff
PM
436 struct rcu_dynticks *rdtp;
437
438 local_irq_save(flags);
439 rdtp = &__get_cpu_var(rcu_dynticks);
4145fa7f 440 oldval = rdtp->dynticks_nesting;
9b2e4f18
PM
441 rdtp->dynticks_nesting--;
442 WARN_ON_ONCE(rdtp->dynticks_nesting < 0);
b6fc6020
FW
443 if (rdtp->dynticks_nesting)
444 trace_rcu_dyntick("--=", oldval, rdtp->dynticks_nesting);
445 else
446 rcu_idle_enter_common(rdtp, oldval);
9b2e4f18
PM
447 local_irq_restore(flags);
448}
449
450/*
451 * rcu_idle_exit_common - inform RCU that current CPU is moving away from idle
452 *
453 * If the new value of the ->dynticks_nesting counter was previously zero,
454 * we really have exited idle, and must do the appropriate accounting.
455 * The caller must have disabled interrupts.
456 */
457static void rcu_idle_exit_common(struct rcu_dynticks *rdtp, long long oldval)
458{
23b5c8fa
PM
459 smp_mb__before_atomic_inc(); /* Force ordering w/previous sojourn. */
460 atomic_inc(&rdtp->dynticks);
461 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
462 smp_mb__after_atomic_inc(); /* See above. */
463 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
7cb92499 464 rcu_cleanup_after_idle(smp_processor_id());
4145fa7f 465 trace_rcu_dyntick("End", oldval, rdtp->dynticks_nesting);
99745b6a 466 if (!is_idle_task(current)) {
0989cb46
PM
467 struct task_struct *idle = idle_task(smp_processor_id());
468
4145fa7f
PM
469 trace_rcu_dyntick("Error on exit: not idle task",
470 oldval, rdtp->dynticks_nesting);
9b2e4f18 471 ftrace_dump(DUMP_ALL);
0989cb46
PM
472 WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
473 current->pid, current->comm,
474 idle->pid, idle->comm); /* must be idle task! */
9b2e4f18
PM
475 }
476}
477
478/**
479 * rcu_idle_exit - inform RCU that current CPU is leaving idle
480 *
481 * Exit idle mode, in other words, -enter- the mode in which RCU
482 * read-side critical sections can occur.
483 *
29e37d81 484 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
4145fa7f 485 * allow for the possibility of usermode upcalls messing up our count
9b2e4f18
PM
486 * of interrupt nesting level during the busy period that is just
487 * now starting.
488 */
489void rcu_idle_exit(void)
490{
491 unsigned long flags;
492 struct rcu_dynticks *rdtp;
493 long long oldval;
494
495 local_irq_save(flags);
496 rdtp = &__get_cpu_var(rcu_dynticks);
497 oldval = rdtp->dynticks_nesting;
29e37d81
PM
498 WARN_ON_ONCE(oldval < 0);
499 if (oldval & DYNTICK_TASK_NEST_MASK)
500 rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
501 else
502 rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
9b2e4f18
PM
503 rcu_idle_exit_common(rdtp, oldval);
504 local_irq_restore(flags);
505}
8a2ecf47 506EXPORT_SYMBOL_GPL(rcu_idle_exit);
9b2e4f18
PM
507
508/**
509 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
510 *
511 * Enter an interrupt handler, which might possibly result in exiting
512 * idle mode, in other words, entering the mode in which read-side critical
513 * sections can occur.
514 *
515 * Note that the Linux kernel is fully capable of entering an interrupt
516 * handler that it never exits, for example when doing upcalls to
517 * user mode! This code assumes that the idle loop never does upcalls to
518 * user mode. If your architecture does do upcalls from the idle loop (or
519 * does anything else that results in unbalanced calls to the irq_enter()
520 * and irq_exit() functions), RCU will give you what you deserve, good
521 * and hard. But very infrequently and irreproducibly.
522 *
523 * Use things like work queues to work around this limitation.
524 *
525 * You have been warned.
526 */
527void rcu_irq_enter(void)
528{
529 unsigned long flags;
530 struct rcu_dynticks *rdtp;
531 long long oldval;
532
533 local_irq_save(flags);
534 rdtp = &__get_cpu_var(rcu_dynticks);
535 oldval = rdtp->dynticks_nesting;
536 rdtp->dynticks_nesting++;
537 WARN_ON_ONCE(rdtp->dynticks_nesting == 0);
b6fc6020
FW
538 if (oldval)
539 trace_rcu_dyntick("++=", oldval, rdtp->dynticks_nesting);
540 else
541 rcu_idle_exit_common(rdtp, oldval);
64db4cff 542 local_irq_restore(flags);
64db4cff
PM
543}
544
545/**
546 * rcu_nmi_enter - inform RCU of entry to NMI context
547 *
548 * If the CPU was idle with dynamic ticks active, and there is no
549 * irq handler running, this updates rdtp->dynticks_nmi to let the
550 * RCU grace-period handling know that the CPU is active.
551 */
552void rcu_nmi_enter(void)
553{
554 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
555
23b5c8fa
PM
556 if (rdtp->dynticks_nmi_nesting == 0 &&
557 (atomic_read(&rdtp->dynticks) & 0x1))
64db4cff 558 return;
23b5c8fa
PM
559 rdtp->dynticks_nmi_nesting++;
560 smp_mb__before_atomic_inc(); /* Force delay from prior write. */
561 atomic_inc(&rdtp->dynticks);
562 /* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
563 smp_mb__after_atomic_inc(); /* See above. */
564 WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
64db4cff
PM
565}
566
567/**
568 * rcu_nmi_exit - inform RCU of exit from NMI context
569 *
570 * If the CPU was idle with dynamic ticks active, and there is no
571 * irq handler running, this updates rdtp->dynticks_nmi to let the
572 * RCU grace-period handling know that the CPU is no longer active.
573 */
574void rcu_nmi_exit(void)
575{
576 struct rcu_dynticks *rdtp = &__get_cpu_var(rcu_dynticks);
577
23b5c8fa
PM
578 if (rdtp->dynticks_nmi_nesting == 0 ||
579 --rdtp->dynticks_nmi_nesting != 0)
64db4cff 580 return;
23b5c8fa
PM
581 /* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
582 smp_mb__before_atomic_inc(); /* See above. */
583 atomic_inc(&rdtp->dynticks);
584 smp_mb__after_atomic_inc(); /* Force delay to next write. */
585 WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
64db4cff
PM
586}
587
588/**
9b2e4f18 589 * rcu_is_cpu_idle - see if RCU thinks that the current CPU is idle
64db4cff 590 *
9b2e4f18 591 * If the current CPU is in its idle loop and is neither in an interrupt
34240697 592 * or NMI handler, return true.
64db4cff 593 */
9b2e4f18 594int rcu_is_cpu_idle(void)
64db4cff 595{
34240697
PM
596 int ret;
597
598 preempt_disable();
599 ret = (atomic_read(&__get_cpu_var(rcu_dynticks).dynticks) & 0x1) == 0;
600 preempt_enable();
601 return ret;
64db4cff 602}
e6b80a3b 603EXPORT_SYMBOL(rcu_is_cpu_idle);
64db4cff 604
62fde6ed 605#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
c0d6d01b
PM
606
607/*
608 * Is the current CPU online? Disable preemption to avoid false positives
609 * that could otherwise happen due to the current CPU number being sampled,
610 * this task being preempted, its old CPU being taken offline, resuming
611 * on some other CPU, then determining that its old CPU is now offline.
612 * It is OK to use RCU on an offline processor during initial boot, hence
2036d94a
PM
613 * the check for rcu_scheduler_fully_active. Note also that it is OK
614 * for a CPU coming online to use RCU for one jiffy prior to marking itself
615 * online in the cpu_online_mask. Similarly, it is OK for a CPU going
616 * offline to continue to use RCU for one jiffy after marking itself
617 * offline in the cpu_online_mask. This leniency is necessary given the
618 * non-atomic nature of the online and offline processing, for example,
619 * the fact that a CPU enters the scheduler after completing the CPU_DYING
620 * notifiers.
621 *
622 * This is also why RCU internally marks CPUs online during the
623 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
c0d6d01b
PM
624 *
625 * Disable checking if in an NMI handler because we cannot safely report
626 * errors from NMI handlers anyway.
627 */
628bool rcu_lockdep_current_cpu_online(void)
629{
2036d94a
PM
630 struct rcu_data *rdp;
631 struct rcu_node *rnp;
c0d6d01b
PM
632 bool ret;
633
634 if (in_nmi())
635 return 1;
636 preempt_disable();
2036d94a
PM
637 rdp = &__get_cpu_var(rcu_sched_data);
638 rnp = rdp->mynode;
639 ret = (rdp->grpmask & rnp->qsmaskinit) ||
c0d6d01b
PM
640 !rcu_scheduler_fully_active;
641 preempt_enable();
642 return ret;
643}
644EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
645
62fde6ed 646#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
9b2e4f18 647
64db4cff 648/**
9b2e4f18 649 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
64db4cff 650 *
9b2e4f18
PM
651 * If the current CPU is idle or running at a first-level (not nested)
652 * interrupt from idle, return true. The caller must have at least
653 * disabled preemption.
64db4cff 654 */
9b2e4f18 655int rcu_is_cpu_rrupt_from_idle(void)
64db4cff 656{
9b2e4f18 657 return __get_cpu_var(rcu_dynticks).dynticks_nesting <= 1;
64db4cff
PM
658}
659
64db4cff
PM
660/*
661 * Snapshot the specified CPU's dynticks counter so that we can later
662 * credit them with an implicit quiescent state. Return 1 if this CPU
1eba8f84 663 * is in dynticks idle mode, which is an extended quiescent state.
64db4cff
PM
664 */
665static int dyntick_save_progress_counter(struct rcu_data *rdp)
666{
23b5c8fa 667 rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
f0e7c19d 668 return (rdp->dynticks_snap & 0x1) == 0;
64db4cff
PM
669}
670
671/*
672 * Return true if the specified CPU has passed through a quiescent
673 * state by virtue of being in or having passed through an dynticks
674 * idle state since the last call to dyntick_save_progress_counter()
675 * for this same CPU.
676 */
677static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
678{
7eb4f455
PM
679 unsigned int curr;
680 unsigned int snap;
64db4cff 681
7eb4f455
PM
682 curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
683 snap = (unsigned int)rdp->dynticks_snap;
64db4cff
PM
684
685 /*
686 * If the CPU passed through or entered a dynticks idle phase with
687 * no active irq/NMI handlers, then we can safely pretend that the CPU
688 * already acknowledged the request to pass through a quiescent
689 * state. Either way, that CPU cannot possibly be in an RCU
690 * read-side critical section that started before the beginning
691 * of the current RCU grace period.
692 */
7eb4f455 693 if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
d4c08f2a 694 trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, "dti");
64db4cff
PM
695 rdp->dynticks_fqs++;
696 return 1;
697 }
698
699 /* Go check for the CPU being offline. */
700 return rcu_implicit_offline_qs(rdp);
701}
702
13cfcca0
PM
703static int jiffies_till_stall_check(void)
704{
705 int till_stall_check = ACCESS_ONCE(rcu_cpu_stall_timeout);
706
707 /*
708 * Limit check must be consistent with the Kconfig limits
709 * for CONFIG_RCU_CPU_STALL_TIMEOUT.
710 */
711 if (till_stall_check < 3) {
712 ACCESS_ONCE(rcu_cpu_stall_timeout) = 3;
713 till_stall_check = 3;
714 } else if (till_stall_check > 300) {
715 ACCESS_ONCE(rcu_cpu_stall_timeout) = 300;
716 till_stall_check = 300;
717 }
718 return till_stall_check * HZ + RCU_STALL_DELAY_DELTA;
719}
720
64db4cff
PM
721static void record_gp_stall_check_time(struct rcu_state *rsp)
722{
723 rsp->gp_start = jiffies;
13cfcca0 724 rsp->jiffies_stall = jiffies + jiffies_till_stall_check();
64db4cff
PM
725}
726
727static void print_other_cpu_stall(struct rcu_state *rsp)
728{
729 int cpu;
730 long delta;
731 unsigned long flags;
285fe294 732 int ndetected = 0;
64db4cff 733 struct rcu_node *rnp = rcu_get_root(rsp);
64db4cff
PM
734
735 /* Only let one CPU complain about others per time interval. */
736
1304afb2 737 raw_spin_lock_irqsave(&rnp->lock, flags);
64db4cff 738 delta = jiffies - rsp->jiffies_stall;
fc2219d4 739 if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
1304afb2 740 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
741 return;
742 }
13cfcca0 743 rsp->jiffies_stall = jiffies + 3 * jiffies_till_stall_check() + 3;
1304afb2 744 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 745
8cdd32a9
PM
746 /*
747 * OK, time to rat on our buddy...
748 * See Documentation/RCU/stallwarn.txt for info on how to debug
749 * RCU CPU stall warnings.
750 */
a858af28 751 printk(KERN_ERR "INFO: %s detected stalls on CPUs/tasks:",
4300aa64 752 rsp->name);
a858af28 753 print_cpu_stall_info_begin();
a0b6c9a7 754 rcu_for_each_leaf_node(rsp, rnp) {
3acd9eb3 755 raw_spin_lock_irqsave(&rnp->lock, flags);
9bc8b558 756 ndetected += rcu_print_task_stall(rnp);
3acd9eb3 757 raw_spin_unlock_irqrestore(&rnp->lock, flags);
a0b6c9a7 758 if (rnp->qsmask == 0)
64db4cff 759 continue;
a0b6c9a7 760 for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
9bc8b558 761 if (rnp->qsmask & (1UL << cpu)) {
a858af28 762 print_cpu_stall_info(rsp, rnp->grplo + cpu);
9bc8b558
PM
763 ndetected++;
764 }
64db4cff 765 }
a858af28
PM
766
767 /*
768 * Now rat on any tasks that got kicked up to the root rcu_node
769 * due to CPU offlining.
770 */
771 rnp = rcu_get_root(rsp);
772 raw_spin_lock_irqsave(&rnp->lock, flags);
285fe294 773 ndetected += rcu_print_task_stall(rnp);
a858af28
PM
774 raw_spin_unlock_irqrestore(&rnp->lock, flags);
775
776 print_cpu_stall_info_end();
777 printk(KERN_CONT "(detected by %d, t=%ld jiffies)\n",
64db4cff 778 smp_processor_id(), (long)(jiffies - rsp->gp_start));
9bc8b558
PM
779 if (ndetected == 0)
780 printk(KERN_ERR "INFO: Stall ended before state dump start\n");
781 else if (!trigger_all_cpu_backtrace())
4627e240 782 dump_stack();
c1dc0b9c 783
1ed509a2
PM
784 /* If so configured, complain about tasks blocking the grace period. */
785
786 rcu_print_detail_task_stall(rsp);
787
64db4cff
PM
788 force_quiescent_state(rsp, 0); /* Kick them all. */
789}
790
791static void print_cpu_stall(struct rcu_state *rsp)
792{
793 unsigned long flags;
794 struct rcu_node *rnp = rcu_get_root(rsp);
795
8cdd32a9
PM
796 /*
797 * OK, time to rat on ourselves...
798 * See Documentation/RCU/stallwarn.txt for info on how to debug
799 * RCU CPU stall warnings.
800 */
a858af28
PM
801 printk(KERN_ERR "INFO: %s self-detected stall on CPU", rsp->name);
802 print_cpu_stall_info_begin();
803 print_cpu_stall_info(rsp, smp_processor_id());
804 print_cpu_stall_info_end();
805 printk(KERN_CONT " (t=%lu jiffies)\n", jiffies - rsp->gp_start);
4627e240
PM
806 if (!trigger_all_cpu_backtrace())
807 dump_stack();
c1dc0b9c 808
1304afb2 809 raw_spin_lock_irqsave(&rnp->lock, flags);
20133cfc 810 if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall))
13cfcca0
PM
811 rsp->jiffies_stall = jiffies +
812 3 * jiffies_till_stall_check() + 3;
1304afb2 813 raw_spin_unlock_irqrestore(&rnp->lock, flags);
c1dc0b9c 814
64db4cff
PM
815 set_need_resched(); /* kick ourselves to get things going. */
816}
817
818static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
819{
bad6e139
PM
820 unsigned long j;
821 unsigned long js;
64db4cff
PM
822 struct rcu_node *rnp;
823
742734ee 824 if (rcu_cpu_stall_suppress)
c68de209 825 return;
bad6e139
PM
826 j = ACCESS_ONCE(jiffies);
827 js = ACCESS_ONCE(rsp->jiffies_stall);
64db4cff 828 rnp = rdp->mynode;
bad6e139 829 if ((ACCESS_ONCE(rnp->qsmask) & rdp->grpmask) && ULONG_CMP_GE(j, js)) {
64db4cff
PM
830
831 /* We haven't checked in, so go dump stack. */
832 print_cpu_stall(rsp);
833
bad6e139
PM
834 } else if (rcu_gp_in_progress(rsp) &&
835 ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
64db4cff 836
bad6e139 837 /* They had a few time units to dump stack, so complain. */
64db4cff
PM
838 print_other_cpu_stall(rsp);
839 }
840}
841
c68de209
PM
842static int rcu_panic(struct notifier_block *this, unsigned long ev, void *ptr)
843{
742734ee 844 rcu_cpu_stall_suppress = 1;
c68de209
PM
845 return NOTIFY_DONE;
846}
847
53d84e00
PM
848/**
849 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
850 *
851 * Set the stall-warning timeout way off into the future, thus preventing
852 * any RCU CPU stall-warning messages from appearing in the current set of
853 * RCU grace periods.
854 *
855 * The caller must disable hard irqs.
856 */
857void rcu_cpu_stall_reset(void)
858{
859 rcu_sched_state.jiffies_stall = jiffies + ULONG_MAX / 2;
860 rcu_bh_state.jiffies_stall = jiffies + ULONG_MAX / 2;
861 rcu_preempt_stall_reset();
862}
863
c68de209
PM
864static struct notifier_block rcu_panic_block = {
865 .notifier_call = rcu_panic,
866};
867
868static void __init check_cpu_stall_init(void)
869{
870 atomic_notifier_chain_register(&panic_notifier_list, &rcu_panic_block);
871}
872
64db4cff
PM
873/*
874 * Update CPU-local rcu_data state to record the newly noticed grace period.
875 * This is used both when we started the grace period and when we notice
9160306e
PM
876 * that someone else started the grace period. The caller must hold the
877 * ->lock of the leaf rcu_node structure corresponding to the current CPU,
878 * and must have irqs disabled.
64db4cff 879 */
9160306e
PM
880static void __note_new_gpnum(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
881{
882 if (rdp->gpnum != rnp->gpnum) {
121dfc4b
PM
883 /*
884 * If the current grace period is waiting for this CPU,
885 * set up to detect a quiescent state, otherwise don't
886 * go looking for one.
887 */
9160306e 888 rdp->gpnum = rnp->gpnum;
d4c08f2a 889 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpustart");
121dfc4b
PM
890 if (rnp->qsmask & rdp->grpmask) {
891 rdp->qs_pending = 1;
e4cc1f22 892 rdp->passed_quiesce = 0;
121dfc4b
PM
893 } else
894 rdp->qs_pending = 0;
a858af28 895 zero_cpu_stall_ticks(rdp);
9160306e
PM
896 }
897}
898
64db4cff
PM
899static void note_new_gpnum(struct rcu_state *rsp, struct rcu_data *rdp)
900{
9160306e
PM
901 unsigned long flags;
902 struct rcu_node *rnp;
903
904 local_irq_save(flags);
905 rnp = rdp->mynode;
906 if (rdp->gpnum == ACCESS_ONCE(rnp->gpnum) || /* outside lock. */
1304afb2 907 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
9160306e
PM
908 local_irq_restore(flags);
909 return;
910 }
911 __note_new_gpnum(rsp, rnp, rdp);
1304afb2 912 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
913}
914
915/*
916 * Did someone else start a new RCU grace period start since we last
917 * checked? Update local state appropriately if so. Must be called
918 * on the CPU corresponding to rdp.
919 */
920static int
921check_for_new_grace_period(struct rcu_state *rsp, struct rcu_data *rdp)
922{
923 unsigned long flags;
924 int ret = 0;
925
926 local_irq_save(flags);
927 if (rdp->gpnum != rsp->gpnum) {
928 note_new_gpnum(rsp, rdp);
929 ret = 1;
930 }
931 local_irq_restore(flags);
932 return ret;
933}
934
3f5d3ea6
PM
935/*
936 * Initialize the specified rcu_data structure's callback list to empty.
937 */
938static void init_callback_list(struct rcu_data *rdp)
939{
940 int i;
941
942 rdp->nxtlist = NULL;
943 for (i = 0; i < RCU_NEXT_SIZE; i++)
944 rdp->nxttail[i] = &rdp->nxtlist;
945}
946
d09b62df
PM
947/*
948 * Advance this CPU's callbacks, but only if the current grace period
949 * has ended. This may be called only from the CPU to whom the rdp
950 * belongs. In addition, the corresponding leaf rcu_node structure's
951 * ->lock must be held by the caller, with irqs disabled.
952 */
953static void
954__rcu_process_gp_end(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
955{
956 /* Did another grace period end? */
957 if (rdp->completed != rnp->completed) {
958
959 /* Advance callbacks. No harm if list empty. */
960 rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[RCU_WAIT_TAIL];
961 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_READY_TAIL];
962 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
963
964 /* Remember that we saw this grace-period completion. */
965 rdp->completed = rnp->completed;
d4c08f2a 966 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuend");
20377f32 967
5ff8e6f0
FW
968 /*
969 * If we were in an extended quiescent state, we may have
121dfc4b 970 * missed some grace periods that others CPUs handled on
5ff8e6f0 971 * our behalf. Catch up with this state to avoid noting
121dfc4b
PM
972 * spurious new grace periods. If another grace period
973 * has started, then rnp->gpnum will have advanced, so
974 * we will detect this later on.
5ff8e6f0 975 */
121dfc4b 976 if (ULONG_CMP_LT(rdp->gpnum, rdp->completed))
5ff8e6f0
FW
977 rdp->gpnum = rdp->completed;
978
20377f32 979 /*
121dfc4b
PM
980 * If RCU does not need a quiescent state from this CPU,
981 * then make sure that this CPU doesn't go looking for one.
20377f32 982 */
121dfc4b 983 if ((rnp->qsmask & rdp->grpmask) == 0)
20377f32 984 rdp->qs_pending = 0;
d09b62df
PM
985 }
986}
987
988/*
989 * Advance this CPU's callbacks, but only if the current grace period
990 * has ended. This may be called only from the CPU to whom the rdp
991 * belongs.
992 */
993static void
994rcu_process_gp_end(struct rcu_state *rsp, struct rcu_data *rdp)
995{
996 unsigned long flags;
997 struct rcu_node *rnp;
998
999 local_irq_save(flags);
1000 rnp = rdp->mynode;
1001 if (rdp->completed == ACCESS_ONCE(rnp->completed) || /* outside lock. */
1304afb2 1002 !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
d09b62df
PM
1003 local_irq_restore(flags);
1004 return;
1005 }
1006 __rcu_process_gp_end(rsp, rnp, rdp);
1304afb2 1007 raw_spin_unlock_irqrestore(&rnp->lock, flags);
d09b62df
PM
1008}
1009
1010/*
1011 * Do per-CPU grace-period initialization for running CPU. The caller
1012 * must hold the lock of the leaf rcu_node structure corresponding to
1013 * this CPU.
1014 */
1015static void
1016rcu_start_gp_per_cpu(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
1017{
1018 /* Prior grace period ended, so advance callbacks for current CPU. */
1019 __rcu_process_gp_end(rsp, rnp, rdp);
1020
1021 /*
1022 * Because this CPU just now started the new grace period, we know
1023 * that all of its callbacks will be covered by this upcoming grace
1024 * period, even the ones that were registered arbitrarily recently.
1025 * Therefore, advance all outstanding callbacks to RCU_WAIT_TAIL.
1026 *
1027 * Other CPUs cannot be sure exactly when the grace period started.
1028 * Therefore, their recently registered callbacks must pass through
1029 * an additional RCU_NEXT_READY stage, so that they will be handled
1030 * by the next RCU grace period.
1031 */
1032 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1033 rdp->nxttail[RCU_WAIT_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
9160306e
PM
1034
1035 /* Set state so that this CPU will detect the next quiescent state. */
1036 __note_new_gpnum(rsp, rnp, rdp);
d09b62df
PM
1037}
1038
64db4cff
PM
1039/*
1040 * Start a new RCU grace period if warranted, re-initializing the hierarchy
1041 * in preparation for detecting the next grace period. The caller must hold
1042 * the root node's ->lock, which is released before return. Hard irqs must
1043 * be disabled.
e5601400
PM
1044 *
1045 * Note that it is legal for a dying CPU (which is marked as offline) to
1046 * invoke this function. This can happen when the dying CPU reports its
1047 * quiescent state.
64db4cff
PM
1048 */
1049static void
1050rcu_start_gp(struct rcu_state *rsp, unsigned long flags)
1051 __releases(rcu_get_root(rsp)->lock)
1052{
394f99a9 1053 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
64db4cff 1054 struct rcu_node *rnp = rcu_get_root(rsp);
64db4cff 1055
037067a1 1056 if (!rcu_scheduler_fully_active ||
afe24b12
PM
1057 !cpu_needs_another_gp(rsp, rdp)) {
1058 /*
1059 * Either the scheduler hasn't yet spawned the first
1060 * non-idle task or this CPU does not need another
1061 * grace period. Either way, don't start a new grace
1062 * period.
1063 */
1064 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1065 return;
1066 }
b32e9eb6 1067
afe24b12 1068 if (rsp->fqs_active) {
b32e9eb6 1069 /*
afe24b12
PM
1070 * This CPU needs a grace period, but force_quiescent_state()
1071 * is running. Tell it to start one on this CPU's behalf.
b32e9eb6 1072 */
afe24b12
PM
1073 rsp->fqs_need_gp = 1;
1074 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1075 return;
1076 }
1077
1078 /* Advance to a new grace period and initialize state. */
1079 rsp->gpnum++;
d4c08f2a 1080 trace_rcu_grace_period(rsp->name, rsp->gpnum, "start");
af446b70
PM
1081 WARN_ON_ONCE(rsp->fqs_state == RCU_GP_INIT);
1082 rsp->fqs_state = RCU_GP_INIT; /* Hold off force_quiescent_state. */
64db4cff 1083 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
64db4cff 1084 record_gp_stall_check_time(rsp);
1304afb2 1085 raw_spin_unlock(&rnp->lock); /* leave irqs disabled. */
64db4cff 1086
64db4cff 1087 /* Exclude any concurrent CPU-hotplug operations. */
1304afb2 1088 raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */
64db4cff
PM
1089
1090 /*
b835db1f
PM
1091 * Set the quiescent-state-needed bits in all the rcu_node
1092 * structures for all currently online CPUs in breadth-first
1093 * order, starting from the root rcu_node structure. This
1094 * operation relies on the layout of the hierarchy within the
1095 * rsp->node[] array. Note that other CPUs will access only
1096 * the leaves of the hierarchy, which still indicate that no
1097 * grace period is in progress, at least until the corresponding
1098 * leaf node has been initialized. In addition, we have excluded
1099 * CPU-hotplug operations.
64db4cff
PM
1100 *
1101 * Note that the grace period cannot complete until we finish
1102 * the initialization process, as there will be at least one
1103 * qsmask bit set in the root node until that time, namely the
b835db1f
PM
1104 * one corresponding to this CPU, due to the fact that we have
1105 * irqs disabled.
64db4cff 1106 */
a0b6c9a7 1107 rcu_for_each_node_breadth_first(rsp, rnp) {
1304afb2 1108 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
b0e165c0 1109 rcu_preempt_check_blocked_tasks(rnp);
49e29126 1110 rnp->qsmask = rnp->qsmaskinit;
de078d87 1111 rnp->gpnum = rsp->gpnum;
d09b62df
PM
1112 rnp->completed = rsp->completed;
1113 if (rnp == rdp->mynode)
1114 rcu_start_gp_per_cpu(rsp, rnp, rdp);
27f4d280 1115 rcu_preempt_boost_start_gp(rnp);
d4c08f2a
PM
1116 trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
1117 rnp->level, rnp->grplo,
1118 rnp->grphi, rnp->qsmask);
1304afb2 1119 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
64db4cff
PM
1120 }
1121
83f5b01f 1122 rnp = rcu_get_root(rsp);
1304afb2 1123 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
af446b70 1124 rsp->fqs_state = RCU_SIGNAL_INIT; /* force_quiescent_state now OK. */
1304afb2
PM
1125 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1126 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
64db4cff
PM
1127}
1128
f41d911f 1129/*
d3f6bad3
PM
1130 * Report a full set of quiescent states to the specified rcu_state
1131 * data structure. This involves cleaning up after the prior grace
1132 * period and letting rcu_start_gp() start up the next grace period
1133 * if one is needed. Note that the caller must hold rnp->lock, as
1134 * required by rcu_start_gp(), which will release it.
f41d911f 1135 */
d3f6bad3 1136static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
fc2219d4 1137 __releases(rcu_get_root(rsp)->lock)
f41d911f 1138{
15ba0ba8 1139 unsigned long gp_duration;
afe24b12
PM
1140 struct rcu_node *rnp = rcu_get_root(rsp);
1141 struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
15ba0ba8 1142
fc2219d4 1143 WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
0bbcc529
PM
1144
1145 /*
1146 * Ensure that all grace-period and pre-grace-period activity
1147 * is seen before the assignment to rsp->completed.
1148 */
1149 smp_mb(); /* See above block comment. */
15ba0ba8
PM
1150 gp_duration = jiffies - rsp->gp_start;
1151 if (gp_duration > rsp->gp_max)
1152 rsp->gp_max = gp_duration;
afe24b12
PM
1153
1154 /*
1155 * We know the grace period is complete, but to everyone else
1156 * it appears to still be ongoing. But it is also the case
1157 * that to everyone else it looks like there is nothing that
1158 * they can do to advance the grace period. It is therefore
1159 * safe for us to drop the lock in order to mark the grace
1160 * period as completed in all of the rcu_node structures.
1161 *
1162 * But if this CPU needs another grace period, it will take
1163 * care of this while initializing the next grace period.
1164 * We use RCU_WAIT_TAIL instead of the usual RCU_DONE_TAIL
1165 * because the callbacks have not yet been advanced: Those
1166 * callbacks are waiting on the grace period that just now
1167 * completed.
1168 */
1169 if (*rdp->nxttail[RCU_WAIT_TAIL] == NULL) {
1170 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1171
1172 /*
1173 * Propagate new ->completed value to rcu_node structures
1174 * so that other CPUs don't have to wait until the start
1175 * of the next grace period to process their callbacks.
1176 */
1177 rcu_for_each_node_breadth_first(rsp, rnp) {
1178 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1179 rnp->completed = rsp->gpnum;
1180 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1181 }
1182 rnp = rcu_get_root(rsp);
1183 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1184 }
1185
1186 rsp->completed = rsp->gpnum; /* Declare the grace period complete. */
d4c08f2a 1187 trace_rcu_grace_period(rsp->name, rsp->completed, "end");
af446b70 1188 rsp->fqs_state = RCU_GP_IDLE;
f41d911f
PM
1189 rcu_start_gp(rsp, flags); /* releases root node's rnp->lock. */
1190}
1191
64db4cff 1192/*
d3f6bad3
PM
1193 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
1194 * Allows quiescent states for a group of CPUs to be reported at one go
1195 * to the specified rcu_node structure, though all the CPUs in the group
1196 * must be represented by the same rcu_node structure (which need not be
1197 * a leaf rcu_node structure, though it often will be). That structure's
1198 * lock must be held upon entry, and it is released before return.
64db4cff
PM
1199 */
1200static void
d3f6bad3
PM
1201rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
1202 struct rcu_node *rnp, unsigned long flags)
64db4cff
PM
1203 __releases(rnp->lock)
1204{
28ecd580
PM
1205 struct rcu_node *rnp_c;
1206
64db4cff
PM
1207 /* Walk up the rcu_node hierarchy. */
1208 for (;;) {
1209 if (!(rnp->qsmask & mask)) {
1210
1211 /* Our bit has already been cleared, so done. */
1304afb2 1212 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1213 return;
1214 }
1215 rnp->qsmask &= ~mask;
d4c08f2a
PM
1216 trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
1217 mask, rnp->qsmask, rnp->level,
1218 rnp->grplo, rnp->grphi,
1219 !!rnp->gp_tasks);
27f4d280 1220 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
64db4cff
PM
1221
1222 /* Other bits still set at this level, so done. */
1304afb2 1223 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1224 return;
1225 }
1226 mask = rnp->grpmask;
1227 if (rnp->parent == NULL) {
1228
1229 /* No more levels. Exit loop holding root lock. */
1230
1231 break;
1232 }
1304afb2 1233 raw_spin_unlock_irqrestore(&rnp->lock, flags);
28ecd580 1234 rnp_c = rnp;
64db4cff 1235 rnp = rnp->parent;
1304afb2 1236 raw_spin_lock_irqsave(&rnp->lock, flags);
28ecd580 1237 WARN_ON_ONCE(rnp_c->qsmask);
64db4cff
PM
1238 }
1239
1240 /*
1241 * Get here if we are the last CPU to pass through a quiescent
d3f6bad3 1242 * state for this grace period. Invoke rcu_report_qs_rsp()
f41d911f 1243 * to clean up and start the next grace period if one is needed.
64db4cff 1244 */
d3f6bad3 1245 rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
64db4cff
PM
1246}
1247
1248/*
d3f6bad3
PM
1249 * Record a quiescent state for the specified CPU to that CPU's rcu_data
1250 * structure. This must be either called from the specified CPU, or
1251 * called when the specified CPU is known to be offline (and when it is
1252 * also known that no other CPU is concurrently trying to help the offline
1253 * CPU). The lastcomp argument is used to make sure we are still in the
1254 * grace period of interest. We don't want to end the current grace period
1255 * based on quiescent states detected in an earlier grace period!
64db4cff
PM
1256 */
1257static void
e4cc1f22 1258rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp, long lastgp)
64db4cff
PM
1259{
1260 unsigned long flags;
1261 unsigned long mask;
1262 struct rcu_node *rnp;
1263
1264 rnp = rdp->mynode;
1304afb2 1265 raw_spin_lock_irqsave(&rnp->lock, flags);
e4cc1f22 1266 if (lastgp != rnp->gpnum || rnp->completed == rnp->gpnum) {
64db4cff
PM
1267
1268 /*
e4cc1f22
PM
1269 * The grace period in which this quiescent state was
1270 * recorded has ended, so don't report it upwards.
1271 * We will instead need a new quiescent state that lies
1272 * within the current grace period.
64db4cff 1273 */
e4cc1f22 1274 rdp->passed_quiesce = 0; /* need qs for new gp. */
1304afb2 1275 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1276 return;
1277 }
1278 mask = rdp->grpmask;
1279 if ((rnp->qsmask & mask) == 0) {
1304afb2 1280 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff
PM
1281 } else {
1282 rdp->qs_pending = 0;
1283
1284 /*
1285 * This GP can't end until cpu checks in, so all of our
1286 * callbacks can be processed during the next GP.
1287 */
64db4cff
PM
1288 rdp->nxttail[RCU_NEXT_READY_TAIL] = rdp->nxttail[RCU_NEXT_TAIL];
1289
d3f6bad3 1290 rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
64db4cff
PM
1291 }
1292}
1293
1294/*
1295 * Check to see if there is a new grace period of which this CPU
1296 * is not yet aware, and if so, set up local rcu_data state for it.
1297 * Otherwise, see if this CPU has just passed through its first
1298 * quiescent state for this grace period, and record that fact if so.
1299 */
1300static void
1301rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
1302{
1303 /* If there is now a new grace period, record and return. */
1304 if (check_for_new_grace_period(rsp, rdp))
1305 return;
1306
1307 /*
1308 * Does this CPU still need to do its part for current grace period?
1309 * If no, return and let the other CPUs do their part as well.
1310 */
1311 if (!rdp->qs_pending)
1312 return;
1313
1314 /*
1315 * Was there a quiescent state since the beginning of the grace
1316 * period? If no, then exit and wait for the next call.
1317 */
e4cc1f22 1318 if (!rdp->passed_quiesce)
64db4cff
PM
1319 return;
1320
d3f6bad3
PM
1321 /*
1322 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
1323 * judge of that).
1324 */
e4cc1f22 1325 rcu_report_qs_rdp(rdp->cpu, rsp, rdp, rdp->passed_quiesce_gpnum);
64db4cff
PM
1326}
1327
1328#ifdef CONFIG_HOTPLUG_CPU
1329
e74f4c45 1330/*
b1420f1c
PM
1331 * Send the specified CPU's RCU callbacks to the orphanage. The
1332 * specified CPU must be offline, and the caller must hold the
1333 * ->onofflock.
e74f4c45 1334 */
b1420f1c
PM
1335static void
1336rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
1337 struct rcu_node *rnp, struct rcu_data *rdp)
e74f4c45 1338{
b1420f1c
PM
1339 /*
1340 * Orphan the callbacks. First adjust the counts. This is safe
1341 * because ->onofflock excludes _rcu_barrier()'s adoption of
1342 * the callbacks, thus no memory barrier is required.
1343 */
a50c3af9 1344 if (rdp->nxtlist != NULL) {
b1420f1c
PM
1345 rsp->qlen_lazy += rdp->qlen_lazy;
1346 rsp->qlen += rdp->qlen;
1347 rdp->n_cbs_orphaned += rdp->qlen;
a50c3af9 1348 rdp->qlen_lazy = 0;
1d1fb395 1349 ACCESS_ONCE(rdp->qlen) = 0;
a50c3af9
PM
1350 }
1351
1352 /*
b1420f1c
PM
1353 * Next, move those callbacks still needing a grace period to
1354 * the orphanage, where some other CPU will pick them up.
1355 * Some of the callbacks might have gone partway through a grace
1356 * period, but that is too bad. They get to start over because we
1357 * cannot assume that grace periods are synchronized across CPUs.
1358 * We don't bother updating the ->nxttail[] array yet, instead
1359 * we just reset the whole thing later on.
a50c3af9 1360 */
b1420f1c
PM
1361 if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
1362 *rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
1363 rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
1364 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
a50c3af9
PM
1365 }
1366
1367 /*
b1420f1c
PM
1368 * Then move the ready-to-invoke callbacks to the orphanage,
1369 * where some other CPU will pick them up. These will not be
1370 * required to pass though another grace period: They are done.
a50c3af9 1371 */
e5601400 1372 if (rdp->nxtlist != NULL) {
b1420f1c
PM
1373 *rsp->orphan_donetail = rdp->nxtlist;
1374 rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
e5601400 1375 }
e74f4c45 1376
b1420f1c 1377 /* Finally, initialize the rcu_data structure's list to empty. */
3f5d3ea6 1378 init_callback_list(rdp);
b1420f1c
PM
1379}
1380
1381/*
1382 * Adopt the RCU callbacks from the specified rcu_state structure's
1383 * orphanage. The caller must hold the ->onofflock.
1384 */
1385static void rcu_adopt_orphan_cbs(struct rcu_state *rsp)
1386{
1387 int i;
1388 struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
1389
a50c3af9 1390 /*
b1420f1c
PM
1391 * If there is an rcu_barrier() operation in progress, then
1392 * only the task doing that operation is permitted to adopt
1393 * callbacks. To do otherwise breaks rcu_barrier() and friends
1394 * by causing them to fail to wait for the callbacks in the
1395 * orphanage.
a50c3af9 1396 */
b1420f1c
PM
1397 if (rsp->rcu_barrier_in_progress &&
1398 rsp->rcu_barrier_in_progress != current)
1399 return;
1400
1401 /* Do the accounting first. */
1402 rdp->qlen_lazy += rsp->qlen_lazy;
1403 rdp->qlen += rsp->qlen;
1404 rdp->n_cbs_adopted += rsp->qlen;
8f5af6f1
PM
1405 if (rsp->qlen_lazy != rsp->qlen)
1406 rcu_idle_count_callbacks_posted();
b1420f1c
PM
1407 rsp->qlen_lazy = 0;
1408 rsp->qlen = 0;
1409
1410 /*
1411 * We do not need a memory barrier here because the only way we
1412 * can get here if there is an rcu_barrier() in flight is if
1413 * we are the task doing the rcu_barrier().
1414 */
1415
1416 /* First adopt the ready-to-invoke callbacks. */
1417 if (rsp->orphan_donelist != NULL) {
1418 *rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
1419 *rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
1420 for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
1421 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
1422 rdp->nxttail[i] = rsp->orphan_donetail;
1423 rsp->orphan_donelist = NULL;
1424 rsp->orphan_donetail = &rsp->orphan_donelist;
1425 }
1426
1427 /* And then adopt the callbacks that still need a grace period. */
1428 if (rsp->orphan_nxtlist != NULL) {
1429 *rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
1430 rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
1431 rsp->orphan_nxtlist = NULL;
1432 rsp->orphan_nxttail = &rsp->orphan_nxtlist;
1433 }
1434}
1435
1436/*
1437 * Trace the fact that this CPU is going offline.
1438 */
1439static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
1440{
1441 RCU_TRACE(unsigned long mask);
1442 RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
1443 RCU_TRACE(struct rcu_node *rnp = rdp->mynode);
1444
1445 RCU_TRACE(mask = rdp->grpmask);
e5601400
PM
1446 trace_rcu_grace_period(rsp->name,
1447 rnp->gpnum + 1 - !!(rnp->qsmask & mask),
1448 "cpuofl");
64db4cff
PM
1449}
1450
1451/*
e5601400 1452 * The CPU has been completely removed, and some other CPU is reporting
b1420f1c
PM
1453 * this fact from process context. Do the remainder of the cleanup,
1454 * including orphaning the outgoing CPU's RCU callbacks, and also
1455 * adopting them, if there is no _rcu_barrier() instance running.
e5601400
PM
1456 * There can only be one CPU hotplug operation at a time, so no other
1457 * CPU can be attempting to update rcu_cpu_kthread_task.
64db4cff 1458 */
e5601400 1459static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
64db4cff 1460{
2036d94a
PM
1461 unsigned long flags;
1462 unsigned long mask;
1463 int need_report = 0;
e5601400 1464 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
b1420f1c 1465 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
e5601400 1466
2036d94a 1467 /* Adjust any no-longer-needed kthreads. */
e5601400
PM
1468 rcu_stop_cpu_kthread(cpu);
1469 rcu_node_kthread_setaffinity(rnp, -1);
2036d94a 1470
b1420f1c 1471 /* Remove the dead CPU from the bitmasks in the rcu_node hierarchy. */
2036d94a
PM
1472
1473 /* Exclude any attempts to start a new grace period. */
1474 raw_spin_lock_irqsave(&rsp->onofflock, flags);
1475
b1420f1c
PM
1476 /* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
1477 rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
1478 rcu_adopt_orphan_cbs(rsp);
1479
2036d94a
PM
1480 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
1481 mask = rdp->grpmask; /* rnp->grplo is constant. */
1482 do {
1483 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
1484 rnp->qsmaskinit &= ~mask;
1485 if (rnp->qsmaskinit != 0) {
1486 if (rnp != rdp->mynode)
1487 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1488 break;
1489 }
1490 if (rnp == rdp->mynode)
1491 need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
1492 else
1493 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
1494 mask = rnp->grpmask;
1495 rnp = rnp->parent;
1496 } while (rnp != NULL);
1497
1498 /*
1499 * We still hold the leaf rcu_node structure lock here, and
1500 * irqs are still disabled. The reason for this subterfuge is
1501 * because invoking rcu_report_unblock_qs_rnp() with ->onofflock
1502 * held leads to deadlock.
1503 */
1504 raw_spin_unlock(&rsp->onofflock); /* irqs remain disabled. */
1505 rnp = rdp->mynode;
1506 if (need_report & RCU_OFL_TASKS_NORM_GP)
1507 rcu_report_unblock_qs_rnp(rnp, flags);
1508 else
1509 raw_spin_unlock_irqrestore(&rnp->lock, flags);
1510 if (need_report & RCU_OFL_TASKS_EXP_GP)
1511 rcu_report_exp_rnp(rsp, rnp, true);
64db4cff
PM
1512}
1513
1514#else /* #ifdef CONFIG_HOTPLUG_CPU */
1515
b1420f1c
PM
1516static void rcu_adopt_orphan_cbs(struct rcu_state *rsp)
1517{
1518}
1519
e5601400 1520static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
e74f4c45
PM
1521{
1522}
1523
e5601400 1524static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
64db4cff
PM
1525{
1526}
1527
1528#endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
1529
1530/*
1531 * Invoke any RCU callbacks that have made it to the end of their grace
1532 * period. Thottle as specified by rdp->blimit.
1533 */
37c72e56 1534static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
64db4cff
PM
1535{
1536 unsigned long flags;
1537 struct rcu_head *next, *list, **tail;
b41772ab 1538 int bl, count, count_lazy, i;
64db4cff
PM
1539
1540 /* If no callbacks are ready, just return.*/
29c00b4a 1541 if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
486e2593 1542 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
4968c300
PM
1543 trace_rcu_batch_end(rsp->name, 0, !!ACCESS_ONCE(rdp->nxtlist),
1544 need_resched(), is_idle_task(current),
1545 rcu_is_callbacks_kthread());
64db4cff 1546 return;
29c00b4a 1547 }
64db4cff
PM
1548
1549 /*
1550 * Extract the list of ready callbacks, disabling to prevent
1551 * races with call_rcu() from interrupt handlers.
1552 */
1553 local_irq_save(flags);
8146c4e2 1554 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
29c00b4a 1555 bl = rdp->blimit;
486e2593 1556 trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
64db4cff
PM
1557 list = rdp->nxtlist;
1558 rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
1559 *rdp->nxttail[RCU_DONE_TAIL] = NULL;
1560 tail = rdp->nxttail[RCU_DONE_TAIL];
b41772ab
PM
1561 for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
1562 if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
1563 rdp->nxttail[i] = &rdp->nxtlist;
64db4cff
PM
1564 local_irq_restore(flags);
1565
1566 /* Invoke callbacks. */
486e2593 1567 count = count_lazy = 0;
64db4cff
PM
1568 while (list) {
1569 next = list->next;
1570 prefetch(next);
551d55a9 1571 debug_rcu_head_unqueue(list);
486e2593
PM
1572 if (__rcu_reclaim(rsp->name, list))
1573 count_lazy++;
64db4cff 1574 list = next;
dff1672d
PM
1575 /* Stop only if limit reached and CPU has something to do. */
1576 if (++count >= bl &&
1577 (need_resched() ||
1578 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
64db4cff
PM
1579 break;
1580 }
1581
1582 local_irq_save(flags);
4968c300
PM
1583 trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
1584 is_idle_task(current),
1585 rcu_is_callbacks_kthread());
64db4cff
PM
1586
1587 /* Update count, and requeue any remaining callbacks. */
64db4cff
PM
1588 if (list != NULL) {
1589 *tail = rdp->nxtlist;
1590 rdp->nxtlist = list;
b41772ab
PM
1591 for (i = 0; i < RCU_NEXT_SIZE; i++)
1592 if (&rdp->nxtlist == rdp->nxttail[i])
1593 rdp->nxttail[i] = tail;
64db4cff
PM
1594 else
1595 break;
1596 }
b1420f1c
PM
1597 smp_mb(); /* List handling before counting for rcu_barrier(). */
1598 rdp->qlen_lazy -= count_lazy;
1d1fb395 1599 ACCESS_ONCE(rdp->qlen) -= count;
b1420f1c 1600 rdp->n_cbs_invoked += count;
64db4cff
PM
1601
1602 /* Reinstate batch limit if we have worked down the excess. */
1603 if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
1604 rdp->blimit = blimit;
1605
37c72e56
PM
1606 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
1607 if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
1608 rdp->qlen_last_fqs_check = 0;
1609 rdp->n_force_qs_snap = rsp->n_force_qs;
1610 } else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
1611 rdp->qlen_last_fqs_check = rdp->qlen;
1612
64db4cff
PM
1613 local_irq_restore(flags);
1614
e0f23060 1615 /* Re-invoke RCU core processing if there are callbacks remaining. */
64db4cff 1616 if (cpu_has_callbacks_ready_to_invoke(rdp))
a46e0899 1617 invoke_rcu_core();
64db4cff
PM
1618}
1619
1620/*
1621 * Check to see if this CPU is in a non-context-switch quiescent state
1622 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
e0f23060 1623 * Also schedule RCU core processing.
64db4cff 1624 *
9b2e4f18 1625 * This function must be called from hardirq context. It is normally
64db4cff
PM
1626 * invoked from the scheduling-clock interrupt. If rcu_pending returns
1627 * false, there is no point in invoking rcu_check_callbacks().
1628 */
1629void rcu_check_callbacks(int cpu, int user)
1630{
300df91c 1631 trace_rcu_utilization("Start scheduler-tick");
a858af28 1632 increment_cpu_stall_ticks();
9b2e4f18 1633 if (user || rcu_is_cpu_rrupt_from_idle()) {
64db4cff
PM
1634
1635 /*
1636 * Get here if this CPU took its interrupt from user
1637 * mode or from the idle loop, and if this is not a
1638 * nested interrupt. In this case, the CPU is in
d6714c22 1639 * a quiescent state, so note it.
64db4cff
PM
1640 *
1641 * No memory barrier is required here because both
d6714c22
PM
1642 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
1643 * variables that other CPUs neither access nor modify,
1644 * at least not while the corresponding CPU is online.
64db4cff
PM
1645 */
1646
d6714c22
PM
1647 rcu_sched_qs(cpu);
1648 rcu_bh_qs(cpu);
64db4cff
PM
1649
1650 } else if (!in_softirq()) {
1651
1652 /*
1653 * Get here if this CPU did not take its interrupt from
1654 * softirq, in other words, if it is not interrupting
1655 * a rcu_bh read-side critical section. This is an _bh
d6714c22 1656 * critical section, so note it.
64db4cff
PM
1657 */
1658
d6714c22 1659 rcu_bh_qs(cpu);
64db4cff 1660 }
f41d911f 1661 rcu_preempt_check_callbacks(cpu);
d21670ac 1662 if (rcu_pending(cpu))
a46e0899 1663 invoke_rcu_core();
300df91c 1664 trace_rcu_utilization("End scheduler-tick");
64db4cff
PM
1665}
1666
64db4cff
PM
1667/*
1668 * Scan the leaf rcu_node structures, processing dyntick state for any that
1669 * have not yet encountered a quiescent state, using the function specified.
27f4d280
PM
1670 * Also initiate boosting for any threads blocked on the root rcu_node.
1671 *
ee47eb9f 1672 * The caller must have suppressed start of new grace periods.
64db4cff 1673 */
45f014c5 1674static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *))
64db4cff
PM
1675{
1676 unsigned long bit;
1677 int cpu;
1678 unsigned long flags;
1679 unsigned long mask;
a0b6c9a7 1680 struct rcu_node *rnp;
64db4cff 1681
a0b6c9a7 1682 rcu_for_each_leaf_node(rsp, rnp) {
64db4cff 1683 mask = 0;
1304afb2 1684 raw_spin_lock_irqsave(&rnp->lock, flags);
ee47eb9f 1685 if (!rcu_gp_in_progress(rsp)) {
1304afb2 1686 raw_spin_unlock_irqrestore(&rnp->lock, flags);
0f10dc82 1687 return;
64db4cff 1688 }
a0b6c9a7 1689 if (rnp->qsmask == 0) {
1217ed1b 1690 rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
64db4cff
PM
1691 continue;
1692 }
a0b6c9a7 1693 cpu = rnp->grplo;
64db4cff 1694 bit = 1;
a0b6c9a7 1695 for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
394f99a9
LJ
1696 if ((rnp->qsmask & bit) != 0 &&
1697 f(per_cpu_ptr(rsp->rda, cpu)))
64db4cff
PM
1698 mask |= bit;
1699 }
45f014c5 1700 if (mask != 0) {
64db4cff 1701
d3f6bad3
PM
1702 /* rcu_report_qs_rnp() releases rnp->lock. */
1703 rcu_report_qs_rnp(mask, rsp, rnp, flags);
64db4cff
PM
1704 continue;
1705 }
1304afb2 1706 raw_spin_unlock_irqrestore(&rnp->lock, flags);
64db4cff 1707 }
27f4d280 1708 rnp = rcu_get_root(rsp);
1217ed1b
PM
1709 if (rnp->qsmask == 0) {
1710 raw_spin_lock_irqsave(&rnp->lock, flags);
1711 rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
1712 }
64db4cff
PM
1713}
1714
1715/*
1716 * Force quiescent states on reluctant CPUs, and also detect which
1717 * CPUs are in dyntick-idle mode.
1718 */
1719static void force_quiescent_state(struct rcu_state *rsp, int relaxed)
1720{
1721 unsigned long flags;
64db4cff 1722 struct rcu_node *rnp = rcu_get_root(rsp);
64db4cff 1723
300df91c
PM
1724 trace_rcu_utilization("Start fqs");
1725 if (!rcu_gp_in_progress(rsp)) {
1726 trace_rcu_utilization("End fqs");
64db4cff 1727 return; /* No grace period in progress, nothing to force. */
300df91c 1728 }
1304afb2 1729 if (!raw_spin_trylock_irqsave(&rsp->fqslock, flags)) {
64db4cff 1730 rsp->n_force_qs_lh++; /* Inexact, can lose counts. Tough! */
300df91c 1731 trace_rcu_utilization("End fqs");
64db4cff
PM
1732 return; /* Someone else is already on the job. */
1733 }
20133cfc 1734 if (relaxed && ULONG_CMP_GE(rsp->jiffies_force_qs, jiffies))
f96e9232 1735 goto unlock_fqs_ret; /* no emergency and done recently. */
64db4cff 1736 rsp->n_force_qs++;
1304afb2 1737 raw_spin_lock(&rnp->lock); /* irqs already disabled */
64db4cff 1738 rsp->jiffies_force_qs = jiffies + RCU_JIFFIES_TILL_FORCE_QS;
560d4bc0 1739 if(!rcu_gp_in_progress(rsp)) {
64db4cff 1740 rsp->n_force_qs_ngp++;
1304afb2 1741 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
f96e9232 1742 goto unlock_fqs_ret; /* no GP in progress, time updated. */
64db4cff 1743 }
07079d53 1744 rsp->fqs_active = 1;
af446b70 1745 switch (rsp->fqs_state) {
83f5b01f 1746 case RCU_GP_IDLE:
64db4cff
PM
1747 case RCU_GP_INIT:
1748
83f5b01f 1749 break; /* grace period idle or initializing, ignore. */
64db4cff
PM
1750
1751 case RCU_SAVE_DYNTICK:
64db4cff
PM
1752 if (RCU_SIGNAL_INIT != RCU_SAVE_DYNTICK)
1753 break; /* So gcc recognizes the dead code. */
1754
f261414f
LJ
1755 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
1756
64db4cff 1757 /* Record dyntick-idle state. */
45f014c5 1758 force_qs_rnp(rsp, dyntick_save_progress_counter);
1304afb2 1759 raw_spin_lock(&rnp->lock); /* irqs already disabled */
ee47eb9f 1760 if (rcu_gp_in_progress(rsp))
af446b70 1761 rsp->fqs_state = RCU_FORCE_QS;
ee47eb9f 1762 break;
64db4cff
PM
1763
1764 case RCU_FORCE_QS:
1765
1766 /* Check dyntick-idle state, send IPI to laggarts. */
1304afb2 1767 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
45f014c5 1768 force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
64db4cff
PM
1769
1770 /* Leave state in case more forcing is required. */
1771
1304afb2 1772 raw_spin_lock(&rnp->lock); /* irqs already disabled */
f96e9232 1773 break;
64db4cff 1774 }
07079d53 1775 rsp->fqs_active = 0;
46a1e34e 1776 if (rsp->fqs_need_gp) {
1304afb2 1777 raw_spin_unlock(&rsp->fqslock); /* irqs remain disabled */
46a1e34e
PM
1778 rsp->fqs_need_gp = 0;
1779 rcu_start_gp(rsp, flags); /* releases rnp->lock */
300df91c 1780 trace_rcu_utilization("End fqs");
46a1e34e
PM
1781 return;
1782 }
1304afb2 1783 raw_spin_unlock(&rnp->lock); /* irqs remain disabled */
f96e9232 1784unlock_fqs_ret:
1304afb2 1785 raw_spin_unlock_irqrestore(&rsp->fqslock, flags);
300df91c 1786 trace_rcu_utilization("End fqs");
64db4cff
PM
1787}
1788
64db4cff 1789/*
e0f23060
PM
1790 * This does the RCU core processing work for the specified rcu_state
1791 * and rcu_data structures. This may be called only from the CPU to
1792 * whom the rdp belongs.
64db4cff
PM
1793 */
1794static void
1795__rcu_process_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
1796{
1797 unsigned long flags;
1798
2e597558
PM
1799 WARN_ON_ONCE(rdp->beenonline == 0);
1800
64db4cff
PM
1801 /*
1802 * If an RCU GP has gone long enough, go check for dyntick
1803 * idle CPUs and, if needed, send resched IPIs.
1804 */
20133cfc 1805 if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
64db4cff
PM
1806 force_quiescent_state(rsp, 1);
1807
1808 /*
1809 * Advance callbacks in response to end of earlier grace
1810 * period that some other CPU ended.
1811 */
1812 rcu_process_gp_end(rsp, rdp);
1813
1814 /* Update RCU state based on any recent quiescent states. */
1815 rcu_check_quiescent_state(rsp, rdp);
1816
1817 /* Does this CPU require a not-yet-started grace period? */
1818 if (cpu_needs_another_gp(rsp, rdp)) {
1304afb2 1819 raw_spin_lock_irqsave(&rcu_get_root(rsp)->lock, flags);
64db4cff
PM
1820 rcu_start_gp(rsp, flags); /* releases above lock */
1821 }
1822
1823 /* If there are callbacks ready, invoke them. */
09223371 1824 if (cpu_has_callbacks_ready_to_invoke(rdp))
a46e0899 1825 invoke_rcu_callbacks(rsp, rdp);
09223371
SL
1826}
1827
64db4cff 1828/*
e0f23060 1829 * Do RCU core processing for the current CPU.
64db4cff 1830 */
09223371 1831static void rcu_process_callbacks(struct softirq_action *unused)
64db4cff 1832{
300df91c 1833 trace_rcu_utilization("Start RCU core");
d6714c22
PM
1834 __rcu_process_callbacks(&rcu_sched_state,
1835 &__get_cpu_var(rcu_sched_data));
64db4cff 1836 __rcu_process_callbacks(&rcu_bh_state, &__get_cpu_var(rcu_bh_data));
f41d911f 1837 rcu_preempt_process_callbacks();
300df91c 1838 trace_rcu_utilization("End RCU core");
64db4cff
PM
1839}
1840
a26ac245 1841/*
e0f23060
PM
1842 * Schedule RCU callback invocation. If the specified type of RCU
1843 * does not support RCU priority boosting, just do a direct call,
1844 * otherwise wake up the per-CPU kernel kthread. Note that because we
1845 * are running on the current CPU with interrupts disabled, the
1846 * rcu_cpu_kthread_task cannot disappear out from under us.
a26ac245 1847 */
a46e0899 1848static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
a26ac245 1849{
b0d30417
PM
1850 if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active)))
1851 return;
a46e0899
PM
1852 if (likely(!rsp->boost)) {
1853 rcu_do_batch(rsp, rdp);
a26ac245
PM
1854 return;
1855 }
a46e0899 1856 invoke_rcu_callbacks_kthread();
a26ac245
PM
1857}
1858
a46e0899 1859static void invoke_rcu_core(void)
09223371
SL
1860{
1861 raise_softirq(RCU_SOFTIRQ);
1862}
1863
29154c57
PM
1864/*
1865 * Handle any core-RCU processing required by a call_rcu() invocation.
1866 */
1867static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
1868 struct rcu_head *head, unsigned long flags)
64db4cff 1869{
62fde6ed
PM
1870 /*
1871 * If called from an extended quiescent state, invoke the RCU
1872 * core in order to force a re-evaluation of RCU's idleness.
1873 */
a16b7a69 1874 if (rcu_is_cpu_idle() && cpu_online(smp_processor_id()))
62fde6ed
PM
1875 invoke_rcu_core();
1876
a16b7a69 1877 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
29154c57 1878 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2655d57e 1879 return;
64db4cff 1880
37c72e56
PM
1881 /*
1882 * Force the grace period if too many callbacks or too long waiting.
1883 * Enforce hysteresis, and don't invoke force_quiescent_state()
1884 * if some other CPU has recently done so. Also, don't bother
1885 * invoking force_quiescent_state() if the newly enqueued callback
1886 * is the only one waiting for a grace period to complete.
1887 */
2655d57e 1888 if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
b52573d2
PM
1889
1890 /* Are we ignoring a completed grace period? */
1891 rcu_process_gp_end(rsp, rdp);
1892 check_for_new_grace_period(rsp, rdp);
1893
1894 /* Start a new grace period if one not already started. */
1895 if (!rcu_gp_in_progress(rsp)) {
1896 unsigned long nestflag;
1897 struct rcu_node *rnp_root = rcu_get_root(rsp);
1898
1899 raw_spin_lock_irqsave(&rnp_root->lock, nestflag);
1900 rcu_start_gp(rsp, nestflag); /* rlses rnp_root->lock */
1901 } else {
1902 /* Give the grace period a kick. */
1903 rdp->blimit = LONG_MAX;
1904 if (rsp->n_force_qs == rdp->n_force_qs_snap &&
1905 *rdp->nxttail[RCU_DONE_TAIL] != head)
1906 force_quiescent_state(rsp, 0);
1907 rdp->n_force_qs_snap = rsp->n_force_qs;
1908 rdp->qlen_last_fqs_check = rdp->qlen;
1909 }
20133cfc 1910 } else if (ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies))
64db4cff 1911 force_quiescent_state(rsp, 1);
29154c57
PM
1912}
1913
1914static void
1915__call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
1916 struct rcu_state *rsp, bool lazy)
1917{
1918 unsigned long flags;
1919 struct rcu_data *rdp;
1920
1921 WARN_ON_ONCE((unsigned long)head & 0x3); /* Misaligned rcu_head! */
1922 debug_rcu_head_queue(head);
1923 head->func = func;
1924 head->next = NULL;
1925
1926 smp_mb(); /* Ensure RCU update seen before callback registry. */
1927
1928 /*
1929 * Opportunistically note grace-period endings and beginnings.
1930 * Note that we might see a beginning right after we see an
1931 * end, but never vice versa, since this CPU has to pass through
1932 * a quiescent state betweentimes.
1933 */
1934 local_irq_save(flags);
1935 rdp = this_cpu_ptr(rsp->rda);
1936
1937 /* Add the callback to our list. */
1938 ACCESS_ONCE(rdp->qlen)++;
1939 if (lazy)
1940 rdp->qlen_lazy++;
1941 else
1942 rcu_idle_count_callbacks_posted();
1943 smp_mb(); /* Count before adding callback for rcu_barrier(). */
1944 *rdp->nxttail[RCU_NEXT_TAIL] = head;
1945 rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
1946
1947 if (__is_kfree_rcu_offset((unsigned long)func))
1948 trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
1949 rdp->qlen_lazy, rdp->qlen);
1950 else
1951 trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
1952
1953 /* Go handle any RCU core processing required. */
1954 __call_rcu_core(rsp, rdp, head, flags);
64db4cff
PM
1955 local_irq_restore(flags);
1956}
1957
1958/*
d6714c22 1959 * Queue an RCU-sched callback for invocation after a grace period.
64db4cff 1960 */
d6714c22 1961void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
64db4cff 1962{
486e2593 1963 __call_rcu(head, func, &rcu_sched_state, 0);
64db4cff 1964}
d6714c22 1965EXPORT_SYMBOL_GPL(call_rcu_sched);
64db4cff
PM
1966
1967/*
486e2593 1968 * Queue an RCU callback for invocation after a quicker grace period.
64db4cff
PM
1969 */
1970void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
1971{
486e2593 1972 __call_rcu(head, func, &rcu_bh_state, 0);
64db4cff
PM
1973}
1974EXPORT_SYMBOL_GPL(call_rcu_bh);
1975
6d813391
PM
1976/*
1977 * Because a context switch is a grace period for RCU-sched and RCU-bh,
1978 * any blocking grace-period wait automatically implies a grace period
1979 * if there is only one CPU online at any point time during execution
1980 * of either synchronize_sched() or synchronize_rcu_bh(). It is OK to
1981 * occasionally incorrectly indicate that there are multiple CPUs online
1982 * when there was in fact only one the whole time, as this just adds
1983 * some overhead: RCU still operates correctly.
1984 *
1985 * Of course, sampling num_online_cpus() with preemption enabled can
1986 * give erroneous results if there are concurrent CPU-hotplug operations.
1987 * For example, given a demonic sequence of preemptions in num_online_cpus()
1988 * and CPU-hotplug operations, there could be two or more CPUs online at
1989 * all times, but num_online_cpus() might well return one (or even zero).
1990 *
1991 * However, all such demonic sequences require at least one CPU-offline
1992 * operation. Furthermore, rcu_blocking_is_gp() giving the wrong answer
1993 * is only a problem if there is an RCU read-side critical section executing
1994 * throughout. But RCU-sched and RCU-bh read-side critical sections
1995 * disable either preemption or bh, which prevents a CPU from going offline.
1996 * Therefore, the only way that rcu_blocking_is_gp() can incorrectly return
1997 * that there is only one CPU when in fact there was more than one throughout
1998 * is when there were no RCU readers in the system. If there are no
1999 * RCU readers, the grace period by definition can be of zero length,
2000 * regardless of the number of online CPUs.
2001 */
2002static inline int rcu_blocking_is_gp(void)
2003{
2004 might_sleep(); /* Check for RCU read-side critical section. */
2005 return num_online_cpus() <= 1;
2006}
2007
6ebb237b
PM
2008/**
2009 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
2010 *
2011 * Control will return to the caller some time after a full rcu-sched
2012 * grace period has elapsed, in other words after all currently executing
2013 * rcu-sched read-side critical sections have completed. These read-side
2014 * critical sections are delimited by rcu_read_lock_sched() and
2015 * rcu_read_unlock_sched(), and may be nested. Note that preempt_disable(),
2016 * local_irq_disable(), and so on may be used in place of
2017 * rcu_read_lock_sched().
2018 *
2019 * This means that all preempt_disable code sequences, including NMI and
2020 * hardware-interrupt handlers, in progress on entry will have completed
2021 * before this primitive returns. However, this does not guarantee that
2022 * softirq handlers will have completed, since in some kernels, these
2023 * handlers can run in process context, and can block.
2024 *
2025 * This primitive provides the guarantees made by the (now removed)
2026 * synchronize_kernel() API. In contrast, synchronize_rcu() only
2027 * guarantees that rcu_read_lock() sections will have completed.
2028 * In "classic RCU", these two guarantees happen to be one and
2029 * the same, but can differ in realtime RCU implementations.
2030 */
2031void synchronize_sched(void)
2032{
fe15d706
PM
2033 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2034 !lock_is_held(&rcu_lock_map) &&
2035 !lock_is_held(&rcu_sched_lock_map),
2036 "Illegal synchronize_sched() in RCU-sched read-side critical section");
6ebb237b
PM
2037 if (rcu_blocking_is_gp())
2038 return;
2c42818e 2039 wait_rcu_gp(call_rcu_sched);
6ebb237b
PM
2040}
2041EXPORT_SYMBOL_GPL(synchronize_sched);
2042
2043/**
2044 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
2045 *
2046 * Control will return to the caller some time after a full rcu_bh grace
2047 * period has elapsed, in other words after all currently executing rcu_bh
2048 * read-side critical sections have completed. RCU read-side critical
2049 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
2050 * and may be nested.
2051 */
2052void synchronize_rcu_bh(void)
2053{
fe15d706
PM
2054 rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2055 !lock_is_held(&rcu_lock_map) &&
2056 !lock_is_held(&rcu_sched_lock_map),
2057 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
6ebb237b
PM
2058 if (rcu_blocking_is_gp())
2059 return;
2c42818e 2060 wait_rcu_gp(call_rcu_bh);
6ebb237b
PM
2061}
2062EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
2063
3d3b7db0
PM
2064static atomic_t sync_sched_expedited_started = ATOMIC_INIT(0);
2065static atomic_t sync_sched_expedited_done = ATOMIC_INIT(0);
2066
2067static int synchronize_sched_expedited_cpu_stop(void *data)
2068{
2069 /*
2070 * There must be a full memory barrier on each affected CPU
2071 * between the time that try_stop_cpus() is called and the
2072 * time that it returns.
2073 *
2074 * In the current initial implementation of cpu_stop, the
2075 * above condition is already met when the control reaches
2076 * this point and the following smp_mb() is not strictly
2077 * necessary. Do smp_mb() anyway for documentation and
2078 * robustness against future implementation changes.
2079 */
2080 smp_mb(); /* See above comment block. */
2081 return 0;
2082}
2083
236fefaf
PM
2084/**
2085 * synchronize_sched_expedited - Brute-force RCU-sched grace period
2086 *
2087 * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
2088 * approach to force the grace period to end quickly. This consumes
2089 * significant time on all CPUs and is unfriendly to real-time workloads,
2090 * so is thus not recommended for any sort of common-case code. In fact,
2091 * if you are using synchronize_sched_expedited() in a loop, please
2092 * restructure your code to batch your updates, and then use a single
2093 * synchronize_sched() instead.
3d3b7db0 2094 *
236fefaf
PM
2095 * Note that it is illegal to call this function while holding any lock
2096 * that is acquired by a CPU-hotplug notifier. And yes, it is also illegal
2097 * to call this function from a CPU-hotplug notifier. Failing to observe
2098 * these restriction will result in deadlock.
3d3b7db0
PM
2099 *
2100 * This implementation can be thought of as an application of ticket
2101 * locking to RCU, with sync_sched_expedited_started and
2102 * sync_sched_expedited_done taking on the roles of the halves
2103 * of the ticket-lock word. Each task atomically increments
2104 * sync_sched_expedited_started upon entry, snapshotting the old value,
2105 * then attempts to stop all the CPUs. If this succeeds, then each
2106 * CPU will have executed a context switch, resulting in an RCU-sched
2107 * grace period. We are then done, so we use atomic_cmpxchg() to
2108 * update sync_sched_expedited_done to match our snapshot -- but
2109 * only if someone else has not already advanced past our snapshot.
2110 *
2111 * On the other hand, if try_stop_cpus() fails, we check the value
2112 * of sync_sched_expedited_done. If it has advanced past our
2113 * initial snapshot, then someone else must have forced a grace period
2114 * some time after we took our snapshot. In this case, our work is
2115 * done for us, and we can simply return. Otherwise, we try again,
2116 * but keep our initial snapshot for purposes of checking for someone
2117 * doing our work for us.
2118 *
2119 * If we fail too many times in a row, we fall back to synchronize_sched().
2120 */
2121void synchronize_sched_expedited(void)
2122{
2123 int firstsnap, s, snap, trycount = 0;
2124
2125 /* Note that atomic_inc_return() implies full memory barrier. */
2126 firstsnap = snap = atomic_inc_return(&sync_sched_expedited_started);
2127 get_online_cpus();
1cc85961 2128 WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id()));
3d3b7db0
PM
2129
2130 /*
2131 * Each pass through the following loop attempts to force a
2132 * context switch on each CPU.
2133 */
2134 while (try_stop_cpus(cpu_online_mask,
2135 synchronize_sched_expedited_cpu_stop,
2136 NULL) == -EAGAIN) {
2137 put_online_cpus();
2138
2139 /* No joy, try again later. Or just synchronize_sched(). */
2140 if (trycount++ < 10)
2141 udelay(trycount * num_online_cpus());
2142 else {
2143 synchronize_sched();
2144 return;
2145 }
2146
2147 /* Check to see if someone else did our work for us. */
2148 s = atomic_read(&sync_sched_expedited_done);
2149 if (UINT_CMP_GE((unsigned)s, (unsigned)firstsnap)) {
2150 smp_mb(); /* ensure test happens before caller kfree */
2151 return;
2152 }
2153
2154 /*
2155 * Refetching sync_sched_expedited_started allows later
2156 * callers to piggyback on our grace period. We subtract
2157 * 1 to get the same token that the last incrementer got.
2158 * We retry after they started, so our grace period works
2159 * for them, and they started after our first try, so their
2160 * grace period works for us.
2161 */
2162 get_online_cpus();
2163 snap = atomic_read(&sync_sched_expedited_started);
2164 smp_mb(); /* ensure read is before try_stop_cpus(). */
2165 }
2166
2167 /*
2168 * Everyone up to our most recent fetch is covered by our grace
2169 * period. Update the counter, but only if our work is still
2170 * relevant -- which it won't be if someone who started later
2171 * than we did beat us to the punch.
2172 */
2173 do {
2174 s = atomic_read(&sync_sched_expedited_done);
2175 if (UINT_CMP_GE((unsigned)s, (unsigned)snap)) {
2176 smp_mb(); /* ensure test happens before caller kfree */
2177 break;
2178 }
2179 } while (atomic_cmpxchg(&sync_sched_expedited_done, s, snap) != s);
2180
2181 put_online_cpus();
2182}
2183EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
2184
64db4cff
PM
2185/*
2186 * Check to see if there is any immediate RCU-related work to be done
2187 * by the current CPU, for the specified type of RCU, returning 1 if so.
2188 * The checks are in order of increasing expense: checks that can be
2189 * carried out against CPU-local state are performed first. However,
2190 * we must check for CPU stalls first, else we might not get a chance.
2191 */
2192static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
2193{
2f51f988
PM
2194 struct rcu_node *rnp = rdp->mynode;
2195
64db4cff
PM
2196 rdp->n_rcu_pending++;
2197
2198 /* Check for CPU stalls, if enabled. */
2199 check_cpu_stall(rsp, rdp);
2200
2201 /* Is the RCU core waiting for a quiescent state from this CPU? */
5c51dd73
PM
2202 if (rcu_scheduler_fully_active &&
2203 rdp->qs_pending && !rdp->passed_quiesce) {
d25eb944
PM
2204
2205 /*
2206 * If force_quiescent_state() coming soon and this CPU
2207 * needs a quiescent state, and this is either RCU-sched
2208 * or RCU-bh, force a local reschedule.
2209 */
d21670ac 2210 rdp->n_rp_qs_pending++;
6cc68793 2211 if (!rdp->preemptible &&
d25eb944
PM
2212 ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs) - 1,
2213 jiffies))
2214 set_need_resched();
e4cc1f22 2215 } else if (rdp->qs_pending && rdp->passed_quiesce) {
d21670ac 2216 rdp->n_rp_report_qs++;
64db4cff 2217 return 1;
7ba5c840 2218 }
64db4cff
PM
2219
2220 /* Does this CPU have callbacks ready to invoke? */
7ba5c840
PM
2221 if (cpu_has_callbacks_ready_to_invoke(rdp)) {
2222 rdp->n_rp_cb_ready++;
64db4cff 2223 return 1;
7ba5c840 2224 }
64db4cff
PM
2225
2226 /* Has RCU gone idle with this CPU needing another grace period? */
7ba5c840
PM
2227 if (cpu_needs_another_gp(rsp, rdp)) {
2228 rdp->n_rp_cpu_needs_gp++;
64db4cff 2229 return 1;
7ba5c840 2230 }
64db4cff
PM
2231
2232 /* Has another RCU grace period completed? */
2f51f988 2233 if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
7ba5c840 2234 rdp->n_rp_gp_completed++;
64db4cff 2235 return 1;
7ba5c840 2236 }
64db4cff
PM
2237
2238 /* Has a new RCU grace period started? */
2f51f988 2239 if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
7ba5c840 2240 rdp->n_rp_gp_started++;
64db4cff 2241 return 1;
7ba5c840 2242 }
64db4cff
PM
2243
2244 /* Has an RCU GP gone long enough to send resched IPIs &c? */
fc2219d4 2245 if (rcu_gp_in_progress(rsp) &&
20133cfc 2246 ULONG_CMP_LT(ACCESS_ONCE(rsp->jiffies_force_qs), jiffies)) {
7ba5c840 2247 rdp->n_rp_need_fqs++;
64db4cff 2248 return 1;
7ba5c840 2249 }
64db4cff
PM
2250
2251 /* nothing to do */
7ba5c840 2252 rdp->n_rp_need_nothing++;
64db4cff
PM
2253 return 0;
2254}
2255
2256/*
2257 * Check to see if there is any immediate RCU-related work to be done
2258 * by the current CPU, returning 1 if so. This function is part of the
2259 * RCU implementation; it is -not- an exported member of the RCU API.
2260 */
a157229c 2261static int rcu_pending(int cpu)
64db4cff 2262{
d6714c22 2263 return __rcu_pending(&rcu_sched_state, &per_cpu(rcu_sched_data, cpu)) ||
f41d911f
PM
2264 __rcu_pending(&rcu_bh_state, &per_cpu(rcu_bh_data, cpu)) ||
2265 rcu_preempt_pending(cpu);
64db4cff
PM
2266}
2267
2268/*
2269 * Check to see if any future RCU-related work will need to be done
2270 * by the current CPU, even if none need be done immediately, returning
8bd93a2c 2271 * 1 if so.
64db4cff 2272 */
aea1b35e 2273static int rcu_cpu_has_callbacks(int cpu)
64db4cff
PM
2274{
2275 /* RCU callbacks either ready or pending? */
d6714c22 2276 return per_cpu(rcu_sched_data, cpu).nxtlist ||
f41d911f 2277 per_cpu(rcu_bh_data, cpu).nxtlist ||
30fbcc90 2278 rcu_preempt_cpu_has_callbacks(cpu);
64db4cff
PM
2279}
2280
b1420f1c
PM
2281/*
2282 * RCU callback function for _rcu_barrier(). If we are last, wake
2283 * up the task executing _rcu_barrier().
2284 */
d0ec774c
PM
2285static void rcu_barrier_callback(struct rcu_head *notused)
2286{
2287 if (atomic_dec_and_test(&rcu_barrier_cpu_count))
2288 complete(&rcu_barrier_completion);
2289}
2290
2291/*
2292 * Called with preemption disabled, and from cross-cpu IRQ context.
2293 */
2294static void rcu_barrier_func(void *type)
2295{
2296 int cpu = smp_processor_id();
2297 struct rcu_head *head = &per_cpu(rcu_barrier_head, cpu);
2298 void (*call_rcu_func)(struct rcu_head *head,
2299 void (*func)(struct rcu_head *head));
2300
2301 atomic_inc(&rcu_barrier_cpu_count);
2302 call_rcu_func = type;
2303 call_rcu_func(head, rcu_barrier_callback);
2304}
2305
d0ec774c
PM
2306/*
2307 * Orchestrate the specified type of RCU barrier, waiting for all
2308 * RCU callbacks of the specified type to complete.
2309 */
e74f4c45
PM
2310static void _rcu_barrier(struct rcu_state *rsp,
2311 void (*call_rcu_func)(struct rcu_head *head,
d0ec774c
PM
2312 void (*func)(struct rcu_head *head)))
2313{
b1420f1c
PM
2314 int cpu;
2315 unsigned long flags;
2316 struct rcu_data *rdp;
2317 struct rcu_head rh;
2318
2319 init_rcu_head_on_stack(&rh);
2320
e74f4c45 2321 /* Take mutex to serialize concurrent rcu_barrier() requests. */
d0ec774c 2322 mutex_lock(&rcu_barrier_mutex);
b1420f1c
PM
2323
2324 smp_mb(); /* Prevent any prior operations from leaking in. */
2325
d0ec774c 2326 /*
b1420f1c
PM
2327 * Initialize the count to one rather than to zero in order to
2328 * avoid a too-soon return to zero in case of a short grace period
2329 * (or preemption of this task). Also flag this task as doing
2330 * an rcu_barrier(). This will prevent anyone else from adopting
2331 * orphaned callbacks, which could cause otherwise failure if a
2332 * CPU went offline and quickly came back online. To see this,
2333 * consider the following sequence of events:
2334 *
2335 * 1. We cause CPU 0 to post an rcu_barrier_callback() callback.
2336 * 2. CPU 1 goes offline, orphaning its callbacks.
2337 * 3. CPU 0 adopts CPU 1's orphaned callbacks.
2338 * 4. CPU 1 comes back online.
2339 * 5. We cause CPU 1 to post an rcu_barrier_callback() callback.
2340 * 6. Both rcu_barrier_callback() callbacks are invoked, awakening
2341 * us -- but before CPU 1's orphaned callbacks are invoked!!!
d0ec774c 2342 */
b1420f1c 2343 init_completion(&rcu_barrier_completion);
d0ec774c 2344 atomic_set(&rcu_barrier_cpu_count, 1);
b1420f1c
PM
2345 raw_spin_lock_irqsave(&rsp->onofflock, flags);
2346 rsp->rcu_barrier_in_progress = current;
2347 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
2348
2349 /*
2350 * Force every CPU with callbacks to register a new callback
2351 * that will tell us when all the preceding callbacks have
2352 * been invoked. If an offline CPU has callbacks, wait for
2353 * it to either come back online or to finish orphaning those
2354 * callbacks.
2355 */
2356 for_each_possible_cpu(cpu) {
2357 preempt_disable();
2358 rdp = per_cpu_ptr(rsp->rda, cpu);
2359 if (cpu_is_offline(cpu)) {
2360 preempt_enable();
2361 while (cpu_is_offline(cpu) && ACCESS_ONCE(rdp->qlen))
2362 schedule_timeout_interruptible(1);
2363 } else if (ACCESS_ONCE(rdp->qlen)) {
2364 smp_call_function_single(cpu, rcu_barrier_func,
2365 (void *)call_rcu_func, 1);
2366 preempt_enable();
2367 } else {
2368 preempt_enable();
2369 }
2370 }
2371
2372 /*
2373 * Now that all online CPUs have rcu_barrier_callback() callbacks
2374 * posted, we can adopt all of the orphaned callbacks and place
2375 * an rcu_barrier_callback() callback after them. When that is done,
2376 * we are guaranteed to have an rcu_barrier_callback() callback
2377 * following every callback that could possibly have been
2378 * registered before _rcu_barrier() was called.
2379 */
2380 raw_spin_lock_irqsave(&rsp->onofflock, flags);
2381 rcu_adopt_orphan_cbs(rsp);
2382 rsp->rcu_barrier_in_progress = NULL;
2383 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
2384 atomic_inc(&rcu_barrier_cpu_count);
2385 smp_mb__after_atomic_inc(); /* Ensure atomic_inc() before callback. */
2386 call_rcu_func(&rh, rcu_barrier_callback);
2387
2388 /*
2389 * Now that we have an rcu_barrier_callback() callback on each
2390 * CPU, and thus each counted, remove the initial count.
2391 */
d0ec774c
PM
2392 if (atomic_dec_and_test(&rcu_barrier_cpu_count))
2393 complete(&rcu_barrier_completion);
b1420f1c
PM
2394
2395 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
d0ec774c 2396 wait_for_completion(&rcu_barrier_completion);
b1420f1c
PM
2397
2398 /* Other rcu_barrier() invocations can now safely proceed. */
d0ec774c 2399 mutex_unlock(&rcu_barrier_mutex);
b1420f1c
PM
2400
2401 destroy_rcu_head_on_stack(&rh);
d0ec774c 2402}
d0ec774c
PM
2403
2404/**
2405 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
2406 */
2407void rcu_barrier_bh(void)
2408{
e74f4c45 2409 _rcu_barrier(&rcu_bh_state, call_rcu_bh);
d0ec774c
PM
2410}
2411EXPORT_SYMBOL_GPL(rcu_barrier_bh);
2412
2413/**
2414 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
2415 */
2416void rcu_barrier_sched(void)
2417{
e74f4c45 2418 _rcu_barrier(&rcu_sched_state, call_rcu_sched);
d0ec774c
PM
2419}
2420EXPORT_SYMBOL_GPL(rcu_barrier_sched);
2421
64db4cff 2422/*
27569620 2423 * Do boot-time initialization of a CPU's per-CPU RCU data.
64db4cff 2424 */
27569620
PM
2425static void __init
2426rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
64db4cff
PM
2427{
2428 unsigned long flags;
394f99a9 2429 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
27569620
PM
2430 struct rcu_node *rnp = rcu_get_root(rsp);
2431
2432 /* Set up local state, ensuring consistent view of global state. */
1304afb2 2433 raw_spin_lock_irqsave(&rnp->lock, flags);
27569620 2434 rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
3f5d3ea6 2435 init_callback_list(rdp);
486e2593 2436 rdp->qlen_lazy = 0;
1d1fb395 2437 ACCESS_ONCE(rdp->qlen) = 0;
27569620 2438 rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
29e37d81 2439 WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
9b2e4f18 2440 WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
27569620 2441 rdp->cpu = cpu;
d4c08f2a 2442 rdp->rsp = rsp;
1304afb2 2443 raw_spin_unlock_irqrestore(&rnp->lock, flags);
27569620
PM
2444}
2445
2446/*
2447 * Initialize a CPU's per-CPU RCU data. Note that only one online or
2448 * offline event can be happening at a given time. Note also that we
2449 * can accept some slop in the rsp->completed access due to the fact
2450 * that this CPU cannot possibly have any RCU callbacks in flight yet.
64db4cff 2451 */
e4fa4c97 2452static void __cpuinit
6cc68793 2453rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptible)
64db4cff
PM
2454{
2455 unsigned long flags;
64db4cff 2456 unsigned long mask;
394f99a9 2457 struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
64db4cff
PM
2458 struct rcu_node *rnp = rcu_get_root(rsp);
2459
2460 /* Set up local state, ensuring consistent view of global state. */
1304afb2 2461 raw_spin_lock_irqsave(&rnp->lock, flags);
64db4cff 2462 rdp->beenonline = 1; /* We have now been online. */
6cc68793 2463 rdp->preemptible = preemptible;
37c72e56
PM
2464 rdp->qlen_last_fqs_check = 0;
2465 rdp->n_force_qs_snap = rsp->n_force_qs;
64db4cff 2466 rdp->blimit = blimit;
29e37d81 2467 rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
c92b131b
PM
2468 atomic_set(&rdp->dynticks->dynticks,
2469 (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
7cb92499 2470 rcu_prepare_for_idle_init(cpu);
1304afb2 2471 raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
64db4cff
PM
2472
2473 /*
2474 * A new grace period might start here. If so, we won't be part
2475 * of it, but that is OK, as we are currently in a quiescent state.
2476 */
2477
2478 /* Exclude any attempts to start a new GP on large systems. */
1304afb2 2479 raw_spin_lock(&rsp->onofflock); /* irqs already disabled. */
64db4cff
PM
2480
2481 /* Add CPU to rcu_node bitmasks. */
2482 rnp = rdp->mynode;
2483 mask = rdp->grpmask;
2484 do {
2485 /* Exclude any attempts to start a new GP on small systems. */
1304afb2 2486 raw_spin_lock(&rnp->lock); /* irqs already disabled. */
64db4cff
PM
2487 rnp->qsmaskinit |= mask;
2488 mask = rnp->grpmask;
d09b62df 2489 if (rnp == rdp->mynode) {
06ae115a
PM
2490 /*
2491 * If there is a grace period in progress, we will
2492 * set up to wait for it next time we run the
2493 * RCU core code.
2494 */
2495 rdp->gpnum = rnp->completed;
d09b62df 2496 rdp->completed = rnp->completed;
06ae115a
PM
2497 rdp->passed_quiesce = 0;
2498 rdp->qs_pending = 0;
e4cc1f22 2499 rdp->passed_quiesce_gpnum = rnp->gpnum - 1;
d4c08f2a 2500 trace_rcu_grace_period(rsp->name, rdp->gpnum, "cpuonl");
d09b62df 2501 }
1304afb2 2502 raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
64db4cff
PM
2503 rnp = rnp->parent;
2504 } while (rnp != NULL && !(rnp->qsmaskinit & mask));
2505
1304afb2 2506 raw_spin_unlock_irqrestore(&rsp->onofflock, flags);
64db4cff
PM
2507}
2508
d72bce0e 2509static void __cpuinit rcu_prepare_cpu(int cpu)
64db4cff 2510{
f41d911f
PM
2511 rcu_init_percpu_data(cpu, &rcu_sched_state, 0);
2512 rcu_init_percpu_data(cpu, &rcu_bh_state, 0);
2513 rcu_preempt_init_percpu_data(cpu);
64db4cff
PM
2514}
2515
2516/*
f41d911f 2517 * Handle CPU online/offline notification events.
64db4cff 2518 */
9f680ab4
PM
2519static int __cpuinit rcu_cpu_notify(struct notifier_block *self,
2520 unsigned long action, void *hcpu)
64db4cff
PM
2521{
2522 long cpu = (long)hcpu;
27f4d280 2523 struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
a26ac245 2524 struct rcu_node *rnp = rdp->mynode;
64db4cff 2525
300df91c 2526 trace_rcu_utilization("Start CPU hotplug");
64db4cff
PM
2527 switch (action) {
2528 case CPU_UP_PREPARE:
2529 case CPU_UP_PREPARE_FROZEN:
d72bce0e
PZ
2530 rcu_prepare_cpu(cpu);
2531 rcu_prepare_kthreads(cpu);
a26ac245
PM
2532 break;
2533 case CPU_ONLINE:
0f962a5e
PM
2534 case CPU_DOWN_FAILED:
2535 rcu_node_kthread_setaffinity(rnp, -1);
e3995a25 2536 rcu_cpu_kthread_setrt(cpu, 1);
0f962a5e
PM
2537 break;
2538 case CPU_DOWN_PREPARE:
2539 rcu_node_kthread_setaffinity(rnp, cpu);
e3995a25 2540 rcu_cpu_kthread_setrt(cpu, 0);
64db4cff 2541 break;
d0ec774c
PM
2542 case CPU_DYING:
2543 case CPU_DYING_FROZEN:
2544 /*
2d999e03
PM
2545 * The whole machine is "stopped" except this CPU, so we can
2546 * touch any data without introducing corruption. We send the
2547 * dying CPU's callbacks to an arbitrarily chosen online CPU.
d0ec774c 2548 */
e5601400
PM
2549 rcu_cleanup_dying_cpu(&rcu_bh_state);
2550 rcu_cleanup_dying_cpu(&rcu_sched_state);
2551 rcu_preempt_cleanup_dying_cpu();
7cb92499 2552 rcu_cleanup_after_idle(cpu);
d0ec774c 2553 break;
64db4cff
PM
2554 case CPU_DEAD:
2555 case CPU_DEAD_FROZEN:
2556 case CPU_UP_CANCELED:
2557 case CPU_UP_CANCELED_FROZEN:
e5601400
PM
2558 rcu_cleanup_dead_cpu(cpu, &rcu_bh_state);
2559 rcu_cleanup_dead_cpu(cpu, &rcu_sched_state);
2560 rcu_preempt_cleanup_dead_cpu(cpu);
64db4cff
PM
2561 break;
2562 default:
2563 break;
2564 }
300df91c 2565 trace_rcu_utilization("End CPU hotplug");
64db4cff
PM
2566 return NOTIFY_OK;
2567}
2568
bbad9379
PM
2569/*
2570 * This function is invoked towards the end of the scheduler's initialization
2571 * process. Before this is called, the idle task might contain
2572 * RCU read-side critical sections (during which time, this idle
2573 * task is booting the system). After this function is called, the
2574 * idle tasks are prohibited from containing RCU read-side critical
2575 * sections. This function also enables RCU lockdep checking.
2576 */
2577void rcu_scheduler_starting(void)
2578{
2579 WARN_ON(num_online_cpus() != 1);
2580 WARN_ON(nr_context_switches() > 0);
2581 rcu_scheduler_active = 1;
2582}
2583
64db4cff
PM
2584/*
2585 * Compute the per-level fanout, either using the exact fanout specified
2586 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
2587 */
2588#ifdef CONFIG_RCU_FANOUT_EXACT
2589static void __init rcu_init_levelspread(struct rcu_state *rsp)
2590{
2591 int i;
2592
0209f649 2593 for (i = NUM_RCU_LVLS - 1; i > 0; i--)
64db4cff 2594 rsp->levelspread[i] = CONFIG_RCU_FANOUT;
8932a63d 2595 rsp->levelspread[0] = CONFIG_RCU_FANOUT_LEAF;
64db4cff
PM
2596}
2597#else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
2598static void __init rcu_init_levelspread(struct rcu_state *rsp)
2599{
2600 int ccur;
2601 int cprv;
2602 int i;
2603
2604 cprv = NR_CPUS;
2605 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
2606 ccur = rsp->levelcnt[i];
2607 rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
2608 cprv = ccur;
2609 }
2610}
2611#endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
2612
2613/*
2614 * Helper function for rcu_init() that initializes one rcu_state structure.
2615 */
394f99a9
LJ
2616static void __init rcu_init_one(struct rcu_state *rsp,
2617 struct rcu_data __percpu *rda)
64db4cff 2618{
b6407e86
PM
2619 static char *buf[] = { "rcu_node_level_0",
2620 "rcu_node_level_1",
2621 "rcu_node_level_2",
2622 "rcu_node_level_3" }; /* Match MAX_RCU_LVLS */
64db4cff
PM
2623 int cpustride = 1;
2624 int i;
2625 int j;
2626 struct rcu_node *rnp;
2627
b6407e86
PM
2628 BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
2629
64db4cff
PM
2630 /* Initialize the level-tracking arrays. */
2631
2632 for (i = 1; i < NUM_RCU_LVLS; i++)
2633 rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
2634 rcu_init_levelspread(rsp);
2635
2636 /* Initialize the elements themselves, starting from the leaves. */
2637
2638 for (i = NUM_RCU_LVLS - 1; i >= 0; i--) {
2639 cpustride *= rsp->levelspread[i];
2640 rnp = rsp->level[i];
2641 for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
1304afb2 2642 raw_spin_lock_init(&rnp->lock);
b6407e86
PM
2643 lockdep_set_class_and_name(&rnp->lock,
2644 &rcu_node_class[i], buf[i]);
f41d911f 2645 rnp->gpnum = 0;
64db4cff
PM
2646 rnp->qsmask = 0;
2647 rnp->qsmaskinit = 0;
2648 rnp->grplo = j * cpustride;
2649 rnp->grphi = (j + 1) * cpustride - 1;
2650 if (rnp->grphi >= NR_CPUS)
2651 rnp->grphi = NR_CPUS - 1;
2652 if (i == 0) {
2653 rnp->grpnum = 0;
2654 rnp->grpmask = 0;
2655 rnp->parent = NULL;
2656 } else {
2657 rnp->grpnum = j % rsp->levelspread[i - 1];
2658 rnp->grpmask = 1UL << rnp->grpnum;
2659 rnp->parent = rsp->level[i - 1] +
2660 j / rsp->levelspread[i - 1];
2661 }
2662 rnp->level = i;
12f5f524 2663 INIT_LIST_HEAD(&rnp->blkd_tasks);
64db4cff
PM
2664 }
2665 }
0c34029a 2666
394f99a9 2667 rsp->rda = rda;
0c34029a
LJ
2668 rnp = rsp->level[NUM_RCU_LVLS - 1];
2669 for_each_possible_cpu(i) {
4a90a068 2670 while (i > rnp->grphi)
0c34029a 2671 rnp++;
394f99a9 2672 per_cpu_ptr(rsp->rda, i)->mynode = rnp;
0c34029a
LJ
2673 rcu_boot_init_percpu_data(i, rsp);
2674 }
64db4cff
PM
2675}
2676
9f680ab4 2677void __init rcu_init(void)
64db4cff 2678{
017c4261 2679 int cpu;
9f680ab4 2680
f41d911f 2681 rcu_bootup_announce();
394f99a9
LJ
2682 rcu_init_one(&rcu_sched_state, &rcu_sched_data);
2683 rcu_init_one(&rcu_bh_state, &rcu_bh_data);
f41d911f 2684 __rcu_init_preempt();
09223371 2685 open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
9f680ab4
PM
2686
2687 /*
2688 * We don't need protection against CPU-hotplug here because
2689 * this is called early in boot, before either interrupts
2690 * or the scheduler are operational.
2691 */
2692 cpu_notifier(rcu_cpu_notify, 0);
017c4261
PM
2693 for_each_online_cpu(cpu)
2694 rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
c68de209 2695 check_cpu_stall_init();
64db4cff
PM
2696}
2697
1eba8f84 2698#include "rcutree_plugin.h"