xfs: remove unused delta tracking code in xfs_bmapi
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / xfs / linux-2.6 / xfs_aops.c
CommitLineData
1da177e4 1/*
7b718769
NS
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
a844f451 19#include "xfs_bit.h"
1da177e4 20#include "xfs_log.h"
a844f451 21#include "xfs_inum.h"
1da177e4 22#include "xfs_sb.h"
a844f451 23#include "xfs_ag.h"
1da177e4 24#include "xfs_trans.h"
1da177e4
LT
25#include "xfs_mount.h"
26#include "xfs_bmap_btree.h"
1da177e4
LT
27#include "xfs_dinode.h"
28#include "xfs_inode.h"
a844f451 29#include "xfs_alloc.h"
1da177e4
LT
30#include "xfs_error.h"
31#include "xfs_rw.h"
32#include "xfs_iomap.h"
739bfb2a 33#include "xfs_vnodeops.h"
0b1b213f 34#include "xfs_trace.h"
3ed3a434 35#include "xfs_bmap.h"
5a0e3ad6 36#include <linux/gfp.h>
1da177e4 37#include <linux/mpage.h>
10ce4444 38#include <linux/pagevec.h>
1da177e4
LT
39#include <linux/writeback.h>
40
34a52c6c
CH
41/*
42 * Types of I/O for bmap clustering and I/O completion tracking.
43 */
44enum {
45 IO_READ, /* mapping for a read */
46 IO_DELAY, /* mapping covers delalloc region */
47 IO_UNWRITTEN, /* mapping covers allocated but uninitialized data */
48 IO_NEW /* just allocated */
49};
25e41b3d
CH
50
51/*
52 * Prime number of hash buckets since address is used as the key.
53 */
54#define NVSYNC 37
55#define to_ioend_wq(v) (&xfs_ioend_wq[((unsigned long)v) % NVSYNC])
56static wait_queue_head_t xfs_ioend_wq[NVSYNC];
57
58void __init
59xfs_ioend_init(void)
60{
61 int i;
62
63 for (i = 0; i < NVSYNC; i++)
64 init_waitqueue_head(&xfs_ioend_wq[i]);
65}
66
67void
68xfs_ioend_wait(
69 xfs_inode_t *ip)
70{
71 wait_queue_head_t *wq = to_ioend_wq(ip);
72
73 wait_event(*wq, (atomic_read(&ip->i_iocount) == 0));
74}
75
76STATIC void
77xfs_ioend_wake(
78 xfs_inode_t *ip)
79{
80 if (atomic_dec_and_test(&ip->i_iocount))
81 wake_up(to_ioend_wq(ip));
82}
83
0b1b213f 84void
f51623b2
NS
85xfs_count_page_state(
86 struct page *page,
87 int *delalloc,
88 int *unmapped,
89 int *unwritten)
90{
91 struct buffer_head *bh, *head;
92
93 *delalloc = *unmapped = *unwritten = 0;
94
95 bh = head = page_buffers(page);
96 do {
97 if (buffer_uptodate(bh) && !buffer_mapped(bh))
98 (*unmapped) = 1;
f51623b2
NS
99 else if (buffer_unwritten(bh))
100 (*unwritten) = 1;
101 else if (buffer_delay(bh))
102 (*delalloc) = 1;
103 } while ((bh = bh->b_this_page) != head);
104}
105
6214ed44
CH
106STATIC struct block_device *
107xfs_find_bdev_for_inode(
046f1685 108 struct inode *inode)
6214ed44 109{
046f1685 110 struct xfs_inode *ip = XFS_I(inode);
6214ed44
CH
111 struct xfs_mount *mp = ip->i_mount;
112
71ddabb9 113 if (XFS_IS_REALTIME_INODE(ip))
6214ed44
CH
114 return mp->m_rtdev_targp->bt_bdev;
115 else
116 return mp->m_ddev_targp->bt_bdev;
117}
118
f6d6d4fc
CH
119/*
120 * We're now finished for good with this ioend structure.
121 * Update the page state via the associated buffer_heads,
122 * release holds on the inode and bio, and finally free
123 * up memory. Do not use the ioend after this.
124 */
0829c360
CH
125STATIC void
126xfs_destroy_ioend(
127 xfs_ioend_t *ioend)
128{
f6d6d4fc 129 struct buffer_head *bh, *next;
583fa586 130 struct xfs_inode *ip = XFS_I(ioend->io_inode);
f6d6d4fc
CH
131
132 for (bh = ioend->io_buffer_head; bh; bh = next) {
133 next = bh->b_private;
7d04a335 134 bh->b_end_io(bh, !ioend->io_error);
f6d6d4fc 135 }
583fa586
CH
136
137 /*
138 * Volume managers supporting multiple paths can send back ENODEV
139 * when the final path disappears. In this case continuing to fill
140 * the page cache with dirty data which cannot be written out is
141 * evil, so prevent that.
142 */
143 if (unlikely(ioend->io_error == -ENODEV)) {
144 xfs_do_force_shutdown(ip->i_mount, SHUTDOWN_DEVICE_REQ,
145 __FILE__, __LINE__);
b677c210 146 }
583fa586 147
25e41b3d 148 xfs_ioend_wake(ip);
0829c360
CH
149 mempool_free(ioend, xfs_ioend_pool);
150}
151
932640e8
DC
152/*
153 * If the end of the current ioend is beyond the current EOF,
154 * return the new EOF value, otherwise zero.
155 */
156STATIC xfs_fsize_t
157xfs_ioend_new_eof(
158 xfs_ioend_t *ioend)
159{
160 xfs_inode_t *ip = XFS_I(ioend->io_inode);
161 xfs_fsize_t isize;
162 xfs_fsize_t bsize;
163
164 bsize = ioend->io_offset + ioend->io_size;
165 isize = MAX(ip->i_size, ip->i_new_size);
166 isize = MIN(isize, bsize);
167 return isize > ip->i_d.di_size ? isize : 0;
168}
169
ba87ea69 170/*
77d7a0c2
DC
171 * Update on-disk file size now that data has been written to disk. The
172 * current in-memory file size is i_size. If a write is beyond eof i_new_size
173 * will be the intended file size until i_size is updated. If this write does
174 * not extend all the way to the valid file size then restrict this update to
175 * the end of the write.
176 *
177 * This function does not block as blocking on the inode lock in IO completion
178 * can lead to IO completion order dependency deadlocks.. If it can't get the
179 * inode ilock it will return EAGAIN. Callers must handle this.
ba87ea69 180 */
77d7a0c2 181STATIC int
ba87ea69
LM
182xfs_setfilesize(
183 xfs_ioend_t *ioend)
184{
b677c210 185 xfs_inode_t *ip = XFS_I(ioend->io_inode);
ba87ea69 186 xfs_fsize_t isize;
ba87ea69 187
ba87ea69 188 ASSERT((ip->i_d.di_mode & S_IFMT) == S_IFREG);
34a52c6c 189 ASSERT(ioend->io_type != IO_READ);
ba87ea69
LM
190
191 if (unlikely(ioend->io_error))
77d7a0c2
DC
192 return 0;
193
194 if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL))
195 return EAGAIN;
ba87ea69 196
932640e8
DC
197 isize = xfs_ioend_new_eof(ioend);
198 if (isize) {
ba87ea69 199 ip->i_d.di_size = isize;
66d834ea 200 xfs_mark_inode_dirty(ip);
ba87ea69
LM
201 }
202
203 xfs_iunlock(ip, XFS_ILOCK_EXCL);
77d7a0c2
DC
204 return 0;
205}
206
207/*
208 * Schedule IO completion handling on a xfsdatad if this was
209 * the final hold on this ioend. If we are asked to wait,
210 * flush the workqueue.
211 */
212STATIC void
213xfs_finish_ioend(
214 xfs_ioend_t *ioend,
215 int wait)
216{
217 if (atomic_dec_and_test(&ioend->io_remaining)) {
218 struct workqueue_struct *wq;
219
34a52c6c 220 wq = (ioend->io_type == IO_UNWRITTEN) ?
77d7a0c2
DC
221 xfsconvertd_workqueue : xfsdatad_workqueue;
222 queue_work(wq, &ioend->io_work);
223 if (wait)
224 flush_workqueue(wq);
225 }
ba87ea69
LM
226}
227
0829c360 228/*
5ec4fabb 229 * IO write completion.
f6d6d4fc
CH
230 */
231STATIC void
5ec4fabb 232xfs_end_io(
77d7a0c2 233 struct work_struct *work)
0829c360 234{
77d7a0c2
DC
235 xfs_ioend_t *ioend = container_of(work, xfs_ioend_t, io_work);
236 struct xfs_inode *ip = XFS_I(ioend->io_inode);
69418932 237 int error = 0;
ba87ea69 238
5ec4fabb
CH
239 /*
240 * For unwritten extents we need to issue transactions to convert a
241 * range to normal written extens after the data I/O has finished.
242 */
34a52c6c 243 if (ioend->io_type == IO_UNWRITTEN &&
5ec4fabb 244 likely(!ioend->io_error && !XFS_FORCED_SHUTDOWN(ip->i_mount))) {
5ec4fabb
CH
245
246 error = xfs_iomap_write_unwritten(ip, ioend->io_offset,
247 ioend->io_size);
248 if (error)
249 ioend->io_error = error;
250 }
ba87ea69 251
5ec4fabb
CH
252 /*
253 * We might have to update the on-disk file size after extending
254 * writes.
255 */
34a52c6c 256 if (ioend->io_type != IO_READ) {
77d7a0c2
DC
257 error = xfs_setfilesize(ioend);
258 ASSERT(!error || error == EAGAIN);
c626d174 259 }
77d7a0c2
DC
260
261 /*
262 * If we didn't complete processing of the ioend, requeue it to the
263 * tail of the workqueue for another attempt later. Otherwise destroy
264 * it.
265 */
266 if (error == EAGAIN) {
267 atomic_inc(&ioend->io_remaining);
268 xfs_finish_ioend(ioend, 0);
269 /* ensure we don't spin on blocked ioends */
270 delay(1);
271 } else
272 xfs_destroy_ioend(ioend);
c626d174
DC
273}
274
0829c360
CH
275/*
276 * Allocate and initialise an IO completion structure.
277 * We need to track unwritten extent write completion here initially.
278 * We'll need to extend this for updating the ondisk inode size later
279 * (vs. incore size).
280 */
281STATIC xfs_ioend_t *
282xfs_alloc_ioend(
f6d6d4fc
CH
283 struct inode *inode,
284 unsigned int type)
0829c360
CH
285{
286 xfs_ioend_t *ioend;
287
288 ioend = mempool_alloc(xfs_ioend_pool, GFP_NOFS);
289
290 /*
291 * Set the count to 1 initially, which will prevent an I/O
292 * completion callback from happening before we have started
293 * all the I/O from calling the completion routine too early.
294 */
295 atomic_set(&ioend->io_remaining, 1);
7d04a335 296 ioend->io_error = 0;
f6d6d4fc
CH
297 ioend->io_list = NULL;
298 ioend->io_type = type;
b677c210 299 ioend->io_inode = inode;
c1a073bd 300 ioend->io_buffer_head = NULL;
f6d6d4fc 301 ioend->io_buffer_tail = NULL;
b677c210 302 atomic_inc(&XFS_I(ioend->io_inode)->i_iocount);
0829c360
CH
303 ioend->io_offset = 0;
304 ioend->io_size = 0;
305
5ec4fabb 306 INIT_WORK(&ioend->io_work, xfs_end_io);
0829c360
CH
307 return ioend;
308}
309
1da177e4
LT
310STATIC int
311xfs_map_blocks(
312 struct inode *inode,
313 loff_t offset,
314 ssize_t count,
207d0416 315 struct xfs_bmbt_irec *imap,
1da177e4
LT
316 int flags)
317{
6bd16ff2 318 int nmaps = 1;
207d0416 319 int new = 0;
6bd16ff2 320
207d0416 321 return -xfs_iomap(XFS_I(inode), offset, count, flags, imap, &nmaps, &new);
1da177e4
LT
322}
323
b8f82a4a 324STATIC int
558e6891 325xfs_imap_valid(
8699bb0a 326 struct inode *inode,
207d0416 327 struct xfs_bmbt_irec *imap,
558e6891 328 xfs_off_t offset)
1da177e4 329{
558e6891 330 offset >>= inode->i_blkbits;
8699bb0a 331
558e6891
CH
332 return offset >= imap->br_startoff &&
333 offset < imap->br_startoff + imap->br_blockcount;
1da177e4
LT
334}
335
f6d6d4fc
CH
336/*
337 * BIO completion handler for buffered IO.
338 */
782e3b3b 339STATIC void
f6d6d4fc
CH
340xfs_end_bio(
341 struct bio *bio,
f6d6d4fc
CH
342 int error)
343{
344 xfs_ioend_t *ioend = bio->bi_private;
345
f6d6d4fc 346 ASSERT(atomic_read(&bio->bi_cnt) >= 1);
7d04a335 347 ioend->io_error = test_bit(BIO_UPTODATE, &bio->bi_flags) ? 0 : error;
f6d6d4fc
CH
348
349 /* Toss bio and pass work off to an xfsdatad thread */
f6d6d4fc
CH
350 bio->bi_private = NULL;
351 bio->bi_end_io = NULL;
f6d6d4fc 352 bio_put(bio);
7d04a335 353
e927af90 354 xfs_finish_ioend(ioend, 0);
f6d6d4fc
CH
355}
356
357STATIC void
358xfs_submit_ioend_bio(
06342cf8
CH
359 struct writeback_control *wbc,
360 xfs_ioend_t *ioend,
361 struct bio *bio)
f6d6d4fc
CH
362{
363 atomic_inc(&ioend->io_remaining);
f6d6d4fc
CH
364 bio->bi_private = ioend;
365 bio->bi_end_io = xfs_end_bio;
366
932640e8
DC
367 /*
368 * If the I/O is beyond EOF we mark the inode dirty immediately
369 * but don't update the inode size until I/O completion.
370 */
371 if (xfs_ioend_new_eof(ioend))
66d834ea 372 xfs_mark_inode_dirty(XFS_I(ioend->io_inode));
932640e8 373
06342cf8
CH
374 submit_bio(wbc->sync_mode == WB_SYNC_ALL ?
375 WRITE_SYNC_PLUG : WRITE, bio);
f6d6d4fc
CH
376 ASSERT(!bio_flagged(bio, BIO_EOPNOTSUPP));
377 bio_put(bio);
378}
379
380STATIC struct bio *
381xfs_alloc_ioend_bio(
382 struct buffer_head *bh)
383{
384 struct bio *bio;
385 int nvecs = bio_get_nr_vecs(bh->b_bdev);
386
387 do {
388 bio = bio_alloc(GFP_NOIO, nvecs);
389 nvecs >>= 1;
390 } while (!bio);
391
392 ASSERT(bio->bi_private == NULL);
393 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
394 bio->bi_bdev = bh->b_bdev;
395 bio_get(bio);
396 return bio;
397}
398
399STATIC void
400xfs_start_buffer_writeback(
401 struct buffer_head *bh)
402{
403 ASSERT(buffer_mapped(bh));
404 ASSERT(buffer_locked(bh));
405 ASSERT(!buffer_delay(bh));
406 ASSERT(!buffer_unwritten(bh));
407
408 mark_buffer_async_write(bh);
409 set_buffer_uptodate(bh);
410 clear_buffer_dirty(bh);
411}
412
413STATIC void
414xfs_start_page_writeback(
415 struct page *page,
f6d6d4fc
CH
416 int clear_dirty,
417 int buffers)
418{
419 ASSERT(PageLocked(page));
420 ASSERT(!PageWriteback(page));
f6d6d4fc 421 if (clear_dirty)
92132021
DC
422 clear_page_dirty_for_io(page);
423 set_page_writeback(page);
f6d6d4fc 424 unlock_page(page);
1f7decf6
FW
425 /* If no buffers on the page are to be written, finish it here */
426 if (!buffers)
f6d6d4fc 427 end_page_writeback(page);
f6d6d4fc
CH
428}
429
430static inline int bio_add_buffer(struct bio *bio, struct buffer_head *bh)
431{
432 return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
433}
434
435/*
d88992f6
DC
436 * Submit all of the bios for all of the ioends we have saved up, covering the
437 * initial writepage page and also any probed pages.
438 *
439 * Because we may have multiple ioends spanning a page, we need to start
440 * writeback on all the buffers before we submit them for I/O. If we mark the
441 * buffers as we got, then we can end up with a page that only has buffers
442 * marked async write and I/O complete on can occur before we mark the other
443 * buffers async write.
444 *
445 * The end result of this is that we trip a bug in end_page_writeback() because
446 * we call it twice for the one page as the code in end_buffer_async_write()
447 * assumes that all buffers on the page are started at the same time.
448 *
449 * The fix is two passes across the ioend list - one to start writeback on the
c41564b5 450 * buffer_heads, and then submit them for I/O on the second pass.
f6d6d4fc
CH
451 */
452STATIC void
453xfs_submit_ioend(
06342cf8 454 struct writeback_control *wbc,
f6d6d4fc
CH
455 xfs_ioend_t *ioend)
456{
d88992f6 457 xfs_ioend_t *head = ioend;
f6d6d4fc
CH
458 xfs_ioend_t *next;
459 struct buffer_head *bh;
460 struct bio *bio;
461 sector_t lastblock = 0;
462
d88992f6
DC
463 /* Pass 1 - start writeback */
464 do {
465 next = ioend->io_list;
466 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
467 xfs_start_buffer_writeback(bh);
468 }
469 } while ((ioend = next) != NULL);
470
471 /* Pass 2 - submit I/O */
472 ioend = head;
f6d6d4fc
CH
473 do {
474 next = ioend->io_list;
475 bio = NULL;
476
477 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
f6d6d4fc
CH
478
479 if (!bio) {
480 retry:
481 bio = xfs_alloc_ioend_bio(bh);
482 } else if (bh->b_blocknr != lastblock + 1) {
06342cf8 483 xfs_submit_ioend_bio(wbc, ioend, bio);
f6d6d4fc
CH
484 goto retry;
485 }
486
487 if (bio_add_buffer(bio, bh) != bh->b_size) {
06342cf8 488 xfs_submit_ioend_bio(wbc, ioend, bio);
f6d6d4fc
CH
489 goto retry;
490 }
491
492 lastblock = bh->b_blocknr;
493 }
494 if (bio)
06342cf8 495 xfs_submit_ioend_bio(wbc, ioend, bio);
e927af90 496 xfs_finish_ioend(ioend, 0);
f6d6d4fc
CH
497 } while ((ioend = next) != NULL);
498}
499
500/*
501 * Cancel submission of all buffer_heads so far in this endio.
502 * Toss the endio too. Only ever called for the initial page
503 * in a writepage request, so only ever one page.
504 */
505STATIC void
506xfs_cancel_ioend(
507 xfs_ioend_t *ioend)
508{
509 xfs_ioend_t *next;
510 struct buffer_head *bh, *next_bh;
511
512 do {
513 next = ioend->io_list;
514 bh = ioend->io_buffer_head;
515 do {
516 next_bh = bh->b_private;
517 clear_buffer_async_write(bh);
518 unlock_buffer(bh);
519 } while ((bh = next_bh) != NULL);
520
25e41b3d 521 xfs_ioend_wake(XFS_I(ioend->io_inode));
f6d6d4fc
CH
522 mempool_free(ioend, xfs_ioend_pool);
523 } while ((ioend = next) != NULL);
524}
525
526/*
527 * Test to see if we've been building up a completion structure for
528 * earlier buffers -- if so, we try to append to this ioend if we
529 * can, otherwise we finish off any current ioend and start another.
530 * Return true if we've finished the given ioend.
531 */
532STATIC void
533xfs_add_to_ioend(
534 struct inode *inode,
535 struct buffer_head *bh,
7336cea8 536 xfs_off_t offset,
f6d6d4fc
CH
537 unsigned int type,
538 xfs_ioend_t **result,
539 int need_ioend)
540{
541 xfs_ioend_t *ioend = *result;
542
543 if (!ioend || need_ioend || type != ioend->io_type) {
544 xfs_ioend_t *previous = *result;
f6d6d4fc 545
f6d6d4fc
CH
546 ioend = xfs_alloc_ioend(inode, type);
547 ioend->io_offset = offset;
548 ioend->io_buffer_head = bh;
549 ioend->io_buffer_tail = bh;
550 if (previous)
551 previous->io_list = ioend;
552 *result = ioend;
553 } else {
554 ioend->io_buffer_tail->b_private = bh;
555 ioend->io_buffer_tail = bh;
556 }
557
558 bh->b_private = NULL;
559 ioend->io_size += bh->b_size;
560}
561
87cbc49c
NS
562STATIC void
563xfs_map_buffer(
046f1685 564 struct inode *inode,
87cbc49c 565 struct buffer_head *bh,
207d0416 566 struct xfs_bmbt_irec *imap,
046f1685 567 xfs_off_t offset)
87cbc49c
NS
568{
569 sector_t bn;
8699bb0a 570 struct xfs_mount *m = XFS_I(inode)->i_mount;
207d0416
CH
571 xfs_off_t iomap_offset = XFS_FSB_TO_B(m, imap->br_startoff);
572 xfs_daddr_t iomap_bn = xfs_fsb_to_db(XFS_I(inode), imap->br_startblock);
87cbc49c 573
207d0416
CH
574 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
575 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
87cbc49c 576
e513182d 577 bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) +
8699bb0a 578 ((offset - iomap_offset) >> inode->i_blkbits);
87cbc49c 579
046f1685 580 ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode)));
87cbc49c
NS
581
582 bh->b_blocknr = bn;
583 set_buffer_mapped(bh);
584}
585
1da177e4
LT
586STATIC void
587xfs_map_at_offset(
046f1685 588 struct inode *inode,
1da177e4 589 struct buffer_head *bh,
207d0416 590 struct xfs_bmbt_irec *imap,
046f1685 591 xfs_off_t offset)
1da177e4 592{
207d0416
CH
593 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
594 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
1da177e4
LT
595
596 lock_buffer(bh);
207d0416 597 xfs_map_buffer(inode, bh, imap, offset);
046f1685 598 bh->b_bdev = xfs_find_bdev_for_inode(inode);
1da177e4
LT
599 set_buffer_mapped(bh);
600 clear_buffer_delay(bh);
f6d6d4fc 601 clear_buffer_unwritten(bh);
1da177e4
LT
602}
603
604/*
6c4fe19f 605 * Look for a page at index that is suitable for clustering.
1da177e4
LT
606 */
607STATIC unsigned int
6c4fe19f 608xfs_probe_page(
10ce4444 609 struct page *page,
6c4fe19f
CH
610 unsigned int pg_offset,
611 int mapped)
1da177e4 612{
1da177e4
LT
613 int ret = 0;
614
1da177e4 615 if (PageWriteback(page))
10ce4444 616 return 0;
1da177e4
LT
617
618 if (page->mapping && PageDirty(page)) {
619 if (page_has_buffers(page)) {
620 struct buffer_head *bh, *head;
621
622 bh = head = page_buffers(page);
623 do {
6c4fe19f
CH
624 if (!buffer_uptodate(bh))
625 break;
626 if (mapped != buffer_mapped(bh))
1da177e4
LT
627 break;
628 ret += bh->b_size;
629 if (ret >= pg_offset)
630 break;
631 } while ((bh = bh->b_this_page) != head);
632 } else
6c4fe19f 633 ret = mapped ? 0 : PAGE_CACHE_SIZE;
1da177e4
LT
634 }
635
1da177e4
LT
636 return ret;
637}
638
f6d6d4fc 639STATIC size_t
6c4fe19f 640xfs_probe_cluster(
1da177e4
LT
641 struct inode *inode,
642 struct page *startpage,
643 struct buffer_head *bh,
6c4fe19f
CH
644 struct buffer_head *head,
645 int mapped)
1da177e4 646{
10ce4444 647 struct pagevec pvec;
1da177e4 648 pgoff_t tindex, tlast, tloff;
10ce4444
CH
649 size_t total = 0;
650 int done = 0, i;
1da177e4
LT
651
652 /* First sum forwards in this page */
653 do {
2353e8e9 654 if (!buffer_uptodate(bh) || (mapped != buffer_mapped(bh)))
10ce4444 655 return total;
1da177e4
LT
656 total += bh->b_size;
657 } while ((bh = bh->b_this_page) != head);
658
10ce4444
CH
659 /* if we reached the end of the page, sum forwards in following pages */
660 tlast = i_size_read(inode) >> PAGE_CACHE_SHIFT;
661 tindex = startpage->index + 1;
662
663 /* Prune this back to avoid pathological behavior */
664 tloff = min(tlast, startpage->index + 64);
665
666 pagevec_init(&pvec, 0);
667 while (!done && tindex <= tloff) {
668 unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
669
670 if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
671 break;
672
673 for (i = 0; i < pagevec_count(&pvec); i++) {
674 struct page *page = pvec.pages[i];
265c1fac 675 size_t pg_offset, pg_len = 0;
10ce4444
CH
676
677 if (tindex == tlast) {
678 pg_offset =
679 i_size_read(inode) & (PAGE_CACHE_SIZE - 1);
1defeac9
CH
680 if (!pg_offset) {
681 done = 1;
10ce4444 682 break;
1defeac9 683 }
10ce4444
CH
684 } else
685 pg_offset = PAGE_CACHE_SIZE;
686
529ae9aa 687 if (page->index == tindex && trylock_page(page)) {
265c1fac 688 pg_len = xfs_probe_page(page, pg_offset, mapped);
10ce4444
CH
689 unlock_page(page);
690 }
691
265c1fac 692 if (!pg_len) {
10ce4444
CH
693 done = 1;
694 break;
695 }
696
265c1fac 697 total += pg_len;
1defeac9 698 tindex++;
1da177e4 699 }
10ce4444
CH
700
701 pagevec_release(&pvec);
702 cond_resched();
1da177e4 703 }
10ce4444 704
1da177e4
LT
705 return total;
706}
707
708/*
10ce4444
CH
709 * Test if a given page is suitable for writing as part of an unwritten
710 * or delayed allocate extent.
1da177e4 711 */
10ce4444
CH
712STATIC int
713xfs_is_delayed_page(
714 struct page *page,
f6d6d4fc 715 unsigned int type)
1da177e4 716{
1da177e4 717 if (PageWriteback(page))
10ce4444 718 return 0;
1da177e4
LT
719
720 if (page->mapping && page_has_buffers(page)) {
721 struct buffer_head *bh, *head;
722 int acceptable = 0;
723
724 bh = head = page_buffers(page);
725 do {
f6d6d4fc 726 if (buffer_unwritten(bh))
34a52c6c 727 acceptable = (type == IO_UNWRITTEN);
f6d6d4fc 728 else if (buffer_delay(bh))
34a52c6c 729 acceptable = (type == IO_DELAY);
2ddee844 730 else if (buffer_dirty(bh) && buffer_mapped(bh))
34a52c6c 731 acceptable = (type == IO_NEW);
f6d6d4fc 732 else
1da177e4 733 break;
1da177e4
LT
734 } while ((bh = bh->b_this_page) != head);
735
736 if (acceptable)
10ce4444 737 return 1;
1da177e4
LT
738 }
739
10ce4444 740 return 0;
1da177e4
LT
741}
742
1da177e4
LT
743/*
744 * Allocate & map buffers for page given the extent map. Write it out.
745 * except for the original page of a writepage, this is called on
746 * delalloc/unwritten pages only, for the original page it is possible
747 * that the page has no mapping at all.
748 */
f6d6d4fc 749STATIC int
1da177e4
LT
750xfs_convert_page(
751 struct inode *inode,
752 struct page *page,
10ce4444 753 loff_t tindex,
207d0416 754 struct xfs_bmbt_irec *imap,
f6d6d4fc 755 xfs_ioend_t **ioendp,
1da177e4 756 struct writeback_control *wbc,
1da177e4
LT
757 int startio,
758 int all_bh)
759{
f6d6d4fc 760 struct buffer_head *bh, *head;
9260dc6b
CH
761 xfs_off_t end_offset;
762 unsigned long p_offset;
f6d6d4fc 763 unsigned int type;
24e17b5f 764 int len, page_dirty;
f6d6d4fc 765 int count = 0, done = 0, uptodate = 1;
9260dc6b 766 xfs_off_t offset = page_offset(page);
1da177e4 767
10ce4444
CH
768 if (page->index != tindex)
769 goto fail;
529ae9aa 770 if (!trylock_page(page))
10ce4444
CH
771 goto fail;
772 if (PageWriteback(page))
773 goto fail_unlock_page;
774 if (page->mapping != inode->i_mapping)
775 goto fail_unlock_page;
776 if (!xfs_is_delayed_page(page, (*ioendp)->io_type))
777 goto fail_unlock_page;
778
24e17b5f
NS
779 /*
780 * page_dirty is initially a count of buffers on the page before
c41564b5 781 * EOF and is decremented as we move each into a cleanable state.
9260dc6b
CH
782 *
783 * Derivation:
784 *
785 * End offset is the highest offset that this page should represent.
786 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
787 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
788 * hence give us the correct page_dirty count. On any other page,
789 * it will be zero and in that case we need page_dirty to be the
790 * count of buffers on the page.
24e17b5f 791 */
9260dc6b
CH
792 end_offset = min_t(unsigned long long,
793 (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT,
794 i_size_read(inode));
795
24e17b5f 796 len = 1 << inode->i_blkbits;
9260dc6b
CH
797 p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1),
798 PAGE_CACHE_SIZE);
799 p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE;
800 page_dirty = p_offset / len;
24e17b5f 801
1da177e4
LT
802 bh = head = page_buffers(page);
803 do {
9260dc6b 804 if (offset >= end_offset)
1da177e4 805 break;
f6d6d4fc
CH
806 if (!buffer_uptodate(bh))
807 uptodate = 0;
808 if (!(PageUptodate(page) || buffer_uptodate(bh))) {
809 done = 1;
1da177e4 810 continue;
f6d6d4fc
CH
811 }
812
9260dc6b
CH
813 if (buffer_unwritten(bh) || buffer_delay(bh)) {
814 if (buffer_unwritten(bh))
34a52c6c 815 type = IO_UNWRITTEN;
9260dc6b 816 else
34a52c6c 817 type = IO_DELAY;
9260dc6b 818
558e6891 819 if (!xfs_imap_valid(inode, imap, offset)) {
f6d6d4fc 820 done = 1;
9260dc6b
CH
821 continue;
822 }
823
207d0416
CH
824 ASSERT(imap->br_startblock != HOLESTARTBLOCK);
825 ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
9260dc6b 826
207d0416 827 xfs_map_at_offset(inode, bh, imap, offset);
9260dc6b 828 if (startio) {
7336cea8 829 xfs_add_to_ioend(inode, bh, offset,
9260dc6b
CH
830 type, ioendp, done);
831 } else {
832 set_buffer_dirty(bh);
833 unlock_buffer(bh);
834 mark_buffer_dirty(bh);
835 }
836 page_dirty--;
837 count++;
838 } else {
34a52c6c 839 type = IO_NEW;
9260dc6b 840 if (buffer_mapped(bh) && all_bh && startio) {
1da177e4 841 lock_buffer(bh);
7336cea8 842 xfs_add_to_ioend(inode, bh, offset,
f6d6d4fc
CH
843 type, ioendp, done);
844 count++;
24e17b5f 845 page_dirty--;
9260dc6b
CH
846 } else {
847 done = 1;
1da177e4 848 }
1da177e4 849 }
7336cea8 850 } while (offset += len, (bh = bh->b_this_page) != head);
1da177e4 851
f6d6d4fc
CH
852 if (uptodate && bh == head)
853 SetPageUptodate(page);
854
855 if (startio) {
f5e596bb 856 if (count) {
9fddaca2 857 wbc->nr_to_write--;
0d99519e 858 if (wbc->nr_to_write <= 0)
f5e596bb 859 done = 1;
f5e596bb 860 }
b41759cf 861 xfs_start_page_writeback(page, !page_dirty, count);
1da177e4 862 }
f6d6d4fc
CH
863
864 return done;
10ce4444
CH
865 fail_unlock_page:
866 unlock_page(page);
867 fail:
868 return 1;
1da177e4
LT
869}
870
871/*
872 * Convert & write out a cluster of pages in the same extent as defined
873 * by mp and following the start page.
874 */
875STATIC void
876xfs_cluster_write(
877 struct inode *inode,
878 pgoff_t tindex,
207d0416 879 struct xfs_bmbt_irec *imap,
f6d6d4fc 880 xfs_ioend_t **ioendp,
1da177e4
LT
881 struct writeback_control *wbc,
882 int startio,
883 int all_bh,
884 pgoff_t tlast)
885{
10ce4444
CH
886 struct pagevec pvec;
887 int done = 0, i;
1da177e4 888
10ce4444
CH
889 pagevec_init(&pvec, 0);
890 while (!done && tindex <= tlast) {
891 unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
892
893 if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
1da177e4 894 break;
10ce4444
CH
895
896 for (i = 0; i < pagevec_count(&pvec); i++) {
897 done = xfs_convert_page(inode, pvec.pages[i], tindex++,
207d0416 898 imap, ioendp, wbc, startio, all_bh);
10ce4444
CH
899 if (done)
900 break;
901 }
902
903 pagevec_release(&pvec);
904 cond_resched();
1da177e4
LT
905 }
906}
907
3ed3a434
DC
908STATIC void
909xfs_vm_invalidatepage(
910 struct page *page,
911 unsigned long offset)
912{
913 trace_xfs_invalidatepage(page->mapping->host, page, offset);
914 block_invalidatepage(page, offset);
915}
916
917/*
918 * If the page has delalloc buffers on it, we need to punch them out before we
919 * invalidate the page. If we don't, we leave a stale delalloc mapping on the
920 * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read
921 * is done on that same region - the delalloc extent is returned when none is
922 * supposed to be there.
923 *
924 * We prevent this by truncating away the delalloc regions on the page before
925 * invalidating it. Because they are delalloc, we can do this without needing a
926 * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this
927 * truncation without a transaction as there is no space left for block
928 * reservation (typically why we see a ENOSPC in writeback).
929 *
930 * This is not a performance critical path, so for now just do the punching a
931 * buffer head at a time.
932 */
933STATIC void
934xfs_aops_discard_page(
935 struct page *page)
936{
937 struct inode *inode = page->mapping->host;
938 struct xfs_inode *ip = XFS_I(inode);
939 struct buffer_head *bh, *head;
940 loff_t offset = page_offset(page);
941 ssize_t len = 1 << inode->i_blkbits;
942
34a52c6c 943 if (!xfs_is_delayed_page(page, IO_DELAY))
3ed3a434
DC
944 goto out_invalidate;
945
e8c3753c
DC
946 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
947 goto out_invalidate;
948
3ed3a434
DC
949 xfs_fs_cmn_err(CE_ALERT, ip->i_mount,
950 "page discard on page %p, inode 0x%llx, offset %llu.",
951 page, ip->i_ino, offset);
952
953 xfs_ilock(ip, XFS_ILOCK_EXCL);
954 bh = head = page_buffers(page);
955 do {
956 int done;
957 xfs_fileoff_t offset_fsb;
958 xfs_bmbt_irec_t imap;
959 int nimaps = 1;
960 int error;
961 xfs_fsblock_t firstblock;
962 xfs_bmap_free_t flist;
963
964 if (!buffer_delay(bh))
965 goto next_buffer;
966
967 offset_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
968
969 /*
970 * Map the range first and check that it is a delalloc extent
971 * before trying to unmap the range. Otherwise we will be
972 * trying to remove a real extent (which requires a
973 * transaction) or a hole, which is probably a bad idea...
974 */
975 error = xfs_bmapi(NULL, ip, offset_fsb, 1,
976 XFS_BMAPI_ENTIRE, NULL, 0, &imap,
b4e9181e 977 &nimaps, NULL);
3ed3a434
DC
978
979 if (error) {
980 /* something screwed, just bail */
e8c3753c
DC
981 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
982 xfs_fs_cmn_err(CE_ALERT, ip->i_mount,
983 "page discard failed delalloc mapping lookup.");
984 }
3ed3a434
DC
985 break;
986 }
987 if (!nimaps) {
988 /* nothing there */
989 goto next_buffer;
990 }
991 if (imap.br_startblock != DELAYSTARTBLOCK) {
992 /* been converted, ignore */
993 goto next_buffer;
994 }
995 WARN_ON(imap.br_blockcount == 0);
996
997 /*
998 * Note: while we initialise the firstblock/flist pair, they
999 * should never be used because blocks should never be
1000 * allocated or freed for a delalloc extent and hence we need
1001 * don't cancel or finish them after the xfs_bunmapi() call.
1002 */
1003 xfs_bmap_init(&flist, &firstblock);
1004 error = xfs_bunmapi(NULL, ip, offset_fsb, 1, 0, 1, &firstblock,
b4e9181e 1005 &flist, &done);
3ed3a434
DC
1006
1007 ASSERT(!flist.xbf_count && !flist.xbf_first);
1008 if (error) {
1009 /* something screwed, just bail */
e8c3753c
DC
1010 if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
1011 xfs_fs_cmn_err(CE_ALERT, ip->i_mount,
3ed3a434 1012 "page discard unable to remove delalloc mapping.");
e8c3753c 1013 }
3ed3a434
DC
1014 break;
1015 }
1016next_buffer:
1017 offset += len;
1018
1019 } while ((bh = bh->b_this_page) != head);
1020
1021 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1022out_invalidate:
1023 xfs_vm_invalidatepage(page, 0);
1024 return;
1025}
1026
1da177e4
LT
1027/*
1028 * Calling this without startio set means we are being asked to make a dirty
1029 * page ready for freeing it's buffers. When called with startio set then
1030 * we are coming from writepage.
1031 *
1032 * When called with startio set it is important that we write the WHOLE
1033 * page if possible.
1034 * The bh->b_state's cannot know if any of the blocks or which block for
1035 * that matter are dirty due to mmap writes, and therefore bh uptodate is
c41564b5 1036 * only valid if the page itself isn't completely uptodate. Some layers
1da177e4
LT
1037 * may clear the page dirty flag prior to calling write page, under the
1038 * assumption the entire page will be written out; by not writing out the
1039 * whole page the page can be reused before all valid dirty data is
1040 * written out. Note: in the case of a page that has been dirty'd by
1041 * mapwrite and but partially setup by block_prepare_write the
1042 * bh->b_states's will not agree and only ones setup by BPW/BCW will have
1043 * valid state, thus the whole page must be written out thing.
1044 */
1045
1046STATIC int
1047xfs_page_state_convert(
1048 struct inode *inode,
1049 struct page *page,
1050 struct writeback_control *wbc,
1051 int startio,
1052 int unmapped) /* also implies page uptodate */
1053{
f6d6d4fc 1054 struct buffer_head *bh, *head;
207d0416 1055 struct xfs_bmbt_irec imap;
f6d6d4fc 1056 xfs_ioend_t *ioend = NULL, *iohead = NULL;
1da177e4
LT
1057 loff_t offset;
1058 unsigned long p_offset = 0;
f6d6d4fc 1059 unsigned int type;
1da177e4 1060 __uint64_t end_offset;
bd1556a1 1061 pgoff_t end_index, last_index;
d5cb48aa 1062 ssize_t size, len;
558e6891 1063 int flags, err, imap_valid = 0, uptodate = 1;
8272145c
NS
1064 int page_dirty, count = 0;
1065 int trylock = 0;
6c4fe19f 1066 int all_bh = unmapped;
1da177e4 1067
8272145c
NS
1068 if (startio) {
1069 if (wbc->sync_mode == WB_SYNC_NONE && wbc->nonblocking)
1070 trylock |= BMAPI_TRYLOCK;
1071 }
3ba0815a 1072
1da177e4
LT
1073 /* Is this page beyond the end of the file? */
1074 offset = i_size_read(inode);
1075 end_index = offset >> PAGE_CACHE_SHIFT;
1076 last_index = (offset - 1) >> PAGE_CACHE_SHIFT;
1077 if (page->index >= end_index) {
1078 if ((page->index >= end_index + 1) ||
1079 !(i_size_read(inode) & (PAGE_CACHE_SIZE - 1))) {
19d5bcf3
NS
1080 if (startio)
1081 unlock_page(page);
1082 return 0;
1da177e4
LT
1083 }
1084 }
1085
1da177e4 1086 /*
24e17b5f 1087 * page_dirty is initially a count of buffers on the page before
c41564b5 1088 * EOF and is decremented as we move each into a cleanable state.
f6d6d4fc
CH
1089 *
1090 * Derivation:
1091 *
1092 * End offset is the highest offset that this page should represent.
1093 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
1094 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
1095 * hence give us the correct page_dirty count. On any other page,
1096 * it will be zero and in that case we need page_dirty to be the
1097 * count of buffers on the page.
1098 */
1099 end_offset = min_t(unsigned long long,
1100 (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT, offset);
24e17b5f 1101 len = 1 << inode->i_blkbits;
f6d6d4fc
CH
1102 p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1),
1103 PAGE_CACHE_SIZE);
1104 p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE;
24e17b5f
NS
1105 page_dirty = p_offset / len;
1106
24e17b5f 1107 bh = head = page_buffers(page);
f6d6d4fc 1108 offset = page_offset(page);
df3c7244 1109 flags = BMAPI_READ;
34a52c6c 1110 type = IO_NEW;
f6d6d4fc 1111
f6d6d4fc 1112 /* TODO: cleanup count and page_dirty */
1da177e4
LT
1113
1114 do {
1115 if (offset >= end_offset)
1116 break;
1117 if (!buffer_uptodate(bh))
1118 uptodate = 0;
f6d6d4fc 1119 if (!(PageUptodate(page) || buffer_uptodate(bh)) && !startio) {
1defeac9
CH
1120 /*
1121 * the iomap is actually still valid, but the ioend
1122 * isn't. shouldn't happen too often.
1123 */
558e6891 1124 imap_valid = 0;
1da177e4 1125 continue;
f6d6d4fc 1126 }
1da177e4 1127
558e6891
CH
1128 if (imap_valid)
1129 imap_valid = xfs_imap_valid(inode, &imap, offset);
1da177e4
LT
1130
1131 /*
1132 * First case, map an unwritten extent and prepare for
1133 * extent state conversion transaction on completion.
f6d6d4fc 1134 *
1da177e4
LT
1135 * Second case, allocate space for a delalloc buffer.
1136 * We can return EAGAIN here in the release page case.
d5cb48aa
CH
1137 *
1138 * Third case, an unmapped buffer was found, and we are
1139 * in a path where we need to write the whole page out.
df3c7244 1140 */
d5cb48aa
CH
1141 if (buffer_unwritten(bh) || buffer_delay(bh) ||
1142 ((buffer_uptodate(bh) || PageUptodate(page)) &&
1143 !buffer_mapped(bh) && (unmapped || startio))) {
effd120e
DC
1144 int new_ioend = 0;
1145
df3c7244 1146 /*
6c4fe19f
CH
1147 * Make sure we don't use a read-only iomap
1148 */
df3c7244 1149 if (flags == BMAPI_READ)
558e6891 1150 imap_valid = 0;
6c4fe19f 1151
f6d6d4fc 1152 if (buffer_unwritten(bh)) {
34a52c6c 1153 type = IO_UNWRITTEN;
8272145c 1154 flags = BMAPI_WRITE | BMAPI_IGNSTATE;
d5cb48aa 1155 } else if (buffer_delay(bh)) {
34a52c6c 1156 type = IO_DELAY;
8272145c 1157 flags = BMAPI_ALLOCATE | trylock;
d5cb48aa 1158 } else {
34a52c6c 1159 type = IO_NEW;
8272145c 1160 flags = BMAPI_WRITE | BMAPI_MMAP;
f6d6d4fc
CH
1161 }
1162
558e6891 1163 if (!imap_valid) {
effd120e
DC
1164 /*
1165 * if we didn't have a valid mapping then we
1166 * need to ensure that we put the new mapping
1167 * in a new ioend structure. This needs to be
1168 * done to ensure that the ioends correctly
1169 * reflect the block mappings at io completion
1170 * for unwritten extent conversion.
1171 */
1172 new_ioend = 1;
34a52c6c 1173 if (type == IO_NEW) {
6c4fe19f
CH
1174 size = xfs_probe_cluster(inode,
1175 page, bh, head, 0);
d5cb48aa
CH
1176 } else {
1177 size = len;
1178 }
1179
1180 err = xfs_map_blocks(inode, offset, size,
207d0416 1181 &imap, flags);
f6d6d4fc 1182 if (err)
1da177e4 1183 goto error;
558e6891
CH
1184 imap_valid = xfs_imap_valid(inode, &imap,
1185 offset);
1da177e4 1186 }
558e6891 1187 if (imap_valid) {
207d0416 1188 xfs_map_at_offset(inode, bh, &imap, offset);
1da177e4 1189 if (startio) {
7336cea8 1190 xfs_add_to_ioend(inode, bh, offset,
1defeac9 1191 type, &ioend,
effd120e 1192 new_ioend);
1da177e4
LT
1193 } else {
1194 set_buffer_dirty(bh);
1195 unlock_buffer(bh);
1196 mark_buffer_dirty(bh);
1197 }
1198 page_dirty--;
f6d6d4fc 1199 count++;
1da177e4 1200 }
d5cb48aa 1201 } else if (buffer_uptodate(bh) && startio) {
6c4fe19f
CH
1202 /*
1203 * we got here because the buffer is already mapped.
1204 * That means it must already have extents allocated
1205 * underneath it. Map the extent by reading it.
1206 */
558e6891 1207 if (!imap_valid || flags != BMAPI_READ) {
6c4fe19f
CH
1208 flags = BMAPI_READ;
1209 size = xfs_probe_cluster(inode, page, bh,
1210 head, 1);
1211 err = xfs_map_blocks(inode, offset, size,
207d0416 1212 &imap, flags);
6c4fe19f
CH
1213 if (err)
1214 goto error;
558e6891
CH
1215 imap_valid = xfs_imap_valid(inode, &imap,
1216 offset);
6c4fe19f 1217 }
d5cb48aa 1218
df3c7244 1219 /*
34a52c6c 1220 * We set the type to IO_NEW in case we are doing a
df3c7244
DC
1221 * small write at EOF that is extending the file but
1222 * without needing an allocation. We need to update the
1223 * file size on I/O completion in this case so it is
1224 * the same case as having just allocated a new extent
1225 * that we are writing into for the first time.
1226 */
34a52c6c 1227 type = IO_NEW;
ca5de404 1228 if (trylock_buffer(bh)) {
d5cb48aa 1229 ASSERT(buffer_mapped(bh));
558e6891 1230 if (imap_valid)
6c4fe19f 1231 all_bh = 1;
7336cea8 1232 xfs_add_to_ioend(inode, bh, offset, type,
558e6891 1233 &ioend, !imap_valid);
d5cb48aa
CH
1234 page_dirty--;
1235 count++;
f6d6d4fc 1236 } else {
558e6891 1237 imap_valid = 0;
1da177e4 1238 }
d5cb48aa
CH
1239 } else if ((buffer_uptodate(bh) || PageUptodate(page)) &&
1240 (unmapped || startio)) {
558e6891 1241 imap_valid = 0;
1da177e4 1242 }
f6d6d4fc
CH
1243
1244 if (!iohead)
1245 iohead = ioend;
1246
1247 } while (offset += len, ((bh = bh->b_this_page) != head));
1da177e4
LT
1248
1249 if (uptodate && bh == head)
1250 SetPageUptodate(page);
1251
f6d6d4fc 1252 if (startio)
b41759cf 1253 xfs_start_page_writeback(page, 1, count);
1da177e4 1254
558e6891 1255 if (ioend && imap_valid) {
bd1556a1
CH
1256 xfs_off_t end_index;
1257
1258 end_index = imap.br_startoff + imap.br_blockcount;
1259
1260 /* to bytes */
1261 end_index <<= inode->i_blkbits;
1262
1263 /* to pages */
1264 end_index = (end_index - 1) >> PAGE_CACHE_SHIFT;
1265
1266 /* check against file size */
1267 if (end_index > last_index)
1268 end_index = last_index;
8699bb0a 1269
207d0416 1270 xfs_cluster_write(inode, page->index + 1, &imap, &ioend,
bd1556a1 1271 wbc, startio, all_bh, end_index);
1da177e4
LT
1272 }
1273
f6d6d4fc 1274 if (iohead)
06342cf8 1275 xfs_submit_ioend(wbc, iohead);
f6d6d4fc 1276
1da177e4
LT
1277 return page_dirty;
1278
1279error:
f6d6d4fc
CH
1280 if (iohead)
1281 xfs_cancel_ioend(iohead);
1da177e4
LT
1282
1283 /*
1284 * If it's delalloc and we have nowhere to put it,
1285 * throw it away, unless the lower layers told
1286 * us to try again.
1287 */
1288 if (err != -EAGAIN) {
f6d6d4fc 1289 if (!unmapped)
3ed3a434 1290 xfs_aops_discard_page(page);
1da177e4
LT
1291 ClearPageUptodate(page);
1292 }
1293 return err;
1294}
1295
f51623b2
NS
1296/*
1297 * writepage: Called from one of two places:
1298 *
1299 * 1. we are flushing a delalloc buffer head.
1300 *
1301 * 2. we are writing out a dirty page. Typically the page dirty
1302 * state is cleared before we get here. In this case is it
1303 * conceivable we have no buffer heads.
1304 *
1305 * For delalloc space on the page we need to allocate space and
1306 * flush it. For unmapped buffer heads on the page we should
1307 * allocate space if the page is uptodate. For any other dirty
1308 * buffer heads on the page we should flush them.
1309 *
1310 * If we detect that a transaction would be required to flush
1311 * the page, we have to check the process flags first, if we
1312 * are already in a transaction or disk I/O during allocations
1313 * is off, we need to fail the writepage and redirty the page.
1314 */
1315
1316STATIC int
e4c573bb 1317xfs_vm_writepage(
f51623b2
NS
1318 struct page *page,
1319 struct writeback_control *wbc)
1320{
1321 int error;
1322 int need_trans;
1323 int delalloc, unmapped, unwritten;
1324 struct inode *inode = page->mapping->host;
1325
0b1b213f 1326 trace_xfs_writepage(inode, page, 0);
f51623b2 1327
070ecdca
CH
1328 /*
1329 * Refuse to write the page out if we are called from reclaim context.
1330 *
1331 * This is primarily to avoid stack overflows when called from deep
1332 * used stacks in random callers for direct reclaim, but disabling
1333 * reclaim for kswap is a nice side-effect as kswapd causes rather
1334 * suboptimal I/O patters, too.
1335 *
1336 * This should really be done by the core VM, but until that happens
1337 * filesystems like XFS, btrfs and ext4 have to take care of this
1338 * by themselves.
1339 */
1340 if (current->flags & PF_MEMALLOC)
1341 goto out_fail;
1342
f51623b2
NS
1343 /*
1344 * We need a transaction if:
1345 * 1. There are delalloc buffers on the page
1346 * 2. The page is uptodate and we have unmapped buffers
1347 * 3. The page is uptodate and we have no buffers
1348 * 4. There are unwritten buffers on the page
1349 */
1350
1351 if (!page_has_buffers(page)) {
1352 unmapped = 1;
1353 need_trans = 1;
1354 } else {
1355 xfs_count_page_state(page, &delalloc, &unmapped, &unwritten);
1356 if (!PageUptodate(page))
1357 unmapped = 0;
1358 need_trans = delalloc + unmapped + unwritten;
1359 }
1360
1361 /*
1362 * If we need a transaction and the process flags say
1363 * we are already in a transaction, or no IO is allowed
1364 * then mark the page dirty again and leave the page
1365 * as is.
1366 */
59c1b082 1367 if (current_test_flags(PF_FSTRANS) && need_trans)
f51623b2
NS
1368 goto out_fail;
1369
1370 /*
1371 * Delay hooking up buffer heads until we have
1372 * made our go/no-go decision.
1373 */
1374 if (!page_has_buffers(page))
1375 create_empty_buffers(page, 1 << inode->i_blkbits, 0);
1376
1377 /*
1378 * Convert delayed allocate, unwritten or unmapped space
1379 * to real space and flush out to disk.
1380 */
1381 error = xfs_page_state_convert(inode, page, wbc, 1, unmapped);
1382 if (error == -EAGAIN)
1383 goto out_fail;
1384 if (unlikely(error < 0))
1385 goto out_unlock;
1386
1387 return 0;
1388
1389out_fail:
1390 redirty_page_for_writepage(wbc, page);
1391 unlock_page(page);
1392 return 0;
1393out_unlock:
1394 unlock_page(page);
1395 return error;
1396}
1397
7d4fb40a
NS
1398STATIC int
1399xfs_vm_writepages(
1400 struct address_space *mapping,
1401 struct writeback_control *wbc)
1402{
b3aea4ed 1403 xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
7d4fb40a
NS
1404 return generic_writepages(mapping, wbc);
1405}
1406
f51623b2
NS
1407/*
1408 * Called to move a page into cleanable state - and from there
1409 * to be released. Possibly the page is already clean. We always
1410 * have buffer heads in this call.
1411 *
1412 * Returns 0 if the page is ok to release, 1 otherwise.
1413 *
1414 * Possible scenarios are:
1415 *
1416 * 1. We are being called to release a page which has been written
1417 * to via regular I/O. buffer heads will be dirty and possibly
1418 * delalloc. If no delalloc buffer heads in this case then we
1419 * can just return zero.
1420 *
1421 * 2. We are called to release a page which has been written via
1422 * mmap, all we need to do is ensure there is no delalloc
1423 * state in the buffer heads, if not we can let the caller
1424 * free them and we should come back later via writepage.
1425 */
1426STATIC int
238f4c54 1427xfs_vm_releasepage(
f51623b2
NS
1428 struct page *page,
1429 gfp_t gfp_mask)
1430{
1431 struct inode *inode = page->mapping->host;
1432 int dirty, delalloc, unmapped, unwritten;
1433 struct writeback_control wbc = {
1434 .sync_mode = WB_SYNC_ALL,
1435 .nr_to_write = 1,
1436 };
1437
0b1b213f 1438 trace_xfs_releasepage(inode, page, 0);
f51623b2 1439
238f4c54
NS
1440 if (!page_has_buffers(page))
1441 return 0;
1442
f51623b2
NS
1443 xfs_count_page_state(page, &delalloc, &unmapped, &unwritten);
1444 if (!delalloc && !unwritten)
1445 goto free_buffers;
1446
1447 if (!(gfp_mask & __GFP_FS))
1448 return 0;
1449
1450 /* If we are already inside a transaction or the thread cannot
1451 * do I/O, we cannot release this page.
1452 */
59c1b082 1453 if (current_test_flags(PF_FSTRANS))
f51623b2
NS
1454 return 0;
1455
1456 /*
1457 * Convert delalloc space to real space, do not flush the
1458 * data out to disk, that will be done by the caller.
1459 * Never need to allocate space here - we will always
1460 * come back to writepage in that case.
1461 */
1462 dirty = xfs_page_state_convert(inode, page, &wbc, 0, 0);
1463 if (dirty == 0 && !unwritten)
1464 goto free_buffers;
1465 return 0;
1466
1467free_buffers:
1468 return try_to_free_buffers(page);
1469}
1470
1da177e4 1471STATIC int
c2536668 1472__xfs_get_blocks(
1da177e4
LT
1473 struct inode *inode,
1474 sector_t iblock,
1da177e4
LT
1475 struct buffer_head *bh_result,
1476 int create,
1477 int direct,
1478 bmapi_flags_t flags)
1479{
207d0416 1480 struct xfs_bmbt_irec imap;
fdc7ed75
NS
1481 xfs_off_t offset;
1482 ssize_t size;
207d0416
CH
1483 int nimap = 1;
1484 int new = 0;
1da177e4 1485 int error;
1da177e4 1486
fdc7ed75 1487 offset = (xfs_off_t)iblock << inode->i_blkbits;
c2536668
NS
1488 ASSERT(bh_result->b_size >= (1 << inode->i_blkbits));
1489 size = bh_result->b_size;
364f358a
LM
1490
1491 if (!create && direct && offset >= i_size_read(inode))
1492 return 0;
1493
541d7d3c 1494 error = xfs_iomap(XFS_I(inode), offset, size,
207d0416 1495 create ? flags : BMAPI_READ, &imap, &nimap, &new);
1da177e4
LT
1496 if (error)
1497 return -error;
207d0416 1498 if (nimap == 0)
1da177e4
LT
1499 return 0;
1500
207d0416
CH
1501 if (imap.br_startblock != HOLESTARTBLOCK &&
1502 imap.br_startblock != DELAYSTARTBLOCK) {
87cbc49c
NS
1503 /*
1504 * For unwritten extents do not report a disk address on
1da177e4
LT
1505 * the read case (treat as if we're reading into a hole).
1506 */
207d0416
CH
1507 if (create || !ISUNWRITTEN(&imap))
1508 xfs_map_buffer(inode, bh_result, &imap, offset);
1509 if (create && ISUNWRITTEN(&imap)) {
1da177e4
LT
1510 if (direct)
1511 bh_result->b_private = inode;
1512 set_buffer_unwritten(bh_result);
1da177e4
LT
1513 }
1514 }
1515
c2536668
NS
1516 /*
1517 * If this is a realtime file, data may be on a different device.
1518 * to that pointed to from the buffer_head b_bdev currently.
1519 */
046f1685 1520 bh_result->b_bdev = xfs_find_bdev_for_inode(inode);
1da177e4 1521
c2536668 1522 /*
549054af
DC
1523 * If we previously allocated a block out beyond eof and we are now
1524 * coming back to use it then we will need to flag it as new even if it
1525 * has a disk address.
1526 *
1527 * With sub-block writes into unwritten extents we also need to mark
1528 * the buffer as new so that the unwritten parts of the buffer gets
1529 * correctly zeroed.
1da177e4
LT
1530 */
1531 if (create &&
1532 ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) ||
549054af 1533 (offset >= i_size_read(inode)) ||
207d0416 1534 (new || ISUNWRITTEN(&imap))))
1da177e4 1535 set_buffer_new(bh_result);
1da177e4 1536
207d0416 1537 if (imap.br_startblock == DELAYSTARTBLOCK) {
1da177e4
LT
1538 BUG_ON(direct);
1539 if (create) {
1540 set_buffer_uptodate(bh_result);
1541 set_buffer_mapped(bh_result);
1542 set_buffer_delay(bh_result);
1543 }
1544 }
1545
2b8f12b7
CH
1546 /*
1547 * If this is O_DIRECT or the mpage code calling tell them how large
1548 * the mapping is, so that we can avoid repeated get_blocks calls.
1549 */
c2536668 1550 if (direct || size > (1 << inode->i_blkbits)) {
2b8f12b7
CH
1551 xfs_off_t mapping_size;
1552
1553 mapping_size = imap.br_startoff + imap.br_blockcount - iblock;
1554 mapping_size <<= inode->i_blkbits;
1555
1556 ASSERT(mapping_size > 0);
1557 if (mapping_size > size)
1558 mapping_size = size;
1559 if (mapping_size > LONG_MAX)
1560 mapping_size = LONG_MAX;
1561
1562 bh_result->b_size = mapping_size;
1da177e4
LT
1563 }
1564
1565 return 0;
1566}
1567
1568int
c2536668 1569xfs_get_blocks(
1da177e4
LT
1570 struct inode *inode,
1571 sector_t iblock,
1572 struct buffer_head *bh_result,
1573 int create)
1574{
c2536668 1575 return __xfs_get_blocks(inode, iblock,
fa30bd05 1576 bh_result, create, 0, BMAPI_WRITE);
1da177e4
LT
1577}
1578
1579STATIC int
e4c573bb 1580xfs_get_blocks_direct(
1da177e4
LT
1581 struct inode *inode,
1582 sector_t iblock,
1da177e4
LT
1583 struct buffer_head *bh_result,
1584 int create)
1585{
c2536668 1586 return __xfs_get_blocks(inode, iblock,
1d8fa7a2 1587 bh_result, create, 1, BMAPI_WRITE|BMAPI_DIRECT);
1da177e4
LT
1588}
1589
f0973863 1590STATIC void
e4c573bb 1591xfs_end_io_direct(
f0973863
CH
1592 struct kiocb *iocb,
1593 loff_t offset,
1594 ssize_t size,
1595 void *private)
1596{
1597 xfs_ioend_t *ioend = iocb->private;
1598
1599 /*
1600 * Non-NULL private data means we need to issue a transaction to
1601 * convert a range from unwritten to written extents. This needs
c41564b5 1602 * to happen from process context but aio+dio I/O completion
f0973863 1603 * happens from irq context so we need to defer it to a workqueue.
c41564b5 1604 * This is not necessary for synchronous direct I/O, but we do
f0973863
CH
1605 * it anyway to keep the code uniform and simpler.
1606 *
e927af90
DC
1607 * Well, if only it were that simple. Because synchronous direct I/O
1608 * requires extent conversion to occur *before* we return to userspace,
1609 * we have to wait for extent conversion to complete. Look at the
1610 * iocb that has been passed to us to determine if this is AIO or
1611 * not. If it is synchronous, tell xfs_finish_ioend() to kick the
1612 * workqueue and wait for it to complete.
1613 *
f0973863
CH
1614 * The core direct I/O code might be changed to always call the
1615 * completion handler in the future, in which case all this can
1616 * go away.
1617 */
ba87ea69
LM
1618 ioend->io_offset = offset;
1619 ioend->io_size = size;
34a52c6c 1620 if (ioend->io_type == IO_READ) {
e927af90 1621 xfs_finish_ioend(ioend, 0);
ba87ea69 1622 } else if (private && size > 0) {
e927af90 1623 xfs_finish_ioend(ioend, is_sync_kiocb(iocb));
f0973863 1624 } else {
ba87ea69
LM
1625 /*
1626 * A direct I/O write ioend starts it's life in unwritten
1627 * state in case they map an unwritten extent. This write
1628 * didn't map an unwritten extent so switch it's completion
1629 * handler.
1630 */
34a52c6c 1631 ioend->io_type = IO_NEW;
e927af90 1632 xfs_finish_ioend(ioend, 0);
f0973863
CH
1633 }
1634
1635 /*
c41564b5 1636 * blockdev_direct_IO can return an error even after the I/O
f0973863
CH
1637 * completion handler was called. Thus we need to protect
1638 * against double-freeing.
1639 */
1640 iocb->private = NULL;
1641}
1642
1da177e4 1643STATIC ssize_t
e4c573bb 1644xfs_vm_direct_IO(
1da177e4
LT
1645 int rw,
1646 struct kiocb *iocb,
1647 const struct iovec *iov,
1648 loff_t offset,
1649 unsigned long nr_segs)
1650{
1651 struct file *file = iocb->ki_filp;
1652 struct inode *inode = file->f_mapping->host;
6214ed44 1653 struct block_device *bdev;
f0973863 1654 ssize_t ret;
1da177e4 1655
046f1685 1656 bdev = xfs_find_bdev_for_inode(inode);
1da177e4 1657
5fe878ae 1658 iocb->private = xfs_alloc_ioend(inode, rw == WRITE ?
34a52c6c 1659 IO_UNWRITTEN : IO_READ);
5fe878ae
CH
1660
1661 ret = blockdev_direct_IO_no_locking(rw, iocb, inode, bdev, iov,
1662 offset, nr_segs,
1663 xfs_get_blocks_direct,
1664 xfs_end_io_direct);
f0973863 1665
8459d86a 1666 if (unlikely(ret != -EIOCBQUEUED && iocb->private))
f0973863
CH
1667 xfs_destroy_ioend(iocb->private);
1668 return ret;
1da177e4
LT
1669}
1670
f51623b2 1671STATIC int
d79689c7 1672xfs_vm_write_begin(
f51623b2 1673 struct file *file,
d79689c7
NP
1674 struct address_space *mapping,
1675 loff_t pos,
1676 unsigned len,
1677 unsigned flags,
1678 struct page **pagep,
1679 void **fsdata)
f51623b2 1680{
d79689c7
NP
1681 *pagep = NULL;
1682 return block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
1683 xfs_get_blocks);
f51623b2 1684}
1da177e4
LT
1685
1686STATIC sector_t
e4c573bb 1687xfs_vm_bmap(
1da177e4
LT
1688 struct address_space *mapping,
1689 sector_t block)
1690{
1691 struct inode *inode = (struct inode *)mapping->host;
739bfb2a 1692 struct xfs_inode *ip = XFS_I(inode);
1da177e4 1693
cf441eeb 1694 xfs_itrace_entry(XFS_I(inode));
126468b1 1695 xfs_ilock(ip, XFS_IOLOCK_SHARED);
739bfb2a 1696 xfs_flush_pages(ip, (xfs_off_t)0, -1, 0, FI_REMAPF);
126468b1 1697 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
c2536668 1698 return generic_block_bmap(mapping, block, xfs_get_blocks);
1da177e4
LT
1699}
1700
1701STATIC int
e4c573bb 1702xfs_vm_readpage(
1da177e4
LT
1703 struct file *unused,
1704 struct page *page)
1705{
c2536668 1706 return mpage_readpage(page, xfs_get_blocks);
1da177e4
LT
1707}
1708
1709STATIC int
e4c573bb 1710xfs_vm_readpages(
1da177e4
LT
1711 struct file *unused,
1712 struct address_space *mapping,
1713 struct list_head *pages,
1714 unsigned nr_pages)
1715{
c2536668 1716 return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
1da177e4
LT
1717}
1718
f5e54d6e 1719const struct address_space_operations xfs_address_space_operations = {
e4c573bb
NS
1720 .readpage = xfs_vm_readpage,
1721 .readpages = xfs_vm_readpages,
1722 .writepage = xfs_vm_writepage,
7d4fb40a 1723 .writepages = xfs_vm_writepages,
1da177e4 1724 .sync_page = block_sync_page,
238f4c54
NS
1725 .releasepage = xfs_vm_releasepage,
1726 .invalidatepage = xfs_vm_invalidatepage,
d79689c7
NP
1727 .write_begin = xfs_vm_write_begin,
1728 .write_end = generic_write_end,
e4c573bb
NS
1729 .bmap = xfs_vm_bmap,
1730 .direct_IO = xfs_vm_direct_IO,
e965f963 1731 .migratepage = buffer_migrate_page,
bddaafa1 1732 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 1733 .error_remove_page = generic_error_remove_page,
1da177e4 1734};