ext4: remove redundant "EXT4-fs: " from uses of ext4_msg
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / ext4 / inode.c
CommitLineData
ac27a0ec 1/*
617ba13b 2 * linux/fs/ext4/inode.c
ac27a0ec
DK
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
ac27a0ec
DK
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
17 *
617ba13b 18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
ac27a0ec
DK
19 */
20
ac27a0ec
DK
21#include <linux/fs.h>
22#include <linux/time.h>
dab291af 23#include <linux/jbd2.h>
ac27a0ec
DK
24#include <linux/highuid.h>
25#include <linux/pagemap.h>
26#include <linux/quotaops.h>
27#include <linux/string.h>
28#include <linux/buffer_head.h>
29#include <linux/writeback.h>
64769240 30#include <linux/pagevec.h>
ac27a0ec 31#include <linux/mpage.h>
e83c1397 32#include <linux/namei.h>
ac27a0ec
DK
33#include <linux/uio.h>
34#include <linux/bio.h>
4c0425ff 35#include <linux/workqueue.h>
744692dc 36#include <linux/kernel.h>
6db26ffc 37#include <linux/printk.h>
5a0e3ad6 38#include <linux/slab.h>
a8901d34 39#include <linux/ratelimit.h>
9bffad1e 40
3dcf5451 41#include "ext4_jbd2.h"
ac27a0ec
DK
42#include "xattr.h"
43#include "acl.h"
9f125d64 44#include "truncate.h"
ac27a0ec 45
9bffad1e
TT
46#include <trace/events/ext4.h>
47
a1d6cc56
AK
48#define MPAGE_DA_EXTENT_TAIL 0x01
49
678aaf48
JK
50static inline int ext4_begin_ordered_truncate(struct inode *inode,
51 loff_t new_size)
52{
7ff9c073 53 trace_ext4_begin_ordered_truncate(inode, new_size);
8aefcd55
TT
54 /*
55 * If jinode is zero, then we never opened the file for
56 * writing, so there's no need to call
57 * jbd2_journal_begin_ordered_truncate() since there's no
58 * outstanding writes we need to flush.
59 */
60 if (!EXT4_I(inode)->jinode)
61 return 0;
62 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
63 EXT4_I(inode)->jinode,
64 new_size);
678aaf48
JK
65}
66
64769240 67static void ext4_invalidatepage(struct page *page, unsigned long offset);
cb20d518
TT
68static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
69 struct buffer_head *bh_result, int create);
70static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
71static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
72static int __ext4_journalled_writepage(struct page *page, unsigned int len);
73static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
5f163cc7
ES
74static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
75 struct inode *inode, struct page *page, loff_t from,
76 loff_t length, int flags);
64769240 77
ac27a0ec
DK
78/*
79 * Test whether an inode is a fast symlink.
80 */
617ba13b 81static int ext4_inode_is_fast_symlink(struct inode *inode)
ac27a0ec 82{
617ba13b 83 int ea_blocks = EXT4_I(inode)->i_file_acl ?
ac27a0ec
DK
84 (inode->i_sb->s_blocksize >> 9) : 0;
85
86 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
87}
88
ac27a0ec
DK
89/*
90 * Restart the transaction associated with *handle. This does a commit,
91 * so before we call here everything must be consistently dirtied against
92 * this transaction.
93 */
fa5d1113 94int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
487caeef 95 int nblocks)
ac27a0ec 96{
487caeef
JK
97 int ret;
98
99 /*
e35fd660 100 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
487caeef
JK
101 * moment, get_block can be called only for blocks inside i_size since
102 * page cache has been already dropped and writes are blocked by
103 * i_mutex. So we can safely drop the i_data_sem here.
104 */
0390131b 105 BUG_ON(EXT4_JOURNAL(inode) == NULL);
ac27a0ec 106 jbd_debug(2, "restarting handle %p\n", handle);
487caeef 107 up_write(&EXT4_I(inode)->i_data_sem);
8e8eaabe 108 ret = ext4_journal_restart(handle, nblocks);
487caeef 109 down_write(&EXT4_I(inode)->i_data_sem);
fa5d1113 110 ext4_discard_preallocations(inode);
487caeef
JK
111
112 return ret;
ac27a0ec
DK
113}
114
115/*
116 * Called at the last iput() if i_nlink is zero.
117 */
0930fcc1 118void ext4_evict_inode(struct inode *inode)
ac27a0ec
DK
119{
120 handle_t *handle;
bc965ab3 121 int err;
ac27a0ec 122
7ff9c073 123 trace_ext4_evict_inode(inode);
2581fdc8 124
2581fdc8
JZ
125 ext4_ioend_wait(inode);
126
0930fcc1 127 if (inode->i_nlink) {
2d859db3
JK
128 /*
129 * When journalling data dirty buffers are tracked only in the
130 * journal. So although mm thinks everything is clean and
131 * ready for reaping the inode might still have some pages to
132 * write in the running transaction or waiting to be
133 * checkpointed. Thus calling jbd2_journal_invalidatepage()
134 * (via truncate_inode_pages()) to discard these buffers can
135 * cause data loss. Also even if we did not discard these
136 * buffers, we would have no way to find them after the inode
137 * is reaped and thus user could see stale data if he tries to
138 * read them before the transaction is checkpointed. So be
139 * careful and force everything to disk here... We use
140 * ei->i_datasync_tid to store the newest transaction
141 * containing inode's data.
142 *
143 * Note that directories do not have this problem because they
144 * don't use page cache.
145 */
146 if (ext4_should_journal_data(inode) &&
147 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
148 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
149 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
150
151 jbd2_log_start_commit(journal, commit_tid);
152 jbd2_log_wait_commit(journal, commit_tid);
153 filemap_write_and_wait(&inode->i_data);
154 }
0930fcc1
AV
155 truncate_inode_pages(&inode->i_data, 0);
156 goto no_delete;
157 }
158
907f4554 159 if (!is_bad_inode(inode))
871a2931 160 dquot_initialize(inode);
907f4554 161
678aaf48
JK
162 if (ext4_should_order_data(inode))
163 ext4_begin_ordered_truncate(inode, 0);
ac27a0ec
DK
164 truncate_inode_pages(&inode->i_data, 0);
165
166 if (is_bad_inode(inode))
167 goto no_delete;
168
9f125d64 169 handle = ext4_journal_start(inode, ext4_blocks_for_truncate(inode)+3);
ac27a0ec 170 if (IS_ERR(handle)) {
bc965ab3 171 ext4_std_error(inode->i_sb, PTR_ERR(handle));
ac27a0ec
DK
172 /*
173 * If we're going to skip the normal cleanup, we still need to
174 * make sure that the in-core orphan linked list is properly
175 * cleaned up.
176 */
617ba13b 177 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
178 goto no_delete;
179 }
180
181 if (IS_SYNC(inode))
0390131b 182 ext4_handle_sync(handle);
ac27a0ec 183 inode->i_size = 0;
bc965ab3
TT
184 err = ext4_mark_inode_dirty(handle, inode);
185 if (err) {
12062ddd 186 ext4_warning(inode->i_sb,
bc965ab3
TT
187 "couldn't mark inode dirty (err %d)", err);
188 goto stop_handle;
189 }
ac27a0ec 190 if (inode->i_blocks)
617ba13b 191 ext4_truncate(inode);
bc965ab3
TT
192
193 /*
194 * ext4_ext_truncate() doesn't reserve any slop when it
195 * restarts journal transactions; therefore there may not be
196 * enough credits left in the handle to remove the inode from
197 * the orphan list and set the dtime field.
198 */
0390131b 199 if (!ext4_handle_has_enough_credits(handle, 3)) {
bc965ab3
TT
200 err = ext4_journal_extend(handle, 3);
201 if (err > 0)
202 err = ext4_journal_restart(handle, 3);
203 if (err != 0) {
12062ddd 204 ext4_warning(inode->i_sb,
bc965ab3
TT
205 "couldn't extend journal (err %d)", err);
206 stop_handle:
207 ext4_journal_stop(handle);
45388219 208 ext4_orphan_del(NULL, inode);
bc965ab3
TT
209 goto no_delete;
210 }
211 }
212
ac27a0ec 213 /*
617ba13b 214 * Kill off the orphan record which ext4_truncate created.
ac27a0ec 215 * AKPM: I think this can be inside the above `if'.
617ba13b 216 * Note that ext4_orphan_del() has to be able to cope with the
ac27a0ec 217 * deletion of a non-existent orphan - this is because we don't
617ba13b 218 * know if ext4_truncate() actually created an orphan record.
ac27a0ec
DK
219 * (Well, we could do this if we need to, but heck - it works)
220 */
617ba13b
MC
221 ext4_orphan_del(handle, inode);
222 EXT4_I(inode)->i_dtime = get_seconds();
ac27a0ec
DK
223
224 /*
225 * One subtle ordering requirement: if anything has gone wrong
226 * (transaction abort, IO errors, whatever), then we can still
227 * do these next steps (the fs will already have been marked as
228 * having errors), but we can't free the inode if the mark_dirty
229 * fails.
230 */
617ba13b 231 if (ext4_mark_inode_dirty(handle, inode))
ac27a0ec 232 /* If that failed, just do the required in-core inode clear. */
0930fcc1 233 ext4_clear_inode(inode);
ac27a0ec 234 else
617ba13b
MC
235 ext4_free_inode(handle, inode);
236 ext4_journal_stop(handle);
ac27a0ec
DK
237 return;
238no_delete:
0930fcc1 239 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
ac27a0ec
DK
240}
241
a9e7f447
DM
242#ifdef CONFIG_QUOTA
243qsize_t *ext4_get_reserved_space(struct inode *inode)
60e58e0f 244{
a9e7f447 245 return &EXT4_I(inode)->i_reserved_quota;
60e58e0f 246}
a9e7f447 247#endif
9d0be502 248
12219aea
AK
249/*
250 * Calculate the number of metadata blocks need to reserve
9d0be502 251 * to allocate a block located at @lblock
12219aea 252 */
01f49d0b 253static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
12219aea 254{
12e9b892 255 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
9d0be502 256 return ext4_ext_calc_metadata_amount(inode, lblock);
12219aea 257
8bb2b247 258 return ext4_ind_calc_metadata_amount(inode, lblock);
12219aea
AK
259}
260
0637c6f4
TT
261/*
262 * Called with i_data_sem down, which is important since we can call
263 * ext4_discard_preallocations() from here.
264 */
5f634d06
AK
265void ext4_da_update_reserve_space(struct inode *inode,
266 int used, int quota_claim)
12219aea
AK
267{
268 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 269 struct ext4_inode_info *ei = EXT4_I(inode);
0637c6f4
TT
270
271 spin_lock(&ei->i_block_reservation_lock);
d8990240 272 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
0637c6f4
TT
273 if (unlikely(used > ei->i_reserved_data_blocks)) {
274 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
275 "with only %d reserved data blocks\n",
276 __func__, inode->i_ino, used,
277 ei->i_reserved_data_blocks);
278 WARN_ON(1);
279 used = ei->i_reserved_data_blocks;
280 }
12219aea 281
0637c6f4
TT
282 /* Update per-inode reservations */
283 ei->i_reserved_data_blocks -= used;
0637c6f4 284 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
57042651 285 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
72b8ab9d 286 used + ei->i_allocated_meta_blocks);
0637c6f4 287 ei->i_allocated_meta_blocks = 0;
6bc6e63f 288
0637c6f4
TT
289 if (ei->i_reserved_data_blocks == 0) {
290 /*
291 * We can release all of the reserved metadata blocks
292 * only when we have written all of the delayed
293 * allocation blocks.
294 */
57042651 295 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
72b8ab9d 296 ei->i_reserved_meta_blocks);
ee5f4d9c 297 ei->i_reserved_meta_blocks = 0;
9d0be502 298 ei->i_da_metadata_calc_len = 0;
6bc6e63f 299 }
12219aea 300 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 301
72b8ab9d
ES
302 /* Update quota subsystem for data blocks */
303 if (quota_claim)
7b415bf6 304 dquot_claim_block(inode, EXT4_C2B(sbi, used));
72b8ab9d 305 else {
5f634d06
AK
306 /*
307 * We did fallocate with an offset that is already delayed
308 * allocated. So on delayed allocated writeback we should
72b8ab9d 309 * not re-claim the quota for fallocated blocks.
5f634d06 310 */
7b415bf6 311 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
5f634d06 312 }
d6014301
AK
313
314 /*
315 * If we have done all the pending block allocations and if
316 * there aren't any writers on the inode, we can discard the
317 * inode's preallocations.
318 */
0637c6f4
TT
319 if ((ei->i_reserved_data_blocks == 0) &&
320 (atomic_read(&inode->i_writecount) == 0))
d6014301 321 ext4_discard_preallocations(inode);
12219aea
AK
322}
323
e29136f8 324static int __check_block_validity(struct inode *inode, const char *func,
c398eda0
TT
325 unsigned int line,
326 struct ext4_map_blocks *map)
6fd058f7 327{
24676da4
TT
328 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
329 map->m_len)) {
c398eda0
TT
330 ext4_error_inode(inode, func, line, map->m_pblk,
331 "lblock %lu mapped to illegal pblock "
332 "(length %d)", (unsigned long) map->m_lblk,
333 map->m_len);
6fd058f7
TT
334 return -EIO;
335 }
336 return 0;
337}
338
e29136f8 339#define check_block_validity(inode, map) \
c398eda0 340 __check_block_validity((inode), __func__, __LINE__, (map))
e29136f8 341
55138e0b 342/*
1f94533d
TT
343 * Return the number of contiguous dirty pages in a given inode
344 * starting at page frame idx.
55138e0b
TT
345 */
346static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
347 unsigned int max_pages)
348{
349 struct address_space *mapping = inode->i_mapping;
350 pgoff_t index;
351 struct pagevec pvec;
352 pgoff_t num = 0;
353 int i, nr_pages, done = 0;
354
355 if (max_pages == 0)
356 return 0;
357 pagevec_init(&pvec, 0);
358 while (!done) {
359 index = idx;
360 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
361 PAGECACHE_TAG_DIRTY,
362 (pgoff_t)PAGEVEC_SIZE);
363 if (nr_pages == 0)
364 break;
365 for (i = 0; i < nr_pages; i++) {
366 struct page *page = pvec.pages[i];
367 struct buffer_head *bh, *head;
368
369 lock_page(page);
370 if (unlikely(page->mapping != mapping) ||
371 !PageDirty(page) ||
372 PageWriteback(page) ||
373 page->index != idx) {
374 done = 1;
375 unlock_page(page);
376 break;
377 }
1f94533d
TT
378 if (page_has_buffers(page)) {
379 bh = head = page_buffers(page);
380 do {
381 if (!buffer_delay(bh) &&
382 !buffer_unwritten(bh))
383 done = 1;
384 bh = bh->b_this_page;
385 } while (!done && (bh != head));
386 }
55138e0b
TT
387 unlock_page(page);
388 if (done)
389 break;
390 idx++;
391 num++;
659c6009
ES
392 if (num >= max_pages) {
393 done = 1;
55138e0b 394 break;
659c6009 395 }
55138e0b
TT
396 }
397 pagevec_release(&pvec);
398 }
399 return num;
400}
401
5356f261
AK
402/*
403 * Sets the BH_Da_Mapped bit on the buffer heads corresponding to the given map.
404 */
405static void set_buffers_da_mapped(struct inode *inode,
406 struct ext4_map_blocks *map)
407{
408 struct address_space *mapping = inode->i_mapping;
409 struct pagevec pvec;
410 int i, nr_pages;
411 pgoff_t index, end;
412
413 index = map->m_lblk >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
414 end = (map->m_lblk + map->m_len - 1) >>
415 (PAGE_CACHE_SHIFT - inode->i_blkbits);
416
417 pagevec_init(&pvec, 0);
418 while (index <= end) {
419 nr_pages = pagevec_lookup(&pvec, mapping, index,
420 min(end - index + 1,
421 (pgoff_t)PAGEVEC_SIZE));
422 if (nr_pages == 0)
423 break;
424 for (i = 0; i < nr_pages; i++) {
425 struct page *page = pvec.pages[i];
426 struct buffer_head *bh, *head;
427
428 if (unlikely(page->mapping != mapping) ||
429 !PageDirty(page))
430 break;
431
432 if (page_has_buffers(page)) {
433 bh = head = page_buffers(page);
434 do {
435 set_buffer_da_mapped(bh);
436 bh = bh->b_this_page;
437 } while (bh != head);
438 }
439 index++;
440 }
441 pagevec_release(&pvec);
442 }
443}
444
f5ab0d1f 445/*
e35fd660 446 * The ext4_map_blocks() function tries to look up the requested blocks,
2b2d6d01 447 * and returns if the blocks are already mapped.
f5ab0d1f 448 *
f5ab0d1f
MC
449 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
450 * and store the allocated blocks in the result buffer head and mark it
451 * mapped.
452 *
e35fd660
TT
453 * If file type is extents based, it will call ext4_ext_map_blocks(),
454 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
f5ab0d1f
MC
455 * based files
456 *
457 * On success, it returns the number of blocks being mapped or allocate.
458 * if create==0 and the blocks are pre-allocated and uninitialized block,
459 * the result buffer head is unmapped. If the create ==1, it will make sure
460 * the buffer head is mapped.
461 *
462 * It returns 0 if plain look up failed (blocks have not been allocated), in
df3ab170 463 * that case, buffer head is unmapped
f5ab0d1f
MC
464 *
465 * It returns the error in case of allocation failure.
466 */
e35fd660
TT
467int ext4_map_blocks(handle_t *handle, struct inode *inode,
468 struct ext4_map_blocks *map, int flags)
0e855ac8
AK
469{
470 int retval;
f5ab0d1f 471
e35fd660
TT
472 map->m_flags = 0;
473 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
474 "logical block %lu\n", inode->i_ino, flags, map->m_len,
475 (unsigned long) map->m_lblk);
4df3d265 476 /*
b920c755
TT
477 * Try to see if we can get the block without requesting a new
478 * file system block.
4df3d265
AK
479 */
480 down_read((&EXT4_I(inode)->i_data_sem));
12e9b892 481 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
a4e5d88b
DM
482 retval = ext4_ext_map_blocks(handle, inode, map, flags &
483 EXT4_GET_BLOCKS_KEEP_SIZE);
0e855ac8 484 } else {
a4e5d88b
DM
485 retval = ext4_ind_map_blocks(handle, inode, map, flags &
486 EXT4_GET_BLOCKS_KEEP_SIZE);
0e855ac8 487 }
4df3d265 488 up_read((&EXT4_I(inode)->i_data_sem));
f5ab0d1f 489
e35fd660 490 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
e29136f8 491 int ret = check_block_validity(inode, map);
6fd058f7
TT
492 if (ret != 0)
493 return ret;
494 }
495
f5ab0d1f 496 /* If it is only a block(s) look up */
c2177057 497 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
f5ab0d1f
MC
498 return retval;
499
500 /*
501 * Returns if the blocks have already allocated
502 *
503 * Note that if blocks have been preallocated
df3ab170 504 * ext4_ext_get_block() returns the create = 0
f5ab0d1f
MC
505 * with buffer head unmapped.
506 */
e35fd660 507 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
4df3d265
AK
508 return retval;
509
2a8964d6
AK
510 /*
511 * When we call get_blocks without the create flag, the
512 * BH_Unwritten flag could have gotten set if the blocks
513 * requested were part of a uninitialized extent. We need to
514 * clear this flag now that we are committed to convert all or
515 * part of the uninitialized extent to be an initialized
516 * extent. This is because we need to avoid the combination
517 * of BH_Unwritten and BH_Mapped flags being simultaneously
518 * set on the buffer_head.
519 */
e35fd660 520 map->m_flags &= ~EXT4_MAP_UNWRITTEN;
2a8964d6 521
4df3d265 522 /*
f5ab0d1f
MC
523 * New blocks allocate and/or writing to uninitialized extent
524 * will possibly result in updating i_data, so we take
525 * the write lock of i_data_sem, and call get_blocks()
526 * with create == 1 flag.
4df3d265
AK
527 */
528 down_write((&EXT4_I(inode)->i_data_sem));
d2a17637
MC
529
530 /*
531 * if the caller is from delayed allocation writeout path
532 * we have already reserved fs blocks for allocation
533 * let the underlying get_block() function know to
534 * avoid double accounting
535 */
c2177057 536 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
f2321097 537 ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
4df3d265
AK
538 /*
539 * We need to check for EXT4 here because migrate
540 * could have changed the inode type in between
541 */
12e9b892 542 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
e35fd660 543 retval = ext4_ext_map_blocks(handle, inode, map, flags);
0e855ac8 544 } else {
e35fd660 545 retval = ext4_ind_map_blocks(handle, inode, map, flags);
267e4db9 546
e35fd660 547 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
267e4db9
AK
548 /*
549 * We allocated new blocks which will result in
550 * i_data's format changing. Force the migrate
551 * to fail by clearing migrate flags
552 */
19f5fb7a 553 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
267e4db9 554 }
d2a17637 555
5f634d06
AK
556 /*
557 * Update reserved blocks/metadata blocks after successful
558 * block allocation which had been deferred till now. We don't
559 * support fallocate for non extent files. So we can update
560 * reserve space here.
561 */
562 if ((retval > 0) &&
1296cc85 563 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
5f634d06
AK
564 ext4_da_update_reserve_space(inode, retval, 1);
565 }
5356f261 566 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) {
f2321097 567 ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
2ac3b6e0 568
5356f261
AK
569 /* If we have successfully mapped the delayed allocated blocks,
570 * set the BH_Da_Mapped bit on them. Its important to do this
571 * under the protection of i_data_sem.
572 */
573 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
574 set_buffers_da_mapped(inode, map);
575 }
576
4df3d265 577 up_write((&EXT4_I(inode)->i_data_sem));
e35fd660 578 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
e29136f8 579 int ret = check_block_validity(inode, map);
6fd058f7
TT
580 if (ret != 0)
581 return ret;
582 }
0e855ac8
AK
583 return retval;
584}
585
f3bd1f3f
MC
586/* Maximum number of blocks we map for direct IO at once. */
587#define DIO_MAX_BLOCKS 4096
588
2ed88685
TT
589static int _ext4_get_block(struct inode *inode, sector_t iblock,
590 struct buffer_head *bh, int flags)
ac27a0ec 591{
3e4fdaf8 592 handle_t *handle = ext4_journal_current_handle();
2ed88685 593 struct ext4_map_blocks map;
7fb5409d 594 int ret = 0, started = 0;
f3bd1f3f 595 int dio_credits;
ac27a0ec 596
2ed88685
TT
597 map.m_lblk = iblock;
598 map.m_len = bh->b_size >> inode->i_blkbits;
599
600 if (flags && !handle) {
7fb5409d 601 /* Direct IO write... */
2ed88685
TT
602 if (map.m_len > DIO_MAX_BLOCKS)
603 map.m_len = DIO_MAX_BLOCKS;
604 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
f3bd1f3f 605 handle = ext4_journal_start(inode, dio_credits);
7fb5409d 606 if (IS_ERR(handle)) {
ac27a0ec 607 ret = PTR_ERR(handle);
2ed88685 608 return ret;
ac27a0ec 609 }
7fb5409d 610 started = 1;
ac27a0ec
DK
611 }
612
2ed88685 613 ret = ext4_map_blocks(handle, inode, &map, flags);
7fb5409d 614 if (ret > 0) {
2ed88685
TT
615 map_bh(bh, inode->i_sb, map.m_pblk);
616 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
617 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
7fb5409d 618 ret = 0;
ac27a0ec 619 }
7fb5409d
JK
620 if (started)
621 ext4_journal_stop(handle);
ac27a0ec
DK
622 return ret;
623}
624
2ed88685
TT
625int ext4_get_block(struct inode *inode, sector_t iblock,
626 struct buffer_head *bh, int create)
627{
628 return _ext4_get_block(inode, iblock, bh,
629 create ? EXT4_GET_BLOCKS_CREATE : 0);
630}
631
ac27a0ec
DK
632/*
633 * `handle' can be NULL if create is zero
634 */
617ba13b 635struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
725d26d3 636 ext4_lblk_t block, int create, int *errp)
ac27a0ec 637{
2ed88685
TT
638 struct ext4_map_blocks map;
639 struct buffer_head *bh;
ac27a0ec
DK
640 int fatal = 0, err;
641
642 J_ASSERT(handle != NULL || create == 0);
643
2ed88685
TT
644 map.m_lblk = block;
645 map.m_len = 1;
646 err = ext4_map_blocks(handle, inode, &map,
647 create ? EXT4_GET_BLOCKS_CREATE : 0);
ac27a0ec 648
2ed88685
TT
649 if (err < 0)
650 *errp = err;
651 if (err <= 0)
652 return NULL;
653 *errp = 0;
654
655 bh = sb_getblk(inode->i_sb, map.m_pblk);
656 if (!bh) {
657 *errp = -EIO;
658 return NULL;
ac27a0ec 659 }
2ed88685
TT
660 if (map.m_flags & EXT4_MAP_NEW) {
661 J_ASSERT(create != 0);
662 J_ASSERT(handle != NULL);
ac27a0ec 663
2ed88685
TT
664 /*
665 * Now that we do not always journal data, we should
666 * keep in mind whether this should always journal the
667 * new buffer as metadata. For now, regular file
668 * writes use ext4_get_block instead, so it's not a
669 * problem.
670 */
671 lock_buffer(bh);
672 BUFFER_TRACE(bh, "call get_create_access");
673 fatal = ext4_journal_get_create_access(handle, bh);
674 if (!fatal && !buffer_uptodate(bh)) {
675 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
676 set_buffer_uptodate(bh);
ac27a0ec 677 }
2ed88685
TT
678 unlock_buffer(bh);
679 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
680 err = ext4_handle_dirty_metadata(handle, inode, bh);
681 if (!fatal)
682 fatal = err;
683 } else {
684 BUFFER_TRACE(bh, "not a new buffer");
ac27a0ec 685 }
2ed88685
TT
686 if (fatal) {
687 *errp = fatal;
688 brelse(bh);
689 bh = NULL;
690 }
691 return bh;
ac27a0ec
DK
692}
693
617ba13b 694struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
725d26d3 695 ext4_lblk_t block, int create, int *err)
ac27a0ec 696{
af5bc92d 697 struct buffer_head *bh;
ac27a0ec 698
617ba13b 699 bh = ext4_getblk(handle, inode, block, create, err);
ac27a0ec
DK
700 if (!bh)
701 return bh;
702 if (buffer_uptodate(bh))
703 return bh;
65299a3b 704 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
ac27a0ec
DK
705 wait_on_buffer(bh);
706 if (buffer_uptodate(bh))
707 return bh;
708 put_bh(bh);
709 *err = -EIO;
710 return NULL;
711}
712
af5bc92d
TT
713static int walk_page_buffers(handle_t *handle,
714 struct buffer_head *head,
715 unsigned from,
716 unsigned to,
717 int *partial,
718 int (*fn)(handle_t *handle,
719 struct buffer_head *bh))
ac27a0ec
DK
720{
721 struct buffer_head *bh;
722 unsigned block_start, block_end;
723 unsigned blocksize = head->b_size;
724 int err, ret = 0;
725 struct buffer_head *next;
726
af5bc92d
TT
727 for (bh = head, block_start = 0;
728 ret == 0 && (bh != head || !block_start);
de9a55b8 729 block_start = block_end, bh = next) {
ac27a0ec
DK
730 next = bh->b_this_page;
731 block_end = block_start + blocksize;
732 if (block_end <= from || block_start >= to) {
733 if (partial && !buffer_uptodate(bh))
734 *partial = 1;
735 continue;
736 }
737 err = (*fn)(handle, bh);
738 if (!ret)
739 ret = err;
740 }
741 return ret;
742}
743
744/*
745 * To preserve ordering, it is essential that the hole instantiation and
746 * the data write be encapsulated in a single transaction. We cannot
617ba13b 747 * close off a transaction and start a new one between the ext4_get_block()
dab291af 748 * and the commit_write(). So doing the jbd2_journal_start at the start of
ac27a0ec
DK
749 * prepare_write() is the right place.
750 *
617ba13b
MC
751 * Also, this function can nest inside ext4_writepage() ->
752 * block_write_full_page(). In that case, we *know* that ext4_writepage()
ac27a0ec
DK
753 * has generated enough buffer credits to do the whole page. So we won't
754 * block on the journal in that case, which is good, because the caller may
755 * be PF_MEMALLOC.
756 *
617ba13b 757 * By accident, ext4 can be reentered when a transaction is open via
ac27a0ec
DK
758 * quota file writes. If we were to commit the transaction while thus
759 * reentered, there can be a deadlock - we would be holding a quota
760 * lock, and the commit would never complete if another thread had a
761 * transaction open and was blocking on the quota lock - a ranking
762 * violation.
763 *
dab291af 764 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
ac27a0ec
DK
765 * will _not_ run commit under these circumstances because handle->h_ref
766 * is elevated. We'll still have enough credits for the tiny quotafile
767 * write.
768 */
769static int do_journal_get_write_access(handle_t *handle,
de9a55b8 770 struct buffer_head *bh)
ac27a0ec 771{
56d35a4c
JK
772 int dirty = buffer_dirty(bh);
773 int ret;
774
ac27a0ec
DK
775 if (!buffer_mapped(bh) || buffer_freed(bh))
776 return 0;
56d35a4c 777 /*
ebdec241 778 * __block_write_begin() could have dirtied some buffers. Clean
56d35a4c
JK
779 * the dirty bit as jbd2_journal_get_write_access() could complain
780 * otherwise about fs integrity issues. Setting of the dirty bit
ebdec241 781 * by __block_write_begin() isn't a real problem here as we clear
56d35a4c
JK
782 * the bit before releasing a page lock and thus writeback cannot
783 * ever write the buffer.
784 */
785 if (dirty)
786 clear_buffer_dirty(bh);
787 ret = ext4_journal_get_write_access(handle, bh);
788 if (!ret && dirty)
789 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
790 return ret;
ac27a0ec
DK
791}
792
744692dc
JZ
793static int ext4_get_block_write(struct inode *inode, sector_t iblock,
794 struct buffer_head *bh_result, int create);
bfc1af65 795static int ext4_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
796 loff_t pos, unsigned len, unsigned flags,
797 struct page **pagep, void **fsdata)
ac27a0ec 798{
af5bc92d 799 struct inode *inode = mapping->host;
1938a150 800 int ret, needed_blocks;
ac27a0ec
DK
801 handle_t *handle;
802 int retries = 0;
af5bc92d 803 struct page *page;
de9a55b8 804 pgoff_t index;
af5bc92d 805 unsigned from, to;
bfc1af65 806
9bffad1e 807 trace_ext4_write_begin(inode, pos, len, flags);
1938a150
AK
808 /*
809 * Reserve one block more for addition to orphan list in case
810 * we allocate blocks but write fails for some reason
811 */
812 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
de9a55b8 813 index = pos >> PAGE_CACHE_SHIFT;
af5bc92d
TT
814 from = pos & (PAGE_CACHE_SIZE - 1);
815 to = from + len;
ac27a0ec
DK
816
817retry:
af5bc92d
TT
818 handle = ext4_journal_start(inode, needed_blocks);
819 if (IS_ERR(handle)) {
820 ret = PTR_ERR(handle);
821 goto out;
7479d2b9 822 }
ac27a0ec 823
ebd3610b
JK
824 /* We cannot recurse into the filesystem as the transaction is already
825 * started */
826 flags |= AOP_FLAG_NOFS;
827
54566b2c 828 page = grab_cache_page_write_begin(mapping, index, flags);
cf108bca
JK
829 if (!page) {
830 ext4_journal_stop(handle);
831 ret = -ENOMEM;
832 goto out;
833 }
834 *pagep = page;
835
744692dc 836 if (ext4_should_dioread_nolock(inode))
6e1db88d 837 ret = __block_write_begin(page, pos, len, ext4_get_block_write);
744692dc 838 else
6e1db88d 839 ret = __block_write_begin(page, pos, len, ext4_get_block);
bfc1af65
NP
840
841 if (!ret && ext4_should_journal_data(inode)) {
ac27a0ec
DK
842 ret = walk_page_buffers(handle, page_buffers(page),
843 from, to, NULL, do_journal_get_write_access);
844 }
bfc1af65
NP
845
846 if (ret) {
af5bc92d 847 unlock_page(page);
af5bc92d 848 page_cache_release(page);
ae4d5372 849 /*
6e1db88d 850 * __block_write_begin may have instantiated a few blocks
ae4d5372
AK
851 * outside i_size. Trim these off again. Don't need
852 * i_size_read because we hold i_mutex.
1938a150
AK
853 *
854 * Add inode to orphan list in case we crash before
855 * truncate finishes
ae4d5372 856 */
ffacfa7a 857 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1938a150
AK
858 ext4_orphan_add(handle, inode);
859
860 ext4_journal_stop(handle);
861 if (pos + len > inode->i_size) {
b9a4207d 862 ext4_truncate_failed_write(inode);
de9a55b8 863 /*
ffacfa7a 864 * If truncate failed early the inode might
1938a150
AK
865 * still be on the orphan list; we need to
866 * make sure the inode is removed from the
867 * orphan list in that case.
868 */
869 if (inode->i_nlink)
870 ext4_orphan_del(NULL, inode);
871 }
bfc1af65
NP
872 }
873
617ba13b 874 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
ac27a0ec 875 goto retry;
7479d2b9 876out:
ac27a0ec
DK
877 return ret;
878}
879
bfc1af65
NP
880/* For write_end() in data=journal mode */
881static int write_end_fn(handle_t *handle, struct buffer_head *bh)
ac27a0ec
DK
882{
883 if (!buffer_mapped(bh) || buffer_freed(bh))
884 return 0;
885 set_buffer_uptodate(bh);
0390131b 886 return ext4_handle_dirty_metadata(handle, NULL, bh);
ac27a0ec
DK
887}
888
f8514083 889static int ext4_generic_write_end(struct file *file,
de9a55b8
TT
890 struct address_space *mapping,
891 loff_t pos, unsigned len, unsigned copied,
892 struct page *page, void *fsdata)
f8514083
AK
893{
894 int i_size_changed = 0;
895 struct inode *inode = mapping->host;
896 handle_t *handle = ext4_journal_current_handle();
897
898 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
899
900 /*
901 * No need to use i_size_read() here, the i_size
902 * cannot change under us because we hold i_mutex.
903 *
904 * But it's important to update i_size while still holding page lock:
905 * page writeout could otherwise come in and zero beyond i_size.
906 */
907 if (pos + copied > inode->i_size) {
908 i_size_write(inode, pos + copied);
909 i_size_changed = 1;
910 }
911
912 if (pos + copied > EXT4_I(inode)->i_disksize) {
913 /* We need to mark inode dirty even if
914 * new_i_size is less that inode->i_size
915 * bu greater than i_disksize.(hint delalloc)
916 */
917 ext4_update_i_disksize(inode, (pos + copied));
918 i_size_changed = 1;
919 }
920 unlock_page(page);
921 page_cache_release(page);
922
923 /*
924 * Don't mark the inode dirty under page lock. First, it unnecessarily
925 * makes the holding time of page lock longer. Second, it forces lock
926 * ordering of page lock and transaction start for journaling
927 * filesystems.
928 */
929 if (i_size_changed)
930 ext4_mark_inode_dirty(handle, inode);
931
932 return copied;
933}
934
ac27a0ec
DK
935/*
936 * We need to pick up the new inode size which generic_commit_write gave us
937 * `file' can be NULL - eg, when called from page_symlink().
938 *
617ba13b 939 * ext4 never places buffers on inode->i_mapping->private_list. metadata
ac27a0ec
DK
940 * buffers are managed internally.
941 */
bfc1af65 942static int ext4_ordered_write_end(struct file *file,
de9a55b8
TT
943 struct address_space *mapping,
944 loff_t pos, unsigned len, unsigned copied,
945 struct page *page, void *fsdata)
ac27a0ec 946{
617ba13b 947 handle_t *handle = ext4_journal_current_handle();
cf108bca 948 struct inode *inode = mapping->host;
ac27a0ec
DK
949 int ret = 0, ret2;
950
9bffad1e 951 trace_ext4_ordered_write_end(inode, pos, len, copied);
678aaf48 952 ret = ext4_jbd2_file_inode(handle, inode);
ac27a0ec
DK
953
954 if (ret == 0) {
f8514083 955 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
bfc1af65 956 page, fsdata);
f8a87d89 957 copied = ret2;
ffacfa7a 958 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
959 /* if we have allocated more blocks and copied
960 * less. We will have blocks allocated outside
961 * inode->i_size. So truncate them
962 */
963 ext4_orphan_add(handle, inode);
f8a87d89
RK
964 if (ret2 < 0)
965 ret = ret2;
09e0834f
AF
966 } else {
967 unlock_page(page);
968 page_cache_release(page);
ac27a0ec 969 }
09e0834f 970
617ba13b 971 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
972 if (!ret)
973 ret = ret2;
bfc1af65 974
f8514083 975 if (pos + len > inode->i_size) {
b9a4207d 976 ext4_truncate_failed_write(inode);
de9a55b8 977 /*
ffacfa7a 978 * If truncate failed early the inode might still be
f8514083
AK
979 * on the orphan list; we need to make sure the inode
980 * is removed from the orphan list in that case.
981 */
982 if (inode->i_nlink)
983 ext4_orphan_del(NULL, inode);
984 }
985
986
bfc1af65 987 return ret ? ret : copied;
ac27a0ec
DK
988}
989
bfc1af65 990static int ext4_writeback_write_end(struct file *file,
de9a55b8
TT
991 struct address_space *mapping,
992 loff_t pos, unsigned len, unsigned copied,
993 struct page *page, void *fsdata)
ac27a0ec 994{
617ba13b 995 handle_t *handle = ext4_journal_current_handle();
cf108bca 996 struct inode *inode = mapping->host;
ac27a0ec 997 int ret = 0, ret2;
ac27a0ec 998
9bffad1e 999 trace_ext4_writeback_write_end(inode, pos, len, copied);
f8514083 1000 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
bfc1af65 1001 page, fsdata);
f8a87d89 1002 copied = ret2;
ffacfa7a 1003 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1004 /* if we have allocated more blocks and copied
1005 * less. We will have blocks allocated outside
1006 * inode->i_size. So truncate them
1007 */
1008 ext4_orphan_add(handle, inode);
1009
f8a87d89
RK
1010 if (ret2 < 0)
1011 ret = ret2;
ac27a0ec 1012
617ba13b 1013 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1014 if (!ret)
1015 ret = ret2;
bfc1af65 1016
f8514083 1017 if (pos + len > inode->i_size) {
b9a4207d 1018 ext4_truncate_failed_write(inode);
de9a55b8 1019 /*
ffacfa7a 1020 * If truncate failed early the inode might still be
f8514083
AK
1021 * on the orphan list; we need to make sure the inode
1022 * is removed from the orphan list in that case.
1023 */
1024 if (inode->i_nlink)
1025 ext4_orphan_del(NULL, inode);
1026 }
1027
bfc1af65 1028 return ret ? ret : copied;
ac27a0ec
DK
1029}
1030
bfc1af65 1031static int ext4_journalled_write_end(struct file *file,
de9a55b8
TT
1032 struct address_space *mapping,
1033 loff_t pos, unsigned len, unsigned copied,
1034 struct page *page, void *fsdata)
ac27a0ec 1035{
617ba13b 1036 handle_t *handle = ext4_journal_current_handle();
bfc1af65 1037 struct inode *inode = mapping->host;
ac27a0ec
DK
1038 int ret = 0, ret2;
1039 int partial = 0;
bfc1af65 1040 unsigned from, to;
cf17fea6 1041 loff_t new_i_size;
ac27a0ec 1042
9bffad1e 1043 trace_ext4_journalled_write_end(inode, pos, len, copied);
bfc1af65
NP
1044 from = pos & (PAGE_CACHE_SIZE - 1);
1045 to = from + len;
1046
441c8508
CW
1047 BUG_ON(!ext4_handle_valid(handle));
1048
bfc1af65
NP
1049 if (copied < len) {
1050 if (!PageUptodate(page))
1051 copied = 0;
1052 page_zero_new_buffers(page, from+copied, to);
1053 }
ac27a0ec
DK
1054
1055 ret = walk_page_buffers(handle, page_buffers(page), from,
bfc1af65 1056 to, &partial, write_end_fn);
ac27a0ec
DK
1057 if (!partial)
1058 SetPageUptodate(page);
cf17fea6
AK
1059 new_i_size = pos + copied;
1060 if (new_i_size > inode->i_size)
bfc1af65 1061 i_size_write(inode, pos+copied);
19f5fb7a 1062 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2d859db3 1063 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
cf17fea6
AK
1064 if (new_i_size > EXT4_I(inode)->i_disksize) {
1065 ext4_update_i_disksize(inode, new_i_size);
617ba13b 1066 ret2 = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
1067 if (!ret)
1068 ret = ret2;
1069 }
bfc1af65 1070
cf108bca 1071 unlock_page(page);
f8514083 1072 page_cache_release(page);
ffacfa7a 1073 if (pos + len > inode->i_size && ext4_can_truncate(inode))
f8514083
AK
1074 /* if we have allocated more blocks and copied
1075 * less. We will have blocks allocated outside
1076 * inode->i_size. So truncate them
1077 */
1078 ext4_orphan_add(handle, inode);
1079
617ba13b 1080 ret2 = ext4_journal_stop(handle);
ac27a0ec
DK
1081 if (!ret)
1082 ret = ret2;
f8514083 1083 if (pos + len > inode->i_size) {
b9a4207d 1084 ext4_truncate_failed_write(inode);
de9a55b8 1085 /*
ffacfa7a 1086 * If truncate failed early the inode might still be
f8514083
AK
1087 * on the orphan list; we need to make sure the inode
1088 * is removed from the orphan list in that case.
1089 */
1090 if (inode->i_nlink)
1091 ext4_orphan_del(NULL, inode);
1092 }
bfc1af65
NP
1093
1094 return ret ? ret : copied;
ac27a0ec 1095}
d2a17637 1096
9d0be502 1097/*
7b415bf6 1098 * Reserve a single cluster located at lblock
9d0be502 1099 */
01f49d0b 1100static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
d2a17637 1101{
030ba6bc 1102 int retries = 0;
60e58e0f 1103 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1104 struct ext4_inode_info *ei = EXT4_I(inode);
7b415bf6 1105 unsigned int md_needed;
5dd4056d 1106 int ret;
d2a17637
MC
1107
1108 /*
1109 * recalculate the amount of metadata blocks to reserve
1110 * in order to allocate nrblocks
1111 * worse case is one extent per block
1112 */
030ba6bc 1113repeat:
0637c6f4 1114 spin_lock(&ei->i_block_reservation_lock);
7b415bf6
AK
1115 md_needed = EXT4_NUM_B2C(sbi,
1116 ext4_calc_metadata_amount(inode, lblock));
f8ec9d68 1117 trace_ext4_da_reserve_space(inode, md_needed);
0637c6f4 1118 spin_unlock(&ei->i_block_reservation_lock);
d2a17637 1119
60e58e0f 1120 /*
72b8ab9d
ES
1121 * We will charge metadata quota at writeout time; this saves
1122 * us from metadata over-estimation, though we may go over by
1123 * a small amount in the end. Here we just reserve for data.
60e58e0f 1124 */
7b415bf6 1125 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
5dd4056d
CH
1126 if (ret)
1127 return ret;
72b8ab9d
ES
1128 /*
1129 * We do still charge estimated metadata to the sb though;
1130 * we cannot afford to run out of free blocks.
1131 */
e7d5f315 1132 if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
7b415bf6 1133 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
030ba6bc
AK
1134 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1135 yield();
1136 goto repeat;
1137 }
d2a17637
MC
1138 return -ENOSPC;
1139 }
0637c6f4 1140 spin_lock(&ei->i_block_reservation_lock);
9d0be502 1141 ei->i_reserved_data_blocks++;
0637c6f4
TT
1142 ei->i_reserved_meta_blocks += md_needed;
1143 spin_unlock(&ei->i_block_reservation_lock);
39bc680a 1144
d2a17637
MC
1145 return 0; /* success */
1146}
1147
12219aea 1148static void ext4_da_release_space(struct inode *inode, int to_free)
d2a17637
MC
1149{
1150 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
0637c6f4 1151 struct ext4_inode_info *ei = EXT4_I(inode);
d2a17637 1152
cd213226
MC
1153 if (!to_free)
1154 return; /* Nothing to release, exit */
1155
d2a17637 1156 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
cd213226 1157
5a58ec87 1158 trace_ext4_da_release_space(inode, to_free);
0637c6f4 1159 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
cd213226 1160 /*
0637c6f4
TT
1161 * if there aren't enough reserved blocks, then the
1162 * counter is messed up somewhere. Since this
1163 * function is called from invalidate page, it's
1164 * harmless to return without any action.
cd213226 1165 */
0637c6f4
TT
1166 ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
1167 "ino %lu, to_free %d with only %d reserved "
1168 "data blocks\n", inode->i_ino, to_free,
1169 ei->i_reserved_data_blocks);
1170 WARN_ON(1);
1171 to_free = ei->i_reserved_data_blocks;
cd213226 1172 }
0637c6f4 1173 ei->i_reserved_data_blocks -= to_free;
cd213226 1174
0637c6f4
TT
1175 if (ei->i_reserved_data_blocks == 0) {
1176 /*
1177 * We can release all of the reserved metadata blocks
1178 * only when we have written all of the delayed
1179 * allocation blocks.
7b415bf6
AK
1180 * Note that in case of bigalloc, i_reserved_meta_blocks,
1181 * i_reserved_data_blocks, etc. refer to number of clusters.
0637c6f4 1182 */
57042651 1183 percpu_counter_sub(&sbi->s_dirtyclusters_counter,
72b8ab9d 1184 ei->i_reserved_meta_blocks);
ee5f4d9c 1185 ei->i_reserved_meta_blocks = 0;
9d0be502 1186 ei->i_da_metadata_calc_len = 0;
0637c6f4 1187 }
d2a17637 1188
72b8ab9d 1189 /* update fs dirty data blocks counter */
57042651 1190 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
d2a17637 1191
d2a17637 1192 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
60e58e0f 1193
7b415bf6 1194 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
d2a17637
MC
1195}
1196
1197static void ext4_da_page_release_reservation(struct page *page,
de9a55b8 1198 unsigned long offset)
d2a17637
MC
1199{
1200 int to_release = 0;
1201 struct buffer_head *head, *bh;
1202 unsigned int curr_off = 0;
7b415bf6
AK
1203 struct inode *inode = page->mapping->host;
1204 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1205 int num_clusters;
d2a17637
MC
1206
1207 head = page_buffers(page);
1208 bh = head;
1209 do {
1210 unsigned int next_off = curr_off + bh->b_size;
1211
1212 if ((offset <= curr_off) && (buffer_delay(bh))) {
1213 to_release++;
1214 clear_buffer_delay(bh);
5356f261 1215 clear_buffer_da_mapped(bh);
d2a17637
MC
1216 }
1217 curr_off = next_off;
1218 } while ((bh = bh->b_this_page) != head);
7b415bf6
AK
1219
1220 /* If we have released all the blocks belonging to a cluster, then we
1221 * need to release the reserved space for that cluster. */
1222 num_clusters = EXT4_NUM_B2C(sbi, to_release);
1223 while (num_clusters > 0) {
1224 ext4_fsblk_t lblk;
1225 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1226 ((num_clusters - 1) << sbi->s_cluster_bits);
1227 if (sbi->s_cluster_ratio == 1 ||
1228 !ext4_find_delalloc_cluster(inode, lblk, 1))
1229 ext4_da_release_space(inode, 1);
1230
1231 num_clusters--;
1232 }
d2a17637 1233}
ac27a0ec 1234
64769240
AT
1235/*
1236 * Delayed allocation stuff
1237 */
1238
64769240
AT
1239/*
1240 * mpage_da_submit_io - walks through extent of pages and try to write
a1d6cc56 1241 * them with writepage() call back
64769240
AT
1242 *
1243 * @mpd->inode: inode
1244 * @mpd->first_page: first page of the extent
1245 * @mpd->next_page: page after the last page of the extent
64769240
AT
1246 *
1247 * By the time mpage_da_submit_io() is called we expect all blocks
1248 * to be allocated. this may be wrong if allocation failed.
1249 *
1250 * As pages are already locked by write_cache_pages(), we can't use it
1251 */
1de3e3df
TT
1252static int mpage_da_submit_io(struct mpage_da_data *mpd,
1253 struct ext4_map_blocks *map)
64769240 1254{
791b7f08
AK
1255 struct pagevec pvec;
1256 unsigned long index, end;
1257 int ret = 0, err, nr_pages, i;
1258 struct inode *inode = mpd->inode;
1259 struct address_space *mapping = inode->i_mapping;
cb20d518 1260 loff_t size = i_size_read(inode);
3ecdb3a1
TT
1261 unsigned int len, block_start;
1262 struct buffer_head *bh, *page_bufs = NULL;
cb20d518 1263 int journal_data = ext4_should_journal_data(inode);
1de3e3df 1264 sector_t pblock = 0, cur_logical = 0;
bd2d0210 1265 struct ext4_io_submit io_submit;
64769240
AT
1266
1267 BUG_ON(mpd->next_page <= mpd->first_page);
bd2d0210 1268 memset(&io_submit, 0, sizeof(io_submit));
791b7f08
AK
1269 /*
1270 * We need to start from the first_page to the next_page - 1
1271 * to make sure we also write the mapped dirty buffer_heads.
8dc207c0 1272 * If we look at mpd->b_blocknr we would only be looking
791b7f08
AK
1273 * at the currently mapped buffer_heads.
1274 */
64769240
AT
1275 index = mpd->first_page;
1276 end = mpd->next_page - 1;
1277
791b7f08 1278 pagevec_init(&pvec, 0);
64769240 1279 while (index <= end) {
791b7f08 1280 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
64769240
AT
1281 if (nr_pages == 0)
1282 break;
1283 for (i = 0; i < nr_pages; i++) {
97498956 1284 int commit_write = 0, skip_page = 0;
64769240
AT
1285 struct page *page = pvec.pages[i];
1286
791b7f08
AK
1287 index = page->index;
1288 if (index > end)
1289 break;
cb20d518
TT
1290
1291 if (index == size >> PAGE_CACHE_SHIFT)
1292 len = size & ~PAGE_CACHE_MASK;
1293 else
1294 len = PAGE_CACHE_SIZE;
1de3e3df
TT
1295 if (map) {
1296 cur_logical = index << (PAGE_CACHE_SHIFT -
1297 inode->i_blkbits);
1298 pblock = map->m_pblk + (cur_logical -
1299 map->m_lblk);
1300 }
791b7f08
AK
1301 index++;
1302
1303 BUG_ON(!PageLocked(page));
1304 BUG_ON(PageWriteback(page));
1305
64769240 1306 /*
cb20d518
TT
1307 * If the page does not have buffers (for
1308 * whatever reason), try to create them using
a107e5a3 1309 * __block_write_begin. If this fails,
97498956 1310 * skip the page and move on.
64769240 1311 */
cb20d518 1312 if (!page_has_buffers(page)) {
a107e5a3 1313 if (__block_write_begin(page, 0, len,
cb20d518 1314 noalloc_get_block_write)) {
97498956 1315 skip_page:
cb20d518
TT
1316 unlock_page(page);
1317 continue;
1318 }
1319 commit_write = 1;
1320 }
64769240 1321
3ecdb3a1
TT
1322 bh = page_bufs = page_buffers(page);
1323 block_start = 0;
64769240 1324 do {
1de3e3df 1325 if (!bh)
97498956 1326 goto skip_page;
1de3e3df
TT
1327 if (map && (cur_logical >= map->m_lblk) &&
1328 (cur_logical <= (map->m_lblk +
1329 (map->m_len - 1)))) {
29fa89d0
AK
1330 if (buffer_delay(bh)) {
1331 clear_buffer_delay(bh);
1332 bh->b_blocknr = pblock;
29fa89d0 1333 }
5356f261
AK
1334 if (buffer_da_mapped(bh))
1335 clear_buffer_da_mapped(bh);
1de3e3df
TT
1336 if (buffer_unwritten(bh) ||
1337 buffer_mapped(bh))
1338 BUG_ON(bh->b_blocknr != pblock);
1339 if (map->m_flags & EXT4_MAP_UNINIT)
1340 set_buffer_uninit(bh);
1341 clear_buffer_unwritten(bh);
1342 }
29fa89d0 1343
13a79a47
YY
1344 /*
1345 * skip page if block allocation undone and
1346 * block is dirty
1347 */
1348 if (ext4_bh_delay_or_unwritten(NULL, bh))
97498956 1349 skip_page = 1;
3ecdb3a1
TT
1350 bh = bh->b_this_page;
1351 block_start += bh->b_size;
64769240
AT
1352 cur_logical++;
1353 pblock++;
1de3e3df
TT
1354 } while (bh != page_bufs);
1355
97498956
TT
1356 if (skip_page)
1357 goto skip_page;
cb20d518
TT
1358
1359 if (commit_write)
1360 /* mark the buffer_heads as dirty & uptodate */
1361 block_commit_write(page, 0, len);
1362
97498956 1363 clear_page_dirty_for_io(page);
bd2d0210
TT
1364 /*
1365 * Delalloc doesn't support data journalling,
1366 * but eventually maybe we'll lift this
1367 * restriction.
1368 */
1369 if (unlikely(journal_data && PageChecked(page)))
cb20d518 1370 err = __ext4_journalled_writepage(page, len);
1449032b 1371 else if (test_opt(inode->i_sb, MBLK_IO_SUBMIT))
bd2d0210
TT
1372 err = ext4_bio_write_page(&io_submit, page,
1373 len, mpd->wbc);
9dd75f1f
TT
1374 else if (buffer_uninit(page_bufs)) {
1375 ext4_set_bh_endio(page_bufs, inode);
1376 err = block_write_full_page_endio(page,
1377 noalloc_get_block_write,
1378 mpd->wbc, ext4_end_io_buffer_write);
1379 } else
1449032b
TT
1380 err = block_write_full_page(page,
1381 noalloc_get_block_write, mpd->wbc);
cb20d518
TT
1382
1383 if (!err)
a1d6cc56 1384 mpd->pages_written++;
64769240
AT
1385 /*
1386 * In error case, we have to continue because
1387 * remaining pages are still locked
64769240
AT
1388 */
1389 if (ret == 0)
1390 ret = err;
64769240
AT
1391 }
1392 pagevec_release(&pvec);
1393 }
bd2d0210 1394 ext4_io_submit(&io_submit);
64769240 1395 return ret;
64769240
AT
1396}
1397
c7f5938a 1398static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd)
c4a0c46e
AK
1399{
1400 int nr_pages, i;
1401 pgoff_t index, end;
1402 struct pagevec pvec;
1403 struct inode *inode = mpd->inode;
1404 struct address_space *mapping = inode->i_mapping;
1405
c7f5938a
CW
1406 index = mpd->first_page;
1407 end = mpd->next_page - 1;
c4a0c46e
AK
1408 while (index <= end) {
1409 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1410 if (nr_pages == 0)
1411 break;
1412 for (i = 0; i < nr_pages; i++) {
1413 struct page *page = pvec.pages[i];
9b1d0998 1414 if (page->index > end)
c4a0c46e 1415 break;
c4a0c46e
AK
1416 BUG_ON(!PageLocked(page));
1417 BUG_ON(PageWriteback(page));
1418 block_invalidatepage(page, 0);
1419 ClearPageUptodate(page);
1420 unlock_page(page);
1421 }
9b1d0998
JK
1422 index = pvec.pages[nr_pages - 1]->index + 1;
1423 pagevec_release(&pvec);
c4a0c46e
AK
1424 }
1425 return;
1426}
1427
df22291f
AK
1428static void ext4_print_free_blocks(struct inode *inode)
1429{
1430 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1693918e 1431 printk(KERN_CRIT "Total free blocks count %lld\n",
5dee5437
TT
1432 EXT4_C2B(EXT4_SB(inode->i_sb),
1433 ext4_count_free_clusters(inode->i_sb)));
1693918e
TT
1434 printk(KERN_CRIT "Free/Dirty block details\n");
1435 printk(KERN_CRIT "free_blocks=%lld\n",
57042651
TT
1436 (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1437 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1693918e 1438 printk(KERN_CRIT "dirty_blocks=%lld\n",
7b415bf6
AK
1439 (long long) EXT4_C2B(EXT4_SB(inode->i_sb),
1440 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1693918e
TT
1441 printk(KERN_CRIT "Block reservation details\n");
1442 printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
1443 EXT4_I(inode)->i_reserved_data_blocks);
1444 printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
1445 EXT4_I(inode)->i_reserved_meta_blocks);
df22291f
AK
1446 return;
1447}
1448
64769240 1449/*
5a87b7a5
TT
1450 * mpage_da_map_and_submit - go through given space, map them
1451 * if necessary, and then submit them for I/O
64769240 1452 *
8dc207c0 1453 * @mpd - bh describing space
64769240
AT
1454 *
1455 * The function skips space we know is already mapped to disk blocks.
1456 *
64769240 1457 */
5a87b7a5 1458static void mpage_da_map_and_submit(struct mpage_da_data *mpd)
64769240 1459{
2ac3b6e0 1460 int err, blks, get_blocks_flags;
1de3e3df 1461 struct ext4_map_blocks map, *mapp = NULL;
2fa3cdfb
TT
1462 sector_t next = mpd->b_blocknr;
1463 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
1464 loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
1465 handle_t *handle = NULL;
64769240
AT
1466
1467 /*
5a87b7a5
TT
1468 * If the blocks are mapped already, or we couldn't accumulate
1469 * any blocks, then proceed immediately to the submission stage.
2fa3cdfb 1470 */
5a87b7a5
TT
1471 if ((mpd->b_size == 0) ||
1472 ((mpd->b_state & (1 << BH_Mapped)) &&
1473 !(mpd->b_state & (1 << BH_Delay)) &&
1474 !(mpd->b_state & (1 << BH_Unwritten))))
1475 goto submit_io;
2fa3cdfb
TT
1476
1477 handle = ext4_journal_current_handle();
1478 BUG_ON(!handle);
1479
79ffab34 1480 /*
79e83036 1481 * Call ext4_map_blocks() to allocate any delayed allocation
2ac3b6e0
TT
1482 * blocks, or to convert an uninitialized extent to be
1483 * initialized (in the case where we have written into
1484 * one or more preallocated blocks).
1485 *
1486 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
1487 * indicate that we are on the delayed allocation path. This
1488 * affects functions in many different parts of the allocation
1489 * call path. This flag exists primarily because we don't
79e83036 1490 * want to change *many* call functions, so ext4_map_blocks()
f2321097 1491 * will set the EXT4_STATE_DELALLOC_RESERVED flag once the
2ac3b6e0
TT
1492 * inode's allocation semaphore is taken.
1493 *
1494 * If the blocks in questions were delalloc blocks, set
1495 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
1496 * variables are updated after the blocks have been allocated.
79ffab34 1497 */
2ed88685
TT
1498 map.m_lblk = next;
1499 map.m_len = max_blocks;
1296cc85 1500 get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
744692dc
JZ
1501 if (ext4_should_dioread_nolock(mpd->inode))
1502 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2ac3b6e0 1503 if (mpd->b_state & (1 << BH_Delay))
1296cc85
AK
1504 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
1505
2ed88685 1506 blks = ext4_map_blocks(handle, mpd->inode, &map, get_blocks_flags);
2fa3cdfb 1507 if (blks < 0) {
e3570639
ES
1508 struct super_block *sb = mpd->inode->i_sb;
1509
2fa3cdfb 1510 err = blks;
ed5bde0b 1511 /*
5a87b7a5 1512 * If get block returns EAGAIN or ENOSPC and there
97498956
TT
1513 * appears to be free blocks we will just let
1514 * mpage_da_submit_io() unlock all of the pages.
c4a0c46e
AK
1515 */
1516 if (err == -EAGAIN)
5a87b7a5 1517 goto submit_io;
df22291f 1518
5dee5437 1519 if (err == -ENOSPC && ext4_count_free_clusters(sb)) {
df22291f 1520 mpd->retval = err;
5a87b7a5 1521 goto submit_io;
df22291f
AK
1522 }
1523
c4a0c46e 1524 /*
ed5bde0b
TT
1525 * get block failure will cause us to loop in
1526 * writepages, because a_ops->writepage won't be able
1527 * to make progress. The page will be redirtied by
1528 * writepage and writepages will again try to write
1529 * the same.
c4a0c46e 1530 */
e3570639
ES
1531 if (!(EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)) {
1532 ext4_msg(sb, KERN_CRIT,
1533 "delayed block allocation failed for inode %lu "
1534 "at logical offset %llu with max blocks %zd "
1535 "with error %d", mpd->inode->i_ino,
1536 (unsigned long long) next,
1537 mpd->b_size >> mpd->inode->i_blkbits, err);
1538 ext4_msg(sb, KERN_CRIT,
1539 "This should not happen!! Data will be lost\n");
1540 if (err == -ENOSPC)
1541 ext4_print_free_blocks(mpd->inode);
030ba6bc 1542 }
2fa3cdfb 1543 /* invalidate all the pages */
c7f5938a 1544 ext4_da_block_invalidatepages(mpd);
e0fd9b90
CW
1545
1546 /* Mark this page range as having been completed */
1547 mpd->io_done = 1;
5a87b7a5 1548 return;
c4a0c46e 1549 }
2fa3cdfb
TT
1550 BUG_ON(blks == 0);
1551
1de3e3df 1552 mapp = &map;
2ed88685
TT
1553 if (map.m_flags & EXT4_MAP_NEW) {
1554 struct block_device *bdev = mpd->inode->i_sb->s_bdev;
1555 int i;
64769240 1556
2ed88685
TT
1557 for (i = 0; i < map.m_len; i++)
1558 unmap_underlying_metadata(bdev, map.m_pblk + i);
64769240 1559
decbd919
TT
1560 if (ext4_should_order_data(mpd->inode)) {
1561 err = ext4_jbd2_file_inode(handle, mpd->inode);
8de49e67 1562 if (err) {
decbd919 1563 /* Only if the journal is aborted */
8de49e67
KM
1564 mpd->retval = err;
1565 goto submit_io;
1566 }
decbd919 1567 }
2fa3cdfb
TT
1568 }
1569
1570 /*
03f5d8bc 1571 * Update on-disk size along with block allocation.
2fa3cdfb
TT
1572 */
1573 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
1574 if (disksize > i_size_read(mpd->inode))
1575 disksize = i_size_read(mpd->inode);
1576 if (disksize > EXT4_I(mpd->inode)->i_disksize) {
1577 ext4_update_i_disksize(mpd->inode, disksize);
5a87b7a5
TT
1578 err = ext4_mark_inode_dirty(handle, mpd->inode);
1579 if (err)
1580 ext4_error(mpd->inode->i_sb,
1581 "Failed to mark inode %lu dirty",
1582 mpd->inode->i_ino);
2fa3cdfb
TT
1583 }
1584
5a87b7a5 1585submit_io:
1de3e3df 1586 mpage_da_submit_io(mpd, mapp);
5a87b7a5 1587 mpd->io_done = 1;
64769240
AT
1588}
1589
bf068ee2
AK
1590#define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
1591 (1 << BH_Delay) | (1 << BH_Unwritten))
64769240
AT
1592
1593/*
1594 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
1595 *
1596 * @mpd->lbh - extent of blocks
1597 * @logical - logical number of the block in the file
1598 * @bh - bh of the block (used to access block's state)
1599 *
1600 * the function is used to collect contig. blocks in same state
1601 */
1602static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
8dc207c0
TT
1603 sector_t logical, size_t b_size,
1604 unsigned long b_state)
64769240 1605{
64769240 1606 sector_t next;
8dc207c0 1607 int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
64769240 1608
c445e3e0
ES
1609 /*
1610 * XXX Don't go larger than mballoc is willing to allocate
1611 * This is a stopgap solution. We eventually need to fold
1612 * mpage_da_submit_io() into this function and then call
79e83036 1613 * ext4_map_blocks() multiple times in a loop
c445e3e0
ES
1614 */
1615 if (nrblocks >= 8*1024*1024/mpd->inode->i_sb->s_blocksize)
1616 goto flush_it;
1617
525f4ed8 1618 /* check if thereserved journal credits might overflow */
12e9b892 1619 if (!(ext4_test_inode_flag(mpd->inode, EXT4_INODE_EXTENTS))) {
525f4ed8
MC
1620 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
1621 /*
1622 * With non-extent format we are limited by the journal
1623 * credit available. Total credit needed to insert
1624 * nrblocks contiguous blocks is dependent on the
1625 * nrblocks. So limit nrblocks.
1626 */
1627 goto flush_it;
1628 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
1629 EXT4_MAX_TRANS_DATA) {
1630 /*
1631 * Adding the new buffer_head would make it cross the
1632 * allowed limit for which we have journal credit
1633 * reserved. So limit the new bh->b_size
1634 */
1635 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
1636 mpd->inode->i_blkbits;
1637 /* we will do mpage_da_submit_io in the next loop */
1638 }
1639 }
64769240
AT
1640 /*
1641 * First block in the extent
1642 */
8dc207c0
TT
1643 if (mpd->b_size == 0) {
1644 mpd->b_blocknr = logical;
1645 mpd->b_size = b_size;
1646 mpd->b_state = b_state & BH_FLAGS;
64769240
AT
1647 return;
1648 }
1649
8dc207c0 1650 next = mpd->b_blocknr + nrblocks;
64769240
AT
1651 /*
1652 * Can we merge the block to our big extent?
1653 */
8dc207c0
TT
1654 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
1655 mpd->b_size += b_size;
64769240
AT
1656 return;
1657 }
1658
525f4ed8 1659flush_it:
64769240
AT
1660 /*
1661 * We couldn't merge the block to our extent, so we
1662 * need to flush current extent and start new one
1663 */
5a87b7a5 1664 mpage_da_map_and_submit(mpd);
a1d6cc56 1665 return;
64769240
AT
1666}
1667
c364b22c 1668static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
29fa89d0 1669{
c364b22c 1670 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
29fa89d0
AK
1671}
1672
5356f261
AK
1673/*
1674 * This function is grabs code from the very beginning of
1675 * ext4_map_blocks, but assumes that the caller is from delayed write
1676 * time. This function looks up the requested blocks and sets the
1677 * buffer delay bit under the protection of i_data_sem.
1678 */
1679static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1680 struct ext4_map_blocks *map,
1681 struct buffer_head *bh)
1682{
1683 int retval;
1684 sector_t invalid_block = ~((sector_t) 0xffff);
1685
1686 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1687 invalid_block = ~0;
1688
1689 map->m_flags = 0;
1690 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1691 "logical block %lu\n", inode->i_ino, map->m_len,
1692 (unsigned long) map->m_lblk);
1693 /*
1694 * Try to see if we can get the block without requesting a new
1695 * file system block.
1696 */
1697 down_read((&EXT4_I(inode)->i_data_sem));
1698 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1699 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1700 else
1701 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1702
1703 if (retval == 0) {
1704 /*
1705 * XXX: __block_prepare_write() unmaps passed block,
1706 * is it OK?
1707 */
1708 /* If the block was allocated from previously allocated cluster,
1709 * then we dont need to reserve it again. */
1710 if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1711 retval = ext4_da_reserve_space(inode, iblock);
1712 if (retval)
1713 /* not enough space to reserve */
1714 goto out_unlock;
1715 }
1716
1717 /* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1718 * and it should not appear on the bh->b_state.
1719 */
1720 map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1721
1722 map_bh(bh, inode->i_sb, invalid_block);
1723 set_buffer_new(bh);
1724 set_buffer_delay(bh);
1725 }
1726
1727out_unlock:
1728 up_read((&EXT4_I(inode)->i_data_sem));
1729
1730 return retval;
1731}
1732
64769240 1733/*
b920c755
TT
1734 * This is a special get_blocks_t callback which is used by
1735 * ext4_da_write_begin(). It will either return mapped block or
1736 * reserve space for a single block.
29fa89d0
AK
1737 *
1738 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1739 * We also have b_blocknr = -1 and b_bdev initialized properly
1740 *
1741 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1742 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1743 * initialized properly.
64769240
AT
1744 */
1745static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2ed88685 1746 struct buffer_head *bh, int create)
64769240 1747{
2ed88685 1748 struct ext4_map_blocks map;
64769240
AT
1749 int ret = 0;
1750
1751 BUG_ON(create == 0);
2ed88685
TT
1752 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1753
1754 map.m_lblk = iblock;
1755 map.m_len = 1;
64769240
AT
1756
1757 /*
1758 * first, we need to know whether the block is allocated already
1759 * preallocated blocks are unmapped but should treated
1760 * the same as allocated blocks.
1761 */
5356f261
AK
1762 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1763 if (ret <= 0)
2ed88685 1764 return ret;
64769240 1765
2ed88685
TT
1766 map_bh(bh, inode->i_sb, map.m_pblk);
1767 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1768
1769 if (buffer_unwritten(bh)) {
1770 /* A delayed write to unwritten bh should be marked
1771 * new and mapped. Mapped ensures that we don't do
1772 * get_block multiple times when we write to the same
1773 * offset and new ensures that we do proper zero out
1774 * for partial write.
1775 */
1776 set_buffer_new(bh);
c8205636 1777 set_buffer_mapped(bh);
2ed88685
TT
1778 }
1779 return 0;
64769240 1780}
61628a3f 1781
b920c755
TT
1782/*
1783 * This function is used as a standard get_block_t calback function
1784 * when there is no desire to allocate any blocks. It is used as a
ebdec241 1785 * callback function for block_write_begin() and block_write_full_page().
206f7ab4 1786 * These functions should only try to map a single block at a time.
b920c755
TT
1787 *
1788 * Since this function doesn't do block allocations even if the caller
1789 * requests it by passing in create=1, it is critically important that
1790 * any caller checks to make sure that any buffer heads are returned
1791 * by this function are either all already mapped or marked for
206f7ab4
CH
1792 * delayed allocation before calling block_write_full_page(). Otherwise,
1793 * b_blocknr could be left unitialized, and the page write functions will
1794 * be taken by surprise.
b920c755
TT
1795 */
1796static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
f0e6c985
AK
1797 struct buffer_head *bh_result, int create)
1798{
a2dc52b5 1799 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2ed88685 1800 return _ext4_get_block(inode, iblock, bh_result, 0);
61628a3f
MC
1801}
1802
62e086be
AK
1803static int bget_one(handle_t *handle, struct buffer_head *bh)
1804{
1805 get_bh(bh);
1806 return 0;
1807}
1808
1809static int bput_one(handle_t *handle, struct buffer_head *bh)
1810{
1811 put_bh(bh);
1812 return 0;
1813}
1814
1815static int __ext4_journalled_writepage(struct page *page,
62e086be
AK
1816 unsigned int len)
1817{
1818 struct address_space *mapping = page->mapping;
1819 struct inode *inode = mapping->host;
1820 struct buffer_head *page_bufs;
1821 handle_t *handle = NULL;
1822 int ret = 0;
1823 int err;
1824
cb20d518 1825 ClearPageChecked(page);
62e086be
AK
1826 page_bufs = page_buffers(page);
1827 BUG_ON(!page_bufs);
1828 walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
1829 /* As soon as we unlock the page, it can go away, but we have
1830 * references to buffers so we are safe */
1831 unlock_page(page);
1832
1833 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
1834 if (IS_ERR(handle)) {
1835 ret = PTR_ERR(handle);
1836 goto out;
1837 }
1838
441c8508
CW
1839 BUG_ON(!ext4_handle_valid(handle));
1840
62e086be
AK
1841 ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
1842 do_journal_get_write_access);
1843
1844 err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
1845 write_end_fn);
1846 if (ret == 0)
1847 ret = err;
2d859db3 1848 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
62e086be
AK
1849 err = ext4_journal_stop(handle);
1850 if (!ret)
1851 ret = err;
1852
1853 walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
19f5fb7a 1854 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
62e086be
AK
1855out:
1856 return ret;
1857}
1858
744692dc
JZ
1859static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
1860static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
1861
61628a3f 1862/*
43ce1d23
AK
1863 * Note that we don't need to start a transaction unless we're journaling data
1864 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1865 * need to file the inode to the transaction's list in ordered mode because if
1866 * we are writing back data added by write(), the inode is already there and if
25985edc 1867 * we are writing back data modified via mmap(), no one guarantees in which
43ce1d23
AK
1868 * transaction the data will hit the disk. In case we are journaling data, we
1869 * cannot start transaction directly because transaction start ranks above page
1870 * lock so we have to do some magic.
1871 *
b920c755
TT
1872 * This function can get called via...
1873 * - ext4_da_writepages after taking page lock (have journal handle)
1874 * - journal_submit_inode_data_buffers (no journal handle)
1875 * - shrink_page_list via pdflush (no journal handle)
1876 * - grab_page_cache when doing write_begin (have journal handle)
43ce1d23
AK
1877 *
1878 * We don't do any block allocation in this function. If we have page with
1879 * multiple blocks we need to write those buffer_heads that are mapped. This
1880 * is important for mmaped based write. So if we do with blocksize 1K
1881 * truncate(f, 1024);
1882 * a = mmap(f, 0, 4096);
1883 * a[0] = 'a';
1884 * truncate(f, 4096);
1885 * we have in the page first buffer_head mapped via page_mkwrite call back
90802ed9 1886 * but other buffer_heads would be unmapped but dirty (dirty done via the
43ce1d23
AK
1887 * do_wp_page). So writepage should write the first block. If we modify
1888 * the mmap area beyond 1024 we will again get a page_fault and the
1889 * page_mkwrite callback will do the block allocation and mark the
1890 * buffer_heads mapped.
1891 *
1892 * We redirty the page if we have any buffer_heads that is either delay or
1893 * unwritten in the page.
1894 *
1895 * We can get recursively called as show below.
1896 *
1897 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1898 * ext4_writepage()
1899 *
1900 * But since we don't do any block allocation we should not deadlock.
1901 * Page also have the dirty flag cleared so we don't get recurive page_lock.
61628a3f 1902 */
43ce1d23 1903static int ext4_writepage(struct page *page,
62e086be 1904 struct writeback_control *wbc)
64769240 1905{
a42afc5f 1906 int ret = 0, commit_write = 0;
61628a3f 1907 loff_t size;
498e5f24 1908 unsigned int len;
744692dc 1909 struct buffer_head *page_bufs = NULL;
61628a3f
MC
1910 struct inode *inode = page->mapping->host;
1911
a9c667f8 1912 trace_ext4_writepage(page);
f0e6c985
AK
1913 size = i_size_read(inode);
1914 if (page->index == size >> PAGE_CACHE_SHIFT)
1915 len = size & ~PAGE_CACHE_MASK;
1916 else
1917 len = PAGE_CACHE_SIZE;
64769240 1918
a42afc5f
TT
1919 /*
1920 * If the page does not have buffers (for whatever reason),
a107e5a3 1921 * try to create them using __block_write_begin. If this
a42afc5f
TT
1922 * fails, redirty the page and move on.
1923 */
b1142e8f 1924 if (!page_has_buffers(page)) {
a107e5a3 1925 if (__block_write_begin(page, 0, len,
a42afc5f
TT
1926 noalloc_get_block_write)) {
1927 redirty_page:
f0e6c985
AK
1928 redirty_page_for_writepage(wbc, page);
1929 unlock_page(page);
1930 return 0;
1931 }
a42afc5f
TT
1932 commit_write = 1;
1933 }
1934 page_bufs = page_buffers(page);
1935 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1936 ext4_bh_delay_or_unwritten)) {
f0e6c985 1937 /*
b1142e8f
TT
1938 * We don't want to do block allocation, so redirty
1939 * the page and return. We may reach here when we do
1940 * a journal commit via journal_submit_inode_data_buffers.
966dbde2
MG
1941 * We can also reach here via shrink_page_list but it
1942 * should never be for direct reclaim so warn if that
1943 * happens
f0e6c985 1944 */
966dbde2
MG
1945 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
1946 PF_MEMALLOC);
a42afc5f
TT
1947 goto redirty_page;
1948 }
1949 if (commit_write)
ed9b3e33 1950 /* now mark the buffer_heads as dirty and uptodate */
b767e78a 1951 block_commit_write(page, 0, len);
64769240 1952
cb20d518 1953 if (PageChecked(page) && ext4_should_journal_data(inode))
43ce1d23
AK
1954 /*
1955 * It's mmapped pagecache. Add buffers and journal it. There
1956 * doesn't seem much point in redirtying the page here.
1957 */
3f0ca309 1958 return __ext4_journalled_writepage(page, len);
43ce1d23 1959
a42afc5f 1960 if (buffer_uninit(page_bufs)) {
744692dc
JZ
1961 ext4_set_bh_endio(page_bufs, inode);
1962 ret = block_write_full_page_endio(page, noalloc_get_block_write,
1963 wbc, ext4_end_io_buffer_write);
1964 } else
b920c755
TT
1965 ret = block_write_full_page(page, noalloc_get_block_write,
1966 wbc);
64769240 1967
64769240
AT
1968 return ret;
1969}
1970
61628a3f 1971/*
525f4ed8 1972 * This is called via ext4_da_writepages() to
25985edc 1973 * calculate the total number of credits to reserve to fit
525f4ed8
MC
1974 * a single extent allocation into a single transaction,
1975 * ext4_da_writpeages() will loop calling this before
1976 * the block allocation.
61628a3f 1977 */
525f4ed8
MC
1978
1979static int ext4_da_writepages_trans_blocks(struct inode *inode)
1980{
1981 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
1982
1983 /*
1984 * With non-extent format the journal credit needed to
1985 * insert nrblocks contiguous block is dependent on
1986 * number of contiguous block. So we will limit
1987 * number of contiguous block to a sane value
1988 */
12e9b892 1989 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) &&
525f4ed8
MC
1990 (max_blocks > EXT4_MAX_TRANS_DATA))
1991 max_blocks = EXT4_MAX_TRANS_DATA;
1992
1993 return ext4_chunk_trans_blocks(inode, max_blocks);
1994}
61628a3f 1995
8e48dcfb
TT
1996/*
1997 * write_cache_pages_da - walk the list of dirty pages of the given
8eb9e5ce 1998 * address space and accumulate pages that need writing, and call
168fc022
TT
1999 * mpage_da_map_and_submit to map a single contiguous memory region
2000 * and then write them.
8e48dcfb
TT
2001 */
2002static int write_cache_pages_da(struct address_space *mapping,
2003 struct writeback_control *wbc,
72f84e65
ES
2004 struct mpage_da_data *mpd,
2005 pgoff_t *done_index)
8e48dcfb 2006{
4f01b02c 2007 struct buffer_head *bh, *head;
168fc022 2008 struct inode *inode = mapping->host;
4f01b02c
TT
2009 struct pagevec pvec;
2010 unsigned int nr_pages;
2011 sector_t logical;
2012 pgoff_t index, end;
2013 long nr_to_write = wbc->nr_to_write;
2014 int i, tag, ret = 0;
8e48dcfb 2015
168fc022
TT
2016 memset(mpd, 0, sizeof(struct mpage_da_data));
2017 mpd->wbc = wbc;
2018 mpd->inode = inode;
8e48dcfb
TT
2019 pagevec_init(&pvec, 0);
2020 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2021 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2022
6e6938b6 2023 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
5b41d924
ES
2024 tag = PAGECACHE_TAG_TOWRITE;
2025 else
2026 tag = PAGECACHE_TAG_DIRTY;
2027
72f84e65 2028 *done_index = index;
4f01b02c 2029 while (index <= end) {
5b41d924 2030 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
8e48dcfb
TT
2031 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2032 if (nr_pages == 0)
4f01b02c 2033 return 0;
8e48dcfb
TT
2034
2035 for (i = 0; i < nr_pages; i++) {
2036 struct page *page = pvec.pages[i];
2037
2038 /*
2039 * At this point, the page may be truncated or
2040 * invalidated (changing page->mapping to NULL), or
2041 * even swizzled back from swapper_space to tmpfs file
2042 * mapping. However, page->index will not change
2043 * because we have a reference on the page.
2044 */
4f01b02c
TT
2045 if (page->index > end)
2046 goto out;
8e48dcfb 2047
72f84e65
ES
2048 *done_index = page->index + 1;
2049
78aaced3
TT
2050 /*
2051 * If we can't merge this page, and we have
2052 * accumulated an contiguous region, write it
2053 */
2054 if ((mpd->next_page != page->index) &&
2055 (mpd->next_page != mpd->first_page)) {
2056 mpage_da_map_and_submit(mpd);
2057 goto ret_extent_tail;
2058 }
2059
8e48dcfb
TT
2060 lock_page(page);
2061
2062 /*
4f01b02c
TT
2063 * If the page is no longer dirty, or its
2064 * mapping no longer corresponds to inode we
2065 * are writing (which means it has been
2066 * truncated or invalidated), or the page is
2067 * already under writeback and we are not
2068 * doing a data integrity writeback, skip the page
8e48dcfb 2069 */
4f01b02c
TT
2070 if (!PageDirty(page) ||
2071 (PageWriteback(page) &&
2072 (wbc->sync_mode == WB_SYNC_NONE)) ||
2073 unlikely(page->mapping != mapping)) {
8e48dcfb
TT
2074 unlock_page(page);
2075 continue;
2076 }
2077
7cb1a535 2078 wait_on_page_writeback(page);
8e48dcfb 2079 BUG_ON(PageWriteback(page));
8e48dcfb 2080
168fc022 2081 if (mpd->next_page != page->index)
8eb9e5ce 2082 mpd->first_page = page->index;
8eb9e5ce
TT
2083 mpd->next_page = page->index + 1;
2084 logical = (sector_t) page->index <<
2085 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2086
2087 if (!page_has_buffers(page)) {
4f01b02c
TT
2088 mpage_add_bh_to_extent(mpd, logical,
2089 PAGE_CACHE_SIZE,
8eb9e5ce 2090 (1 << BH_Dirty) | (1 << BH_Uptodate));
4f01b02c
TT
2091 if (mpd->io_done)
2092 goto ret_extent_tail;
8eb9e5ce
TT
2093 } else {
2094 /*
4f01b02c
TT
2095 * Page with regular buffer heads,
2096 * just add all dirty ones
8eb9e5ce
TT
2097 */
2098 head = page_buffers(page);
2099 bh = head;
2100 do {
2101 BUG_ON(buffer_locked(bh));
2102 /*
2103 * We need to try to allocate
2104 * unmapped blocks in the same page.
2105 * Otherwise we won't make progress
2106 * with the page in ext4_writepage
2107 */
2108 if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2109 mpage_add_bh_to_extent(mpd, logical,
2110 bh->b_size,
2111 bh->b_state);
4f01b02c
TT
2112 if (mpd->io_done)
2113 goto ret_extent_tail;
8eb9e5ce
TT
2114 } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2115 /*
4f01b02c
TT
2116 * mapped dirty buffer. We need
2117 * to update the b_state
2118 * because we look at b_state
2119 * in mpage_da_map_blocks. We
2120 * don't update b_size because
2121 * if we find an unmapped
2122 * buffer_head later we need to
2123 * use the b_state flag of that
2124 * buffer_head.
8eb9e5ce
TT
2125 */
2126 if (mpd->b_size == 0)
2127 mpd->b_state = bh->b_state & BH_FLAGS;
2128 }
2129 logical++;
2130 } while ((bh = bh->b_this_page) != head);
8e48dcfb
TT
2131 }
2132
2133 if (nr_to_write > 0) {
2134 nr_to_write--;
2135 if (nr_to_write == 0 &&
4f01b02c 2136 wbc->sync_mode == WB_SYNC_NONE)
8e48dcfb
TT
2137 /*
2138 * We stop writing back only if we are
2139 * not doing integrity sync. In case of
2140 * integrity sync we have to keep going
2141 * because someone may be concurrently
2142 * dirtying pages, and we might have
2143 * synced a lot of newly appeared dirty
2144 * pages, but have not synced all of the
2145 * old dirty pages.
2146 */
4f01b02c 2147 goto out;
8e48dcfb
TT
2148 }
2149 }
2150 pagevec_release(&pvec);
2151 cond_resched();
2152 }
4f01b02c
TT
2153 return 0;
2154ret_extent_tail:
2155 ret = MPAGE_DA_EXTENT_TAIL;
8eb9e5ce
TT
2156out:
2157 pagevec_release(&pvec);
2158 cond_resched();
8e48dcfb
TT
2159 return ret;
2160}
2161
2162
64769240 2163static int ext4_da_writepages(struct address_space *mapping,
a1d6cc56 2164 struct writeback_control *wbc)
64769240 2165{
22208ded
AK
2166 pgoff_t index;
2167 int range_whole = 0;
61628a3f 2168 handle_t *handle = NULL;
df22291f 2169 struct mpage_da_data mpd;
5e745b04 2170 struct inode *inode = mapping->host;
498e5f24 2171 int pages_written = 0;
55138e0b 2172 unsigned int max_pages;
2acf2c26 2173 int range_cyclic, cycled = 1, io_done = 0;
55138e0b
TT
2174 int needed_blocks, ret = 0;
2175 long desired_nr_to_write, nr_to_writebump = 0;
de89de6e 2176 loff_t range_start = wbc->range_start;
5e745b04 2177 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
72f84e65 2178 pgoff_t done_index = 0;
5b41d924 2179 pgoff_t end;
1bce63d1 2180 struct blk_plug plug;
61628a3f 2181
9bffad1e 2182 trace_ext4_da_writepages(inode, wbc);
ba80b101 2183
61628a3f
MC
2184 /*
2185 * No pages to write? This is mainly a kludge to avoid starting
2186 * a transaction for special inodes like journal inode on last iput()
2187 * because that could violate lock ordering on umount
2188 */
a1d6cc56 2189 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
61628a3f 2190 return 0;
2a21e37e
TT
2191
2192 /*
2193 * If the filesystem has aborted, it is read-only, so return
2194 * right away instead of dumping stack traces later on that
2195 * will obscure the real source of the problem. We test
4ab2f15b 2196 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2a21e37e
TT
2197 * the latter could be true if the filesystem is mounted
2198 * read-only, and in that case, ext4_da_writepages should
2199 * *never* be called, so if that ever happens, we would want
2200 * the stack trace.
2201 */
4ab2f15b 2202 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2a21e37e
TT
2203 return -EROFS;
2204
22208ded
AK
2205 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2206 range_whole = 1;
61628a3f 2207
2acf2c26
AK
2208 range_cyclic = wbc->range_cyclic;
2209 if (wbc->range_cyclic) {
22208ded 2210 index = mapping->writeback_index;
2acf2c26
AK
2211 if (index)
2212 cycled = 0;
2213 wbc->range_start = index << PAGE_CACHE_SHIFT;
2214 wbc->range_end = LLONG_MAX;
2215 wbc->range_cyclic = 0;
5b41d924
ES
2216 end = -1;
2217 } else {
22208ded 2218 index = wbc->range_start >> PAGE_CACHE_SHIFT;
5b41d924
ES
2219 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2220 }
a1d6cc56 2221
55138e0b
TT
2222 /*
2223 * This works around two forms of stupidity. The first is in
2224 * the writeback code, which caps the maximum number of pages
2225 * written to be 1024 pages. This is wrong on multiple
2226 * levels; different architectues have a different page size,
2227 * which changes the maximum amount of data which gets
2228 * written. Secondly, 4 megabytes is way too small. XFS
2229 * forces this value to be 16 megabytes by multiplying
2230 * nr_to_write parameter by four, and then relies on its
2231 * allocator to allocate larger extents to make them
2232 * contiguous. Unfortunately this brings us to the second
2233 * stupidity, which is that ext4's mballoc code only allocates
2234 * at most 2048 blocks. So we force contiguous writes up to
2235 * the number of dirty blocks in the inode, or
2236 * sbi->max_writeback_mb_bump whichever is smaller.
2237 */
2238 max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
b443e733
ES
2239 if (!range_cyclic && range_whole) {
2240 if (wbc->nr_to_write == LONG_MAX)
2241 desired_nr_to_write = wbc->nr_to_write;
2242 else
2243 desired_nr_to_write = wbc->nr_to_write * 8;
2244 } else
55138e0b
TT
2245 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2246 max_pages);
2247 if (desired_nr_to_write > max_pages)
2248 desired_nr_to_write = max_pages;
2249
2250 if (wbc->nr_to_write < desired_nr_to_write) {
2251 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2252 wbc->nr_to_write = desired_nr_to_write;
2253 }
2254
2acf2c26 2255retry:
6e6938b6 2256 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
5b41d924
ES
2257 tag_pages_for_writeback(mapping, index, end);
2258
1bce63d1 2259 blk_start_plug(&plug);
22208ded 2260 while (!ret && wbc->nr_to_write > 0) {
a1d6cc56
AK
2261
2262 /*
2263 * we insert one extent at a time. So we need
2264 * credit needed for single extent allocation.
2265 * journalled mode is currently not supported
2266 * by delalloc
2267 */
2268 BUG_ON(ext4_should_journal_data(inode));
525f4ed8 2269 needed_blocks = ext4_da_writepages_trans_blocks(inode);
a1d6cc56 2270
61628a3f
MC
2271 /* start a new transaction*/
2272 handle = ext4_journal_start(inode, needed_blocks);
2273 if (IS_ERR(handle)) {
2274 ret = PTR_ERR(handle);
1693918e 2275 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
fbe845dd 2276 "%ld pages, ino %lu; err %d", __func__,
a1d6cc56 2277 wbc->nr_to_write, inode->i_ino, ret);
3c1fcb2c 2278 blk_finish_plug(&plug);
61628a3f
MC
2279 goto out_writepages;
2280 }
f63e6005
TT
2281
2282 /*
8eb9e5ce 2283 * Now call write_cache_pages_da() to find the next
f63e6005 2284 * contiguous region of logical blocks that need
8eb9e5ce 2285 * blocks to be allocated by ext4 and submit them.
f63e6005 2286 */
72f84e65 2287 ret = write_cache_pages_da(mapping, wbc, &mpd, &done_index);
f63e6005 2288 /*
af901ca1 2289 * If we have a contiguous extent of pages and we
f63e6005
TT
2290 * haven't done the I/O yet, map the blocks and submit
2291 * them for I/O.
2292 */
2293 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
5a87b7a5 2294 mpage_da_map_and_submit(&mpd);
f63e6005
TT
2295 ret = MPAGE_DA_EXTENT_TAIL;
2296 }
b3a3ca8c 2297 trace_ext4_da_write_pages(inode, &mpd);
f63e6005 2298 wbc->nr_to_write -= mpd.pages_written;
df22291f 2299
61628a3f 2300 ext4_journal_stop(handle);
df22291f 2301
8f64b32e 2302 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
22208ded
AK
2303 /* commit the transaction which would
2304 * free blocks released in the transaction
2305 * and try again
2306 */
df22291f 2307 jbd2_journal_force_commit_nested(sbi->s_journal);
22208ded
AK
2308 ret = 0;
2309 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
a1d6cc56 2310 /*
8de49e67
KM
2311 * Got one extent now try with rest of the pages.
2312 * If mpd.retval is set -EIO, journal is aborted.
2313 * So we don't need to write any more.
a1d6cc56 2314 */
22208ded 2315 pages_written += mpd.pages_written;
8de49e67 2316 ret = mpd.retval;
2acf2c26 2317 io_done = 1;
22208ded 2318 } else if (wbc->nr_to_write)
61628a3f
MC
2319 /*
2320 * There is no more writeout needed
2321 * or we requested for a noblocking writeout
2322 * and we found the device congested
2323 */
61628a3f 2324 break;
a1d6cc56 2325 }
1bce63d1 2326 blk_finish_plug(&plug);
2acf2c26
AK
2327 if (!io_done && !cycled) {
2328 cycled = 1;
2329 index = 0;
2330 wbc->range_start = index << PAGE_CACHE_SHIFT;
2331 wbc->range_end = mapping->writeback_index - 1;
2332 goto retry;
2333 }
22208ded
AK
2334
2335 /* Update index */
2acf2c26 2336 wbc->range_cyclic = range_cyclic;
22208ded
AK
2337 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2338 /*
2339 * set the writeback_index so that range_cyclic
2340 * mode will write it back later
2341 */
72f84e65 2342 mapping->writeback_index = done_index;
a1d6cc56 2343
61628a3f 2344out_writepages:
2faf2e19 2345 wbc->nr_to_write -= nr_to_writebump;
de89de6e 2346 wbc->range_start = range_start;
9bffad1e 2347 trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
61628a3f 2348 return ret;
64769240
AT
2349}
2350
79f0be8d
AK
2351#define FALL_BACK_TO_NONDELALLOC 1
2352static int ext4_nonda_switch(struct super_block *sb)
2353{
2354 s64 free_blocks, dirty_blocks;
2355 struct ext4_sb_info *sbi = EXT4_SB(sb);
2356
2357 /*
2358 * switch to non delalloc mode if we are running low
2359 * on free block. The free block accounting via percpu
179f7ebf 2360 * counters can get slightly wrong with percpu_counter_batch getting
79f0be8d
AK
2361 * accumulated on each CPU without updating global counters
2362 * Delalloc need an accurate free block accounting. So switch
2363 * to non delalloc when we are near to error range.
2364 */
57042651
TT
2365 free_blocks = EXT4_C2B(sbi,
2366 percpu_counter_read_positive(&sbi->s_freeclusters_counter));
2367 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
79f0be8d 2368 if (2 * free_blocks < 3 * dirty_blocks ||
df55c99d 2369 free_blocks < (dirty_blocks + EXT4_FREECLUSTERS_WATERMARK)) {
79f0be8d 2370 /*
c8afb446
ES
2371 * free block count is less than 150% of dirty blocks
2372 * or free blocks is less than watermark
79f0be8d
AK
2373 */
2374 return 1;
2375 }
c8afb446
ES
2376 /*
2377 * Even if we don't switch but are nearing capacity,
2378 * start pushing delalloc when 1/2 of free blocks are dirty.
2379 */
2380 if (free_blocks < 2 * dirty_blocks)
0e175a18 2381 writeback_inodes_sb_if_idle(sb, WB_REASON_FS_FREE_SPACE);
c8afb446 2382
79f0be8d
AK
2383 return 0;
2384}
2385
64769240 2386static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
de9a55b8
TT
2387 loff_t pos, unsigned len, unsigned flags,
2388 struct page **pagep, void **fsdata)
64769240 2389{
72b8ab9d 2390 int ret, retries = 0;
64769240
AT
2391 struct page *page;
2392 pgoff_t index;
64769240
AT
2393 struct inode *inode = mapping->host;
2394 handle_t *handle;
2395
2396 index = pos >> PAGE_CACHE_SHIFT;
79f0be8d
AK
2397
2398 if (ext4_nonda_switch(inode->i_sb)) {
2399 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2400 return ext4_write_begin(file, mapping, pos,
2401 len, flags, pagep, fsdata);
2402 }
2403 *fsdata = (void *)0;
9bffad1e 2404 trace_ext4_da_write_begin(inode, pos, len, flags);
d2a17637 2405retry:
64769240
AT
2406 /*
2407 * With delayed allocation, we don't log the i_disksize update
2408 * if there is delayed block allocation. But we still need
2409 * to journalling the i_disksize update if writes to the end
2410 * of file which has an already mapped buffer.
2411 */
2412 handle = ext4_journal_start(inode, 1);
2413 if (IS_ERR(handle)) {
2414 ret = PTR_ERR(handle);
2415 goto out;
2416 }
ebd3610b
JK
2417 /* We cannot recurse into the filesystem as the transaction is already
2418 * started */
2419 flags |= AOP_FLAG_NOFS;
64769240 2420
54566b2c 2421 page = grab_cache_page_write_begin(mapping, index, flags);
d5a0d4f7
ES
2422 if (!page) {
2423 ext4_journal_stop(handle);
2424 ret = -ENOMEM;
2425 goto out;
2426 }
64769240
AT
2427 *pagep = page;
2428
6e1db88d 2429 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
64769240
AT
2430 if (ret < 0) {
2431 unlock_page(page);
2432 ext4_journal_stop(handle);
2433 page_cache_release(page);
ae4d5372
AK
2434 /*
2435 * block_write_begin may have instantiated a few blocks
2436 * outside i_size. Trim these off again. Don't need
2437 * i_size_read because we hold i_mutex.
2438 */
2439 if (pos + len > inode->i_size)
b9a4207d 2440 ext4_truncate_failed_write(inode);
64769240
AT
2441 }
2442
d2a17637
MC
2443 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
2444 goto retry;
64769240
AT
2445out:
2446 return ret;
2447}
2448
632eaeab
MC
2449/*
2450 * Check if we should update i_disksize
2451 * when write to the end of file but not require block allocation
2452 */
2453static int ext4_da_should_update_i_disksize(struct page *page,
de9a55b8 2454 unsigned long offset)
632eaeab
MC
2455{
2456 struct buffer_head *bh;
2457 struct inode *inode = page->mapping->host;
2458 unsigned int idx;
2459 int i;
2460
2461 bh = page_buffers(page);
2462 idx = offset >> inode->i_blkbits;
2463
af5bc92d 2464 for (i = 0; i < idx; i++)
632eaeab
MC
2465 bh = bh->b_this_page;
2466
29fa89d0 2467 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
632eaeab
MC
2468 return 0;
2469 return 1;
2470}
2471
64769240 2472static int ext4_da_write_end(struct file *file,
de9a55b8
TT
2473 struct address_space *mapping,
2474 loff_t pos, unsigned len, unsigned copied,
2475 struct page *page, void *fsdata)
64769240
AT
2476{
2477 struct inode *inode = mapping->host;
2478 int ret = 0, ret2;
2479 handle_t *handle = ext4_journal_current_handle();
2480 loff_t new_i_size;
632eaeab 2481 unsigned long start, end;
79f0be8d
AK
2482 int write_mode = (int)(unsigned long)fsdata;
2483
2484 if (write_mode == FALL_BACK_TO_NONDELALLOC) {
3d2b1582
LC
2485 switch (ext4_inode_journal_mode(inode)) {
2486 case EXT4_INODE_ORDERED_DATA_MODE:
79f0be8d
AK
2487 return ext4_ordered_write_end(file, mapping, pos,
2488 len, copied, page, fsdata);
3d2b1582 2489 case EXT4_INODE_WRITEBACK_DATA_MODE:
79f0be8d
AK
2490 return ext4_writeback_write_end(file, mapping, pos,
2491 len, copied, page, fsdata);
3d2b1582 2492 default:
79f0be8d
AK
2493 BUG();
2494 }
2495 }
632eaeab 2496
9bffad1e 2497 trace_ext4_da_write_end(inode, pos, len, copied);
632eaeab 2498 start = pos & (PAGE_CACHE_SIZE - 1);
af5bc92d 2499 end = start + copied - 1;
64769240
AT
2500
2501 /*
2502 * generic_write_end() will run mark_inode_dirty() if i_size
2503 * changes. So let's piggyback the i_disksize mark_inode_dirty
2504 * into that.
2505 */
2506
2507 new_i_size = pos + copied;
ea51d132 2508 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
632eaeab
MC
2509 if (ext4_da_should_update_i_disksize(page, end)) {
2510 down_write(&EXT4_I(inode)->i_data_sem);
2511 if (new_i_size > EXT4_I(inode)->i_disksize) {
2512 /*
2513 * Updating i_disksize when extending file
2514 * without needing block allocation
2515 */
2516 if (ext4_should_order_data(inode))
2517 ret = ext4_jbd2_file_inode(handle,
2518 inode);
64769240 2519
632eaeab
MC
2520 EXT4_I(inode)->i_disksize = new_i_size;
2521 }
2522 up_write(&EXT4_I(inode)->i_data_sem);
cf17fea6
AK
2523 /* We need to mark inode dirty even if
2524 * new_i_size is less that inode->i_size
2525 * bu greater than i_disksize.(hint delalloc)
2526 */
2527 ext4_mark_inode_dirty(handle, inode);
64769240 2528 }
632eaeab 2529 }
64769240
AT
2530 ret2 = generic_write_end(file, mapping, pos, len, copied,
2531 page, fsdata);
2532 copied = ret2;
2533 if (ret2 < 0)
2534 ret = ret2;
2535 ret2 = ext4_journal_stop(handle);
2536 if (!ret)
2537 ret = ret2;
2538
2539 return ret ? ret : copied;
2540}
2541
2542static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
2543{
64769240
AT
2544 /*
2545 * Drop reserved blocks
2546 */
2547 BUG_ON(!PageLocked(page));
2548 if (!page_has_buffers(page))
2549 goto out;
2550
d2a17637 2551 ext4_da_page_release_reservation(page, offset);
64769240
AT
2552
2553out:
2554 ext4_invalidatepage(page, offset);
2555
2556 return;
2557}
2558
ccd2506b
TT
2559/*
2560 * Force all delayed allocation blocks to be allocated for a given inode.
2561 */
2562int ext4_alloc_da_blocks(struct inode *inode)
2563{
fb40ba0d
TT
2564 trace_ext4_alloc_da_blocks(inode);
2565
ccd2506b
TT
2566 if (!EXT4_I(inode)->i_reserved_data_blocks &&
2567 !EXT4_I(inode)->i_reserved_meta_blocks)
2568 return 0;
2569
2570 /*
2571 * We do something simple for now. The filemap_flush() will
2572 * also start triggering a write of the data blocks, which is
2573 * not strictly speaking necessary (and for users of
2574 * laptop_mode, not even desirable). However, to do otherwise
2575 * would require replicating code paths in:
de9a55b8 2576 *
ccd2506b
TT
2577 * ext4_da_writepages() ->
2578 * write_cache_pages() ---> (via passed in callback function)
2579 * __mpage_da_writepage() -->
2580 * mpage_add_bh_to_extent()
2581 * mpage_da_map_blocks()
2582 *
2583 * The problem is that write_cache_pages(), located in
2584 * mm/page-writeback.c, marks pages clean in preparation for
2585 * doing I/O, which is not desirable if we're not planning on
2586 * doing I/O at all.
2587 *
2588 * We could call write_cache_pages(), and then redirty all of
380cf090 2589 * the pages by calling redirty_page_for_writepage() but that
ccd2506b
TT
2590 * would be ugly in the extreme. So instead we would need to
2591 * replicate parts of the code in the above functions,
25985edc 2592 * simplifying them because we wouldn't actually intend to
ccd2506b
TT
2593 * write out the pages, but rather only collect contiguous
2594 * logical block extents, call the multi-block allocator, and
2595 * then update the buffer heads with the block allocations.
de9a55b8 2596 *
ccd2506b
TT
2597 * For now, though, we'll cheat by calling filemap_flush(),
2598 * which will map the blocks, and start the I/O, but not
2599 * actually wait for the I/O to complete.
2600 */
2601 return filemap_flush(inode->i_mapping);
2602}
64769240 2603
ac27a0ec
DK
2604/*
2605 * bmap() is special. It gets used by applications such as lilo and by
2606 * the swapper to find the on-disk block of a specific piece of data.
2607 *
2608 * Naturally, this is dangerous if the block concerned is still in the
617ba13b 2609 * journal. If somebody makes a swapfile on an ext4 data-journaling
ac27a0ec
DK
2610 * filesystem and enables swap, then they may get a nasty shock when the
2611 * data getting swapped to that swapfile suddenly gets overwritten by
2612 * the original zero's written out previously to the journal and
2613 * awaiting writeback in the kernel's buffer cache.
2614 *
2615 * So, if we see any bmap calls here on a modified, data-journaled file,
2616 * take extra steps to flush any blocks which might be in the cache.
2617 */
617ba13b 2618static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
ac27a0ec
DK
2619{
2620 struct inode *inode = mapping->host;
2621 journal_t *journal;
2622 int err;
2623
64769240
AT
2624 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2625 test_opt(inode->i_sb, DELALLOC)) {
2626 /*
2627 * With delalloc we want to sync the file
2628 * so that we can make sure we allocate
2629 * blocks for file
2630 */
2631 filemap_write_and_wait(mapping);
2632 }
2633
19f5fb7a
TT
2634 if (EXT4_JOURNAL(inode) &&
2635 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
ac27a0ec
DK
2636 /*
2637 * This is a REALLY heavyweight approach, but the use of
2638 * bmap on dirty files is expected to be extremely rare:
2639 * only if we run lilo or swapon on a freshly made file
2640 * do we expect this to happen.
2641 *
2642 * (bmap requires CAP_SYS_RAWIO so this does not
2643 * represent an unprivileged user DOS attack --- we'd be
2644 * in trouble if mortal users could trigger this path at
2645 * will.)
2646 *
617ba13b 2647 * NB. EXT4_STATE_JDATA is not set on files other than
ac27a0ec
DK
2648 * regular files. If somebody wants to bmap a directory
2649 * or symlink and gets confused because the buffer
2650 * hasn't yet been flushed to disk, they deserve
2651 * everything they get.
2652 */
2653
19f5fb7a 2654 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
617ba13b 2655 journal = EXT4_JOURNAL(inode);
dab291af
MC
2656 jbd2_journal_lock_updates(journal);
2657 err = jbd2_journal_flush(journal);
2658 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
2659
2660 if (err)
2661 return 0;
2662 }
2663
af5bc92d 2664 return generic_block_bmap(mapping, block, ext4_get_block);
ac27a0ec
DK
2665}
2666
617ba13b 2667static int ext4_readpage(struct file *file, struct page *page)
ac27a0ec 2668{
0562e0ba 2669 trace_ext4_readpage(page);
617ba13b 2670 return mpage_readpage(page, ext4_get_block);
ac27a0ec
DK
2671}
2672
2673static int
617ba13b 2674ext4_readpages(struct file *file, struct address_space *mapping,
ac27a0ec
DK
2675 struct list_head *pages, unsigned nr_pages)
2676{
617ba13b 2677 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
ac27a0ec
DK
2678}
2679
744692dc
JZ
2680static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
2681{
2682 struct buffer_head *head, *bh;
2683 unsigned int curr_off = 0;
2684
2685 if (!page_has_buffers(page))
2686 return;
2687 head = bh = page_buffers(page);
2688 do {
2689 if (offset <= curr_off && test_clear_buffer_uninit(bh)
2690 && bh->b_private) {
2691 ext4_free_io_end(bh->b_private);
2692 bh->b_private = NULL;
2693 bh->b_end_io = NULL;
2694 }
2695 curr_off = curr_off + bh->b_size;
2696 bh = bh->b_this_page;
2697 } while (bh != head);
2698}
2699
617ba13b 2700static void ext4_invalidatepage(struct page *page, unsigned long offset)
ac27a0ec 2701{
617ba13b 2702 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec 2703
0562e0ba
JZ
2704 trace_ext4_invalidatepage(page, offset);
2705
744692dc
JZ
2706 /*
2707 * free any io_end structure allocated for buffers to be discarded
2708 */
2709 if (ext4_should_dioread_nolock(page->mapping->host))
2710 ext4_invalidatepage_free_endio(page, offset);
ac27a0ec
DK
2711 /*
2712 * If it's a full truncate we just forget about the pending dirtying
2713 */
2714 if (offset == 0)
2715 ClearPageChecked(page);
2716
0390131b
FM
2717 if (journal)
2718 jbd2_journal_invalidatepage(journal, page, offset);
2719 else
2720 block_invalidatepage(page, offset);
ac27a0ec
DK
2721}
2722
617ba13b 2723static int ext4_releasepage(struct page *page, gfp_t wait)
ac27a0ec 2724{
617ba13b 2725 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
ac27a0ec 2726
0562e0ba
JZ
2727 trace_ext4_releasepage(page);
2728
ac27a0ec
DK
2729 WARN_ON(PageChecked(page));
2730 if (!page_has_buffers(page))
2731 return 0;
0390131b
FM
2732 if (journal)
2733 return jbd2_journal_try_to_free_buffers(journal, page, wait);
2734 else
2735 return try_to_free_buffers(page);
ac27a0ec
DK
2736}
2737
2ed88685
TT
2738/*
2739 * ext4_get_block used when preparing for a DIO write or buffer write.
2740 * We allocate an uinitialized extent if blocks haven't been allocated.
2741 * The extent will be converted to initialized after the IO is complete.
2742 */
c7064ef1 2743static int ext4_get_block_write(struct inode *inode, sector_t iblock,
4c0425ff
MC
2744 struct buffer_head *bh_result, int create)
2745{
c7064ef1 2746 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
8d5d02e6 2747 inode->i_ino, create);
2ed88685
TT
2748 return _ext4_get_block(inode, iblock, bh_result,
2749 EXT4_GET_BLOCKS_IO_CREATE_EXT);
4c0425ff
MC
2750}
2751
4c0425ff 2752static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
552ef802
CH
2753 ssize_t size, void *private, int ret,
2754 bool is_async)
4c0425ff 2755{
72c5052d 2756 struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
4c0425ff
MC
2757 ext4_io_end_t *io_end = iocb->private;
2758 struct workqueue_struct *wq;
744692dc
JZ
2759 unsigned long flags;
2760 struct ext4_inode_info *ei;
4c0425ff 2761
4b70df18
M
2762 /* if not async direct IO or dio with 0 bytes write, just return */
2763 if (!io_end || !size)
552ef802 2764 goto out;
4b70df18 2765
88635ca2 2766 ext_debug("ext4_end_io_dio(): io_end 0x%p "
8d5d02e6
MC
2767 "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
2768 iocb->private, io_end->inode->i_ino, iocb, offset,
2769 size);
8d5d02e6 2770
b5a7e970
TT
2771 iocb->private = NULL;
2772
8d5d02e6 2773 /* if not aio dio with unwritten extents, just free io and return */
bd2d0210 2774 if (!(io_end->flag & EXT4_IO_END_UNWRITTEN)) {
8d5d02e6 2775 ext4_free_io_end(io_end);
5b3ff237
JZ
2776out:
2777 if (is_async)
2778 aio_complete(iocb, ret, 0);
72c5052d 2779 inode_dio_done(inode);
5b3ff237 2780 return;
8d5d02e6
MC
2781 }
2782
4c0425ff
MC
2783 io_end->offset = offset;
2784 io_end->size = size;
5b3ff237
JZ
2785 if (is_async) {
2786 io_end->iocb = iocb;
2787 io_end->result = ret;
2788 }
4c0425ff
MC
2789 wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
2790
8d5d02e6 2791 /* Add the io_end to per-inode completed aio dio list*/
744692dc
JZ
2792 ei = EXT4_I(io_end->inode);
2793 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
2794 list_add_tail(&io_end->list, &ei->i_completed_io_list);
2795 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
c999af2b
ES
2796
2797 /* queue the work to convert unwritten extents to written */
4c81f045 2798 queue_work(wq, &io_end->work);
4c0425ff 2799}
c7064ef1 2800
744692dc
JZ
2801static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
2802{
2803 ext4_io_end_t *io_end = bh->b_private;
2804 struct workqueue_struct *wq;
2805 struct inode *inode;
2806 unsigned long flags;
2807
2808 if (!test_clear_buffer_uninit(bh) || !io_end)
2809 goto out;
2810
2811 if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
2812 printk("sb umounted, discard end_io request for inode %lu\n",
2813 io_end->inode->i_ino);
2814 ext4_free_io_end(io_end);
2815 goto out;
2816 }
2817
32c80b32
TM
2818 /*
2819 * It may be over-defensive here to check EXT4_IO_END_UNWRITTEN now,
2820 * but being more careful is always safe for the future change.
2821 */
744692dc 2822 inode = io_end->inode;
0edeb71d 2823 ext4_set_io_unwritten_flag(inode, io_end);
744692dc
JZ
2824
2825 /* Add the io_end to per-inode completed io list*/
2826 spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
2827 list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
2828 spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
2829
2830 wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
2831 /* queue the work to convert unwritten extents to written */
2832 queue_work(wq, &io_end->work);
2833out:
2834 bh->b_private = NULL;
2835 bh->b_end_io = NULL;
2836 clear_buffer_uninit(bh);
2837 end_buffer_async_write(bh, uptodate);
2838}
2839
2840static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
2841{
2842 ext4_io_end_t *io_end;
2843 struct page *page = bh->b_page;
2844 loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
2845 size_t size = bh->b_size;
2846
2847retry:
2848 io_end = ext4_init_io_end(inode, GFP_ATOMIC);
2849 if (!io_end) {
6db26ffc 2850 pr_warn_ratelimited("%s: allocation fail\n", __func__);
744692dc
JZ
2851 schedule();
2852 goto retry;
2853 }
2854 io_end->offset = offset;
2855 io_end->size = size;
2856 /*
2857 * We need to hold a reference to the page to make sure it
2858 * doesn't get evicted before ext4_end_io_work() has a chance
2859 * to convert the extent from written to unwritten.
2860 */
2861 io_end->page = page;
2862 get_page(io_end->page);
2863
2864 bh->b_private = io_end;
2865 bh->b_end_io = ext4_end_io_buffer_write;
2866 return 0;
2867}
2868
4c0425ff
MC
2869/*
2870 * For ext4 extent files, ext4 will do direct-io write to holes,
2871 * preallocated extents, and those write extend the file, no need to
2872 * fall back to buffered IO.
2873 *
b595076a 2874 * For holes, we fallocate those blocks, mark them as uninitialized
4c0425ff 2875 * If those blocks were preallocated, we mark sure they are splited, but
b595076a 2876 * still keep the range to write as uninitialized.
4c0425ff 2877 *
8d5d02e6
MC
2878 * The unwrritten extents will be converted to written when DIO is completed.
2879 * For async direct IO, since the IO may still pending when return, we
25985edc 2880 * set up an end_io call back function, which will do the conversion
8d5d02e6 2881 * when async direct IO completed.
4c0425ff
MC
2882 *
2883 * If the O_DIRECT write will extend the file then add this inode to the
2884 * orphan list. So recovery will truncate it back to the original size
2885 * if the machine crashes during the write.
2886 *
2887 */
2888static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
2889 const struct iovec *iov, loff_t offset,
2890 unsigned long nr_segs)
2891{
2892 struct file *file = iocb->ki_filp;
2893 struct inode *inode = file->f_mapping->host;
2894 ssize_t ret;
2895 size_t count = iov_length(iov, nr_segs);
2896
2897 loff_t final_size = offset + count;
2898 if (rw == WRITE && final_size <= inode->i_size) {
2899 /*
8d5d02e6
MC
2900 * We could direct write to holes and fallocate.
2901 *
2902 * Allocated blocks to fill the hole are marked as uninitialized
25985edc 2903 * to prevent parallel buffered read to expose the stale data
4c0425ff 2904 * before DIO complete the data IO.
8d5d02e6
MC
2905 *
2906 * As to previously fallocated extents, ext4 get_block
4c0425ff
MC
2907 * will just simply mark the buffer mapped but still
2908 * keep the extents uninitialized.
2909 *
8d5d02e6
MC
2910 * for non AIO case, we will convert those unwritten extents
2911 * to written after return back from blockdev_direct_IO.
2912 *
2913 * for async DIO, the conversion needs to be defered when
2914 * the IO is completed. The ext4 end_io callback function
2915 * will be called to take care of the conversion work.
2916 * Here for async case, we allocate an io_end structure to
2917 * hook to the iocb.
4c0425ff 2918 */
8d5d02e6
MC
2919 iocb->private = NULL;
2920 EXT4_I(inode)->cur_aio_dio = NULL;
2921 if (!is_sync_kiocb(iocb)) {
266991b1
JM
2922 ext4_io_end_t *io_end =
2923 ext4_init_io_end(inode, GFP_NOFS);
2924 if (!io_end)
8d5d02e6 2925 return -ENOMEM;
266991b1
JM
2926 io_end->flag |= EXT4_IO_END_DIRECT;
2927 iocb->private = io_end;
8d5d02e6
MC
2928 /*
2929 * we save the io structure for current async
79e83036 2930 * direct IO, so that later ext4_map_blocks()
8d5d02e6
MC
2931 * could flag the io structure whether there
2932 * is a unwritten extents needs to be converted
2933 * when IO is completed.
2934 */
2935 EXT4_I(inode)->cur_aio_dio = iocb->private;
2936 }
2937
aacfc19c 2938 ret = __blockdev_direct_IO(rw, iocb, inode,
4c0425ff
MC
2939 inode->i_sb->s_bdev, iov,
2940 offset, nr_segs,
c7064ef1 2941 ext4_get_block_write,
aacfc19c
CH
2942 ext4_end_io_dio,
2943 NULL,
93ef8541 2944 DIO_LOCKING);
8d5d02e6
MC
2945 if (iocb->private)
2946 EXT4_I(inode)->cur_aio_dio = NULL;
2947 /*
2948 * The io_end structure takes a reference to the inode,
2949 * that structure needs to be destroyed and the
2950 * reference to the inode need to be dropped, when IO is
2951 * complete, even with 0 byte write, or failed.
2952 *
2953 * In the successful AIO DIO case, the io_end structure will be
2954 * desctroyed and the reference to the inode will be dropped
2955 * after the end_io call back function is called.
2956 *
2957 * In the case there is 0 byte write, or error case, since
2958 * VFS direct IO won't invoke the end_io call back function,
2959 * we need to free the end_io structure here.
2960 */
2961 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
2962 ext4_free_io_end(iocb->private);
2963 iocb->private = NULL;
19f5fb7a
TT
2964 } else if (ret > 0 && ext4_test_inode_state(inode,
2965 EXT4_STATE_DIO_UNWRITTEN)) {
109f5565 2966 int err;
8d5d02e6
MC
2967 /*
2968 * for non AIO case, since the IO is already
25985edc 2969 * completed, we could do the conversion right here
8d5d02e6 2970 */
109f5565
M
2971 err = ext4_convert_unwritten_extents(inode,
2972 offset, ret);
2973 if (err < 0)
2974 ret = err;
19f5fb7a 2975 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
109f5565 2976 }
4c0425ff
MC
2977 return ret;
2978 }
8d5d02e6
MC
2979
2980 /* for write the the end of file case, we fall back to old way */
4c0425ff
MC
2981 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
2982}
2983
2984static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
2985 const struct iovec *iov, loff_t offset,
2986 unsigned long nr_segs)
2987{
2988 struct file *file = iocb->ki_filp;
2989 struct inode *inode = file->f_mapping->host;
0562e0ba 2990 ssize_t ret;
4c0425ff 2991
84ebd795
TT
2992 /*
2993 * If we are doing data journalling we don't support O_DIRECT
2994 */
2995 if (ext4_should_journal_data(inode))
2996 return 0;
2997
0562e0ba 2998 trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
12e9b892 2999 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
0562e0ba
JZ
3000 ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3001 else
3002 ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3003 trace_ext4_direct_IO_exit(inode, offset,
3004 iov_length(iov, nr_segs), rw, ret);
3005 return ret;
4c0425ff
MC
3006}
3007
ac27a0ec 3008/*
617ba13b 3009 * Pages can be marked dirty completely asynchronously from ext4's journalling
ac27a0ec
DK
3010 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3011 * much here because ->set_page_dirty is called under VFS locks. The page is
3012 * not necessarily locked.
3013 *
3014 * We cannot just dirty the page and leave attached buffers clean, because the
3015 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3016 * or jbddirty because all the journalling code will explode.
3017 *
3018 * So what we do is to mark the page "pending dirty" and next time writepage
3019 * is called, propagate that into the buffers appropriately.
3020 */
617ba13b 3021static int ext4_journalled_set_page_dirty(struct page *page)
ac27a0ec
DK
3022{
3023 SetPageChecked(page);
3024 return __set_page_dirty_nobuffers(page);
3025}
3026
617ba13b 3027static const struct address_space_operations ext4_ordered_aops = {
8ab22b9a
HH
3028 .readpage = ext4_readpage,
3029 .readpages = ext4_readpages,
43ce1d23 3030 .writepage = ext4_writepage,
8ab22b9a
HH
3031 .write_begin = ext4_write_begin,
3032 .write_end = ext4_ordered_write_end,
3033 .bmap = ext4_bmap,
3034 .invalidatepage = ext4_invalidatepage,
3035 .releasepage = ext4_releasepage,
3036 .direct_IO = ext4_direct_IO,
3037 .migratepage = buffer_migrate_page,
3038 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3039 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3040};
3041
617ba13b 3042static const struct address_space_operations ext4_writeback_aops = {
8ab22b9a
HH
3043 .readpage = ext4_readpage,
3044 .readpages = ext4_readpages,
43ce1d23 3045 .writepage = ext4_writepage,
8ab22b9a
HH
3046 .write_begin = ext4_write_begin,
3047 .write_end = ext4_writeback_write_end,
3048 .bmap = ext4_bmap,
3049 .invalidatepage = ext4_invalidatepage,
3050 .releasepage = ext4_releasepage,
3051 .direct_IO = ext4_direct_IO,
3052 .migratepage = buffer_migrate_page,
3053 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3054 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3055};
3056
617ba13b 3057static const struct address_space_operations ext4_journalled_aops = {
8ab22b9a
HH
3058 .readpage = ext4_readpage,
3059 .readpages = ext4_readpages,
43ce1d23 3060 .writepage = ext4_writepage,
8ab22b9a
HH
3061 .write_begin = ext4_write_begin,
3062 .write_end = ext4_journalled_write_end,
3063 .set_page_dirty = ext4_journalled_set_page_dirty,
3064 .bmap = ext4_bmap,
3065 .invalidatepage = ext4_invalidatepage,
3066 .releasepage = ext4_releasepage,
84ebd795 3067 .direct_IO = ext4_direct_IO,
8ab22b9a 3068 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3069 .error_remove_page = generic_error_remove_page,
ac27a0ec
DK
3070};
3071
64769240 3072static const struct address_space_operations ext4_da_aops = {
8ab22b9a
HH
3073 .readpage = ext4_readpage,
3074 .readpages = ext4_readpages,
43ce1d23 3075 .writepage = ext4_writepage,
8ab22b9a 3076 .writepages = ext4_da_writepages,
8ab22b9a
HH
3077 .write_begin = ext4_da_write_begin,
3078 .write_end = ext4_da_write_end,
3079 .bmap = ext4_bmap,
3080 .invalidatepage = ext4_da_invalidatepage,
3081 .releasepage = ext4_releasepage,
3082 .direct_IO = ext4_direct_IO,
3083 .migratepage = buffer_migrate_page,
3084 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 3085 .error_remove_page = generic_error_remove_page,
64769240
AT
3086};
3087
617ba13b 3088void ext4_set_aops(struct inode *inode)
ac27a0ec 3089{
3d2b1582
LC
3090 switch (ext4_inode_journal_mode(inode)) {
3091 case EXT4_INODE_ORDERED_DATA_MODE:
3092 if (test_opt(inode->i_sb, DELALLOC))
3093 inode->i_mapping->a_ops = &ext4_da_aops;
3094 else
3095 inode->i_mapping->a_ops = &ext4_ordered_aops;
3096 break;
3097 case EXT4_INODE_WRITEBACK_DATA_MODE:
3098 if (test_opt(inode->i_sb, DELALLOC))
3099 inode->i_mapping->a_ops = &ext4_da_aops;
3100 else
3101 inode->i_mapping->a_ops = &ext4_writeback_aops;
3102 break;
3103 case EXT4_INODE_JOURNAL_DATA_MODE:
617ba13b 3104 inode->i_mapping->a_ops = &ext4_journalled_aops;
3d2b1582
LC
3105 break;
3106 default:
3107 BUG();
3108 }
ac27a0ec
DK
3109}
3110
4e96b2db
AH
3111
3112/*
3113 * ext4_discard_partial_page_buffers()
3114 * Wrapper function for ext4_discard_partial_page_buffers_no_lock.
3115 * This function finds and locks the page containing the offset
3116 * "from" and passes it to ext4_discard_partial_page_buffers_no_lock.
3117 * Calling functions that already have the page locked should call
3118 * ext4_discard_partial_page_buffers_no_lock directly.
3119 */
3120int ext4_discard_partial_page_buffers(handle_t *handle,
3121 struct address_space *mapping, loff_t from,
3122 loff_t length, int flags)
3123{
3124 struct inode *inode = mapping->host;
3125 struct page *page;
3126 int err = 0;
3127
3128 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3129 mapping_gfp_mask(mapping) & ~__GFP_FS);
3130 if (!page)
5129d05f 3131 return -ENOMEM;
4e96b2db
AH
3132
3133 err = ext4_discard_partial_page_buffers_no_lock(handle, inode, page,
3134 from, length, flags);
3135
3136 unlock_page(page);
3137 page_cache_release(page);
3138 return err;
3139}
3140
3141/*
3142 * ext4_discard_partial_page_buffers_no_lock()
3143 * Zeros a page range of length 'length' starting from offset 'from'.
3144 * Buffer heads that correspond to the block aligned regions of the
3145 * zeroed range will be unmapped. Unblock aligned regions
3146 * will have the corresponding buffer head mapped if needed so that
3147 * that region of the page can be updated with the partial zero out.
3148 *
3149 * This function assumes that the page has already been locked. The
3150 * The range to be discarded must be contained with in the given page.
3151 * If the specified range exceeds the end of the page it will be shortened
3152 * to the end of the page that corresponds to 'from'. This function is
3153 * appropriate for updating a page and it buffer heads to be unmapped and
3154 * zeroed for blocks that have been either released, or are going to be
3155 * released.
3156 *
3157 * handle: The journal handle
3158 * inode: The files inode
3159 * page: A locked page that contains the offset "from"
3160 * from: The starting byte offset (from the begining of the file)
3161 * to begin discarding
3162 * len: The length of bytes to discard
3163 * flags: Optional flags that may be used:
3164 *
3165 * EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED
3166 * Only zero the regions of the page whose buffer heads
3167 * have already been unmapped. This flag is appropriate
3168 * for updateing the contents of a page whose blocks may
3169 * have already been released, and we only want to zero
3170 * out the regions that correspond to those released blocks.
3171 *
3172 * Returns zero on sucess or negative on failure.
3173 */
5f163cc7 3174static int ext4_discard_partial_page_buffers_no_lock(handle_t *handle,
4e96b2db
AH
3175 struct inode *inode, struct page *page, loff_t from,
3176 loff_t length, int flags)
3177{
3178 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3179 unsigned int offset = from & (PAGE_CACHE_SIZE-1);
3180 unsigned int blocksize, max, pos;
4e96b2db
AH
3181 ext4_lblk_t iblock;
3182 struct buffer_head *bh;
3183 int err = 0;
3184
3185 blocksize = inode->i_sb->s_blocksize;
3186 max = PAGE_CACHE_SIZE - offset;
3187
3188 if (index != page->index)
3189 return -EINVAL;
3190
3191 /*
3192 * correct length if it does not fall between
3193 * 'from' and the end of the page
3194 */
3195 if (length > max || length < 0)
3196 length = max;
3197
3198 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3199
093e6e36
YY
3200 if (!page_has_buffers(page))
3201 create_empty_buffers(page, blocksize, 0);
4e96b2db
AH
3202
3203 /* Find the buffer that contains "offset" */
3204 bh = page_buffers(page);
3205 pos = blocksize;
3206 while (offset >= pos) {
3207 bh = bh->b_this_page;
3208 iblock++;
3209 pos += blocksize;
3210 }
3211
3212 pos = offset;
3213 while (pos < offset + length) {
e260daf2
YY
3214 unsigned int end_of_block, range_to_discard;
3215
4e96b2db
AH
3216 err = 0;
3217
3218 /* The length of space left to zero and unmap */
3219 range_to_discard = offset + length - pos;
3220
3221 /* The length of space until the end of the block */
3222 end_of_block = blocksize - (pos & (blocksize-1));
3223
3224 /*
3225 * Do not unmap or zero past end of block
3226 * for this buffer head
3227 */
3228 if (range_to_discard > end_of_block)
3229 range_to_discard = end_of_block;
3230
3231
3232 /*
3233 * Skip this buffer head if we are only zeroing unampped
3234 * regions of the page
3235 */
3236 if (flags & EXT4_DISCARD_PARTIAL_PG_ZERO_UNMAPPED &&
3237 buffer_mapped(bh))
3238 goto next;
3239
3240 /* If the range is block aligned, unmap */
3241 if (range_to_discard == blocksize) {
3242 clear_buffer_dirty(bh);
3243 bh->b_bdev = NULL;
3244 clear_buffer_mapped(bh);
3245 clear_buffer_req(bh);
3246 clear_buffer_new(bh);
3247 clear_buffer_delay(bh);
3248 clear_buffer_unwritten(bh);
3249 clear_buffer_uptodate(bh);
3250 zero_user(page, pos, range_to_discard);
3251 BUFFER_TRACE(bh, "Buffer discarded");
3252 goto next;
3253 }
3254
3255 /*
3256 * If this block is not completely contained in the range
3257 * to be discarded, then it is not going to be released. Because
3258 * we need to keep this block, we need to make sure this part
3259 * of the page is uptodate before we modify it by writeing
3260 * partial zeros on it.
3261 */
3262 if (!buffer_mapped(bh)) {
3263 /*
3264 * Buffer head must be mapped before we can read
3265 * from the block
3266 */
3267 BUFFER_TRACE(bh, "unmapped");
3268 ext4_get_block(inode, iblock, bh, 0);
3269 /* unmapped? It's a hole - nothing to do */
3270 if (!buffer_mapped(bh)) {
3271 BUFFER_TRACE(bh, "still unmapped");
3272 goto next;
3273 }
3274 }
3275
3276 /* Ok, it's mapped. Make sure it's up-to-date */
3277 if (PageUptodate(page))
3278 set_buffer_uptodate(bh);
3279
3280 if (!buffer_uptodate(bh)) {
3281 err = -EIO;
3282 ll_rw_block(READ, 1, &bh);
3283 wait_on_buffer(bh);
3284 /* Uhhuh. Read error. Complain and punt.*/
3285 if (!buffer_uptodate(bh))
3286 goto next;
3287 }
3288
3289 if (ext4_should_journal_data(inode)) {
3290 BUFFER_TRACE(bh, "get write access");
3291 err = ext4_journal_get_write_access(handle, bh);
3292 if (err)
3293 goto next;
3294 }
3295
3296 zero_user(page, pos, range_to_discard);
3297
3298 err = 0;
3299 if (ext4_should_journal_data(inode)) {
3300 err = ext4_handle_dirty_metadata(handle, inode, bh);
decbd919 3301 } else
4e96b2db 3302 mark_buffer_dirty(bh);
4e96b2db
AH
3303
3304 BUFFER_TRACE(bh, "Partial buffer zeroed");
3305next:
3306 bh = bh->b_this_page;
3307 iblock++;
3308 pos += range_to_discard;
3309 }
3310
3311 return err;
3312}
3313
91ef4caf
DG
3314int ext4_can_truncate(struct inode *inode)
3315{
91ef4caf
DG
3316 if (S_ISREG(inode->i_mode))
3317 return 1;
3318 if (S_ISDIR(inode->i_mode))
3319 return 1;
3320 if (S_ISLNK(inode->i_mode))
3321 return !ext4_inode_is_fast_symlink(inode);
3322 return 0;
3323}
3324
a4bb6b64
AH
3325/*
3326 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3327 * associated with the given offset and length
3328 *
3329 * @inode: File inode
3330 * @offset: The offset where the hole will begin
3331 * @len: The length of the hole
3332 *
3333 * Returns: 0 on sucess or negative on failure
3334 */
3335
3336int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3337{
3338 struct inode *inode = file->f_path.dentry->d_inode;
3339 if (!S_ISREG(inode->i_mode))
3340 return -ENOTSUPP;
3341
3342 if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
3343 /* TODO: Add support for non extent hole punching */
3344 return -ENOTSUPP;
3345 }
3346
bab08ab9
TT
3347 if (EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) {
3348 /* TODO: Add support for bigalloc file systems */
3349 return -ENOTSUPP;
3350 }
3351
a4bb6b64
AH
3352 return ext4_ext_punch_hole(file, offset, length);
3353}
3354
ac27a0ec 3355/*
617ba13b 3356 * ext4_truncate()
ac27a0ec 3357 *
617ba13b
MC
3358 * We block out ext4_get_block() block instantiations across the entire
3359 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
ac27a0ec
DK
3360 * simultaneously on behalf of the same inode.
3361 *
42b2aa86 3362 * As we work through the truncate and commit bits of it to the journal there
ac27a0ec
DK
3363 * is one core, guiding principle: the file's tree must always be consistent on
3364 * disk. We must be able to restart the truncate after a crash.
3365 *
3366 * The file's tree may be transiently inconsistent in memory (although it
3367 * probably isn't), but whenever we close off and commit a journal transaction,
3368 * the contents of (the filesystem + the journal) must be consistent and
3369 * restartable. It's pretty simple, really: bottom up, right to left (although
3370 * left-to-right works OK too).
3371 *
3372 * Note that at recovery time, journal replay occurs *before* the restart of
3373 * truncate against the orphan inode list.
3374 *
3375 * The committed inode has the new, desired i_size (which is the same as
617ba13b 3376 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
ac27a0ec 3377 * that this inode's truncate did not complete and it will again call
617ba13b
MC
3378 * ext4_truncate() to have another go. So there will be instantiated blocks
3379 * to the right of the truncation point in a crashed ext4 filesystem. But
ac27a0ec 3380 * that's fine - as long as they are linked from the inode, the post-crash
617ba13b 3381 * ext4_truncate() run will find them and release them.
ac27a0ec 3382 */
617ba13b 3383void ext4_truncate(struct inode *inode)
ac27a0ec 3384{
0562e0ba
JZ
3385 trace_ext4_truncate_enter(inode);
3386
91ef4caf 3387 if (!ext4_can_truncate(inode))
ac27a0ec
DK
3388 return;
3389
12e9b892 3390 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
c8d46e41 3391
5534fb5b 3392 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
19f5fb7a 3393 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
7d8f9f7d 3394
ff9893dc 3395 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
cf108bca 3396 ext4_ext_truncate(inode);
ff9893dc
AG
3397 else
3398 ext4_ind_truncate(inode);
ac27a0ec 3399
0562e0ba 3400 trace_ext4_truncate_exit(inode);
ac27a0ec
DK
3401}
3402
ac27a0ec 3403/*
617ba13b 3404 * ext4_get_inode_loc returns with an extra refcount against the inode's
ac27a0ec
DK
3405 * underlying buffer_head on success. If 'in_mem' is true, we have all
3406 * data in memory that is needed to recreate the on-disk version of this
3407 * inode.
3408 */
617ba13b
MC
3409static int __ext4_get_inode_loc(struct inode *inode,
3410 struct ext4_iloc *iloc, int in_mem)
ac27a0ec 3411{
240799cd
TT
3412 struct ext4_group_desc *gdp;
3413 struct buffer_head *bh;
3414 struct super_block *sb = inode->i_sb;
3415 ext4_fsblk_t block;
3416 int inodes_per_block, inode_offset;
3417
3a06d778 3418 iloc->bh = NULL;
240799cd
TT
3419 if (!ext4_valid_inum(sb, inode->i_ino))
3420 return -EIO;
ac27a0ec 3421
240799cd
TT
3422 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3423 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3424 if (!gdp)
ac27a0ec
DK
3425 return -EIO;
3426
240799cd
TT
3427 /*
3428 * Figure out the offset within the block group inode table
3429 */
00d09882 3430 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
240799cd
TT
3431 inode_offset = ((inode->i_ino - 1) %
3432 EXT4_INODES_PER_GROUP(sb));
3433 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3434 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3435
3436 bh = sb_getblk(sb, block);
ac27a0ec 3437 if (!bh) {
c398eda0
TT
3438 EXT4_ERROR_INODE_BLOCK(inode, block,
3439 "unable to read itable block");
ac27a0ec
DK
3440 return -EIO;
3441 }
3442 if (!buffer_uptodate(bh)) {
3443 lock_buffer(bh);
9c83a923
HK
3444
3445 /*
3446 * If the buffer has the write error flag, we have failed
3447 * to write out another inode in the same block. In this
3448 * case, we don't have to read the block because we may
3449 * read the old inode data successfully.
3450 */
3451 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3452 set_buffer_uptodate(bh);
3453
ac27a0ec
DK
3454 if (buffer_uptodate(bh)) {
3455 /* someone brought it uptodate while we waited */
3456 unlock_buffer(bh);
3457 goto has_buffer;
3458 }
3459
3460 /*
3461 * If we have all information of the inode in memory and this
3462 * is the only valid inode in the block, we need not read the
3463 * block.
3464 */
3465 if (in_mem) {
3466 struct buffer_head *bitmap_bh;
240799cd 3467 int i, start;
ac27a0ec 3468
240799cd 3469 start = inode_offset & ~(inodes_per_block - 1);
ac27a0ec 3470
240799cd
TT
3471 /* Is the inode bitmap in cache? */
3472 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
ac27a0ec
DK
3473 if (!bitmap_bh)
3474 goto make_io;
3475
3476 /*
3477 * If the inode bitmap isn't in cache then the
3478 * optimisation may end up performing two reads instead
3479 * of one, so skip it.
3480 */
3481 if (!buffer_uptodate(bitmap_bh)) {
3482 brelse(bitmap_bh);
3483 goto make_io;
3484 }
240799cd 3485 for (i = start; i < start + inodes_per_block; i++) {
ac27a0ec
DK
3486 if (i == inode_offset)
3487 continue;
617ba13b 3488 if (ext4_test_bit(i, bitmap_bh->b_data))
ac27a0ec
DK
3489 break;
3490 }
3491 brelse(bitmap_bh);
240799cd 3492 if (i == start + inodes_per_block) {
ac27a0ec
DK
3493 /* all other inodes are free, so skip I/O */
3494 memset(bh->b_data, 0, bh->b_size);
3495 set_buffer_uptodate(bh);
3496 unlock_buffer(bh);
3497 goto has_buffer;
3498 }
3499 }
3500
3501make_io:
240799cd
TT
3502 /*
3503 * If we need to do any I/O, try to pre-readahead extra
3504 * blocks from the inode table.
3505 */
3506 if (EXT4_SB(sb)->s_inode_readahead_blks) {
3507 ext4_fsblk_t b, end, table;
3508 unsigned num;
3509
3510 table = ext4_inode_table(sb, gdp);
b713a5ec 3511 /* s_inode_readahead_blks is always a power of 2 */
240799cd
TT
3512 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
3513 if (table > b)
3514 b = table;
3515 end = b + EXT4_SB(sb)->s_inode_readahead_blks;
3516 num = EXT4_INODES_PER_GROUP(sb);
3517 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3518 EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
560671a0 3519 num -= ext4_itable_unused_count(sb, gdp);
240799cd
TT
3520 table += num / inodes_per_block;
3521 if (end > table)
3522 end = table;
3523 while (b <= end)
3524 sb_breadahead(sb, b++);
3525 }
3526
ac27a0ec
DK
3527 /*
3528 * There are other valid inodes in the buffer, this inode
3529 * has in-inode xattrs, or we don't have this inode in memory.
3530 * Read the block from disk.
3531 */
0562e0ba 3532 trace_ext4_load_inode(inode);
ac27a0ec
DK
3533 get_bh(bh);
3534 bh->b_end_io = end_buffer_read_sync;
65299a3b 3535 submit_bh(READ | REQ_META | REQ_PRIO, bh);
ac27a0ec
DK
3536 wait_on_buffer(bh);
3537 if (!buffer_uptodate(bh)) {
c398eda0
TT
3538 EXT4_ERROR_INODE_BLOCK(inode, block,
3539 "unable to read itable block");
ac27a0ec
DK
3540 brelse(bh);
3541 return -EIO;
3542 }
3543 }
3544has_buffer:
3545 iloc->bh = bh;
3546 return 0;
3547}
3548
617ba13b 3549int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
3550{
3551 /* We have all inode data except xattrs in memory here. */
617ba13b 3552 return __ext4_get_inode_loc(inode, iloc,
19f5fb7a 3553 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
ac27a0ec
DK
3554}
3555
617ba13b 3556void ext4_set_inode_flags(struct inode *inode)
ac27a0ec 3557{
617ba13b 3558 unsigned int flags = EXT4_I(inode)->i_flags;
ac27a0ec
DK
3559
3560 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
617ba13b 3561 if (flags & EXT4_SYNC_FL)
ac27a0ec 3562 inode->i_flags |= S_SYNC;
617ba13b 3563 if (flags & EXT4_APPEND_FL)
ac27a0ec 3564 inode->i_flags |= S_APPEND;
617ba13b 3565 if (flags & EXT4_IMMUTABLE_FL)
ac27a0ec 3566 inode->i_flags |= S_IMMUTABLE;
617ba13b 3567 if (flags & EXT4_NOATIME_FL)
ac27a0ec 3568 inode->i_flags |= S_NOATIME;
617ba13b 3569 if (flags & EXT4_DIRSYNC_FL)
ac27a0ec
DK
3570 inode->i_flags |= S_DIRSYNC;
3571}
3572
ff9ddf7e
JK
3573/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3574void ext4_get_inode_flags(struct ext4_inode_info *ei)
3575{
84a8dce2
DM
3576 unsigned int vfs_fl;
3577 unsigned long old_fl, new_fl;
3578
3579 do {
3580 vfs_fl = ei->vfs_inode.i_flags;
3581 old_fl = ei->i_flags;
3582 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3583 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3584 EXT4_DIRSYNC_FL);
3585 if (vfs_fl & S_SYNC)
3586 new_fl |= EXT4_SYNC_FL;
3587 if (vfs_fl & S_APPEND)
3588 new_fl |= EXT4_APPEND_FL;
3589 if (vfs_fl & S_IMMUTABLE)
3590 new_fl |= EXT4_IMMUTABLE_FL;
3591 if (vfs_fl & S_NOATIME)
3592 new_fl |= EXT4_NOATIME_FL;
3593 if (vfs_fl & S_DIRSYNC)
3594 new_fl |= EXT4_DIRSYNC_FL;
3595 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
ff9ddf7e 3596}
de9a55b8 3597
0fc1b451 3598static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
de9a55b8 3599 struct ext4_inode_info *ei)
0fc1b451
AK
3600{
3601 blkcnt_t i_blocks ;
8180a562
AK
3602 struct inode *inode = &(ei->vfs_inode);
3603 struct super_block *sb = inode->i_sb;
0fc1b451
AK
3604
3605 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3606 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3607 /* we are using combined 48 bit field */
3608 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3609 le32_to_cpu(raw_inode->i_blocks_lo);
07a03824 3610 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
8180a562
AK
3611 /* i_blocks represent file system block size */
3612 return i_blocks << (inode->i_blkbits - 9);
3613 } else {
3614 return i_blocks;
3615 }
0fc1b451
AK
3616 } else {
3617 return le32_to_cpu(raw_inode->i_blocks_lo);
3618 }
3619}
ff9ddf7e 3620
1d1fe1ee 3621struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
ac27a0ec 3622{
617ba13b
MC
3623 struct ext4_iloc iloc;
3624 struct ext4_inode *raw_inode;
1d1fe1ee 3625 struct ext4_inode_info *ei;
1d1fe1ee 3626 struct inode *inode;
b436b9be 3627 journal_t *journal = EXT4_SB(sb)->s_journal;
1d1fe1ee 3628 long ret;
ac27a0ec
DK
3629 int block;
3630
1d1fe1ee
DH
3631 inode = iget_locked(sb, ino);
3632 if (!inode)
3633 return ERR_PTR(-ENOMEM);
3634 if (!(inode->i_state & I_NEW))
3635 return inode;
3636
3637 ei = EXT4_I(inode);
7dc57615 3638 iloc.bh = NULL;
ac27a0ec 3639
1d1fe1ee
DH
3640 ret = __ext4_get_inode_loc(inode, &iloc, 0);
3641 if (ret < 0)
ac27a0ec 3642 goto bad_inode;
617ba13b 3643 raw_inode = ext4_raw_inode(&iloc);
ac27a0ec
DK
3644 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
3645 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
3646 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
af5bc92d 3647 if (!(test_opt(inode->i_sb, NO_UID32))) {
ac27a0ec
DK
3648 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
3649 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
3650 }
bfe86848 3651 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
ac27a0ec 3652
353eb83c 3653 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
ac27a0ec
DK
3654 ei->i_dir_start_lookup = 0;
3655 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
3656 /* We now have enough fields to check if the inode was active or not.
3657 * This is needed because nfsd might try to access dead inodes
3658 * the test is that same one that e2fsck uses
3659 * NeilBrown 1999oct15
3660 */
3661 if (inode->i_nlink == 0) {
3662 if (inode->i_mode == 0 ||
617ba13b 3663 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
ac27a0ec 3664 /* this inode is deleted */
1d1fe1ee 3665 ret = -ESTALE;
ac27a0ec
DK
3666 goto bad_inode;
3667 }
3668 /* The only unlinked inodes we let through here have
3669 * valid i_mode and are being read by the orphan
3670 * recovery code: that's fine, we're about to complete
3671 * the process of deleting those. */
3672 }
ac27a0ec 3673 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
0fc1b451 3674 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
7973c0c1 3675 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
a9e81742 3676 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
a1ddeb7e
BP
3677 ei->i_file_acl |=
3678 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
a48380f7 3679 inode->i_size = ext4_isize(raw_inode);
ac27a0ec 3680 ei->i_disksize = inode->i_size;
a9e7f447
DM
3681#ifdef CONFIG_QUOTA
3682 ei->i_reserved_quota = 0;
3683#endif
ac27a0ec
DK
3684 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
3685 ei->i_block_group = iloc.block_group;
a4912123 3686 ei->i_last_alloc_group = ~0;
ac27a0ec
DK
3687 /*
3688 * NOTE! The in-memory inode i_data array is in little-endian order
3689 * even on big-endian machines: we do NOT byteswap the block numbers!
3690 */
617ba13b 3691 for (block = 0; block < EXT4_N_BLOCKS; block++)
ac27a0ec
DK
3692 ei->i_data[block] = raw_inode->i_block[block];
3693 INIT_LIST_HEAD(&ei->i_orphan);
3694
b436b9be
JK
3695 /*
3696 * Set transaction id's of transactions that have to be committed
3697 * to finish f[data]sync. We set them to currently running transaction
3698 * as we cannot be sure that the inode or some of its metadata isn't
3699 * part of the transaction - the inode could have been reclaimed and
3700 * now it is reread from disk.
3701 */
3702 if (journal) {
3703 transaction_t *transaction;
3704 tid_t tid;
3705
a931da6a 3706 read_lock(&journal->j_state_lock);
b436b9be
JK
3707 if (journal->j_running_transaction)
3708 transaction = journal->j_running_transaction;
3709 else
3710 transaction = journal->j_committing_transaction;
3711 if (transaction)
3712 tid = transaction->t_tid;
3713 else
3714 tid = journal->j_commit_sequence;
a931da6a 3715 read_unlock(&journal->j_state_lock);
b436b9be
JK
3716 ei->i_sync_tid = tid;
3717 ei->i_datasync_tid = tid;
3718 }
3719
0040d987 3720 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
ac27a0ec 3721 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
617ba13b 3722 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
e5d2861f 3723 EXT4_INODE_SIZE(inode->i_sb)) {
1d1fe1ee 3724 ret = -EIO;
ac27a0ec 3725 goto bad_inode;
e5d2861f 3726 }
ac27a0ec
DK
3727 if (ei->i_extra_isize == 0) {
3728 /* The extra space is currently unused. Use it. */
617ba13b
MC
3729 ei->i_extra_isize = sizeof(struct ext4_inode) -
3730 EXT4_GOOD_OLD_INODE_SIZE;
ac27a0ec
DK
3731 } else {
3732 __le32 *magic = (void *)raw_inode +
617ba13b 3733 EXT4_GOOD_OLD_INODE_SIZE +
ac27a0ec 3734 ei->i_extra_isize;
617ba13b 3735 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
19f5fb7a 3736 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
ac27a0ec
DK
3737 }
3738 } else
3739 ei->i_extra_isize = 0;
3740
ef7f3835
KS
3741 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
3742 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
3743 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
3744 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
3745
25ec56b5
JNC
3746 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
3747 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
3748 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
3749 inode->i_version |=
3750 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
3751 }
3752
c4b5a614 3753 ret = 0;
485c26ec 3754 if (ei->i_file_acl &&
1032988c 3755 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
24676da4
TT
3756 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
3757 ei->i_file_acl);
485c26ec
TT
3758 ret = -EIO;
3759 goto bad_inode;
07a03824 3760 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
c4b5a614
TT
3761 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
3762 (S_ISLNK(inode->i_mode) &&
3763 !ext4_inode_is_fast_symlink(inode)))
3764 /* Validate extent which is part of inode */
3765 ret = ext4_ext_check_inode(inode);
de9a55b8 3766 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
fe2c8191
TN
3767 (S_ISLNK(inode->i_mode) &&
3768 !ext4_inode_is_fast_symlink(inode))) {
de9a55b8 3769 /* Validate block references which are part of inode */
1f7d1e77 3770 ret = ext4_ind_check_inode(inode);
fe2c8191 3771 }
567f3e9a 3772 if (ret)
de9a55b8 3773 goto bad_inode;
7a262f7c 3774
ac27a0ec 3775 if (S_ISREG(inode->i_mode)) {
617ba13b
MC
3776 inode->i_op = &ext4_file_inode_operations;
3777 inode->i_fop = &ext4_file_operations;
3778 ext4_set_aops(inode);
ac27a0ec 3779 } else if (S_ISDIR(inode->i_mode)) {
617ba13b
MC
3780 inode->i_op = &ext4_dir_inode_operations;
3781 inode->i_fop = &ext4_dir_operations;
ac27a0ec 3782 } else if (S_ISLNK(inode->i_mode)) {
e83c1397 3783 if (ext4_inode_is_fast_symlink(inode)) {
617ba13b 3784 inode->i_op = &ext4_fast_symlink_inode_operations;
e83c1397
DG
3785 nd_terminate_link(ei->i_data, inode->i_size,
3786 sizeof(ei->i_data) - 1);
3787 } else {
617ba13b
MC
3788 inode->i_op = &ext4_symlink_inode_operations;
3789 ext4_set_aops(inode);
ac27a0ec 3790 }
563bdd61
TT
3791 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
3792 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
617ba13b 3793 inode->i_op = &ext4_special_inode_operations;
ac27a0ec
DK
3794 if (raw_inode->i_block[0])
3795 init_special_inode(inode, inode->i_mode,
3796 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
3797 else
3798 init_special_inode(inode, inode->i_mode,
3799 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
563bdd61 3800 } else {
563bdd61 3801 ret = -EIO;
24676da4 3802 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
563bdd61 3803 goto bad_inode;
ac27a0ec 3804 }
af5bc92d 3805 brelse(iloc.bh);
617ba13b 3806 ext4_set_inode_flags(inode);
1d1fe1ee
DH
3807 unlock_new_inode(inode);
3808 return inode;
ac27a0ec
DK
3809
3810bad_inode:
567f3e9a 3811 brelse(iloc.bh);
1d1fe1ee
DH
3812 iget_failed(inode);
3813 return ERR_PTR(ret);
ac27a0ec
DK
3814}
3815
0fc1b451
AK
3816static int ext4_inode_blocks_set(handle_t *handle,
3817 struct ext4_inode *raw_inode,
3818 struct ext4_inode_info *ei)
3819{
3820 struct inode *inode = &(ei->vfs_inode);
3821 u64 i_blocks = inode->i_blocks;
3822 struct super_block *sb = inode->i_sb;
0fc1b451
AK
3823
3824 if (i_blocks <= ~0U) {
3825 /*
3826 * i_blocks can be represnted in a 32 bit variable
3827 * as multiple of 512 bytes
3828 */
8180a562 3829 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 3830 raw_inode->i_blocks_high = 0;
84a8dce2 3831 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
f287a1a5
TT
3832 return 0;
3833 }
3834 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
3835 return -EFBIG;
3836
3837 if (i_blocks <= 0xffffffffffffULL) {
0fc1b451
AK
3838 /*
3839 * i_blocks can be represented in a 48 bit variable
3840 * as multiple of 512 bytes
3841 */
8180a562 3842 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
0fc1b451 3843 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
84a8dce2 3844 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
0fc1b451 3845 } else {
84a8dce2 3846 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
8180a562
AK
3847 /* i_block is stored in file system block size */
3848 i_blocks = i_blocks >> (inode->i_blkbits - 9);
3849 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
3850 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
0fc1b451 3851 }
f287a1a5 3852 return 0;
0fc1b451
AK
3853}
3854
ac27a0ec
DK
3855/*
3856 * Post the struct inode info into an on-disk inode location in the
3857 * buffer-cache. This gobbles the caller's reference to the
3858 * buffer_head in the inode location struct.
3859 *
3860 * The caller must have write access to iloc->bh.
3861 */
617ba13b 3862static int ext4_do_update_inode(handle_t *handle,
ac27a0ec 3863 struct inode *inode,
830156c7 3864 struct ext4_iloc *iloc)
ac27a0ec 3865{
617ba13b
MC
3866 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
3867 struct ext4_inode_info *ei = EXT4_I(inode);
ac27a0ec
DK
3868 struct buffer_head *bh = iloc->bh;
3869 int err = 0, rc, block;
3870
3871 /* For fields not not tracking in the in-memory inode,
3872 * initialise them to zero for new inodes. */
19f5fb7a 3873 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
617ba13b 3874 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
ac27a0ec 3875
ff9ddf7e 3876 ext4_get_inode_flags(ei);
ac27a0ec 3877 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
af5bc92d 3878 if (!(test_opt(inode->i_sb, NO_UID32))) {
ac27a0ec
DK
3879 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
3880 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
3881/*
3882 * Fix up interoperability with old kernels. Otherwise, old inodes get
3883 * re-used with the upper 16 bits of the uid/gid intact
3884 */
af5bc92d 3885 if (!ei->i_dtime) {
ac27a0ec
DK
3886 raw_inode->i_uid_high =
3887 cpu_to_le16(high_16_bits(inode->i_uid));
3888 raw_inode->i_gid_high =
3889 cpu_to_le16(high_16_bits(inode->i_gid));
3890 } else {
3891 raw_inode->i_uid_high = 0;
3892 raw_inode->i_gid_high = 0;
3893 }
3894 } else {
3895 raw_inode->i_uid_low =
3896 cpu_to_le16(fs_high2lowuid(inode->i_uid));
3897 raw_inode->i_gid_low =
3898 cpu_to_le16(fs_high2lowgid(inode->i_gid));
3899 raw_inode->i_uid_high = 0;
3900 raw_inode->i_gid_high = 0;
3901 }
3902 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
ef7f3835
KS
3903
3904 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
3905 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
3906 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
3907 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
3908
0fc1b451
AK
3909 if (ext4_inode_blocks_set(handle, raw_inode, ei))
3910 goto out_brelse;
ac27a0ec 3911 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
353eb83c 3912 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
9b8f1f01
MC
3913 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
3914 cpu_to_le32(EXT4_OS_HURD))
a1ddeb7e
BP
3915 raw_inode->i_file_acl_high =
3916 cpu_to_le16(ei->i_file_acl >> 32);
7973c0c1 3917 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
a48380f7
AK
3918 ext4_isize_set(raw_inode, ei->i_disksize);
3919 if (ei->i_disksize > 0x7fffffffULL) {
3920 struct super_block *sb = inode->i_sb;
3921 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
3922 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
3923 EXT4_SB(sb)->s_es->s_rev_level ==
3924 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
3925 /* If this is the first large file
3926 * created, add a flag to the superblock.
3927 */
3928 err = ext4_journal_get_write_access(handle,
3929 EXT4_SB(sb)->s_sbh);
3930 if (err)
3931 goto out_brelse;
3932 ext4_update_dynamic_rev(sb);
3933 EXT4_SET_RO_COMPAT_FEATURE(sb,
617ba13b 3934 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
a48380f7 3935 sb->s_dirt = 1;
0390131b 3936 ext4_handle_sync(handle);
73b50c1c 3937 err = ext4_handle_dirty_metadata(handle, NULL,
a48380f7 3938 EXT4_SB(sb)->s_sbh);
ac27a0ec
DK
3939 }
3940 }
3941 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
3942 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
3943 if (old_valid_dev(inode->i_rdev)) {
3944 raw_inode->i_block[0] =
3945 cpu_to_le32(old_encode_dev(inode->i_rdev));
3946 raw_inode->i_block[1] = 0;
3947 } else {
3948 raw_inode->i_block[0] = 0;
3949 raw_inode->i_block[1] =
3950 cpu_to_le32(new_encode_dev(inode->i_rdev));
3951 raw_inode->i_block[2] = 0;
3952 }
de9a55b8
TT
3953 } else
3954 for (block = 0; block < EXT4_N_BLOCKS; block++)
3955 raw_inode->i_block[block] = ei->i_data[block];
ac27a0ec 3956
25ec56b5
JNC
3957 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
3958 if (ei->i_extra_isize) {
3959 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
3960 raw_inode->i_version_hi =
3961 cpu_to_le32(inode->i_version >> 32);
ac27a0ec 3962 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
25ec56b5
JNC
3963 }
3964
830156c7 3965 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
73b50c1c 3966 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
830156c7
FM
3967 if (!err)
3968 err = rc;
19f5fb7a 3969 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
ac27a0ec 3970
b436b9be 3971 ext4_update_inode_fsync_trans(handle, inode, 0);
ac27a0ec 3972out_brelse:
af5bc92d 3973 brelse(bh);
617ba13b 3974 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
3975 return err;
3976}
3977
3978/*
617ba13b 3979 * ext4_write_inode()
ac27a0ec
DK
3980 *
3981 * We are called from a few places:
3982 *
3983 * - Within generic_file_write() for O_SYNC files.
3984 * Here, there will be no transaction running. We wait for any running
3985 * trasnaction to commit.
3986 *
3987 * - Within sys_sync(), kupdate and such.
3988 * We wait on commit, if tol to.
3989 *
3990 * - Within prune_icache() (PF_MEMALLOC == true)
3991 * Here we simply return. We can't afford to block kswapd on the
3992 * journal commit.
3993 *
3994 * In all cases it is actually safe for us to return without doing anything,
3995 * because the inode has been copied into a raw inode buffer in
617ba13b 3996 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
ac27a0ec
DK
3997 * knfsd.
3998 *
3999 * Note that we are absolutely dependent upon all inode dirtiers doing the
4000 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4001 * which we are interested.
4002 *
4003 * It would be a bug for them to not do this. The code:
4004 *
4005 * mark_inode_dirty(inode)
4006 * stuff();
4007 * inode->i_size = expr;
4008 *
4009 * is in error because a kswapd-driven write_inode() could occur while
4010 * `stuff()' is running, and the new i_size will be lost. Plus the inode
4011 * will no longer be on the superblock's dirty inode list.
4012 */
a9185b41 4013int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
ac27a0ec 4014{
91ac6f43
FM
4015 int err;
4016
ac27a0ec
DK
4017 if (current->flags & PF_MEMALLOC)
4018 return 0;
4019
91ac6f43
FM
4020 if (EXT4_SB(inode->i_sb)->s_journal) {
4021 if (ext4_journal_current_handle()) {
4022 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4023 dump_stack();
4024 return -EIO;
4025 }
ac27a0ec 4026
a9185b41 4027 if (wbc->sync_mode != WB_SYNC_ALL)
91ac6f43
FM
4028 return 0;
4029
4030 err = ext4_force_commit(inode->i_sb);
4031 } else {
4032 struct ext4_iloc iloc;
ac27a0ec 4033
8b472d73 4034 err = __ext4_get_inode_loc(inode, &iloc, 0);
91ac6f43
FM
4035 if (err)
4036 return err;
a9185b41 4037 if (wbc->sync_mode == WB_SYNC_ALL)
830156c7
FM
4038 sync_dirty_buffer(iloc.bh);
4039 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
c398eda0
TT
4040 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4041 "IO error syncing inode");
830156c7
FM
4042 err = -EIO;
4043 }
fd2dd9fb 4044 brelse(iloc.bh);
91ac6f43
FM
4045 }
4046 return err;
ac27a0ec
DK
4047}
4048
4049/*
617ba13b 4050 * ext4_setattr()
ac27a0ec
DK
4051 *
4052 * Called from notify_change.
4053 *
4054 * We want to trap VFS attempts to truncate the file as soon as
4055 * possible. In particular, we want to make sure that when the VFS
4056 * shrinks i_size, we put the inode on the orphan list and modify
4057 * i_disksize immediately, so that during the subsequent flushing of
4058 * dirty pages and freeing of disk blocks, we can guarantee that any
4059 * commit will leave the blocks being flushed in an unused state on
4060 * disk. (On recovery, the inode will get truncated and the blocks will
4061 * be freed, so we have a strong guarantee that no future commit will
4062 * leave these blocks visible to the user.)
4063 *
678aaf48
JK
4064 * Another thing we have to assure is that if we are in ordered mode
4065 * and inode is still attached to the committing transaction, we must
4066 * we start writeout of all the dirty pages which are being truncated.
4067 * This way we are sure that all the data written in the previous
4068 * transaction are already on disk (truncate waits for pages under
4069 * writeback).
4070 *
4071 * Called with inode->i_mutex down.
ac27a0ec 4072 */
617ba13b 4073int ext4_setattr(struct dentry *dentry, struct iattr *attr)
ac27a0ec
DK
4074{
4075 struct inode *inode = dentry->d_inode;
4076 int error, rc = 0;
3d287de3 4077 int orphan = 0;
ac27a0ec
DK
4078 const unsigned int ia_valid = attr->ia_valid;
4079
4080 error = inode_change_ok(inode, attr);
4081 if (error)
4082 return error;
4083
12755627 4084 if (is_quota_modification(inode, attr))
871a2931 4085 dquot_initialize(inode);
ac27a0ec
DK
4086 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
4087 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
4088 handle_t *handle;
4089
4090 /* (user+group)*(old+new) structure, inode write (sb,
4091 * inode block, ? - but truncate inode update has it) */
5aca07eb 4092 handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
194074ac 4093 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
ac27a0ec
DK
4094 if (IS_ERR(handle)) {
4095 error = PTR_ERR(handle);
4096 goto err_out;
4097 }
b43fa828 4098 error = dquot_transfer(inode, attr);
ac27a0ec 4099 if (error) {
617ba13b 4100 ext4_journal_stop(handle);
ac27a0ec
DK
4101 return error;
4102 }
4103 /* Update corresponding info in inode so that everything is in
4104 * one transaction */
4105 if (attr->ia_valid & ATTR_UID)
4106 inode->i_uid = attr->ia_uid;
4107 if (attr->ia_valid & ATTR_GID)
4108 inode->i_gid = attr->ia_gid;
617ba13b
MC
4109 error = ext4_mark_inode_dirty(handle, inode);
4110 ext4_journal_stop(handle);
ac27a0ec
DK
4111 }
4112
e2b46574 4113 if (attr->ia_valid & ATTR_SIZE) {
562c72aa
CH
4114 inode_dio_wait(inode);
4115
12e9b892 4116 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
e2b46574
ES
4117 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4118
0c095c7f
TT
4119 if (attr->ia_size > sbi->s_bitmap_maxbytes)
4120 return -EFBIG;
e2b46574
ES
4121 }
4122 }
4123
ac27a0ec 4124 if (S_ISREG(inode->i_mode) &&
c8d46e41 4125 attr->ia_valid & ATTR_SIZE &&
072bd7ea 4126 (attr->ia_size < inode->i_size)) {
ac27a0ec
DK
4127 handle_t *handle;
4128
617ba13b 4129 handle = ext4_journal_start(inode, 3);
ac27a0ec
DK
4130 if (IS_ERR(handle)) {
4131 error = PTR_ERR(handle);
4132 goto err_out;
4133 }
3d287de3
DM
4134 if (ext4_handle_valid(handle)) {
4135 error = ext4_orphan_add(handle, inode);
4136 orphan = 1;
4137 }
617ba13b
MC
4138 EXT4_I(inode)->i_disksize = attr->ia_size;
4139 rc = ext4_mark_inode_dirty(handle, inode);
ac27a0ec
DK
4140 if (!error)
4141 error = rc;
617ba13b 4142 ext4_journal_stop(handle);
678aaf48
JK
4143
4144 if (ext4_should_order_data(inode)) {
4145 error = ext4_begin_ordered_truncate(inode,
4146 attr->ia_size);
4147 if (error) {
4148 /* Do as much error cleanup as possible */
4149 handle = ext4_journal_start(inode, 3);
4150 if (IS_ERR(handle)) {
4151 ext4_orphan_del(NULL, inode);
4152 goto err_out;
4153 }
4154 ext4_orphan_del(handle, inode);
3d287de3 4155 orphan = 0;
678aaf48
JK
4156 ext4_journal_stop(handle);
4157 goto err_out;
4158 }
4159 }
ac27a0ec
DK
4160 }
4161
072bd7ea
TT
4162 if (attr->ia_valid & ATTR_SIZE) {
4163 if (attr->ia_size != i_size_read(inode)) {
4164 truncate_setsize(inode, attr->ia_size);
4165 ext4_truncate(inode);
4166 } else if (ext4_test_inode_flag(inode, EXT4_INODE_EOFBLOCKS))
4167 ext4_truncate(inode);
4168 }
ac27a0ec 4169
1025774c
CH
4170 if (!rc) {
4171 setattr_copy(inode, attr);
4172 mark_inode_dirty(inode);
4173 }
4174
4175 /*
4176 * If the call to ext4_truncate failed to get a transaction handle at
4177 * all, we need to clean up the in-core orphan list manually.
4178 */
3d287de3 4179 if (orphan && inode->i_nlink)
617ba13b 4180 ext4_orphan_del(NULL, inode);
ac27a0ec
DK
4181
4182 if (!rc && (ia_valid & ATTR_MODE))
617ba13b 4183 rc = ext4_acl_chmod(inode);
ac27a0ec
DK
4184
4185err_out:
617ba13b 4186 ext4_std_error(inode->i_sb, error);
ac27a0ec
DK
4187 if (!error)
4188 error = rc;
4189 return error;
4190}
4191
3e3398a0
MC
4192int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4193 struct kstat *stat)
4194{
4195 struct inode *inode;
4196 unsigned long delalloc_blocks;
4197
4198 inode = dentry->d_inode;
4199 generic_fillattr(inode, stat);
4200
4201 /*
4202 * We can't update i_blocks if the block allocation is delayed
4203 * otherwise in the case of system crash before the real block
4204 * allocation is done, we will have i_blocks inconsistent with
4205 * on-disk file blocks.
4206 * We always keep i_blocks updated together with real
4207 * allocation. But to not confuse with user, stat
4208 * will return the blocks that include the delayed allocation
4209 * blocks for this file.
4210 */
3e3398a0 4211 delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
3e3398a0
MC
4212
4213 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
4214 return 0;
4215}
ac27a0ec 4216
a02908f1
MC
4217static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
4218{
12e9b892 4219 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
8bb2b247 4220 return ext4_ind_trans_blocks(inode, nrblocks, chunk);
ac51d837 4221 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
a02908f1 4222}
ac51d837 4223
ac27a0ec 4224/*
a02908f1
MC
4225 * Account for index blocks, block groups bitmaps and block group
4226 * descriptor blocks if modify datablocks and index blocks
4227 * worse case, the indexs blocks spread over different block groups
ac27a0ec 4228 *
a02908f1 4229 * If datablocks are discontiguous, they are possible to spread over
af901ca1 4230 * different block groups too. If they are contiuguous, with flexbg,
a02908f1 4231 * they could still across block group boundary.
ac27a0ec 4232 *
a02908f1
MC
4233 * Also account for superblock, inode, quota and xattr blocks
4234 */
1f109d5a 4235static int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
a02908f1 4236{
8df9675f
TT
4237 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4238 int gdpblocks;
a02908f1
MC
4239 int idxblocks;
4240 int ret = 0;
4241
4242 /*
4243 * How many index blocks need to touch to modify nrblocks?
4244 * The "Chunk" flag indicating whether the nrblocks is
4245 * physically contiguous on disk
4246 *
4247 * For Direct IO and fallocate, they calls get_block to allocate
4248 * one single extent at a time, so they could set the "Chunk" flag
4249 */
4250 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
4251
4252 ret = idxblocks;
4253
4254 /*
4255 * Now let's see how many group bitmaps and group descriptors need
4256 * to account
4257 */
4258 groups = idxblocks;
4259 if (chunk)
4260 groups += 1;
4261 else
4262 groups += nrblocks;
4263
4264 gdpblocks = groups;
8df9675f
TT
4265 if (groups > ngroups)
4266 groups = ngroups;
a02908f1
MC
4267 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4268 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4269
4270 /* bitmaps and block group descriptor blocks */
4271 ret += groups + gdpblocks;
4272
4273 /* Blocks for super block, inode, quota and xattr blocks */
4274 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4275
4276 return ret;
4277}
4278
4279/*
25985edc 4280 * Calculate the total number of credits to reserve to fit
f3bd1f3f
MC
4281 * the modification of a single pages into a single transaction,
4282 * which may include multiple chunks of block allocations.
ac27a0ec 4283 *
525f4ed8 4284 * This could be called via ext4_write_begin()
ac27a0ec 4285 *
525f4ed8 4286 * We need to consider the worse case, when
a02908f1 4287 * one new block per extent.
ac27a0ec 4288 */
a86c6181 4289int ext4_writepage_trans_blocks(struct inode *inode)
ac27a0ec 4290{
617ba13b 4291 int bpp = ext4_journal_blocks_per_page(inode);
ac27a0ec
DK
4292 int ret;
4293
a02908f1 4294 ret = ext4_meta_trans_blocks(inode, bpp, 0);
a86c6181 4295
a02908f1 4296 /* Account for data blocks for journalled mode */
617ba13b 4297 if (ext4_should_journal_data(inode))
a02908f1 4298 ret += bpp;
ac27a0ec
DK
4299 return ret;
4300}
f3bd1f3f
MC
4301
4302/*
4303 * Calculate the journal credits for a chunk of data modification.
4304 *
4305 * This is called from DIO, fallocate or whoever calling
79e83036 4306 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
f3bd1f3f
MC
4307 *
4308 * journal buffers for data blocks are not included here, as DIO
4309 * and fallocate do no need to journal data buffers.
4310 */
4311int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4312{
4313 return ext4_meta_trans_blocks(inode, nrblocks, 1);
4314}
4315
ac27a0ec 4316/*
617ba13b 4317 * The caller must have previously called ext4_reserve_inode_write().
ac27a0ec
DK
4318 * Give this, we know that the caller already has write access to iloc->bh.
4319 */
617ba13b 4320int ext4_mark_iloc_dirty(handle_t *handle,
de9a55b8 4321 struct inode *inode, struct ext4_iloc *iloc)
ac27a0ec
DK
4322{
4323 int err = 0;
4324
c64db50e 4325 if (IS_I_VERSION(inode))
25ec56b5
JNC
4326 inode_inc_iversion(inode);
4327
ac27a0ec
DK
4328 /* the do_update_inode consumes one bh->b_count */
4329 get_bh(iloc->bh);
4330
dab291af 4331 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
830156c7 4332 err = ext4_do_update_inode(handle, inode, iloc);
ac27a0ec
DK
4333 put_bh(iloc->bh);
4334 return err;
4335}
4336
4337/*
4338 * On success, We end up with an outstanding reference count against
4339 * iloc->bh. This _must_ be cleaned up later.
4340 */
4341
4342int
617ba13b
MC
4343ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4344 struct ext4_iloc *iloc)
ac27a0ec 4345{
0390131b
FM
4346 int err;
4347
4348 err = ext4_get_inode_loc(inode, iloc);
4349 if (!err) {
4350 BUFFER_TRACE(iloc->bh, "get_write_access");
4351 err = ext4_journal_get_write_access(handle, iloc->bh);
4352 if (err) {
4353 brelse(iloc->bh);
4354 iloc->bh = NULL;
ac27a0ec
DK
4355 }
4356 }
617ba13b 4357 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4358 return err;
4359}
4360
6dd4ee7c
KS
4361/*
4362 * Expand an inode by new_extra_isize bytes.
4363 * Returns 0 on success or negative error number on failure.
4364 */
1d03ec98
AK
4365static int ext4_expand_extra_isize(struct inode *inode,
4366 unsigned int new_extra_isize,
4367 struct ext4_iloc iloc,
4368 handle_t *handle)
6dd4ee7c
KS
4369{
4370 struct ext4_inode *raw_inode;
4371 struct ext4_xattr_ibody_header *header;
6dd4ee7c
KS
4372
4373 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4374 return 0;
4375
4376 raw_inode = ext4_raw_inode(&iloc);
4377
4378 header = IHDR(inode, raw_inode);
6dd4ee7c
KS
4379
4380 /* No extended attributes present */
19f5fb7a
TT
4381 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4382 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
6dd4ee7c
KS
4383 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4384 new_extra_isize);
4385 EXT4_I(inode)->i_extra_isize = new_extra_isize;
4386 return 0;
4387 }
4388
4389 /* try to expand with EAs present */
4390 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4391 raw_inode, handle);
4392}
4393
ac27a0ec
DK
4394/*
4395 * What we do here is to mark the in-core inode as clean with respect to inode
4396 * dirtiness (it may still be data-dirty).
4397 * This means that the in-core inode may be reaped by prune_icache
4398 * without having to perform any I/O. This is a very good thing,
4399 * because *any* task may call prune_icache - even ones which
4400 * have a transaction open against a different journal.
4401 *
4402 * Is this cheating? Not really. Sure, we haven't written the
4403 * inode out, but prune_icache isn't a user-visible syncing function.
4404 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4405 * we start and wait on commits.
4406 *
4407 * Is this efficient/effective? Well, we're being nice to the system
4408 * by cleaning up our inodes proactively so they can be reaped
4409 * without I/O. But we are potentially leaving up to five seconds'
4410 * worth of inodes floating about which prune_icache wants us to
4411 * write out. One way to fix that would be to get prune_icache()
4412 * to do a write_super() to free up some memory. It has the desired
4413 * effect.
4414 */
617ba13b 4415int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
ac27a0ec 4416{
617ba13b 4417 struct ext4_iloc iloc;
6dd4ee7c
KS
4418 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4419 static unsigned int mnt_count;
4420 int err, ret;
ac27a0ec
DK
4421
4422 might_sleep();
7ff9c073 4423 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
617ba13b 4424 err = ext4_reserve_inode_write(handle, inode, &iloc);
0390131b
FM
4425 if (ext4_handle_valid(handle) &&
4426 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
19f5fb7a 4427 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
6dd4ee7c
KS
4428 /*
4429 * We need extra buffer credits since we may write into EA block
4430 * with this same handle. If journal_extend fails, then it will
4431 * only result in a minor loss of functionality for that inode.
4432 * If this is felt to be critical, then e2fsck should be run to
4433 * force a large enough s_min_extra_isize.
4434 */
4435 if ((jbd2_journal_extend(handle,
4436 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4437 ret = ext4_expand_extra_isize(inode,
4438 sbi->s_want_extra_isize,
4439 iloc, handle);
4440 if (ret) {
19f5fb7a
TT
4441 ext4_set_inode_state(inode,
4442 EXT4_STATE_NO_EXPAND);
c1bddad9
AK
4443 if (mnt_count !=
4444 le16_to_cpu(sbi->s_es->s_mnt_count)) {
12062ddd 4445 ext4_warning(inode->i_sb,
6dd4ee7c
KS
4446 "Unable to expand inode %lu. Delete"
4447 " some EAs or run e2fsck.",
4448 inode->i_ino);
c1bddad9
AK
4449 mnt_count =
4450 le16_to_cpu(sbi->s_es->s_mnt_count);
6dd4ee7c
KS
4451 }
4452 }
4453 }
4454 }
ac27a0ec 4455 if (!err)
617ba13b 4456 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
ac27a0ec
DK
4457 return err;
4458}
4459
4460/*
617ba13b 4461 * ext4_dirty_inode() is called from __mark_inode_dirty()
ac27a0ec
DK
4462 *
4463 * We're really interested in the case where a file is being extended.
4464 * i_size has been changed by generic_commit_write() and we thus need
4465 * to include the updated inode in the current transaction.
4466 *
5dd4056d 4467 * Also, dquot_alloc_block() will always dirty the inode when blocks
ac27a0ec
DK
4468 * are allocated to the file.
4469 *
4470 * If the inode is marked synchronous, we don't honour that here - doing
4471 * so would cause a commit on atime updates, which we don't bother doing.
4472 * We handle synchronous inodes at the highest possible level.
4473 */
aa385729 4474void ext4_dirty_inode(struct inode *inode, int flags)
ac27a0ec 4475{
ac27a0ec
DK
4476 handle_t *handle;
4477
617ba13b 4478 handle = ext4_journal_start(inode, 2);
ac27a0ec
DK
4479 if (IS_ERR(handle))
4480 goto out;
f3dc272f 4481
f3dc272f
CW
4482 ext4_mark_inode_dirty(handle, inode);
4483
617ba13b 4484 ext4_journal_stop(handle);
ac27a0ec
DK
4485out:
4486 return;
4487}
4488
4489#if 0
4490/*
4491 * Bind an inode's backing buffer_head into this transaction, to prevent
4492 * it from being flushed to disk early. Unlike
617ba13b 4493 * ext4_reserve_inode_write, this leaves behind no bh reference and
ac27a0ec
DK
4494 * returns no iloc structure, so the caller needs to repeat the iloc
4495 * lookup to mark the inode dirty later.
4496 */
617ba13b 4497static int ext4_pin_inode(handle_t *handle, struct inode *inode)
ac27a0ec 4498{
617ba13b 4499 struct ext4_iloc iloc;
ac27a0ec
DK
4500
4501 int err = 0;
4502 if (handle) {
617ba13b 4503 err = ext4_get_inode_loc(inode, &iloc);
ac27a0ec
DK
4504 if (!err) {
4505 BUFFER_TRACE(iloc.bh, "get_write_access");
dab291af 4506 err = jbd2_journal_get_write_access(handle, iloc.bh);
ac27a0ec 4507 if (!err)
0390131b 4508 err = ext4_handle_dirty_metadata(handle,
73b50c1c 4509 NULL,
0390131b 4510 iloc.bh);
ac27a0ec
DK
4511 brelse(iloc.bh);
4512 }
4513 }
617ba13b 4514 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4515 return err;
4516}
4517#endif
4518
617ba13b 4519int ext4_change_inode_journal_flag(struct inode *inode, int val)
ac27a0ec
DK
4520{
4521 journal_t *journal;
4522 handle_t *handle;
4523 int err;
4524
4525 /*
4526 * We have to be very careful here: changing a data block's
4527 * journaling status dynamically is dangerous. If we write a
4528 * data block to the journal, change the status and then delete
4529 * that block, we risk forgetting to revoke the old log record
4530 * from the journal and so a subsequent replay can corrupt data.
4531 * So, first we make sure that the journal is empty and that
4532 * nobody is changing anything.
4533 */
4534
617ba13b 4535 journal = EXT4_JOURNAL(inode);
0390131b
FM
4536 if (!journal)
4537 return 0;
d699594d 4538 if (is_journal_aborted(journal))
ac27a0ec 4539 return -EROFS;
2aff57b0
YY
4540 /* We have to allocate physical blocks for delalloc blocks
4541 * before flushing journal. otherwise delalloc blocks can not
4542 * be allocated any more. even more truncate on delalloc blocks
4543 * could trigger BUG by flushing delalloc blocks in journal.
4544 * There is no delalloc block in non-journal data mode.
4545 */
4546 if (val && test_opt(inode->i_sb, DELALLOC)) {
4547 err = ext4_alloc_da_blocks(inode);
4548 if (err < 0)
4549 return err;
4550 }
ac27a0ec 4551
dab291af 4552 jbd2_journal_lock_updates(journal);
ac27a0ec
DK
4553
4554 /*
4555 * OK, there are no updates running now, and all cached data is
4556 * synced to disk. We are now in a completely consistent state
4557 * which doesn't have anything in the journal, and we know that
4558 * no filesystem updates are running, so it is safe to modify
4559 * the inode's in-core data-journaling state flag now.
4560 */
4561
4562 if (val)
12e9b892 4563 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5872ddaa
YY
4564 else {
4565 jbd2_journal_flush(journal);
12e9b892 4566 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5872ddaa 4567 }
617ba13b 4568 ext4_set_aops(inode);
ac27a0ec 4569
dab291af 4570 jbd2_journal_unlock_updates(journal);
ac27a0ec
DK
4571
4572 /* Finally we can mark the inode as dirty. */
4573
617ba13b 4574 handle = ext4_journal_start(inode, 1);
ac27a0ec
DK
4575 if (IS_ERR(handle))
4576 return PTR_ERR(handle);
4577
617ba13b 4578 err = ext4_mark_inode_dirty(handle, inode);
0390131b 4579 ext4_handle_sync(handle);
617ba13b
MC
4580 ext4_journal_stop(handle);
4581 ext4_std_error(inode->i_sb, err);
ac27a0ec
DK
4582
4583 return err;
4584}
2e9ee850
AK
4585
4586static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
4587{
4588 return !buffer_mapped(bh);
4589}
4590
c2ec175c 4591int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2e9ee850 4592{
c2ec175c 4593 struct page *page = vmf->page;
2e9ee850
AK
4594 loff_t size;
4595 unsigned long len;
9ea7df53 4596 int ret;
2e9ee850
AK
4597 struct file *file = vma->vm_file;
4598 struct inode *inode = file->f_path.dentry->d_inode;
4599 struct address_space *mapping = inode->i_mapping;
9ea7df53
JK
4600 handle_t *handle;
4601 get_block_t *get_block;
4602 int retries = 0;
2e9ee850
AK
4603
4604 /*
9ea7df53
JK
4605 * This check is racy but catches the common case. We rely on
4606 * __block_page_mkwrite() to do a reliable check.
2e9ee850 4607 */
9ea7df53
JK
4608 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
4609 /* Delalloc case is easy... */
4610 if (test_opt(inode->i_sb, DELALLOC) &&
4611 !ext4_should_journal_data(inode) &&
4612 !ext4_nonda_switch(inode->i_sb)) {
4613 do {
4614 ret = __block_page_mkwrite(vma, vmf,
4615 ext4_da_get_block_prep);
4616 } while (ret == -ENOSPC &&
4617 ext4_should_retry_alloc(inode->i_sb, &retries));
4618 goto out_ret;
2e9ee850 4619 }
0e499890
DW
4620
4621 lock_page(page);
9ea7df53
JK
4622 size = i_size_read(inode);
4623 /* Page got truncated from under us? */
4624 if (page->mapping != mapping || page_offset(page) > size) {
4625 unlock_page(page);
4626 ret = VM_FAULT_NOPAGE;
4627 goto out;
0e499890 4628 }
2e9ee850
AK
4629
4630 if (page->index == size >> PAGE_CACHE_SHIFT)
4631 len = size & ~PAGE_CACHE_MASK;
4632 else
4633 len = PAGE_CACHE_SIZE;
a827eaff 4634 /*
9ea7df53
JK
4635 * Return if we have all the buffers mapped. This avoids the need to do
4636 * journal_start/journal_stop which can block and take a long time
a827eaff 4637 */
2e9ee850 4638 if (page_has_buffers(page)) {
2e9ee850 4639 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
a827eaff 4640 ext4_bh_unmapped)) {
9ea7df53
JK
4641 /* Wait so that we don't change page under IO */
4642 wait_on_page_writeback(page);
4643 ret = VM_FAULT_LOCKED;
4644 goto out;
a827eaff 4645 }
2e9ee850 4646 }
a827eaff 4647 unlock_page(page);
9ea7df53
JK
4648 /* OK, we need to fill the hole... */
4649 if (ext4_should_dioread_nolock(inode))
4650 get_block = ext4_get_block_write;
4651 else
4652 get_block = ext4_get_block;
4653retry_alloc:
4654 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
4655 if (IS_ERR(handle)) {
c2ec175c 4656 ret = VM_FAULT_SIGBUS;
9ea7df53
JK
4657 goto out;
4658 }
4659 ret = __block_page_mkwrite(vma, vmf, get_block);
4660 if (!ret && ext4_should_journal_data(inode)) {
4661 if (walk_page_buffers(handle, page_buffers(page), 0,
4662 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
4663 unlock_page(page);
4664 ret = VM_FAULT_SIGBUS;
fcbb5515 4665 ext4_journal_stop(handle);
9ea7df53
JK
4666 goto out;
4667 }
4668 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
4669 }
4670 ext4_journal_stop(handle);
4671 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
4672 goto retry_alloc;
4673out_ret:
4674 ret = block_page_mkwrite_return(ret);
4675out:
2e9ee850
AK
4676 return ret;
4677}