Merge remote-tracking branch 'spi/fix/topcliff' into spi-linus
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / trace / ring_buffer.c
CommitLineData
7a8e76a3
SR
1/*
2 * Generic ring buffer
3 *
4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5 */
0b07436d 6#include <linux/ftrace_event.h>
7a8e76a3 7#include <linux/ring_buffer.h>
14131f2f 8#include <linux/trace_clock.h>
0b07436d 9#include <linux/trace_seq.h>
7a8e76a3 10#include <linux/spinlock.h>
15693458 11#include <linux/irq_work.h>
7a8e76a3
SR
12#include <linux/debugfs.h>
13#include <linux/uaccess.h>
a81bd80a 14#include <linux/hardirq.h>
6c43e554 15#include <linux/kthread.h> /* for self test */
1744a21d 16#include <linux/kmemcheck.h>
7a8e76a3
SR
17#include <linux/module.h>
18#include <linux/percpu.h>
19#include <linux/mutex.h>
6c43e554 20#include <linux/delay.h>
5a0e3ad6 21#include <linux/slab.h>
7a8e76a3
SR
22#include <linux/init.h>
23#include <linux/hash.h>
24#include <linux/list.h>
554f786e 25#include <linux/cpu.h>
7a8e76a3
SR
26#include <linux/fs.h>
27
79615760 28#include <asm/local.h>
182e9f5f 29
83f40318
VN
30static void update_pages_handler(struct work_struct *work);
31
d1b182a8
SR
32/*
33 * The ring buffer header is special. We must manually up keep it.
34 */
35int ring_buffer_print_entry_header(struct trace_seq *s)
36{
37 int ret;
38
334d4169
LJ
39 ret = trace_seq_printf(s, "# compressed entry header\n");
40 ret = trace_seq_printf(s, "\ttype_len : 5 bits\n");
d1b182a8
SR
41 ret = trace_seq_printf(s, "\ttime_delta : 27 bits\n");
42 ret = trace_seq_printf(s, "\tarray : 32 bits\n");
43 ret = trace_seq_printf(s, "\n");
44 ret = trace_seq_printf(s, "\tpadding : type == %d\n",
45 RINGBUF_TYPE_PADDING);
46 ret = trace_seq_printf(s, "\ttime_extend : type == %d\n",
47 RINGBUF_TYPE_TIME_EXTEND);
334d4169
LJ
48 ret = trace_seq_printf(s, "\tdata max type_len == %d\n",
49 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
d1b182a8
SR
50
51 return ret;
52}
53
5cc98548
SR
54/*
55 * The ring buffer is made up of a list of pages. A separate list of pages is
56 * allocated for each CPU. A writer may only write to a buffer that is
57 * associated with the CPU it is currently executing on. A reader may read
58 * from any per cpu buffer.
59 *
60 * The reader is special. For each per cpu buffer, the reader has its own
61 * reader page. When a reader has read the entire reader page, this reader
62 * page is swapped with another page in the ring buffer.
63 *
64 * Now, as long as the writer is off the reader page, the reader can do what
65 * ever it wants with that page. The writer will never write to that page
66 * again (as long as it is out of the ring buffer).
67 *
68 * Here's some silly ASCII art.
69 *
70 * +------+
71 * |reader| RING BUFFER
72 * |page |
73 * +------+ +---+ +---+ +---+
74 * | |-->| |-->| |
75 * +---+ +---+ +---+
76 * ^ |
77 * | |
78 * +---------------+
79 *
80 *
81 * +------+
82 * |reader| RING BUFFER
83 * |page |------------------v
84 * +------+ +---+ +---+ +---+
85 * | |-->| |-->| |
86 * +---+ +---+ +---+
87 * ^ |
88 * | |
89 * +---------------+
90 *
91 *
92 * +------+
93 * |reader| RING BUFFER
94 * |page |------------------v
95 * +------+ +---+ +---+ +---+
96 * ^ | |-->| |-->| |
97 * | +---+ +---+ +---+
98 * | |
99 * | |
100 * +------------------------------+
101 *
102 *
103 * +------+
104 * |buffer| RING BUFFER
105 * |page |------------------v
106 * +------+ +---+ +---+ +---+
107 * ^ | | | |-->| |
108 * | New +---+ +---+ +---+
109 * | Reader------^ |
110 * | page |
111 * +------------------------------+
112 *
113 *
114 * After we make this swap, the reader can hand this page off to the splice
115 * code and be done with it. It can even allocate a new page if it needs to
116 * and swap that into the ring buffer.
117 *
118 * We will be using cmpxchg soon to make all this lockless.
119 *
120 */
121
033601a3
SR
122/*
123 * A fast way to enable or disable all ring buffers is to
124 * call tracing_on or tracing_off. Turning off the ring buffers
125 * prevents all ring buffers from being recorded to.
126 * Turning this switch on, makes it OK to write to the
127 * ring buffer, if the ring buffer is enabled itself.
128 *
129 * There's three layers that must be on in order to write
130 * to the ring buffer.
131 *
132 * 1) This global flag must be set.
133 * 2) The ring buffer must be enabled for recording.
134 * 3) The per cpu buffer must be enabled for recording.
135 *
136 * In case of an anomaly, this global flag has a bit set that
137 * will permantly disable all ring buffers.
138 */
139
140/*
141 * Global flag to disable all recording to ring buffers
142 * This has two bits: ON, DISABLED
143 *
144 * ON DISABLED
145 * ---- ----------
146 * 0 0 : ring buffers are off
147 * 1 0 : ring buffers are on
148 * X 1 : ring buffers are permanently disabled
149 */
150
151enum {
152 RB_BUFFERS_ON_BIT = 0,
153 RB_BUFFERS_DISABLED_BIT = 1,
154};
155
156enum {
157 RB_BUFFERS_ON = 1 << RB_BUFFERS_ON_BIT,
158 RB_BUFFERS_DISABLED = 1 << RB_BUFFERS_DISABLED_BIT,
159};
160
5e39841c 161static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
a3583244 162
499e5470
SR
163/* Used for individual buffers (after the counter) */
164#define RB_BUFFER_OFF (1 << 20)
a3583244 165
499e5470 166#define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
033601a3
SR
167
168/**
169 * tracing_off_permanent - permanently disable ring buffers
170 *
171 * This function, once called, will disable all ring buffers
c3706f00 172 * permanently.
033601a3
SR
173 */
174void tracing_off_permanent(void)
175{
176 set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
a3583244
SR
177}
178
e3d6bf0a 179#define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
67d34724 180#define RB_ALIGNMENT 4U
334d4169 181#define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
c7b09308 182#define RB_EVNT_MIN_SIZE 8U /* two 32bit words */
334d4169 183
649508f6 184#ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
2271048d
SR
185# define RB_FORCE_8BYTE_ALIGNMENT 0
186# define RB_ARCH_ALIGNMENT RB_ALIGNMENT
187#else
188# define RB_FORCE_8BYTE_ALIGNMENT 1
189# define RB_ARCH_ALIGNMENT 8U
190#endif
191
649508f6
JH
192#define RB_ALIGN_DATA __aligned(RB_ARCH_ALIGNMENT)
193
334d4169
LJ
194/* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
195#define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
7a8e76a3
SR
196
197enum {
198 RB_LEN_TIME_EXTEND = 8,
199 RB_LEN_TIME_STAMP = 16,
200};
201
69d1b839
SR
202#define skip_time_extend(event) \
203 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
204
2d622719
TZ
205static inline int rb_null_event(struct ring_buffer_event *event)
206{
a1863c21 207 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
2d622719
TZ
208}
209
210static void rb_event_set_padding(struct ring_buffer_event *event)
211{
a1863c21 212 /* padding has a NULL time_delta */
334d4169 213 event->type_len = RINGBUF_TYPE_PADDING;
2d622719
TZ
214 event->time_delta = 0;
215}
216
34a148bf 217static unsigned
2d622719 218rb_event_data_length(struct ring_buffer_event *event)
7a8e76a3
SR
219{
220 unsigned length;
221
334d4169
LJ
222 if (event->type_len)
223 length = event->type_len * RB_ALIGNMENT;
2d622719
TZ
224 else
225 length = event->array[0];
226 return length + RB_EVNT_HDR_SIZE;
227}
228
69d1b839
SR
229/*
230 * Return the length of the given event. Will return
231 * the length of the time extend if the event is a
232 * time extend.
233 */
234static inline unsigned
2d622719
TZ
235rb_event_length(struct ring_buffer_event *event)
236{
334d4169 237 switch (event->type_len) {
7a8e76a3 238 case RINGBUF_TYPE_PADDING:
2d622719
TZ
239 if (rb_null_event(event))
240 /* undefined */
241 return -1;
334d4169 242 return event->array[0] + RB_EVNT_HDR_SIZE;
7a8e76a3
SR
243
244 case RINGBUF_TYPE_TIME_EXTEND:
245 return RB_LEN_TIME_EXTEND;
246
247 case RINGBUF_TYPE_TIME_STAMP:
248 return RB_LEN_TIME_STAMP;
249
250 case RINGBUF_TYPE_DATA:
2d622719 251 return rb_event_data_length(event);
7a8e76a3
SR
252 default:
253 BUG();
254 }
255 /* not hit */
256 return 0;
257}
258
69d1b839
SR
259/*
260 * Return total length of time extend and data,
261 * or just the event length for all other events.
262 */
263static inline unsigned
264rb_event_ts_length(struct ring_buffer_event *event)
265{
266 unsigned len = 0;
267
268 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
269 /* time extends include the data event after it */
270 len = RB_LEN_TIME_EXTEND;
271 event = skip_time_extend(event);
272 }
273 return len + rb_event_length(event);
274}
275
7a8e76a3
SR
276/**
277 * ring_buffer_event_length - return the length of the event
278 * @event: the event to get the length of
69d1b839
SR
279 *
280 * Returns the size of the data load of a data event.
281 * If the event is something other than a data event, it
282 * returns the size of the event itself. With the exception
283 * of a TIME EXTEND, where it still returns the size of the
284 * data load of the data event after it.
7a8e76a3
SR
285 */
286unsigned ring_buffer_event_length(struct ring_buffer_event *event)
287{
69d1b839
SR
288 unsigned length;
289
290 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
291 event = skip_time_extend(event);
292
293 length = rb_event_length(event);
334d4169 294 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
465634ad
RR
295 return length;
296 length -= RB_EVNT_HDR_SIZE;
297 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
298 length -= sizeof(event->array[0]);
299 return length;
7a8e76a3 300}
c4f50183 301EXPORT_SYMBOL_GPL(ring_buffer_event_length);
7a8e76a3
SR
302
303/* inline for ring buffer fast paths */
34a148bf 304static void *
7a8e76a3
SR
305rb_event_data(struct ring_buffer_event *event)
306{
69d1b839
SR
307 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
308 event = skip_time_extend(event);
334d4169 309 BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
7a8e76a3 310 /* If length is in len field, then array[0] has the data */
334d4169 311 if (event->type_len)
7a8e76a3
SR
312 return (void *)&event->array[0];
313 /* Otherwise length is in array[0] and array[1] has the data */
314 return (void *)&event->array[1];
315}
316
317/**
318 * ring_buffer_event_data - return the data of the event
319 * @event: the event to get the data from
320 */
321void *ring_buffer_event_data(struct ring_buffer_event *event)
322{
323 return rb_event_data(event);
324}
c4f50183 325EXPORT_SYMBOL_GPL(ring_buffer_event_data);
7a8e76a3
SR
326
327#define for_each_buffer_cpu(buffer, cpu) \
9e01c1b7 328 for_each_cpu(cpu, buffer->cpumask)
7a8e76a3
SR
329
330#define TS_SHIFT 27
331#define TS_MASK ((1ULL << TS_SHIFT) - 1)
332#define TS_DELTA_TEST (~TS_MASK)
333
66a8cb95
SR
334/* Flag when events were overwritten */
335#define RB_MISSED_EVENTS (1 << 31)
ff0ff84a
SR
336/* Missed count stored at end */
337#define RB_MISSED_STORED (1 << 30)
66a8cb95 338
abc9b56d 339struct buffer_data_page {
e4c2ce82 340 u64 time_stamp; /* page time stamp */
c3706f00 341 local_t commit; /* write committed index */
649508f6 342 unsigned char data[] RB_ALIGN_DATA; /* data of buffer page */
abc9b56d
SR
343};
344
77ae365e
SR
345/*
346 * Note, the buffer_page list must be first. The buffer pages
347 * are allocated in cache lines, which means that each buffer
348 * page will be at the beginning of a cache line, and thus
349 * the least significant bits will be zero. We use this to
350 * add flags in the list struct pointers, to make the ring buffer
351 * lockless.
352 */
abc9b56d 353struct buffer_page {
778c55d4 354 struct list_head list; /* list of buffer pages */
abc9b56d 355 local_t write; /* index for next write */
6f807acd 356 unsigned read; /* index for next read */
778c55d4 357 local_t entries; /* entries on this page */
ff0ff84a 358 unsigned long real_end; /* real end of data */
abc9b56d 359 struct buffer_data_page *page; /* Actual data page */
7a8e76a3
SR
360};
361
77ae365e
SR
362/*
363 * The buffer page counters, write and entries, must be reset
364 * atomically when crossing page boundaries. To synchronize this
365 * update, two counters are inserted into the number. One is
366 * the actual counter for the write position or count on the page.
367 *
368 * The other is a counter of updaters. Before an update happens
369 * the update partition of the counter is incremented. This will
370 * allow the updater to update the counter atomically.
371 *
372 * The counter is 20 bits, and the state data is 12.
373 */
374#define RB_WRITE_MASK 0xfffff
375#define RB_WRITE_INTCNT (1 << 20)
376
044fa782 377static void rb_init_page(struct buffer_data_page *bpage)
abc9b56d 378{
044fa782 379 local_set(&bpage->commit, 0);
abc9b56d
SR
380}
381
474d32b6
SR
382/**
383 * ring_buffer_page_len - the size of data on the page.
384 * @page: The page to read
385 *
386 * Returns the amount of data on the page, including buffer page header.
387 */
ef7a4a16
SR
388size_t ring_buffer_page_len(void *page)
389{
474d32b6
SR
390 return local_read(&((struct buffer_data_page *)page)->commit)
391 + BUF_PAGE_HDR_SIZE;
ef7a4a16
SR
392}
393
ed56829c
SR
394/*
395 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
396 * this issue out.
397 */
34a148bf 398static void free_buffer_page(struct buffer_page *bpage)
ed56829c 399{
34a148bf 400 free_page((unsigned long)bpage->page);
e4c2ce82 401 kfree(bpage);
ed56829c
SR
402}
403
7a8e76a3
SR
404/*
405 * We need to fit the time_stamp delta into 27 bits.
406 */
407static inline int test_time_stamp(u64 delta)
408{
409 if (delta & TS_DELTA_TEST)
410 return 1;
411 return 0;
412}
413
474d32b6 414#define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
7a8e76a3 415
be957c44
SR
416/* Max payload is BUF_PAGE_SIZE - header (8bytes) */
417#define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
418
d1b182a8
SR
419int ring_buffer_print_page_header(struct trace_seq *s)
420{
421 struct buffer_data_page field;
422 int ret;
423
424 ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t"
26a50744
TZ
425 "offset:0;\tsize:%u;\tsigned:%u;\n",
426 (unsigned int)sizeof(field.time_stamp),
427 (unsigned int)is_signed_type(u64));
d1b182a8
SR
428
429 ret = trace_seq_printf(s, "\tfield: local_t commit;\t"
26a50744 430 "offset:%u;\tsize:%u;\tsigned:%u;\n",
d1b182a8 431 (unsigned int)offsetof(typeof(field), commit),
26a50744
TZ
432 (unsigned int)sizeof(field.commit),
433 (unsigned int)is_signed_type(long));
d1b182a8 434
66a8cb95
SR
435 ret = trace_seq_printf(s, "\tfield: int overwrite;\t"
436 "offset:%u;\tsize:%u;\tsigned:%u;\n",
437 (unsigned int)offsetof(typeof(field), commit),
438 1,
439 (unsigned int)is_signed_type(long));
440
d1b182a8 441 ret = trace_seq_printf(s, "\tfield: char data;\t"
26a50744 442 "offset:%u;\tsize:%u;\tsigned:%u;\n",
d1b182a8 443 (unsigned int)offsetof(typeof(field), data),
26a50744
TZ
444 (unsigned int)BUF_PAGE_SIZE,
445 (unsigned int)is_signed_type(char));
d1b182a8
SR
446
447 return ret;
448}
449
15693458
SRRH
450struct rb_irq_work {
451 struct irq_work work;
452 wait_queue_head_t waiters;
453 bool waiters_pending;
454};
455
7a8e76a3
SR
456/*
457 * head_page == tail_page && head == tail then buffer is empty.
458 */
459struct ring_buffer_per_cpu {
460 int cpu;
985023de 461 atomic_t record_disabled;
7a8e76a3 462 struct ring_buffer *buffer;
5389f6fa 463 raw_spinlock_t reader_lock; /* serialize readers */
445c8951 464 arch_spinlock_t lock;
7a8e76a3 465 struct lock_class_key lock_key;
438ced17 466 unsigned int nr_pages;
3adc54fa 467 struct list_head *pages;
6f807acd
SR
468 struct buffer_page *head_page; /* read from head */
469 struct buffer_page *tail_page; /* write to tail */
c3706f00 470 struct buffer_page *commit_page; /* committed pages */
d769041f 471 struct buffer_page *reader_page;
66a8cb95
SR
472 unsigned long lost_events;
473 unsigned long last_overrun;
c64e148a 474 local_t entries_bytes;
e4906eff 475 local_t entries;
884bfe89
SP
476 local_t overrun;
477 local_t commit_overrun;
478 local_t dropped_events;
fa743953
SR
479 local_t committing;
480 local_t commits;
77ae365e 481 unsigned long read;
c64e148a 482 unsigned long read_bytes;
7a8e76a3
SR
483 u64 write_stamp;
484 u64 read_stamp;
438ced17
VN
485 /* ring buffer pages to update, > 0 to add, < 0 to remove */
486 int nr_pages_to_update;
487 struct list_head new_pages; /* new pages to add */
83f40318 488 struct work_struct update_pages_work;
05fdd70d 489 struct completion update_done;
15693458
SRRH
490
491 struct rb_irq_work irq_work;
7a8e76a3
SR
492};
493
494struct ring_buffer {
7a8e76a3
SR
495 unsigned flags;
496 int cpus;
7a8e76a3 497 atomic_t record_disabled;
83f40318 498 atomic_t resize_disabled;
00f62f61 499 cpumask_var_t cpumask;
7a8e76a3 500
1f8a6a10
PZ
501 struct lock_class_key *reader_lock_key;
502
7a8e76a3
SR
503 struct mutex mutex;
504
505 struct ring_buffer_per_cpu **buffers;
554f786e 506
59222efe 507#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
508 struct notifier_block cpu_notify;
509#endif
37886f6a 510 u64 (*clock)(void);
15693458
SRRH
511
512 struct rb_irq_work irq_work;
7a8e76a3
SR
513};
514
515struct ring_buffer_iter {
516 struct ring_buffer_per_cpu *cpu_buffer;
517 unsigned long head;
518 struct buffer_page *head_page;
492a74f4
SR
519 struct buffer_page *cache_reader_page;
520 unsigned long cache_read;
7a8e76a3
SR
521 u64 read_stamp;
522};
523
15693458
SRRH
524/*
525 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
526 *
527 * Schedules a delayed work to wake up any task that is blocked on the
528 * ring buffer waiters queue.
529 */
530static void rb_wake_up_waiters(struct irq_work *work)
531{
532 struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
533
534 wake_up_all(&rbwork->waiters);
535}
536
537/**
538 * ring_buffer_wait - wait for input to the ring buffer
539 * @buffer: buffer to wait on
540 * @cpu: the cpu buffer to wait on
541 *
542 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
543 * as data is added to any of the @buffer's cpu buffers. Otherwise
544 * it will wait for data to be added to a specific cpu buffer.
545 */
546void ring_buffer_wait(struct ring_buffer *buffer, int cpu)
547{
548 struct ring_buffer_per_cpu *cpu_buffer;
549 DEFINE_WAIT(wait);
550 struct rb_irq_work *work;
551
552 /*
553 * Depending on what the caller is waiting for, either any
554 * data in any cpu buffer, or a specific buffer, put the
555 * caller on the appropriate wait queue.
556 */
557 if (cpu == RING_BUFFER_ALL_CPUS)
558 work = &buffer->irq_work;
559 else {
560 cpu_buffer = buffer->buffers[cpu];
561 work = &cpu_buffer->irq_work;
562 }
563
564
565 prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
566
567 /*
568 * The events can happen in critical sections where
569 * checking a work queue can cause deadlocks.
570 * After adding a task to the queue, this flag is set
571 * only to notify events to try to wake up the queue
572 * using irq_work.
573 *
574 * We don't clear it even if the buffer is no longer
575 * empty. The flag only causes the next event to run
576 * irq_work to do the work queue wake up. The worse
577 * that can happen if we race with !trace_empty() is that
578 * an event will cause an irq_work to try to wake up
579 * an empty queue.
580 *
581 * There's no reason to protect this flag either, as
582 * the work queue and irq_work logic will do the necessary
583 * synchronization for the wake ups. The only thing
584 * that is necessary is that the wake up happens after
585 * a task has been queued. It's OK for spurious wake ups.
586 */
587 work->waiters_pending = true;
588
589 if ((cpu == RING_BUFFER_ALL_CPUS && ring_buffer_empty(buffer)) ||
590 (cpu != RING_BUFFER_ALL_CPUS && ring_buffer_empty_cpu(buffer, cpu)))
591 schedule();
592
593 finish_wait(&work->waiters, &wait);
594}
595
596/**
597 * ring_buffer_poll_wait - poll on buffer input
598 * @buffer: buffer to wait on
599 * @cpu: the cpu buffer to wait on
600 * @filp: the file descriptor
601 * @poll_table: The poll descriptor
602 *
603 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
604 * as data is added to any of the @buffer's cpu buffers. Otherwise
605 * it will wait for data to be added to a specific cpu buffer.
606 *
607 * Returns POLLIN | POLLRDNORM if data exists in the buffers,
608 * zero otherwise.
609 */
610int ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu,
611 struct file *filp, poll_table *poll_table)
612{
613 struct ring_buffer_per_cpu *cpu_buffer;
614 struct rb_irq_work *work;
615
616 if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
617 (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
618 return POLLIN | POLLRDNORM;
619
620 if (cpu == RING_BUFFER_ALL_CPUS)
621 work = &buffer->irq_work;
622 else {
6721cb60
SRRH
623 if (!cpumask_test_cpu(cpu, buffer->cpumask))
624 return -EINVAL;
625
15693458
SRRH
626 cpu_buffer = buffer->buffers[cpu];
627 work = &cpu_buffer->irq_work;
628 }
629
630 work->waiters_pending = true;
631 poll_wait(filp, &work->waiters, poll_table);
632
633 if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
634 (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
635 return POLLIN | POLLRDNORM;
636 return 0;
637}
638
f536aafc 639/* buffer may be either ring_buffer or ring_buffer_per_cpu */
077c5407
SR
640#define RB_WARN_ON(b, cond) \
641 ({ \
642 int _____ret = unlikely(cond); \
643 if (_____ret) { \
644 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
645 struct ring_buffer_per_cpu *__b = \
646 (void *)b; \
647 atomic_inc(&__b->buffer->record_disabled); \
648 } else \
649 atomic_inc(&b->record_disabled); \
650 WARN_ON(1); \
651 } \
652 _____ret; \
3e89c7bb 653 })
f536aafc 654
37886f6a
SR
655/* Up this if you want to test the TIME_EXTENTS and normalization */
656#define DEBUG_SHIFT 0
657
6d3f1e12 658static inline u64 rb_time_stamp(struct ring_buffer *buffer)
88eb0125
SR
659{
660 /* shift to debug/test normalization and TIME_EXTENTS */
661 return buffer->clock() << DEBUG_SHIFT;
662}
663
37886f6a
SR
664u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
665{
666 u64 time;
667
668 preempt_disable_notrace();
6d3f1e12 669 time = rb_time_stamp(buffer);
37886f6a
SR
670 preempt_enable_no_resched_notrace();
671
672 return time;
673}
674EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
675
676void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
677 int cpu, u64 *ts)
678{
679 /* Just stupid testing the normalize function and deltas */
680 *ts >>= DEBUG_SHIFT;
681}
682EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
683
77ae365e
SR
684/*
685 * Making the ring buffer lockless makes things tricky.
686 * Although writes only happen on the CPU that they are on,
687 * and they only need to worry about interrupts. Reads can
688 * happen on any CPU.
689 *
690 * The reader page is always off the ring buffer, but when the
691 * reader finishes with a page, it needs to swap its page with
692 * a new one from the buffer. The reader needs to take from
693 * the head (writes go to the tail). But if a writer is in overwrite
694 * mode and wraps, it must push the head page forward.
695 *
696 * Here lies the problem.
697 *
698 * The reader must be careful to replace only the head page, and
699 * not another one. As described at the top of the file in the
700 * ASCII art, the reader sets its old page to point to the next
701 * page after head. It then sets the page after head to point to
702 * the old reader page. But if the writer moves the head page
703 * during this operation, the reader could end up with the tail.
704 *
705 * We use cmpxchg to help prevent this race. We also do something
706 * special with the page before head. We set the LSB to 1.
707 *
708 * When the writer must push the page forward, it will clear the
709 * bit that points to the head page, move the head, and then set
710 * the bit that points to the new head page.
711 *
712 * We also don't want an interrupt coming in and moving the head
713 * page on another writer. Thus we use the second LSB to catch
714 * that too. Thus:
715 *
716 * head->list->prev->next bit 1 bit 0
717 * ------- -------
718 * Normal page 0 0
719 * Points to head page 0 1
720 * New head page 1 0
721 *
722 * Note we can not trust the prev pointer of the head page, because:
723 *
724 * +----+ +-----+ +-----+
725 * | |------>| T |---X--->| N |
726 * | |<------| | | |
727 * +----+ +-----+ +-----+
728 * ^ ^ |
729 * | +-----+ | |
730 * +----------| R |----------+ |
731 * | |<-----------+
732 * +-----+
733 *
734 * Key: ---X--> HEAD flag set in pointer
735 * T Tail page
736 * R Reader page
737 * N Next page
738 *
739 * (see __rb_reserve_next() to see where this happens)
740 *
741 * What the above shows is that the reader just swapped out
742 * the reader page with a page in the buffer, but before it
743 * could make the new header point back to the new page added
744 * it was preempted by a writer. The writer moved forward onto
745 * the new page added by the reader and is about to move forward
746 * again.
747 *
748 * You can see, it is legitimate for the previous pointer of
749 * the head (or any page) not to point back to itself. But only
750 * temporarially.
751 */
752
753#define RB_PAGE_NORMAL 0UL
754#define RB_PAGE_HEAD 1UL
755#define RB_PAGE_UPDATE 2UL
756
757
758#define RB_FLAG_MASK 3UL
759
760/* PAGE_MOVED is not part of the mask */
761#define RB_PAGE_MOVED 4UL
762
763/*
764 * rb_list_head - remove any bit
765 */
766static struct list_head *rb_list_head(struct list_head *list)
767{
768 unsigned long val = (unsigned long)list;
769
770 return (struct list_head *)(val & ~RB_FLAG_MASK);
771}
772
773/*
6d3f1e12 774 * rb_is_head_page - test if the given page is the head page
77ae365e
SR
775 *
776 * Because the reader may move the head_page pointer, we can
777 * not trust what the head page is (it may be pointing to
778 * the reader page). But if the next page is a header page,
779 * its flags will be non zero.
780 */
42b16b3f 781static inline int
77ae365e
SR
782rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
783 struct buffer_page *page, struct list_head *list)
784{
785 unsigned long val;
786
787 val = (unsigned long)list->next;
788
789 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
790 return RB_PAGE_MOVED;
791
792 return val & RB_FLAG_MASK;
793}
794
795/*
796 * rb_is_reader_page
797 *
798 * The unique thing about the reader page, is that, if the
799 * writer is ever on it, the previous pointer never points
800 * back to the reader page.
801 */
802static int rb_is_reader_page(struct buffer_page *page)
803{
804 struct list_head *list = page->list.prev;
805
806 return rb_list_head(list->next) != &page->list;
807}
808
809/*
810 * rb_set_list_to_head - set a list_head to be pointing to head.
811 */
812static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
813 struct list_head *list)
814{
815 unsigned long *ptr;
816
817 ptr = (unsigned long *)&list->next;
818 *ptr |= RB_PAGE_HEAD;
819 *ptr &= ~RB_PAGE_UPDATE;
820}
821
822/*
823 * rb_head_page_activate - sets up head page
824 */
825static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
826{
827 struct buffer_page *head;
828
829 head = cpu_buffer->head_page;
830 if (!head)
831 return;
832
833 /*
834 * Set the previous list pointer to have the HEAD flag.
835 */
836 rb_set_list_to_head(cpu_buffer, head->list.prev);
837}
838
839static void rb_list_head_clear(struct list_head *list)
840{
841 unsigned long *ptr = (unsigned long *)&list->next;
842
843 *ptr &= ~RB_FLAG_MASK;
844}
845
846/*
847 * rb_head_page_dactivate - clears head page ptr (for free list)
848 */
849static void
850rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
851{
852 struct list_head *hd;
853
854 /* Go through the whole list and clear any pointers found. */
855 rb_list_head_clear(cpu_buffer->pages);
856
857 list_for_each(hd, cpu_buffer->pages)
858 rb_list_head_clear(hd);
859}
860
861static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
862 struct buffer_page *head,
863 struct buffer_page *prev,
864 int old_flag, int new_flag)
865{
866 struct list_head *list;
867 unsigned long val = (unsigned long)&head->list;
868 unsigned long ret;
869
870 list = &prev->list;
871
872 val &= ~RB_FLAG_MASK;
873
08a40816
SR
874 ret = cmpxchg((unsigned long *)&list->next,
875 val | old_flag, val | new_flag);
77ae365e
SR
876
877 /* check if the reader took the page */
878 if ((ret & ~RB_FLAG_MASK) != val)
879 return RB_PAGE_MOVED;
880
881 return ret & RB_FLAG_MASK;
882}
883
884static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
885 struct buffer_page *head,
886 struct buffer_page *prev,
887 int old_flag)
888{
889 return rb_head_page_set(cpu_buffer, head, prev,
890 old_flag, RB_PAGE_UPDATE);
891}
892
893static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
894 struct buffer_page *head,
895 struct buffer_page *prev,
896 int old_flag)
897{
898 return rb_head_page_set(cpu_buffer, head, prev,
899 old_flag, RB_PAGE_HEAD);
900}
901
902static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
903 struct buffer_page *head,
904 struct buffer_page *prev,
905 int old_flag)
906{
907 return rb_head_page_set(cpu_buffer, head, prev,
908 old_flag, RB_PAGE_NORMAL);
909}
910
911static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
912 struct buffer_page **bpage)
913{
914 struct list_head *p = rb_list_head((*bpage)->list.next);
915
916 *bpage = list_entry(p, struct buffer_page, list);
917}
918
919static struct buffer_page *
920rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
921{
922 struct buffer_page *head;
923 struct buffer_page *page;
924 struct list_head *list;
925 int i;
926
927 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
928 return NULL;
929
930 /* sanity check */
931 list = cpu_buffer->pages;
932 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
933 return NULL;
934
935 page = head = cpu_buffer->head_page;
936 /*
937 * It is possible that the writer moves the header behind
938 * where we started, and we miss in one loop.
939 * A second loop should grab the header, but we'll do
940 * three loops just because I'm paranoid.
941 */
942 for (i = 0; i < 3; i++) {
943 do {
944 if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
945 cpu_buffer->head_page = page;
946 return page;
947 }
948 rb_inc_page(cpu_buffer, &page);
949 } while (page != head);
950 }
951
952 RB_WARN_ON(cpu_buffer, 1);
953
954 return NULL;
955}
956
957static int rb_head_page_replace(struct buffer_page *old,
958 struct buffer_page *new)
959{
960 unsigned long *ptr = (unsigned long *)&old->list.prev->next;
961 unsigned long val;
962 unsigned long ret;
963
964 val = *ptr & ~RB_FLAG_MASK;
965 val |= RB_PAGE_HEAD;
966
08a40816 967 ret = cmpxchg(ptr, val, (unsigned long)&new->list);
77ae365e
SR
968
969 return ret == val;
970}
971
972/*
973 * rb_tail_page_update - move the tail page forward
974 *
975 * Returns 1 if moved tail page, 0 if someone else did.
976 */
977static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
978 struct buffer_page *tail_page,
979 struct buffer_page *next_page)
980{
981 struct buffer_page *old_tail;
982 unsigned long old_entries;
983 unsigned long old_write;
984 int ret = 0;
985
986 /*
987 * The tail page now needs to be moved forward.
988 *
989 * We need to reset the tail page, but without messing
990 * with possible erasing of data brought in by interrupts
991 * that have moved the tail page and are currently on it.
992 *
993 * We add a counter to the write field to denote this.
994 */
995 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
996 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
997
998 /*
999 * Just make sure we have seen our old_write and synchronize
1000 * with any interrupts that come in.
1001 */
1002 barrier();
1003
1004 /*
1005 * If the tail page is still the same as what we think
1006 * it is, then it is up to us to update the tail
1007 * pointer.
1008 */
1009 if (tail_page == cpu_buffer->tail_page) {
1010 /* Zero the write counter */
1011 unsigned long val = old_write & ~RB_WRITE_MASK;
1012 unsigned long eval = old_entries & ~RB_WRITE_MASK;
1013
1014 /*
1015 * This will only succeed if an interrupt did
1016 * not come in and change it. In which case, we
1017 * do not want to modify it.
da706d8b
LJ
1018 *
1019 * We add (void) to let the compiler know that we do not care
1020 * about the return value of these functions. We use the
1021 * cmpxchg to only update if an interrupt did not already
1022 * do it for us. If the cmpxchg fails, we don't care.
77ae365e 1023 */
da706d8b
LJ
1024 (void)local_cmpxchg(&next_page->write, old_write, val);
1025 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
77ae365e
SR
1026
1027 /*
1028 * No need to worry about races with clearing out the commit.
1029 * it only can increment when a commit takes place. But that
1030 * only happens in the outer most nested commit.
1031 */
1032 local_set(&next_page->page->commit, 0);
1033
1034 old_tail = cmpxchg(&cpu_buffer->tail_page,
1035 tail_page, next_page);
1036
1037 if (old_tail == tail_page)
1038 ret = 1;
1039 }
1040
1041 return ret;
1042}
1043
1044static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1045 struct buffer_page *bpage)
1046{
1047 unsigned long val = (unsigned long)bpage;
1048
1049 if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1050 return 1;
1051
1052 return 0;
1053}
1054
1055/**
1056 * rb_check_list - make sure a pointer to a list has the last bits zero
1057 */
1058static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1059 struct list_head *list)
1060{
1061 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1062 return 1;
1063 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1064 return 1;
1065 return 0;
1066}
1067
7a8e76a3
SR
1068/**
1069 * check_pages - integrity check of buffer pages
1070 * @cpu_buffer: CPU buffer with pages to test
1071 *
c3706f00 1072 * As a safety measure we check to make sure the data pages have not
7a8e76a3
SR
1073 * been corrupted.
1074 */
1075static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1076{
3adc54fa 1077 struct list_head *head = cpu_buffer->pages;
044fa782 1078 struct buffer_page *bpage, *tmp;
7a8e76a3 1079
308f7eeb
SR
1080 /* Reset the head page if it exists */
1081 if (cpu_buffer->head_page)
1082 rb_set_head_page(cpu_buffer);
1083
77ae365e
SR
1084 rb_head_page_deactivate(cpu_buffer);
1085
3e89c7bb
SR
1086 if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1087 return -1;
1088 if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1089 return -1;
7a8e76a3 1090
77ae365e
SR
1091 if (rb_check_list(cpu_buffer, head))
1092 return -1;
1093
044fa782 1094 list_for_each_entry_safe(bpage, tmp, head, list) {
3e89c7bb 1095 if (RB_WARN_ON(cpu_buffer,
044fa782 1096 bpage->list.next->prev != &bpage->list))
3e89c7bb
SR
1097 return -1;
1098 if (RB_WARN_ON(cpu_buffer,
044fa782 1099 bpage->list.prev->next != &bpage->list))
3e89c7bb 1100 return -1;
77ae365e
SR
1101 if (rb_check_list(cpu_buffer, &bpage->list))
1102 return -1;
7a8e76a3
SR
1103 }
1104
77ae365e
SR
1105 rb_head_page_activate(cpu_buffer);
1106
7a8e76a3
SR
1107 return 0;
1108}
1109
438ced17 1110static int __rb_allocate_pages(int nr_pages, struct list_head *pages, int cpu)
7a8e76a3 1111{
438ced17 1112 int i;
044fa782 1113 struct buffer_page *bpage, *tmp;
3adc54fa 1114
7a8e76a3 1115 for (i = 0; i < nr_pages; i++) {
7ea59064 1116 struct page *page;
d7ec4bfe
VN
1117 /*
1118 * __GFP_NORETRY flag makes sure that the allocation fails
1119 * gracefully without invoking oom-killer and the system is
1120 * not destabilized.
1121 */
044fa782 1122 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
d7ec4bfe 1123 GFP_KERNEL | __GFP_NORETRY,
438ced17 1124 cpu_to_node(cpu));
044fa782 1125 if (!bpage)
e4c2ce82 1126 goto free_pages;
77ae365e 1127
438ced17 1128 list_add(&bpage->list, pages);
77ae365e 1129
438ced17 1130 page = alloc_pages_node(cpu_to_node(cpu),
d7ec4bfe 1131 GFP_KERNEL | __GFP_NORETRY, 0);
7ea59064 1132 if (!page)
7a8e76a3 1133 goto free_pages;
7ea59064 1134 bpage->page = page_address(page);
044fa782 1135 rb_init_page(bpage->page);
7a8e76a3
SR
1136 }
1137
438ced17
VN
1138 return 0;
1139
1140free_pages:
1141 list_for_each_entry_safe(bpage, tmp, pages, list) {
1142 list_del_init(&bpage->list);
1143 free_buffer_page(bpage);
1144 }
1145
1146 return -ENOMEM;
1147}
1148
1149static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1150 unsigned nr_pages)
1151{
1152 LIST_HEAD(pages);
1153
1154 WARN_ON(!nr_pages);
1155
1156 if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1157 return -ENOMEM;
1158
3adc54fa
SR
1159 /*
1160 * The ring buffer page list is a circular list that does not
1161 * start and end with a list head. All page list items point to
1162 * other pages.
1163 */
1164 cpu_buffer->pages = pages.next;
1165 list_del(&pages);
7a8e76a3 1166
438ced17
VN
1167 cpu_buffer->nr_pages = nr_pages;
1168
7a8e76a3
SR
1169 rb_check_pages(cpu_buffer);
1170
1171 return 0;
7a8e76a3
SR
1172}
1173
1174static struct ring_buffer_per_cpu *
438ced17 1175rb_allocate_cpu_buffer(struct ring_buffer *buffer, int nr_pages, int cpu)
7a8e76a3
SR
1176{
1177 struct ring_buffer_per_cpu *cpu_buffer;
044fa782 1178 struct buffer_page *bpage;
7ea59064 1179 struct page *page;
7a8e76a3
SR
1180 int ret;
1181
1182 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1183 GFP_KERNEL, cpu_to_node(cpu));
1184 if (!cpu_buffer)
1185 return NULL;
1186
1187 cpu_buffer->cpu = cpu;
1188 cpu_buffer->buffer = buffer;
5389f6fa 1189 raw_spin_lock_init(&cpu_buffer->reader_lock);
1f8a6a10 1190 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
edc35bd7 1191 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
83f40318 1192 INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
05fdd70d 1193 init_completion(&cpu_buffer->update_done);
15693458 1194 init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
f1dc6725 1195 init_waitqueue_head(&cpu_buffer->irq_work.waiters);
7a8e76a3 1196
044fa782 1197 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
e4c2ce82 1198 GFP_KERNEL, cpu_to_node(cpu));
044fa782 1199 if (!bpage)
e4c2ce82
SR
1200 goto fail_free_buffer;
1201
77ae365e
SR
1202 rb_check_bpage(cpu_buffer, bpage);
1203
044fa782 1204 cpu_buffer->reader_page = bpage;
7ea59064
VN
1205 page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1206 if (!page)
e4c2ce82 1207 goto fail_free_reader;
7ea59064 1208 bpage->page = page_address(page);
044fa782 1209 rb_init_page(bpage->page);
e4c2ce82 1210
d769041f 1211 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
44b99462 1212 INIT_LIST_HEAD(&cpu_buffer->new_pages);
d769041f 1213
438ced17 1214 ret = rb_allocate_pages(cpu_buffer, nr_pages);
7a8e76a3 1215 if (ret < 0)
d769041f 1216 goto fail_free_reader;
7a8e76a3
SR
1217
1218 cpu_buffer->head_page
3adc54fa 1219 = list_entry(cpu_buffer->pages, struct buffer_page, list);
bf41a158 1220 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
7a8e76a3 1221
77ae365e
SR
1222 rb_head_page_activate(cpu_buffer);
1223
7a8e76a3
SR
1224 return cpu_buffer;
1225
d769041f
SR
1226 fail_free_reader:
1227 free_buffer_page(cpu_buffer->reader_page);
1228
7a8e76a3
SR
1229 fail_free_buffer:
1230 kfree(cpu_buffer);
1231 return NULL;
1232}
1233
1234static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1235{
3adc54fa 1236 struct list_head *head = cpu_buffer->pages;
044fa782 1237 struct buffer_page *bpage, *tmp;
7a8e76a3 1238
d769041f
SR
1239 free_buffer_page(cpu_buffer->reader_page);
1240
77ae365e
SR
1241 rb_head_page_deactivate(cpu_buffer);
1242
3adc54fa
SR
1243 if (head) {
1244 list_for_each_entry_safe(bpage, tmp, head, list) {
1245 list_del_init(&bpage->list);
1246 free_buffer_page(bpage);
1247 }
1248 bpage = list_entry(head, struct buffer_page, list);
044fa782 1249 free_buffer_page(bpage);
7a8e76a3 1250 }
3adc54fa 1251
7a8e76a3
SR
1252 kfree(cpu_buffer);
1253}
1254
59222efe 1255#ifdef CONFIG_HOTPLUG_CPU
09c9e84d
FW
1256static int rb_cpu_notify(struct notifier_block *self,
1257 unsigned long action, void *hcpu);
554f786e
SR
1258#endif
1259
7a8e76a3
SR
1260/**
1261 * ring_buffer_alloc - allocate a new ring_buffer
68814b58 1262 * @size: the size in bytes per cpu that is needed.
7a8e76a3
SR
1263 * @flags: attributes to set for the ring buffer.
1264 *
1265 * Currently the only flag that is available is the RB_FL_OVERWRITE
1266 * flag. This flag means that the buffer will overwrite old data
1267 * when the buffer wraps. If this flag is not set, the buffer will
1268 * drop data when the tail hits the head.
1269 */
1f8a6a10
PZ
1270struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1271 struct lock_class_key *key)
7a8e76a3
SR
1272{
1273 struct ring_buffer *buffer;
1274 int bsize;
438ced17 1275 int cpu, nr_pages;
7a8e76a3
SR
1276
1277 /* keep it in its own cache line */
1278 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1279 GFP_KERNEL);
1280 if (!buffer)
1281 return NULL;
1282
9e01c1b7
RR
1283 if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1284 goto fail_free_buffer;
1285
438ced17 1286 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
7a8e76a3 1287 buffer->flags = flags;
37886f6a 1288 buffer->clock = trace_clock_local;
1f8a6a10 1289 buffer->reader_lock_key = key;
7a8e76a3 1290
15693458 1291 init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
f1dc6725 1292 init_waitqueue_head(&buffer->irq_work.waiters);
15693458 1293
7a8e76a3 1294 /* need at least two pages */
438ced17
VN
1295 if (nr_pages < 2)
1296 nr_pages = 2;
7a8e76a3 1297
3bf832ce
FW
1298 /*
1299 * In case of non-hotplug cpu, if the ring-buffer is allocated
1300 * in early initcall, it will not be notified of secondary cpus.
1301 * In that off case, we need to allocate for all possible cpus.
1302 */
1303#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
1304 get_online_cpus();
1305 cpumask_copy(buffer->cpumask, cpu_online_mask);
3bf832ce
FW
1306#else
1307 cpumask_copy(buffer->cpumask, cpu_possible_mask);
1308#endif
7a8e76a3
SR
1309 buffer->cpus = nr_cpu_ids;
1310
1311 bsize = sizeof(void *) * nr_cpu_ids;
1312 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1313 GFP_KERNEL);
1314 if (!buffer->buffers)
9e01c1b7 1315 goto fail_free_cpumask;
7a8e76a3
SR
1316
1317 for_each_buffer_cpu(buffer, cpu) {
1318 buffer->buffers[cpu] =
438ced17 1319 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
7a8e76a3
SR
1320 if (!buffer->buffers[cpu])
1321 goto fail_free_buffers;
1322 }
1323
59222efe 1324#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
1325 buffer->cpu_notify.notifier_call = rb_cpu_notify;
1326 buffer->cpu_notify.priority = 0;
1327 register_cpu_notifier(&buffer->cpu_notify);
1328#endif
1329
1330 put_online_cpus();
7a8e76a3
SR
1331 mutex_init(&buffer->mutex);
1332
1333 return buffer;
1334
1335 fail_free_buffers:
1336 for_each_buffer_cpu(buffer, cpu) {
1337 if (buffer->buffers[cpu])
1338 rb_free_cpu_buffer(buffer->buffers[cpu]);
1339 }
1340 kfree(buffer->buffers);
1341
9e01c1b7
RR
1342 fail_free_cpumask:
1343 free_cpumask_var(buffer->cpumask);
554f786e 1344 put_online_cpus();
9e01c1b7 1345
7a8e76a3
SR
1346 fail_free_buffer:
1347 kfree(buffer);
1348 return NULL;
1349}
1f8a6a10 1350EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
7a8e76a3
SR
1351
1352/**
1353 * ring_buffer_free - free a ring buffer.
1354 * @buffer: the buffer to free.
1355 */
1356void
1357ring_buffer_free(struct ring_buffer *buffer)
1358{
1359 int cpu;
1360
554f786e
SR
1361 get_online_cpus();
1362
59222efe 1363#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
1364 unregister_cpu_notifier(&buffer->cpu_notify);
1365#endif
1366
7a8e76a3
SR
1367 for_each_buffer_cpu(buffer, cpu)
1368 rb_free_cpu_buffer(buffer->buffers[cpu]);
1369
554f786e
SR
1370 put_online_cpus();
1371
bd3f0221 1372 kfree(buffer->buffers);
9e01c1b7
RR
1373 free_cpumask_var(buffer->cpumask);
1374
7a8e76a3
SR
1375 kfree(buffer);
1376}
c4f50183 1377EXPORT_SYMBOL_GPL(ring_buffer_free);
7a8e76a3 1378
37886f6a
SR
1379void ring_buffer_set_clock(struct ring_buffer *buffer,
1380 u64 (*clock)(void))
1381{
1382 buffer->clock = clock;
1383}
1384
7a8e76a3
SR
1385static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1386
83f40318
VN
1387static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1388{
1389 return local_read(&bpage->entries) & RB_WRITE_MASK;
1390}
1391
1392static inline unsigned long rb_page_write(struct buffer_page *bpage)
1393{
1394 return local_read(&bpage->write) & RB_WRITE_MASK;
1395}
1396
5040b4b7 1397static int
83f40318 1398rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned int nr_pages)
7a8e76a3 1399{
83f40318
VN
1400 struct list_head *tail_page, *to_remove, *next_page;
1401 struct buffer_page *to_remove_page, *tmp_iter_page;
1402 struct buffer_page *last_page, *first_page;
1403 unsigned int nr_removed;
1404 unsigned long head_bit;
1405 int page_entries;
1406
1407 head_bit = 0;
7a8e76a3 1408
5389f6fa 1409 raw_spin_lock_irq(&cpu_buffer->reader_lock);
83f40318
VN
1410 atomic_inc(&cpu_buffer->record_disabled);
1411 /*
1412 * We don't race with the readers since we have acquired the reader
1413 * lock. We also don't race with writers after disabling recording.
1414 * This makes it easy to figure out the first and the last page to be
1415 * removed from the list. We unlink all the pages in between including
1416 * the first and last pages. This is done in a busy loop so that we
1417 * lose the least number of traces.
1418 * The pages are freed after we restart recording and unlock readers.
1419 */
1420 tail_page = &cpu_buffer->tail_page->list;
77ae365e 1421
83f40318
VN
1422 /*
1423 * tail page might be on reader page, we remove the next page
1424 * from the ring buffer
1425 */
1426 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1427 tail_page = rb_list_head(tail_page->next);
1428 to_remove = tail_page;
1429
1430 /* start of pages to remove */
1431 first_page = list_entry(rb_list_head(to_remove->next),
1432 struct buffer_page, list);
1433
1434 for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1435 to_remove = rb_list_head(to_remove)->next;
1436 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
7a8e76a3 1437 }
7a8e76a3 1438
83f40318 1439 next_page = rb_list_head(to_remove)->next;
7a8e76a3 1440
83f40318
VN
1441 /*
1442 * Now we remove all pages between tail_page and next_page.
1443 * Make sure that we have head_bit value preserved for the
1444 * next page
1445 */
1446 tail_page->next = (struct list_head *)((unsigned long)next_page |
1447 head_bit);
1448 next_page = rb_list_head(next_page);
1449 next_page->prev = tail_page;
1450
1451 /* make sure pages points to a valid page in the ring buffer */
1452 cpu_buffer->pages = next_page;
1453
1454 /* update head page */
1455 if (head_bit)
1456 cpu_buffer->head_page = list_entry(next_page,
1457 struct buffer_page, list);
1458
1459 /*
1460 * change read pointer to make sure any read iterators reset
1461 * themselves
1462 */
1463 cpu_buffer->read = 0;
1464
1465 /* pages are removed, resume tracing and then free the pages */
1466 atomic_dec(&cpu_buffer->record_disabled);
5389f6fa 1467 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
83f40318
VN
1468
1469 RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1470
1471 /* last buffer page to remove */
1472 last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1473 list);
1474 tmp_iter_page = first_page;
1475
1476 do {
1477 to_remove_page = tmp_iter_page;
1478 rb_inc_page(cpu_buffer, &tmp_iter_page);
1479
1480 /* update the counters */
1481 page_entries = rb_page_entries(to_remove_page);
1482 if (page_entries) {
1483 /*
1484 * If something was added to this page, it was full
1485 * since it is not the tail page. So we deduct the
1486 * bytes consumed in ring buffer from here.
48fdc72f 1487 * Increment overrun to account for the lost events.
83f40318 1488 */
48fdc72f 1489 local_add(page_entries, &cpu_buffer->overrun);
83f40318
VN
1490 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1491 }
1492
1493 /*
1494 * We have already removed references to this list item, just
1495 * free up the buffer_page and its page
1496 */
1497 free_buffer_page(to_remove_page);
1498 nr_removed--;
1499
1500 } while (to_remove_page != last_page);
1501
1502 RB_WARN_ON(cpu_buffer, nr_removed);
5040b4b7
VN
1503
1504 return nr_removed == 0;
7a8e76a3
SR
1505}
1506
5040b4b7
VN
1507static int
1508rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1509{
5040b4b7
VN
1510 struct list_head *pages = &cpu_buffer->new_pages;
1511 int retries, success;
7a8e76a3 1512
5389f6fa 1513 raw_spin_lock_irq(&cpu_buffer->reader_lock);
5040b4b7
VN
1514 /*
1515 * We are holding the reader lock, so the reader page won't be swapped
1516 * in the ring buffer. Now we are racing with the writer trying to
1517 * move head page and the tail page.
1518 * We are going to adapt the reader page update process where:
1519 * 1. We first splice the start and end of list of new pages between
1520 * the head page and its previous page.
1521 * 2. We cmpxchg the prev_page->next to point from head page to the
1522 * start of new pages list.
1523 * 3. Finally, we update the head->prev to the end of new list.
1524 *
1525 * We will try this process 10 times, to make sure that we don't keep
1526 * spinning.
1527 */
1528 retries = 10;
1529 success = 0;
1530 while (retries--) {
1531 struct list_head *head_page, *prev_page, *r;
1532 struct list_head *last_page, *first_page;
1533 struct list_head *head_page_with_bit;
77ae365e 1534
5040b4b7 1535 head_page = &rb_set_head_page(cpu_buffer)->list;
54f7be5b
SR
1536 if (!head_page)
1537 break;
5040b4b7
VN
1538 prev_page = head_page->prev;
1539
1540 first_page = pages->next;
1541 last_page = pages->prev;
1542
1543 head_page_with_bit = (struct list_head *)
1544 ((unsigned long)head_page | RB_PAGE_HEAD);
1545
1546 last_page->next = head_page_with_bit;
1547 first_page->prev = prev_page;
1548
1549 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1550
1551 if (r == head_page_with_bit) {
1552 /*
1553 * yay, we replaced the page pointer to our new list,
1554 * now, we just have to update to head page's prev
1555 * pointer to point to end of list
1556 */
1557 head_page->prev = last_page;
1558 success = 1;
1559 break;
1560 }
7a8e76a3 1561 }
7a8e76a3 1562
5040b4b7
VN
1563 if (success)
1564 INIT_LIST_HEAD(pages);
1565 /*
1566 * If we weren't successful in adding in new pages, warn and stop
1567 * tracing
1568 */
1569 RB_WARN_ON(cpu_buffer, !success);
5389f6fa 1570 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
5040b4b7
VN
1571
1572 /* free pages if they weren't inserted */
1573 if (!success) {
1574 struct buffer_page *bpage, *tmp;
1575 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1576 list) {
1577 list_del_init(&bpage->list);
1578 free_buffer_page(bpage);
1579 }
1580 }
1581 return success;
7a8e76a3
SR
1582}
1583
83f40318 1584static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
438ced17 1585{
5040b4b7
VN
1586 int success;
1587
438ced17 1588 if (cpu_buffer->nr_pages_to_update > 0)
5040b4b7 1589 success = rb_insert_pages(cpu_buffer);
438ced17 1590 else
5040b4b7
VN
1591 success = rb_remove_pages(cpu_buffer,
1592 -cpu_buffer->nr_pages_to_update);
83f40318 1593
5040b4b7
VN
1594 if (success)
1595 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
83f40318
VN
1596}
1597
1598static void update_pages_handler(struct work_struct *work)
1599{
1600 struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1601 struct ring_buffer_per_cpu, update_pages_work);
1602 rb_update_pages(cpu_buffer);
05fdd70d 1603 complete(&cpu_buffer->update_done);
438ced17
VN
1604}
1605
7a8e76a3
SR
1606/**
1607 * ring_buffer_resize - resize the ring buffer
1608 * @buffer: the buffer to resize.
1609 * @size: the new size.
1610 *
7a8e76a3
SR
1611 * Minimum size is 2 * BUF_PAGE_SIZE.
1612 *
83f40318 1613 * Returns 0 on success and < 0 on failure.
7a8e76a3 1614 */
438ced17
VN
1615int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1616 int cpu_id)
7a8e76a3
SR
1617{
1618 struct ring_buffer_per_cpu *cpu_buffer;
438ced17 1619 unsigned nr_pages;
83f40318 1620 int cpu, err = 0;
7a8e76a3 1621
ee51a1de
IM
1622 /*
1623 * Always succeed at resizing a non-existent buffer:
1624 */
1625 if (!buffer)
1626 return size;
1627
6a31e1f1
SR
1628 /* Make sure the requested buffer exists */
1629 if (cpu_id != RING_BUFFER_ALL_CPUS &&
1630 !cpumask_test_cpu(cpu_id, buffer->cpumask))
1631 return size;
1632
7a8e76a3
SR
1633 size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1634 size *= BUF_PAGE_SIZE;
7a8e76a3
SR
1635
1636 /* we need a minimum of two pages */
1637 if (size < BUF_PAGE_SIZE * 2)
1638 size = BUF_PAGE_SIZE * 2;
1639
83f40318 1640 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
18421015 1641
83f40318
VN
1642 /*
1643 * Don't succeed if resizing is disabled, as a reader might be
1644 * manipulating the ring buffer and is expecting a sane state while
1645 * this is true.
1646 */
1647 if (atomic_read(&buffer->resize_disabled))
1648 return -EBUSY;
18421015 1649
83f40318 1650 /* prevent another thread from changing buffer sizes */
7a8e76a3 1651 mutex_lock(&buffer->mutex);
7a8e76a3 1652
438ced17
VN
1653 if (cpu_id == RING_BUFFER_ALL_CPUS) {
1654 /* calculate the pages to update */
7a8e76a3
SR
1655 for_each_buffer_cpu(buffer, cpu) {
1656 cpu_buffer = buffer->buffers[cpu];
7a8e76a3 1657
438ced17
VN
1658 cpu_buffer->nr_pages_to_update = nr_pages -
1659 cpu_buffer->nr_pages;
438ced17
VN
1660 /*
1661 * nothing more to do for removing pages or no update
1662 */
1663 if (cpu_buffer->nr_pages_to_update <= 0)
1664 continue;
d7ec4bfe 1665 /*
438ced17
VN
1666 * to add pages, make sure all new pages can be
1667 * allocated without receiving ENOMEM
d7ec4bfe 1668 */
438ced17
VN
1669 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1670 if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
83f40318 1671 &cpu_buffer->new_pages, cpu)) {
438ced17 1672 /* not enough memory for new pages */
83f40318
VN
1673 err = -ENOMEM;
1674 goto out_err;
1675 }
1676 }
1677
1678 get_online_cpus();
1679 /*
1680 * Fire off all the required work handlers
05fdd70d 1681 * We can't schedule on offline CPUs, but it's not necessary
83f40318
VN
1682 * since we can change their buffer sizes without any race.
1683 */
1684 for_each_buffer_cpu(buffer, cpu) {
1685 cpu_buffer = buffer->buffers[cpu];
05fdd70d 1686 if (!cpu_buffer->nr_pages_to_update)
83f40318
VN
1687 continue;
1688
f5eb5588
SRRH
1689 /* The update must run on the CPU that is being updated. */
1690 preempt_disable();
1691 if (cpu == smp_processor_id() || !cpu_online(cpu)) {
1692 rb_update_pages(cpu_buffer);
1693 cpu_buffer->nr_pages_to_update = 0;
1694 } else {
1695 /*
1696 * Can not disable preemption for schedule_work_on()
1697 * on PREEMPT_RT.
1698 */
1699 preempt_enable();
05fdd70d
VN
1700 schedule_work_on(cpu,
1701 &cpu_buffer->update_pages_work);
f5eb5588
SRRH
1702 preempt_disable();
1703 }
1704 preempt_enable();
7a8e76a3 1705 }
7a8e76a3 1706
438ced17
VN
1707 /* wait for all the updates to complete */
1708 for_each_buffer_cpu(buffer, cpu) {
1709 cpu_buffer = buffer->buffers[cpu];
05fdd70d 1710 if (!cpu_buffer->nr_pages_to_update)
83f40318
VN
1711 continue;
1712
05fdd70d
VN
1713 if (cpu_online(cpu))
1714 wait_for_completion(&cpu_buffer->update_done);
83f40318 1715 cpu_buffer->nr_pages_to_update = 0;
438ced17 1716 }
83f40318
VN
1717
1718 put_online_cpus();
438ced17 1719 } else {
8e49f418
VN
1720 /* Make sure this CPU has been intitialized */
1721 if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
1722 goto out;
1723
438ced17 1724 cpu_buffer = buffer->buffers[cpu_id];
83f40318 1725
438ced17
VN
1726 if (nr_pages == cpu_buffer->nr_pages)
1727 goto out;
7a8e76a3 1728
438ced17
VN
1729 cpu_buffer->nr_pages_to_update = nr_pages -
1730 cpu_buffer->nr_pages;
1731
1732 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1733 if (cpu_buffer->nr_pages_to_update > 0 &&
1734 __rb_allocate_pages(cpu_buffer->nr_pages_to_update,
83f40318
VN
1735 &cpu_buffer->new_pages, cpu_id)) {
1736 err = -ENOMEM;
1737 goto out_err;
1738 }
438ced17 1739
83f40318
VN
1740 get_online_cpus();
1741
f5eb5588
SRRH
1742 preempt_disable();
1743 /* The update must run on the CPU that is being updated. */
1744 if (cpu_id == smp_processor_id() || !cpu_online(cpu_id))
1745 rb_update_pages(cpu_buffer);
1746 else {
1747 /*
1748 * Can not disable preemption for schedule_work_on()
1749 * on PREEMPT_RT.
1750 */
1751 preempt_enable();
83f40318
VN
1752 schedule_work_on(cpu_id,
1753 &cpu_buffer->update_pages_work);
05fdd70d 1754 wait_for_completion(&cpu_buffer->update_done);
f5eb5588
SRRH
1755 preempt_disable();
1756 }
1757 preempt_enable();
83f40318 1758
83f40318 1759 cpu_buffer->nr_pages_to_update = 0;
05fdd70d 1760 put_online_cpus();
438ced17 1761 }
7a8e76a3
SR
1762
1763 out:
659f451f
SR
1764 /*
1765 * The ring buffer resize can happen with the ring buffer
1766 * enabled, so that the update disturbs the tracing as little
1767 * as possible. But if the buffer is disabled, we do not need
1768 * to worry about that, and we can take the time to verify
1769 * that the buffer is not corrupt.
1770 */
1771 if (atomic_read(&buffer->record_disabled)) {
1772 atomic_inc(&buffer->record_disabled);
1773 /*
1774 * Even though the buffer was disabled, we must make sure
1775 * that it is truly disabled before calling rb_check_pages.
1776 * There could have been a race between checking
1777 * record_disable and incrementing it.
1778 */
1779 synchronize_sched();
1780 for_each_buffer_cpu(buffer, cpu) {
1781 cpu_buffer = buffer->buffers[cpu];
1782 rb_check_pages(cpu_buffer);
1783 }
1784 atomic_dec(&buffer->record_disabled);
1785 }
1786
7a8e76a3 1787 mutex_unlock(&buffer->mutex);
7a8e76a3
SR
1788 return size;
1789
83f40318 1790 out_err:
438ced17
VN
1791 for_each_buffer_cpu(buffer, cpu) {
1792 struct buffer_page *bpage, *tmp;
83f40318 1793
438ced17 1794 cpu_buffer = buffer->buffers[cpu];
438ced17 1795 cpu_buffer->nr_pages_to_update = 0;
83f40318 1796
438ced17
VN
1797 if (list_empty(&cpu_buffer->new_pages))
1798 continue;
83f40318 1799
438ced17
VN
1800 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1801 list) {
1802 list_del_init(&bpage->list);
1803 free_buffer_page(bpage);
1804 }
7a8e76a3 1805 }
641d2f63 1806 mutex_unlock(&buffer->mutex);
83f40318 1807 return err;
7a8e76a3 1808}
c4f50183 1809EXPORT_SYMBOL_GPL(ring_buffer_resize);
7a8e76a3 1810
750912fa
DS
1811void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1812{
1813 mutex_lock(&buffer->mutex);
1814 if (val)
1815 buffer->flags |= RB_FL_OVERWRITE;
1816 else
1817 buffer->flags &= ~RB_FL_OVERWRITE;
1818 mutex_unlock(&buffer->mutex);
1819}
1820EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1821
8789a9e7 1822static inline void *
044fa782 1823__rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
8789a9e7 1824{
044fa782 1825 return bpage->data + index;
8789a9e7
SR
1826}
1827
044fa782 1828static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
7a8e76a3 1829{
044fa782 1830 return bpage->page->data + index;
7a8e76a3
SR
1831}
1832
1833static inline struct ring_buffer_event *
d769041f 1834rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1835{
6f807acd
SR
1836 return __rb_page_index(cpu_buffer->reader_page,
1837 cpu_buffer->reader_page->read);
1838}
1839
7a8e76a3
SR
1840static inline struct ring_buffer_event *
1841rb_iter_head_event(struct ring_buffer_iter *iter)
1842{
6f807acd 1843 return __rb_page_index(iter->head_page, iter->head);
7a8e76a3
SR
1844}
1845
bf41a158
SR
1846static inline unsigned rb_page_commit(struct buffer_page *bpage)
1847{
abc9b56d 1848 return local_read(&bpage->page->commit);
bf41a158
SR
1849}
1850
25985edc 1851/* Size is determined by what has been committed */
bf41a158
SR
1852static inline unsigned rb_page_size(struct buffer_page *bpage)
1853{
1854 return rb_page_commit(bpage);
1855}
1856
1857static inline unsigned
1858rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1859{
1860 return rb_page_commit(cpu_buffer->commit_page);
1861}
1862
bf41a158
SR
1863static inline unsigned
1864rb_event_index(struct ring_buffer_event *event)
1865{
1866 unsigned long addr = (unsigned long)event;
1867
22f470f8 1868 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
bf41a158
SR
1869}
1870
0f0c85fc 1871static inline int
fa743953
SR
1872rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1873 struct ring_buffer_event *event)
bf41a158
SR
1874{
1875 unsigned long addr = (unsigned long)event;
1876 unsigned long index;
1877
1878 index = rb_event_index(event);
1879 addr &= PAGE_MASK;
1880
1881 return cpu_buffer->commit_page->page == (void *)addr &&
1882 rb_commit_index(cpu_buffer) == index;
1883}
1884
34a148bf 1885static void
bf41a158 1886rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1887{
77ae365e
SR
1888 unsigned long max_count;
1889
bf41a158
SR
1890 /*
1891 * We only race with interrupts and NMIs on this CPU.
1892 * If we own the commit event, then we can commit
1893 * all others that interrupted us, since the interruptions
1894 * are in stack format (they finish before they come
1895 * back to us). This allows us to do a simple loop to
1896 * assign the commit to the tail.
1897 */
a8ccf1d6 1898 again:
438ced17 1899 max_count = cpu_buffer->nr_pages * 100;
77ae365e 1900
bf41a158 1901 while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
77ae365e
SR
1902 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
1903 return;
1904 if (RB_WARN_ON(cpu_buffer,
1905 rb_is_reader_page(cpu_buffer->tail_page)))
1906 return;
1907 local_set(&cpu_buffer->commit_page->page->commit,
1908 rb_page_write(cpu_buffer->commit_page));
bf41a158 1909 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
abc9b56d
SR
1910 cpu_buffer->write_stamp =
1911 cpu_buffer->commit_page->page->time_stamp;
bf41a158
SR
1912 /* add barrier to keep gcc from optimizing too much */
1913 barrier();
1914 }
1915 while (rb_commit_index(cpu_buffer) !=
1916 rb_page_write(cpu_buffer->commit_page)) {
77ae365e
SR
1917
1918 local_set(&cpu_buffer->commit_page->page->commit,
1919 rb_page_write(cpu_buffer->commit_page));
1920 RB_WARN_ON(cpu_buffer,
1921 local_read(&cpu_buffer->commit_page->page->commit) &
1922 ~RB_WRITE_MASK);
bf41a158
SR
1923 barrier();
1924 }
a8ccf1d6
SR
1925
1926 /* again, keep gcc from optimizing */
1927 barrier();
1928
1929 /*
1930 * If an interrupt came in just after the first while loop
1931 * and pushed the tail page forward, we will be left with
1932 * a dangling commit that will never go forward.
1933 */
1934 if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1935 goto again;
7a8e76a3
SR
1936}
1937
d769041f 1938static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1939{
abc9b56d 1940 cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
6f807acd 1941 cpu_buffer->reader_page->read = 0;
d769041f
SR
1942}
1943
34a148bf 1944static void rb_inc_iter(struct ring_buffer_iter *iter)
d769041f
SR
1945{
1946 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1947
1948 /*
1949 * The iterator could be on the reader page (it starts there).
1950 * But the head could have moved, since the reader was
1951 * found. Check for this case and assign the iterator
1952 * to the head page instead of next.
1953 */
1954 if (iter->head_page == cpu_buffer->reader_page)
77ae365e 1955 iter->head_page = rb_set_head_page(cpu_buffer);
d769041f
SR
1956 else
1957 rb_inc_page(cpu_buffer, &iter->head_page);
1958
abc9b56d 1959 iter->read_stamp = iter->head_page->page->time_stamp;
7a8e76a3
SR
1960 iter->head = 0;
1961}
1962
69d1b839
SR
1963/* Slow path, do not inline */
1964static noinline struct ring_buffer_event *
1965rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
1966{
1967 event->type_len = RINGBUF_TYPE_TIME_EXTEND;
1968
1969 /* Not the first event on the page? */
1970 if (rb_event_index(event)) {
1971 event->time_delta = delta & TS_MASK;
1972 event->array[0] = delta >> TS_SHIFT;
1973 } else {
1974 /* nope, just zero it */
1975 event->time_delta = 0;
1976 event->array[0] = 0;
1977 }
1978
1979 return skip_time_extend(event);
1980}
1981
7a8e76a3 1982/**
01e3e710 1983 * rb_update_event - update event type and data
7a8e76a3
SR
1984 * @event: the even to update
1985 * @type: the type of event
1986 * @length: the size of the event field in the ring buffer
1987 *
1988 * Update the type and data fields of the event. The length
1989 * is the actual size that is written to the ring buffer,
1990 * and with this, we can determine what to place into the
1991 * data field.
1992 */
34a148bf 1993static void
69d1b839
SR
1994rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
1995 struct ring_buffer_event *event, unsigned length,
1996 int add_timestamp, u64 delta)
7a8e76a3 1997{
69d1b839
SR
1998 /* Only a commit updates the timestamp */
1999 if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
2000 delta = 0;
7a8e76a3 2001
69d1b839
SR
2002 /*
2003 * If we need to add a timestamp, then we
2004 * add it to the start of the resevered space.
2005 */
2006 if (unlikely(add_timestamp)) {
2007 event = rb_add_time_stamp(event, delta);
2008 length -= RB_LEN_TIME_EXTEND;
2009 delta = 0;
7a8e76a3 2010 }
69d1b839
SR
2011
2012 event->time_delta = delta;
2013 length -= RB_EVNT_HDR_SIZE;
2014 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2015 event->type_len = 0;
2016 event->array[0] = length;
2017 } else
2018 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
7a8e76a3
SR
2019}
2020
77ae365e
SR
2021/*
2022 * rb_handle_head_page - writer hit the head page
2023 *
2024 * Returns: +1 to retry page
2025 * 0 to continue
2026 * -1 on error
2027 */
2028static int
2029rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
2030 struct buffer_page *tail_page,
2031 struct buffer_page *next_page)
2032{
2033 struct buffer_page *new_head;
2034 int entries;
2035 int type;
2036 int ret;
2037
2038 entries = rb_page_entries(next_page);
2039
2040 /*
2041 * The hard part is here. We need to move the head
2042 * forward, and protect against both readers on
2043 * other CPUs and writers coming in via interrupts.
2044 */
2045 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
2046 RB_PAGE_HEAD);
2047
2048 /*
2049 * type can be one of four:
2050 * NORMAL - an interrupt already moved it for us
2051 * HEAD - we are the first to get here.
2052 * UPDATE - we are the interrupt interrupting
2053 * a current move.
2054 * MOVED - a reader on another CPU moved the next
2055 * pointer to its reader page. Give up
2056 * and try again.
2057 */
2058
2059 switch (type) {
2060 case RB_PAGE_HEAD:
2061 /*
2062 * We changed the head to UPDATE, thus
2063 * it is our responsibility to update
2064 * the counters.
2065 */
2066 local_add(entries, &cpu_buffer->overrun);
c64e148a 2067 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
77ae365e
SR
2068
2069 /*
2070 * The entries will be zeroed out when we move the
2071 * tail page.
2072 */
2073
2074 /* still more to do */
2075 break;
2076
2077 case RB_PAGE_UPDATE:
2078 /*
2079 * This is an interrupt that interrupt the
2080 * previous update. Still more to do.
2081 */
2082 break;
2083 case RB_PAGE_NORMAL:
2084 /*
2085 * An interrupt came in before the update
2086 * and processed this for us.
2087 * Nothing left to do.
2088 */
2089 return 1;
2090 case RB_PAGE_MOVED:
2091 /*
2092 * The reader is on another CPU and just did
2093 * a swap with our next_page.
2094 * Try again.
2095 */
2096 return 1;
2097 default:
2098 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2099 return -1;
2100 }
2101
2102 /*
2103 * Now that we are here, the old head pointer is
2104 * set to UPDATE. This will keep the reader from
2105 * swapping the head page with the reader page.
2106 * The reader (on another CPU) will spin till
2107 * we are finished.
2108 *
2109 * We just need to protect against interrupts
2110 * doing the job. We will set the next pointer
2111 * to HEAD. After that, we set the old pointer
2112 * to NORMAL, but only if it was HEAD before.
2113 * otherwise we are an interrupt, and only
2114 * want the outer most commit to reset it.
2115 */
2116 new_head = next_page;
2117 rb_inc_page(cpu_buffer, &new_head);
2118
2119 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2120 RB_PAGE_NORMAL);
2121
2122 /*
2123 * Valid returns are:
2124 * HEAD - an interrupt came in and already set it.
2125 * NORMAL - One of two things:
2126 * 1) We really set it.
2127 * 2) A bunch of interrupts came in and moved
2128 * the page forward again.
2129 */
2130 switch (ret) {
2131 case RB_PAGE_HEAD:
2132 case RB_PAGE_NORMAL:
2133 /* OK */
2134 break;
2135 default:
2136 RB_WARN_ON(cpu_buffer, 1);
2137 return -1;
2138 }
2139
2140 /*
2141 * It is possible that an interrupt came in,
2142 * set the head up, then more interrupts came in
2143 * and moved it again. When we get back here,
2144 * the page would have been set to NORMAL but we
2145 * just set it back to HEAD.
2146 *
2147 * How do you detect this? Well, if that happened
2148 * the tail page would have moved.
2149 */
2150 if (ret == RB_PAGE_NORMAL) {
2151 /*
2152 * If the tail had moved passed next, then we need
2153 * to reset the pointer.
2154 */
2155 if (cpu_buffer->tail_page != tail_page &&
2156 cpu_buffer->tail_page != next_page)
2157 rb_head_page_set_normal(cpu_buffer, new_head,
2158 next_page,
2159 RB_PAGE_HEAD);
2160 }
2161
2162 /*
2163 * If this was the outer most commit (the one that
2164 * changed the original pointer from HEAD to UPDATE),
2165 * then it is up to us to reset it to NORMAL.
2166 */
2167 if (type == RB_PAGE_HEAD) {
2168 ret = rb_head_page_set_normal(cpu_buffer, next_page,
2169 tail_page,
2170 RB_PAGE_UPDATE);
2171 if (RB_WARN_ON(cpu_buffer,
2172 ret != RB_PAGE_UPDATE))
2173 return -1;
2174 }
2175
2176 return 0;
2177}
2178
34a148bf 2179static unsigned rb_calculate_event_length(unsigned length)
7a8e76a3
SR
2180{
2181 struct ring_buffer_event event; /* Used only for sizeof array */
2182
2183 /* zero length can cause confusions */
2184 if (!length)
2185 length = 1;
2186
2271048d 2187 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
7a8e76a3
SR
2188 length += sizeof(event.array[0]);
2189
2190 length += RB_EVNT_HDR_SIZE;
2271048d 2191 length = ALIGN(length, RB_ARCH_ALIGNMENT);
7a8e76a3
SR
2192
2193 return length;
2194}
2195
c7b09308
SR
2196static inline void
2197rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2198 struct buffer_page *tail_page,
2199 unsigned long tail, unsigned long length)
2200{
2201 struct ring_buffer_event *event;
2202
2203 /*
2204 * Only the event that crossed the page boundary
2205 * must fill the old tail_page with padding.
2206 */
2207 if (tail >= BUF_PAGE_SIZE) {
b3230c8b
SR
2208 /*
2209 * If the page was filled, then we still need
2210 * to update the real_end. Reset it to zero
2211 * and the reader will ignore it.
2212 */
2213 if (tail == BUF_PAGE_SIZE)
2214 tail_page->real_end = 0;
2215
c7b09308
SR
2216 local_sub(length, &tail_page->write);
2217 return;
2218 }
2219
2220 event = __rb_page_index(tail_page, tail);
b0b7065b 2221 kmemcheck_annotate_bitfield(event, bitfield);
c7b09308 2222
c64e148a
VN
2223 /* account for padding bytes */
2224 local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2225
ff0ff84a
SR
2226 /*
2227 * Save the original length to the meta data.
2228 * This will be used by the reader to add lost event
2229 * counter.
2230 */
2231 tail_page->real_end = tail;
2232
c7b09308
SR
2233 /*
2234 * If this event is bigger than the minimum size, then
2235 * we need to be careful that we don't subtract the
2236 * write counter enough to allow another writer to slip
2237 * in on this page.
2238 * We put in a discarded commit instead, to make sure
2239 * that this space is not used again.
2240 *
2241 * If we are less than the minimum size, we don't need to
2242 * worry about it.
2243 */
2244 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2245 /* No room for any events */
2246
2247 /* Mark the rest of the page with padding */
2248 rb_event_set_padding(event);
2249
2250 /* Set the write back to the previous setting */
2251 local_sub(length, &tail_page->write);
2252 return;
2253 }
2254
2255 /* Put in a discarded event */
2256 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2257 event->type_len = RINGBUF_TYPE_PADDING;
2258 /* time delta must be non zero */
2259 event->time_delta = 1;
c7b09308
SR
2260
2261 /* Set write to end of buffer */
2262 length = (tail + length) - BUF_PAGE_SIZE;
2263 local_sub(length, &tail_page->write);
2264}
6634ff26 2265
747e94ae
SR
2266/*
2267 * This is the slow path, force gcc not to inline it.
2268 */
2269static noinline struct ring_buffer_event *
6634ff26
SR
2270rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2271 unsigned long length, unsigned long tail,
e8bc43e8 2272 struct buffer_page *tail_page, u64 ts)
7a8e76a3 2273{
5a50e33c 2274 struct buffer_page *commit_page = cpu_buffer->commit_page;
7a8e76a3 2275 struct ring_buffer *buffer = cpu_buffer->buffer;
77ae365e
SR
2276 struct buffer_page *next_page;
2277 int ret;
aa20ae84
SR
2278
2279 next_page = tail_page;
2280
aa20ae84
SR
2281 rb_inc_page(cpu_buffer, &next_page);
2282
aa20ae84
SR
2283 /*
2284 * If for some reason, we had an interrupt storm that made
2285 * it all the way around the buffer, bail, and warn
2286 * about it.
2287 */
2288 if (unlikely(next_page == commit_page)) {
77ae365e 2289 local_inc(&cpu_buffer->commit_overrun);
aa20ae84
SR
2290 goto out_reset;
2291 }
2292
77ae365e
SR
2293 /*
2294 * This is where the fun begins!
2295 *
2296 * We are fighting against races between a reader that
2297 * could be on another CPU trying to swap its reader
2298 * page with the buffer head.
2299 *
2300 * We are also fighting against interrupts coming in and
2301 * moving the head or tail on us as well.
2302 *
2303 * If the next page is the head page then we have filled
2304 * the buffer, unless the commit page is still on the
2305 * reader page.
2306 */
2307 if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
aa20ae84 2308
77ae365e
SR
2309 /*
2310 * If the commit is not on the reader page, then
2311 * move the header page.
2312 */
2313 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2314 /*
2315 * If we are not in overwrite mode,
2316 * this is easy, just stop here.
2317 */
884bfe89
SP
2318 if (!(buffer->flags & RB_FL_OVERWRITE)) {
2319 local_inc(&cpu_buffer->dropped_events);
77ae365e 2320 goto out_reset;
884bfe89 2321 }
77ae365e
SR
2322
2323 ret = rb_handle_head_page(cpu_buffer,
2324 tail_page,
2325 next_page);
2326 if (ret < 0)
2327 goto out_reset;
2328 if (ret)
2329 goto out_again;
2330 } else {
2331 /*
2332 * We need to be careful here too. The
2333 * commit page could still be on the reader
2334 * page. We could have a small buffer, and
2335 * have filled up the buffer with events
2336 * from interrupts and such, and wrapped.
2337 *
2338 * Note, if the tail page is also the on the
2339 * reader_page, we let it move out.
2340 */
2341 if (unlikely((cpu_buffer->commit_page !=
2342 cpu_buffer->tail_page) &&
2343 (cpu_buffer->commit_page ==
2344 cpu_buffer->reader_page))) {
2345 local_inc(&cpu_buffer->commit_overrun);
2346 goto out_reset;
2347 }
aa20ae84
SR
2348 }
2349 }
2350
77ae365e
SR
2351 ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
2352 if (ret) {
2353 /*
2354 * Nested commits always have zero deltas, so
2355 * just reread the time stamp
2356 */
e8bc43e8
SR
2357 ts = rb_time_stamp(buffer);
2358 next_page->page->time_stamp = ts;
aa20ae84
SR
2359 }
2360
77ae365e 2361 out_again:
aa20ae84 2362
77ae365e 2363 rb_reset_tail(cpu_buffer, tail_page, tail, length);
aa20ae84
SR
2364
2365 /* fail and let the caller try again */
2366 return ERR_PTR(-EAGAIN);
2367
45141d46 2368 out_reset:
6f3b3440 2369 /* reset write */
c7b09308 2370 rb_reset_tail(cpu_buffer, tail_page, tail, length);
6f3b3440 2371
bf41a158 2372 return NULL;
7a8e76a3
SR
2373}
2374
6634ff26
SR
2375static struct ring_buffer_event *
2376__rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
69d1b839
SR
2377 unsigned long length, u64 ts,
2378 u64 delta, int add_timestamp)
6634ff26 2379{
5a50e33c 2380 struct buffer_page *tail_page;
6634ff26
SR
2381 struct ring_buffer_event *event;
2382 unsigned long tail, write;
2383
69d1b839
SR
2384 /*
2385 * If the time delta since the last event is too big to
2386 * hold in the time field of the event, then we append a
2387 * TIME EXTEND event ahead of the data event.
2388 */
2389 if (unlikely(add_timestamp))
2390 length += RB_LEN_TIME_EXTEND;
2391
6634ff26
SR
2392 tail_page = cpu_buffer->tail_page;
2393 write = local_add_return(length, &tail_page->write);
77ae365e
SR
2394
2395 /* set write to only the index of the write */
2396 write &= RB_WRITE_MASK;
6634ff26
SR
2397 tail = write - length;
2398
2399 /* See if we shot pass the end of this buffer page */
747e94ae 2400 if (unlikely(write > BUF_PAGE_SIZE))
6634ff26 2401 return rb_move_tail(cpu_buffer, length, tail,
5a50e33c 2402 tail_page, ts);
6634ff26
SR
2403
2404 /* We reserved something on the buffer */
2405
6634ff26 2406 event = __rb_page_index(tail_page, tail);
1744a21d 2407 kmemcheck_annotate_bitfield(event, bitfield);
69d1b839 2408 rb_update_event(cpu_buffer, event, length, add_timestamp, delta);
6634ff26 2409
69d1b839 2410 local_inc(&tail_page->entries);
6634ff26
SR
2411
2412 /*
fa743953
SR
2413 * If this is the first commit on the page, then update
2414 * its timestamp.
6634ff26 2415 */
fa743953 2416 if (!tail)
e8bc43e8 2417 tail_page->page->time_stamp = ts;
6634ff26 2418
c64e148a
VN
2419 /* account for these added bytes */
2420 local_add(length, &cpu_buffer->entries_bytes);
2421
6634ff26
SR
2422 return event;
2423}
2424
edd813bf
SR
2425static inline int
2426rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2427 struct ring_buffer_event *event)
2428{
2429 unsigned long new_index, old_index;
2430 struct buffer_page *bpage;
2431 unsigned long index;
2432 unsigned long addr;
2433
2434 new_index = rb_event_index(event);
69d1b839 2435 old_index = new_index + rb_event_ts_length(event);
edd813bf
SR
2436 addr = (unsigned long)event;
2437 addr &= PAGE_MASK;
2438
2439 bpage = cpu_buffer->tail_page;
2440
2441 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
77ae365e
SR
2442 unsigned long write_mask =
2443 local_read(&bpage->write) & ~RB_WRITE_MASK;
c64e148a 2444 unsigned long event_length = rb_event_length(event);
edd813bf
SR
2445 /*
2446 * This is on the tail page. It is possible that
2447 * a write could come in and move the tail page
2448 * and write to the next page. That is fine
2449 * because we just shorten what is on this page.
2450 */
77ae365e
SR
2451 old_index += write_mask;
2452 new_index += write_mask;
edd813bf 2453 index = local_cmpxchg(&bpage->write, old_index, new_index);
c64e148a
VN
2454 if (index == old_index) {
2455 /* update counters */
2456 local_sub(event_length, &cpu_buffer->entries_bytes);
edd813bf 2457 return 1;
c64e148a 2458 }
edd813bf
SR
2459 }
2460
2461 /* could not discard */
2462 return 0;
2463}
2464
fa743953
SR
2465static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2466{
2467 local_inc(&cpu_buffer->committing);
2468 local_inc(&cpu_buffer->commits);
2469}
2470
d9abde21 2471static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
fa743953
SR
2472{
2473 unsigned long commits;
2474
2475 if (RB_WARN_ON(cpu_buffer,
2476 !local_read(&cpu_buffer->committing)))
2477 return;
2478
2479 again:
2480 commits = local_read(&cpu_buffer->commits);
2481 /* synchronize with interrupts */
2482 barrier();
2483 if (local_read(&cpu_buffer->committing) == 1)
2484 rb_set_commit_to_write(cpu_buffer);
2485
2486 local_dec(&cpu_buffer->committing);
2487
2488 /* synchronize with interrupts */
2489 barrier();
2490
2491 /*
2492 * Need to account for interrupts coming in between the
2493 * updating of the commit page and the clearing of the
2494 * committing counter.
2495 */
2496 if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2497 !local_read(&cpu_buffer->committing)) {
2498 local_inc(&cpu_buffer->committing);
2499 goto again;
2500 }
2501}
2502
7a8e76a3 2503static struct ring_buffer_event *
62f0b3eb
SR
2504rb_reserve_next_event(struct ring_buffer *buffer,
2505 struct ring_buffer_per_cpu *cpu_buffer,
1cd8d735 2506 unsigned long length)
7a8e76a3
SR
2507{
2508 struct ring_buffer_event *event;
69d1b839 2509 u64 ts, delta;
818e3dd3 2510 int nr_loops = 0;
69d1b839 2511 int add_timestamp;
140ff891 2512 u64 diff;
7a8e76a3 2513
fa743953
SR
2514 rb_start_commit(cpu_buffer);
2515
85bac32c 2516#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
62f0b3eb
SR
2517 /*
2518 * Due to the ability to swap a cpu buffer from a buffer
2519 * it is possible it was swapped before we committed.
2520 * (committing stops a swap). We check for it here and
2521 * if it happened, we have to fail the write.
2522 */
2523 barrier();
2524 if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2525 local_dec(&cpu_buffer->committing);
2526 local_dec(&cpu_buffer->commits);
2527 return NULL;
2528 }
85bac32c 2529#endif
62f0b3eb 2530
be957c44 2531 length = rb_calculate_event_length(length);
bf41a158 2532 again:
69d1b839
SR
2533 add_timestamp = 0;
2534 delta = 0;
2535
818e3dd3
SR
2536 /*
2537 * We allow for interrupts to reenter here and do a trace.
2538 * If one does, it will cause this original code to loop
2539 * back here. Even with heavy interrupts happening, this
2540 * should only happen a few times in a row. If this happens
2541 * 1000 times in a row, there must be either an interrupt
2542 * storm or we have something buggy.
2543 * Bail!
2544 */
3e89c7bb 2545 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
fa743953 2546 goto out_fail;
818e3dd3 2547
6d3f1e12 2548 ts = rb_time_stamp(cpu_buffer->buffer);
140ff891 2549 diff = ts - cpu_buffer->write_stamp;
7a8e76a3 2550
140ff891
SR
2551 /* make sure this diff is calculated here */
2552 barrier();
bf41a158 2553
140ff891
SR
2554 /* Did the write stamp get updated already? */
2555 if (likely(ts >= cpu_buffer->write_stamp)) {
168b6b1d
SR
2556 delta = diff;
2557 if (unlikely(test_time_stamp(delta))) {
31274d72
JO
2558 int local_clock_stable = 1;
2559#ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2560 local_clock_stable = sched_clock_stable;
2561#endif
69d1b839 2562 WARN_ONCE(delta > (1ULL << 59),
31274d72 2563 KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
69d1b839
SR
2564 (unsigned long long)delta,
2565 (unsigned long long)ts,
31274d72
JO
2566 (unsigned long long)cpu_buffer->write_stamp,
2567 local_clock_stable ? "" :
2568 "If you just came from a suspend/resume,\n"
2569 "please switch to the trace global clock:\n"
2570 " echo global > /sys/kernel/debug/tracing/trace_clock\n");
69d1b839 2571 add_timestamp = 1;
7a8e76a3 2572 }
168b6b1d 2573 }
7a8e76a3 2574
69d1b839
SR
2575 event = __rb_reserve_next(cpu_buffer, length, ts,
2576 delta, add_timestamp);
168b6b1d 2577 if (unlikely(PTR_ERR(event) == -EAGAIN))
bf41a158
SR
2578 goto again;
2579
fa743953
SR
2580 if (!event)
2581 goto out_fail;
7a8e76a3 2582
7a8e76a3 2583 return event;
fa743953
SR
2584
2585 out_fail:
2586 rb_end_commit(cpu_buffer);
2587 return NULL;
7a8e76a3
SR
2588}
2589
1155de47
PM
2590#ifdef CONFIG_TRACING
2591
567cd4da
SR
2592/*
2593 * The lock and unlock are done within a preempt disable section.
2594 * The current_context per_cpu variable can only be modified
2595 * by the current task between lock and unlock. But it can
2596 * be modified more than once via an interrupt. To pass this
2597 * information from the lock to the unlock without having to
2598 * access the 'in_interrupt()' functions again (which do show
2599 * a bit of overhead in something as critical as function tracing,
2600 * we use a bitmask trick.
2601 *
2602 * bit 0 = NMI context
2603 * bit 1 = IRQ context
2604 * bit 2 = SoftIRQ context
2605 * bit 3 = normal context.
2606 *
2607 * This works because this is the order of contexts that can
2608 * preempt other contexts. A SoftIRQ never preempts an IRQ
2609 * context.
2610 *
2611 * When the context is determined, the corresponding bit is
2612 * checked and set (if it was set, then a recursion of that context
2613 * happened).
2614 *
2615 * On unlock, we need to clear this bit. To do so, just subtract
2616 * 1 from the current_context and AND it to itself.
2617 *
2618 * (binary)
2619 * 101 - 1 = 100
2620 * 101 & 100 = 100 (clearing bit zero)
2621 *
2622 * 1010 - 1 = 1001
2623 * 1010 & 1001 = 1000 (clearing bit 1)
2624 *
2625 * The least significant bit can be cleared this way, and it
2626 * just so happens that it is the same bit corresponding to
2627 * the current context.
2628 */
2629static DEFINE_PER_CPU(unsigned int, current_context);
261842b7 2630
567cd4da 2631static __always_inline int trace_recursive_lock(void)
261842b7 2632{
567cd4da
SR
2633 unsigned int val = this_cpu_read(current_context);
2634 int bit;
d9abde21 2635
567cd4da
SR
2636 if (in_interrupt()) {
2637 if (in_nmi())
2638 bit = 0;
2639 else if (in_irq())
2640 bit = 1;
2641 else
2642 bit = 2;
2643 } else
2644 bit = 3;
d9abde21 2645
567cd4da
SR
2646 if (unlikely(val & (1 << bit)))
2647 return 1;
d9abde21 2648
567cd4da
SR
2649 val |= (1 << bit);
2650 this_cpu_write(current_context, val);
d9abde21 2651
567cd4da 2652 return 0;
261842b7
SR
2653}
2654
567cd4da 2655static __always_inline void trace_recursive_unlock(void)
261842b7 2656{
567cd4da 2657 unsigned int val = this_cpu_read(current_context);
261842b7 2658
567cd4da
SR
2659 val--;
2660 val &= this_cpu_read(current_context);
2661 this_cpu_write(current_context, val);
261842b7
SR
2662}
2663
1155de47
PM
2664#else
2665
2666#define trace_recursive_lock() (0)
2667#define trace_recursive_unlock() do { } while (0)
2668
2669#endif
2670
7a8e76a3
SR
2671/**
2672 * ring_buffer_lock_reserve - reserve a part of the buffer
2673 * @buffer: the ring buffer to reserve from
2674 * @length: the length of the data to reserve (excluding event header)
7a8e76a3
SR
2675 *
2676 * Returns a reseverd event on the ring buffer to copy directly to.
2677 * The user of this interface will need to get the body to write into
2678 * and can use the ring_buffer_event_data() interface.
2679 *
2680 * The length is the length of the data needed, not the event length
2681 * which also includes the event header.
2682 *
2683 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2684 * If NULL is returned, then nothing has been allocated or locked.
2685 */
2686struct ring_buffer_event *
0a987751 2687ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
7a8e76a3
SR
2688{
2689 struct ring_buffer_per_cpu *cpu_buffer;
2690 struct ring_buffer_event *event;
5168ae50 2691 int cpu;
7a8e76a3 2692
033601a3 2693 if (ring_buffer_flags != RB_BUFFERS_ON)
a3583244
SR
2694 return NULL;
2695
bf41a158 2696 /* If we are tracing schedule, we don't want to recurse */
5168ae50 2697 preempt_disable_notrace();
bf41a158 2698
52fbe9cd
LJ
2699 if (atomic_read(&buffer->record_disabled))
2700 goto out_nocheck;
2701
261842b7
SR
2702 if (trace_recursive_lock())
2703 goto out_nocheck;
2704
7a8e76a3
SR
2705 cpu = raw_smp_processor_id();
2706
9e01c1b7 2707 if (!cpumask_test_cpu(cpu, buffer->cpumask))
d769041f 2708 goto out;
7a8e76a3
SR
2709
2710 cpu_buffer = buffer->buffers[cpu];
7a8e76a3
SR
2711
2712 if (atomic_read(&cpu_buffer->record_disabled))
d769041f 2713 goto out;
7a8e76a3 2714
be957c44 2715 if (length > BUF_MAX_DATA_SIZE)
bf41a158 2716 goto out;
7a8e76a3 2717
62f0b3eb 2718 event = rb_reserve_next_event(buffer, cpu_buffer, length);
7a8e76a3 2719 if (!event)
d769041f 2720 goto out;
7a8e76a3
SR
2721
2722 return event;
2723
d769041f 2724 out:
261842b7
SR
2725 trace_recursive_unlock();
2726
2727 out_nocheck:
5168ae50 2728 preempt_enable_notrace();
7a8e76a3
SR
2729 return NULL;
2730}
c4f50183 2731EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
7a8e76a3 2732
a1863c21
SR
2733static void
2734rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
7a8e76a3
SR
2735 struct ring_buffer_event *event)
2736{
69d1b839
SR
2737 u64 delta;
2738
fa743953
SR
2739 /*
2740 * The event first in the commit queue updates the
2741 * time stamp.
2742 */
69d1b839
SR
2743 if (rb_event_is_commit(cpu_buffer, event)) {
2744 /*
2745 * A commit event that is first on a page
2746 * updates the write timestamp with the page stamp
2747 */
2748 if (!rb_event_index(event))
2749 cpu_buffer->write_stamp =
2750 cpu_buffer->commit_page->page->time_stamp;
2751 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2752 delta = event->array[0];
2753 delta <<= TS_SHIFT;
2754 delta += event->time_delta;
2755 cpu_buffer->write_stamp += delta;
2756 } else
2757 cpu_buffer->write_stamp += event->time_delta;
2758 }
a1863c21 2759}
bf41a158 2760
a1863c21
SR
2761static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2762 struct ring_buffer_event *event)
2763{
2764 local_inc(&cpu_buffer->entries);
2765 rb_update_write_stamp(cpu_buffer, event);
fa743953 2766 rb_end_commit(cpu_buffer);
7a8e76a3
SR
2767}
2768
15693458
SRRH
2769static __always_inline void
2770rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2771{
2772 if (buffer->irq_work.waiters_pending) {
2773 buffer->irq_work.waiters_pending = false;
2774 /* irq_work_queue() supplies it's own memory barriers */
2775 irq_work_queue(&buffer->irq_work.work);
2776 }
2777
2778 if (cpu_buffer->irq_work.waiters_pending) {
2779 cpu_buffer->irq_work.waiters_pending = false;
2780 /* irq_work_queue() supplies it's own memory barriers */
2781 irq_work_queue(&cpu_buffer->irq_work.work);
2782 }
2783}
2784
7a8e76a3
SR
2785/**
2786 * ring_buffer_unlock_commit - commit a reserved
2787 * @buffer: The buffer to commit to
2788 * @event: The event pointer to commit.
7a8e76a3
SR
2789 *
2790 * This commits the data to the ring buffer, and releases any locks held.
2791 *
2792 * Must be paired with ring_buffer_lock_reserve.
2793 */
2794int ring_buffer_unlock_commit(struct ring_buffer *buffer,
0a987751 2795 struct ring_buffer_event *event)
7a8e76a3
SR
2796{
2797 struct ring_buffer_per_cpu *cpu_buffer;
2798 int cpu = raw_smp_processor_id();
2799
2800 cpu_buffer = buffer->buffers[cpu];
2801
7a8e76a3
SR
2802 rb_commit(cpu_buffer, event);
2803
15693458
SRRH
2804 rb_wakeups(buffer, cpu_buffer);
2805
261842b7
SR
2806 trace_recursive_unlock();
2807
5168ae50 2808 preempt_enable_notrace();
7a8e76a3
SR
2809
2810 return 0;
2811}
c4f50183 2812EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
7a8e76a3 2813
f3b9aae1
FW
2814static inline void rb_event_discard(struct ring_buffer_event *event)
2815{
69d1b839
SR
2816 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2817 event = skip_time_extend(event);
2818
334d4169
LJ
2819 /* array[0] holds the actual length for the discarded event */
2820 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2821 event->type_len = RINGBUF_TYPE_PADDING;
f3b9aae1
FW
2822 /* time delta must be non zero */
2823 if (!event->time_delta)
2824 event->time_delta = 1;
2825}
2826
a1863c21
SR
2827/*
2828 * Decrement the entries to the page that an event is on.
2829 * The event does not even need to exist, only the pointer
2830 * to the page it is on. This may only be called before the commit
2831 * takes place.
2832 */
2833static inline void
2834rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2835 struct ring_buffer_event *event)
2836{
2837 unsigned long addr = (unsigned long)event;
2838 struct buffer_page *bpage = cpu_buffer->commit_page;
2839 struct buffer_page *start;
2840
2841 addr &= PAGE_MASK;
2842
2843 /* Do the likely case first */
2844 if (likely(bpage->page == (void *)addr)) {
2845 local_dec(&bpage->entries);
2846 return;
2847 }
2848
2849 /*
2850 * Because the commit page may be on the reader page we
2851 * start with the next page and check the end loop there.
2852 */
2853 rb_inc_page(cpu_buffer, &bpage);
2854 start = bpage;
2855 do {
2856 if (bpage->page == (void *)addr) {
2857 local_dec(&bpage->entries);
2858 return;
2859 }
2860 rb_inc_page(cpu_buffer, &bpage);
2861 } while (bpage != start);
2862
2863 /* commit not part of this buffer?? */
2864 RB_WARN_ON(cpu_buffer, 1);
2865}
2866
fa1b47dd
SR
2867/**
2868 * ring_buffer_commit_discard - discard an event that has not been committed
2869 * @buffer: the ring buffer
2870 * @event: non committed event to discard
2871 *
dc892f73
SR
2872 * Sometimes an event that is in the ring buffer needs to be ignored.
2873 * This function lets the user discard an event in the ring buffer
2874 * and then that event will not be read later.
2875 *
2876 * This function only works if it is called before the the item has been
2877 * committed. It will try to free the event from the ring buffer
fa1b47dd
SR
2878 * if another event has not been added behind it.
2879 *
2880 * If another event has been added behind it, it will set the event
2881 * up as discarded, and perform the commit.
2882 *
2883 * If this function is called, do not call ring_buffer_unlock_commit on
2884 * the event.
2885 */
2886void ring_buffer_discard_commit(struct ring_buffer *buffer,
2887 struct ring_buffer_event *event)
2888{
2889 struct ring_buffer_per_cpu *cpu_buffer;
fa1b47dd
SR
2890 int cpu;
2891
2892 /* The event is discarded regardless */
f3b9aae1 2893 rb_event_discard(event);
fa1b47dd 2894
fa743953
SR
2895 cpu = smp_processor_id();
2896 cpu_buffer = buffer->buffers[cpu];
2897
fa1b47dd
SR
2898 /*
2899 * This must only be called if the event has not been
2900 * committed yet. Thus we can assume that preemption
2901 * is still disabled.
2902 */
fa743953 2903 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
fa1b47dd 2904
a1863c21 2905 rb_decrement_entry(cpu_buffer, event);
0f2541d2 2906 if (rb_try_to_discard(cpu_buffer, event))
edd813bf 2907 goto out;
fa1b47dd
SR
2908
2909 /*
2910 * The commit is still visible by the reader, so we
a1863c21 2911 * must still update the timestamp.
fa1b47dd 2912 */
a1863c21 2913 rb_update_write_stamp(cpu_buffer, event);
fa1b47dd 2914 out:
fa743953 2915 rb_end_commit(cpu_buffer);
fa1b47dd 2916
f3b9aae1
FW
2917 trace_recursive_unlock();
2918
5168ae50 2919 preempt_enable_notrace();
fa1b47dd
SR
2920
2921}
2922EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2923
7a8e76a3
SR
2924/**
2925 * ring_buffer_write - write data to the buffer without reserving
2926 * @buffer: The ring buffer to write to.
2927 * @length: The length of the data being written (excluding the event header)
2928 * @data: The data to write to the buffer.
2929 *
2930 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2931 * one function. If you already have the data to write to the buffer, it
2932 * may be easier to simply call this function.
2933 *
2934 * Note, like ring_buffer_lock_reserve, the length is the length of the data
2935 * and not the length of the event which would hold the header.
2936 */
2937int ring_buffer_write(struct ring_buffer *buffer,
01e3e710
DS
2938 unsigned long length,
2939 void *data)
7a8e76a3
SR
2940{
2941 struct ring_buffer_per_cpu *cpu_buffer;
2942 struct ring_buffer_event *event;
7a8e76a3
SR
2943 void *body;
2944 int ret = -EBUSY;
5168ae50 2945 int cpu;
7a8e76a3 2946
033601a3 2947 if (ring_buffer_flags != RB_BUFFERS_ON)
a3583244
SR
2948 return -EBUSY;
2949
5168ae50 2950 preempt_disable_notrace();
bf41a158 2951
52fbe9cd
LJ
2952 if (atomic_read(&buffer->record_disabled))
2953 goto out;
2954
7a8e76a3
SR
2955 cpu = raw_smp_processor_id();
2956
9e01c1b7 2957 if (!cpumask_test_cpu(cpu, buffer->cpumask))
d769041f 2958 goto out;
7a8e76a3
SR
2959
2960 cpu_buffer = buffer->buffers[cpu];
7a8e76a3
SR
2961
2962 if (atomic_read(&cpu_buffer->record_disabled))
2963 goto out;
2964
be957c44
SR
2965 if (length > BUF_MAX_DATA_SIZE)
2966 goto out;
2967
62f0b3eb 2968 event = rb_reserve_next_event(buffer, cpu_buffer, length);
7a8e76a3
SR
2969 if (!event)
2970 goto out;
2971
2972 body = rb_event_data(event);
2973
2974 memcpy(body, data, length);
2975
2976 rb_commit(cpu_buffer, event);
2977
15693458
SRRH
2978 rb_wakeups(buffer, cpu_buffer);
2979
7a8e76a3
SR
2980 ret = 0;
2981 out:
5168ae50 2982 preempt_enable_notrace();
7a8e76a3
SR
2983
2984 return ret;
2985}
c4f50183 2986EXPORT_SYMBOL_GPL(ring_buffer_write);
7a8e76a3 2987
34a148bf 2988static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
bf41a158
SR
2989{
2990 struct buffer_page *reader = cpu_buffer->reader_page;
77ae365e 2991 struct buffer_page *head = rb_set_head_page(cpu_buffer);
bf41a158
SR
2992 struct buffer_page *commit = cpu_buffer->commit_page;
2993
77ae365e
SR
2994 /* In case of error, head will be NULL */
2995 if (unlikely(!head))
2996 return 1;
2997
bf41a158
SR
2998 return reader->read == rb_page_commit(reader) &&
2999 (commit == reader ||
3000 (commit == head &&
3001 head->read == rb_page_commit(commit)));
3002}
3003
7a8e76a3
SR
3004/**
3005 * ring_buffer_record_disable - stop all writes into the buffer
3006 * @buffer: The ring buffer to stop writes to.
3007 *
3008 * This prevents all writes to the buffer. Any attempt to write
3009 * to the buffer after this will fail and return NULL.
3010 *
3011 * The caller should call synchronize_sched() after this.
3012 */
3013void ring_buffer_record_disable(struct ring_buffer *buffer)
3014{
3015 atomic_inc(&buffer->record_disabled);
3016}
c4f50183 3017EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
7a8e76a3
SR
3018
3019/**
3020 * ring_buffer_record_enable - enable writes to the buffer
3021 * @buffer: The ring buffer to enable writes
3022 *
3023 * Note, multiple disables will need the same number of enables
c41b20e7 3024 * to truly enable the writing (much like preempt_disable).
7a8e76a3
SR
3025 */
3026void ring_buffer_record_enable(struct ring_buffer *buffer)
3027{
3028 atomic_dec(&buffer->record_disabled);
3029}
c4f50183 3030EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
7a8e76a3 3031
499e5470
SR
3032/**
3033 * ring_buffer_record_off - stop all writes into the buffer
3034 * @buffer: The ring buffer to stop writes to.
3035 *
3036 * This prevents all writes to the buffer. Any attempt to write
3037 * to the buffer after this will fail and return NULL.
3038 *
3039 * This is different than ring_buffer_record_disable() as
87abb3b1 3040 * it works like an on/off switch, where as the disable() version
499e5470
SR
3041 * must be paired with a enable().
3042 */
3043void ring_buffer_record_off(struct ring_buffer *buffer)
3044{
3045 unsigned int rd;
3046 unsigned int new_rd;
3047
3048 do {
3049 rd = atomic_read(&buffer->record_disabled);
3050 new_rd = rd | RB_BUFFER_OFF;
3051 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3052}
3053EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3054
3055/**
3056 * ring_buffer_record_on - restart writes into the buffer
3057 * @buffer: The ring buffer to start writes to.
3058 *
3059 * This enables all writes to the buffer that was disabled by
3060 * ring_buffer_record_off().
3061 *
3062 * This is different than ring_buffer_record_enable() as
87abb3b1 3063 * it works like an on/off switch, where as the enable() version
499e5470
SR
3064 * must be paired with a disable().
3065 */
3066void ring_buffer_record_on(struct ring_buffer *buffer)
3067{
3068 unsigned int rd;
3069 unsigned int new_rd;
3070
3071 do {
3072 rd = atomic_read(&buffer->record_disabled);
3073 new_rd = rd & ~RB_BUFFER_OFF;
3074 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3075}
3076EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3077
3078/**
3079 * ring_buffer_record_is_on - return true if the ring buffer can write
3080 * @buffer: The ring buffer to see if write is enabled
3081 *
3082 * Returns true if the ring buffer is in a state that it accepts writes.
3083 */
3084int ring_buffer_record_is_on(struct ring_buffer *buffer)
3085{
3086 return !atomic_read(&buffer->record_disabled);
3087}
3088
7a8e76a3
SR
3089/**
3090 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3091 * @buffer: The ring buffer to stop writes to.
3092 * @cpu: The CPU buffer to stop
3093 *
3094 * This prevents all writes to the buffer. Any attempt to write
3095 * to the buffer after this will fail and return NULL.
3096 *
3097 * The caller should call synchronize_sched() after this.
3098 */
3099void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
3100{
3101 struct ring_buffer_per_cpu *cpu_buffer;
3102
9e01c1b7 3103 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3104 return;
7a8e76a3
SR
3105
3106 cpu_buffer = buffer->buffers[cpu];
3107 atomic_inc(&cpu_buffer->record_disabled);
3108}
c4f50183 3109EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
7a8e76a3
SR
3110
3111/**
3112 * ring_buffer_record_enable_cpu - enable writes to the buffer
3113 * @buffer: The ring buffer to enable writes
3114 * @cpu: The CPU to enable.
3115 *
3116 * Note, multiple disables will need the same number of enables
c41b20e7 3117 * to truly enable the writing (much like preempt_disable).
7a8e76a3
SR
3118 */
3119void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
3120{
3121 struct ring_buffer_per_cpu *cpu_buffer;
3122
9e01c1b7 3123 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3124 return;
7a8e76a3
SR
3125
3126 cpu_buffer = buffer->buffers[cpu];
3127 atomic_dec(&cpu_buffer->record_disabled);
3128}
c4f50183 3129EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
7a8e76a3 3130
f6195aa0
SR
3131/*
3132 * The total entries in the ring buffer is the running counter
3133 * of entries entered into the ring buffer, minus the sum of
3134 * the entries read from the ring buffer and the number of
3135 * entries that were overwritten.
3136 */
3137static inline unsigned long
3138rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3139{
3140 return local_read(&cpu_buffer->entries) -
3141 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3142}
3143
c64e148a
VN
3144/**
3145 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3146 * @buffer: The ring buffer
3147 * @cpu: The per CPU buffer to read from.
3148 */
50ecf2c3 3149u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
c64e148a
VN
3150{
3151 unsigned long flags;
3152 struct ring_buffer_per_cpu *cpu_buffer;
3153 struct buffer_page *bpage;
da830e58 3154 u64 ret = 0;
c64e148a
VN
3155
3156 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3157 return 0;
3158
3159 cpu_buffer = buffer->buffers[cpu];
7115e3fc 3160 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
c64e148a
VN
3161 /*
3162 * if the tail is on reader_page, oldest time stamp is on the reader
3163 * page
3164 */
3165 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3166 bpage = cpu_buffer->reader_page;
3167 else
3168 bpage = rb_set_head_page(cpu_buffer);
54f7be5b
SR
3169 if (bpage)
3170 ret = bpage->page->time_stamp;
7115e3fc 3171 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
c64e148a
VN
3172
3173 return ret;
3174}
3175EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3176
3177/**
3178 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3179 * @buffer: The ring buffer
3180 * @cpu: The per CPU buffer to read from.
3181 */
3182unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
3183{
3184 struct ring_buffer_per_cpu *cpu_buffer;
3185 unsigned long ret;
3186
3187 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3188 return 0;
3189
3190 cpu_buffer = buffer->buffers[cpu];
3191 ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3192
3193 return ret;
3194}
3195EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3196
7a8e76a3
SR
3197/**
3198 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3199 * @buffer: The ring buffer
3200 * @cpu: The per CPU buffer to get the entries from.
3201 */
3202unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
3203{
3204 struct ring_buffer_per_cpu *cpu_buffer;
3205
9e01c1b7 3206 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3207 return 0;
7a8e76a3
SR
3208
3209 cpu_buffer = buffer->buffers[cpu];
554f786e 3210
f6195aa0 3211 return rb_num_of_entries(cpu_buffer);
7a8e76a3 3212}
c4f50183 3213EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
7a8e76a3
SR
3214
3215/**
884bfe89
SP
3216 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3217 * buffer wrapping around (only if RB_FL_OVERWRITE is on).
7a8e76a3
SR
3218 * @buffer: The ring buffer
3219 * @cpu: The per CPU buffer to get the number of overruns from
3220 */
3221unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
3222{
3223 struct ring_buffer_per_cpu *cpu_buffer;
8aabee57 3224 unsigned long ret;
7a8e76a3 3225
9e01c1b7 3226 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3227 return 0;
7a8e76a3
SR
3228
3229 cpu_buffer = buffer->buffers[cpu];
77ae365e 3230 ret = local_read(&cpu_buffer->overrun);
554f786e
SR
3231
3232 return ret;
7a8e76a3 3233}
c4f50183 3234EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
7a8e76a3 3235
f0d2c681 3236/**
884bfe89
SP
3237 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3238 * commits failing due to the buffer wrapping around while there are uncommitted
3239 * events, such as during an interrupt storm.
f0d2c681
SR
3240 * @buffer: The ring buffer
3241 * @cpu: The per CPU buffer to get the number of overruns from
3242 */
3243unsigned long
3244ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3245{
3246 struct ring_buffer_per_cpu *cpu_buffer;
3247 unsigned long ret;
3248
3249 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3250 return 0;
3251
3252 cpu_buffer = buffer->buffers[cpu];
77ae365e 3253 ret = local_read(&cpu_buffer->commit_overrun);
f0d2c681
SR
3254
3255 return ret;
3256}
3257EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3258
884bfe89
SP
3259/**
3260 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3261 * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3262 * @buffer: The ring buffer
3263 * @cpu: The per CPU buffer to get the number of overruns from
3264 */
3265unsigned long
3266ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu)
3267{
3268 struct ring_buffer_per_cpu *cpu_buffer;
3269 unsigned long ret;
3270
3271 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3272 return 0;
3273
3274 cpu_buffer = buffer->buffers[cpu];
3275 ret = local_read(&cpu_buffer->dropped_events);
3276
3277 return ret;
3278}
3279EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3280
ad964704
SRRH
3281/**
3282 * ring_buffer_read_events_cpu - get the number of events successfully read
3283 * @buffer: The ring buffer
3284 * @cpu: The per CPU buffer to get the number of events read
3285 */
3286unsigned long
3287ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu)
3288{
3289 struct ring_buffer_per_cpu *cpu_buffer;
3290
3291 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3292 return 0;
3293
3294 cpu_buffer = buffer->buffers[cpu];
3295 return cpu_buffer->read;
3296}
3297EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3298
7a8e76a3
SR
3299/**
3300 * ring_buffer_entries - get the number of entries in a buffer
3301 * @buffer: The ring buffer
3302 *
3303 * Returns the total number of entries in the ring buffer
3304 * (all CPU entries)
3305 */
3306unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3307{
3308 struct ring_buffer_per_cpu *cpu_buffer;
3309 unsigned long entries = 0;
3310 int cpu;
3311
3312 /* if you care about this being correct, lock the buffer */
3313 for_each_buffer_cpu(buffer, cpu) {
3314 cpu_buffer = buffer->buffers[cpu];
f6195aa0 3315 entries += rb_num_of_entries(cpu_buffer);
7a8e76a3
SR
3316 }
3317
3318 return entries;
3319}
c4f50183 3320EXPORT_SYMBOL_GPL(ring_buffer_entries);
7a8e76a3
SR
3321
3322/**
67b394f7 3323 * ring_buffer_overruns - get the number of overruns in buffer
7a8e76a3
SR
3324 * @buffer: The ring buffer
3325 *
3326 * Returns the total number of overruns in the ring buffer
3327 * (all CPU entries)
3328 */
3329unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3330{
3331 struct ring_buffer_per_cpu *cpu_buffer;
3332 unsigned long overruns = 0;
3333 int cpu;
3334
3335 /* if you care about this being correct, lock the buffer */
3336 for_each_buffer_cpu(buffer, cpu) {
3337 cpu_buffer = buffer->buffers[cpu];
77ae365e 3338 overruns += local_read(&cpu_buffer->overrun);
7a8e76a3
SR
3339 }
3340
3341 return overruns;
3342}
c4f50183 3343EXPORT_SYMBOL_GPL(ring_buffer_overruns);
7a8e76a3 3344
642edba5 3345static void rb_iter_reset(struct ring_buffer_iter *iter)
7a8e76a3
SR
3346{
3347 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3348
d769041f
SR
3349 /* Iterator usage is expected to have record disabled */
3350 if (list_empty(&cpu_buffer->reader_page->list)) {
77ae365e
SR
3351 iter->head_page = rb_set_head_page(cpu_buffer);
3352 if (unlikely(!iter->head_page))
3353 return;
3354 iter->head = iter->head_page->read;
d769041f
SR
3355 } else {
3356 iter->head_page = cpu_buffer->reader_page;
6f807acd 3357 iter->head = cpu_buffer->reader_page->read;
d769041f
SR
3358 }
3359 if (iter->head)
3360 iter->read_stamp = cpu_buffer->read_stamp;
3361 else
abc9b56d 3362 iter->read_stamp = iter->head_page->page->time_stamp;
492a74f4
SR
3363 iter->cache_reader_page = cpu_buffer->reader_page;
3364 iter->cache_read = cpu_buffer->read;
642edba5 3365}
f83c9d0f 3366
642edba5
SR
3367/**
3368 * ring_buffer_iter_reset - reset an iterator
3369 * @iter: The iterator to reset
3370 *
3371 * Resets the iterator, so that it will start from the beginning
3372 * again.
3373 */
3374void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3375{
554f786e 3376 struct ring_buffer_per_cpu *cpu_buffer;
642edba5
SR
3377 unsigned long flags;
3378
554f786e
SR
3379 if (!iter)
3380 return;
3381
3382 cpu_buffer = iter->cpu_buffer;
3383
5389f6fa 3384 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
642edba5 3385 rb_iter_reset(iter);
5389f6fa 3386 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3 3387}
c4f50183 3388EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
7a8e76a3
SR
3389
3390/**
3391 * ring_buffer_iter_empty - check if an iterator has no more to read
3392 * @iter: The iterator to check
3393 */
3394int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3395{
3396 struct ring_buffer_per_cpu *cpu_buffer;
3397
3398 cpu_buffer = iter->cpu_buffer;
3399
bf41a158
SR
3400 return iter->head_page == cpu_buffer->commit_page &&
3401 iter->head == rb_commit_index(cpu_buffer);
7a8e76a3 3402}
c4f50183 3403EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
7a8e76a3
SR
3404
3405static void
3406rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3407 struct ring_buffer_event *event)
3408{
3409 u64 delta;
3410
334d4169 3411 switch (event->type_len) {
7a8e76a3
SR
3412 case RINGBUF_TYPE_PADDING:
3413 return;
3414
3415 case RINGBUF_TYPE_TIME_EXTEND:
3416 delta = event->array[0];
3417 delta <<= TS_SHIFT;
3418 delta += event->time_delta;
3419 cpu_buffer->read_stamp += delta;
3420 return;
3421
3422 case RINGBUF_TYPE_TIME_STAMP:
3423 /* FIXME: not implemented */
3424 return;
3425
3426 case RINGBUF_TYPE_DATA:
3427 cpu_buffer->read_stamp += event->time_delta;
3428 return;
3429
3430 default:
3431 BUG();
3432 }
3433 return;
3434}
3435
3436static void
3437rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3438 struct ring_buffer_event *event)
3439{
3440 u64 delta;
3441
334d4169 3442 switch (event->type_len) {
7a8e76a3
SR
3443 case RINGBUF_TYPE_PADDING:
3444 return;
3445
3446 case RINGBUF_TYPE_TIME_EXTEND:
3447 delta = event->array[0];
3448 delta <<= TS_SHIFT;
3449 delta += event->time_delta;
3450 iter->read_stamp += delta;
3451 return;
3452
3453 case RINGBUF_TYPE_TIME_STAMP:
3454 /* FIXME: not implemented */
3455 return;
3456
3457 case RINGBUF_TYPE_DATA:
3458 iter->read_stamp += event->time_delta;
3459 return;
3460
3461 default:
3462 BUG();
3463 }
3464 return;
3465}
3466
d769041f
SR
3467static struct buffer_page *
3468rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 3469{
d769041f 3470 struct buffer_page *reader = NULL;
66a8cb95 3471 unsigned long overwrite;
d769041f 3472 unsigned long flags;
818e3dd3 3473 int nr_loops = 0;
77ae365e 3474 int ret;
d769041f 3475
3e03fb7f 3476 local_irq_save(flags);
0199c4e6 3477 arch_spin_lock(&cpu_buffer->lock);
d769041f
SR
3478
3479 again:
818e3dd3
SR
3480 /*
3481 * This should normally only loop twice. But because the
3482 * start of the reader inserts an empty page, it causes
3483 * a case where we will loop three times. There should be no
3484 * reason to loop four times (that I know of).
3485 */
3e89c7bb 3486 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
818e3dd3
SR
3487 reader = NULL;
3488 goto out;
3489 }
3490
d769041f
SR
3491 reader = cpu_buffer->reader_page;
3492
3493 /* If there's more to read, return this page */
bf41a158 3494 if (cpu_buffer->reader_page->read < rb_page_size(reader))
d769041f
SR
3495 goto out;
3496
3497 /* Never should we have an index greater than the size */
3e89c7bb
SR
3498 if (RB_WARN_ON(cpu_buffer,
3499 cpu_buffer->reader_page->read > rb_page_size(reader)))
3500 goto out;
d769041f
SR
3501
3502 /* check if we caught up to the tail */
3503 reader = NULL;
bf41a158 3504 if (cpu_buffer->commit_page == cpu_buffer->reader_page)
d769041f 3505 goto out;
7a8e76a3 3506
a5fb8331
SR
3507 /* Don't bother swapping if the ring buffer is empty */
3508 if (rb_num_of_entries(cpu_buffer) == 0)
3509 goto out;
3510
7a8e76a3 3511 /*
d769041f 3512 * Reset the reader page to size zero.
7a8e76a3 3513 */
77ae365e
SR
3514 local_set(&cpu_buffer->reader_page->write, 0);
3515 local_set(&cpu_buffer->reader_page->entries, 0);
3516 local_set(&cpu_buffer->reader_page->page->commit, 0);
ff0ff84a 3517 cpu_buffer->reader_page->real_end = 0;
7a8e76a3 3518
77ae365e
SR
3519 spin:
3520 /*
3521 * Splice the empty reader page into the list around the head.
3522 */
3523 reader = rb_set_head_page(cpu_buffer);
54f7be5b
SR
3524 if (!reader)
3525 goto out;
0e1ff5d7 3526 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
d769041f 3527 cpu_buffer->reader_page->list.prev = reader->list.prev;
bf41a158 3528
3adc54fa
SR
3529 /*
3530 * cpu_buffer->pages just needs to point to the buffer, it
3531 * has no specific buffer page to point to. Lets move it out
25985edc 3532 * of our way so we don't accidentally swap it.
3adc54fa
SR
3533 */
3534 cpu_buffer->pages = reader->list.prev;
3535
77ae365e
SR
3536 /* The reader page will be pointing to the new head */
3537 rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
7a8e76a3 3538
66a8cb95
SR
3539 /*
3540 * We want to make sure we read the overruns after we set up our
3541 * pointers to the next object. The writer side does a
3542 * cmpxchg to cross pages which acts as the mb on the writer
3543 * side. Note, the reader will constantly fail the swap
3544 * while the writer is updating the pointers, so this
3545 * guarantees that the overwrite recorded here is the one we
3546 * want to compare with the last_overrun.
3547 */
3548 smp_mb();
3549 overwrite = local_read(&(cpu_buffer->overrun));
3550
77ae365e
SR
3551 /*
3552 * Here's the tricky part.
3553 *
3554 * We need to move the pointer past the header page.
3555 * But we can only do that if a writer is not currently
3556 * moving it. The page before the header page has the
3557 * flag bit '1' set if it is pointing to the page we want.
3558 * but if the writer is in the process of moving it
3559 * than it will be '2' or already moved '0'.
3560 */
3561
3562 ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
7a8e76a3
SR
3563
3564 /*
77ae365e 3565 * If we did not convert it, then we must try again.
7a8e76a3 3566 */
77ae365e
SR
3567 if (!ret)
3568 goto spin;
7a8e76a3 3569
77ae365e
SR
3570 /*
3571 * Yeah! We succeeded in replacing the page.
3572 *
3573 * Now make the new head point back to the reader page.
3574 */
5ded3dc6 3575 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
77ae365e 3576 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
d769041f
SR
3577
3578 /* Finally update the reader page to the new head */
3579 cpu_buffer->reader_page = reader;
3580 rb_reset_reader_page(cpu_buffer);
3581
66a8cb95
SR
3582 if (overwrite != cpu_buffer->last_overrun) {
3583 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3584 cpu_buffer->last_overrun = overwrite;
3585 }
3586
d769041f
SR
3587 goto again;
3588
3589 out:
0199c4e6 3590 arch_spin_unlock(&cpu_buffer->lock);
3e03fb7f 3591 local_irq_restore(flags);
d769041f
SR
3592
3593 return reader;
3594}
3595
3596static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3597{
3598 struct ring_buffer_event *event;
3599 struct buffer_page *reader;
3600 unsigned length;
3601
3602 reader = rb_get_reader_page(cpu_buffer);
7a8e76a3 3603
d769041f 3604 /* This function should not be called when buffer is empty */
3e89c7bb
SR
3605 if (RB_WARN_ON(cpu_buffer, !reader))
3606 return;
7a8e76a3 3607
d769041f
SR
3608 event = rb_reader_event(cpu_buffer);
3609
a1863c21 3610 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
e4906eff 3611 cpu_buffer->read++;
d769041f
SR
3612
3613 rb_update_read_stamp(cpu_buffer, event);
3614
3615 length = rb_event_length(event);
6f807acd 3616 cpu_buffer->reader_page->read += length;
7a8e76a3
SR
3617}
3618
3619static void rb_advance_iter(struct ring_buffer_iter *iter)
3620{
7a8e76a3
SR
3621 struct ring_buffer_per_cpu *cpu_buffer;
3622 struct ring_buffer_event *event;
3623 unsigned length;
3624
3625 cpu_buffer = iter->cpu_buffer;
7a8e76a3
SR
3626
3627 /*
3628 * Check if we are at the end of the buffer.
3629 */
bf41a158 3630 if (iter->head >= rb_page_size(iter->head_page)) {
ea05b57c
SR
3631 /* discarded commits can make the page empty */
3632 if (iter->head_page == cpu_buffer->commit_page)
3e89c7bb 3633 return;
d769041f 3634 rb_inc_iter(iter);
7a8e76a3
SR
3635 return;
3636 }
3637
3638 event = rb_iter_head_event(iter);
3639
3640 length = rb_event_length(event);
3641
3642 /*
3643 * This should not be called to advance the header if we are
3644 * at the tail of the buffer.
3645 */
3e89c7bb 3646 if (RB_WARN_ON(cpu_buffer,
f536aafc 3647 (iter->head_page == cpu_buffer->commit_page) &&
3e89c7bb
SR
3648 (iter->head + length > rb_commit_index(cpu_buffer))))
3649 return;
7a8e76a3
SR
3650
3651 rb_update_iter_read_stamp(iter, event);
3652
3653 iter->head += length;
3654
3655 /* check for end of page padding */
bf41a158
SR
3656 if ((iter->head >= rb_page_size(iter->head_page)) &&
3657 (iter->head_page != cpu_buffer->commit_page))
771e0384 3658 rb_inc_iter(iter);
7a8e76a3
SR
3659}
3660
66a8cb95
SR
3661static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3662{
3663 return cpu_buffer->lost_events;
3664}
3665
f83c9d0f 3666static struct ring_buffer_event *
66a8cb95
SR
3667rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3668 unsigned long *lost_events)
7a8e76a3 3669{
7a8e76a3 3670 struct ring_buffer_event *event;
d769041f 3671 struct buffer_page *reader;
818e3dd3 3672 int nr_loops = 0;
7a8e76a3 3673
7a8e76a3 3674 again:
818e3dd3 3675 /*
69d1b839
SR
3676 * We repeat when a time extend is encountered.
3677 * Since the time extend is always attached to a data event,
3678 * we should never loop more than once.
3679 * (We never hit the following condition more than twice).
818e3dd3 3680 */
69d1b839 3681 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
818e3dd3 3682 return NULL;
818e3dd3 3683
d769041f
SR
3684 reader = rb_get_reader_page(cpu_buffer);
3685 if (!reader)
7a8e76a3
SR
3686 return NULL;
3687
d769041f 3688 event = rb_reader_event(cpu_buffer);
7a8e76a3 3689
334d4169 3690 switch (event->type_len) {
7a8e76a3 3691 case RINGBUF_TYPE_PADDING:
2d622719
TZ
3692 if (rb_null_event(event))
3693 RB_WARN_ON(cpu_buffer, 1);
3694 /*
3695 * Because the writer could be discarding every
3696 * event it creates (which would probably be bad)
3697 * if we were to go back to "again" then we may never
3698 * catch up, and will trigger the warn on, or lock
3699 * the box. Return the padding, and we will release
3700 * the current locks, and try again.
3701 */
2d622719 3702 return event;
7a8e76a3
SR
3703
3704 case RINGBUF_TYPE_TIME_EXTEND:
3705 /* Internal data, OK to advance */
d769041f 3706 rb_advance_reader(cpu_buffer);
7a8e76a3
SR
3707 goto again;
3708
3709 case RINGBUF_TYPE_TIME_STAMP:
3710 /* FIXME: not implemented */
d769041f 3711 rb_advance_reader(cpu_buffer);
7a8e76a3
SR
3712 goto again;
3713
3714 case RINGBUF_TYPE_DATA:
3715 if (ts) {
3716 *ts = cpu_buffer->read_stamp + event->time_delta;
d8eeb2d3 3717 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
37886f6a 3718 cpu_buffer->cpu, ts);
7a8e76a3 3719 }
66a8cb95
SR
3720 if (lost_events)
3721 *lost_events = rb_lost_events(cpu_buffer);
7a8e76a3
SR
3722 return event;
3723
3724 default:
3725 BUG();
3726 }
3727
3728 return NULL;
3729}
c4f50183 3730EXPORT_SYMBOL_GPL(ring_buffer_peek);
7a8e76a3 3731
f83c9d0f
SR
3732static struct ring_buffer_event *
3733rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
7a8e76a3
SR
3734{
3735 struct ring_buffer *buffer;
3736 struct ring_buffer_per_cpu *cpu_buffer;
3737 struct ring_buffer_event *event;
818e3dd3 3738 int nr_loops = 0;
7a8e76a3 3739
7a8e76a3
SR
3740 cpu_buffer = iter->cpu_buffer;
3741 buffer = cpu_buffer->buffer;
3742
492a74f4
SR
3743 /*
3744 * Check if someone performed a consuming read to
3745 * the buffer. A consuming read invalidates the iterator
3746 * and we need to reset the iterator in this case.
3747 */
3748 if (unlikely(iter->cache_read != cpu_buffer->read ||
3749 iter->cache_reader_page != cpu_buffer->reader_page))
3750 rb_iter_reset(iter);
3751
7a8e76a3 3752 again:
3c05d748
SR
3753 if (ring_buffer_iter_empty(iter))
3754 return NULL;
3755
818e3dd3 3756 /*
69d1b839
SR
3757 * We repeat when a time extend is encountered.
3758 * Since the time extend is always attached to a data event,
3759 * we should never loop more than once.
3760 * (We never hit the following condition more than twice).
818e3dd3 3761 */
69d1b839 3762 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
818e3dd3 3763 return NULL;
818e3dd3 3764
7a8e76a3
SR
3765 if (rb_per_cpu_empty(cpu_buffer))
3766 return NULL;
3767
3c05d748
SR
3768 if (iter->head >= local_read(&iter->head_page->page->commit)) {
3769 rb_inc_iter(iter);
3770 goto again;
3771 }
3772
7a8e76a3
SR
3773 event = rb_iter_head_event(iter);
3774
334d4169 3775 switch (event->type_len) {
7a8e76a3 3776 case RINGBUF_TYPE_PADDING:
2d622719
TZ
3777 if (rb_null_event(event)) {
3778 rb_inc_iter(iter);
3779 goto again;
3780 }
3781 rb_advance_iter(iter);
3782 return event;
7a8e76a3
SR
3783
3784 case RINGBUF_TYPE_TIME_EXTEND:
3785 /* Internal data, OK to advance */
3786 rb_advance_iter(iter);
3787 goto again;
3788
3789 case RINGBUF_TYPE_TIME_STAMP:
3790 /* FIXME: not implemented */
3791 rb_advance_iter(iter);
3792 goto again;
3793
3794 case RINGBUF_TYPE_DATA:
3795 if (ts) {
3796 *ts = iter->read_stamp + event->time_delta;
37886f6a
SR
3797 ring_buffer_normalize_time_stamp(buffer,
3798 cpu_buffer->cpu, ts);
7a8e76a3
SR
3799 }
3800 return event;
3801
3802 default:
3803 BUG();
3804 }
3805
3806 return NULL;
3807}
c4f50183 3808EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
7a8e76a3 3809
8d707e8e
SR
3810static inline int rb_ok_to_lock(void)
3811{
3812 /*
3813 * If an NMI die dumps out the content of the ring buffer
3814 * do not grab locks. We also permanently disable the ring
3815 * buffer too. A one time deal is all you get from reading
3816 * the ring buffer from an NMI.
3817 */
464e85eb 3818 if (likely(!in_nmi()))
8d707e8e
SR
3819 return 1;
3820
3821 tracing_off_permanent();
3822 return 0;
3823}
3824
f83c9d0f
SR
3825/**
3826 * ring_buffer_peek - peek at the next event to be read
3827 * @buffer: The ring buffer to read
3828 * @cpu: The cpu to peak at
3829 * @ts: The timestamp counter of this event.
66a8cb95 3830 * @lost_events: a variable to store if events were lost (may be NULL)
f83c9d0f
SR
3831 *
3832 * This will return the event that will be read next, but does
3833 * not consume the data.
3834 */
3835struct ring_buffer_event *
66a8cb95
SR
3836ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3837 unsigned long *lost_events)
f83c9d0f
SR
3838{
3839 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
8aabee57 3840 struct ring_buffer_event *event;
f83c9d0f 3841 unsigned long flags;
8d707e8e 3842 int dolock;
f83c9d0f 3843
554f786e 3844 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3845 return NULL;
554f786e 3846
8d707e8e 3847 dolock = rb_ok_to_lock();
2d622719 3848 again:
8d707e8e
SR
3849 local_irq_save(flags);
3850 if (dolock)
5389f6fa 3851 raw_spin_lock(&cpu_buffer->reader_lock);
66a8cb95 3852 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
469535a5
RR
3853 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3854 rb_advance_reader(cpu_buffer);
8d707e8e 3855 if (dolock)
5389f6fa 3856 raw_spin_unlock(&cpu_buffer->reader_lock);
8d707e8e 3857 local_irq_restore(flags);
f83c9d0f 3858
1b959e18 3859 if (event && event->type_len == RINGBUF_TYPE_PADDING)
2d622719 3860 goto again;
2d622719 3861
f83c9d0f
SR
3862 return event;
3863}
3864
3865/**
3866 * ring_buffer_iter_peek - peek at the next event to be read
3867 * @iter: The ring buffer iterator
3868 * @ts: The timestamp counter of this event.
3869 *
3870 * This will return the event that will be read next, but does
3871 * not increment the iterator.
3872 */
3873struct ring_buffer_event *
3874ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3875{
3876 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3877 struct ring_buffer_event *event;
3878 unsigned long flags;
3879
2d622719 3880 again:
5389f6fa 3881 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
f83c9d0f 3882 event = rb_iter_peek(iter, ts);
5389f6fa 3883 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
f83c9d0f 3884
1b959e18 3885 if (event && event->type_len == RINGBUF_TYPE_PADDING)
2d622719 3886 goto again;
2d622719 3887
f83c9d0f
SR
3888 return event;
3889}
3890
7a8e76a3
SR
3891/**
3892 * ring_buffer_consume - return an event and consume it
3893 * @buffer: The ring buffer to get the next event from
66a8cb95
SR
3894 * @cpu: the cpu to read the buffer from
3895 * @ts: a variable to store the timestamp (may be NULL)
3896 * @lost_events: a variable to store if events were lost (may be NULL)
7a8e76a3
SR
3897 *
3898 * Returns the next event in the ring buffer, and that event is consumed.
3899 * Meaning, that sequential reads will keep returning a different event,
3900 * and eventually empty the ring buffer if the producer is slower.
3901 */
3902struct ring_buffer_event *
66a8cb95
SR
3903ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3904 unsigned long *lost_events)
7a8e76a3 3905{
554f786e
SR
3906 struct ring_buffer_per_cpu *cpu_buffer;
3907 struct ring_buffer_event *event = NULL;
f83c9d0f 3908 unsigned long flags;
8d707e8e
SR
3909 int dolock;
3910
3911 dolock = rb_ok_to_lock();
7a8e76a3 3912
2d622719 3913 again:
554f786e
SR
3914 /* might be called in atomic */
3915 preempt_disable();
3916
9e01c1b7 3917 if (!cpumask_test_cpu(cpu, buffer->cpumask))
554f786e 3918 goto out;
7a8e76a3 3919
554f786e 3920 cpu_buffer = buffer->buffers[cpu];
8d707e8e
SR
3921 local_irq_save(flags);
3922 if (dolock)
5389f6fa 3923 raw_spin_lock(&cpu_buffer->reader_lock);
f83c9d0f 3924
66a8cb95
SR
3925 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3926 if (event) {
3927 cpu_buffer->lost_events = 0;
469535a5 3928 rb_advance_reader(cpu_buffer);
66a8cb95 3929 }
7a8e76a3 3930
8d707e8e 3931 if (dolock)
5389f6fa 3932 raw_spin_unlock(&cpu_buffer->reader_lock);
8d707e8e 3933 local_irq_restore(flags);
f83c9d0f 3934
554f786e
SR
3935 out:
3936 preempt_enable();
3937
1b959e18 3938 if (event && event->type_len == RINGBUF_TYPE_PADDING)
2d622719 3939 goto again;
2d622719 3940
7a8e76a3
SR
3941 return event;
3942}
c4f50183 3943EXPORT_SYMBOL_GPL(ring_buffer_consume);
7a8e76a3
SR
3944
3945/**
72c9ddfd 3946 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
7a8e76a3
SR
3947 * @buffer: The ring buffer to read from
3948 * @cpu: The cpu buffer to iterate over
3949 *
72c9ddfd
DM
3950 * This performs the initial preparations necessary to iterate
3951 * through the buffer. Memory is allocated, buffer recording
3952 * is disabled, and the iterator pointer is returned to the caller.
7a8e76a3 3953 *
72c9ddfd
DM
3954 * Disabling buffer recordng prevents the reading from being
3955 * corrupted. This is not a consuming read, so a producer is not
3956 * expected.
3957 *
3958 * After a sequence of ring_buffer_read_prepare calls, the user is
3959 * expected to make at least one call to ring_buffer_prepare_sync.
3960 * Afterwards, ring_buffer_read_start is invoked to get things going
3961 * for real.
3962 *
3963 * This overall must be paired with ring_buffer_finish.
7a8e76a3
SR
3964 */
3965struct ring_buffer_iter *
72c9ddfd 3966ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
7a8e76a3
SR
3967{
3968 struct ring_buffer_per_cpu *cpu_buffer;
8aabee57 3969 struct ring_buffer_iter *iter;
7a8e76a3 3970
9e01c1b7 3971 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3972 return NULL;
7a8e76a3
SR
3973
3974 iter = kmalloc(sizeof(*iter), GFP_KERNEL);
3975 if (!iter)
8aabee57 3976 return NULL;
7a8e76a3
SR
3977
3978 cpu_buffer = buffer->buffers[cpu];
3979
3980 iter->cpu_buffer = cpu_buffer;
3981
83f40318 3982 atomic_inc(&buffer->resize_disabled);
7a8e76a3 3983 atomic_inc(&cpu_buffer->record_disabled);
72c9ddfd
DM
3984
3985 return iter;
3986}
3987EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
3988
3989/**
3990 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
3991 *
3992 * All previously invoked ring_buffer_read_prepare calls to prepare
3993 * iterators will be synchronized. Afterwards, read_buffer_read_start
3994 * calls on those iterators are allowed.
3995 */
3996void
3997ring_buffer_read_prepare_sync(void)
3998{
7a8e76a3 3999 synchronize_sched();
72c9ddfd
DM
4000}
4001EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4002
4003/**
4004 * ring_buffer_read_start - start a non consuming read of the buffer
4005 * @iter: The iterator returned by ring_buffer_read_prepare
4006 *
4007 * This finalizes the startup of an iteration through the buffer.
4008 * The iterator comes from a call to ring_buffer_read_prepare and
4009 * an intervening ring_buffer_read_prepare_sync must have been
4010 * performed.
4011 *
4012 * Must be paired with ring_buffer_finish.
4013 */
4014void
4015ring_buffer_read_start(struct ring_buffer_iter *iter)
4016{
4017 struct ring_buffer_per_cpu *cpu_buffer;
4018 unsigned long flags;
4019
4020 if (!iter)
4021 return;
4022
4023 cpu_buffer = iter->cpu_buffer;
7a8e76a3 4024
5389f6fa 4025 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
0199c4e6 4026 arch_spin_lock(&cpu_buffer->lock);
642edba5 4027 rb_iter_reset(iter);
0199c4e6 4028 arch_spin_unlock(&cpu_buffer->lock);
5389f6fa 4029 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3 4030}
c4f50183 4031EXPORT_SYMBOL_GPL(ring_buffer_read_start);
7a8e76a3
SR
4032
4033/**
4034 * ring_buffer_finish - finish reading the iterator of the buffer
4035 * @iter: The iterator retrieved by ring_buffer_start
4036 *
4037 * This re-enables the recording to the buffer, and frees the
4038 * iterator.
4039 */
4040void
4041ring_buffer_read_finish(struct ring_buffer_iter *iter)
4042{
4043 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
9366c1ba 4044 unsigned long flags;
7a8e76a3 4045
659f451f
SR
4046 /*
4047 * Ring buffer is disabled from recording, here's a good place
9366c1ba
SR
4048 * to check the integrity of the ring buffer.
4049 * Must prevent readers from trying to read, as the check
4050 * clears the HEAD page and readers require it.
659f451f 4051 */
9366c1ba 4052 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
659f451f 4053 rb_check_pages(cpu_buffer);
9366c1ba 4054 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
659f451f 4055
7a8e76a3 4056 atomic_dec(&cpu_buffer->record_disabled);
83f40318 4057 atomic_dec(&cpu_buffer->buffer->resize_disabled);
7a8e76a3
SR
4058 kfree(iter);
4059}
c4f50183 4060EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
7a8e76a3
SR
4061
4062/**
4063 * ring_buffer_read - read the next item in the ring buffer by the iterator
4064 * @iter: The ring buffer iterator
4065 * @ts: The time stamp of the event read.
4066 *
4067 * This reads the next event in the ring buffer and increments the iterator.
4068 */
4069struct ring_buffer_event *
4070ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
4071{
4072 struct ring_buffer_event *event;
f83c9d0f
SR
4073 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4074 unsigned long flags;
7a8e76a3 4075
5389f6fa 4076 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7e9391cf 4077 again:
f83c9d0f 4078 event = rb_iter_peek(iter, ts);
7a8e76a3 4079 if (!event)
f83c9d0f 4080 goto out;
7a8e76a3 4081
7e9391cf
SR
4082 if (event->type_len == RINGBUF_TYPE_PADDING)
4083 goto again;
4084
7a8e76a3 4085 rb_advance_iter(iter);
f83c9d0f 4086 out:
5389f6fa 4087 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3
SR
4088
4089 return event;
4090}
c4f50183 4091EXPORT_SYMBOL_GPL(ring_buffer_read);
7a8e76a3
SR
4092
4093/**
4094 * ring_buffer_size - return the size of the ring buffer (in bytes)
4095 * @buffer: The ring buffer.
4096 */
438ced17 4097unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
7a8e76a3 4098{
438ced17
VN
4099 /*
4100 * Earlier, this method returned
4101 * BUF_PAGE_SIZE * buffer->nr_pages
4102 * Since the nr_pages field is now removed, we have converted this to
4103 * return the per cpu buffer value.
4104 */
4105 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4106 return 0;
4107
4108 return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
7a8e76a3 4109}
c4f50183 4110EXPORT_SYMBOL_GPL(ring_buffer_size);
7a8e76a3
SR
4111
4112static void
4113rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4114{
77ae365e
SR
4115 rb_head_page_deactivate(cpu_buffer);
4116
7a8e76a3 4117 cpu_buffer->head_page
3adc54fa 4118 = list_entry(cpu_buffer->pages, struct buffer_page, list);
bf41a158 4119 local_set(&cpu_buffer->head_page->write, 0);
778c55d4 4120 local_set(&cpu_buffer->head_page->entries, 0);
abc9b56d 4121 local_set(&cpu_buffer->head_page->page->commit, 0);
d769041f 4122
6f807acd 4123 cpu_buffer->head_page->read = 0;
bf41a158
SR
4124
4125 cpu_buffer->tail_page = cpu_buffer->head_page;
4126 cpu_buffer->commit_page = cpu_buffer->head_page;
4127
4128 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
5040b4b7 4129 INIT_LIST_HEAD(&cpu_buffer->new_pages);
bf41a158 4130 local_set(&cpu_buffer->reader_page->write, 0);
778c55d4 4131 local_set(&cpu_buffer->reader_page->entries, 0);
abc9b56d 4132 local_set(&cpu_buffer->reader_page->page->commit, 0);
6f807acd 4133 cpu_buffer->reader_page->read = 0;
7a8e76a3 4134
c64e148a 4135 local_set(&cpu_buffer->entries_bytes, 0);
77ae365e 4136 local_set(&cpu_buffer->overrun, 0);
884bfe89
SP
4137 local_set(&cpu_buffer->commit_overrun, 0);
4138 local_set(&cpu_buffer->dropped_events, 0);
e4906eff 4139 local_set(&cpu_buffer->entries, 0);
fa743953
SR
4140 local_set(&cpu_buffer->committing, 0);
4141 local_set(&cpu_buffer->commits, 0);
77ae365e 4142 cpu_buffer->read = 0;
c64e148a 4143 cpu_buffer->read_bytes = 0;
69507c06
SR
4144
4145 cpu_buffer->write_stamp = 0;
4146 cpu_buffer->read_stamp = 0;
77ae365e 4147
66a8cb95
SR
4148 cpu_buffer->lost_events = 0;
4149 cpu_buffer->last_overrun = 0;
4150
77ae365e 4151 rb_head_page_activate(cpu_buffer);
7a8e76a3
SR
4152}
4153
4154/**
4155 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4156 * @buffer: The ring buffer to reset a per cpu buffer of
4157 * @cpu: The CPU buffer to be reset
4158 */
4159void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
4160{
4161 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4162 unsigned long flags;
4163
9e01c1b7 4164 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 4165 return;
7a8e76a3 4166
83f40318 4167 atomic_inc(&buffer->resize_disabled);
41ede23e
SR
4168 atomic_inc(&cpu_buffer->record_disabled);
4169
83f40318
VN
4170 /* Make sure all commits have finished */
4171 synchronize_sched();
4172
5389f6fa 4173 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
f83c9d0f 4174
41b6a95d
SR
4175 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4176 goto out;
4177
0199c4e6 4178 arch_spin_lock(&cpu_buffer->lock);
7a8e76a3
SR
4179
4180 rb_reset_cpu(cpu_buffer);
4181
0199c4e6 4182 arch_spin_unlock(&cpu_buffer->lock);
f83c9d0f 4183
41b6a95d 4184 out:
5389f6fa 4185 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
41ede23e
SR
4186
4187 atomic_dec(&cpu_buffer->record_disabled);
83f40318 4188 atomic_dec(&buffer->resize_disabled);
7a8e76a3 4189}
c4f50183 4190EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
7a8e76a3
SR
4191
4192/**
4193 * ring_buffer_reset - reset a ring buffer
4194 * @buffer: The ring buffer to reset all cpu buffers
4195 */
4196void ring_buffer_reset(struct ring_buffer *buffer)
4197{
7a8e76a3
SR
4198 int cpu;
4199
7a8e76a3 4200 for_each_buffer_cpu(buffer, cpu)
d769041f 4201 ring_buffer_reset_cpu(buffer, cpu);
7a8e76a3 4202}
c4f50183 4203EXPORT_SYMBOL_GPL(ring_buffer_reset);
7a8e76a3
SR
4204
4205/**
4206 * rind_buffer_empty - is the ring buffer empty?
4207 * @buffer: The ring buffer to test
4208 */
4209int ring_buffer_empty(struct ring_buffer *buffer)
4210{
4211 struct ring_buffer_per_cpu *cpu_buffer;
d4788207 4212 unsigned long flags;
8d707e8e 4213 int dolock;
7a8e76a3 4214 int cpu;
d4788207 4215 int ret;
7a8e76a3 4216
8d707e8e 4217 dolock = rb_ok_to_lock();
7a8e76a3
SR
4218
4219 /* yes this is racy, but if you don't like the race, lock the buffer */
4220 for_each_buffer_cpu(buffer, cpu) {
4221 cpu_buffer = buffer->buffers[cpu];
8d707e8e
SR
4222 local_irq_save(flags);
4223 if (dolock)
5389f6fa 4224 raw_spin_lock(&cpu_buffer->reader_lock);
d4788207 4225 ret = rb_per_cpu_empty(cpu_buffer);
8d707e8e 4226 if (dolock)
5389f6fa 4227 raw_spin_unlock(&cpu_buffer->reader_lock);
8d707e8e
SR
4228 local_irq_restore(flags);
4229
d4788207 4230 if (!ret)
7a8e76a3
SR
4231 return 0;
4232 }
554f786e 4233
7a8e76a3
SR
4234 return 1;
4235}
c4f50183 4236EXPORT_SYMBOL_GPL(ring_buffer_empty);
7a8e76a3
SR
4237
4238/**
4239 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4240 * @buffer: The ring buffer
4241 * @cpu: The CPU buffer to test
4242 */
4243int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
4244{
4245 struct ring_buffer_per_cpu *cpu_buffer;
d4788207 4246 unsigned long flags;
8d707e8e 4247 int dolock;
8aabee57 4248 int ret;
7a8e76a3 4249
9e01c1b7 4250 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 4251 return 1;
7a8e76a3 4252
8d707e8e
SR
4253 dolock = rb_ok_to_lock();
4254
7a8e76a3 4255 cpu_buffer = buffer->buffers[cpu];
8d707e8e
SR
4256 local_irq_save(flags);
4257 if (dolock)
5389f6fa 4258 raw_spin_lock(&cpu_buffer->reader_lock);
554f786e 4259 ret = rb_per_cpu_empty(cpu_buffer);
8d707e8e 4260 if (dolock)
5389f6fa 4261 raw_spin_unlock(&cpu_buffer->reader_lock);
8d707e8e 4262 local_irq_restore(flags);
554f786e
SR
4263
4264 return ret;
7a8e76a3 4265}
c4f50183 4266EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
7a8e76a3 4267
85bac32c 4268#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
7a8e76a3
SR
4269/**
4270 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4271 * @buffer_a: One buffer to swap with
4272 * @buffer_b: The other buffer to swap with
4273 *
4274 * This function is useful for tracers that want to take a "snapshot"
4275 * of a CPU buffer and has another back up buffer lying around.
4276 * it is expected that the tracer handles the cpu buffer not being
4277 * used at the moment.
4278 */
4279int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4280 struct ring_buffer *buffer_b, int cpu)
4281{
4282 struct ring_buffer_per_cpu *cpu_buffer_a;
4283 struct ring_buffer_per_cpu *cpu_buffer_b;
554f786e
SR
4284 int ret = -EINVAL;
4285
9e01c1b7
RR
4286 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4287 !cpumask_test_cpu(cpu, buffer_b->cpumask))
554f786e 4288 goto out;
7a8e76a3 4289
438ced17
VN
4290 cpu_buffer_a = buffer_a->buffers[cpu];
4291 cpu_buffer_b = buffer_b->buffers[cpu];
4292
7a8e76a3 4293 /* At least make sure the two buffers are somewhat the same */
438ced17 4294 if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
554f786e
SR
4295 goto out;
4296
4297 ret = -EAGAIN;
7a8e76a3 4298
97b17efe 4299 if (ring_buffer_flags != RB_BUFFERS_ON)
554f786e 4300 goto out;
97b17efe
SR
4301
4302 if (atomic_read(&buffer_a->record_disabled))
554f786e 4303 goto out;
97b17efe
SR
4304
4305 if (atomic_read(&buffer_b->record_disabled))
554f786e 4306 goto out;
97b17efe 4307
97b17efe 4308 if (atomic_read(&cpu_buffer_a->record_disabled))
554f786e 4309 goto out;
97b17efe
SR
4310
4311 if (atomic_read(&cpu_buffer_b->record_disabled))
554f786e 4312 goto out;
97b17efe 4313
7a8e76a3
SR
4314 /*
4315 * We can't do a synchronize_sched here because this
4316 * function can be called in atomic context.
4317 * Normally this will be called from the same CPU as cpu.
4318 * If not it's up to the caller to protect this.
4319 */
4320 atomic_inc(&cpu_buffer_a->record_disabled);
4321 atomic_inc(&cpu_buffer_b->record_disabled);
4322
98277991
SR
4323 ret = -EBUSY;
4324 if (local_read(&cpu_buffer_a->committing))
4325 goto out_dec;
4326 if (local_read(&cpu_buffer_b->committing))
4327 goto out_dec;
4328
7a8e76a3
SR
4329 buffer_a->buffers[cpu] = cpu_buffer_b;
4330 buffer_b->buffers[cpu] = cpu_buffer_a;
4331
4332 cpu_buffer_b->buffer = buffer_a;
4333 cpu_buffer_a->buffer = buffer_b;
4334
98277991
SR
4335 ret = 0;
4336
4337out_dec:
7a8e76a3
SR
4338 atomic_dec(&cpu_buffer_a->record_disabled);
4339 atomic_dec(&cpu_buffer_b->record_disabled);
554f786e 4340out:
554f786e 4341 return ret;
7a8e76a3 4342}
c4f50183 4343EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
85bac32c 4344#endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
7a8e76a3 4345
8789a9e7
SR
4346/**
4347 * ring_buffer_alloc_read_page - allocate a page to read from buffer
4348 * @buffer: the buffer to allocate for.
4349 *
4350 * This function is used in conjunction with ring_buffer_read_page.
4351 * When reading a full page from the ring buffer, these functions
4352 * can be used to speed up the process. The calling function should
4353 * allocate a few pages first with this function. Then when it
4354 * needs to get pages from the ring buffer, it passes the result
4355 * of this function into ring_buffer_read_page, which will swap
4356 * the page that was allocated, with the read page of the buffer.
4357 *
4358 * Returns:
4359 * The page allocated, or NULL on error.
4360 */
7ea59064 4361void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
8789a9e7 4362{
044fa782 4363 struct buffer_data_page *bpage;
7ea59064 4364 struct page *page;
8789a9e7 4365
d7ec4bfe
VN
4366 page = alloc_pages_node(cpu_to_node(cpu),
4367 GFP_KERNEL | __GFP_NORETRY, 0);
7ea59064 4368 if (!page)
8789a9e7
SR
4369 return NULL;
4370
7ea59064 4371 bpage = page_address(page);
8789a9e7 4372
ef7a4a16
SR
4373 rb_init_page(bpage);
4374
044fa782 4375 return bpage;
8789a9e7 4376}
d6ce96da 4377EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
8789a9e7
SR
4378
4379/**
4380 * ring_buffer_free_read_page - free an allocated read page
4381 * @buffer: the buffer the page was allocate for
4382 * @data: the page to free
4383 *
4384 * Free a page allocated from ring_buffer_alloc_read_page.
4385 */
4386void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
4387{
4388 free_page((unsigned long)data);
4389}
d6ce96da 4390EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
8789a9e7
SR
4391
4392/**
4393 * ring_buffer_read_page - extract a page from the ring buffer
4394 * @buffer: buffer to extract from
4395 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
ef7a4a16 4396 * @len: amount to extract
8789a9e7
SR
4397 * @cpu: the cpu of the buffer to extract
4398 * @full: should the extraction only happen when the page is full.
4399 *
4400 * This function will pull out a page from the ring buffer and consume it.
4401 * @data_page must be the address of the variable that was returned
4402 * from ring_buffer_alloc_read_page. This is because the page might be used
4403 * to swap with a page in the ring buffer.
4404 *
4405 * for example:
b85fa01e 4406 * rpage = ring_buffer_alloc_read_page(buffer);
8789a9e7
SR
4407 * if (!rpage)
4408 * return error;
ef7a4a16 4409 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
667d2412
LJ
4410 * if (ret >= 0)
4411 * process_page(rpage, ret);
8789a9e7
SR
4412 *
4413 * When @full is set, the function will not return true unless
4414 * the writer is off the reader page.
4415 *
4416 * Note: it is up to the calling functions to handle sleeps and wakeups.
4417 * The ring buffer can be used anywhere in the kernel and can not
4418 * blindly call wake_up. The layer that uses the ring buffer must be
4419 * responsible for that.
4420 *
4421 * Returns:
667d2412
LJ
4422 * >=0 if data has been transferred, returns the offset of consumed data.
4423 * <0 if no data has been transferred.
8789a9e7
SR
4424 */
4425int ring_buffer_read_page(struct ring_buffer *buffer,
ef7a4a16 4426 void **data_page, size_t len, int cpu, int full)
8789a9e7
SR
4427{
4428 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4429 struct ring_buffer_event *event;
044fa782 4430 struct buffer_data_page *bpage;
ef7a4a16 4431 struct buffer_page *reader;
ff0ff84a 4432 unsigned long missed_events;
8789a9e7 4433 unsigned long flags;
ef7a4a16 4434 unsigned int commit;
667d2412 4435 unsigned int read;
4f3640f8 4436 u64 save_timestamp;
667d2412 4437 int ret = -1;
8789a9e7 4438
554f786e
SR
4439 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4440 goto out;
4441
474d32b6
SR
4442 /*
4443 * If len is not big enough to hold the page header, then
4444 * we can not copy anything.
4445 */
4446 if (len <= BUF_PAGE_HDR_SIZE)
554f786e 4447 goto out;
474d32b6
SR
4448
4449 len -= BUF_PAGE_HDR_SIZE;
4450
8789a9e7 4451 if (!data_page)
554f786e 4452 goto out;
8789a9e7 4453
044fa782
SR
4454 bpage = *data_page;
4455 if (!bpage)
554f786e 4456 goto out;
8789a9e7 4457
5389f6fa 4458 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
8789a9e7 4459
ef7a4a16
SR
4460 reader = rb_get_reader_page(cpu_buffer);
4461 if (!reader)
554f786e 4462 goto out_unlock;
8789a9e7 4463
ef7a4a16
SR
4464 event = rb_reader_event(cpu_buffer);
4465
4466 read = reader->read;
4467 commit = rb_page_commit(reader);
667d2412 4468
66a8cb95 4469 /* Check if any events were dropped */
ff0ff84a 4470 missed_events = cpu_buffer->lost_events;
66a8cb95 4471
8789a9e7 4472 /*
474d32b6
SR
4473 * If this page has been partially read or
4474 * if len is not big enough to read the rest of the page or
4475 * a writer is still on the page, then
4476 * we must copy the data from the page to the buffer.
4477 * Otherwise, we can simply swap the page with the one passed in.
8789a9e7 4478 */
474d32b6 4479 if (read || (len < (commit - read)) ||
ef7a4a16 4480 cpu_buffer->reader_page == cpu_buffer->commit_page) {
667d2412 4481 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
474d32b6
SR
4482 unsigned int rpos = read;
4483 unsigned int pos = 0;
ef7a4a16 4484 unsigned int size;
8789a9e7
SR
4485
4486 if (full)
554f786e 4487 goto out_unlock;
8789a9e7 4488
ef7a4a16
SR
4489 if (len > (commit - read))
4490 len = (commit - read);
4491
69d1b839
SR
4492 /* Always keep the time extend and data together */
4493 size = rb_event_ts_length(event);
ef7a4a16
SR
4494
4495 if (len < size)
554f786e 4496 goto out_unlock;
ef7a4a16 4497
4f3640f8
SR
4498 /* save the current timestamp, since the user will need it */
4499 save_timestamp = cpu_buffer->read_stamp;
4500
ef7a4a16
SR
4501 /* Need to copy one event at a time */
4502 do {
e1e35927
DS
4503 /* We need the size of one event, because
4504 * rb_advance_reader only advances by one event,
4505 * whereas rb_event_ts_length may include the size of
4506 * one or two events.
4507 * We have already ensured there's enough space if this
4508 * is a time extend. */
4509 size = rb_event_length(event);
474d32b6 4510 memcpy(bpage->data + pos, rpage->data + rpos, size);
ef7a4a16
SR
4511
4512 len -= size;
4513
4514 rb_advance_reader(cpu_buffer);
474d32b6
SR
4515 rpos = reader->read;
4516 pos += size;
ef7a4a16 4517
18fab912
HY
4518 if (rpos >= commit)
4519 break;
4520
ef7a4a16 4521 event = rb_reader_event(cpu_buffer);
69d1b839
SR
4522 /* Always keep the time extend and data together */
4523 size = rb_event_ts_length(event);
e1e35927 4524 } while (len >= size);
667d2412
LJ
4525
4526 /* update bpage */
ef7a4a16 4527 local_set(&bpage->commit, pos);
4f3640f8 4528 bpage->time_stamp = save_timestamp;
ef7a4a16 4529
474d32b6
SR
4530 /* we copied everything to the beginning */
4531 read = 0;
8789a9e7 4532 } else {
afbab76a 4533 /* update the entry counter */
77ae365e 4534 cpu_buffer->read += rb_page_entries(reader);
c64e148a 4535 cpu_buffer->read_bytes += BUF_PAGE_SIZE;
afbab76a 4536
8789a9e7 4537 /* swap the pages */
044fa782 4538 rb_init_page(bpage);
ef7a4a16
SR
4539 bpage = reader->page;
4540 reader->page = *data_page;
4541 local_set(&reader->write, 0);
778c55d4 4542 local_set(&reader->entries, 0);
ef7a4a16 4543 reader->read = 0;
044fa782 4544 *data_page = bpage;
ff0ff84a
SR
4545
4546 /*
4547 * Use the real_end for the data size,
4548 * This gives us a chance to store the lost events
4549 * on the page.
4550 */
4551 if (reader->real_end)
4552 local_set(&bpage->commit, reader->real_end);
8789a9e7 4553 }
667d2412 4554 ret = read;
8789a9e7 4555
66a8cb95 4556 cpu_buffer->lost_events = 0;
2711ca23
SR
4557
4558 commit = local_read(&bpage->commit);
66a8cb95
SR
4559 /*
4560 * Set a flag in the commit field if we lost events
4561 */
ff0ff84a 4562 if (missed_events) {
ff0ff84a
SR
4563 /* If there is room at the end of the page to save the
4564 * missed events, then record it there.
4565 */
4566 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4567 memcpy(&bpage->data[commit], &missed_events,
4568 sizeof(missed_events));
4569 local_add(RB_MISSED_STORED, &bpage->commit);
2711ca23 4570 commit += sizeof(missed_events);
ff0ff84a 4571 }
66a8cb95 4572 local_add(RB_MISSED_EVENTS, &bpage->commit);
ff0ff84a 4573 }
66a8cb95 4574
2711ca23
SR
4575 /*
4576 * This page may be off to user land. Zero it out here.
4577 */
4578 if (commit < BUF_PAGE_SIZE)
4579 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4580
554f786e 4581 out_unlock:
5389f6fa 4582 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
8789a9e7 4583
554f786e 4584 out:
8789a9e7
SR
4585 return ret;
4586}
d6ce96da 4587EXPORT_SYMBOL_GPL(ring_buffer_read_page);
8789a9e7 4588
59222efe 4589#ifdef CONFIG_HOTPLUG_CPU
09c9e84d
FW
4590static int rb_cpu_notify(struct notifier_block *self,
4591 unsigned long action, void *hcpu)
554f786e
SR
4592{
4593 struct ring_buffer *buffer =
4594 container_of(self, struct ring_buffer, cpu_notify);
4595 long cpu = (long)hcpu;
438ced17
VN
4596 int cpu_i, nr_pages_same;
4597 unsigned int nr_pages;
554f786e
SR
4598
4599 switch (action) {
4600 case CPU_UP_PREPARE:
4601 case CPU_UP_PREPARE_FROZEN:
3f237a79 4602 if (cpumask_test_cpu(cpu, buffer->cpumask))
554f786e
SR
4603 return NOTIFY_OK;
4604
438ced17
VN
4605 nr_pages = 0;
4606 nr_pages_same = 1;
4607 /* check if all cpu sizes are same */
4608 for_each_buffer_cpu(buffer, cpu_i) {
4609 /* fill in the size from first enabled cpu */
4610 if (nr_pages == 0)
4611 nr_pages = buffer->buffers[cpu_i]->nr_pages;
4612 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4613 nr_pages_same = 0;
4614 break;
4615 }
4616 }
4617 /* allocate minimum pages, user can later expand it */
4618 if (!nr_pages_same)
4619 nr_pages = 2;
554f786e 4620 buffer->buffers[cpu] =
438ced17 4621 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
554f786e
SR
4622 if (!buffer->buffers[cpu]) {
4623 WARN(1, "failed to allocate ring buffer on CPU %ld\n",
4624 cpu);
4625 return NOTIFY_OK;
4626 }
4627 smp_wmb();
3f237a79 4628 cpumask_set_cpu(cpu, buffer->cpumask);
554f786e
SR
4629 break;
4630 case CPU_DOWN_PREPARE:
4631 case CPU_DOWN_PREPARE_FROZEN:
4632 /*
4633 * Do nothing.
4634 * If we were to free the buffer, then the user would
4635 * lose any trace that was in the buffer.
4636 */
4637 break;
4638 default:
4639 break;
4640 }
4641 return NOTIFY_OK;
4642}
4643#endif
6c43e554
SRRH
4644
4645#ifdef CONFIG_RING_BUFFER_STARTUP_TEST
4646/*
4647 * This is a basic integrity check of the ring buffer.
4648 * Late in the boot cycle this test will run when configured in.
4649 * It will kick off a thread per CPU that will go into a loop
4650 * writing to the per cpu ring buffer various sizes of data.
4651 * Some of the data will be large items, some small.
4652 *
4653 * Another thread is created that goes into a spin, sending out
4654 * IPIs to the other CPUs to also write into the ring buffer.
4655 * this is to test the nesting ability of the buffer.
4656 *
4657 * Basic stats are recorded and reported. If something in the
4658 * ring buffer should happen that's not expected, a big warning
4659 * is displayed and all ring buffers are disabled.
4660 */
4661static struct task_struct *rb_threads[NR_CPUS] __initdata;
4662
4663struct rb_test_data {
4664 struct ring_buffer *buffer;
4665 unsigned long events;
4666 unsigned long bytes_written;
4667 unsigned long bytes_alloc;
4668 unsigned long bytes_dropped;
4669 unsigned long events_nested;
4670 unsigned long bytes_written_nested;
4671 unsigned long bytes_alloc_nested;
4672 unsigned long bytes_dropped_nested;
4673 int min_size_nested;
4674 int max_size_nested;
4675 int max_size;
4676 int min_size;
4677 int cpu;
4678 int cnt;
4679};
4680
4681static struct rb_test_data rb_data[NR_CPUS] __initdata;
4682
4683/* 1 meg per cpu */
4684#define RB_TEST_BUFFER_SIZE 1048576
4685
4686static char rb_string[] __initdata =
4687 "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
4688 "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
4689 "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
4690
4691static bool rb_test_started __initdata;
4692
4693struct rb_item {
4694 int size;
4695 char str[];
4696};
4697
4698static __init int rb_write_something(struct rb_test_data *data, bool nested)
4699{
4700 struct ring_buffer_event *event;
4701 struct rb_item *item;
4702 bool started;
4703 int event_len;
4704 int size;
4705 int len;
4706 int cnt;
4707
4708 /* Have nested writes different that what is written */
4709 cnt = data->cnt + (nested ? 27 : 0);
4710
4711 /* Multiply cnt by ~e, to make some unique increment */
4712 size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1);
4713
4714 len = size + sizeof(struct rb_item);
4715
4716 started = rb_test_started;
4717 /* read rb_test_started before checking buffer enabled */
4718 smp_rmb();
4719
4720 event = ring_buffer_lock_reserve(data->buffer, len);
4721 if (!event) {
4722 /* Ignore dropped events before test starts. */
4723 if (started) {
4724 if (nested)
4725 data->bytes_dropped += len;
4726 else
4727 data->bytes_dropped_nested += len;
4728 }
4729 return len;
4730 }
4731
4732 event_len = ring_buffer_event_length(event);
4733
4734 if (RB_WARN_ON(data->buffer, event_len < len))
4735 goto out;
4736
4737 item = ring_buffer_event_data(event);
4738 item->size = size;
4739 memcpy(item->str, rb_string, size);
4740
4741 if (nested) {
4742 data->bytes_alloc_nested += event_len;
4743 data->bytes_written_nested += len;
4744 data->events_nested++;
4745 if (!data->min_size_nested || len < data->min_size_nested)
4746 data->min_size_nested = len;
4747 if (len > data->max_size_nested)
4748 data->max_size_nested = len;
4749 } else {
4750 data->bytes_alloc += event_len;
4751 data->bytes_written += len;
4752 data->events++;
4753 if (!data->min_size || len < data->min_size)
4754 data->max_size = len;
4755 if (len > data->max_size)
4756 data->max_size = len;
4757 }
4758
4759 out:
4760 ring_buffer_unlock_commit(data->buffer, event);
4761
4762 return 0;
4763}
4764
4765static __init int rb_test(void *arg)
4766{
4767 struct rb_test_data *data = arg;
4768
4769 while (!kthread_should_stop()) {
4770 rb_write_something(data, false);
4771 data->cnt++;
4772
4773 set_current_state(TASK_INTERRUPTIBLE);
4774 /* Now sleep between a min of 100-300us and a max of 1ms */
4775 usleep_range(((data->cnt % 3) + 1) * 100, 1000);
4776 }
4777
4778 return 0;
4779}
4780
4781static __init void rb_ipi(void *ignore)
4782{
4783 struct rb_test_data *data;
4784 int cpu = smp_processor_id();
4785
4786 data = &rb_data[cpu];
4787 rb_write_something(data, true);
4788}
4789
4790static __init int rb_hammer_test(void *arg)
4791{
4792 while (!kthread_should_stop()) {
4793
4794 /* Send an IPI to all cpus to write data! */
4795 smp_call_function(rb_ipi, NULL, 1);
4796 /* No sleep, but for non preempt, let others run */
4797 schedule();
4798 }
4799
4800 return 0;
4801}
4802
4803static __init int test_ringbuffer(void)
4804{
4805 struct task_struct *rb_hammer;
4806 struct ring_buffer *buffer;
4807 int cpu;
4808 int ret = 0;
4809
4810 pr_info("Running ring buffer tests...\n");
4811
4812 buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
4813 if (WARN_ON(!buffer))
4814 return 0;
4815
4816 /* Disable buffer so that threads can't write to it yet */
4817 ring_buffer_record_off(buffer);
4818
4819 for_each_online_cpu(cpu) {
4820 rb_data[cpu].buffer = buffer;
4821 rb_data[cpu].cpu = cpu;
4822 rb_data[cpu].cnt = cpu;
4823 rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
4824 "rbtester/%d", cpu);
4825 if (WARN_ON(!rb_threads[cpu])) {
4826 pr_cont("FAILED\n");
4827 ret = -1;
4828 goto out_free;
4829 }
4830
4831 kthread_bind(rb_threads[cpu], cpu);
4832 wake_up_process(rb_threads[cpu]);
4833 }
4834
4835 /* Now create the rb hammer! */
4836 rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
4837 if (WARN_ON(!rb_hammer)) {
4838 pr_cont("FAILED\n");
4839 ret = -1;
4840 goto out_free;
4841 }
4842
4843 ring_buffer_record_on(buffer);
4844 /*
4845 * Show buffer is enabled before setting rb_test_started.
4846 * Yes there's a small race window where events could be
4847 * dropped and the thread wont catch it. But when a ring
4848 * buffer gets enabled, there will always be some kind of
4849 * delay before other CPUs see it. Thus, we don't care about
4850 * those dropped events. We care about events dropped after
4851 * the threads see that the buffer is active.
4852 */
4853 smp_wmb();
4854 rb_test_started = true;
4855
4856 set_current_state(TASK_INTERRUPTIBLE);
4857 /* Just run for 10 seconds */;
4858 schedule_timeout(10 * HZ);
4859
4860 kthread_stop(rb_hammer);
4861
4862 out_free:
4863 for_each_online_cpu(cpu) {
4864 if (!rb_threads[cpu])
4865 break;
4866 kthread_stop(rb_threads[cpu]);
4867 }
4868 if (ret) {
4869 ring_buffer_free(buffer);
4870 return ret;
4871 }
4872
4873 /* Report! */
4874 pr_info("finished\n");
4875 for_each_online_cpu(cpu) {
4876 struct ring_buffer_event *event;
4877 struct rb_test_data *data = &rb_data[cpu];
4878 struct rb_item *item;
4879 unsigned long total_events;
4880 unsigned long total_dropped;
4881 unsigned long total_written;
4882 unsigned long total_alloc;
4883 unsigned long total_read = 0;
4884 unsigned long total_size = 0;
4885 unsigned long total_len = 0;
4886 unsigned long total_lost = 0;
4887 unsigned long lost;
4888 int big_event_size;
4889 int small_event_size;
4890
4891 ret = -1;
4892
4893 total_events = data->events + data->events_nested;
4894 total_written = data->bytes_written + data->bytes_written_nested;
4895 total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
4896 total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
4897
4898 big_event_size = data->max_size + data->max_size_nested;
4899 small_event_size = data->min_size + data->min_size_nested;
4900
4901 pr_info("CPU %d:\n", cpu);
4902 pr_info(" events: %ld\n", total_events);
4903 pr_info(" dropped bytes: %ld\n", total_dropped);
4904 pr_info(" alloced bytes: %ld\n", total_alloc);
4905 pr_info(" written bytes: %ld\n", total_written);
4906 pr_info(" biggest event: %d\n", big_event_size);
4907 pr_info(" smallest event: %d\n", small_event_size);
4908
4909 if (RB_WARN_ON(buffer, total_dropped))
4910 break;
4911
4912 ret = 0;
4913
4914 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
4915 total_lost += lost;
4916 item = ring_buffer_event_data(event);
4917 total_len += ring_buffer_event_length(event);
4918 total_size += item->size + sizeof(struct rb_item);
4919 if (memcmp(&item->str[0], rb_string, item->size) != 0) {
4920 pr_info("FAILED!\n");
4921 pr_info("buffer had: %.*s\n", item->size, item->str);
4922 pr_info("expected: %.*s\n", item->size, rb_string);
4923 RB_WARN_ON(buffer, 1);
4924 ret = -1;
4925 break;
4926 }
4927 total_read++;
4928 }
4929 if (ret)
4930 break;
4931
4932 ret = -1;
4933
4934 pr_info(" read events: %ld\n", total_read);
4935 pr_info(" lost events: %ld\n", total_lost);
4936 pr_info(" total events: %ld\n", total_lost + total_read);
4937 pr_info(" recorded len bytes: %ld\n", total_len);
4938 pr_info(" recorded size bytes: %ld\n", total_size);
4939 if (total_lost)
4940 pr_info(" With dropped events, record len and size may not match\n"
4941 " alloced and written from above\n");
4942 if (!total_lost) {
4943 if (RB_WARN_ON(buffer, total_len != total_alloc ||
4944 total_size != total_written))
4945 break;
4946 }
4947 if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
4948 break;
4949
4950 ret = 0;
4951 }
4952 if (!ret)
4953 pr_info("Ring buffer PASSED!\n");
4954
4955 ring_buffer_free(buffer);
4956 return 0;
4957}
4958
4959late_initcall(test_ringbuffer);
4960#endif /* CONFIG_RING_BUFFER_STARTUP_TEST */