ring-buffer: Fix polling on trace_pipe
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / trace / ring_buffer.c
CommitLineData
7a8e76a3
SR
1/*
2 * Generic ring buffer
3 *
4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5 */
0b07436d 6#include <linux/ftrace_event.h>
7a8e76a3 7#include <linux/ring_buffer.h>
14131f2f 8#include <linux/trace_clock.h>
0b07436d 9#include <linux/trace_seq.h>
7a8e76a3 10#include <linux/spinlock.h>
15693458 11#include <linux/irq_work.h>
7a8e76a3
SR
12#include <linux/debugfs.h>
13#include <linux/uaccess.h>
a81bd80a 14#include <linux/hardirq.h>
6c43e554 15#include <linux/kthread.h> /* for self test */
1744a21d 16#include <linux/kmemcheck.h>
7a8e76a3
SR
17#include <linux/module.h>
18#include <linux/percpu.h>
19#include <linux/mutex.h>
6c43e554 20#include <linux/delay.h>
5a0e3ad6 21#include <linux/slab.h>
7a8e76a3
SR
22#include <linux/init.h>
23#include <linux/hash.h>
24#include <linux/list.h>
554f786e 25#include <linux/cpu.h>
7a8e76a3
SR
26#include <linux/fs.h>
27
79615760 28#include <asm/local.h>
182e9f5f 29
83f40318
VN
30static void update_pages_handler(struct work_struct *work);
31
d1b182a8
SR
32/*
33 * The ring buffer header is special. We must manually up keep it.
34 */
35int ring_buffer_print_entry_header(struct trace_seq *s)
36{
37 int ret;
38
334d4169
LJ
39 ret = trace_seq_printf(s, "# compressed entry header\n");
40 ret = trace_seq_printf(s, "\ttype_len : 5 bits\n");
d1b182a8
SR
41 ret = trace_seq_printf(s, "\ttime_delta : 27 bits\n");
42 ret = trace_seq_printf(s, "\tarray : 32 bits\n");
43 ret = trace_seq_printf(s, "\n");
44 ret = trace_seq_printf(s, "\tpadding : type == %d\n",
45 RINGBUF_TYPE_PADDING);
46 ret = trace_seq_printf(s, "\ttime_extend : type == %d\n",
47 RINGBUF_TYPE_TIME_EXTEND);
334d4169
LJ
48 ret = trace_seq_printf(s, "\tdata max type_len == %d\n",
49 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
d1b182a8
SR
50
51 return ret;
52}
53
5cc98548
SR
54/*
55 * The ring buffer is made up of a list of pages. A separate list of pages is
56 * allocated for each CPU. A writer may only write to a buffer that is
57 * associated with the CPU it is currently executing on. A reader may read
58 * from any per cpu buffer.
59 *
60 * The reader is special. For each per cpu buffer, the reader has its own
61 * reader page. When a reader has read the entire reader page, this reader
62 * page is swapped with another page in the ring buffer.
63 *
64 * Now, as long as the writer is off the reader page, the reader can do what
65 * ever it wants with that page. The writer will never write to that page
66 * again (as long as it is out of the ring buffer).
67 *
68 * Here's some silly ASCII art.
69 *
70 * +------+
71 * |reader| RING BUFFER
72 * |page |
73 * +------+ +---+ +---+ +---+
74 * | |-->| |-->| |
75 * +---+ +---+ +---+
76 * ^ |
77 * | |
78 * +---------------+
79 *
80 *
81 * +------+
82 * |reader| RING BUFFER
83 * |page |------------------v
84 * +------+ +---+ +---+ +---+
85 * | |-->| |-->| |
86 * +---+ +---+ +---+
87 * ^ |
88 * | |
89 * +---------------+
90 *
91 *
92 * +------+
93 * |reader| RING BUFFER
94 * |page |------------------v
95 * +------+ +---+ +---+ +---+
96 * ^ | |-->| |-->| |
97 * | +---+ +---+ +---+
98 * | |
99 * | |
100 * +------------------------------+
101 *
102 *
103 * +------+
104 * |buffer| RING BUFFER
105 * |page |------------------v
106 * +------+ +---+ +---+ +---+
107 * ^ | | | |-->| |
108 * | New +---+ +---+ +---+
109 * | Reader------^ |
110 * | page |
111 * +------------------------------+
112 *
113 *
114 * After we make this swap, the reader can hand this page off to the splice
115 * code and be done with it. It can even allocate a new page if it needs to
116 * and swap that into the ring buffer.
117 *
118 * We will be using cmpxchg soon to make all this lockless.
119 *
120 */
121
033601a3
SR
122/*
123 * A fast way to enable or disable all ring buffers is to
124 * call tracing_on or tracing_off. Turning off the ring buffers
125 * prevents all ring buffers from being recorded to.
126 * Turning this switch on, makes it OK to write to the
127 * ring buffer, if the ring buffer is enabled itself.
128 *
129 * There's three layers that must be on in order to write
130 * to the ring buffer.
131 *
132 * 1) This global flag must be set.
133 * 2) The ring buffer must be enabled for recording.
134 * 3) The per cpu buffer must be enabled for recording.
135 *
136 * In case of an anomaly, this global flag has a bit set that
137 * will permantly disable all ring buffers.
138 */
139
140/*
141 * Global flag to disable all recording to ring buffers
142 * This has two bits: ON, DISABLED
143 *
144 * ON DISABLED
145 * ---- ----------
146 * 0 0 : ring buffers are off
147 * 1 0 : ring buffers are on
148 * X 1 : ring buffers are permanently disabled
149 */
150
151enum {
152 RB_BUFFERS_ON_BIT = 0,
153 RB_BUFFERS_DISABLED_BIT = 1,
154};
155
156enum {
157 RB_BUFFERS_ON = 1 << RB_BUFFERS_ON_BIT,
158 RB_BUFFERS_DISABLED = 1 << RB_BUFFERS_DISABLED_BIT,
159};
160
5e39841c 161static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
a3583244 162
499e5470
SR
163/* Used for individual buffers (after the counter) */
164#define RB_BUFFER_OFF (1 << 20)
a3583244 165
499e5470 166#define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
033601a3
SR
167
168/**
169 * tracing_off_permanent - permanently disable ring buffers
170 *
171 * This function, once called, will disable all ring buffers
c3706f00 172 * permanently.
033601a3
SR
173 */
174void tracing_off_permanent(void)
175{
176 set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
a3583244
SR
177}
178
e3d6bf0a 179#define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
67d34724 180#define RB_ALIGNMENT 4U
334d4169 181#define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
c7b09308 182#define RB_EVNT_MIN_SIZE 8U /* two 32bit words */
334d4169 183
649508f6 184#ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
2271048d
SR
185# define RB_FORCE_8BYTE_ALIGNMENT 0
186# define RB_ARCH_ALIGNMENT RB_ALIGNMENT
187#else
188# define RB_FORCE_8BYTE_ALIGNMENT 1
189# define RB_ARCH_ALIGNMENT 8U
190#endif
191
649508f6
JH
192#define RB_ALIGN_DATA __aligned(RB_ARCH_ALIGNMENT)
193
334d4169
LJ
194/* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
195#define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
7a8e76a3
SR
196
197enum {
198 RB_LEN_TIME_EXTEND = 8,
199 RB_LEN_TIME_STAMP = 16,
200};
201
69d1b839
SR
202#define skip_time_extend(event) \
203 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
204
2d622719
TZ
205static inline int rb_null_event(struct ring_buffer_event *event)
206{
a1863c21 207 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
2d622719
TZ
208}
209
210static void rb_event_set_padding(struct ring_buffer_event *event)
211{
a1863c21 212 /* padding has a NULL time_delta */
334d4169 213 event->type_len = RINGBUF_TYPE_PADDING;
2d622719
TZ
214 event->time_delta = 0;
215}
216
34a148bf 217static unsigned
2d622719 218rb_event_data_length(struct ring_buffer_event *event)
7a8e76a3
SR
219{
220 unsigned length;
221
334d4169
LJ
222 if (event->type_len)
223 length = event->type_len * RB_ALIGNMENT;
2d622719
TZ
224 else
225 length = event->array[0];
226 return length + RB_EVNT_HDR_SIZE;
227}
228
69d1b839
SR
229/*
230 * Return the length of the given event. Will return
231 * the length of the time extend if the event is a
232 * time extend.
233 */
234static inline unsigned
2d622719
TZ
235rb_event_length(struct ring_buffer_event *event)
236{
334d4169 237 switch (event->type_len) {
7a8e76a3 238 case RINGBUF_TYPE_PADDING:
2d622719
TZ
239 if (rb_null_event(event))
240 /* undefined */
241 return -1;
334d4169 242 return event->array[0] + RB_EVNT_HDR_SIZE;
7a8e76a3
SR
243
244 case RINGBUF_TYPE_TIME_EXTEND:
245 return RB_LEN_TIME_EXTEND;
246
247 case RINGBUF_TYPE_TIME_STAMP:
248 return RB_LEN_TIME_STAMP;
249
250 case RINGBUF_TYPE_DATA:
2d622719 251 return rb_event_data_length(event);
7a8e76a3
SR
252 default:
253 BUG();
254 }
255 /* not hit */
256 return 0;
257}
258
69d1b839
SR
259/*
260 * Return total length of time extend and data,
261 * or just the event length for all other events.
262 */
263static inline unsigned
264rb_event_ts_length(struct ring_buffer_event *event)
265{
266 unsigned len = 0;
267
268 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
269 /* time extends include the data event after it */
270 len = RB_LEN_TIME_EXTEND;
271 event = skip_time_extend(event);
272 }
273 return len + rb_event_length(event);
274}
275
7a8e76a3
SR
276/**
277 * ring_buffer_event_length - return the length of the event
278 * @event: the event to get the length of
69d1b839
SR
279 *
280 * Returns the size of the data load of a data event.
281 * If the event is something other than a data event, it
282 * returns the size of the event itself. With the exception
283 * of a TIME EXTEND, where it still returns the size of the
284 * data load of the data event after it.
7a8e76a3
SR
285 */
286unsigned ring_buffer_event_length(struct ring_buffer_event *event)
287{
69d1b839
SR
288 unsigned length;
289
290 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
291 event = skip_time_extend(event);
292
293 length = rb_event_length(event);
334d4169 294 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
465634ad
RR
295 return length;
296 length -= RB_EVNT_HDR_SIZE;
297 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
298 length -= sizeof(event->array[0]);
299 return length;
7a8e76a3 300}
c4f50183 301EXPORT_SYMBOL_GPL(ring_buffer_event_length);
7a8e76a3
SR
302
303/* inline for ring buffer fast paths */
34a148bf 304static void *
7a8e76a3
SR
305rb_event_data(struct ring_buffer_event *event)
306{
69d1b839
SR
307 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
308 event = skip_time_extend(event);
334d4169 309 BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
7a8e76a3 310 /* If length is in len field, then array[0] has the data */
334d4169 311 if (event->type_len)
7a8e76a3
SR
312 return (void *)&event->array[0];
313 /* Otherwise length is in array[0] and array[1] has the data */
314 return (void *)&event->array[1];
315}
316
317/**
318 * ring_buffer_event_data - return the data of the event
319 * @event: the event to get the data from
320 */
321void *ring_buffer_event_data(struct ring_buffer_event *event)
322{
323 return rb_event_data(event);
324}
c4f50183 325EXPORT_SYMBOL_GPL(ring_buffer_event_data);
7a8e76a3
SR
326
327#define for_each_buffer_cpu(buffer, cpu) \
9e01c1b7 328 for_each_cpu(cpu, buffer->cpumask)
7a8e76a3
SR
329
330#define TS_SHIFT 27
331#define TS_MASK ((1ULL << TS_SHIFT) - 1)
332#define TS_DELTA_TEST (~TS_MASK)
333
66a8cb95
SR
334/* Flag when events were overwritten */
335#define RB_MISSED_EVENTS (1 << 31)
ff0ff84a
SR
336/* Missed count stored at end */
337#define RB_MISSED_STORED (1 << 30)
66a8cb95 338
abc9b56d 339struct buffer_data_page {
e4c2ce82 340 u64 time_stamp; /* page time stamp */
c3706f00 341 local_t commit; /* write committed index */
649508f6 342 unsigned char data[] RB_ALIGN_DATA; /* data of buffer page */
abc9b56d
SR
343};
344
77ae365e
SR
345/*
346 * Note, the buffer_page list must be first. The buffer pages
347 * are allocated in cache lines, which means that each buffer
348 * page will be at the beginning of a cache line, and thus
349 * the least significant bits will be zero. We use this to
350 * add flags in the list struct pointers, to make the ring buffer
351 * lockless.
352 */
abc9b56d 353struct buffer_page {
778c55d4 354 struct list_head list; /* list of buffer pages */
abc9b56d 355 local_t write; /* index for next write */
6f807acd 356 unsigned read; /* index for next read */
778c55d4 357 local_t entries; /* entries on this page */
ff0ff84a 358 unsigned long real_end; /* real end of data */
abc9b56d 359 struct buffer_data_page *page; /* Actual data page */
7a8e76a3
SR
360};
361
77ae365e
SR
362/*
363 * The buffer page counters, write and entries, must be reset
364 * atomically when crossing page boundaries. To synchronize this
365 * update, two counters are inserted into the number. One is
366 * the actual counter for the write position or count on the page.
367 *
368 * The other is a counter of updaters. Before an update happens
369 * the update partition of the counter is incremented. This will
370 * allow the updater to update the counter atomically.
371 *
372 * The counter is 20 bits, and the state data is 12.
373 */
374#define RB_WRITE_MASK 0xfffff
375#define RB_WRITE_INTCNT (1 << 20)
376
044fa782 377static void rb_init_page(struct buffer_data_page *bpage)
abc9b56d 378{
044fa782 379 local_set(&bpage->commit, 0);
abc9b56d
SR
380}
381
474d32b6
SR
382/**
383 * ring_buffer_page_len - the size of data on the page.
384 * @page: The page to read
385 *
386 * Returns the amount of data on the page, including buffer page header.
387 */
ef7a4a16
SR
388size_t ring_buffer_page_len(void *page)
389{
474d32b6
SR
390 return local_read(&((struct buffer_data_page *)page)->commit)
391 + BUF_PAGE_HDR_SIZE;
ef7a4a16
SR
392}
393
ed56829c
SR
394/*
395 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
396 * this issue out.
397 */
34a148bf 398static void free_buffer_page(struct buffer_page *bpage)
ed56829c 399{
34a148bf 400 free_page((unsigned long)bpage->page);
e4c2ce82 401 kfree(bpage);
ed56829c
SR
402}
403
7a8e76a3
SR
404/*
405 * We need to fit the time_stamp delta into 27 bits.
406 */
407static inline int test_time_stamp(u64 delta)
408{
409 if (delta & TS_DELTA_TEST)
410 return 1;
411 return 0;
412}
413
474d32b6 414#define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
7a8e76a3 415
be957c44
SR
416/* Max payload is BUF_PAGE_SIZE - header (8bytes) */
417#define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
418
d1b182a8
SR
419int ring_buffer_print_page_header(struct trace_seq *s)
420{
421 struct buffer_data_page field;
422 int ret;
423
424 ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t"
26a50744
TZ
425 "offset:0;\tsize:%u;\tsigned:%u;\n",
426 (unsigned int)sizeof(field.time_stamp),
427 (unsigned int)is_signed_type(u64));
d1b182a8
SR
428
429 ret = trace_seq_printf(s, "\tfield: local_t commit;\t"
26a50744 430 "offset:%u;\tsize:%u;\tsigned:%u;\n",
d1b182a8 431 (unsigned int)offsetof(typeof(field), commit),
26a50744
TZ
432 (unsigned int)sizeof(field.commit),
433 (unsigned int)is_signed_type(long));
d1b182a8 434
66a8cb95
SR
435 ret = trace_seq_printf(s, "\tfield: int overwrite;\t"
436 "offset:%u;\tsize:%u;\tsigned:%u;\n",
437 (unsigned int)offsetof(typeof(field), commit),
438 1,
439 (unsigned int)is_signed_type(long));
440
d1b182a8 441 ret = trace_seq_printf(s, "\tfield: char data;\t"
26a50744 442 "offset:%u;\tsize:%u;\tsigned:%u;\n",
d1b182a8 443 (unsigned int)offsetof(typeof(field), data),
26a50744
TZ
444 (unsigned int)BUF_PAGE_SIZE,
445 (unsigned int)is_signed_type(char));
d1b182a8
SR
446
447 return ret;
448}
449
15693458
SRRH
450struct rb_irq_work {
451 struct irq_work work;
452 wait_queue_head_t waiters;
453 bool waiters_pending;
454};
455
7a8e76a3
SR
456/*
457 * head_page == tail_page && head == tail then buffer is empty.
458 */
459struct ring_buffer_per_cpu {
460 int cpu;
985023de 461 atomic_t record_disabled;
7a8e76a3 462 struct ring_buffer *buffer;
5389f6fa 463 raw_spinlock_t reader_lock; /* serialize readers */
445c8951 464 arch_spinlock_t lock;
7a8e76a3 465 struct lock_class_key lock_key;
438ced17 466 unsigned int nr_pages;
3adc54fa 467 struct list_head *pages;
6f807acd
SR
468 struct buffer_page *head_page; /* read from head */
469 struct buffer_page *tail_page; /* write to tail */
c3706f00 470 struct buffer_page *commit_page; /* committed pages */
d769041f 471 struct buffer_page *reader_page;
66a8cb95
SR
472 unsigned long lost_events;
473 unsigned long last_overrun;
c64e148a 474 local_t entries_bytes;
e4906eff 475 local_t entries;
884bfe89
SP
476 local_t overrun;
477 local_t commit_overrun;
478 local_t dropped_events;
fa743953
SR
479 local_t committing;
480 local_t commits;
77ae365e 481 unsigned long read;
c64e148a 482 unsigned long read_bytes;
7a8e76a3
SR
483 u64 write_stamp;
484 u64 read_stamp;
438ced17
VN
485 /* ring buffer pages to update, > 0 to add, < 0 to remove */
486 int nr_pages_to_update;
487 struct list_head new_pages; /* new pages to add */
83f40318 488 struct work_struct update_pages_work;
05fdd70d 489 struct completion update_done;
15693458
SRRH
490
491 struct rb_irq_work irq_work;
7a8e76a3
SR
492};
493
494struct ring_buffer {
7a8e76a3
SR
495 unsigned flags;
496 int cpus;
7a8e76a3 497 atomic_t record_disabled;
83f40318 498 atomic_t resize_disabled;
00f62f61 499 cpumask_var_t cpumask;
7a8e76a3 500
1f8a6a10
PZ
501 struct lock_class_key *reader_lock_key;
502
7a8e76a3
SR
503 struct mutex mutex;
504
505 struct ring_buffer_per_cpu **buffers;
554f786e 506
59222efe 507#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
508 struct notifier_block cpu_notify;
509#endif
37886f6a 510 u64 (*clock)(void);
15693458
SRRH
511
512 struct rb_irq_work irq_work;
7a8e76a3
SR
513};
514
515struct ring_buffer_iter {
516 struct ring_buffer_per_cpu *cpu_buffer;
517 unsigned long head;
518 struct buffer_page *head_page;
492a74f4
SR
519 struct buffer_page *cache_reader_page;
520 unsigned long cache_read;
7a8e76a3
SR
521 u64 read_stamp;
522};
523
15693458
SRRH
524/*
525 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
526 *
527 * Schedules a delayed work to wake up any task that is blocked on the
528 * ring buffer waiters queue.
529 */
530static void rb_wake_up_waiters(struct irq_work *work)
531{
532 struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
533
534 wake_up_all(&rbwork->waiters);
535}
536
537/**
538 * ring_buffer_wait - wait for input to the ring buffer
539 * @buffer: buffer to wait on
540 * @cpu: the cpu buffer to wait on
541 *
542 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
543 * as data is added to any of the @buffer's cpu buffers. Otherwise
544 * it will wait for data to be added to a specific cpu buffer.
545 */
561237e4 546int ring_buffer_wait(struct ring_buffer *buffer, int cpu)
15693458
SRRH
547{
548 struct ring_buffer_per_cpu *cpu_buffer;
549 DEFINE_WAIT(wait);
550 struct rb_irq_work *work;
551
552 /*
553 * Depending on what the caller is waiting for, either any
554 * data in any cpu buffer, or a specific buffer, put the
555 * caller on the appropriate wait queue.
556 */
557 if (cpu == RING_BUFFER_ALL_CPUS)
558 work = &buffer->irq_work;
559 else {
561237e4
SRRH
560 if (!cpumask_test_cpu(cpu, buffer->cpumask))
561 return -ENODEV;
15693458
SRRH
562 cpu_buffer = buffer->buffers[cpu];
563 work = &cpu_buffer->irq_work;
564 }
565
566
567 prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
568
569 /*
570 * The events can happen in critical sections where
571 * checking a work queue can cause deadlocks.
572 * After adding a task to the queue, this flag is set
573 * only to notify events to try to wake up the queue
574 * using irq_work.
575 *
576 * We don't clear it even if the buffer is no longer
577 * empty. The flag only causes the next event to run
578 * irq_work to do the work queue wake up. The worse
579 * that can happen if we race with !trace_empty() is that
580 * an event will cause an irq_work to try to wake up
581 * an empty queue.
582 *
583 * There's no reason to protect this flag either, as
584 * the work queue and irq_work logic will do the necessary
585 * synchronization for the wake ups. The only thing
586 * that is necessary is that the wake up happens after
587 * a task has been queued. It's OK for spurious wake ups.
588 */
589 work->waiters_pending = true;
590
591 if ((cpu == RING_BUFFER_ALL_CPUS && ring_buffer_empty(buffer)) ||
592 (cpu != RING_BUFFER_ALL_CPUS && ring_buffer_empty_cpu(buffer, cpu)))
593 schedule();
594
595 finish_wait(&work->waiters, &wait);
561237e4 596 return 0;
15693458
SRRH
597}
598
599/**
600 * ring_buffer_poll_wait - poll on buffer input
601 * @buffer: buffer to wait on
602 * @cpu: the cpu buffer to wait on
603 * @filp: the file descriptor
604 * @poll_table: The poll descriptor
605 *
606 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
607 * as data is added to any of the @buffer's cpu buffers. Otherwise
608 * it will wait for data to be added to a specific cpu buffer.
609 *
610 * Returns POLLIN | POLLRDNORM if data exists in the buffers,
611 * zero otherwise.
612 */
613int ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu,
614 struct file *filp, poll_table *poll_table)
615{
616 struct ring_buffer_per_cpu *cpu_buffer;
617 struct rb_irq_work *work;
618
15693458
SRRH
619 if (cpu == RING_BUFFER_ALL_CPUS)
620 work = &buffer->irq_work;
621 else {
6721cb60
SRRH
622 if (!cpumask_test_cpu(cpu, buffer->cpumask))
623 return -EINVAL;
624
15693458
SRRH
625 cpu_buffer = buffer->buffers[cpu];
626 work = &cpu_buffer->irq_work;
627 }
628
629 work->waiters_pending = true;
630 poll_wait(filp, &work->waiters, poll_table);
631
632 if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
633 (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
634 return POLLIN | POLLRDNORM;
635 return 0;
636}
637
f536aafc 638/* buffer may be either ring_buffer or ring_buffer_per_cpu */
077c5407
SR
639#define RB_WARN_ON(b, cond) \
640 ({ \
641 int _____ret = unlikely(cond); \
642 if (_____ret) { \
643 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
644 struct ring_buffer_per_cpu *__b = \
645 (void *)b; \
646 atomic_inc(&__b->buffer->record_disabled); \
647 } else \
648 atomic_inc(&b->record_disabled); \
649 WARN_ON(1); \
650 } \
651 _____ret; \
3e89c7bb 652 })
f536aafc 653
37886f6a
SR
654/* Up this if you want to test the TIME_EXTENTS and normalization */
655#define DEBUG_SHIFT 0
656
6d3f1e12 657static inline u64 rb_time_stamp(struct ring_buffer *buffer)
88eb0125
SR
658{
659 /* shift to debug/test normalization and TIME_EXTENTS */
660 return buffer->clock() << DEBUG_SHIFT;
661}
662
37886f6a
SR
663u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
664{
665 u64 time;
666
667 preempt_disable_notrace();
6d3f1e12 668 time = rb_time_stamp(buffer);
37886f6a
SR
669 preempt_enable_no_resched_notrace();
670
671 return time;
672}
673EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
674
675void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
676 int cpu, u64 *ts)
677{
678 /* Just stupid testing the normalize function and deltas */
679 *ts >>= DEBUG_SHIFT;
680}
681EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
682
77ae365e
SR
683/*
684 * Making the ring buffer lockless makes things tricky.
685 * Although writes only happen on the CPU that they are on,
686 * and they only need to worry about interrupts. Reads can
687 * happen on any CPU.
688 *
689 * The reader page is always off the ring buffer, but when the
690 * reader finishes with a page, it needs to swap its page with
691 * a new one from the buffer. The reader needs to take from
692 * the head (writes go to the tail). But if a writer is in overwrite
693 * mode and wraps, it must push the head page forward.
694 *
695 * Here lies the problem.
696 *
697 * The reader must be careful to replace only the head page, and
698 * not another one. As described at the top of the file in the
699 * ASCII art, the reader sets its old page to point to the next
700 * page after head. It then sets the page after head to point to
701 * the old reader page. But if the writer moves the head page
702 * during this operation, the reader could end up with the tail.
703 *
704 * We use cmpxchg to help prevent this race. We also do something
705 * special with the page before head. We set the LSB to 1.
706 *
707 * When the writer must push the page forward, it will clear the
708 * bit that points to the head page, move the head, and then set
709 * the bit that points to the new head page.
710 *
711 * We also don't want an interrupt coming in and moving the head
712 * page on another writer. Thus we use the second LSB to catch
713 * that too. Thus:
714 *
715 * head->list->prev->next bit 1 bit 0
716 * ------- -------
717 * Normal page 0 0
718 * Points to head page 0 1
719 * New head page 1 0
720 *
721 * Note we can not trust the prev pointer of the head page, because:
722 *
723 * +----+ +-----+ +-----+
724 * | |------>| T |---X--->| N |
725 * | |<------| | | |
726 * +----+ +-----+ +-----+
727 * ^ ^ |
728 * | +-----+ | |
729 * +----------| R |----------+ |
730 * | |<-----------+
731 * +-----+
732 *
733 * Key: ---X--> HEAD flag set in pointer
734 * T Tail page
735 * R Reader page
736 * N Next page
737 *
738 * (see __rb_reserve_next() to see where this happens)
739 *
740 * What the above shows is that the reader just swapped out
741 * the reader page with a page in the buffer, but before it
742 * could make the new header point back to the new page added
743 * it was preempted by a writer. The writer moved forward onto
744 * the new page added by the reader and is about to move forward
745 * again.
746 *
747 * You can see, it is legitimate for the previous pointer of
748 * the head (or any page) not to point back to itself. But only
749 * temporarially.
750 */
751
752#define RB_PAGE_NORMAL 0UL
753#define RB_PAGE_HEAD 1UL
754#define RB_PAGE_UPDATE 2UL
755
756
757#define RB_FLAG_MASK 3UL
758
759/* PAGE_MOVED is not part of the mask */
760#define RB_PAGE_MOVED 4UL
761
762/*
763 * rb_list_head - remove any bit
764 */
765static struct list_head *rb_list_head(struct list_head *list)
766{
767 unsigned long val = (unsigned long)list;
768
769 return (struct list_head *)(val & ~RB_FLAG_MASK);
770}
771
772/*
6d3f1e12 773 * rb_is_head_page - test if the given page is the head page
77ae365e
SR
774 *
775 * Because the reader may move the head_page pointer, we can
776 * not trust what the head page is (it may be pointing to
777 * the reader page). But if the next page is a header page,
778 * its flags will be non zero.
779 */
42b16b3f 780static inline int
77ae365e
SR
781rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
782 struct buffer_page *page, struct list_head *list)
783{
784 unsigned long val;
785
786 val = (unsigned long)list->next;
787
788 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
789 return RB_PAGE_MOVED;
790
791 return val & RB_FLAG_MASK;
792}
793
794/*
795 * rb_is_reader_page
796 *
797 * The unique thing about the reader page, is that, if the
798 * writer is ever on it, the previous pointer never points
799 * back to the reader page.
800 */
801static int rb_is_reader_page(struct buffer_page *page)
802{
803 struct list_head *list = page->list.prev;
804
805 return rb_list_head(list->next) != &page->list;
806}
807
808/*
809 * rb_set_list_to_head - set a list_head to be pointing to head.
810 */
811static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
812 struct list_head *list)
813{
814 unsigned long *ptr;
815
816 ptr = (unsigned long *)&list->next;
817 *ptr |= RB_PAGE_HEAD;
818 *ptr &= ~RB_PAGE_UPDATE;
819}
820
821/*
822 * rb_head_page_activate - sets up head page
823 */
824static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
825{
826 struct buffer_page *head;
827
828 head = cpu_buffer->head_page;
829 if (!head)
830 return;
831
832 /*
833 * Set the previous list pointer to have the HEAD flag.
834 */
835 rb_set_list_to_head(cpu_buffer, head->list.prev);
836}
837
838static void rb_list_head_clear(struct list_head *list)
839{
840 unsigned long *ptr = (unsigned long *)&list->next;
841
842 *ptr &= ~RB_FLAG_MASK;
843}
844
845/*
846 * rb_head_page_dactivate - clears head page ptr (for free list)
847 */
848static void
849rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
850{
851 struct list_head *hd;
852
853 /* Go through the whole list and clear any pointers found. */
854 rb_list_head_clear(cpu_buffer->pages);
855
856 list_for_each(hd, cpu_buffer->pages)
857 rb_list_head_clear(hd);
858}
859
860static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
861 struct buffer_page *head,
862 struct buffer_page *prev,
863 int old_flag, int new_flag)
864{
865 struct list_head *list;
866 unsigned long val = (unsigned long)&head->list;
867 unsigned long ret;
868
869 list = &prev->list;
870
871 val &= ~RB_FLAG_MASK;
872
08a40816
SR
873 ret = cmpxchg((unsigned long *)&list->next,
874 val | old_flag, val | new_flag);
77ae365e
SR
875
876 /* check if the reader took the page */
877 if ((ret & ~RB_FLAG_MASK) != val)
878 return RB_PAGE_MOVED;
879
880 return ret & RB_FLAG_MASK;
881}
882
883static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
884 struct buffer_page *head,
885 struct buffer_page *prev,
886 int old_flag)
887{
888 return rb_head_page_set(cpu_buffer, head, prev,
889 old_flag, RB_PAGE_UPDATE);
890}
891
892static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
893 struct buffer_page *head,
894 struct buffer_page *prev,
895 int old_flag)
896{
897 return rb_head_page_set(cpu_buffer, head, prev,
898 old_flag, RB_PAGE_HEAD);
899}
900
901static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
902 struct buffer_page *head,
903 struct buffer_page *prev,
904 int old_flag)
905{
906 return rb_head_page_set(cpu_buffer, head, prev,
907 old_flag, RB_PAGE_NORMAL);
908}
909
910static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
911 struct buffer_page **bpage)
912{
913 struct list_head *p = rb_list_head((*bpage)->list.next);
914
915 *bpage = list_entry(p, struct buffer_page, list);
916}
917
918static struct buffer_page *
919rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
920{
921 struct buffer_page *head;
922 struct buffer_page *page;
923 struct list_head *list;
924 int i;
925
926 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
927 return NULL;
928
929 /* sanity check */
930 list = cpu_buffer->pages;
931 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
932 return NULL;
933
934 page = head = cpu_buffer->head_page;
935 /*
936 * It is possible that the writer moves the header behind
937 * where we started, and we miss in one loop.
938 * A second loop should grab the header, but we'll do
939 * three loops just because I'm paranoid.
940 */
941 for (i = 0; i < 3; i++) {
942 do {
943 if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
944 cpu_buffer->head_page = page;
945 return page;
946 }
947 rb_inc_page(cpu_buffer, &page);
948 } while (page != head);
949 }
950
951 RB_WARN_ON(cpu_buffer, 1);
952
953 return NULL;
954}
955
956static int rb_head_page_replace(struct buffer_page *old,
957 struct buffer_page *new)
958{
959 unsigned long *ptr = (unsigned long *)&old->list.prev->next;
960 unsigned long val;
961 unsigned long ret;
962
963 val = *ptr & ~RB_FLAG_MASK;
964 val |= RB_PAGE_HEAD;
965
08a40816 966 ret = cmpxchg(ptr, val, (unsigned long)&new->list);
77ae365e
SR
967
968 return ret == val;
969}
970
971/*
972 * rb_tail_page_update - move the tail page forward
973 *
974 * Returns 1 if moved tail page, 0 if someone else did.
975 */
976static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
977 struct buffer_page *tail_page,
978 struct buffer_page *next_page)
979{
980 struct buffer_page *old_tail;
981 unsigned long old_entries;
982 unsigned long old_write;
983 int ret = 0;
984
985 /*
986 * The tail page now needs to be moved forward.
987 *
988 * We need to reset the tail page, but without messing
989 * with possible erasing of data brought in by interrupts
990 * that have moved the tail page and are currently on it.
991 *
992 * We add a counter to the write field to denote this.
993 */
994 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
995 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
996
997 /*
998 * Just make sure we have seen our old_write and synchronize
999 * with any interrupts that come in.
1000 */
1001 barrier();
1002
1003 /*
1004 * If the tail page is still the same as what we think
1005 * it is, then it is up to us to update the tail
1006 * pointer.
1007 */
1008 if (tail_page == cpu_buffer->tail_page) {
1009 /* Zero the write counter */
1010 unsigned long val = old_write & ~RB_WRITE_MASK;
1011 unsigned long eval = old_entries & ~RB_WRITE_MASK;
1012
1013 /*
1014 * This will only succeed if an interrupt did
1015 * not come in and change it. In which case, we
1016 * do not want to modify it.
da706d8b
LJ
1017 *
1018 * We add (void) to let the compiler know that we do not care
1019 * about the return value of these functions. We use the
1020 * cmpxchg to only update if an interrupt did not already
1021 * do it for us. If the cmpxchg fails, we don't care.
77ae365e 1022 */
da706d8b
LJ
1023 (void)local_cmpxchg(&next_page->write, old_write, val);
1024 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
77ae365e
SR
1025
1026 /*
1027 * No need to worry about races with clearing out the commit.
1028 * it only can increment when a commit takes place. But that
1029 * only happens in the outer most nested commit.
1030 */
1031 local_set(&next_page->page->commit, 0);
1032
1033 old_tail = cmpxchg(&cpu_buffer->tail_page,
1034 tail_page, next_page);
1035
1036 if (old_tail == tail_page)
1037 ret = 1;
1038 }
1039
1040 return ret;
1041}
1042
1043static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1044 struct buffer_page *bpage)
1045{
1046 unsigned long val = (unsigned long)bpage;
1047
1048 if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1049 return 1;
1050
1051 return 0;
1052}
1053
1054/**
1055 * rb_check_list - make sure a pointer to a list has the last bits zero
1056 */
1057static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1058 struct list_head *list)
1059{
1060 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1061 return 1;
1062 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1063 return 1;
1064 return 0;
1065}
1066
7a8e76a3
SR
1067/**
1068 * check_pages - integrity check of buffer pages
1069 * @cpu_buffer: CPU buffer with pages to test
1070 *
c3706f00 1071 * As a safety measure we check to make sure the data pages have not
7a8e76a3
SR
1072 * been corrupted.
1073 */
1074static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1075{
3adc54fa 1076 struct list_head *head = cpu_buffer->pages;
044fa782 1077 struct buffer_page *bpage, *tmp;
7a8e76a3 1078
308f7eeb
SR
1079 /* Reset the head page if it exists */
1080 if (cpu_buffer->head_page)
1081 rb_set_head_page(cpu_buffer);
1082
77ae365e
SR
1083 rb_head_page_deactivate(cpu_buffer);
1084
3e89c7bb
SR
1085 if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1086 return -1;
1087 if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1088 return -1;
7a8e76a3 1089
77ae365e
SR
1090 if (rb_check_list(cpu_buffer, head))
1091 return -1;
1092
044fa782 1093 list_for_each_entry_safe(bpage, tmp, head, list) {
3e89c7bb 1094 if (RB_WARN_ON(cpu_buffer,
044fa782 1095 bpage->list.next->prev != &bpage->list))
3e89c7bb
SR
1096 return -1;
1097 if (RB_WARN_ON(cpu_buffer,
044fa782 1098 bpage->list.prev->next != &bpage->list))
3e89c7bb 1099 return -1;
77ae365e
SR
1100 if (rb_check_list(cpu_buffer, &bpage->list))
1101 return -1;
7a8e76a3
SR
1102 }
1103
77ae365e
SR
1104 rb_head_page_activate(cpu_buffer);
1105
7a8e76a3
SR
1106 return 0;
1107}
1108
438ced17 1109static int __rb_allocate_pages(int nr_pages, struct list_head *pages, int cpu)
7a8e76a3 1110{
438ced17 1111 int i;
044fa782 1112 struct buffer_page *bpage, *tmp;
3adc54fa 1113
7a8e76a3 1114 for (i = 0; i < nr_pages; i++) {
7ea59064 1115 struct page *page;
d7ec4bfe
VN
1116 /*
1117 * __GFP_NORETRY flag makes sure that the allocation fails
1118 * gracefully without invoking oom-killer and the system is
1119 * not destabilized.
1120 */
044fa782 1121 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
d7ec4bfe 1122 GFP_KERNEL | __GFP_NORETRY,
438ced17 1123 cpu_to_node(cpu));
044fa782 1124 if (!bpage)
e4c2ce82 1125 goto free_pages;
77ae365e 1126
438ced17 1127 list_add(&bpage->list, pages);
77ae365e 1128
438ced17 1129 page = alloc_pages_node(cpu_to_node(cpu),
d7ec4bfe 1130 GFP_KERNEL | __GFP_NORETRY, 0);
7ea59064 1131 if (!page)
7a8e76a3 1132 goto free_pages;
7ea59064 1133 bpage->page = page_address(page);
044fa782 1134 rb_init_page(bpage->page);
7a8e76a3
SR
1135 }
1136
438ced17
VN
1137 return 0;
1138
1139free_pages:
1140 list_for_each_entry_safe(bpage, tmp, pages, list) {
1141 list_del_init(&bpage->list);
1142 free_buffer_page(bpage);
1143 }
1144
1145 return -ENOMEM;
1146}
1147
1148static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1149 unsigned nr_pages)
1150{
1151 LIST_HEAD(pages);
1152
1153 WARN_ON(!nr_pages);
1154
1155 if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1156 return -ENOMEM;
1157
3adc54fa
SR
1158 /*
1159 * The ring buffer page list is a circular list that does not
1160 * start and end with a list head. All page list items point to
1161 * other pages.
1162 */
1163 cpu_buffer->pages = pages.next;
1164 list_del(&pages);
7a8e76a3 1165
438ced17
VN
1166 cpu_buffer->nr_pages = nr_pages;
1167
7a8e76a3
SR
1168 rb_check_pages(cpu_buffer);
1169
1170 return 0;
7a8e76a3
SR
1171}
1172
1173static struct ring_buffer_per_cpu *
438ced17 1174rb_allocate_cpu_buffer(struct ring_buffer *buffer, int nr_pages, int cpu)
7a8e76a3
SR
1175{
1176 struct ring_buffer_per_cpu *cpu_buffer;
044fa782 1177 struct buffer_page *bpage;
7ea59064 1178 struct page *page;
7a8e76a3
SR
1179 int ret;
1180
1181 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1182 GFP_KERNEL, cpu_to_node(cpu));
1183 if (!cpu_buffer)
1184 return NULL;
1185
1186 cpu_buffer->cpu = cpu;
1187 cpu_buffer->buffer = buffer;
5389f6fa 1188 raw_spin_lock_init(&cpu_buffer->reader_lock);
1f8a6a10 1189 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
edc35bd7 1190 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
83f40318 1191 INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
05fdd70d 1192 init_completion(&cpu_buffer->update_done);
15693458 1193 init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
f1dc6725 1194 init_waitqueue_head(&cpu_buffer->irq_work.waiters);
7a8e76a3 1195
044fa782 1196 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
e4c2ce82 1197 GFP_KERNEL, cpu_to_node(cpu));
044fa782 1198 if (!bpage)
e4c2ce82
SR
1199 goto fail_free_buffer;
1200
77ae365e
SR
1201 rb_check_bpage(cpu_buffer, bpage);
1202
044fa782 1203 cpu_buffer->reader_page = bpage;
7ea59064
VN
1204 page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1205 if (!page)
e4c2ce82 1206 goto fail_free_reader;
7ea59064 1207 bpage->page = page_address(page);
044fa782 1208 rb_init_page(bpage->page);
e4c2ce82 1209
d769041f 1210 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
44b99462 1211 INIT_LIST_HEAD(&cpu_buffer->new_pages);
d769041f 1212
438ced17 1213 ret = rb_allocate_pages(cpu_buffer, nr_pages);
7a8e76a3 1214 if (ret < 0)
d769041f 1215 goto fail_free_reader;
7a8e76a3
SR
1216
1217 cpu_buffer->head_page
3adc54fa 1218 = list_entry(cpu_buffer->pages, struct buffer_page, list);
bf41a158 1219 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
7a8e76a3 1220
77ae365e
SR
1221 rb_head_page_activate(cpu_buffer);
1222
7a8e76a3
SR
1223 return cpu_buffer;
1224
d769041f
SR
1225 fail_free_reader:
1226 free_buffer_page(cpu_buffer->reader_page);
1227
7a8e76a3
SR
1228 fail_free_buffer:
1229 kfree(cpu_buffer);
1230 return NULL;
1231}
1232
1233static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1234{
3adc54fa 1235 struct list_head *head = cpu_buffer->pages;
044fa782 1236 struct buffer_page *bpage, *tmp;
7a8e76a3 1237
d769041f
SR
1238 free_buffer_page(cpu_buffer->reader_page);
1239
77ae365e
SR
1240 rb_head_page_deactivate(cpu_buffer);
1241
3adc54fa
SR
1242 if (head) {
1243 list_for_each_entry_safe(bpage, tmp, head, list) {
1244 list_del_init(&bpage->list);
1245 free_buffer_page(bpage);
1246 }
1247 bpage = list_entry(head, struct buffer_page, list);
044fa782 1248 free_buffer_page(bpage);
7a8e76a3 1249 }
3adc54fa 1250
7a8e76a3
SR
1251 kfree(cpu_buffer);
1252}
1253
59222efe 1254#ifdef CONFIG_HOTPLUG_CPU
09c9e84d
FW
1255static int rb_cpu_notify(struct notifier_block *self,
1256 unsigned long action, void *hcpu);
554f786e
SR
1257#endif
1258
7a8e76a3
SR
1259/**
1260 * ring_buffer_alloc - allocate a new ring_buffer
68814b58 1261 * @size: the size in bytes per cpu that is needed.
7a8e76a3
SR
1262 * @flags: attributes to set for the ring buffer.
1263 *
1264 * Currently the only flag that is available is the RB_FL_OVERWRITE
1265 * flag. This flag means that the buffer will overwrite old data
1266 * when the buffer wraps. If this flag is not set, the buffer will
1267 * drop data when the tail hits the head.
1268 */
1f8a6a10
PZ
1269struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1270 struct lock_class_key *key)
7a8e76a3
SR
1271{
1272 struct ring_buffer *buffer;
1273 int bsize;
438ced17 1274 int cpu, nr_pages;
7a8e76a3
SR
1275
1276 /* keep it in its own cache line */
1277 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1278 GFP_KERNEL);
1279 if (!buffer)
1280 return NULL;
1281
9e01c1b7
RR
1282 if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1283 goto fail_free_buffer;
1284
438ced17 1285 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
7a8e76a3 1286 buffer->flags = flags;
37886f6a 1287 buffer->clock = trace_clock_local;
1f8a6a10 1288 buffer->reader_lock_key = key;
7a8e76a3 1289
15693458 1290 init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
f1dc6725 1291 init_waitqueue_head(&buffer->irq_work.waiters);
15693458 1292
7a8e76a3 1293 /* need at least two pages */
438ced17
VN
1294 if (nr_pages < 2)
1295 nr_pages = 2;
7a8e76a3 1296
3bf832ce
FW
1297 /*
1298 * In case of non-hotplug cpu, if the ring-buffer is allocated
1299 * in early initcall, it will not be notified of secondary cpus.
1300 * In that off case, we need to allocate for all possible cpus.
1301 */
1302#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
1303 get_online_cpus();
1304 cpumask_copy(buffer->cpumask, cpu_online_mask);
3bf832ce
FW
1305#else
1306 cpumask_copy(buffer->cpumask, cpu_possible_mask);
1307#endif
7a8e76a3
SR
1308 buffer->cpus = nr_cpu_ids;
1309
1310 bsize = sizeof(void *) * nr_cpu_ids;
1311 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1312 GFP_KERNEL);
1313 if (!buffer->buffers)
9e01c1b7 1314 goto fail_free_cpumask;
7a8e76a3
SR
1315
1316 for_each_buffer_cpu(buffer, cpu) {
1317 buffer->buffers[cpu] =
438ced17 1318 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
7a8e76a3
SR
1319 if (!buffer->buffers[cpu])
1320 goto fail_free_buffers;
1321 }
1322
59222efe 1323#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
1324 buffer->cpu_notify.notifier_call = rb_cpu_notify;
1325 buffer->cpu_notify.priority = 0;
1326 register_cpu_notifier(&buffer->cpu_notify);
1327#endif
1328
1329 put_online_cpus();
7a8e76a3
SR
1330 mutex_init(&buffer->mutex);
1331
1332 return buffer;
1333
1334 fail_free_buffers:
1335 for_each_buffer_cpu(buffer, cpu) {
1336 if (buffer->buffers[cpu])
1337 rb_free_cpu_buffer(buffer->buffers[cpu]);
1338 }
1339 kfree(buffer->buffers);
1340
9e01c1b7
RR
1341 fail_free_cpumask:
1342 free_cpumask_var(buffer->cpumask);
554f786e 1343 put_online_cpus();
9e01c1b7 1344
7a8e76a3
SR
1345 fail_free_buffer:
1346 kfree(buffer);
1347 return NULL;
1348}
1f8a6a10 1349EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
7a8e76a3
SR
1350
1351/**
1352 * ring_buffer_free - free a ring buffer.
1353 * @buffer: the buffer to free.
1354 */
1355void
1356ring_buffer_free(struct ring_buffer *buffer)
1357{
1358 int cpu;
1359
554f786e
SR
1360 get_online_cpus();
1361
59222efe 1362#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
1363 unregister_cpu_notifier(&buffer->cpu_notify);
1364#endif
1365
7a8e76a3
SR
1366 for_each_buffer_cpu(buffer, cpu)
1367 rb_free_cpu_buffer(buffer->buffers[cpu]);
1368
554f786e
SR
1369 put_online_cpus();
1370
bd3f0221 1371 kfree(buffer->buffers);
9e01c1b7
RR
1372 free_cpumask_var(buffer->cpumask);
1373
7a8e76a3
SR
1374 kfree(buffer);
1375}
c4f50183 1376EXPORT_SYMBOL_GPL(ring_buffer_free);
7a8e76a3 1377
37886f6a
SR
1378void ring_buffer_set_clock(struct ring_buffer *buffer,
1379 u64 (*clock)(void))
1380{
1381 buffer->clock = clock;
1382}
1383
7a8e76a3
SR
1384static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1385
83f40318
VN
1386static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1387{
1388 return local_read(&bpage->entries) & RB_WRITE_MASK;
1389}
1390
1391static inline unsigned long rb_page_write(struct buffer_page *bpage)
1392{
1393 return local_read(&bpage->write) & RB_WRITE_MASK;
1394}
1395
5040b4b7 1396static int
83f40318 1397rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned int nr_pages)
7a8e76a3 1398{
83f40318
VN
1399 struct list_head *tail_page, *to_remove, *next_page;
1400 struct buffer_page *to_remove_page, *tmp_iter_page;
1401 struct buffer_page *last_page, *first_page;
1402 unsigned int nr_removed;
1403 unsigned long head_bit;
1404 int page_entries;
1405
1406 head_bit = 0;
7a8e76a3 1407
5389f6fa 1408 raw_spin_lock_irq(&cpu_buffer->reader_lock);
83f40318
VN
1409 atomic_inc(&cpu_buffer->record_disabled);
1410 /*
1411 * We don't race with the readers since we have acquired the reader
1412 * lock. We also don't race with writers after disabling recording.
1413 * This makes it easy to figure out the first and the last page to be
1414 * removed from the list. We unlink all the pages in between including
1415 * the first and last pages. This is done in a busy loop so that we
1416 * lose the least number of traces.
1417 * The pages are freed after we restart recording and unlock readers.
1418 */
1419 tail_page = &cpu_buffer->tail_page->list;
77ae365e 1420
83f40318
VN
1421 /*
1422 * tail page might be on reader page, we remove the next page
1423 * from the ring buffer
1424 */
1425 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1426 tail_page = rb_list_head(tail_page->next);
1427 to_remove = tail_page;
1428
1429 /* start of pages to remove */
1430 first_page = list_entry(rb_list_head(to_remove->next),
1431 struct buffer_page, list);
1432
1433 for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1434 to_remove = rb_list_head(to_remove)->next;
1435 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
7a8e76a3 1436 }
7a8e76a3 1437
83f40318 1438 next_page = rb_list_head(to_remove)->next;
7a8e76a3 1439
83f40318
VN
1440 /*
1441 * Now we remove all pages between tail_page and next_page.
1442 * Make sure that we have head_bit value preserved for the
1443 * next page
1444 */
1445 tail_page->next = (struct list_head *)((unsigned long)next_page |
1446 head_bit);
1447 next_page = rb_list_head(next_page);
1448 next_page->prev = tail_page;
1449
1450 /* make sure pages points to a valid page in the ring buffer */
1451 cpu_buffer->pages = next_page;
1452
1453 /* update head page */
1454 if (head_bit)
1455 cpu_buffer->head_page = list_entry(next_page,
1456 struct buffer_page, list);
1457
1458 /*
1459 * change read pointer to make sure any read iterators reset
1460 * themselves
1461 */
1462 cpu_buffer->read = 0;
1463
1464 /* pages are removed, resume tracing and then free the pages */
1465 atomic_dec(&cpu_buffer->record_disabled);
5389f6fa 1466 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
83f40318
VN
1467
1468 RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1469
1470 /* last buffer page to remove */
1471 last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1472 list);
1473 tmp_iter_page = first_page;
1474
1475 do {
1476 to_remove_page = tmp_iter_page;
1477 rb_inc_page(cpu_buffer, &tmp_iter_page);
1478
1479 /* update the counters */
1480 page_entries = rb_page_entries(to_remove_page);
1481 if (page_entries) {
1482 /*
1483 * If something was added to this page, it was full
1484 * since it is not the tail page. So we deduct the
1485 * bytes consumed in ring buffer from here.
48fdc72f 1486 * Increment overrun to account for the lost events.
83f40318 1487 */
48fdc72f 1488 local_add(page_entries, &cpu_buffer->overrun);
83f40318
VN
1489 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1490 }
1491
1492 /*
1493 * We have already removed references to this list item, just
1494 * free up the buffer_page and its page
1495 */
1496 free_buffer_page(to_remove_page);
1497 nr_removed--;
1498
1499 } while (to_remove_page != last_page);
1500
1501 RB_WARN_ON(cpu_buffer, nr_removed);
5040b4b7
VN
1502
1503 return nr_removed == 0;
7a8e76a3
SR
1504}
1505
5040b4b7
VN
1506static int
1507rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1508{
5040b4b7
VN
1509 struct list_head *pages = &cpu_buffer->new_pages;
1510 int retries, success;
7a8e76a3 1511
5389f6fa 1512 raw_spin_lock_irq(&cpu_buffer->reader_lock);
5040b4b7
VN
1513 /*
1514 * We are holding the reader lock, so the reader page won't be swapped
1515 * in the ring buffer. Now we are racing with the writer trying to
1516 * move head page and the tail page.
1517 * We are going to adapt the reader page update process where:
1518 * 1. We first splice the start and end of list of new pages between
1519 * the head page and its previous page.
1520 * 2. We cmpxchg the prev_page->next to point from head page to the
1521 * start of new pages list.
1522 * 3. Finally, we update the head->prev to the end of new list.
1523 *
1524 * We will try this process 10 times, to make sure that we don't keep
1525 * spinning.
1526 */
1527 retries = 10;
1528 success = 0;
1529 while (retries--) {
1530 struct list_head *head_page, *prev_page, *r;
1531 struct list_head *last_page, *first_page;
1532 struct list_head *head_page_with_bit;
77ae365e 1533
5040b4b7 1534 head_page = &rb_set_head_page(cpu_buffer)->list;
54f7be5b
SR
1535 if (!head_page)
1536 break;
5040b4b7
VN
1537 prev_page = head_page->prev;
1538
1539 first_page = pages->next;
1540 last_page = pages->prev;
1541
1542 head_page_with_bit = (struct list_head *)
1543 ((unsigned long)head_page | RB_PAGE_HEAD);
1544
1545 last_page->next = head_page_with_bit;
1546 first_page->prev = prev_page;
1547
1548 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1549
1550 if (r == head_page_with_bit) {
1551 /*
1552 * yay, we replaced the page pointer to our new list,
1553 * now, we just have to update to head page's prev
1554 * pointer to point to end of list
1555 */
1556 head_page->prev = last_page;
1557 success = 1;
1558 break;
1559 }
7a8e76a3 1560 }
7a8e76a3 1561
5040b4b7
VN
1562 if (success)
1563 INIT_LIST_HEAD(pages);
1564 /*
1565 * If we weren't successful in adding in new pages, warn and stop
1566 * tracing
1567 */
1568 RB_WARN_ON(cpu_buffer, !success);
5389f6fa 1569 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
5040b4b7
VN
1570
1571 /* free pages if they weren't inserted */
1572 if (!success) {
1573 struct buffer_page *bpage, *tmp;
1574 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1575 list) {
1576 list_del_init(&bpage->list);
1577 free_buffer_page(bpage);
1578 }
1579 }
1580 return success;
7a8e76a3
SR
1581}
1582
83f40318 1583static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
438ced17 1584{
5040b4b7
VN
1585 int success;
1586
438ced17 1587 if (cpu_buffer->nr_pages_to_update > 0)
5040b4b7 1588 success = rb_insert_pages(cpu_buffer);
438ced17 1589 else
5040b4b7
VN
1590 success = rb_remove_pages(cpu_buffer,
1591 -cpu_buffer->nr_pages_to_update);
83f40318 1592
5040b4b7
VN
1593 if (success)
1594 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
83f40318
VN
1595}
1596
1597static void update_pages_handler(struct work_struct *work)
1598{
1599 struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1600 struct ring_buffer_per_cpu, update_pages_work);
1601 rb_update_pages(cpu_buffer);
05fdd70d 1602 complete(&cpu_buffer->update_done);
438ced17
VN
1603}
1604
7a8e76a3
SR
1605/**
1606 * ring_buffer_resize - resize the ring buffer
1607 * @buffer: the buffer to resize.
1608 * @size: the new size.
1609 *
7a8e76a3
SR
1610 * Minimum size is 2 * BUF_PAGE_SIZE.
1611 *
83f40318 1612 * Returns 0 on success and < 0 on failure.
7a8e76a3 1613 */
438ced17
VN
1614int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1615 int cpu_id)
7a8e76a3
SR
1616{
1617 struct ring_buffer_per_cpu *cpu_buffer;
438ced17 1618 unsigned nr_pages;
83f40318 1619 int cpu, err = 0;
7a8e76a3 1620
ee51a1de
IM
1621 /*
1622 * Always succeed at resizing a non-existent buffer:
1623 */
1624 if (!buffer)
1625 return size;
1626
6a31e1f1
SR
1627 /* Make sure the requested buffer exists */
1628 if (cpu_id != RING_BUFFER_ALL_CPUS &&
1629 !cpumask_test_cpu(cpu_id, buffer->cpumask))
1630 return size;
1631
7a8e76a3
SR
1632 size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1633 size *= BUF_PAGE_SIZE;
7a8e76a3
SR
1634
1635 /* we need a minimum of two pages */
1636 if (size < BUF_PAGE_SIZE * 2)
1637 size = BUF_PAGE_SIZE * 2;
1638
83f40318 1639 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
18421015 1640
83f40318
VN
1641 /*
1642 * Don't succeed if resizing is disabled, as a reader might be
1643 * manipulating the ring buffer and is expecting a sane state while
1644 * this is true.
1645 */
1646 if (atomic_read(&buffer->resize_disabled))
1647 return -EBUSY;
18421015 1648
83f40318 1649 /* prevent another thread from changing buffer sizes */
7a8e76a3 1650 mutex_lock(&buffer->mutex);
7a8e76a3 1651
438ced17
VN
1652 if (cpu_id == RING_BUFFER_ALL_CPUS) {
1653 /* calculate the pages to update */
7a8e76a3
SR
1654 for_each_buffer_cpu(buffer, cpu) {
1655 cpu_buffer = buffer->buffers[cpu];
7a8e76a3 1656
438ced17
VN
1657 cpu_buffer->nr_pages_to_update = nr_pages -
1658 cpu_buffer->nr_pages;
438ced17
VN
1659 /*
1660 * nothing more to do for removing pages or no update
1661 */
1662 if (cpu_buffer->nr_pages_to_update <= 0)
1663 continue;
d7ec4bfe 1664 /*
438ced17
VN
1665 * to add pages, make sure all new pages can be
1666 * allocated without receiving ENOMEM
d7ec4bfe 1667 */
438ced17
VN
1668 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1669 if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
83f40318 1670 &cpu_buffer->new_pages, cpu)) {
438ced17 1671 /* not enough memory for new pages */
83f40318
VN
1672 err = -ENOMEM;
1673 goto out_err;
1674 }
1675 }
1676
1677 get_online_cpus();
1678 /*
1679 * Fire off all the required work handlers
05fdd70d 1680 * We can't schedule on offline CPUs, but it's not necessary
83f40318
VN
1681 * since we can change their buffer sizes without any race.
1682 */
1683 for_each_buffer_cpu(buffer, cpu) {
1684 cpu_buffer = buffer->buffers[cpu];
05fdd70d 1685 if (!cpu_buffer->nr_pages_to_update)
83f40318
VN
1686 continue;
1687
f5eb5588
SRRH
1688 /* The update must run on the CPU that is being updated. */
1689 preempt_disable();
1690 if (cpu == smp_processor_id() || !cpu_online(cpu)) {
1691 rb_update_pages(cpu_buffer);
1692 cpu_buffer->nr_pages_to_update = 0;
1693 } else {
1694 /*
1695 * Can not disable preemption for schedule_work_on()
1696 * on PREEMPT_RT.
1697 */
1698 preempt_enable();
05fdd70d
VN
1699 schedule_work_on(cpu,
1700 &cpu_buffer->update_pages_work);
f5eb5588
SRRH
1701 preempt_disable();
1702 }
1703 preempt_enable();
7a8e76a3 1704 }
7a8e76a3 1705
438ced17
VN
1706 /* wait for all the updates to complete */
1707 for_each_buffer_cpu(buffer, cpu) {
1708 cpu_buffer = buffer->buffers[cpu];
05fdd70d 1709 if (!cpu_buffer->nr_pages_to_update)
83f40318
VN
1710 continue;
1711
05fdd70d
VN
1712 if (cpu_online(cpu))
1713 wait_for_completion(&cpu_buffer->update_done);
83f40318 1714 cpu_buffer->nr_pages_to_update = 0;
438ced17 1715 }
83f40318
VN
1716
1717 put_online_cpus();
438ced17 1718 } else {
8e49f418
VN
1719 /* Make sure this CPU has been intitialized */
1720 if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
1721 goto out;
1722
438ced17 1723 cpu_buffer = buffer->buffers[cpu_id];
83f40318 1724
438ced17
VN
1725 if (nr_pages == cpu_buffer->nr_pages)
1726 goto out;
7a8e76a3 1727
438ced17
VN
1728 cpu_buffer->nr_pages_to_update = nr_pages -
1729 cpu_buffer->nr_pages;
1730
1731 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1732 if (cpu_buffer->nr_pages_to_update > 0 &&
1733 __rb_allocate_pages(cpu_buffer->nr_pages_to_update,
83f40318
VN
1734 &cpu_buffer->new_pages, cpu_id)) {
1735 err = -ENOMEM;
1736 goto out_err;
1737 }
438ced17 1738
83f40318
VN
1739 get_online_cpus();
1740
f5eb5588
SRRH
1741 preempt_disable();
1742 /* The update must run on the CPU that is being updated. */
1743 if (cpu_id == smp_processor_id() || !cpu_online(cpu_id))
1744 rb_update_pages(cpu_buffer);
1745 else {
1746 /*
1747 * Can not disable preemption for schedule_work_on()
1748 * on PREEMPT_RT.
1749 */
1750 preempt_enable();
83f40318
VN
1751 schedule_work_on(cpu_id,
1752 &cpu_buffer->update_pages_work);
05fdd70d 1753 wait_for_completion(&cpu_buffer->update_done);
f5eb5588
SRRH
1754 preempt_disable();
1755 }
1756 preempt_enable();
83f40318 1757
83f40318 1758 cpu_buffer->nr_pages_to_update = 0;
05fdd70d 1759 put_online_cpus();
438ced17 1760 }
7a8e76a3
SR
1761
1762 out:
659f451f
SR
1763 /*
1764 * The ring buffer resize can happen with the ring buffer
1765 * enabled, so that the update disturbs the tracing as little
1766 * as possible. But if the buffer is disabled, we do not need
1767 * to worry about that, and we can take the time to verify
1768 * that the buffer is not corrupt.
1769 */
1770 if (atomic_read(&buffer->record_disabled)) {
1771 atomic_inc(&buffer->record_disabled);
1772 /*
1773 * Even though the buffer was disabled, we must make sure
1774 * that it is truly disabled before calling rb_check_pages.
1775 * There could have been a race between checking
1776 * record_disable and incrementing it.
1777 */
1778 synchronize_sched();
1779 for_each_buffer_cpu(buffer, cpu) {
1780 cpu_buffer = buffer->buffers[cpu];
1781 rb_check_pages(cpu_buffer);
1782 }
1783 atomic_dec(&buffer->record_disabled);
1784 }
1785
7a8e76a3 1786 mutex_unlock(&buffer->mutex);
7a8e76a3
SR
1787 return size;
1788
83f40318 1789 out_err:
438ced17
VN
1790 for_each_buffer_cpu(buffer, cpu) {
1791 struct buffer_page *bpage, *tmp;
83f40318 1792
438ced17 1793 cpu_buffer = buffer->buffers[cpu];
438ced17 1794 cpu_buffer->nr_pages_to_update = 0;
83f40318 1795
438ced17
VN
1796 if (list_empty(&cpu_buffer->new_pages))
1797 continue;
83f40318 1798
438ced17
VN
1799 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1800 list) {
1801 list_del_init(&bpage->list);
1802 free_buffer_page(bpage);
1803 }
7a8e76a3 1804 }
641d2f63 1805 mutex_unlock(&buffer->mutex);
83f40318 1806 return err;
7a8e76a3 1807}
c4f50183 1808EXPORT_SYMBOL_GPL(ring_buffer_resize);
7a8e76a3 1809
750912fa
DS
1810void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1811{
1812 mutex_lock(&buffer->mutex);
1813 if (val)
1814 buffer->flags |= RB_FL_OVERWRITE;
1815 else
1816 buffer->flags &= ~RB_FL_OVERWRITE;
1817 mutex_unlock(&buffer->mutex);
1818}
1819EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1820
8789a9e7 1821static inline void *
044fa782 1822__rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
8789a9e7 1823{
044fa782 1824 return bpage->data + index;
8789a9e7
SR
1825}
1826
044fa782 1827static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
7a8e76a3 1828{
044fa782 1829 return bpage->page->data + index;
7a8e76a3
SR
1830}
1831
1832static inline struct ring_buffer_event *
d769041f 1833rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1834{
6f807acd
SR
1835 return __rb_page_index(cpu_buffer->reader_page,
1836 cpu_buffer->reader_page->read);
1837}
1838
7a8e76a3
SR
1839static inline struct ring_buffer_event *
1840rb_iter_head_event(struct ring_buffer_iter *iter)
1841{
6f807acd 1842 return __rb_page_index(iter->head_page, iter->head);
7a8e76a3
SR
1843}
1844
bf41a158
SR
1845static inline unsigned rb_page_commit(struct buffer_page *bpage)
1846{
abc9b56d 1847 return local_read(&bpage->page->commit);
bf41a158
SR
1848}
1849
25985edc 1850/* Size is determined by what has been committed */
bf41a158
SR
1851static inline unsigned rb_page_size(struct buffer_page *bpage)
1852{
1853 return rb_page_commit(bpage);
1854}
1855
1856static inline unsigned
1857rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1858{
1859 return rb_page_commit(cpu_buffer->commit_page);
1860}
1861
bf41a158
SR
1862static inline unsigned
1863rb_event_index(struct ring_buffer_event *event)
1864{
1865 unsigned long addr = (unsigned long)event;
1866
22f470f8 1867 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
bf41a158
SR
1868}
1869
0f0c85fc 1870static inline int
fa743953
SR
1871rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1872 struct ring_buffer_event *event)
bf41a158
SR
1873{
1874 unsigned long addr = (unsigned long)event;
1875 unsigned long index;
1876
1877 index = rb_event_index(event);
1878 addr &= PAGE_MASK;
1879
1880 return cpu_buffer->commit_page->page == (void *)addr &&
1881 rb_commit_index(cpu_buffer) == index;
1882}
1883
34a148bf 1884static void
bf41a158 1885rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1886{
77ae365e
SR
1887 unsigned long max_count;
1888
bf41a158
SR
1889 /*
1890 * We only race with interrupts and NMIs on this CPU.
1891 * If we own the commit event, then we can commit
1892 * all others that interrupted us, since the interruptions
1893 * are in stack format (they finish before they come
1894 * back to us). This allows us to do a simple loop to
1895 * assign the commit to the tail.
1896 */
a8ccf1d6 1897 again:
438ced17 1898 max_count = cpu_buffer->nr_pages * 100;
77ae365e 1899
bf41a158 1900 while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
77ae365e
SR
1901 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
1902 return;
1903 if (RB_WARN_ON(cpu_buffer,
1904 rb_is_reader_page(cpu_buffer->tail_page)))
1905 return;
1906 local_set(&cpu_buffer->commit_page->page->commit,
1907 rb_page_write(cpu_buffer->commit_page));
bf41a158 1908 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
abc9b56d
SR
1909 cpu_buffer->write_stamp =
1910 cpu_buffer->commit_page->page->time_stamp;
bf41a158
SR
1911 /* add barrier to keep gcc from optimizing too much */
1912 barrier();
1913 }
1914 while (rb_commit_index(cpu_buffer) !=
1915 rb_page_write(cpu_buffer->commit_page)) {
77ae365e
SR
1916
1917 local_set(&cpu_buffer->commit_page->page->commit,
1918 rb_page_write(cpu_buffer->commit_page));
1919 RB_WARN_ON(cpu_buffer,
1920 local_read(&cpu_buffer->commit_page->page->commit) &
1921 ~RB_WRITE_MASK);
bf41a158
SR
1922 barrier();
1923 }
a8ccf1d6
SR
1924
1925 /* again, keep gcc from optimizing */
1926 barrier();
1927
1928 /*
1929 * If an interrupt came in just after the first while loop
1930 * and pushed the tail page forward, we will be left with
1931 * a dangling commit that will never go forward.
1932 */
1933 if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1934 goto again;
7a8e76a3
SR
1935}
1936
d769041f 1937static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1938{
abc9b56d 1939 cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
6f807acd 1940 cpu_buffer->reader_page->read = 0;
d769041f
SR
1941}
1942
34a148bf 1943static void rb_inc_iter(struct ring_buffer_iter *iter)
d769041f
SR
1944{
1945 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1946
1947 /*
1948 * The iterator could be on the reader page (it starts there).
1949 * But the head could have moved, since the reader was
1950 * found. Check for this case and assign the iterator
1951 * to the head page instead of next.
1952 */
1953 if (iter->head_page == cpu_buffer->reader_page)
77ae365e 1954 iter->head_page = rb_set_head_page(cpu_buffer);
d769041f
SR
1955 else
1956 rb_inc_page(cpu_buffer, &iter->head_page);
1957
abc9b56d 1958 iter->read_stamp = iter->head_page->page->time_stamp;
7a8e76a3
SR
1959 iter->head = 0;
1960}
1961
69d1b839
SR
1962/* Slow path, do not inline */
1963static noinline struct ring_buffer_event *
1964rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
1965{
1966 event->type_len = RINGBUF_TYPE_TIME_EXTEND;
1967
1968 /* Not the first event on the page? */
1969 if (rb_event_index(event)) {
1970 event->time_delta = delta & TS_MASK;
1971 event->array[0] = delta >> TS_SHIFT;
1972 } else {
1973 /* nope, just zero it */
1974 event->time_delta = 0;
1975 event->array[0] = 0;
1976 }
1977
1978 return skip_time_extend(event);
1979}
1980
7a8e76a3 1981/**
01e3e710 1982 * rb_update_event - update event type and data
7a8e76a3
SR
1983 * @event: the even to update
1984 * @type: the type of event
1985 * @length: the size of the event field in the ring buffer
1986 *
1987 * Update the type and data fields of the event. The length
1988 * is the actual size that is written to the ring buffer,
1989 * and with this, we can determine what to place into the
1990 * data field.
1991 */
34a148bf 1992static void
69d1b839
SR
1993rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
1994 struct ring_buffer_event *event, unsigned length,
1995 int add_timestamp, u64 delta)
7a8e76a3 1996{
69d1b839
SR
1997 /* Only a commit updates the timestamp */
1998 if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
1999 delta = 0;
7a8e76a3 2000
69d1b839
SR
2001 /*
2002 * If we need to add a timestamp, then we
2003 * add it to the start of the resevered space.
2004 */
2005 if (unlikely(add_timestamp)) {
2006 event = rb_add_time_stamp(event, delta);
2007 length -= RB_LEN_TIME_EXTEND;
2008 delta = 0;
7a8e76a3 2009 }
69d1b839
SR
2010
2011 event->time_delta = delta;
2012 length -= RB_EVNT_HDR_SIZE;
2013 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2014 event->type_len = 0;
2015 event->array[0] = length;
2016 } else
2017 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
7a8e76a3
SR
2018}
2019
77ae365e
SR
2020/*
2021 * rb_handle_head_page - writer hit the head page
2022 *
2023 * Returns: +1 to retry page
2024 * 0 to continue
2025 * -1 on error
2026 */
2027static int
2028rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
2029 struct buffer_page *tail_page,
2030 struct buffer_page *next_page)
2031{
2032 struct buffer_page *new_head;
2033 int entries;
2034 int type;
2035 int ret;
2036
2037 entries = rb_page_entries(next_page);
2038
2039 /*
2040 * The hard part is here. We need to move the head
2041 * forward, and protect against both readers on
2042 * other CPUs and writers coming in via interrupts.
2043 */
2044 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
2045 RB_PAGE_HEAD);
2046
2047 /*
2048 * type can be one of four:
2049 * NORMAL - an interrupt already moved it for us
2050 * HEAD - we are the first to get here.
2051 * UPDATE - we are the interrupt interrupting
2052 * a current move.
2053 * MOVED - a reader on another CPU moved the next
2054 * pointer to its reader page. Give up
2055 * and try again.
2056 */
2057
2058 switch (type) {
2059 case RB_PAGE_HEAD:
2060 /*
2061 * We changed the head to UPDATE, thus
2062 * it is our responsibility to update
2063 * the counters.
2064 */
2065 local_add(entries, &cpu_buffer->overrun);
c64e148a 2066 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
77ae365e
SR
2067
2068 /*
2069 * The entries will be zeroed out when we move the
2070 * tail page.
2071 */
2072
2073 /* still more to do */
2074 break;
2075
2076 case RB_PAGE_UPDATE:
2077 /*
2078 * This is an interrupt that interrupt the
2079 * previous update. Still more to do.
2080 */
2081 break;
2082 case RB_PAGE_NORMAL:
2083 /*
2084 * An interrupt came in before the update
2085 * and processed this for us.
2086 * Nothing left to do.
2087 */
2088 return 1;
2089 case RB_PAGE_MOVED:
2090 /*
2091 * The reader is on another CPU and just did
2092 * a swap with our next_page.
2093 * Try again.
2094 */
2095 return 1;
2096 default:
2097 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2098 return -1;
2099 }
2100
2101 /*
2102 * Now that we are here, the old head pointer is
2103 * set to UPDATE. This will keep the reader from
2104 * swapping the head page with the reader page.
2105 * The reader (on another CPU) will spin till
2106 * we are finished.
2107 *
2108 * We just need to protect against interrupts
2109 * doing the job. We will set the next pointer
2110 * to HEAD. After that, we set the old pointer
2111 * to NORMAL, but only if it was HEAD before.
2112 * otherwise we are an interrupt, and only
2113 * want the outer most commit to reset it.
2114 */
2115 new_head = next_page;
2116 rb_inc_page(cpu_buffer, &new_head);
2117
2118 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2119 RB_PAGE_NORMAL);
2120
2121 /*
2122 * Valid returns are:
2123 * HEAD - an interrupt came in and already set it.
2124 * NORMAL - One of two things:
2125 * 1) We really set it.
2126 * 2) A bunch of interrupts came in and moved
2127 * the page forward again.
2128 */
2129 switch (ret) {
2130 case RB_PAGE_HEAD:
2131 case RB_PAGE_NORMAL:
2132 /* OK */
2133 break;
2134 default:
2135 RB_WARN_ON(cpu_buffer, 1);
2136 return -1;
2137 }
2138
2139 /*
2140 * It is possible that an interrupt came in,
2141 * set the head up, then more interrupts came in
2142 * and moved it again. When we get back here,
2143 * the page would have been set to NORMAL but we
2144 * just set it back to HEAD.
2145 *
2146 * How do you detect this? Well, if that happened
2147 * the tail page would have moved.
2148 */
2149 if (ret == RB_PAGE_NORMAL) {
2150 /*
2151 * If the tail had moved passed next, then we need
2152 * to reset the pointer.
2153 */
2154 if (cpu_buffer->tail_page != tail_page &&
2155 cpu_buffer->tail_page != next_page)
2156 rb_head_page_set_normal(cpu_buffer, new_head,
2157 next_page,
2158 RB_PAGE_HEAD);
2159 }
2160
2161 /*
2162 * If this was the outer most commit (the one that
2163 * changed the original pointer from HEAD to UPDATE),
2164 * then it is up to us to reset it to NORMAL.
2165 */
2166 if (type == RB_PAGE_HEAD) {
2167 ret = rb_head_page_set_normal(cpu_buffer, next_page,
2168 tail_page,
2169 RB_PAGE_UPDATE);
2170 if (RB_WARN_ON(cpu_buffer,
2171 ret != RB_PAGE_UPDATE))
2172 return -1;
2173 }
2174
2175 return 0;
2176}
2177
34a148bf 2178static unsigned rb_calculate_event_length(unsigned length)
7a8e76a3
SR
2179{
2180 struct ring_buffer_event event; /* Used only for sizeof array */
2181
2182 /* zero length can cause confusions */
2183 if (!length)
2184 length = 1;
2185
2271048d 2186 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
7a8e76a3
SR
2187 length += sizeof(event.array[0]);
2188
2189 length += RB_EVNT_HDR_SIZE;
2271048d 2190 length = ALIGN(length, RB_ARCH_ALIGNMENT);
7a8e76a3
SR
2191
2192 return length;
2193}
2194
c7b09308
SR
2195static inline void
2196rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2197 struct buffer_page *tail_page,
2198 unsigned long tail, unsigned long length)
2199{
2200 struct ring_buffer_event *event;
2201
2202 /*
2203 * Only the event that crossed the page boundary
2204 * must fill the old tail_page with padding.
2205 */
2206 if (tail >= BUF_PAGE_SIZE) {
b3230c8b
SR
2207 /*
2208 * If the page was filled, then we still need
2209 * to update the real_end. Reset it to zero
2210 * and the reader will ignore it.
2211 */
2212 if (tail == BUF_PAGE_SIZE)
2213 tail_page->real_end = 0;
2214
c7b09308
SR
2215 local_sub(length, &tail_page->write);
2216 return;
2217 }
2218
2219 event = __rb_page_index(tail_page, tail);
b0b7065b 2220 kmemcheck_annotate_bitfield(event, bitfield);
c7b09308 2221
c64e148a
VN
2222 /* account for padding bytes */
2223 local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2224
ff0ff84a
SR
2225 /*
2226 * Save the original length to the meta data.
2227 * This will be used by the reader to add lost event
2228 * counter.
2229 */
2230 tail_page->real_end = tail;
2231
c7b09308
SR
2232 /*
2233 * If this event is bigger than the minimum size, then
2234 * we need to be careful that we don't subtract the
2235 * write counter enough to allow another writer to slip
2236 * in on this page.
2237 * We put in a discarded commit instead, to make sure
2238 * that this space is not used again.
2239 *
2240 * If we are less than the minimum size, we don't need to
2241 * worry about it.
2242 */
2243 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2244 /* No room for any events */
2245
2246 /* Mark the rest of the page with padding */
2247 rb_event_set_padding(event);
2248
2249 /* Set the write back to the previous setting */
2250 local_sub(length, &tail_page->write);
2251 return;
2252 }
2253
2254 /* Put in a discarded event */
2255 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2256 event->type_len = RINGBUF_TYPE_PADDING;
2257 /* time delta must be non zero */
2258 event->time_delta = 1;
c7b09308
SR
2259
2260 /* Set write to end of buffer */
2261 length = (tail + length) - BUF_PAGE_SIZE;
2262 local_sub(length, &tail_page->write);
2263}
6634ff26 2264
747e94ae
SR
2265/*
2266 * This is the slow path, force gcc not to inline it.
2267 */
2268static noinline struct ring_buffer_event *
6634ff26
SR
2269rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2270 unsigned long length, unsigned long tail,
e8bc43e8 2271 struct buffer_page *tail_page, u64 ts)
7a8e76a3 2272{
5a50e33c 2273 struct buffer_page *commit_page = cpu_buffer->commit_page;
7a8e76a3 2274 struct ring_buffer *buffer = cpu_buffer->buffer;
77ae365e
SR
2275 struct buffer_page *next_page;
2276 int ret;
aa20ae84
SR
2277
2278 next_page = tail_page;
2279
aa20ae84
SR
2280 rb_inc_page(cpu_buffer, &next_page);
2281
aa20ae84
SR
2282 /*
2283 * If for some reason, we had an interrupt storm that made
2284 * it all the way around the buffer, bail, and warn
2285 * about it.
2286 */
2287 if (unlikely(next_page == commit_page)) {
77ae365e 2288 local_inc(&cpu_buffer->commit_overrun);
aa20ae84
SR
2289 goto out_reset;
2290 }
2291
77ae365e
SR
2292 /*
2293 * This is where the fun begins!
2294 *
2295 * We are fighting against races between a reader that
2296 * could be on another CPU trying to swap its reader
2297 * page with the buffer head.
2298 *
2299 * We are also fighting against interrupts coming in and
2300 * moving the head or tail on us as well.
2301 *
2302 * If the next page is the head page then we have filled
2303 * the buffer, unless the commit page is still on the
2304 * reader page.
2305 */
2306 if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
aa20ae84 2307
77ae365e
SR
2308 /*
2309 * If the commit is not on the reader page, then
2310 * move the header page.
2311 */
2312 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2313 /*
2314 * If we are not in overwrite mode,
2315 * this is easy, just stop here.
2316 */
884bfe89
SP
2317 if (!(buffer->flags & RB_FL_OVERWRITE)) {
2318 local_inc(&cpu_buffer->dropped_events);
77ae365e 2319 goto out_reset;
884bfe89 2320 }
77ae365e
SR
2321
2322 ret = rb_handle_head_page(cpu_buffer,
2323 tail_page,
2324 next_page);
2325 if (ret < 0)
2326 goto out_reset;
2327 if (ret)
2328 goto out_again;
2329 } else {
2330 /*
2331 * We need to be careful here too. The
2332 * commit page could still be on the reader
2333 * page. We could have a small buffer, and
2334 * have filled up the buffer with events
2335 * from interrupts and such, and wrapped.
2336 *
2337 * Note, if the tail page is also the on the
2338 * reader_page, we let it move out.
2339 */
2340 if (unlikely((cpu_buffer->commit_page !=
2341 cpu_buffer->tail_page) &&
2342 (cpu_buffer->commit_page ==
2343 cpu_buffer->reader_page))) {
2344 local_inc(&cpu_buffer->commit_overrun);
2345 goto out_reset;
2346 }
aa20ae84
SR
2347 }
2348 }
2349
77ae365e
SR
2350 ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
2351 if (ret) {
2352 /*
2353 * Nested commits always have zero deltas, so
2354 * just reread the time stamp
2355 */
e8bc43e8
SR
2356 ts = rb_time_stamp(buffer);
2357 next_page->page->time_stamp = ts;
aa20ae84
SR
2358 }
2359
77ae365e 2360 out_again:
aa20ae84 2361
77ae365e 2362 rb_reset_tail(cpu_buffer, tail_page, tail, length);
aa20ae84
SR
2363
2364 /* fail and let the caller try again */
2365 return ERR_PTR(-EAGAIN);
2366
45141d46 2367 out_reset:
6f3b3440 2368 /* reset write */
c7b09308 2369 rb_reset_tail(cpu_buffer, tail_page, tail, length);
6f3b3440 2370
bf41a158 2371 return NULL;
7a8e76a3
SR
2372}
2373
6634ff26
SR
2374static struct ring_buffer_event *
2375__rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
69d1b839
SR
2376 unsigned long length, u64 ts,
2377 u64 delta, int add_timestamp)
6634ff26 2378{
5a50e33c 2379 struct buffer_page *tail_page;
6634ff26
SR
2380 struct ring_buffer_event *event;
2381 unsigned long tail, write;
2382
69d1b839
SR
2383 /*
2384 * If the time delta since the last event is too big to
2385 * hold in the time field of the event, then we append a
2386 * TIME EXTEND event ahead of the data event.
2387 */
2388 if (unlikely(add_timestamp))
2389 length += RB_LEN_TIME_EXTEND;
2390
6634ff26
SR
2391 tail_page = cpu_buffer->tail_page;
2392 write = local_add_return(length, &tail_page->write);
77ae365e
SR
2393
2394 /* set write to only the index of the write */
2395 write &= RB_WRITE_MASK;
6634ff26
SR
2396 tail = write - length;
2397
f0bf1b24
SRRH
2398 /*
2399 * If this is the first commit on the page, then it has the same
2400 * timestamp as the page itself.
2401 */
2402 if (!tail)
2403 delta = 0;
2404
6634ff26 2405 /* See if we shot pass the end of this buffer page */
747e94ae 2406 if (unlikely(write > BUF_PAGE_SIZE))
6634ff26 2407 return rb_move_tail(cpu_buffer, length, tail,
5a50e33c 2408 tail_page, ts);
6634ff26
SR
2409
2410 /* We reserved something on the buffer */
2411
6634ff26 2412 event = __rb_page_index(tail_page, tail);
1744a21d 2413 kmemcheck_annotate_bitfield(event, bitfield);
69d1b839 2414 rb_update_event(cpu_buffer, event, length, add_timestamp, delta);
6634ff26 2415
69d1b839 2416 local_inc(&tail_page->entries);
6634ff26
SR
2417
2418 /*
fa743953
SR
2419 * If this is the first commit on the page, then update
2420 * its timestamp.
6634ff26 2421 */
fa743953 2422 if (!tail)
e8bc43e8 2423 tail_page->page->time_stamp = ts;
6634ff26 2424
c64e148a
VN
2425 /* account for these added bytes */
2426 local_add(length, &cpu_buffer->entries_bytes);
2427
6634ff26
SR
2428 return event;
2429}
2430
edd813bf
SR
2431static inline int
2432rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2433 struct ring_buffer_event *event)
2434{
2435 unsigned long new_index, old_index;
2436 struct buffer_page *bpage;
2437 unsigned long index;
2438 unsigned long addr;
2439
2440 new_index = rb_event_index(event);
69d1b839 2441 old_index = new_index + rb_event_ts_length(event);
edd813bf
SR
2442 addr = (unsigned long)event;
2443 addr &= PAGE_MASK;
2444
2445 bpage = cpu_buffer->tail_page;
2446
2447 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
77ae365e
SR
2448 unsigned long write_mask =
2449 local_read(&bpage->write) & ~RB_WRITE_MASK;
c64e148a 2450 unsigned long event_length = rb_event_length(event);
edd813bf
SR
2451 /*
2452 * This is on the tail page. It is possible that
2453 * a write could come in and move the tail page
2454 * and write to the next page. That is fine
2455 * because we just shorten what is on this page.
2456 */
77ae365e
SR
2457 old_index += write_mask;
2458 new_index += write_mask;
edd813bf 2459 index = local_cmpxchg(&bpage->write, old_index, new_index);
c64e148a
VN
2460 if (index == old_index) {
2461 /* update counters */
2462 local_sub(event_length, &cpu_buffer->entries_bytes);
edd813bf 2463 return 1;
c64e148a 2464 }
edd813bf
SR
2465 }
2466
2467 /* could not discard */
2468 return 0;
2469}
2470
fa743953
SR
2471static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2472{
2473 local_inc(&cpu_buffer->committing);
2474 local_inc(&cpu_buffer->commits);
2475}
2476
d9abde21 2477static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
fa743953
SR
2478{
2479 unsigned long commits;
2480
2481 if (RB_WARN_ON(cpu_buffer,
2482 !local_read(&cpu_buffer->committing)))
2483 return;
2484
2485 again:
2486 commits = local_read(&cpu_buffer->commits);
2487 /* synchronize with interrupts */
2488 barrier();
2489 if (local_read(&cpu_buffer->committing) == 1)
2490 rb_set_commit_to_write(cpu_buffer);
2491
2492 local_dec(&cpu_buffer->committing);
2493
2494 /* synchronize with interrupts */
2495 barrier();
2496
2497 /*
2498 * Need to account for interrupts coming in between the
2499 * updating of the commit page and the clearing of the
2500 * committing counter.
2501 */
2502 if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2503 !local_read(&cpu_buffer->committing)) {
2504 local_inc(&cpu_buffer->committing);
2505 goto again;
2506 }
2507}
2508
7a8e76a3 2509static struct ring_buffer_event *
62f0b3eb
SR
2510rb_reserve_next_event(struct ring_buffer *buffer,
2511 struct ring_buffer_per_cpu *cpu_buffer,
1cd8d735 2512 unsigned long length)
7a8e76a3
SR
2513{
2514 struct ring_buffer_event *event;
69d1b839 2515 u64 ts, delta;
818e3dd3 2516 int nr_loops = 0;
69d1b839 2517 int add_timestamp;
140ff891 2518 u64 diff;
7a8e76a3 2519
fa743953
SR
2520 rb_start_commit(cpu_buffer);
2521
85bac32c 2522#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
62f0b3eb
SR
2523 /*
2524 * Due to the ability to swap a cpu buffer from a buffer
2525 * it is possible it was swapped before we committed.
2526 * (committing stops a swap). We check for it here and
2527 * if it happened, we have to fail the write.
2528 */
2529 barrier();
2530 if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2531 local_dec(&cpu_buffer->committing);
2532 local_dec(&cpu_buffer->commits);
2533 return NULL;
2534 }
85bac32c 2535#endif
62f0b3eb 2536
be957c44 2537 length = rb_calculate_event_length(length);
bf41a158 2538 again:
69d1b839
SR
2539 add_timestamp = 0;
2540 delta = 0;
2541
818e3dd3
SR
2542 /*
2543 * We allow for interrupts to reenter here and do a trace.
2544 * If one does, it will cause this original code to loop
2545 * back here. Even with heavy interrupts happening, this
2546 * should only happen a few times in a row. If this happens
2547 * 1000 times in a row, there must be either an interrupt
2548 * storm or we have something buggy.
2549 * Bail!
2550 */
3e89c7bb 2551 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
fa743953 2552 goto out_fail;
818e3dd3 2553
6d3f1e12 2554 ts = rb_time_stamp(cpu_buffer->buffer);
140ff891 2555 diff = ts - cpu_buffer->write_stamp;
7a8e76a3 2556
140ff891
SR
2557 /* make sure this diff is calculated here */
2558 barrier();
bf41a158 2559
140ff891
SR
2560 /* Did the write stamp get updated already? */
2561 if (likely(ts >= cpu_buffer->write_stamp)) {
168b6b1d
SR
2562 delta = diff;
2563 if (unlikely(test_time_stamp(delta))) {
31274d72
JO
2564 int local_clock_stable = 1;
2565#ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2566 local_clock_stable = sched_clock_stable;
2567#endif
69d1b839 2568 WARN_ONCE(delta > (1ULL << 59),
31274d72 2569 KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
69d1b839
SR
2570 (unsigned long long)delta,
2571 (unsigned long long)ts,
31274d72
JO
2572 (unsigned long long)cpu_buffer->write_stamp,
2573 local_clock_stable ? "" :
2574 "If you just came from a suspend/resume,\n"
2575 "please switch to the trace global clock:\n"
2576 " echo global > /sys/kernel/debug/tracing/trace_clock\n");
69d1b839 2577 add_timestamp = 1;
7a8e76a3 2578 }
168b6b1d 2579 }
7a8e76a3 2580
69d1b839
SR
2581 event = __rb_reserve_next(cpu_buffer, length, ts,
2582 delta, add_timestamp);
168b6b1d 2583 if (unlikely(PTR_ERR(event) == -EAGAIN))
bf41a158
SR
2584 goto again;
2585
fa743953
SR
2586 if (!event)
2587 goto out_fail;
7a8e76a3 2588
7a8e76a3 2589 return event;
fa743953
SR
2590
2591 out_fail:
2592 rb_end_commit(cpu_buffer);
2593 return NULL;
7a8e76a3
SR
2594}
2595
1155de47
PM
2596#ifdef CONFIG_TRACING
2597
567cd4da
SR
2598/*
2599 * The lock and unlock are done within a preempt disable section.
2600 * The current_context per_cpu variable can only be modified
2601 * by the current task between lock and unlock. But it can
2602 * be modified more than once via an interrupt. To pass this
2603 * information from the lock to the unlock without having to
2604 * access the 'in_interrupt()' functions again (which do show
2605 * a bit of overhead in something as critical as function tracing,
2606 * we use a bitmask trick.
2607 *
2608 * bit 0 = NMI context
2609 * bit 1 = IRQ context
2610 * bit 2 = SoftIRQ context
2611 * bit 3 = normal context.
2612 *
2613 * This works because this is the order of contexts that can
2614 * preempt other contexts. A SoftIRQ never preempts an IRQ
2615 * context.
2616 *
2617 * When the context is determined, the corresponding bit is
2618 * checked and set (if it was set, then a recursion of that context
2619 * happened).
2620 *
2621 * On unlock, we need to clear this bit. To do so, just subtract
2622 * 1 from the current_context and AND it to itself.
2623 *
2624 * (binary)
2625 * 101 - 1 = 100
2626 * 101 & 100 = 100 (clearing bit zero)
2627 *
2628 * 1010 - 1 = 1001
2629 * 1010 & 1001 = 1000 (clearing bit 1)
2630 *
2631 * The least significant bit can be cleared this way, and it
2632 * just so happens that it is the same bit corresponding to
2633 * the current context.
2634 */
2635static DEFINE_PER_CPU(unsigned int, current_context);
261842b7 2636
567cd4da 2637static __always_inline int trace_recursive_lock(void)
261842b7 2638{
567cd4da
SR
2639 unsigned int val = this_cpu_read(current_context);
2640 int bit;
d9abde21 2641
567cd4da
SR
2642 if (in_interrupt()) {
2643 if (in_nmi())
2644 bit = 0;
2645 else if (in_irq())
2646 bit = 1;
2647 else
2648 bit = 2;
2649 } else
2650 bit = 3;
d9abde21 2651
567cd4da
SR
2652 if (unlikely(val & (1 << bit)))
2653 return 1;
d9abde21 2654
567cd4da
SR
2655 val |= (1 << bit);
2656 this_cpu_write(current_context, val);
d9abde21 2657
567cd4da 2658 return 0;
261842b7
SR
2659}
2660
567cd4da 2661static __always_inline void trace_recursive_unlock(void)
261842b7 2662{
567cd4da 2663 unsigned int val = this_cpu_read(current_context);
261842b7 2664
567cd4da
SR
2665 val--;
2666 val &= this_cpu_read(current_context);
2667 this_cpu_write(current_context, val);
261842b7
SR
2668}
2669
1155de47
PM
2670#else
2671
2672#define trace_recursive_lock() (0)
2673#define trace_recursive_unlock() do { } while (0)
2674
2675#endif
2676
7a8e76a3
SR
2677/**
2678 * ring_buffer_lock_reserve - reserve a part of the buffer
2679 * @buffer: the ring buffer to reserve from
2680 * @length: the length of the data to reserve (excluding event header)
7a8e76a3
SR
2681 *
2682 * Returns a reseverd event on the ring buffer to copy directly to.
2683 * The user of this interface will need to get the body to write into
2684 * and can use the ring_buffer_event_data() interface.
2685 *
2686 * The length is the length of the data needed, not the event length
2687 * which also includes the event header.
2688 *
2689 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2690 * If NULL is returned, then nothing has been allocated or locked.
2691 */
2692struct ring_buffer_event *
0a987751 2693ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
7a8e76a3
SR
2694{
2695 struct ring_buffer_per_cpu *cpu_buffer;
2696 struct ring_buffer_event *event;
5168ae50 2697 int cpu;
7a8e76a3 2698
033601a3 2699 if (ring_buffer_flags != RB_BUFFERS_ON)
a3583244
SR
2700 return NULL;
2701
bf41a158 2702 /* If we are tracing schedule, we don't want to recurse */
5168ae50 2703 preempt_disable_notrace();
bf41a158 2704
52fbe9cd
LJ
2705 if (atomic_read(&buffer->record_disabled))
2706 goto out_nocheck;
2707
261842b7
SR
2708 if (trace_recursive_lock())
2709 goto out_nocheck;
2710
7a8e76a3
SR
2711 cpu = raw_smp_processor_id();
2712
9e01c1b7 2713 if (!cpumask_test_cpu(cpu, buffer->cpumask))
d769041f 2714 goto out;
7a8e76a3
SR
2715
2716 cpu_buffer = buffer->buffers[cpu];
7a8e76a3
SR
2717
2718 if (atomic_read(&cpu_buffer->record_disabled))
d769041f 2719 goto out;
7a8e76a3 2720
be957c44 2721 if (length > BUF_MAX_DATA_SIZE)
bf41a158 2722 goto out;
7a8e76a3 2723
62f0b3eb 2724 event = rb_reserve_next_event(buffer, cpu_buffer, length);
7a8e76a3 2725 if (!event)
d769041f 2726 goto out;
7a8e76a3
SR
2727
2728 return event;
2729
d769041f 2730 out:
261842b7
SR
2731 trace_recursive_unlock();
2732
2733 out_nocheck:
5168ae50 2734 preempt_enable_notrace();
7a8e76a3
SR
2735 return NULL;
2736}
c4f50183 2737EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
7a8e76a3 2738
a1863c21
SR
2739static void
2740rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
7a8e76a3
SR
2741 struct ring_buffer_event *event)
2742{
69d1b839
SR
2743 u64 delta;
2744
fa743953
SR
2745 /*
2746 * The event first in the commit queue updates the
2747 * time stamp.
2748 */
69d1b839
SR
2749 if (rb_event_is_commit(cpu_buffer, event)) {
2750 /*
2751 * A commit event that is first on a page
2752 * updates the write timestamp with the page stamp
2753 */
2754 if (!rb_event_index(event))
2755 cpu_buffer->write_stamp =
2756 cpu_buffer->commit_page->page->time_stamp;
2757 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2758 delta = event->array[0];
2759 delta <<= TS_SHIFT;
2760 delta += event->time_delta;
2761 cpu_buffer->write_stamp += delta;
2762 } else
2763 cpu_buffer->write_stamp += event->time_delta;
2764 }
a1863c21 2765}
bf41a158 2766
a1863c21
SR
2767static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2768 struct ring_buffer_event *event)
2769{
2770 local_inc(&cpu_buffer->entries);
2771 rb_update_write_stamp(cpu_buffer, event);
fa743953 2772 rb_end_commit(cpu_buffer);
7a8e76a3
SR
2773}
2774
15693458
SRRH
2775static __always_inline void
2776rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2777{
2778 if (buffer->irq_work.waiters_pending) {
2779 buffer->irq_work.waiters_pending = false;
2780 /* irq_work_queue() supplies it's own memory barriers */
2781 irq_work_queue(&buffer->irq_work.work);
2782 }
2783
2784 if (cpu_buffer->irq_work.waiters_pending) {
2785 cpu_buffer->irq_work.waiters_pending = false;
2786 /* irq_work_queue() supplies it's own memory barriers */
2787 irq_work_queue(&cpu_buffer->irq_work.work);
2788 }
2789}
2790
7a8e76a3
SR
2791/**
2792 * ring_buffer_unlock_commit - commit a reserved
2793 * @buffer: The buffer to commit to
2794 * @event: The event pointer to commit.
7a8e76a3
SR
2795 *
2796 * This commits the data to the ring buffer, and releases any locks held.
2797 *
2798 * Must be paired with ring_buffer_lock_reserve.
2799 */
2800int ring_buffer_unlock_commit(struct ring_buffer *buffer,
0a987751 2801 struct ring_buffer_event *event)
7a8e76a3
SR
2802{
2803 struct ring_buffer_per_cpu *cpu_buffer;
2804 int cpu = raw_smp_processor_id();
2805
2806 cpu_buffer = buffer->buffers[cpu];
2807
7a8e76a3
SR
2808 rb_commit(cpu_buffer, event);
2809
15693458
SRRH
2810 rb_wakeups(buffer, cpu_buffer);
2811
261842b7
SR
2812 trace_recursive_unlock();
2813
5168ae50 2814 preempt_enable_notrace();
7a8e76a3
SR
2815
2816 return 0;
2817}
c4f50183 2818EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
7a8e76a3 2819
f3b9aae1
FW
2820static inline void rb_event_discard(struct ring_buffer_event *event)
2821{
69d1b839
SR
2822 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2823 event = skip_time_extend(event);
2824
334d4169
LJ
2825 /* array[0] holds the actual length for the discarded event */
2826 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2827 event->type_len = RINGBUF_TYPE_PADDING;
f3b9aae1
FW
2828 /* time delta must be non zero */
2829 if (!event->time_delta)
2830 event->time_delta = 1;
2831}
2832
a1863c21
SR
2833/*
2834 * Decrement the entries to the page that an event is on.
2835 * The event does not even need to exist, only the pointer
2836 * to the page it is on. This may only be called before the commit
2837 * takes place.
2838 */
2839static inline void
2840rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2841 struct ring_buffer_event *event)
2842{
2843 unsigned long addr = (unsigned long)event;
2844 struct buffer_page *bpage = cpu_buffer->commit_page;
2845 struct buffer_page *start;
2846
2847 addr &= PAGE_MASK;
2848
2849 /* Do the likely case first */
2850 if (likely(bpage->page == (void *)addr)) {
2851 local_dec(&bpage->entries);
2852 return;
2853 }
2854
2855 /*
2856 * Because the commit page may be on the reader page we
2857 * start with the next page and check the end loop there.
2858 */
2859 rb_inc_page(cpu_buffer, &bpage);
2860 start = bpage;
2861 do {
2862 if (bpage->page == (void *)addr) {
2863 local_dec(&bpage->entries);
2864 return;
2865 }
2866 rb_inc_page(cpu_buffer, &bpage);
2867 } while (bpage != start);
2868
2869 /* commit not part of this buffer?? */
2870 RB_WARN_ON(cpu_buffer, 1);
2871}
2872
fa1b47dd
SR
2873/**
2874 * ring_buffer_commit_discard - discard an event that has not been committed
2875 * @buffer: the ring buffer
2876 * @event: non committed event to discard
2877 *
dc892f73
SR
2878 * Sometimes an event that is in the ring buffer needs to be ignored.
2879 * This function lets the user discard an event in the ring buffer
2880 * and then that event will not be read later.
2881 *
2882 * This function only works if it is called before the the item has been
2883 * committed. It will try to free the event from the ring buffer
fa1b47dd
SR
2884 * if another event has not been added behind it.
2885 *
2886 * If another event has been added behind it, it will set the event
2887 * up as discarded, and perform the commit.
2888 *
2889 * If this function is called, do not call ring_buffer_unlock_commit on
2890 * the event.
2891 */
2892void ring_buffer_discard_commit(struct ring_buffer *buffer,
2893 struct ring_buffer_event *event)
2894{
2895 struct ring_buffer_per_cpu *cpu_buffer;
fa1b47dd
SR
2896 int cpu;
2897
2898 /* The event is discarded regardless */
f3b9aae1 2899 rb_event_discard(event);
fa1b47dd 2900
fa743953
SR
2901 cpu = smp_processor_id();
2902 cpu_buffer = buffer->buffers[cpu];
2903
fa1b47dd
SR
2904 /*
2905 * This must only be called if the event has not been
2906 * committed yet. Thus we can assume that preemption
2907 * is still disabled.
2908 */
fa743953 2909 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
fa1b47dd 2910
a1863c21 2911 rb_decrement_entry(cpu_buffer, event);
0f2541d2 2912 if (rb_try_to_discard(cpu_buffer, event))
edd813bf 2913 goto out;
fa1b47dd
SR
2914
2915 /*
2916 * The commit is still visible by the reader, so we
a1863c21 2917 * must still update the timestamp.
fa1b47dd 2918 */
a1863c21 2919 rb_update_write_stamp(cpu_buffer, event);
fa1b47dd 2920 out:
fa743953 2921 rb_end_commit(cpu_buffer);
fa1b47dd 2922
f3b9aae1
FW
2923 trace_recursive_unlock();
2924
5168ae50 2925 preempt_enable_notrace();
fa1b47dd
SR
2926
2927}
2928EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2929
7a8e76a3
SR
2930/**
2931 * ring_buffer_write - write data to the buffer without reserving
2932 * @buffer: The ring buffer to write to.
2933 * @length: The length of the data being written (excluding the event header)
2934 * @data: The data to write to the buffer.
2935 *
2936 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2937 * one function. If you already have the data to write to the buffer, it
2938 * may be easier to simply call this function.
2939 *
2940 * Note, like ring_buffer_lock_reserve, the length is the length of the data
2941 * and not the length of the event which would hold the header.
2942 */
2943int ring_buffer_write(struct ring_buffer *buffer,
01e3e710
DS
2944 unsigned long length,
2945 void *data)
7a8e76a3
SR
2946{
2947 struct ring_buffer_per_cpu *cpu_buffer;
2948 struct ring_buffer_event *event;
7a8e76a3
SR
2949 void *body;
2950 int ret = -EBUSY;
5168ae50 2951 int cpu;
7a8e76a3 2952
033601a3 2953 if (ring_buffer_flags != RB_BUFFERS_ON)
a3583244
SR
2954 return -EBUSY;
2955
5168ae50 2956 preempt_disable_notrace();
bf41a158 2957
52fbe9cd
LJ
2958 if (atomic_read(&buffer->record_disabled))
2959 goto out;
2960
7a8e76a3
SR
2961 cpu = raw_smp_processor_id();
2962
9e01c1b7 2963 if (!cpumask_test_cpu(cpu, buffer->cpumask))
d769041f 2964 goto out;
7a8e76a3
SR
2965
2966 cpu_buffer = buffer->buffers[cpu];
7a8e76a3
SR
2967
2968 if (atomic_read(&cpu_buffer->record_disabled))
2969 goto out;
2970
be957c44
SR
2971 if (length > BUF_MAX_DATA_SIZE)
2972 goto out;
2973
62f0b3eb 2974 event = rb_reserve_next_event(buffer, cpu_buffer, length);
7a8e76a3
SR
2975 if (!event)
2976 goto out;
2977
2978 body = rb_event_data(event);
2979
2980 memcpy(body, data, length);
2981
2982 rb_commit(cpu_buffer, event);
2983
15693458
SRRH
2984 rb_wakeups(buffer, cpu_buffer);
2985
7a8e76a3
SR
2986 ret = 0;
2987 out:
5168ae50 2988 preempt_enable_notrace();
7a8e76a3
SR
2989
2990 return ret;
2991}
c4f50183 2992EXPORT_SYMBOL_GPL(ring_buffer_write);
7a8e76a3 2993
34a148bf 2994static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
bf41a158
SR
2995{
2996 struct buffer_page *reader = cpu_buffer->reader_page;
77ae365e 2997 struct buffer_page *head = rb_set_head_page(cpu_buffer);
bf41a158
SR
2998 struct buffer_page *commit = cpu_buffer->commit_page;
2999
77ae365e
SR
3000 /* In case of error, head will be NULL */
3001 if (unlikely(!head))
3002 return 1;
3003
bf41a158
SR
3004 return reader->read == rb_page_commit(reader) &&
3005 (commit == reader ||
3006 (commit == head &&
3007 head->read == rb_page_commit(commit)));
3008}
3009
7a8e76a3
SR
3010/**
3011 * ring_buffer_record_disable - stop all writes into the buffer
3012 * @buffer: The ring buffer to stop writes to.
3013 *
3014 * This prevents all writes to the buffer. Any attempt to write
3015 * to the buffer after this will fail and return NULL.
3016 *
3017 * The caller should call synchronize_sched() after this.
3018 */
3019void ring_buffer_record_disable(struct ring_buffer *buffer)
3020{
3021 atomic_inc(&buffer->record_disabled);
3022}
c4f50183 3023EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
7a8e76a3
SR
3024
3025/**
3026 * ring_buffer_record_enable - enable writes to the buffer
3027 * @buffer: The ring buffer to enable writes
3028 *
3029 * Note, multiple disables will need the same number of enables
c41b20e7 3030 * to truly enable the writing (much like preempt_disable).
7a8e76a3
SR
3031 */
3032void ring_buffer_record_enable(struct ring_buffer *buffer)
3033{
3034 atomic_dec(&buffer->record_disabled);
3035}
c4f50183 3036EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
7a8e76a3 3037
499e5470
SR
3038/**
3039 * ring_buffer_record_off - stop all writes into the buffer
3040 * @buffer: The ring buffer to stop writes to.
3041 *
3042 * This prevents all writes to the buffer. Any attempt to write
3043 * to the buffer after this will fail and return NULL.
3044 *
3045 * This is different than ring_buffer_record_disable() as
87abb3b1 3046 * it works like an on/off switch, where as the disable() version
499e5470
SR
3047 * must be paired with a enable().
3048 */
3049void ring_buffer_record_off(struct ring_buffer *buffer)
3050{
3051 unsigned int rd;
3052 unsigned int new_rd;
3053
3054 do {
3055 rd = atomic_read(&buffer->record_disabled);
3056 new_rd = rd | RB_BUFFER_OFF;
3057 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3058}
3059EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3060
3061/**
3062 * ring_buffer_record_on - restart writes into the buffer
3063 * @buffer: The ring buffer to start writes to.
3064 *
3065 * This enables all writes to the buffer that was disabled by
3066 * ring_buffer_record_off().
3067 *
3068 * This is different than ring_buffer_record_enable() as
87abb3b1 3069 * it works like an on/off switch, where as the enable() version
499e5470
SR
3070 * must be paired with a disable().
3071 */
3072void ring_buffer_record_on(struct ring_buffer *buffer)
3073{
3074 unsigned int rd;
3075 unsigned int new_rd;
3076
3077 do {
3078 rd = atomic_read(&buffer->record_disabled);
3079 new_rd = rd & ~RB_BUFFER_OFF;
3080 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3081}
3082EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3083
3084/**
3085 * ring_buffer_record_is_on - return true if the ring buffer can write
3086 * @buffer: The ring buffer to see if write is enabled
3087 *
3088 * Returns true if the ring buffer is in a state that it accepts writes.
3089 */
3090int ring_buffer_record_is_on(struct ring_buffer *buffer)
3091{
3092 return !atomic_read(&buffer->record_disabled);
3093}
3094
7a8e76a3
SR
3095/**
3096 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3097 * @buffer: The ring buffer to stop writes to.
3098 * @cpu: The CPU buffer to stop
3099 *
3100 * This prevents all writes to the buffer. Any attempt to write
3101 * to the buffer after this will fail and return NULL.
3102 *
3103 * The caller should call synchronize_sched() after this.
3104 */
3105void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
3106{
3107 struct ring_buffer_per_cpu *cpu_buffer;
3108
9e01c1b7 3109 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3110 return;
7a8e76a3
SR
3111
3112 cpu_buffer = buffer->buffers[cpu];
3113 atomic_inc(&cpu_buffer->record_disabled);
3114}
c4f50183 3115EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
7a8e76a3
SR
3116
3117/**
3118 * ring_buffer_record_enable_cpu - enable writes to the buffer
3119 * @buffer: The ring buffer to enable writes
3120 * @cpu: The CPU to enable.
3121 *
3122 * Note, multiple disables will need the same number of enables
c41b20e7 3123 * to truly enable the writing (much like preempt_disable).
7a8e76a3
SR
3124 */
3125void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
3126{
3127 struct ring_buffer_per_cpu *cpu_buffer;
3128
9e01c1b7 3129 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3130 return;
7a8e76a3
SR
3131
3132 cpu_buffer = buffer->buffers[cpu];
3133 atomic_dec(&cpu_buffer->record_disabled);
3134}
c4f50183 3135EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
7a8e76a3 3136
f6195aa0
SR
3137/*
3138 * The total entries in the ring buffer is the running counter
3139 * of entries entered into the ring buffer, minus the sum of
3140 * the entries read from the ring buffer and the number of
3141 * entries that were overwritten.
3142 */
3143static inline unsigned long
3144rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3145{
3146 return local_read(&cpu_buffer->entries) -
3147 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3148}
3149
c64e148a
VN
3150/**
3151 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3152 * @buffer: The ring buffer
3153 * @cpu: The per CPU buffer to read from.
3154 */
50ecf2c3 3155u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
c64e148a
VN
3156{
3157 unsigned long flags;
3158 struct ring_buffer_per_cpu *cpu_buffer;
3159 struct buffer_page *bpage;
da830e58 3160 u64 ret = 0;
c64e148a
VN
3161
3162 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3163 return 0;
3164
3165 cpu_buffer = buffer->buffers[cpu];
7115e3fc 3166 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
c64e148a
VN
3167 /*
3168 * if the tail is on reader_page, oldest time stamp is on the reader
3169 * page
3170 */
3171 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3172 bpage = cpu_buffer->reader_page;
3173 else
3174 bpage = rb_set_head_page(cpu_buffer);
54f7be5b
SR
3175 if (bpage)
3176 ret = bpage->page->time_stamp;
7115e3fc 3177 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
c64e148a
VN
3178
3179 return ret;
3180}
3181EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3182
3183/**
3184 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3185 * @buffer: The ring buffer
3186 * @cpu: The per CPU buffer to read from.
3187 */
3188unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
3189{
3190 struct ring_buffer_per_cpu *cpu_buffer;
3191 unsigned long ret;
3192
3193 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3194 return 0;
3195
3196 cpu_buffer = buffer->buffers[cpu];
3197 ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3198
3199 return ret;
3200}
3201EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3202
7a8e76a3
SR
3203/**
3204 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3205 * @buffer: The ring buffer
3206 * @cpu: The per CPU buffer to get the entries from.
3207 */
3208unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
3209{
3210 struct ring_buffer_per_cpu *cpu_buffer;
3211
9e01c1b7 3212 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3213 return 0;
7a8e76a3
SR
3214
3215 cpu_buffer = buffer->buffers[cpu];
554f786e 3216
f6195aa0 3217 return rb_num_of_entries(cpu_buffer);
7a8e76a3 3218}
c4f50183 3219EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
7a8e76a3
SR
3220
3221/**
884bfe89
SP
3222 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3223 * buffer wrapping around (only if RB_FL_OVERWRITE is on).
7a8e76a3
SR
3224 * @buffer: The ring buffer
3225 * @cpu: The per CPU buffer to get the number of overruns from
3226 */
3227unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
3228{
3229 struct ring_buffer_per_cpu *cpu_buffer;
8aabee57 3230 unsigned long ret;
7a8e76a3 3231
9e01c1b7 3232 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3233 return 0;
7a8e76a3
SR
3234
3235 cpu_buffer = buffer->buffers[cpu];
77ae365e 3236 ret = local_read(&cpu_buffer->overrun);
554f786e
SR
3237
3238 return ret;
7a8e76a3 3239}
c4f50183 3240EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
7a8e76a3 3241
f0d2c681 3242/**
884bfe89
SP
3243 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3244 * commits failing due to the buffer wrapping around while there are uncommitted
3245 * events, such as during an interrupt storm.
f0d2c681
SR
3246 * @buffer: The ring buffer
3247 * @cpu: The per CPU buffer to get the number of overruns from
3248 */
3249unsigned long
3250ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3251{
3252 struct ring_buffer_per_cpu *cpu_buffer;
3253 unsigned long ret;
3254
3255 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3256 return 0;
3257
3258 cpu_buffer = buffer->buffers[cpu];
77ae365e 3259 ret = local_read(&cpu_buffer->commit_overrun);
f0d2c681
SR
3260
3261 return ret;
3262}
3263EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3264
884bfe89
SP
3265/**
3266 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3267 * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3268 * @buffer: The ring buffer
3269 * @cpu: The per CPU buffer to get the number of overruns from
3270 */
3271unsigned long
3272ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu)
3273{
3274 struct ring_buffer_per_cpu *cpu_buffer;
3275 unsigned long ret;
3276
3277 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3278 return 0;
3279
3280 cpu_buffer = buffer->buffers[cpu];
3281 ret = local_read(&cpu_buffer->dropped_events);
3282
3283 return ret;
3284}
3285EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3286
ad964704
SRRH
3287/**
3288 * ring_buffer_read_events_cpu - get the number of events successfully read
3289 * @buffer: The ring buffer
3290 * @cpu: The per CPU buffer to get the number of events read
3291 */
3292unsigned long
3293ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu)
3294{
3295 struct ring_buffer_per_cpu *cpu_buffer;
3296
3297 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3298 return 0;
3299
3300 cpu_buffer = buffer->buffers[cpu];
3301 return cpu_buffer->read;
3302}
3303EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3304
7a8e76a3
SR
3305/**
3306 * ring_buffer_entries - get the number of entries in a buffer
3307 * @buffer: The ring buffer
3308 *
3309 * Returns the total number of entries in the ring buffer
3310 * (all CPU entries)
3311 */
3312unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3313{
3314 struct ring_buffer_per_cpu *cpu_buffer;
3315 unsigned long entries = 0;
3316 int cpu;
3317
3318 /* if you care about this being correct, lock the buffer */
3319 for_each_buffer_cpu(buffer, cpu) {
3320 cpu_buffer = buffer->buffers[cpu];
f6195aa0 3321 entries += rb_num_of_entries(cpu_buffer);
7a8e76a3
SR
3322 }
3323
3324 return entries;
3325}
c4f50183 3326EXPORT_SYMBOL_GPL(ring_buffer_entries);
7a8e76a3
SR
3327
3328/**
67b394f7 3329 * ring_buffer_overruns - get the number of overruns in buffer
7a8e76a3
SR
3330 * @buffer: The ring buffer
3331 *
3332 * Returns the total number of overruns in the ring buffer
3333 * (all CPU entries)
3334 */
3335unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3336{
3337 struct ring_buffer_per_cpu *cpu_buffer;
3338 unsigned long overruns = 0;
3339 int cpu;
3340
3341 /* if you care about this being correct, lock the buffer */
3342 for_each_buffer_cpu(buffer, cpu) {
3343 cpu_buffer = buffer->buffers[cpu];
77ae365e 3344 overruns += local_read(&cpu_buffer->overrun);
7a8e76a3
SR
3345 }
3346
3347 return overruns;
3348}
c4f50183 3349EXPORT_SYMBOL_GPL(ring_buffer_overruns);
7a8e76a3 3350
642edba5 3351static void rb_iter_reset(struct ring_buffer_iter *iter)
7a8e76a3
SR
3352{
3353 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3354
d769041f
SR
3355 /* Iterator usage is expected to have record disabled */
3356 if (list_empty(&cpu_buffer->reader_page->list)) {
77ae365e
SR
3357 iter->head_page = rb_set_head_page(cpu_buffer);
3358 if (unlikely(!iter->head_page))
3359 return;
3360 iter->head = iter->head_page->read;
d769041f
SR
3361 } else {
3362 iter->head_page = cpu_buffer->reader_page;
6f807acd 3363 iter->head = cpu_buffer->reader_page->read;
d769041f
SR
3364 }
3365 if (iter->head)
3366 iter->read_stamp = cpu_buffer->read_stamp;
3367 else
abc9b56d 3368 iter->read_stamp = iter->head_page->page->time_stamp;
492a74f4
SR
3369 iter->cache_reader_page = cpu_buffer->reader_page;
3370 iter->cache_read = cpu_buffer->read;
642edba5 3371}
f83c9d0f 3372
642edba5
SR
3373/**
3374 * ring_buffer_iter_reset - reset an iterator
3375 * @iter: The iterator to reset
3376 *
3377 * Resets the iterator, so that it will start from the beginning
3378 * again.
3379 */
3380void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3381{
554f786e 3382 struct ring_buffer_per_cpu *cpu_buffer;
642edba5
SR
3383 unsigned long flags;
3384
554f786e
SR
3385 if (!iter)
3386 return;
3387
3388 cpu_buffer = iter->cpu_buffer;
3389
5389f6fa 3390 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
642edba5 3391 rb_iter_reset(iter);
5389f6fa 3392 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3 3393}
c4f50183 3394EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
7a8e76a3
SR
3395
3396/**
3397 * ring_buffer_iter_empty - check if an iterator has no more to read
3398 * @iter: The iterator to check
3399 */
3400int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3401{
3402 struct ring_buffer_per_cpu *cpu_buffer;
3403
3404 cpu_buffer = iter->cpu_buffer;
3405
bf41a158
SR
3406 return iter->head_page == cpu_buffer->commit_page &&
3407 iter->head == rb_commit_index(cpu_buffer);
7a8e76a3 3408}
c4f50183 3409EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
7a8e76a3
SR
3410
3411static void
3412rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3413 struct ring_buffer_event *event)
3414{
3415 u64 delta;
3416
334d4169 3417 switch (event->type_len) {
7a8e76a3
SR
3418 case RINGBUF_TYPE_PADDING:
3419 return;
3420
3421 case RINGBUF_TYPE_TIME_EXTEND:
3422 delta = event->array[0];
3423 delta <<= TS_SHIFT;
3424 delta += event->time_delta;
3425 cpu_buffer->read_stamp += delta;
3426 return;
3427
3428 case RINGBUF_TYPE_TIME_STAMP:
3429 /* FIXME: not implemented */
3430 return;
3431
3432 case RINGBUF_TYPE_DATA:
3433 cpu_buffer->read_stamp += event->time_delta;
3434 return;
3435
3436 default:
3437 BUG();
3438 }
3439 return;
3440}
3441
3442static void
3443rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3444 struct ring_buffer_event *event)
3445{
3446 u64 delta;
3447
334d4169 3448 switch (event->type_len) {
7a8e76a3
SR
3449 case RINGBUF_TYPE_PADDING:
3450 return;
3451
3452 case RINGBUF_TYPE_TIME_EXTEND:
3453 delta = event->array[0];
3454 delta <<= TS_SHIFT;
3455 delta += event->time_delta;
3456 iter->read_stamp += delta;
3457 return;
3458
3459 case RINGBUF_TYPE_TIME_STAMP:
3460 /* FIXME: not implemented */
3461 return;
3462
3463 case RINGBUF_TYPE_DATA:
3464 iter->read_stamp += event->time_delta;
3465 return;
3466
3467 default:
3468 BUG();
3469 }
3470 return;
3471}
3472
d769041f
SR
3473static struct buffer_page *
3474rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 3475{
d769041f 3476 struct buffer_page *reader = NULL;
66a8cb95 3477 unsigned long overwrite;
d769041f 3478 unsigned long flags;
818e3dd3 3479 int nr_loops = 0;
77ae365e 3480 int ret;
d769041f 3481
3e03fb7f 3482 local_irq_save(flags);
0199c4e6 3483 arch_spin_lock(&cpu_buffer->lock);
d769041f
SR
3484
3485 again:
818e3dd3
SR
3486 /*
3487 * This should normally only loop twice. But because the
3488 * start of the reader inserts an empty page, it causes
3489 * a case where we will loop three times. There should be no
3490 * reason to loop four times (that I know of).
3491 */
3e89c7bb 3492 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
818e3dd3
SR
3493 reader = NULL;
3494 goto out;
3495 }
3496
d769041f
SR
3497 reader = cpu_buffer->reader_page;
3498
3499 /* If there's more to read, return this page */
bf41a158 3500 if (cpu_buffer->reader_page->read < rb_page_size(reader))
d769041f
SR
3501 goto out;
3502
3503 /* Never should we have an index greater than the size */
3e89c7bb
SR
3504 if (RB_WARN_ON(cpu_buffer,
3505 cpu_buffer->reader_page->read > rb_page_size(reader)))
3506 goto out;
d769041f
SR
3507
3508 /* check if we caught up to the tail */
3509 reader = NULL;
bf41a158 3510 if (cpu_buffer->commit_page == cpu_buffer->reader_page)
d769041f 3511 goto out;
7a8e76a3 3512
a5fb8331
SR
3513 /* Don't bother swapping if the ring buffer is empty */
3514 if (rb_num_of_entries(cpu_buffer) == 0)
3515 goto out;
3516
7a8e76a3 3517 /*
d769041f 3518 * Reset the reader page to size zero.
7a8e76a3 3519 */
77ae365e
SR
3520 local_set(&cpu_buffer->reader_page->write, 0);
3521 local_set(&cpu_buffer->reader_page->entries, 0);
3522 local_set(&cpu_buffer->reader_page->page->commit, 0);
ff0ff84a 3523 cpu_buffer->reader_page->real_end = 0;
7a8e76a3 3524
77ae365e
SR
3525 spin:
3526 /*
3527 * Splice the empty reader page into the list around the head.
3528 */
3529 reader = rb_set_head_page(cpu_buffer);
54f7be5b
SR
3530 if (!reader)
3531 goto out;
0e1ff5d7 3532 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
d769041f 3533 cpu_buffer->reader_page->list.prev = reader->list.prev;
bf41a158 3534
3adc54fa
SR
3535 /*
3536 * cpu_buffer->pages just needs to point to the buffer, it
3537 * has no specific buffer page to point to. Lets move it out
25985edc 3538 * of our way so we don't accidentally swap it.
3adc54fa
SR
3539 */
3540 cpu_buffer->pages = reader->list.prev;
3541
77ae365e
SR
3542 /* The reader page will be pointing to the new head */
3543 rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
7a8e76a3 3544
66a8cb95
SR
3545 /*
3546 * We want to make sure we read the overruns after we set up our
3547 * pointers to the next object. The writer side does a
3548 * cmpxchg to cross pages which acts as the mb on the writer
3549 * side. Note, the reader will constantly fail the swap
3550 * while the writer is updating the pointers, so this
3551 * guarantees that the overwrite recorded here is the one we
3552 * want to compare with the last_overrun.
3553 */
3554 smp_mb();
3555 overwrite = local_read(&(cpu_buffer->overrun));
3556
77ae365e
SR
3557 /*
3558 * Here's the tricky part.
3559 *
3560 * We need to move the pointer past the header page.
3561 * But we can only do that if a writer is not currently
3562 * moving it. The page before the header page has the
3563 * flag bit '1' set if it is pointing to the page we want.
3564 * but if the writer is in the process of moving it
3565 * than it will be '2' or already moved '0'.
3566 */
3567
3568 ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
7a8e76a3
SR
3569
3570 /*
77ae365e 3571 * If we did not convert it, then we must try again.
7a8e76a3 3572 */
77ae365e
SR
3573 if (!ret)
3574 goto spin;
7a8e76a3 3575
77ae365e
SR
3576 /*
3577 * Yeah! We succeeded in replacing the page.
3578 *
3579 * Now make the new head point back to the reader page.
3580 */
5ded3dc6 3581 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
77ae365e 3582 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
d769041f
SR
3583
3584 /* Finally update the reader page to the new head */
3585 cpu_buffer->reader_page = reader;
3586 rb_reset_reader_page(cpu_buffer);
3587
66a8cb95
SR
3588 if (overwrite != cpu_buffer->last_overrun) {
3589 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3590 cpu_buffer->last_overrun = overwrite;
3591 }
3592
d769041f
SR
3593 goto again;
3594
3595 out:
0199c4e6 3596 arch_spin_unlock(&cpu_buffer->lock);
3e03fb7f 3597 local_irq_restore(flags);
d769041f
SR
3598
3599 return reader;
3600}
3601
3602static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3603{
3604 struct ring_buffer_event *event;
3605 struct buffer_page *reader;
3606 unsigned length;
3607
3608 reader = rb_get_reader_page(cpu_buffer);
7a8e76a3 3609
d769041f 3610 /* This function should not be called when buffer is empty */
3e89c7bb
SR
3611 if (RB_WARN_ON(cpu_buffer, !reader))
3612 return;
7a8e76a3 3613
d769041f
SR
3614 event = rb_reader_event(cpu_buffer);
3615
a1863c21 3616 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
e4906eff 3617 cpu_buffer->read++;
d769041f
SR
3618
3619 rb_update_read_stamp(cpu_buffer, event);
3620
3621 length = rb_event_length(event);
6f807acd 3622 cpu_buffer->reader_page->read += length;
7a8e76a3
SR
3623}
3624
3625static void rb_advance_iter(struct ring_buffer_iter *iter)
3626{
7a8e76a3
SR
3627 struct ring_buffer_per_cpu *cpu_buffer;
3628 struct ring_buffer_event *event;
3629 unsigned length;
3630
3631 cpu_buffer = iter->cpu_buffer;
7a8e76a3
SR
3632
3633 /*
3634 * Check if we are at the end of the buffer.
3635 */
bf41a158 3636 if (iter->head >= rb_page_size(iter->head_page)) {
ea05b57c
SR
3637 /* discarded commits can make the page empty */
3638 if (iter->head_page == cpu_buffer->commit_page)
3e89c7bb 3639 return;
d769041f 3640 rb_inc_iter(iter);
7a8e76a3
SR
3641 return;
3642 }
3643
3644 event = rb_iter_head_event(iter);
3645
3646 length = rb_event_length(event);
3647
3648 /*
3649 * This should not be called to advance the header if we are
3650 * at the tail of the buffer.
3651 */
3e89c7bb 3652 if (RB_WARN_ON(cpu_buffer,
f536aafc 3653 (iter->head_page == cpu_buffer->commit_page) &&
3e89c7bb
SR
3654 (iter->head + length > rb_commit_index(cpu_buffer))))
3655 return;
7a8e76a3
SR
3656
3657 rb_update_iter_read_stamp(iter, event);
3658
3659 iter->head += length;
3660
3661 /* check for end of page padding */
bf41a158
SR
3662 if ((iter->head >= rb_page_size(iter->head_page)) &&
3663 (iter->head_page != cpu_buffer->commit_page))
771e0384 3664 rb_inc_iter(iter);
7a8e76a3
SR
3665}
3666
66a8cb95
SR
3667static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3668{
3669 return cpu_buffer->lost_events;
3670}
3671
f83c9d0f 3672static struct ring_buffer_event *
66a8cb95
SR
3673rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3674 unsigned long *lost_events)
7a8e76a3 3675{
7a8e76a3 3676 struct ring_buffer_event *event;
d769041f 3677 struct buffer_page *reader;
818e3dd3 3678 int nr_loops = 0;
7a8e76a3 3679
7a8e76a3 3680 again:
818e3dd3 3681 /*
69d1b839
SR
3682 * We repeat when a time extend is encountered.
3683 * Since the time extend is always attached to a data event,
3684 * we should never loop more than once.
3685 * (We never hit the following condition more than twice).
818e3dd3 3686 */
69d1b839 3687 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
818e3dd3 3688 return NULL;
818e3dd3 3689
d769041f
SR
3690 reader = rb_get_reader_page(cpu_buffer);
3691 if (!reader)
7a8e76a3
SR
3692 return NULL;
3693
d769041f 3694 event = rb_reader_event(cpu_buffer);
7a8e76a3 3695
334d4169 3696 switch (event->type_len) {
7a8e76a3 3697 case RINGBUF_TYPE_PADDING:
2d622719
TZ
3698 if (rb_null_event(event))
3699 RB_WARN_ON(cpu_buffer, 1);
3700 /*
3701 * Because the writer could be discarding every
3702 * event it creates (which would probably be bad)
3703 * if we were to go back to "again" then we may never
3704 * catch up, and will trigger the warn on, or lock
3705 * the box. Return the padding, and we will release
3706 * the current locks, and try again.
3707 */
2d622719 3708 return event;
7a8e76a3
SR
3709
3710 case RINGBUF_TYPE_TIME_EXTEND:
3711 /* Internal data, OK to advance */
d769041f 3712 rb_advance_reader(cpu_buffer);
7a8e76a3
SR
3713 goto again;
3714
3715 case RINGBUF_TYPE_TIME_STAMP:
3716 /* FIXME: not implemented */
d769041f 3717 rb_advance_reader(cpu_buffer);
7a8e76a3
SR
3718 goto again;
3719
3720 case RINGBUF_TYPE_DATA:
3721 if (ts) {
3722 *ts = cpu_buffer->read_stamp + event->time_delta;
d8eeb2d3 3723 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
37886f6a 3724 cpu_buffer->cpu, ts);
7a8e76a3 3725 }
66a8cb95
SR
3726 if (lost_events)
3727 *lost_events = rb_lost_events(cpu_buffer);
7a8e76a3
SR
3728 return event;
3729
3730 default:
3731 BUG();
3732 }
3733
3734 return NULL;
3735}
c4f50183 3736EXPORT_SYMBOL_GPL(ring_buffer_peek);
7a8e76a3 3737
f83c9d0f
SR
3738static struct ring_buffer_event *
3739rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
7a8e76a3
SR
3740{
3741 struct ring_buffer *buffer;
3742 struct ring_buffer_per_cpu *cpu_buffer;
3743 struct ring_buffer_event *event;
818e3dd3 3744 int nr_loops = 0;
7a8e76a3 3745
7a8e76a3
SR
3746 cpu_buffer = iter->cpu_buffer;
3747 buffer = cpu_buffer->buffer;
3748
492a74f4
SR
3749 /*
3750 * Check if someone performed a consuming read to
3751 * the buffer. A consuming read invalidates the iterator
3752 * and we need to reset the iterator in this case.
3753 */
3754 if (unlikely(iter->cache_read != cpu_buffer->read ||
3755 iter->cache_reader_page != cpu_buffer->reader_page))
3756 rb_iter_reset(iter);
3757
7a8e76a3 3758 again:
3c05d748
SR
3759 if (ring_buffer_iter_empty(iter))
3760 return NULL;
3761
818e3dd3 3762 /*
69d1b839
SR
3763 * We repeat when a time extend is encountered.
3764 * Since the time extend is always attached to a data event,
3765 * we should never loop more than once.
3766 * (We never hit the following condition more than twice).
818e3dd3 3767 */
69d1b839 3768 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
818e3dd3 3769 return NULL;
818e3dd3 3770
7a8e76a3
SR
3771 if (rb_per_cpu_empty(cpu_buffer))
3772 return NULL;
3773
3c05d748
SR
3774 if (iter->head >= local_read(&iter->head_page->page->commit)) {
3775 rb_inc_iter(iter);
3776 goto again;
3777 }
3778
7a8e76a3
SR
3779 event = rb_iter_head_event(iter);
3780
334d4169 3781 switch (event->type_len) {
7a8e76a3 3782 case RINGBUF_TYPE_PADDING:
2d622719
TZ
3783 if (rb_null_event(event)) {
3784 rb_inc_iter(iter);
3785 goto again;
3786 }
3787 rb_advance_iter(iter);
3788 return event;
7a8e76a3
SR
3789
3790 case RINGBUF_TYPE_TIME_EXTEND:
3791 /* Internal data, OK to advance */
3792 rb_advance_iter(iter);
3793 goto again;
3794
3795 case RINGBUF_TYPE_TIME_STAMP:
3796 /* FIXME: not implemented */
3797 rb_advance_iter(iter);
3798 goto again;
3799
3800 case RINGBUF_TYPE_DATA:
3801 if (ts) {
3802 *ts = iter->read_stamp + event->time_delta;
37886f6a
SR
3803 ring_buffer_normalize_time_stamp(buffer,
3804 cpu_buffer->cpu, ts);
7a8e76a3
SR
3805 }
3806 return event;
3807
3808 default:
3809 BUG();
3810 }
3811
3812 return NULL;
3813}
c4f50183 3814EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
7a8e76a3 3815
8d707e8e
SR
3816static inline int rb_ok_to_lock(void)
3817{
3818 /*
3819 * If an NMI die dumps out the content of the ring buffer
3820 * do not grab locks. We also permanently disable the ring
3821 * buffer too. A one time deal is all you get from reading
3822 * the ring buffer from an NMI.
3823 */
464e85eb 3824 if (likely(!in_nmi()))
8d707e8e
SR
3825 return 1;
3826
3827 tracing_off_permanent();
3828 return 0;
3829}
3830
f83c9d0f
SR
3831/**
3832 * ring_buffer_peek - peek at the next event to be read
3833 * @buffer: The ring buffer to read
3834 * @cpu: The cpu to peak at
3835 * @ts: The timestamp counter of this event.
66a8cb95 3836 * @lost_events: a variable to store if events were lost (may be NULL)
f83c9d0f
SR
3837 *
3838 * This will return the event that will be read next, but does
3839 * not consume the data.
3840 */
3841struct ring_buffer_event *
66a8cb95
SR
3842ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3843 unsigned long *lost_events)
f83c9d0f
SR
3844{
3845 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
8aabee57 3846 struct ring_buffer_event *event;
f83c9d0f 3847 unsigned long flags;
8d707e8e 3848 int dolock;
f83c9d0f 3849
554f786e 3850 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3851 return NULL;
554f786e 3852
8d707e8e 3853 dolock = rb_ok_to_lock();
2d622719 3854 again:
8d707e8e
SR
3855 local_irq_save(flags);
3856 if (dolock)
5389f6fa 3857 raw_spin_lock(&cpu_buffer->reader_lock);
66a8cb95 3858 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
469535a5
RR
3859 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3860 rb_advance_reader(cpu_buffer);
8d707e8e 3861 if (dolock)
5389f6fa 3862 raw_spin_unlock(&cpu_buffer->reader_lock);
8d707e8e 3863 local_irq_restore(flags);
f83c9d0f 3864
1b959e18 3865 if (event && event->type_len == RINGBUF_TYPE_PADDING)
2d622719 3866 goto again;
2d622719 3867
f83c9d0f
SR
3868 return event;
3869}
3870
3871/**
3872 * ring_buffer_iter_peek - peek at the next event to be read
3873 * @iter: The ring buffer iterator
3874 * @ts: The timestamp counter of this event.
3875 *
3876 * This will return the event that will be read next, but does
3877 * not increment the iterator.
3878 */
3879struct ring_buffer_event *
3880ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3881{
3882 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3883 struct ring_buffer_event *event;
3884 unsigned long flags;
3885
2d622719 3886 again:
5389f6fa 3887 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
f83c9d0f 3888 event = rb_iter_peek(iter, ts);
5389f6fa 3889 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
f83c9d0f 3890
1b959e18 3891 if (event && event->type_len == RINGBUF_TYPE_PADDING)
2d622719 3892 goto again;
2d622719 3893
f83c9d0f
SR
3894 return event;
3895}
3896
7a8e76a3
SR
3897/**
3898 * ring_buffer_consume - return an event and consume it
3899 * @buffer: The ring buffer to get the next event from
66a8cb95
SR
3900 * @cpu: the cpu to read the buffer from
3901 * @ts: a variable to store the timestamp (may be NULL)
3902 * @lost_events: a variable to store if events were lost (may be NULL)
7a8e76a3
SR
3903 *
3904 * Returns the next event in the ring buffer, and that event is consumed.
3905 * Meaning, that sequential reads will keep returning a different event,
3906 * and eventually empty the ring buffer if the producer is slower.
3907 */
3908struct ring_buffer_event *
66a8cb95
SR
3909ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3910 unsigned long *lost_events)
7a8e76a3 3911{
554f786e
SR
3912 struct ring_buffer_per_cpu *cpu_buffer;
3913 struct ring_buffer_event *event = NULL;
f83c9d0f 3914 unsigned long flags;
8d707e8e
SR
3915 int dolock;
3916
3917 dolock = rb_ok_to_lock();
7a8e76a3 3918
2d622719 3919 again:
554f786e
SR
3920 /* might be called in atomic */
3921 preempt_disable();
3922
9e01c1b7 3923 if (!cpumask_test_cpu(cpu, buffer->cpumask))
554f786e 3924 goto out;
7a8e76a3 3925
554f786e 3926 cpu_buffer = buffer->buffers[cpu];
8d707e8e
SR
3927 local_irq_save(flags);
3928 if (dolock)
5389f6fa 3929 raw_spin_lock(&cpu_buffer->reader_lock);
f83c9d0f 3930
66a8cb95
SR
3931 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3932 if (event) {
3933 cpu_buffer->lost_events = 0;
469535a5 3934 rb_advance_reader(cpu_buffer);
66a8cb95 3935 }
7a8e76a3 3936
8d707e8e 3937 if (dolock)
5389f6fa 3938 raw_spin_unlock(&cpu_buffer->reader_lock);
8d707e8e 3939 local_irq_restore(flags);
f83c9d0f 3940
554f786e
SR
3941 out:
3942 preempt_enable();
3943
1b959e18 3944 if (event && event->type_len == RINGBUF_TYPE_PADDING)
2d622719 3945 goto again;
2d622719 3946
7a8e76a3
SR
3947 return event;
3948}
c4f50183 3949EXPORT_SYMBOL_GPL(ring_buffer_consume);
7a8e76a3
SR
3950
3951/**
72c9ddfd 3952 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
7a8e76a3
SR
3953 * @buffer: The ring buffer to read from
3954 * @cpu: The cpu buffer to iterate over
3955 *
72c9ddfd
DM
3956 * This performs the initial preparations necessary to iterate
3957 * through the buffer. Memory is allocated, buffer recording
3958 * is disabled, and the iterator pointer is returned to the caller.
7a8e76a3 3959 *
72c9ddfd
DM
3960 * Disabling buffer recordng prevents the reading from being
3961 * corrupted. This is not a consuming read, so a producer is not
3962 * expected.
3963 *
3964 * After a sequence of ring_buffer_read_prepare calls, the user is
3965 * expected to make at least one call to ring_buffer_prepare_sync.
3966 * Afterwards, ring_buffer_read_start is invoked to get things going
3967 * for real.
3968 *
3969 * This overall must be paired with ring_buffer_finish.
7a8e76a3
SR
3970 */
3971struct ring_buffer_iter *
72c9ddfd 3972ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
7a8e76a3
SR
3973{
3974 struct ring_buffer_per_cpu *cpu_buffer;
8aabee57 3975 struct ring_buffer_iter *iter;
7a8e76a3 3976
9e01c1b7 3977 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3978 return NULL;
7a8e76a3
SR
3979
3980 iter = kmalloc(sizeof(*iter), GFP_KERNEL);
3981 if (!iter)
8aabee57 3982 return NULL;
7a8e76a3
SR
3983
3984 cpu_buffer = buffer->buffers[cpu];
3985
3986 iter->cpu_buffer = cpu_buffer;
3987
83f40318 3988 atomic_inc(&buffer->resize_disabled);
7a8e76a3 3989 atomic_inc(&cpu_buffer->record_disabled);
72c9ddfd
DM
3990
3991 return iter;
3992}
3993EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
3994
3995/**
3996 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
3997 *
3998 * All previously invoked ring_buffer_read_prepare calls to prepare
3999 * iterators will be synchronized. Afterwards, read_buffer_read_start
4000 * calls on those iterators are allowed.
4001 */
4002void
4003ring_buffer_read_prepare_sync(void)
4004{
7a8e76a3 4005 synchronize_sched();
72c9ddfd
DM
4006}
4007EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4008
4009/**
4010 * ring_buffer_read_start - start a non consuming read of the buffer
4011 * @iter: The iterator returned by ring_buffer_read_prepare
4012 *
4013 * This finalizes the startup of an iteration through the buffer.
4014 * The iterator comes from a call to ring_buffer_read_prepare and
4015 * an intervening ring_buffer_read_prepare_sync must have been
4016 * performed.
4017 *
4018 * Must be paired with ring_buffer_finish.
4019 */
4020void
4021ring_buffer_read_start(struct ring_buffer_iter *iter)
4022{
4023 struct ring_buffer_per_cpu *cpu_buffer;
4024 unsigned long flags;
4025
4026 if (!iter)
4027 return;
4028
4029 cpu_buffer = iter->cpu_buffer;
7a8e76a3 4030
5389f6fa 4031 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
0199c4e6 4032 arch_spin_lock(&cpu_buffer->lock);
642edba5 4033 rb_iter_reset(iter);
0199c4e6 4034 arch_spin_unlock(&cpu_buffer->lock);
5389f6fa 4035 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3 4036}
c4f50183 4037EXPORT_SYMBOL_GPL(ring_buffer_read_start);
7a8e76a3
SR
4038
4039/**
4040 * ring_buffer_finish - finish reading the iterator of the buffer
4041 * @iter: The iterator retrieved by ring_buffer_start
4042 *
4043 * This re-enables the recording to the buffer, and frees the
4044 * iterator.
4045 */
4046void
4047ring_buffer_read_finish(struct ring_buffer_iter *iter)
4048{
4049 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
9366c1ba 4050 unsigned long flags;
7a8e76a3 4051
659f451f
SR
4052 /*
4053 * Ring buffer is disabled from recording, here's a good place
9366c1ba
SR
4054 * to check the integrity of the ring buffer.
4055 * Must prevent readers from trying to read, as the check
4056 * clears the HEAD page and readers require it.
659f451f 4057 */
9366c1ba 4058 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
659f451f 4059 rb_check_pages(cpu_buffer);
9366c1ba 4060 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
659f451f 4061
7a8e76a3 4062 atomic_dec(&cpu_buffer->record_disabled);
83f40318 4063 atomic_dec(&cpu_buffer->buffer->resize_disabled);
7a8e76a3
SR
4064 kfree(iter);
4065}
c4f50183 4066EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
7a8e76a3
SR
4067
4068/**
4069 * ring_buffer_read - read the next item in the ring buffer by the iterator
4070 * @iter: The ring buffer iterator
4071 * @ts: The time stamp of the event read.
4072 *
4073 * This reads the next event in the ring buffer and increments the iterator.
4074 */
4075struct ring_buffer_event *
4076ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
4077{
4078 struct ring_buffer_event *event;
f83c9d0f
SR
4079 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4080 unsigned long flags;
7a8e76a3 4081
5389f6fa 4082 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7e9391cf 4083 again:
f83c9d0f 4084 event = rb_iter_peek(iter, ts);
7a8e76a3 4085 if (!event)
f83c9d0f 4086 goto out;
7a8e76a3 4087
7e9391cf
SR
4088 if (event->type_len == RINGBUF_TYPE_PADDING)
4089 goto again;
4090
7a8e76a3 4091 rb_advance_iter(iter);
f83c9d0f 4092 out:
5389f6fa 4093 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3
SR
4094
4095 return event;
4096}
c4f50183 4097EXPORT_SYMBOL_GPL(ring_buffer_read);
7a8e76a3
SR
4098
4099/**
4100 * ring_buffer_size - return the size of the ring buffer (in bytes)
4101 * @buffer: The ring buffer.
4102 */
438ced17 4103unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
7a8e76a3 4104{
438ced17
VN
4105 /*
4106 * Earlier, this method returned
4107 * BUF_PAGE_SIZE * buffer->nr_pages
4108 * Since the nr_pages field is now removed, we have converted this to
4109 * return the per cpu buffer value.
4110 */
4111 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4112 return 0;
4113
4114 return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
7a8e76a3 4115}
c4f50183 4116EXPORT_SYMBOL_GPL(ring_buffer_size);
7a8e76a3
SR
4117
4118static void
4119rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4120{
77ae365e
SR
4121 rb_head_page_deactivate(cpu_buffer);
4122
7a8e76a3 4123 cpu_buffer->head_page
3adc54fa 4124 = list_entry(cpu_buffer->pages, struct buffer_page, list);
bf41a158 4125 local_set(&cpu_buffer->head_page->write, 0);
778c55d4 4126 local_set(&cpu_buffer->head_page->entries, 0);
abc9b56d 4127 local_set(&cpu_buffer->head_page->page->commit, 0);
d769041f 4128
6f807acd 4129 cpu_buffer->head_page->read = 0;
bf41a158
SR
4130
4131 cpu_buffer->tail_page = cpu_buffer->head_page;
4132 cpu_buffer->commit_page = cpu_buffer->head_page;
4133
4134 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
5040b4b7 4135 INIT_LIST_HEAD(&cpu_buffer->new_pages);
bf41a158 4136 local_set(&cpu_buffer->reader_page->write, 0);
778c55d4 4137 local_set(&cpu_buffer->reader_page->entries, 0);
abc9b56d 4138 local_set(&cpu_buffer->reader_page->page->commit, 0);
6f807acd 4139 cpu_buffer->reader_page->read = 0;
7a8e76a3 4140
c64e148a 4141 local_set(&cpu_buffer->entries_bytes, 0);
77ae365e 4142 local_set(&cpu_buffer->overrun, 0);
884bfe89
SP
4143 local_set(&cpu_buffer->commit_overrun, 0);
4144 local_set(&cpu_buffer->dropped_events, 0);
e4906eff 4145 local_set(&cpu_buffer->entries, 0);
fa743953
SR
4146 local_set(&cpu_buffer->committing, 0);
4147 local_set(&cpu_buffer->commits, 0);
77ae365e 4148 cpu_buffer->read = 0;
c64e148a 4149 cpu_buffer->read_bytes = 0;
69507c06
SR
4150
4151 cpu_buffer->write_stamp = 0;
4152 cpu_buffer->read_stamp = 0;
77ae365e 4153
66a8cb95
SR
4154 cpu_buffer->lost_events = 0;
4155 cpu_buffer->last_overrun = 0;
4156
77ae365e 4157 rb_head_page_activate(cpu_buffer);
7a8e76a3
SR
4158}
4159
4160/**
4161 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4162 * @buffer: The ring buffer to reset a per cpu buffer of
4163 * @cpu: The CPU buffer to be reset
4164 */
4165void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
4166{
4167 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4168 unsigned long flags;
4169
9e01c1b7 4170 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 4171 return;
7a8e76a3 4172
83f40318 4173 atomic_inc(&buffer->resize_disabled);
41ede23e
SR
4174 atomic_inc(&cpu_buffer->record_disabled);
4175
83f40318
VN
4176 /* Make sure all commits have finished */
4177 synchronize_sched();
4178
5389f6fa 4179 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
f83c9d0f 4180
41b6a95d
SR
4181 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4182 goto out;
4183
0199c4e6 4184 arch_spin_lock(&cpu_buffer->lock);
7a8e76a3
SR
4185
4186 rb_reset_cpu(cpu_buffer);
4187
0199c4e6 4188 arch_spin_unlock(&cpu_buffer->lock);
f83c9d0f 4189
41b6a95d 4190 out:
5389f6fa 4191 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
41ede23e
SR
4192
4193 atomic_dec(&cpu_buffer->record_disabled);
83f40318 4194 atomic_dec(&buffer->resize_disabled);
7a8e76a3 4195}
c4f50183 4196EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
7a8e76a3
SR
4197
4198/**
4199 * ring_buffer_reset - reset a ring buffer
4200 * @buffer: The ring buffer to reset all cpu buffers
4201 */
4202void ring_buffer_reset(struct ring_buffer *buffer)
4203{
7a8e76a3
SR
4204 int cpu;
4205
7a8e76a3 4206 for_each_buffer_cpu(buffer, cpu)
d769041f 4207 ring_buffer_reset_cpu(buffer, cpu);
7a8e76a3 4208}
c4f50183 4209EXPORT_SYMBOL_GPL(ring_buffer_reset);
7a8e76a3
SR
4210
4211/**
4212 * rind_buffer_empty - is the ring buffer empty?
4213 * @buffer: The ring buffer to test
4214 */
4215int ring_buffer_empty(struct ring_buffer *buffer)
4216{
4217 struct ring_buffer_per_cpu *cpu_buffer;
d4788207 4218 unsigned long flags;
8d707e8e 4219 int dolock;
7a8e76a3 4220 int cpu;
d4788207 4221 int ret;
7a8e76a3 4222
8d707e8e 4223 dolock = rb_ok_to_lock();
7a8e76a3
SR
4224
4225 /* yes this is racy, but if you don't like the race, lock the buffer */
4226 for_each_buffer_cpu(buffer, cpu) {
4227 cpu_buffer = buffer->buffers[cpu];
8d707e8e
SR
4228 local_irq_save(flags);
4229 if (dolock)
5389f6fa 4230 raw_spin_lock(&cpu_buffer->reader_lock);
d4788207 4231 ret = rb_per_cpu_empty(cpu_buffer);
8d707e8e 4232 if (dolock)
5389f6fa 4233 raw_spin_unlock(&cpu_buffer->reader_lock);
8d707e8e
SR
4234 local_irq_restore(flags);
4235
d4788207 4236 if (!ret)
7a8e76a3
SR
4237 return 0;
4238 }
554f786e 4239
7a8e76a3
SR
4240 return 1;
4241}
c4f50183 4242EXPORT_SYMBOL_GPL(ring_buffer_empty);
7a8e76a3
SR
4243
4244/**
4245 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4246 * @buffer: The ring buffer
4247 * @cpu: The CPU buffer to test
4248 */
4249int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
4250{
4251 struct ring_buffer_per_cpu *cpu_buffer;
d4788207 4252 unsigned long flags;
8d707e8e 4253 int dolock;
8aabee57 4254 int ret;
7a8e76a3 4255
9e01c1b7 4256 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 4257 return 1;
7a8e76a3 4258
8d707e8e
SR
4259 dolock = rb_ok_to_lock();
4260
7a8e76a3 4261 cpu_buffer = buffer->buffers[cpu];
8d707e8e
SR
4262 local_irq_save(flags);
4263 if (dolock)
5389f6fa 4264 raw_spin_lock(&cpu_buffer->reader_lock);
554f786e 4265 ret = rb_per_cpu_empty(cpu_buffer);
8d707e8e 4266 if (dolock)
5389f6fa 4267 raw_spin_unlock(&cpu_buffer->reader_lock);
8d707e8e 4268 local_irq_restore(flags);
554f786e
SR
4269
4270 return ret;
7a8e76a3 4271}
c4f50183 4272EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
7a8e76a3 4273
85bac32c 4274#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
7a8e76a3
SR
4275/**
4276 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4277 * @buffer_a: One buffer to swap with
4278 * @buffer_b: The other buffer to swap with
4279 *
4280 * This function is useful for tracers that want to take a "snapshot"
4281 * of a CPU buffer and has another back up buffer lying around.
4282 * it is expected that the tracer handles the cpu buffer not being
4283 * used at the moment.
4284 */
4285int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4286 struct ring_buffer *buffer_b, int cpu)
4287{
4288 struct ring_buffer_per_cpu *cpu_buffer_a;
4289 struct ring_buffer_per_cpu *cpu_buffer_b;
554f786e
SR
4290 int ret = -EINVAL;
4291
9e01c1b7
RR
4292 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4293 !cpumask_test_cpu(cpu, buffer_b->cpumask))
554f786e 4294 goto out;
7a8e76a3 4295
438ced17
VN
4296 cpu_buffer_a = buffer_a->buffers[cpu];
4297 cpu_buffer_b = buffer_b->buffers[cpu];
4298
7a8e76a3 4299 /* At least make sure the two buffers are somewhat the same */
438ced17 4300 if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
554f786e
SR
4301 goto out;
4302
4303 ret = -EAGAIN;
7a8e76a3 4304
97b17efe 4305 if (ring_buffer_flags != RB_BUFFERS_ON)
554f786e 4306 goto out;
97b17efe
SR
4307
4308 if (atomic_read(&buffer_a->record_disabled))
554f786e 4309 goto out;
97b17efe
SR
4310
4311 if (atomic_read(&buffer_b->record_disabled))
554f786e 4312 goto out;
97b17efe 4313
97b17efe 4314 if (atomic_read(&cpu_buffer_a->record_disabled))
554f786e 4315 goto out;
97b17efe
SR
4316
4317 if (atomic_read(&cpu_buffer_b->record_disabled))
554f786e 4318 goto out;
97b17efe 4319
7a8e76a3
SR
4320 /*
4321 * We can't do a synchronize_sched here because this
4322 * function can be called in atomic context.
4323 * Normally this will be called from the same CPU as cpu.
4324 * If not it's up to the caller to protect this.
4325 */
4326 atomic_inc(&cpu_buffer_a->record_disabled);
4327 atomic_inc(&cpu_buffer_b->record_disabled);
4328
98277991
SR
4329 ret = -EBUSY;
4330 if (local_read(&cpu_buffer_a->committing))
4331 goto out_dec;
4332 if (local_read(&cpu_buffer_b->committing))
4333 goto out_dec;
4334
7a8e76a3
SR
4335 buffer_a->buffers[cpu] = cpu_buffer_b;
4336 buffer_b->buffers[cpu] = cpu_buffer_a;
4337
4338 cpu_buffer_b->buffer = buffer_a;
4339 cpu_buffer_a->buffer = buffer_b;
4340
98277991
SR
4341 ret = 0;
4342
4343out_dec:
7a8e76a3
SR
4344 atomic_dec(&cpu_buffer_a->record_disabled);
4345 atomic_dec(&cpu_buffer_b->record_disabled);
554f786e 4346out:
554f786e 4347 return ret;
7a8e76a3 4348}
c4f50183 4349EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
85bac32c 4350#endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
7a8e76a3 4351
8789a9e7
SR
4352/**
4353 * ring_buffer_alloc_read_page - allocate a page to read from buffer
4354 * @buffer: the buffer to allocate for.
4355 *
4356 * This function is used in conjunction with ring_buffer_read_page.
4357 * When reading a full page from the ring buffer, these functions
4358 * can be used to speed up the process. The calling function should
4359 * allocate a few pages first with this function. Then when it
4360 * needs to get pages from the ring buffer, it passes the result
4361 * of this function into ring_buffer_read_page, which will swap
4362 * the page that was allocated, with the read page of the buffer.
4363 *
4364 * Returns:
4365 * The page allocated, or NULL on error.
4366 */
7ea59064 4367void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
8789a9e7 4368{
044fa782 4369 struct buffer_data_page *bpage;
7ea59064 4370 struct page *page;
8789a9e7 4371
d7ec4bfe
VN
4372 page = alloc_pages_node(cpu_to_node(cpu),
4373 GFP_KERNEL | __GFP_NORETRY, 0);
7ea59064 4374 if (!page)
8789a9e7
SR
4375 return NULL;
4376
7ea59064 4377 bpage = page_address(page);
8789a9e7 4378
ef7a4a16
SR
4379 rb_init_page(bpage);
4380
044fa782 4381 return bpage;
8789a9e7 4382}
d6ce96da 4383EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
8789a9e7
SR
4384
4385/**
4386 * ring_buffer_free_read_page - free an allocated read page
4387 * @buffer: the buffer the page was allocate for
4388 * @data: the page to free
4389 *
4390 * Free a page allocated from ring_buffer_alloc_read_page.
4391 */
4392void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
4393{
4394 free_page((unsigned long)data);
4395}
d6ce96da 4396EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
8789a9e7
SR
4397
4398/**
4399 * ring_buffer_read_page - extract a page from the ring buffer
4400 * @buffer: buffer to extract from
4401 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
ef7a4a16 4402 * @len: amount to extract
8789a9e7
SR
4403 * @cpu: the cpu of the buffer to extract
4404 * @full: should the extraction only happen when the page is full.
4405 *
4406 * This function will pull out a page from the ring buffer and consume it.
4407 * @data_page must be the address of the variable that was returned
4408 * from ring_buffer_alloc_read_page. This is because the page might be used
4409 * to swap with a page in the ring buffer.
4410 *
4411 * for example:
b85fa01e 4412 * rpage = ring_buffer_alloc_read_page(buffer);
8789a9e7
SR
4413 * if (!rpage)
4414 * return error;
ef7a4a16 4415 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
667d2412
LJ
4416 * if (ret >= 0)
4417 * process_page(rpage, ret);
8789a9e7
SR
4418 *
4419 * When @full is set, the function will not return true unless
4420 * the writer is off the reader page.
4421 *
4422 * Note: it is up to the calling functions to handle sleeps and wakeups.
4423 * The ring buffer can be used anywhere in the kernel and can not
4424 * blindly call wake_up. The layer that uses the ring buffer must be
4425 * responsible for that.
4426 *
4427 * Returns:
667d2412
LJ
4428 * >=0 if data has been transferred, returns the offset of consumed data.
4429 * <0 if no data has been transferred.
8789a9e7
SR
4430 */
4431int ring_buffer_read_page(struct ring_buffer *buffer,
ef7a4a16 4432 void **data_page, size_t len, int cpu, int full)
8789a9e7
SR
4433{
4434 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4435 struct ring_buffer_event *event;
044fa782 4436 struct buffer_data_page *bpage;
ef7a4a16 4437 struct buffer_page *reader;
ff0ff84a 4438 unsigned long missed_events;
8789a9e7 4439 unsigned long flags;
ef7a4a16 4440 unsigned int commit;
667d2412 4441 unsigned int read;
4f3640f8 4442 u64 save_timestamp;
667d2412 4443 int ret = -1;
8789a9e7 4444
554f786e
SR
4445 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4446 goto out;
4447
474d32b6
SR
4448 /*
4449 * If len is not big enough to hold the page header, then
4450 * we can not copy anything.
4451 */
4452 if (len <= BUF_PAGE_HDR_SIZE)
554f786e 4453 goto out;
474d32b6
SR
4454
4455 len -= BUF_PAGE_HDR_SIZE;
4456
8789a9e7 4457 if (!data_page)
554f786e 4458 goto out;
8789a9e7 4459
044fa782
SR
4460 bpage = *data_page;
4461 if (!bpage)
554f786e 4462 goto out;
8789a9e7 4463
5389f6fa 4464 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
8789a9e7 4465
ef7a4a16
SR
4466 reader = rb_get_reader_page(cpu_buffer);
4467 if (!reader)
554f786e 4468 goto out_unlock;
8789a9e7 4469
ef7a4a16
SR
4470 event = rb_reader_event(cpu_buffer);
4471
4472 read = reader->read;
4473 commit = rb_page_commit(reader);
667d2412 4474
66a8cb95 4475 /* Check if any events were dropped */
ff0ff84a 4476 missed_events = cpu_buffer->lost_events;
66a8cb95 4477
8789a9e7 4478 /*
474d32b6
SR
4479 * If this page has been partially read or
4480 * if len is not big enough to read the rest of the page or
4481 * a writer is still on the page, then
4482 * we must copy the data from the page to the buffer.
4483 * Otherwise, we can simply swap the page with the one passed in.
8789a9e7 4484 */
474d32b6 4485 if (read || (len < (commit - read)) ||
ef7a4a16 4486 cpu_buffer->reader_page == cpu_buffer->commit_page) {
667d2412 4487 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
474d32b6
SR
4488 unsigned int rpos = read;
4489 unsigned int pos = 0;
ef7a4a16 4490 unsigned int size;
8789a9e7
SR
4491
4492 if (full)
554f786e 4493 goto out_unlock;
8789a9e7 4494
ef7a4a16
SR
4495 if (len > (commit - read))
4496 len = (commit - read);
4497
69d1b839
SR
4498 /* Always keep the time extend and data together */
4499 size = rb_event_ts_length(event);
ef7a4a16
SR
4500
4501 if (len < size)
554f786e 4502 goto out_unlock;
ef7a4a16 4503
4f3640f8
SR
4504 /* save the current timestamp, since the user will need it */
4505 save_timestamp = cpu_buffer->read_stamp;
4506
ef7a4a16
SR
4507 /* Need to copy one event at a time */
4508 do {
e1e35927
DS
4509 /* We need the size of one event, because
4510 * rb_advance_reader only advances by one event,
4511 * whereas rb_event_ts_length may include the size of
4512 * one or two events.
4513 * We have already ensured there's enough space if this
4514 * is a time extend. */
4515 size = rb_event_length(event);
474d32b6 4516 memcpy(bpage->data + pos, rpage->data + rpos, size);
ef7a4a16
SR
4517
4518 len -= size;
4519
4520 rb_advance_reader(cpu_buffer);
474d32b6
SR
4521 rpos = reader->read;
4522 pos += size;
ef7a4a16 4523
18fab912
HY
4524 if (rpos >= commit)
4525 break;
4526
ef7a4a16 4527 event = rb_reader_event(cpu_buffer);
69d1b839
SR
4528 /* Always keep the time extend and data together */
4529 size = rb_event_ts_length(event);
e1e35927 4530 } while (len >= size);
667d2412
LJ
4531
4532 /* update bpage */
ef7a4a16 4533 local_set(&bpage->commit, pos);
4f3640f8 4534 bpage->time_stamp = save_timestamp;
ef7a4a16 4535
474d32b6
SR
4536 /* we copied everything to the beginning */
4537 read = 0;
8789a9e7 4538 } else {
afbab76a 4539 /* update the entry counter */
77ae365e 4540 cpu_buffer->read += rb_page_entries(reader);
c64e148a 4541 cpu_buffer->read_bytes += BUF_PAGE_SIZE;
afbab76a 4542
8789a9e7 4543 /* swap the pages */
044fa782 4544 rb_init_page(bpage);
ef7a4a16
SR
4545 bpage = reader->page;
4546 reader->page = *data_page;
4547 local_set(&reader->write, 0);
778c55d4 4548 local_set(&reader->entries, 0);
ef7a4a16 4549 reader->read = 0;
044fa782 4550 *data_page = bpage;
ff0ff84a
SR
4551
4552 /*
4553 * Use the real_end for the data size,
4554 * This gives us a chance to store the lost events
4555 * on the page.
4556 */
4557 if (reader->real_end)
4558 local_set(&bpage->commit, reader->real_end);
8789a9e7 4559 }
667d2412 4560 ret = read;
8789a9e7 4561
66a8cb95 4562 cpu_buffer->lost_events = 0;
2711ca23
SR
4563
4564 commit = local_read(&bpage->commit);
66a8cb95
SR
4565 /*
4566 * Set a flag in the commit field if we lost events
4567 */
ff0ff84a 4568 if (missed_events) {
ff0ff84a
SR
4569 /* If there is room at the end of the page to save the
4570 * missed events, then record it there.
4571 */
4572 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4573 memcpy(&bpage->data[commit], &missed_events,
4574 sizeof(missed_events));
4575 local_add(RB_MISSED_STORED, &bpage->commit);
2711ca23 4576 commit += sizeof(missed_events);
ff0ff84a 4577 }
66a8cb95 4578 local_add(RB_MISSED_EVENTS, &bpage->commit);
ff0ff84a 4579 }
66a8cb95 4580
2711ca23
SR
4581 /*
4582 * This page may be off to user land. Zero it out here.
4583 */
4584 if (commit < BUF_PAGE_SIZE)
4585 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4586
554f786e 4587 out_unlock:
5389f6fa 4588 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
8789a9e7 4589
554f786e 4590 out:
8789a9e7
SR
4591 return ret;
4592}
d6ce96da 4593EXPORT_SYMBOL_GPL(ring_buffer_read_page);
8789a9e7 4594
59222efe 4595#ifdef CONFIG_HOTPLUG_CPU
09c9e84d
FW
4596static int rb_cpu_notify(struct notifier_block *self,
4597 unsigned long action, void *hcpu)
554f786e
SR
4598{
4599 struct ring_buffer *buffer =
4600 container_of(self, struct ring_buffer, cpu_notify);
4601 long cpu = (long)hcpu;
438ced17
VN
4602 int cpu_i, nr_pages_same;
4603 unsigned int nr_pages;
554f786e
SR
4604
4605 switch (action) {
4606 case CPU_UP_PREPARE:
4607 case CPU_UP_PREPARE_FROZEN:
3f237a79 4608 if (cpumask_test_cpu(cpu, buffer->cpumask))
554f786e
SR
4609 return NOTIFY_OK;
4610
438ced17
VN
4611 nr_pages = 0;
4612 nr_pages_same = 1;
4613 /* check if all cpu sizes are same */
4614 for_each_buffer_cpu(buffer, cpu_i) {
4615 /* fill in the size from first enabled cpu */
4616 if (nr_pages == 0)
4617 nr_pages = buffer->buffers[cpu_i]->nr_pages;
4618 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4619 nr_pages_same = 0;
4620 break;
4621 }
4622 }
4623 /* allocate minimum pages, user can later expand it */
4624 if (!nr_pages_same)
4625 nr_pages = 2;
554f786e 4626 buffer->buffers[cpu] =
438ced17 4627 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
554f786e
SR
4628 if (!buffer->buffers[cpu]) {
4629 WARN(1, "failed to allocate ring buffer on CPU %ld\n",
4630 cpu);
4631 return NOTIFY_OK;
4632 }
4633 smp_wmb();
3f237a79 4634 cpumask_set_cpu(cpu, buffer->cpumask);
554f786e
SR
4635 break;
4636 case CPU_DOWN_PREPARE:
4637 case CPU_DOWN_PREPARE_FROZEN:
4638 /*
4639 * Do nothing.
4640 * If we were to free the buffer, then the user would
4641 * lose any trace that was in the buffer.
4642 */
4643 break;
4644 default:
4645 break;
4646 }
4647 return NOTIFY_OK;
4648}
4649#endif
6c43e554
SRRH
4650
4651#ifdef CONFIG_RING_BUFFER_STARTUP_TEST
4652/*
4653 * This is a basic integrity check of the ring buffer.
4654 * Late in the boot cycle this test will run when configured in.
4655 * It will kick off a thread per CPU that will go into a loop
4656 * writing to the per cpu ring buffer various sizes of data.
4657 * Some of the data will be large items, some small.
4658 *
4659 * Another thread is created that goes into a spin, sending out
4660 * IPIs to the other CPUs to also write into the ring buffer.
4661 * this is to test the nesting ability of the buffer.
4662 *
4663 * Basic stats are recorded and reported. If something in the
4664 * ring buffer should happen that's not expected, a big warning
4665 * is displayed and all ring buffers are disabled.
4666 */
4667static struct task_struct *rb_threads[NR_CPUS] __initdata;
4668
4669struct rb_test_data {
4670 struct ring_buffer *buffer;
4671 unsigned long events;
4672 unsigned long bytes_written;
4673 unsigned long bytes_alloc;
4674 unsigned long bytes_dropped;
4675 unsigned long events_nested;
4676 unsigned long bytes_written_nested;
4677 unsigned long bytes_alloc_nested;
4678 unsigned long bytes_dropped_nested;
4679 int min_size_nested;
4680 int max_size_nested;
4681 int max_size;
4682 int min_size;
4683 int cpu;
4684 int cnt;
4685};
4686
4687static struct rb_test_data rb_data[NR_CPUS] __initdata;
4688
4689/* 1 meg per cpu */
4690#define RB_TEST_BUFFER_SIZE 1048576
4691
4692static char rb_string[] __initdata =
4693 "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
4694 "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
4695 "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
4696
4697static bool rb_test_started __initdata;
4698
4699struct rb_item {
4700 int size;
4701 char str[];
4702};
4703
4704static __init int rb_write_something(struct rb_test_data *data, bool nested)
4705{
4706 struct ring_buffer_event *event;
4707 struct rb_item *item;
4708 bool started;
4709 int event_len;
4710 int size;
4711 int len;
4712 int cnt;
4713
4714 /* Have nested writes different that what is written */
4715 cnt = data->cnt + (nested ? 27 : 0);
4716
4717 /* Multiply cnt by ~e, to make some unique increment */
4718 size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1);
4719
4720 len = size + sizeof(struct rb_item);
4721
4722 started = rb_test_started;
4723 /* read rb_test_started before checking buffer enabled */
4724 smp_rmb();
4725
4726 event = ring_buffer_lock_reserve(data->buffer, len);
4727 if (!event) {
4728 /* Ignore dropped events before test starts. */
4729 if (started) {
4730 if (nested)
4731 data->bytes_dropped += len;
4732 else
4733 data->bytes_dropped_nested += len;
4734 }
4735 return len;
4736 }
4737
4738 event_len = ring_buffer_event_length(event);
4739
4740 if (RB_WARN_ON(data->buffer, event_len < len))
4741 goto out;
4742
4743 item = ring_buffer_event_data(event);
4744 item->size = size;
4745 memcpy(item->str, rb_string, size);
4746
4747 if (nested) {
4748 data->bytes_alloc_nested += event_len;
4749 data->bytes_written_nested += len;
4750 data->events_nested++;
4751 if (!data->min_size_nested || len < data->min_size_nested)
4752 data->min_size_nested = len;
4753 if (len > data->max_size_nested)
4754 data->max_size_nested = len;
4755 } else {
4756 data->bytes_alloc += event_len;
4757 data->bytes_written += len;
4758 data->events++;
4759 if (!data->min_size || len < data->min_size)
4760 data->max_size = len;
4761 if (len > data->max_size)
4762 data->max_size = len;
4763 }
4764
4765 out:
4766 ring_buffer_unlock_commit(data->buffer, event);
4767
4768 return 0;
4769}
4770
4771static __init int rb_test(void *arg)
4772{
4773 struct rb_test_data *data = arg;
4774
4775 while (!kthread_should_stop()) {
4776 rb_write_something(data, false);
4777 data->cnt++;
4778
4779 set_current_state(TASK_INTERRUPTIBLE);
4780 /* Now sleep between a min of 100-300us and a max of 1ms */
4781 usleep_range(((data->cnt % 3) + 1) * 100, 1000);
4782 }
4783
4784 return 0;
4785}
4786
4787static __init void rb_ipi(void *ignore)
4788{
4789 struct rb_test_data *data;
4790 int cpu = smp_processor_id();
4791
4792 data = &rb_data[cpu];
4793 rb_write_something(data, true);
4794}
4795
4796static __init int rb_hammer_test(void *arg)
4797{
4798 while (!kthread_should_stop()) {
4799
4800 /* Send an IPI to all cpus to write data! */
4801 smp_call_function(rb_ipi, NULL, 1);
4802 /* No sleep, but for non preempt, let others run */
4803 schedule();
4804 }
4805
4806 return 0;
4807}
4808
4809static __init int test_ringbuffer(void)
4810{
4811 struct task_struct *rb_hammer;
4812 struct ring_buffer *buffer;
4813 int cpu;
4814 int ret = 0;
4815
4816 pr_info("Running ring buffer tests...\n");
4817
4818 buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
4819 if (WARN_ON(!buffer))
4820 return 0;
4821
4822 /* Disable buffer so that threads can't write to it yet */
4823 ring_buffer_record_off(buffer);
4824
4825 for_each_online_cpu(cpu) {
4826 rb_data[cpu].buffer = buffer;
4827 rb_data[cpu].cpu = cpu;
4828 rb_data[cpu].cnt = cpu;
4829 rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
4830 "rbtester/%d", cpu);
4831 if (WARN_ON(!rb_threads[cpu])) {
4832 pr_cont("FAILED\n");
4833 ret = -1;
4834 goto out_free;
4835 }
4836
4837 kthread_bind(rb_threads[cpu], cpu);
4838 wake_up_process(rb_threads[cpu]);
4839 }
4840
4841 /* Now create the rb hammer! */
4842 rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
4843 if (WARN_ON(!rb_hammer)) {
4844 pr_cont("FAILED\n");
4845 ret = -1;
4846 goto out_free;
4847 }
4848
4849 ring_buffer_record_on(buffer);
4850 /*
4851 * Show buffer is enabled before setting rb_test_started.
4852 * Yes there's a small race window where events could be
4853 * dropped and the thread wont catch it. But when a ring
4854 * buffer gets enabled, there will always be some kind of
4855 * delay before other CPUs see it. Thus, we don't care about
4856 * those dropped events. We care about events dropped after
4857 * the threads see that the buffer is active.
4858 */
4859 smp_wmb();
4860 rb_test_started = true;
4861
4862 set_current_state(TASK_INTERRUPTIBLE);
4863 /* Just run for 10 seconds */;
4864 schedule_timeout(10 * HZ);
4865
4866 kthread_stop(rb_hammer);
4867
4868 out_free:
4869 for_each_online_cpu(cpu) {
4870 if (!rb_threads[cpu])
4871 break;
4872 kthread_stop(rb_threads[cpu]);
4873 }
4874 if (ret) {
4875 ring_buffer_free(buffer);
4876 return ret;
4877 }
4878
4879 /* Report! */
4880 pr_info("finished\n");
4881 for_each_online_cpu(cpu) {
4882 struct ring_buffer_event *event;
4883 struct rb_test_data *data = &rb_data[cpu];
4884 struct rb_item *item;
4885 unsigned long total_events;
4886 unsigned long total_dropped;
4887 unsigned long total_written;
4888 unsigned long total_alloc;
4889 unsigned long total_read = 0;
4890 unsigned long total_size = 0;
4891 unsigned long total_len = 0;
4892 unsigned long total_lost = 0;
4893 unsigned long lost;
4894 int big_event_size;
4895 int small_event_size;
4896
4897 ret = -1;
4898
4899 total_events = data->events + data->events_nested;
4900 total_written = data->bytes_written + data->bytes_written_nested;
4901 total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
4902 total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
4903
4904 big_event_size = data->max_size + data->max_size_nested;
4905 small_event_size = data->min_size + data->min_size_nested;
4906
4907 pr_info("CPU %d:\n", cpu);
4908 pr_info(" events: %ld\n", total_events);
4909 pr_info(" dropped bytes: %ld\n", total_dropped);
4910 pr_info(" alloced bytes: %ld\n", total_alloc);
4911 pr_info(" written bytes: %ld\n", total_written);
4912 pr_info(" biggest event: %d\n", big_event_size);
4913 pr_info(" smallest event: %d\n", small_event_size);
4914
4915 if (RB_WARN_ON(buffer, total_dropped))
4916 break;
4917
4918 ret = 0;
4919
4920 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
4921 total_lost += lost;
4922 item = ring_buffer_event_data(event);
4923 total_len += ring_buffer_event_length(event);
4924 total_size += item->size + sizeof(struct rb_item);
4925 if (memcmp(&item->str[0], rb_string, item->size) != 0) {
4926 pr_info("FAILED!\n");
4927 pr_info("buffer had: %.*s\n", item->size, item->str);
4928 pr_info("expected: %.*s\n", item->size, rb_string);
4929 RB_WARN_ON(buffer, 1);
4930 ret = -1;
4931 break;
4932 }
4933 total_read++;
4934 }
4935 if (ret)
4936 break;
4937
4938 ret = -1;
4939
4940 pr_info(" read events: %ld\n", total_read);
4941 pr_info(" lost events: %ld\n", total_lost);
4942 pr_info(" total events: %ld\n", total_lost + total_read);
4943 pr_info(" recorded len bytes: %ld\n", total_len);
4944 pr_info(" recorded size bytes: %ld\n", total_size);
4945 if (total_lost)
4946 pr_info(" With dropped events, record len and size may not match\n"
4947 " alloced and written from above\n");
4948 if (!total_lost) {
4949 if (RB_WARN_ON(buffer, total_len != total_alloc ||
4950 total_size != total_written))
4951 break;
4952 }
4953 if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
4954 break;
4955
4956 ret = 0;
4957 }
4958 if (!ret)
4959 pr_info("Ring buffer PASSED!\n");
4960
4961 ring_buffer_free(buffer);
4962 return 0;
4963}
4964
4965late_initcall(test_ringbuffer);
4966#endif /* CONFIG_RING_BUFFER_STARTUP_TEST */