Merge tag 'v3.10.95' into update
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / trace / ring_buffer.c
CommitLineData
7a8e76a3
SR
1/*
2 * Generic ring buffer
3 *
4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
5 */
0b07436d 6#include <linux/ftrace_event.h>
7a8e76a3 7#include <linux/ring_buffer.h>
14131f2f 8#include <linux/trace_clock.h>
0b07436d 9#include <linux/trace_seq.h>
7a8e76a3 10#include <linux/spinlock.h>
15693458 11#include <linux/irq_work.h>
7a8e76a3
SR
12#include <linux/debugfs.h>
13#include <linux/uaccess.h>
a81bd80a 14#include <linux/hardirq.h>
6c43e554 15#include <linux/kthread.h> /* for self test */
1744a21d 16#include <linux/kmemcheck.h>
7a8e76a3
SR
17#include <linux/module.h>
18#include <linux/percpu.h>
19#include <linux/mutex.h>
6c43e554 20#include <linux/delay.h>
5a0e3ad6 21#include <linux/slab.h>
7a8e76a3
SR
22#include <linux/init.h>
23#include <linux/hash.h>
24#include <linux/list.h>
554f786e 25#include <linux/cpu.h>
7a8e76a3
SR
26#include <linux/fs.h>
27
79615760 28#include <asm/local.h>
182e9f5f 29
6fa3eb70
S
30#ifdef CONFIG_MTK_EXTMEM
31extern void* extmem_malloc_page_align(size_t bytes);
32extern void extmem_free(void* mem);
33#endif
34
83f40318
VN
35static void update_pages_handler(struct work_struct *work);
36
d1b182a8
SR
37/*
38 * The ring buffer header is special. We must manually up keep it.
39 */
40int ring_buffer_print_entry_header(struct trace_seq *s)
41{
42 int ret;
43
334d4169
LJ
44 ret = trace_seq_printf(s, "# compressed entry header\n");
45 ret = trace_seq_printf(s, "\ttype_len : 5 bits\n");
d1b182a8
SR
46 ret = trace_seq_printf(s, "\ttime_delta : 27 bits\n");
47 ret = trace_seq_printf(s, "\tarray : 32 bits\n");
48 ret = trace_seq_printf(s, "\n");
49 ret = trace_seq_printf(s, "\tpadding : type == %d\n",
50 RINGBUF_TYPE_PADDING);
51 ret = trace_seq_printf(s, "\ttime_extend : type == %d\n",
52 RINGBUF_TYPE_TIME_EXTEND);
334d4169
LJ
53 ret = trace_seq_printf(s, "\tdata max type_len == %d\n",
54 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
d1b182a8
SR
55
56 return ret;
57}
58
5cc98548
SR
59/*
60 * The ring buffer is made up of a list of pages. A separate list of pages is
61 * allocated for each CPU. A writer may only write to a buffer that is
62 * associated with the CPU it is currently executing on. A reader may read
63 * from any per cpu buffer.
64 *
65 * The reader is special. For each per cpu buffer, the reader has its own
66 * reader page. When a reader has read the entire reader page, this reader
67 * page is swapped with another page in the ring buffer.
68 *
69 * Now, as long as the writer is off the reader page, the reader can do what
70 * ever it wants with that page. The writer will never write to that page
71 * again (as long as it is out of the ring buffer).
72 *
73 * Here's some silly ASCII art.
74 *
75 * +------+
76 * |reader| RING BUFFER
77 * |page |
78 * +------+ +---+ +---+ +---+
79 * | |-->| |-->| |
80 * +---+ +---+ +---+
81 * ^ |
82 * | |
83 * +---------------+
84 *
85 *
86 * +------+
87 * |reader| RING BUFFER
88 * |page |------------------v
89 * +------+ +---+ +---+ +---+
90 * | |-->| |-->| |
91 * +---+ +---+ +---+
92 * ^ |
93 * | |
94 * +---------------+
95 *
96 *
97 * +------+
98 * |reader| RING BUFFER
99 * |page |------------------v
100 * +------+ +---+ +---+ +---+
101 * ^ | |-->| |-->| |
102 * | +---+ +---+ +---+
103 * | |
104 * | |
105 * +------------------------------+
106 *
107 *
108 * +------+
109 * |buffer| RING BUFFER
110 * |page |------------------v
111 * +------+ +---+ +---+ +---+
112 * ^ | | | |-->| |
113 * | New +---+ +---+ +---+
114 * | Reader------^ |
115 * | page |
116 * +------------------------------+
117 *
118 *
119 * After we make this swap, the reader can hand this page off to the splice
120 * code and be done with it. It can even allocate a new page if it needs to
121 * and swap that into the ring buffer.
122 *
123 * We will be using cmpxchg soon to make all this lockless.
124 *
125 */
126
033601a3
SR
127/*
128 * A fast way to enable or disable all ring buffers is to
129 * call tracing_on or tracing_off. Turning off the ring buffers
130 * prevents all ring buffers from being recorded to.
131 * Turning this switch on, makes it OK to write to the
132 * ring buffer, if the ring buffer is enabled itself.
133 *
134 * There's three layers that must be on in order to write
135 * to the ring buffer.
136 *
137 * 1) This global flag must be set.
138 * 2) The ring buffer must be enabled for recording.
139 * 3) The per cpu buffer must be enabled for recording.
140 *
141 * In case of an anomaly, this global flag has a bit set that
142 * will permantly disable all ring buffers.
143 */
144
145/*
146 * Global flag to disable all recording to ring buffers
147 * This has two bits: ON, DISABLED
148 *
149 * ON DISABLED
150 * ---- ----------
151 * 0 0 : ring buffers are off
152 * 1 0 : ring buffers are on
153 * X 1 : ring buffers are permanently disabled
154 */
155
156enum {
157 RB_BUFFERS_ON_BIT = 0,
158 RB_BUFFERS_DISABLED_BIT = 1,
159};
160
161enum {
162 RB_BUFFERS_ON = 1 << RB_BUFFERS_ON_BIT,
163 RB_BUFFERS_DISABLED = 1 << RB_BUFFERS_DISABLED_BIT,
164};
165
5e39841c 166static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
a3583244 167
499e5470
SR
168/* Used for individual buffers (after the counter) */
169#define RB_BUFFER_OFF (1 << 20)
a3583244 170
499e5470 171#define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
033601a3
SR
172
173/**
174 * tracing_off_permanent - permanently disable ring buffers
175 *
176 * This function, once called, will disable all ring buffers
c3706f00 177 * permanently.
033601a3
SR
178 */
179void tracing_off_permanent(void)
180{
181 set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
a3583244
SR
182}
183
e3d6bf0a 184#define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
67d34724 185#define RB_ALIGNMENT 4U
334d4169 186#define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
c7b09308 187#define RB_EVNT_MIN_SIZE 8U /* two 32bit words */
334d4169 188
649508f6 189#ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
2271048d
SR
190# define RB_FORCE_8BYTE_ALIGNMENT 0
191# define RB_ARCH_ALIGNMENT RB_ALIGNMENT
192#else
193# define RB_FORCE_8BYTE_ALIGNMENT 1
194# define RB_ARCH_ALIGNMENT 8U
195#endif
196
649508f6
JH
197#define RB_ALIGN_DATA __aligned(RB_ARCH_ALIGNMENT)
198
334d4169
LJ
199/* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
200#define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
7a8e76a3
SR
201
202enum {
203 RB_LEN_TIME_EXTEND = 8,
204 RB_LEN_TIME_STAMP = 16,
205};
206
69d1b839
SR
207#define skip_time_extend(event) \
208 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
209
2d622719
TZ
210static inline int rb_null_event(struct ring_buffer_event *event)
211{
a1863c21 212 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
2d622719
TZ
213}
214
215static void rb_event_set_padding(struct ring_buffer_event *event)
216{
a1863c21 217 /* padding has a NULL time_delta */
334d4169 218 event->type_len = RINGBUF_TYPE_PADDING;
2d622719
TZ
219 event->time_delta = 0;
220}
221
34a148bf 222static unsigned
2d622719 223rb_event_data_length(struct ring_buffer_event *event)
7a8e76a3
SR
224{
225 unsigned length;
226
334d4169
LJ
227 if (event->type_len)
228 length = event->type_len * RB_ALIGNMENT;
2d622719
TZ
229 else
230 length = event->array[0];
231 return length + RB_EVNT_HDR_SIZE;
232}
233
69d1b839
SR
234/*
235 * Return the length of the given event. Will return
236 * the length of the time extend if the event is a
237 * time extend.
238 */
239static inline unsigned
2d622719
TZ
240rb_event_length(struct ring_buffer_event *event)
241{
334d4169 242 switch (event->type_len) {
7a8e76a3 243 case RINGBUF_TYPE_PADDING:
2d622719
TZ
244 if (rb_null_event(event))
245 /* undefined */
246 return -1;
334d4169 247 return event->array[0] + RB_EVNT_HDR_SIZE;
7a8e76a3
SR
248
249 case RINGBUF_TYPE_TIME_EXTEND:
250 return RB_LEN_TIME_EXTEND;
251
252 case RINGBUF_TYPE_TIME_STAMP:
253 return RB_LEN_TIME_STAMP;
254
255 case RINGBUF_TYPE_DATA:
2d622719 256 return rb_event_data_length(event);
7a8e76a3
SR
257 default:
258 BUG();
259 }
260 /* not hit */
261 return 0;
262}
263
69d1b839
SR
264/*
265 * Return total length of time extend and data,
266 * or just the event length for all other events.
267 */
268static inline unsigned
269rb_event_ts_length(struct ring_buffer_event *event)
270{
271 unsigned len = 0;
272
273 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
274 /* time extends include the data event after it */
275 len = RB_LEN_TIME_EXTEND;
276 event = skip_time_extend(event);
277 }
278 return len + rb_event_length(event);
279}
280
7a8e76a3
SR
281/**
282 * ring_buffer_event_length - return the length of the event
283 * @event: the event to get the length of
69d1b839
SR
284 *
285 * Returns the size of the data load of a data event.
286 * If the event is something other than a data event, it
287 * returns the size of the event itself. With the exception
288 * of a TIME EXTEND, where it still returns the size of the
289 * data load of the data event after it.
7a8e76a3
SR
290 */
291unsigned ring_buffer_event_length(struct ring_buffer_event *event)
292{
69d1b839
SR
293 unsigned length;
294
295 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
296 event = skip_time_extend(event);
297
298 length = rb_event_length(event);
334d4169 299 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
465634ad
RR
300 return length;
301 length -= RB_EVNT_HDR_SIZE;
302 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
303 length -= sizeof(event->array[0]);
304 return length;
7a8e76a3 305}
c4f50183 306EXPORT_SYMBOL_GPL(ring_buffer_event_length);
7a8e76a3
SR
307
308/* inline for ring buffer fast paths */
34a148bf 309static void *
7a8e76a3
SR
310rb_event_data(struct ring_buffer_event *event)
311{
69d1b839
SR
312 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
313 event = skip_time_extend(event);
334d4169 314 BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
7a8e76a3 315 /* If length is in len field, then array[0] has the data */
334d4169 316 if (event->type_len)
7a8e76a3
SR
317 return (void *)&event->array[0];
318 /* Otherwise length is in array[0] and array[1] has the data */
319 return (void *)&event->array[1];
320}
321
322/**
323 * ring_buffer_event_data - return the data of the event
324 * @event: the event to get the data from
325 */
326void *ring_buffer_event_data(struct ring_buffer_event *event)
327{
328 return rb_event_data(event);
329}
c4f50183 330EXPORT_SYMBOL_GPL(ring_buffer_event_data);
7a8e76a3
SR
331
332#define for_each_buffer_cpu(buffer, cpu) \
9e01c1b7 333 for_each_cpu(cpu, buffer->cpumask)
7a8e76a3
SR
334
335#define TS_SHIFT 27
336#define TS_MASK ((1ULL << TS_SHIFT) - 1)
337#define TS_DELTA_TEST (~TS_MASK)
338
66a8cb95
SR
339/* Flag when events were overwritten */
340#define RB_MISSED_EVENTS (1 << 31)
ff0ff84a
SR
341/* Missed count stored at end */
342#define RB_MISSED_STORED (1 << 30)
66a8cb95 343
abc9b56d 344struct buffer_data_page {
e4c2ce82 345 u64 time_stamp; /* page time stamp */
c3706f00 346 local_t commit; /* write committed index */
649508f6 347 unsigned char data[] RB_ALIGN_DATA; /* data of buffer page */
abc9b56d
SR
348};
349
77ae365e
SR
350/*
351 * Note, the buffer_page list must be first. The buffer pages
352 * are allocated in cache lines, which means that each buffer
353 * page will be at the beginning of a cache line, and thus
354 * the least significant bits will be zero. We use this to
355 * add flags in the list struct pointers, to make the ring buffer
356 * lockless.
357 */
abc9b56d 358struct buffer_page {
778c55d4 359 struct list_head list; /* list of buffer pages */
abc9b56d 360 local_t write; /* index for next write */
6f807acd 361 unsigned read; /* index for next read */
778c55d4 362 local_t entries; /* entries on this page */
ff0ff84a 363 unsigned long real_end; /* real end of data */
abc9b56d 364 struct buffer_data_page *page; /* Actual data page */
7a8e76a3
SR
365};
366
77ae365e
SR
367/*
368 * The buffer page counters, write and entries, must be reset
369 * atomically when crossing page boundaries. To synchronize this
370 * update, two counters are inserted into the number. One is
371 * the actual counter for the write position or count on the page.
372 *
373 * The other is a counter of updaters. Before an update happens
374 * the update partition of the counter is incremented. This will
375 * allow the updater to update the counter atomically.
376 *
377 * The counter is 20 bits, and the state data is 12.
378 */
379#define RB_WRITE_MASK 0xfffff
380#define RB_WRITE_INTCNT (1 << 20)
381
044fa782 382static void rb_init_page(struct buffer_data_page *bpage)
abc9b56d 383{
044fa782 384 local_set(&bpage->commit, 0);
abc9b56d
SR
385}
386
474d32b6
SR
387/**
388 * ring_buffer_page_len - the size of data on the page.
389 * @page: The page to read
390 *
391 * Returns the amount of data on the page, including buffer page header.
392 */
ef7a4a16
SR
393size_t ring_buffer_page_len(void *page)
394{
474d32b6
SR
395 return local_read(&((struct buffer_data_page *)page)->commit)
396 + BUF_PAGE_HDR_SIZE;
ef7a4a16
SR
397}
398
ed56829c
SR
399/*
400 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
401 * this issue out.
402 */
34a148bf 403static void free_buffer_page(struct buffer_page *bpage)
ed56829c 404{
6fa3eb70
S
405#ifdef CONFIG_MTK_EXTMEM
406 extmem_free((void*) bpage->page);
407#else
34a148bf 408 free_page((unsigned long)bpage->page);
6fa3eb70 409#endif
e4c2ce82 410 kfree(bpage);
ed56829c
SR
411}
412
7a8e76a3
SR
413/*
414 * We need to fit the time_stamp delta into 27 bits.
415 */
416static inline int test_time_stamp(u64 delta)
417{
418 if (delta & TS_DELTA_TEST)
419 return 1;
420 return 0;
421}
422
474d32b6 423#define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
7a8e76a3 424
be957c44
SR
425/* Max payload is BUF_PAGE_SIZE - header (8bytes) */
426#define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
427
d1b182a8
SR
428int ring_buffer_print_page_header(struct trace_seq *s)
429{
430 struct buffer_data_page field;
431 int ret;
432
433 ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t"
26a50744
TZ
434 "offset:0;\tsize:%u;\tsigned:%u;\n",
435 (unsigned int)sizeof(field.time_stamp),
436 (unsigned int)is_signed_type(u64));
d1b182a8
SR
437
438 ret = trace_seq_printf(s, "\tfield: local_t commit;\t"
26a50744 439 "offset:%u;\tsize:%u;\tsigned:%u;\n",
d1b182a8 440 (unsigned int)offsetof(typeof(field), commit),
26a50744
TZ
441 (unsigned int)sizeof(field.commit),
442 (unsigned int)is_signed_type(long));
d1b182a8 443
66a8cb95
SR
444 ret = trace_seq_printf(s, "\tfield: int overwrite;\t"
445 "offset:%u;\tsize:%u;\tsigned:%u;\n",
446 (unsigned int)offsetof(typeof(field), commit),
447 1,
448 (unsigned int)is_signed_type(long));
449
d1b182a8 450 ret = trace_seq_printf(s, "\tfield: char data;\t"
26a50744 451 "offset:%u;\tsize:%u;\tsigned:%u;\n",
d1b182a8 452 (unsigned int)offsetof(typeof(field), data),
26a50744
TZ
453 (unsigned int)BUF_PAGE_SIZE,
454 (unsigned int)is_signed_type(char));
d1b182a8
SR
455
456 return ret;
457}
458
15693458
SRRH
459struct rb_irq_work {
460 struct irq_work work;
461 wait_queue_head_t waiters;
462 bool waiters_pending;
463};
464
7a8e76a3
SR
465/*
466 * head_page == tail_page && head == tail then buffer is empty.
467 */
468struct ring_buffer_per_cpu {
469 int cpu;
985023de 470 atomic_t record_disabled;
7a8e76a3 471 struct ring_buffer *buffer;
5389f6fa 472 raw_spinlock_t reader_lock; /* serialize readers */
445c8951 473 arch_spinlock_t lock;
7a8e76a3 474 struct lock_class_key lock_key;
438ced17 475 unsigned int nr_pages;
3adc54fa 476 struct list_head *pages;
6f807acd
SR
477 struct buffer_page *head_page; /* read from head */
478 struct buffer_page *tail_page; /* write to tail */
c3706f00 479 struct buffer_page *commit_page; /* committed pages */
d769041f 480 struct buffer_page *reader_page;
66a8cb95
SR
481 unsigned long lost_events;
482 unsigned long last_overrun;
c64e148a 483 local_t entries_bytes;
e4906eff 484 local_t entries;
884bfe89
SP
485 local_t overrun;
486 local_t commit_overrun;
487 local_t dropped_events;
fa743953
SR
488 local_t committing;
489 local_t commits;
77ae365e 490 unsigned long read;
c64e148a 491 unsigned long read_bytes;
7a8e76a3
SR
492 u64 write_stamp;
493 u64 read_stamp;
438ced17
VN
494 /* ring buffer pages to update, > 0 to add, < 0 to remove */
495 int nr_pages_to_update;
496 struct list_head new_pages; /* new pages to add */
83f40318 497 struct work_struct update_pages_work;
05fdd70d 498 struct completion update_done;
15693458
SRRH
499
500 struct rb_irq_work irq_work;
7a8e76a3
SR
501};
502
503struct ring_buffer {
7a8e76a3
SR
504 unsigned flags;
505 int cpus;
7a8e76a3 506 atomic_t record_disabled;
83f40318 507 atomic_t resize_disabled;
00f62f61 508 cpumask_var_t cpumask;
7a8e76a3 509
1f8a6a10
PZ
510 struct lock_class_key *reader_lock_key;
511
7a8e76a3
SR
512 struct mutex mutex;
513
514 struct ring_buffer_per_cpu **buffers;
554f786e 515
59222efe 516#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
517 struct notifier_block cpu_notify;
518#endif
37886f6a 519 u64 (*clock)(void);
15693458
SRRH
520
521 struct rb_irq_work irq_work;
7a8e76a3
SR
522};
523
524struct ring_buffer_iter {
525 struct ring_buffer_per_cpu *cpu_buffer;
526 unsigned long head;
527 struct buffer_page *head_page;
492a74f4
SR
528 struct buffer_page *cache_reader_page;
529 unsigned long cache_read;
7a8e76a3
SR
530 u64 read_stamp;
531};
532
15693458
SRRH
533/*
534 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
535 *
536 * Schedules a delayed work to wake up any task that is blocked on the
537 * ring buffer waiters queue.
538 */
539static void rb_wake_up_waiters(struct irq_work *work)
540{
541 struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
542
543 wake_up_all(&rbwork->waiters);
544}
545
546/**
547 * ring_buffer_wait - wait for input to the ring buffer
548 * @buffer: buffer to wait on
549 * @cpu: the cpu buffer to wait on
550 *
551 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
552 * as data is added to any of the @buffer's cpu buffers. Otherwise
553 * it will wait for data to be added to a specific cpu buffer.
554 */
561237e4 555int ring_buffer_wait(struct ring_buffer *buffer, int cpu)
15693458
SRRH
556{
557 struct ring_buffer_per_cpu *cpu_buffer;
558 DEFINE_WAIT(wait);
559 struct rb_irq_work *work;
560
561 /*
562 * Depending on what the caller is waiting for, either any
563 * data in any cpu buffer, or a specific buffer, put the
564 * caller on the appropriate wait queue.
565 */
566 if (cpu == RING_BUFFER_ALL_CPUS)
567 work = &buffer->irq_work;
568 else {
561237e4
SRRH
569 if (!cpumask_test_cpu(cpu, buffer->cpumask))
570 return -ENODEV;
15693458
SRRH
571 cpu_buffer = buffer->buffers[cpu];
572 work = &cpu_buffer->irq_work;
573 }
574
575
576 prepare_to_wait(&work->waiters, &wait, TASK_INTERRUPTIBLE);
577
578 /*
579 * The events can happen in critical sections where
580 * checking a work queue can cause deadlocks.
581 * After adding a task to the queue, this flag is set
582 * only to notify events to try to wake up the queue
583 * using irq_work.
584 *
585 * We don't clear it even if the buffer is no longer
586 * empty. The flag only causes the next event to run
587 * irq_work to do the work queue wake up. The worse
588 * that can happen if we race with !trace_empty() is that
589 * an event will cause an irq_work to try to wake up
590 * an empty queue.
591 *
592 * There's no reason to protect this flag either, as
593 * the work queue and irq_work logic will do the necessary
594 * synchronization for the wake ups. The only thing
595 * that is necessary is that the wake up happens after
596 * a task has been queued. It's OK for spurious wake ups.
597 */
598 work->waiters_pending = true;
599
600 if ((cpu == RING_BUFFER_ALL_CPUS && ring_buffer_empty(buffer)) ||
601 (cpu != RING_BUFFER_ALL_CPUS && ring_buffer_empty_cpu(buffer, cpu)))
602 schedule();
603
604 finish_wait(&work->waiters, &wait);
561237e4 605 return 0;
15693458
SRRH
606}
607
608/**
609 * ring_buffer_poll_wait - poll on buffer input
610 * @buffer: buffer to wait on
611 * @cpu: the cpu buffer to wait on
612 * @filp: the file descriptor
613 * @poll_table: The poll descriptor
614 *
615 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
616 * as data is added to any of the @buffer's cpu buffers. Otherwise
617 * it will wait for data to be added to a specific cpu buffer.
618 *
619 * Returns POLLIN | POLLRDNORM if data exists in the buffers,
620 * zero otherwise.
621 */
622int ring_buffer_poll_wait(struct ring_buffer *buffer, int cpu,
623 struct file *filp, poll_table *poll_table)
624{
625 struct ring_buffer_per_cpu *cpu_buffer;
626 struct rb_irq_work *work;
627
15693458
SRRH
628 if (cpu == RING_BUFFER_ALL_CPUS)
629 work = &buffer->irq_work;
630 else {
6721cb60
SRRH
631 if (!cpumask_test_cpu(cpu, buffer->cpumask))
632 return -EINVAL;
633
15693458
SRRH
634 cpu_buffer = buffer->buffers[cpu];
635 work = &cpu_buffer->irq_work;
636 }
637
15693458 638 poll_wait(filp, &work->waiters, poll_table);
8c1bf5dc
JB
639 work->waiters_pending = true;
640 /*
641 * There's a tight race between setting the waiters_pending and
642 * checking if the ring buffer is empty. Once the waiters_pending bit
643 * is set, the next event will wake the task up, but we can get stuck
644 * if there's only a single event in.
645 *
646 * FIXME: Ideally, we need a memory barrier on the writer side as well,
647 * but adding a memory barrier to all events will cause too much of a
648 * performance hit in the fast path. We only need a memory barrier when
649 * the buffer goes from empty to having content. But as this race is
650 * extremely small, and it's not a problem if another event comes in, we
651 * will fix it later.
652 */
653 smp_mb();
15693458
SRRH
654
655 if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
656 (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
657 return POLLIN | POLLRDNORM;
658 return 0;
659}
660
f536aafc 661/* buffer may be either ring_buffer or ring_buffer_per_cpu */
077c5407
SR
662#define RB_WARN_ON(b, cond) \
663 ({ \
664 int _____ret = unlikely(cond); \
665 if (_____ret) { \
666 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
667 struct ring_buffer_per_cpu *__b = \
668 (void *)b; \
669 atomic_inc(&__b->buffer->record_disabled); \
670 } else \
671 atomic_inc(&b->record_disabled); \
672 WARN_ON(1); \
673 } \
674 _____ret; \
3e89c7bb 675 })
f536aafc 676
37886f6a
SR
677/* Up this if you want to test the TIME_EXTENTS and normalization */
678#define DEBUG_SHIFT 0
679
6d3f1e12 680static inline u64 rb_time_stamp(struct ring_buffer *buffer)
88eb0125
SR
681{
682 /* shift to debug/test normalization and TIME_EXTENTS */
683 return buffer->clock() << DEBUG_SHIFT;
684}
685
37886f6a
SR
686u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
687{
688 u64 time;
689
690 preempt_disable_notrace();
6d3f1e12 691 time = rb_time_stamp(buffer);
37886f6a
SR
692 preempt_enable_no_resched_notrace();
693
694 return time;
695}
696EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
697
698void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
699 int cpu, u64 *ts)
700{
701 /* Just stupid testing the normalize function and deltas */
702 *ts >>= DEBUG_SHIFT;
703}
704EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
705
77ae365e
SR
706/*
707 * Making the ring buffer lockless makes things tricky.
708 * Although writes only happen on the CPU that they are on,
709 * and they only need to worry about interrupts. Reads can
710 * happen on any CPU.
711 *
712 * The reader page is always off the ring buffer, but when the
713 * reader finishes with a page, it needs to swap its page with
714 * a new one from the buffer. The reader needs to take from
715 * the head (writes go to the tail). But if a writer is in overwrite
716 * mode and wraps, it must push the head page forward.
717 *
718 * Here lies the problem.
719 *
720 * The reader must be careful to replace only the head page, and
721 * not another one. As described at the top of the file in the
722 * ASCII art, the reader sets its old page to point to the next
723 * page after head. It then sets the page after head to point to
724 * the old reader page. But if the writer moves the head page
725 * during this operation, the reader could end up with the tail.
726 *
727 * We use cmpxchg to help prevent this race. We also do something
728 * special with the page before head. We set the LSB to 1.
729 *
730 * When the writer must push the page forward, it will clear the
731 * bit that points to the head page, move the head, and then set
732 * the bit that points to the new head page.
733 *
734 * We also don't want an interrupt coming in and moving the head
735 * page on another writer. Thus we use the second LSB to catch
736 * that too. Thus:
737 *
738 * head->list->prev->next bit 1 bit 0
739 * ------- -------
740 * Normal page 0 0
741 * Points to head page 0 1
742 * New head page 1 0
743 *
744 * Note we can not trust the prev pointer of the head page, because:
745 *
746 * +----+ +-----+ +-----+
747 * | |------>| T |---X--->| N |
748 * | |<------| | | |
749 * +----+ +-----+ +-----+
750 * ^ ^ |
751 * | +-----+ | |
752 * +----------| R |----------+ |
753 * | |<-----------+
754 * +-----+
755 *
756 * Key: ---X--> HEAD flag set in pointer
757 * T Tail page
758 * R Reader page
759 * N Next page
760 *
761 * (see __rb_reserve_next() to see where this happens)
762 *
763 * What the above shows is that the reader just swapped out
764 * the reader page with a page in the buffer, but before it
765 * could make the new header point back to the new page added
766 * it was preempted by a writer. The writer moved forward onto
767 * the new page added by the reader and is about to move forward
768 * again.
769 *
770 * You can see, it is legitimate for the previous pointer of
771 * the head (or any page) not to point back to itself. But only
772 * temporarially.
773 */
774
775#define RB_PAGE_NORMAL 0UL
776#define RB_PAGE_HEAD 1UL
777#define RB_PAGE_UPDATE 2UL
778
779
780#define RB_FLAG_MASK 3UL
781
782/* PAGE_MOVED is not part of the mask */
783#define RB_PAGE_MOVED 4UL
784
785/*
786 * rb_list_head - remove any bit
787 */
788static struct list_head *rb_list_head(struct list_head *list)
789{
790 unsigned long val = (unsigned long)list;
791
792 return (struct list_head *)(val & ~RB_FLAG_MASK);
793}
794
795/*
6d3f1e12 796 * rb_is_head_page - test if the given page is the head page
77ae365e
SR
797 *
798 * Because the reader may move the head_page pointer, we can
799 * not trust what the head page is (it may be pointing to
800 * the reader page). But if the next page is a header page,
801 * its flags will be non zero.
802 */
42b16b3f 803static inline int
77ae365e
SR
804rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
805 struct buffer_page *page, struct list_head *list)
806{
807 unsigned long val;
808
809 val = (unsigned long)list->next;
810
811 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
812 return RB_PAGE_MOVED;
813
814 return val & RB_FLAG_MASK;
815}
816
817/*
818 * rb_is_reader_page
819 *
820 * The unique thing about the reader page, is that, if the
821 * writer is ever on it, the previous pointer never points
822 * back to the reader page.
823 */
824static int rb_is_reader_page(struct buffer_page *page)
825{
826 struct list_head *list = page->list.prev;
827
828 return rb_list_head(list->next) != &page->list;
829}
830
831/*
832 * rb_set_list_to_head - set a list_head to be pointing to head.
833 */
834static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
835 struct list_head *list)
836{
837 unsigned long *ptr;
838
839 ptr = (unsigned long *)&list->next;
840 *ptr |= RB_PAGE_HEAD;
841 *ptr &= ~RB_PAGE_UPDATE;
842}
843
844/*
845 * rb_head_page_activate - sets up head page
846 */
847static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
848{
849 struct buffer_page *head;
850
851 head = cpu_buffer->head_page;
852 if (!head)
853 return;
854
855 /*
856 * Set the previous list pointer to have the HEAD flag.
857 */
858 rb_set_list_to_head(cpu_buffer, head->list.prev);
859}
860
861static void rb_list_head_clear(struct list_head *list)
862{
863 unsigned long *ptr = (unsigned long *)&list->next;
864
865 *ptr &= ~RB_FLAG_MASK;
866}
867
868/*
869 * rb_head_page_dactivate - clears head page ptr (for free list)
870 */
871static void
872rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
873{
874 struct list_head *hd;
875
876 /* Go through the whole list and clear any pointers found. */
877 rb_list_head_clear(cpu_buffer->pages);
878
879 list_for_each(hd, cpu_buffer->pages)
880 rb_list_head_clear(hd);
881}
882
883static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
884 struct buffer_page *head,
885 struct buffer_page *prev,
886 int old_flag, int new_flag)
887{
888 struct list_head *list;
889 unsigned long val = (unsigned long)&head->list;
890 unsigned long ret;
891
892 list = &prev->list;
893
894 val &= ~RB_FLAG_MASK;
895
08a40816
SR
896 ret = cmpxchg((unsigned long *)&list->next,
897 val | old_flag, val | new_flag);
77ae365e
SR
898
899 /* check if the reader took the page */
900 if ((ret & ~RB_FLAG_MASK) != val)
901 return RB_PAGE_MOVED;
902
903 return ret & RB_FLAG_MASK;
904}
905
906static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
907 struct buffer_page *head,
908 struct buffer_page *prev,
909 int old_flag)
910{
911 return rb_head_page_set(cpu_buffer, head, prev,
912 old_flag, RB_PAGE_UPDATE);
913}
914
915static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
916 struct buffer_page *head,
917 struct buffer_page *prev,
918 int old_flag)
919{
920 return rb_head_page_set(cpu_buffer, head, prev,
921 old_flag, RB_PAGE_HEAD);
922}
923
924static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
925 struct buffer_page *head,
926 struct buffer_page *prev,
927 int old_flag)
928{
929 return rb_head_page_set(cpu_buffer, head, prev,
930 old_flag, RB_PAGE_NORMAL);
931}
932
933static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
934 struct buffer_page **bpage)
935{
936 struct list_head *p = rb_list_head((*bpage)->list.next);
937
938 *bpage = list_entry(p, struct buffer_page, list);
939}
940
941static struct buffer_page *
942rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
943{
944 struct buffer_page *head;
945 struct buffer_page *page;
946 struct list_head *list;
947 int i;
948
949 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
950 return NULL;
951
952 /* sanity check */
953 list = cpu_buffer->pages;
954 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
955 return NULL;
956
957 page = head = cpu_buffer->head_page;
958 /*
959 * It is possible that the writer moves the header behind
960 * where we started, and we miss in one loop.
961 * A second loop should grab the header, but we'll do
962 * three loops just because I'm paranoid.
963 */
964 for (i = 0; i < 3; i++) {
965 do {
966 if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
967 cpu_buffer->head_page = page;
968 return page;
969 }
970 rb_inc_page(cpu_buffer, &page);
971 } while (page != head);
972 }
973
974 RB_WARN_ON(cpu_buffer, 1);
975
976 return NULL;
977}
978
979static int rb_head_page_replace(struct buffer_page *old,
980 struct buffer_page *new)
981{
982 unsigned long *ptr = (unsigned long *)&old->list.prev->next;
983 unsigned long val;
984 unsigned long ret;
985
986 val = *ptr & ~RB_FLAG_MASK;
987 val |= RB_PAGE_HEAD;
988
08a40816 989 ret = cmpxchg(ptr, val, (unsigned long)&new->list);
77ae365e
SR
990
991 return ret == val;
992}
993
994/*
995 * rb_tail_page_update - move the tail page forward
996 *
997 * Returns 1 if moved tail page, 0 if someone else did.
998 */
999static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1000 struct buffer_page *tail_page,
1001 struct buffer_page *next_page)
1002{
1003 struct buffer_page *old_tail;
1004 unsigned long old_entries;
1005 unsigned long old_write;
1006 int ret = 0;
1007
1008 /*
1009 * The tail page now needs to be moved forward.
1010 *
1011 * We need to reset the tail page, but without messing
1012 * with possible erasing of data brought in by interrupts
1013 * that have moved the tail page and are currently on it.
1014 *
1015 * We add a counter to the write field to denote this.
1016 */
1017 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1018 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1019
1020 /*
1021 * Just make sure we have seen our old_write and synchronize
1022 * with any interrupts that come in.
1023 */
1024 barrier();
1025
1026 /*
1027 * If the tail page is still the same as what we think
1028 * it is, then it is up to us to update the tail
1029 * pointer.
1030 */
1031 if (tail_page == cpu_buffer->tail_page) {
1032 /* Zero the write counter */
1033 unsigned long val = old_write & ~RB_WRITE_MASK;
1034 unsigned long eval = old_entries & ~RB_WRITE_MASK;
1035
1036 /*
1037 * This will only succeed if an interrupt did
1038 * not come in and change it. In which case, we
1039 * do not want to modify it.
da706d8b
LJ
1040 *
1041 * We add (void) to let the compiler know that we do not care
1042 * about the return value of these functions. We use the
1043 * cmpxchg to only update if an interrupt did not already
1044 * do it for us. If the cmpxchg fails, we don't care.
77ae365e 1045 */
da706d8b
LJ
1046 (void)local_cmpxchg(&next_page->write, old_write, val);
1047 (void)local_cmpxchg(&next_page->entries, old_entries, eval);
77ae365e
SR
1048
1049 /*
1050 * No need to worry about races with clearing out the commit.
1051 * it only can increment when a commit takes place. But that
1052 * only happens in the outer most nested commit.
1053 */
1054 local_set(&next_page->page->commit, 0);
1055
1056 old_tail = cmpxchg(&cpu_buffer->tail_page,
1057 tail_page, next_page);
1058
1059 if (old_tail == tail_page)
1060 ret = 1;
1061 }
1062
1063 return ret;
1064}
1065
1066static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1067 struct buffer_page *bpage)
1068{
1069 unsigned long val = (unsigned long)bpage;
1070
1071 if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
1072 return 1;
1073
1074 return 0;
1075}
1076
1077/**
1078 * rb_check_list - make sure a pointer to a list has the last bits zero
1079 */
1080static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
1081 struct list_head *list)
1082{
1083 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
1084 return 1;
1085 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
1086 return 1;
1087 return 0;
1088}
1089
7a8e76a3
SR
1090/**
1091 * check_pages - integrity check of buffer pages
1092 * @cpu_buffer: CPU buffer with pages to test
1093 *
c3706f00 1094 * As a safety measure we check to make sure the data pages have not
7a8e76a3
SR
1095 * been corrupted.
1096 */
1097static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1098{
3adc54fa 1099 struct list_head *head = cpu_buffer->pages;
044fa782 1100 struct buffer_page *bpage, *tmp;
7a8e76a3 1101
308f7eeb
SR
1102 /* Reset the head page if it exists */
1103 if (cpu_buffer->head_page)
1104 rb_set_head_page(cpu_buffer);
1105
77ae365e
SR
1106 rb_head_page_deactivate(cpu_buffer);
1107
3e89c7bb
SR
1108 if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
1109 return -1;
1110 if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
1111 return -1;
7a8e76a3 1112
77ae365e
SR
1113 if (rb_check_list(cpu_buffer, head))
1114 return -1;
1115
044fa782 1116 list_for_each_entry_safe(bpage, tmp, head, list) {
3e89c7bb 1117 if (RB_WARN_ON(cpu_buffer,
044fa782 1118 bpage->list.next->prev != &bpage->list))
3e89c7bb
SR
1119 return -1;
1120 if (RB_WARN_ON(cpu_buffer,
044fa782 1121 bpage->list.prev->next != &bpage->list))
3e89c7bb 1122 return -1;
77ae365e
SR
1123 if (rb_check_list(cpu_buffer, &bpage->list))
1124 return -1;
7a8e76a3
SR
1125 }
1126
77ae365e
SR
1127 rb_head_page_activate(cpu_buffer);
1128
7a8e76a3
SR
1129 return 0;
1130}
1131
438ced17 1132static int __rb_allocate_pages(int nr_pages, struct list_head *pages, int cpu)
7a8e76a3 1133{
438ced17 1134 int i;
044fa782 1135 struct buffer_page *bpage, *tmp;
3adc54fa 1136
7a8e76a3 1137 for (i = 0; i < nr_pages; i++) {
6fa3eb70 1138#if !defined (CONFIG_MTK_EXTMEM)
7ea59064 1139 struct page *page;
6fa3eb70 1140#endif
d7ec4bfe
VN
1141 /*
1142 * __GFP_NORETRY flag makes sure that the allocation fails
1143 * gracefully without invoking oom-killer and the system is
1144 * not destabilized.
1145 */
044fa782 1146 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
d7ec4bfe 1147 GFP_KERNEL | __GFP_NORETRY,
438ced17 1148 cpu_to_node(cpu));
044fa782 1149 if (!bpage)
e4c2ce82 1150 goto free_pages;
77ae365e 1151
438ced17 1152 list_add(&bpage->list, pages);
77ae365e 1153
6fa3eb70
S
1154#ifdef CONFIG_MTK_EXTMEM
1155 bpage->page = extmem_malloc_page_align(PAGE_SIZE);
1156 if(bpage->page == NULL) {
1157 pr_err("%s[%s] ext memory alloc failed!!!\n", __FILE__, __FUNCTION__);
1158 goto free_pages;
1159 }
1160#else
438ced17 1161 page = alloc_pages_node(cpu_to_node(cpu),
d7ec4bfe 1162 GFP_KERNEL | __GFP_NORETRY, 0);
7ea59064 1163 if (!page)
7a8e76a3 1164 goto free_pages;
7ea59064 1165 bpage->page = page_address(page);
6fa3eb70 1166#endif
044fa782 1167 rb_init_page(bpage->page);
7a8e76a3
SR
1168 }
1169
438ced17
VN
1170 return 0;
1171
1172free_pages:
1173 list_for_each_entry_safe(bpage, tmp, pages, list) {
1174 list_del_init(&bpage->list);
1175 free_buffer_page(bpage);
1176 }
1177
1178 return -ENOMEM;
1179}
1180
1181static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
1182 unsigned nr_pages)
1183{
1184 LIST_HEAD(pages);
1185
1186 WARN_ON(!nr_pages);
1187
1188 if (__rb_allocate_pages(nr_pages, &pages, cpu_buffer->cpu))
1189 return -ENOMEM;
1190
3adc54fa
SR
1191 /*
1192 * The ring buffer page list is a circular list that does not
1193 * start and end with a list head. All page list items point to
1194 * other pages.
1195 */
1196 cpu_buffer->pages = pages.next;
1197 list_del(&pages);
7a8e76a3 1198
438ced17
VN
1199 cpu_buffer->nr_pages = nr_pages;
1200
7a8e76a3
SR
1201 rb_check_pages(cpu_buffer);
1202
1203 return 0;
7a8e76a3
SR
1204}
1205
1206static struct ring_buffer_per_cpu *
438ced17 1207rb_allocate_cpu_buffer(struct ring_buffer *buffer, int nr_pages, int cpu)
7a8e76a3
SR
1208{
1209 struct ring_buffer_per_cpu *cpu_buffer;
044fa782 1210 struct buffer_page *bpage;
6fa3eb70 1211#if !defined (CONFIG_MTK_EXTMEM)
7ea59064 1212 struct page *page;
6fa3eb70 1213#endif
7a8e76a3
SR
1214 int ret;
1215
1216 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
1217 GFP_KERNEL, cpu_to_node(cpu));
1218 if (!cpu_buffer)
1219 return NULL;
1220
1221 cpu_buffer->cpu = cpu;
1222 cpu_buffer->buffer = buffer;
5389f6fa 1223 raw_spin_lock_init(&cpu_buffer->reader_lock);
1f8a6a10 1224 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
edc35bd7 1225 cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
83f40318 1226 INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
05fdd70d 1227 init_completion(&cpu_buffer->update_done);
15693458 1228 init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
f1dc6725 1229 init_waitqueue_head(&cpu_buffer->irq_work.waiters);
7a8e76a3 1230
044fa782 1231 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
e4c2ce82 1232 GFP_KERNEL, cpu_to_node(cpu));
044fa782 1233 if (!bpage)
e4c2ce82
SR
1234 goto fail_free_buffer;
1235
77ae365e
SR
1236 rb_check_bpage(cpu_buffer, bpage);
1237
044fa782 1238 cpu_buffer->reader_page = bpage;
6fa3eb70
S
1239
1240#ifdef CONFIG_MTK_EXTMEM
1241 bpage->page = extmem_malloc_page_align(PAGE_SIZE);
1242 if(bpage->page == NULL)
1243 goto fail_free_reader;
1244#else
7ea59064
VN
1245 page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
1246 if (!page)
e4c2ce82 1247 goto fail_free_reader;
7ea59064 1248 bpage->page = page_address(page);
6fa3eb70 1249#endif
044fa782 1250 rb_init_page(bpage->page);
e4c2ce82 1251
d769041f 1252 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
44b99462 1253 INIT_LIST_HEAD(&cpu_buffer->new_pages);
d769041f 1254
438ced17 1255 ret = rb_allocate_pages(cpu_buffer, nr_pages);
7a8e76a3 1256 if (ret < 0)
d769041f 1257 goto fail_free_reader;
7a8e76a3
SR
1258
1259 cpu_buffer->head_page
3adc54fa 1260 = list_entry(cpu_buffer->pages, struct buffer_page, list);
bf41a158 1261 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
7a8e76a3 1262
77ae365e
SR
1263 rb_head_page_activate(cpu_buffer);
1264
7a8e76a3
SR
1265 return cpu_buffer;
1266
d769041f
SR
1267 fail_free_reader:
1268 free_buffer_page(cpu_buffer->reader_page);
1269
7a8e76a3
SR
1270 fail_free_buffer:
1271 kfree(cpu_buffer);
1272 return NULL;
1273}
1274
1275static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1276{
3adc54fa 1277 struct list_head *head = cpu_buffer->pages;
044fa782 1278 struct buffer_page *bpage, *tmp;
7a8e76a3 1279
d769041f
SR
1280 free_buffer_page(cpu_buffer->reader_page);
1281
77ae365e
SR
1282 rb_head_page_deactivate(cpu_buffer);
1283
3adc54fa
SR
1284 if (head) {
1285 list_for_each_entry_safe(bpage, tmp, head, list) {
1286 list_del_init(&bpage->list);
1287 free_buffer_page(bpage);
1288 }
1289 bpage = list_entry(head, struct buffer_page, list);
044fa782 1290 free_buffer_page(bpage);
7a8e76a3 1291 }
3adc54fa 1292
7a8e76a3
SR
1293 kfree(cpu_buffer);
1294}
1295
59222efe 1296#ifdef CONFIG_HOTPLUG_CPU
09c9e84d
FW
1297static int rb_cpu_notify(struct notifier_block *self,
1298 unsigned long action, void *hcpu);
554f786e
SR
1299#endif
1300
7a8e76a3
SR
1301/**
1302 * ring_buffer_alloc - allocate a new ring_buffer
68814b58 1303 * @size: the size in bytes per cpu that is needed.
7a8e76a3
SR
1304 * @flags: attributes to set for the ring buffer.
1305 *
1306 * Currently the only flag that is available is the RB_FL_OVERWRITE
1307 * flag. This flag means that the buffer will overwrite old data
1308 * when the buffer wraps. If this flag is not set, the buffer will
1309 * drop data when the tail hits the head.
1310 */
1f8a6a10
PZ
1311struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1312 struct lock_class_key *key)
7a8e76a3
SR
1313{
1314 struct ring_buffer *buffer;
1315 int bsize;
438ced17 1316 int cpu, nr_pages;
7a8e76a3
SR
1317
1318 /* keep it in its own cache line */
1319 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1320 GFP_KERNEL);
1321 if (!buffer)
1322 return NULL;
1323
9e01c1b7
RR
1324 if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1325 goto fail_free_buffer;
1326
438ced17 1327 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
7a8e76a3 1328 buffer->flags = flags;
37886f6a 1329 buffer->clock = trace_clock_local;
1f8a6a10 1330 buffer->reader_lock_key = key;
7a8e76a3 1331
15693458 1332 init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
f1dc6725 1333 init_waitqueue_head(&buffer->irq_work.waiters);
15693458 1334
7a8e76a3 1335 /* need at least two pages */
438ced17
VN
1336 if (nr_pages < 2)
1337 nr_pages = 2;
7a8e76a3 1338
3bf832ce
FW
1339 /*
1340 * In case of non-hotplug cpu, if the ring-buffer is allocated
1341 * in early initcall, it will not be notified of secondary cpus.
1342 * In that off case, we need to allocate for all possible cpus.
1343 */
1344#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
1345 get_online_cpus();
1346 cpumask_copy(buffer->cpumask, cpu_online_mask);
3bf832ce
FW
1347#else
1348 cpumask_copy(buffer->cpumask, cpu_possible_mask);
1349#endif
7a8e76a3
SR
1350 buffer->cpus = nr_cpu_ids;
1351
1352 bsize = sizeof(void *) * nr_cpu_ids;
1353 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1354 GFP_KERNEL);
1355 if (!buffer->buffers)
9e01c1b7 1356 goto fail_free_cpumask;
7a8e76a3
SR
1357
1358 for_each_buffer_cpu(buffer, cpu) {
1359 buffer->buffers[cpu] =
438ced17 1360 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
7a8e76a3
SR
1361 if (!buffer->buffers[cpu])
1362 goto fail_free_buffers;
1363 }
1364
59222efe 1365#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
1366 buffer->cpu_notify.notifier_call = rb_cpu_notify;
1367 buffer->cpu_notify.priority = 0;
1368 register_cpu_notifier(&buffer->cpu_notify);
1369#endif
1370
1371 put_online_cpus();
7a8e76a3
SR
1372 mutex_init(&buffer->mutex);
1373
1374 return buffer;
1375
1376 fail_free_buffers:
1377 for_each_buffer_cpu(buffer, cpu) {
1378 if (buffer->buffers[cpu])
1379 rb_free_cpu_buffer(buffer->buffers[cpu]);
1380 }
1381 kfree(buffer->buffers);
1382
9e01c1b7
RR
1383 fail_free_cpumask:
1384 free_cpumask_var(buffer->cpumask);
554f786e 1385 put_online_cpus();
9e01c1b7 1386
7a8e76a3
SR
1387 fail_free_buffer:
1388 kfree(buffer);
1389 return NULL;
1390}
1f8a6a10 1391EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
7a8e76a3
SR
1392
1393/**
1394 * ring_buffer_free - free a ring buffer.
1395 * @buffer: the buffer to free.
1396 */
1397void
1398ring_buffer_free(struct ring_buffer *buffer)
1399{
1400 int cpu;
1401
554f786e
SR
1402 get_online_cpus();
1403
59222efe 1404#ifdef CONFIG_HOTPLUG_CPU
554f786e
SR
1405 unregister_cpu_notifier(&buffer->cpu_notify);
1406#endif
1407
7a8e76a3
SR
1408 for_each_buffer_cpu(buffer, cpu)
1409 rb_free_cpu_buffer(buffer->buffers[cpu]);
1410
554f786e
SR
1411 put_online_cpus();
1412
bd3f0221 1413 kfree(buffer->buffers);
9e01c1b7
RR
1414 free_cpumask_var(buffer->cpumask);
1415
7a8e76a3
SR
1416 kfree(buffer);
1417}
c4f50183 1418EXPORT_SYMBOL_GPL(ring_buffer_free);
7a8e76a3 1419
37886f6a
SR
1420void ring_buffer_set_clock(struct ring_buffer *buffer,
1421 u64 (*clock)(void))
1422{
1423 buffer->clock = clock;
1424}
1425
7a8e76a3
SR
1426static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1427
83f40318
VN
1428static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1429{
1430 return local_read(&bpage->entries) & RB_WRITE_MASK;
1431}
1432
1433static inline unsigned long rb_page_write(struct buffer_page *bpage)
1434{
1435 return local_read(&bpage->write) & RB_WRITE_MASK;
1436}
1437
5040b4b7 1438static int
83f40318 1439rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned int nr_pages)
7a8e76a3 1440{
83f40318
VN
1441 struct list_head *tail_page, *to_remove, *next_page;
1442 struct buffer_page *to_remove_page, *tmp_iter_page;
1443 struct buffer_page *last_page, *first_page;
1444 unsigned int nr_removed;
1445 unsigned long head_bit;
1446 int page_entries;
1447
1448 head_bit = 0;
7a8e76a3 1449
5389f6fa 1450 raw_spin_lock_irq(&cpu_buffer->reader_lock);
83f40318
VN
1451 atomic_inc(&cpu_buffer->record_disabled);
1452 /*
1453 * We don't race with the readers since we have acquired the reader
1454 * lock. We also don't race with writers after disabling recording.
1455 * This makes it easy to figure out the first and the last page to be
1456 * removed from the list. We unlink all the pages in between including
1457 * the first and last pages. This is done in a busy loop so that we
1458 * lose the least number of traces.
1459 * The pages are freed after we restart recording and unlock readers.
1460 */
1461 tail_page = &cpu_buffer->tail_page->list;
77ae365e 1462
83f40318
VN
1463 /*
1464 * tail page might be on reader page, we remove the next page
1465 * from the ring buffer
1466 */
1467 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
1468 tail_page = rb_list_head(tail_page->next);
1469 to_remove = tail_page;
1470
1471 /* start of pages to remove */
1472 first_page = list_entry(rb_list_head(to_remove->next),
1473 struct buffer_page, list);
1474
1475 for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
1476 to_remove = rb_list_head(to_remove)->next;
1477 head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
7a8e76a3 1478 }
7a8e76a3 1479
83f40318 1480 next_page = rb_list_head(to_remove)->next;
7a8e76a3 1481
83f40318
VN
1482 /*
1483 * Now we remove all pages between tail_page and next_page.
1484 * Make sure that we have head_bit value preserved for the
1485 * next page
1486 */
1487 tail_page->next = (struct list_head *)((unsigned long)next_page |
1488 head_bit);
1489 next_page = rb_list_head(next_page);
1490 next_page->prev = tail_page;
1491
1492 /* make sure pages points to a valid page in the ring buffer */
1493 cpu_buffer->pages = next_page;
1494
1495 /* update head page */
1496 if (head_bit)
1497 cpu_buffer->head_page = list_entry(next_page,
1498 struct buffer_page, list);
1499
1500 /*
1501 * change read pointer to make sure any read iterators reset
1502 * themselves
1503 */
1504 cpu_buffer->read = 0;
1505
1506 /* pages are removed, resume tracing and then free the pages */
1507 atomic_dec(&cpu_buffer->record_disabled);
5389f6fa 1508 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
83f40318
VN
1509
1510 RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
1511
1512 /* last buffer page to remove */
1513 last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
1514 list);
1515 tmp_iter_page = first_page;
1516
1517 do {
1518 to_remove_page = tmp_iter_page;
1519 rb_inc_page(cpu_buffer, &tmp_iter_page);
1520
1521 /* update the counters */
1522 page_entries = rb_page_entries(to_remove_page);
1523 if (page_entries) {
1524 /*
1525 * If something was added to this page, it was full
1526 * since it is not the tail page. So we deduct the
1527 * bytes consumed in ring buffer from here.
48fdc72f 1528 * Increment overrun to account for the lost events.
83f40318 1529 */
48fdc72f 1530 local_add(page_entries, &cpu_buffer->overrun);
83f40318
VN
1531 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
1532 }
1533
1534 /*
1535 * We have already removed references to this list item, just
1536 * free up the buffer_page and its page
1537 */
1538 free_buffer_page(to_remove_page);
1539 nr_removed--;
1540
1541 } while (to_remove_page != last_page);
1542
1543 RB_WARN_ON(cpu_buffer, nr_removed);
5040b4b7
VN
1544
1545 return nr_removed == 0;
7a8e76a3
SR
1546}
1547
5040b4b7
VN
1548static int
1549rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1550{
5040b4b7
VN
1551 struct list_head *pages = &cpu_buffer->new_pages;
1552 int retries, success;
7a8e76a3 1553
5389f6fa 1554 raw_spin_lock_irq(&cpu_buffer->reader_lock);
5040b4b7
VN
1555 /*
1556 * We are holding the reader lock, so the reader page won't be swapped
1557 * in the ring buffer. Now we are racing with the writer trying to
1558 * move head page and the tail page.
1559 * We are going to adapt the reader page update process where:
1560 * 1. We first splice the start and end of list of new pages between
1561 * the head page and its previous page.
1562 * 2. We cmpxchg the prev_page->next to point from head page to the
1563 * start of new pages list.
1564 * 3. Finally, we update the head->prev to the end of new list.
1565 *
1566 * We will try this process 10 times, to make sure that we don't keep
1567 * spinning.
1568 */
1569 retries = 10;
1570 success = 0;
1571 while (retries--) {
1572 struct list_head *head_page, *prev_page, *r;
1573 struct list_head *last_page, *first_page;
1574 struct list_head *head_page_with_bit;
77ae365e 1575
5040b4b7 1576 head_page = &rb_set_head_page(cpu_buffer)->list;
54f7be5b
SR
1577 if (!head_page)
1578 break;
5040b4b7
VN
1579 prev_page = head_page->prev;
1580
1581 first_page = pages->next;
1582 last_page = pages->prev;
1583
1584 head_page_with_bit = (struct list_head *)
1585 ((unsigned long)head_page | RB_PAGE_HEAD);
1586
1587 last_page->next = head_page_with_bit;
1588 first_page->prev = prev_page;
1589
1590 r = cmpxchg(&prev_page->next, head_page_with_bit, first_page);
1591
1592 if (r == head_page_with_bit) {
1593 /*
1594 * yay, we replaced the page pointer to our new list,
1595 * now, we just have to update to head page's prev
1596 * pointer to point to end of list
1597 */
1598 head_page->prev = last_page;
1599 success = 1;
1600 break;
1601 }
7a8e76a3 1602 }
7a8e76a3 1603
5040b4b7
VN
1604 if (success)
1605 INIT_LIST_HEAD(pages);
1606 /*
1607 * If we weren't successful in adding in new pages, warn and stop
1608 * tracing
1609 */
1610 RB_WARN_ON(cpu_buffer, !success);
5389f6fa 1611 raw_spin_unlock_irq(&cpu_buffer->reader_lock);
5040b4b7
VN
1612
1613 /* free pages if they weren't inserted */
1614 if (!success) {
1615 struct buffer_page *bpage, *tmp;
1616 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1617 list) {
1618 list_del_init(&bpage->list);
1619 free_buffer_page(bpage);
1620 }
1621 }
1622 return success;
7a8e76a3
SR
1623}
1624
83f40318 1625static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
438ced17 1626{
5040b4b7
VN
1627 int success;
1628
438ced17 1629 if (cpu_buffer->nr_pages_to_update > 0)
5040b4b7 1630 success = rb_insert_pages(cpu_buffer);
438ced17 1631 else
5040b4b7
VN
1632 success = rb_remove_pages(cpu_buffer,
1633 -cpu_buffer->nr_pages_to_update);
83f40318 1634
5040b4b7
VN
1635 if (success)
1636 cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
83f40318
VN
1637}
1638
1639static void update_pages_handler(struct work_struct *work)
1640{
1641 struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
1642 struct ring_buffer_per_cpu, update_pages_work);
1643 rb_update_pages(cpu_buffer);
05fdd70d 1644 complete(&cpu_buffer->update_done);
438ced17
VN
1645}
1646
7a8e76a3
SR
1647/**
1648 * ring_buffer_resize - resize the ring buffer
1649 * @buffer: the buffer to resize.
1650 * @size: the new size.
1651 *
7a8e76a3
SR
1652 * Minimum size is 2 * BUF_PAGE_SIZE.
1653 *
83f40318 1654 * Returns 0 on success and < 0 on failure.
7a8e76a3 1655 */
438ced17
VN
1656int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size,
1657 int cpu_id)
7a8e76a3
SR
1658{
1659 struct ring_buffer_per_cpu *cpu_buffer;
438ced17 1660 unsigned nr_pages;
83f40318 1661 int cpu, err = 0;
7a8e76a3 1662
ee51a1de
IM
1663 /*
1664 * Always succeed at resizing a non-existent buffer:
1665 */
1666 if (!buffer)
1667 return size;
1668
6a31e1f1
SR
1669 /* Make sure the requested buffer exists */
1670 if (cpu_id != RING_BUFFER_ALL_CPUS &&
1671 !cpumask_test_cpu(cpu_id, buffer->cpumask))
1672 return size;
1673
7a8e76a3
SR
1674 size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1675 size *= BUF_PAGE_SIZE;
7a8e76a3
SR
1676
1677 /* we need a minimum of two pages */
1678 if (size < BUF_PAGE_SIZE * 2)
1679 size = BUF_PAGE_SIZE * 2;
1680
83f40318 1681 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
18421015 1682
83f40318
VN
1683 /*
1684 * Don't succeed if resizing is disabled, as a reader might be
1685 * manipulating the ring buffer and is expecting a sane state while
1686 * this is true.
1687 */
1688 if (atomic_read(&buffer->resize_disabled))
1689 return -EBUSY;
18421015 1690
83f40318 1691 /* prevent another thread from changing buffer sizes */
7a8e76a3 1692 mutex_lock(&buffer->mutex);
7a8e76a3 1693
438ced17
VN
1694 if (cpu_id == RING_BUFFER_ALL_CPUS) {
1695 /* calculate the pages to update */
7a8e76a3
SR
1696 for_each_buffer_cpu(buffer, cpu) {
1697 cpu_buffer = buffer->buffers[cpu];
7a8e76a3 1698
438ced17
VN
1699 cpu_buffer->nr_pages_to_update = nr_pages -
1700 cpu_buffer->nr_pages;
438ced17
VN
1701 /*
1702 * nothing more to do for removing pages or no update
1703 */
1704 if (cpu_buffer->nr_pages_to_update <= 0)
1705 continue;
d7ec4bfe 1706 /*
438ced17
VN
1707 * to add pages, make sure all new pages can be
1708 * allocated without receiving ENOMEM
d7ec4bfe 1709 */
438ced17
VN
1710 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1711 if (__rb_allocate_pages(cpu_buffer->nr_pages_to_update,
83f40318 1712 &cpu_buffer->new_pages, cpu)) {
438ced17 1713 /* not enough memory for new pages */
83f40318
VN
1714 err = -ENOMEM;
1715 goto out_err;
1716 }
1717 }
1718
1719 get_online_cpus();
1720 /*
1721 * Fire off all the required work handlers
05fdd70d 1722 * We can't schedule on offline CPUs, but it's not necessary
83f40318
VN
1723 * since we can change their buffer sizes without any race.
1724 */
1725 for_each_buffer_cpu(buffer, cpu) {
1726 cpu_buffer = buffer->buffers[cpu];
05fdd70d 1727 if (!cpu_buffer->nr_pages_to_update)
83f40318
VN
1728 continue;
1729
f5eb5588
SRRH
1730 /* The update must run on the CPU that is being updated. */
1731 preempt_disable();
1732 if (cpu == smp_processor_id() || !cpu_online(cpu)) {
1733 rb_update_pages(cpu_buffer);
1734 cpu_buffer->nr_pages_to_update = 0;
1735 } else {
1736 /*
1737 * Can not disable preemption for schedule_work_on()
1738 * on PREEMPT_RT.
1739 */
1740 preempt_enable();
05fdd70d
VN
1741 schedule_work_on(cpu,
1742 &cpu_buffer->update_pages_work);
f5eb5588
SRRH
1743 preempt_disable();
1744 }
1745 preempt_enable();
7a8e76a3 1746 }
7a8e76a3 1747
438ced17
VN
1748 /* wait for all the updates to complete */
1749 for_each_buffer_cpu(buffer, cpu) {
1750 cpu_buffer = buffer->buffers[cpu];
05fdd70d 1751 if (!cpu_buffer->nr_pages_to_update)
83f40318
VN
1752 continue;
1753
05fdd70d
VN
1754 if (cpu_online(cpu))
1755 wait_for_completion(&cpu_buffer->update_done);
83f40318 1756 cpu_buffer->nr_pages_to_update = 0;
438ced17 1757 }
83f40318
VN
1758
1759 put_online_cpus();
438ced17 1760 } else {
8e49f418
VN
1761 /* Make sure this CPU has been intitialized */
1762 if (!cpumask_test_cpu(cpu_id, buffer->cpumask))
1763 goto out;
1764
438ced17 1765 cpu_buffer = buffer->buffers[cpu_id];
83f40318 1766
438ced17
VN
1767 if (nr_pages == cpu_buffer->nr_pages)
1768 goto out;
7a8e76a3 1769
438ced17
VN
1770 cpu_buffer->nr_pages_to_update = nr_pages -
1771 cpu_buffer->nr_pages;
1772
1773 INIT_LIST_HEAD(&cpu_buffer->new_pages);
1774 if (cpu_buffer->nr_pages_to_update > 0 &&
1775 __rb_allocate_pages(cpu_buffer->nr_pages_to_update,
83f40318
VN
1776 &cpu_buffer->new_pages, cpu_id)) {
1777 err = -ENOMEM;
1778 goto out_err;
1779 }
438ced17 1780
83f40318
VN
1781 get_online_cpus();
1782
f5eb5588
SRRH
1783 preempt_disable();
1784 /* The update must run on the CPU that is being updated. */
1785 if (cpu_id == smp_processor_id() || !cpu_online(cpu_id))
1786 rb_update_pages(cpu_buffer);
1787 else {
1788 /*
1789 * Can not disable preemption for schedule_work_on()
1790 * on PREEMPT_RT.
1791 */
1792 preempt_enable();
83f40318
VN
1793 schedule_work_on(cpu_id,
1794 &cpu_buffer->update_pages_work);
05fdd70d 1795 wait_for_completion(&cpu_buffer->update_done);
f5eb5588
SRRH
1796 preempt_disable();
1797 }
1798 preempt_enable();
83f40318 1799
83f40318 1800 cpu_buffer->nr_pages_to_update = 0;
05fdd70d 1801 put_online_cpus();
438ced17 1802 }
7a8e76a3
SR
1803
1804 out:
659f451f
SR
1805 /*
1806 * The ring buffer resize can happen with the ring buffer
1807 * enabled, so that the update disturbs the tracing as little
1808 * as possible. But if the buffer is disabled, we do not need
1809 * to worry about that, and we can take the time to verify
1810 * that the buffer is not corrupt.
1811 */
1812 if (atomic_read(&buffer->record_disabled)) {
1813 atomic_inc(&buffer->record_disabled);
1814 /*
1815 * Even though the buffer was disabled, we must make sure
1816 * that it is truly disabled before calling rb_check_pages.
1817 * There could have been a race between checking
1818 * record_disable and incrementing it.
1819 */
1820 synchronize_sched();
1821 for_each_buffer_cpu(buffer, cpu) {
1822 cpu_buffer = buffer->buffers[cpu];
1823 rb_check_pages(cpu_buffer);
1824 }
1825 atomic_dec(&buffer->record_disabled);
1826 }
1827
7a8e76a3 1828 mutex_unlock(&buffer->mutex);
7a8e76a3
SR
1829 return size;
1830
83f40318 1831 out_err:
438ced17
VN
1832 for_each_buffer_cpu(buffer, cpu) {
1833 struct buffer_page *bpage, *tmp;
83f40318 1834
438ced17 1835 cpu_buffer = buffer->buffers[cpu];
438ced17 1836 cpu_buffer->nr_pages_to_update = 0;
83f40318 1837
438ced17
VN
1838 if (list_empty(&cpu_buffer->new_pages))
1839 continue;
83f40318 1840
438ced17
VN
1841 list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
1842 list) {
1843 list_del_init(&bpage->list);
1844 free_buffer_page(bpage);
1845 }
7a8e76a3 1846 }
641d2f63 1847 mutex_unlock(&buffer->mutex);
83f40318 1848 return err;
7a8e76a3 1849}
c4f50183 1850EXPORT_SYMBOL_GPL(ring_buffer_resize);
7a8e76a3 1851
750912fa
DS
1852void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
1853{
1854 mutex_lock(&buffer->mutex);
1855 if (val)
1856 buffer->flags |= RB_FL_OVERWRITE;
1857 else
1858 buffer->flags &= ~RB_FL_OVERWRITE;
1859 mutex_unlock(&buffer->mutex);
1860}
1861EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
1862
8789a9e7 1863static inline void *
044fa782 1864__rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
8789a9e7 1865{
044fa782 1866 return bpage->data + index;
8789a9e7
SR
1867}
1868
044fa782 1869static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
7a8e76a3 1870{
044fa782 1871 return bpage->page->data + index;
7a8e76a3
SR
1872}
1873
1874static inline struct ring_buffer_event *
d769041f 1875rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1876{
6f807acd
SR
1877 return __rb_page_index(cpu_buffer->reader_page,
1878 cpu_buffer->reader_page->read);
1879}
1880
7a8e76a3
SR
1881static inline struct ring_buffer_event *
1882rb_iter_head_event(struct ring_buffer_iter *iter)
1883{
6f807acd 1884 return __rb_page_index(iter->head_page, iter->head);
7a8e76a3
SR
1885}
1886
bf41a158
SR
1887static inline unsigned rb_page_commit(struct buffer_page *bpage)
1888{
abc9b56d 1889 return local_read(&bpage->page->commit);
bf41a158
SR
1890}
1891
25985edc 1892/* Size is determined by what has been committed */
bf41a158
SR
1893static inline unsigned rb_page_size(struct buffer_page *bpage)
1894{
1895 return rb_page_commit(bpage);
1896}
1897
1898static inline unsigned
1899rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1900{
1901 return rb_page_commit(cpu_buffer->commit_page);
1902}
1903
bf41a158
SR
1904static inline unsigned
1905rb_event_index(struct ring_buffer_event *event)
1906{
1907 unsigned long addr = (unsigned long)event;
1908
22f470f8 1909 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
bf41a158
SR
1910}
1911
0f0c85fc 1912static inline int
fa743953
SR
1913rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1914 struct ring_buffer_event *event)
bf41a158
SR
1915{
1916 unsigned long addr = (unsigned long)event;
1917 unsigned long index;
1918
1919 index = rb_event_index(event);
1920 addr &= PAGE_MASK;
1921
1922 return cpu_buffer->commit_page->page == (void *)addr &&
1923 rb_commit_index(cpu_buffer) == index;
1924}
1925
34a148bf 1926static void
bf41a158 1927rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1928{
77ae365e
SR
1929 unsigned long max_count;
1930
bf41a158
SR
1931 /*
1932 * We only race with interrupts and NMIs on this CPU.
1933 * If we own the commit event, then we can commit
1934 * all others that interrupted us, since the interruptions
1935 * are in stack format (they finish before they come
1936 * back to us). This allows us to do a simple loop to
1937 * assign the commit to the tail.
1938 */
a8ccf1d6 1939 again:
438ced17 1940 max_count = cpu_buffer->nr_pages * 100;
77ae365e 1941
bf41a158 1942 while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
77ae365e
SR
1943 if (RB_WARN_ON(cpu_buffer, !(--max_count)))
1944 return;
1945 if (RB_WARN_ON(cpu_buffer,
1946 rb_is_reader_page(cpu_buffer->tail_page)))
1947 return;
1948 local_set(&cpu_buffer->commit_page->page->commit,
1949 rb_page_write(cpu_buffer->commit_page));
bf41a158 1950 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
abc9b56d
SR
1951 cpu_buffer->write_stamp =
1952 cpu_buffer->commit_page->page->time_stamp;
bf41a158
SR
1953 /* add barrier to keep gcc from optimizing too much */
1954 barrier();
1955 }
1956 while (rb_commit_index(cpu_buffer) !=
1957 rb_page_write(cpu_buffer->commit_page)) {
77ae365e
SR
1958
1959 local_set(&cpu_buffer->commit_page->page->commit,
1960 rb_page_write(cpu_buffer->commit_page));
1961 RB_WARN_ON(cpu_buffer,
1962 local_read(&cpu_buffer->commit_page->page->commit) &
1963 ~RB_WRITE_MASK);
bf41a158
SR
1964 barrier();
1965 }
a8ccf1d6
SR
1966
1967 /* again, keep gcc from optimizing */
1968 barrier();
1969
1970 /*
1971 * If an interrupt came in just after the first while loop
1972 * and pushed the tail page forward, we will be left with
1973 * a dangling commit that will never go forward.
1974 */
1975 if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1976 goto again;
7a8e76a3
SR
1977}
1978
d769041f 1979static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 1980{
abc9b56d 1981 cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
6f807acd 1982 cpu_buffer->reader_page->read = 0;
d769041f
SR
1983}
1984
34a148bf 1985static void rb_inc_iter(struct ring_buffer_iter *iter)
d769041f
SR
1986{
1987 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1988
1989 /*
1990 * The iterator could be on the reader page (it starts there).
1991 * But the head could have moved, since the reader was
1992 * found. Check for this case and assign the iterator
1993 * to the head page instead of next.
1994 */
1995 if (iter->head_page == cpu_buffer->reader_page)
77ae365e 1996 iter->head_page = rb_set_head_page(cpu_buffer);
d769041f
SR
1997 else
1998 rb_inc_page(cpu_buffer, &iter->head_page);
1999
abc9b56d 2000 iter->read_stamp = iter->head_page->page->time_stamp;
7a8e76a3
SR
2001 iter->head = 0;
2002}
2003
69d1b839
SR
2004/* Slow path, do not inline */
2005static noinline struct ring_buffer_event *
2006rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
2007{
2008 event->type_len = RINGBUF_TYPE_TIME_EXTEND;
2009
2010 /* Not the first event on the page? */
2011 if (rb_event_index(event)) {
2012 event->time_delta = delta & TS_MASK;
2013 event->array[0] = delta >> TS_SHIFT;
2014 } else {
2015 /* nope, just zero it */
2016 event->time_delta = 0;
2017 event->array[0] = 0;
2018 }
2019
2020 return skip_time_extend(event);
2021}
2022
7a8e76a3 2023/**
01e3e710 2024 * rb_update_event - update event type and data
7f70b62e 2025 * @event: the event to update
7a8e76a3
SR
2026 * @type: the type of event
2027 * @length: the size of the event field in the ring buffer
2028 *
2029 * Update the type and data fields of the event. The length
2030 * is the actual size that is written to the ring buffer,
2031 * and with this, we can determine what to place into the
2032 * data field.
2033 */
34a148bf 2034static void
69d1b839
SR
2035rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
2036 struct ring_buffer_event *event, unsigned length,
2037 int add_timestamp, u64 delta)
7a8e76a3 2038{
69d1b839
SR
2039 /* Only a commit updates the timestamp */
2040 if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
2041 delta = 0;
7a8e76a3 2042
69d1b839
SR
2043 /*
2044 * If we need to add a timestamp, then we
2045 * add it to the start of the resevered space.
2046 */
2047 if (unlikely(add_timestamp)) {
2048 event = rb_add_time_stamp(event, delta);
2049 length -= RB_LEN_TIME_EXTEND;
2050 delta = 0;
7a8e76a3 2051 }
69d1b839
SR
2052
2053 event->time_delta = delta;
2054 length -= RB_EVNT_HDR_SIZE;
2055 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
2056 event->type_len = 0;
2057 event->array[0] = length;
2058 } else
2059 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
7a8e76a3
SR
2060}
2061
77ae365e
SR
2062/*
2063 * rb_handle_head_page - writer hit the head page
2064 *
2065 * Returns: +1 to retry page
2066 * 0 to continue
2067 * -1 on error
2068 */
2069static int
2070rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
2071 struct buffer_page *tail_page,
2072 struct buffer_page *next_page)
2073{
2074 struct buffer_page *new_head;
2075 int entries;
2076 int type;
2077 int ret;
2078
2079 entries = rb_page_entries(next_page);
2080
2081 /*
2082 * The hard part is here. We need to move the head
2083 * forward, and protect against both readers on
2084 * other CPUs and writers coming in via interrupts.
2085 */
2086 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
2087 RB_PAGE_HEAD);
2088
2089 /*
2090 * type can be one of four:
2091 * NORMAL - an interrupt already moved it for us
2092 * HEAD - we are the first to get here.
2093 * UPDATE - we are the interrupt interrupting
2094 * a current move.
2095 * MOVED - a reader on another CPU moved the next
2096 * pointer to its reader page. Give up
2097 * and try again.
2098 */
2099
2100 switch (type) {
2101 case RB_PAGE_HEAD:
2102 /*
2103 * We changed the head to UPDATE, thus
2104 * it is our responsibility to update
2105 * the counters.
2106 */
2107 local_add(entries, &cpu_buffer->overrun);
c64e148a 2108 local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
77ae365e
SR
2109
2110 /*
2111 * The entries will be zeroed out when we move the
2112 * tail page.
2113 */
2114
2115 /* still more to do */
2116 break;
2117
2118 case RB_PAGE_UPDATE:
2119 /*
2120 * This is an interrupt that interrupt the
2121 * previous update. Still more to do.
2122 */
2123 break;
2124 case RB_PAGE_NORMAL:
2125 /*
2126 * An interrupt came in before the update
2127 * and processed this for us.
2128 * Nothing left to do.
2129 */
2130 return 1;
2131 case RB_PAGE_MOVED:
2132 /*
2133 * The reader is on another CPU and just did
2134 * a swap with our next_page.
2135 * Try again.
2136 */
2137 return 1;
2138 default:
2139 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
2140 return -1;
2141 }
2142
2143 /*
2144 * Now that we are here, the old head pointer is
2145 * set to UPDATE. This will keep the reader from
2146 * swapping the head page with the reader page.
2147 * The reader (on another CPU) will spin till
2148 * we are finished.
2149 *
2150 * We just need to protect against interrupts
2151 * doing the job. We will set the next pointer
2152 * to HEAD. After that, we set the old pointer
2153 * to NORMAL, but only if it was HEAD before.
2154 * otherwise we are an interrupt, and only
2155 * want the outer most commit to reset it.
2156 */
2157 new_head = next_page;
2158 rb_inc_page(cpu_buffer, &new_head);
2159
2160 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
2161 RB_PAGE_NORMAL);
2162
2163 /*
2164 * Valid returns are:
2165 * HEAD - an interrupt came in and already set it.
2166 * NORMAL - One of two things:
2167 * 1) We really set it.
2168 * 2) A bunch of interrupts came in and moved
2169 * the page forward again.
2170 */
2171 switch (ret) {
2172 case RB_PAGE_HEAD:
2173 case RB_PAGE_NORMAL:
2174 /* OK */
2175 break;
2176 default:
2177 RB_WARN_ON(cpu_buffer, 1);
2178 return -1;
2179 }
2180
2181 /*
2182 * It is possible that an interrupt came in,
2183 * set the head up, then more interrupts came in
2184 * and moved it again. When we get back here,
2185 * the page would have been set to NORMAL but we
2186 * just set it back to HEAD.
2187 *
2188 * How do you detect this? Well, if that happened
2189 * the tail page would have moved.
2190 */
2191 if (ret == RB_PAGE_NORMAL) {
2192 /*
2193 * If the tail had moved passed next, then we need
2194 * to reset the pointer.
2195 */
2196 if (cpu_buffer->tail_page != tail_page &&
2197 cpu_buffer->tail_page != next_page)
2198 rb_head_page_set_normal(cpu_buffer, new_head,
2199 next_page,
2200 RB_PAGE_HEAD);
2201 }
2202
2203 /*
2204 * If this was the outer most commit (the one that
2205 * changed the original pointer from HEAD to UPDATE),
2206 * then it is up to us to reset it to NORMAL.
2207 */
2208 if (type == RB_PAGE_HEAD) {
2209 ret = rb_head_page_set_normal(cpu_buffer, next_page,
2210 tail_page,
2211 RB_PAGE_UPDATE);
2212 if (RB_WARN_ON(cpu_buffer,
2213 ret != RB_PAGE_UPDATE))
2214 return -1;
2215 }
2216
2217 return 0;
2218}
2219
34a148bf 2220static unsigned rb_calculate_event_length(unsigned length)
7a8e76a3
SR
2221{
2222 struct ring_buffer_event event; /* Used only for sizeof array */
2223
2224 /* zero length can cause confusions */
2225 if (!length)
2226 length = 1;
2227
2271048d 2228 if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
7a8e76a3
SR
2229 length += sizeof(event.array[0]);
2230
2231 length += RB_EVNT_HDR_SIZE;
2271048d 2232 length = ALIGN(length, RB_ARCH_ALIGNMENT);
7a8e76a3
SR
2233
2234 return length;
2235}
2236
c7b09308
SR
2237static inline void
2238rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
2239 struct buffer_page *tail_page,
2240 unsigned long tail, unsigned long length)
2241{
2242 struct ring_buffer_event *event;
2243
2244 /*
2245 * Only the event that crossed the page boundary
2246 * must fill the old tail_page with padding.
2247 */
2248 if (tail >= BUF_PAGE_SIZE) {
b3230c8b
SR
2249 /*
2250 * If the page was filled, then we still need
2251 * to update the real_end. Reset it to zero
2252 * and the reader will ignore it.
2253 */
2254 if (tail == BUF_PAGE_SIZE)
2255 tail_page->real_end = 0;
2256
c7b09308
SR
2257 local_sub(length, &tail_page->write);
2258 return;
2259 }
2260
2261 event = __rb_page_index(tail_page, tail);
b0b7065b 2262 kmemcheck_annotate_bitfield(event, bitfield);
c7b09308 2263
c64e148a
VN
2264 /* account for padding bytes */
2265 local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
2266
ff0ff84a
SR
2267 /*
2268 * Save the original length to the meta data.
2269 * This will be used by the reader to add lost event
2270 * counter.
2271 */
2272 tail_page->real_end = tail;
2273
c7b09308
SR
2274 /*
2275 * If this event is bigger than the minimum size, then
2276 * we need to be careful that we don't subtract the
2277 * write counter enough to allow another writer to slip
2278 * in on this page.
2279 * We put in a discarded commit instead, to make sure
2280 * that this space is not used again.
2281 *
2282 * If we are less than the minimum size, we don't need to
2283 * worry about it.
2284 */
2285 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
2286 /* No room for any events */
2287
2288 /* Mark the rest of the page with padding */
2289 rb_event_set_padding(event);
2290
2291 /* Set the write back to the previous setting */
2292 local_sub(length, &tail_page->write);
2293 return;
2294 }
2295
2296 /* Put in a discarded event */
2297 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
2298 event->type_len = RINGBUF_TYPE_PADDING;
2299 /* time delta must be non zero */
2300 event->time_delta = 1;
c7b09308
SR
2301
2302 /* Set write to end of buffer */
2303 length = (tail + length) - BUF_PAGE_SIZE;
2304 local_sub(length, &tail_page->write);
2305}
6634ff26 2306
747e94ae
SR
2307/*
2308 * This is the slow path, force gcc not to inline it.
2309 */
2310static noinline struct ring_buffer_event *
6634ff26
SR
2311rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
2312 unsigned long length, unsigned long tail,
e8bc43e8 2313 struct buffer_page *tail_page, u64 ts)
7a8e76a3 2314{
5a50e33c 2315 struct buffer_page *commit_page = cpu_buffer->commit_page;
7a8e76a3 2316 struct ring_buffer *buffer = cpu_buffer->buffer;
77ae365e
SR
2317 struct buffer_page *next_page;
2318 int ret;
aa20ae84
SR
2319
2320 next_page = tail_page;
2321
aa20ae84
SR
2322 rb_inc_page(cpu_buffer, &next_page);
2323
aa20ae84
SR
2324 /*
2325 * If for some reason, we had an interrupt storm that made
2326 * it all the way around the buffer, bail, and warn
2327 * about it.
2328 */
2329 if (unlikely(next_page == commit_page)) {
77ae365e 2330 local_inc(&cpu_buffer->commit_overrun);
aa20ae84
SR
2331 goto out_reset;
2332 }
2333
77ae365e
SR
2334 /*
2335 * This is where the fun begins!
2336 *
2337 * We are fighting against races between a reader that
2338 * could be on another CPU trying to swap its reader
2339 * page with the buffer head.
2340 *
2341 * We are also fighting against interrupts coming in and
2342 * moving the head or tail on us as well.
2343 *
2344 * If the next page is the head page then we have filled
2345 * the buffer, unless the commit page is still on the
2346 * reader page.
2347 */
2348 if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
aa20ae84 2349
77ae365e
SR
2350 /*
2351 * If the commit is not on the reader page, then
2352 * move the header page.
2353 */
2354 if (!rb_is_reader_page(cpu_buffer->commit_page)) {
2355 /*
2356 * If we are not in overwrite mode,
2357 * this is easy, just stop here.
2358 */
884bfe89
SP
2359 if (!(buffer->flags & RB_FL_OVERWRITE)) {
2360 local_inc(&cpu_buffer->dropped_events);
77ae365e 2361 goto out_reset;
884bfe89 2362 }
77ae365e
SR
2363
2364 ret = rb_handle_head_page(cpu_buffer,
2365 tail_page,
2366 next_page);
2367 if (ret < 0)
2368 goto out_reset;
2369 if (ret)
2370 goto out_again;
2371 } else {
2372 /*
2373 * We need to be careful here too. The
2374 * commit page could still be on the reader
2375 * page. We could have a small buffer, and
2376 * have filled up the buffer with events
2377 * from interrupts and such, and wrapped.
2378 *
2379 * Note, if the tail page is also the on the
2380 * reader_page, we let it move out.
2381 */
2382 if (unlikely((cpu_buffer->commit_page !=
2383 cpu_buffer->tail_page) &&
2384 (cpu_buffer->commit_page ==
2385 cpu_buffer->reader_page))) {
2386 local_inc(&cpu_buffer->commit_overrun);
2387 goto out_reset;
2388 }
aa20ae84
SR
2389 }
2390 }
2391
77ae365e
SR
2392 ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
2393 if (ret) {
2394 /*
2395 * Nested commits always have zero deltas, so
2396 * just reread the time stamp
2397 */
e8bc43e8
SR
2398 ts = rb_time_stamp(buffer);
2399 next_page->page->time_stamp = ts;
aa20ae84
SR
2400 }
2401
77ae365e 2402 out_again:
aa20ae84 2403
77ae365e 2404 rb_reset_tail(cpu_buffer, tail_page, tail, length);
aa20ae84
SR
2405
2406 /* fail and let the caller try again */
2407 return ERR_PTR(-EAGAIN);
2408
45141d46 2409 out_reset:
6f3b3440 2410 /* reset write */
c7b09308 2411 rb_reset_tail(cpu_buffer, tail_page, tail, length);
6f3b3440 2412
bf41a158 2413 return NULL;
7a8e76a3
SR
2414}
2415
6634ff26
SR
2416static struct ring_buffer_event *
2417__rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
69d1b839
SR
2418 unsigned long length, u64 ts,
2419 u64 delta, int add_timestamp)
6634ff26 2420{
5a50e33c 2421 struct buffer_page *tail_page;
6634ff26
SR
2422 struct ring_buffer_event *event;
2423 unsigned long tail, write;
2424
69d1b839
SR
2425 /*
2426 * If the time delta since the last event is too big to
2427 * hold in the time field of the event, then we append a
2428 * TIME EXTEND event ahead of the data event.
2429 */
2430 if (unlikely(add_timestamp))
2431 length += RB_LEN_TIME_EXTEND;
2432
6634ff26
SR
2433 tail_page = cpu_buffer->tail_page;
2434 write = local_add_return(length, &tail_page->write);
77ae365e
SR
2435
2436 /* set write to only the index of the write */
2437 write &= RB_WRITE_MASK;
6634ff26
SR
2438 tail = write - length;
2439
f0bf1b24
SRRH
2440 /*
2441 * If this is the first commit on the page, then it has the same
2442 * timestamp as the page itself.
2443 */
2444 if (!tail)
2445 delta = 0;
2446
6634ff26 2447 /* See if we shot pass the end of this buffer page */
747e94ae 2448 if (unlikely(write > BUF_PAGE_SIZE))
6634ff26 2449 return rb_move_tail(cpu_buffer, length, tail,
5a50e33c 2450 tail_page, ts);
6634ff26
SR
2451
2452 /* We reserved something on the buffer */
2453
6634ff26 2454 event = __rb_page_index(tail_page, tail);
1744a21d 2455 kmemcheck_annotate_bitfield(event, bitfield);
69d1b839 2456 rb_update_event(cpu_buffer, event, length, add_timestamp, delta);
6634ff26 2457
69d1b839 2458 local_inc(&tail_page->entries);
6634ff26
SR
2459
2460 /*
fa743953
SR
2461 * If this is the first commit on the page, then update
2462 * its timestamp.
6634ff26 2463 */
fa743953 2464 if (!tail)
e8bc43e8 2465 tail_page->page->time_stamp = ts;
6634ff26 2466
c64e148a
VN
2467 /* account for these added bytes */
2468 local_add(length, &cpu_buffer->entries_bytes);
2469
6634ff26
SR
2470 return event;
2471}
2472
edd813bf
SR
2473static inline int
2474rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
2475 struct ring_buffer_event *event)
2476{
2477 unsigned long new_index, old_index;
2478 struct buffer_page *bpage;
2479 unsigned long index;
2480 unsigned long addr;
2481
2482 new_index = rb_event_index(event);
69d1b839 2483 old_index = new_index + rb_event_ts_length(event);
edd813bf
SR
2484 addr = (unsigned long)event;
2485 addr &= PAGE_MASK;
2486
2487 bpage = cpu_buffer->tail_page;
2488
2489 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
77ae365e
SR
2490 unsigned long write_mask =
2491 local_read(&bpage->write) & ~RB_WRITE_MASK;
c64e148a 2492 unsigned long event_length = rb_event_length(event);
edd813bf
SR
2493 /*
2494 * This is on the tail page. It is possible that
2495 * a write could come in and move the tail page
2496 * and write to the next page. That is fine
2497 * because we just shorten what is on this page.
2498 */
77ae365e
SR
2499 old_index += write_mask;
2500 new_index += write_mask;
edd813bf 2501 index = local_cmpxchg(&bpage->write, old_index, new_index);
c64e148a
VN
2502 if (index == old_index) {
2503 /* update counters */
2504 local_sub(event_length, &cpu_buffer->entries_bytes);
edd813bf 2505 return 1;
c64e148a 2506 }
edd813bf
SR
2507 }
2508
2509 /* could not discard */
2510 return 0;
2511}
2512
fa743953
SR
2513static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2514{
2515 local_inc(&cpu_buffer->committing);
2516 local_inc(&cpu_buffer->commits);
2517}
2518
d9abde21 2519static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
fa743953
SR
2520{
2521 unsigned long commits;
2522
2523 if (RB_WARN_ON(cpu_buffer,
2524 !local_read(&cpu_buffer->committing)))
2525 return;
2526
2527 again:
2528 commits = local_read(&cpu_buffer->commits);
2529 /* synchronize with interrupts */
2530 barrier();
2531 if (local_read(&cpu_buffer->committing) == 1)
2532 rb_set_commit_to_write(cpu_buffer);
2533
2534 local_dec(&cpu_buffer->committing);
2535
2536 /* synchronize with interrupts */
2537 barrier();
2538
2539 /*
2540 * Need to account for interrupts coming in between the
2541 * updating of the commit page and the clearing of the
2542 * committing counter.
2543 */
2544 if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2545 !local_read(&cpu_buffer->committing)) {
2546 local_inc(&cpu_buffer->committing);
2547 goto again;
2548 }
2549}
2550
7a8e76a3 2551static struct ring_buffer_event *
62f0b3eb
SR
2552rb_reserve_next_event(struct ring_buffer *buffer,
2553 struct ring_buffer_per_cpu *cpu_buffer,
1cd8d735 2554 unsigned long length)
7a8e76a3
SR
2555{
2556 struct ring_buffer_event *event;
69d1b839 2557 u64 ts, delta;
818e3dd3 2558 int nr_loops = 0;
69d1b839 2559 int add_timestamp;
140ff891 2560 u64 diff;
7a8e76a3 2561
fa743953
SR
2562 rb_start_commit(cpu_buffer);
2563
85bac32c 2564#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
62f0b3eb
SR
2565 /*
2566 * Due to the ability to swap a cpu buffer from a buffer
2567 * it is possible it was swapped before we committed.
2568 * (committing stops a swap). We check for it here and
2569 * if it happened, we have to fail the write.
2570 */
2571 barrier();
2572 if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2573 local_dec(&cpu_buffer->committing);
2574 local_dec(&cpu_buffer->commits);
2575 return NULL;
2576 }
85bac32c 2577#endif
62f0b3eb 2578
be957c44 2579 length = rb_calculate_event_length(length);
bf41a158 2580 again:
69d1b839
SR
2581 add_timestamp = 0;
2582 delta = 0;
2583
818e3dd3
SR
2584 /*
2585 * We allow for interrupts to reenter here and do a trace.
2586 * If one does, it will cause this original code to loop
2587 * back here. Even with heavy interrupts happening, this
2588 * should only happen a few times in a row. If this happens
2589 * 1000 times in a row, there must be either an interrupt
2590 * storm or we have something buggy.
2591 * Bail!
2592 */
3e89c7bb 2593 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
fa743953 2594 goto out_fail;
818e3dd3 2595
6d3f1e12 2596 ts = rb_time_stamp(cpu_buffer->buffer);
140ff891 2597 diff = ts - cpu_buffer->write_stamp;
7a8e76a3 2598
140ff891
SR
2599 /* make sure this diff is calculated here */
2600 barrier();
bf41a158 2601
140ff891
SR
2602 /* Did the write stamp get updated already? */
2603 if (likely(ts >= cpu_buffer->write_stamp)) {
168b6b1d
SR
2604 delta = diff;
2605 if (unlikely(test_time_stamp(delta))) {
31274d72
JO
2606 int local_clock_stable = 1;
2607#ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2608 local_clock_stable = sched_clock_stable;
2609#endif
69d1b839 2610 WARN_ONCE(delta > (1ULL << 59),
31274d72 2611 KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
69d1b839
SR
2612 (unsigned long long)delta,
2613 (unsigned long long)ts,
31274d72
JO
2614 (unsigned long long)cpu_buffer->write_stamp,
2615 local_clock_stable ? "" :
2616 "If you just came from a suspend/resume,\n"
2617 "please switch to the trace global clock:\n"
2618 " echo global > /sys/kernel/debug/tracing/trace_clock\n");
69d1b839 2619 add_timestamp = 1;
7a8e76a3 2620 }
168b6b1d 2621 }
7a8e76a3 2622
69d1b839
SR
2623 event = __rb_reserve_next(cpu_buffer, length, ts,
2624 delta, add_timestamp);
168b6b1d 2625 if (unlikely(PTR_ERR(event) == -EAGAIN))
bf41a158
SR
2626 goto again;
2627
fa743953
SR
2628 if (!event)
2629 goto out_fail;
7a8e76a3 2630
7a8e76a3 2631 return event;
fa743953
SR
2632
2633 out_fail:
2634 rb_end_commit(cpu_buffer);
2635 return NULL;
7a8e76a3
SR
2636}
2637
1155de47
PM
2638#ifdef CONFIG_TRACING
2639
567cd4da
SR
2640/*
2641 * The lock and unlock are done within a preempt disable section.
2642 * The current_context per_cpu variable can only be modified
2643 * by the current task between lock and unlock. But it can
2644 * be modified more than once via an interrupt. To pass this
2645 * information from the lock to the unlock without having to
2646 * access the 'in_interrupt()' functions again (which do show
2647 * a bit of overhead in something as critical as function tracing,
2648 * we use a bitmask trick.
2649 *
2650 * bit 0 = NMI context
2651 * bit 1 = IRQ context
2652 * bit 2 = SoftIRQ context
2653 * bit 3 = normal context.
2654 *
2655 * This works because this is the order of contexts that can
2656 * preempt other contexts. A SoftIRQ never preempts an IRQ
2657 * context.
2658 *
2659 * When the context is determined, the corresponding bit is
2660 * checked and set (if it was set, then a recursion of that context
2661 * happened).
2662 *
2663 * On unlock, we need to clear this bit. To do so, just subtract
2664 * 1 from the current_context and AND it to itself.
2665 *
2666 * (binary)
2667 * 101 - 1 = 100
2668 * 101 & 100 = 100 (clearing bit zero)
2669 *
2670 * 1010 - 1 = 1001
2671 * 1010 & 1001 = 1000 (clearing bit 1)
2672 *
2673 * The least significant bit can be cleared this way, and it
2674 * just so happens that it is the same bit corresponding to
2675 * the current context.
2676 */
2677static DEFINE_PER_CPU(unsigned int, current_context);
261842b7 2678
567cd4da 2679static __always_inline int trace_recursive_lock(void)
261842b7 2680{
faf8db2e 2681 unsigned int val = __this_cpu_read(current_context);
567cd4da 2682 int bit;
d9abde21 2683
567cd4da
SR
2684 if (in_interrupt()) {
2685 if (in_nmi())
2686 bit = 0;
2687 else if (in_irq())
2688 bit = 1;
2689 else
2690 bit = 2;
2691 } else
2692 bit = 3;
d9abde21 2693
567cd4da
SR
2694 if (unlikely(val & (1 << bit)))
2695 return 1;
d9abde21 2696
567cd4da 2697 val |= (1 << bit);
faf8db2e 2698 __this_cpu_write(current_context, val);
d9abde21 2699
567cd4da 2700 return 0;
261842b7
SR
2701}
2702
567cd4da 2703static __always_inline void trace_recursive_unlock(void)
261842b7 2704{
faf8db2e 2705 unsigned int val = __this_cpu_read(current_context);
261842b7 2706
faf8db2e
SR
2707 val &= val & (val - 1);
2708 __this_cpu_write(current_context, val);
261842b7
SR
2709}
2710
1155de47
PM
2711#else
2712
2713#define trace_recursive_lock() (0)
2714#define trace_recursive_unlock() do { } while (0)
2715
2716#endif
2717
7a8e76a3
SR
2718/**
2719 * ring_buffer_lock_reserve - reserve a part of the buffer
2720 * @buffer: the ring buffer to reserve from
2721 * @length: the length of the data to reserve (excluding event header)
7a8e76a3
SR
2722 *
2723 * Returns a reseverd event on the ring buffer to copy directly to.
2724 * The user of this interface will need to get the body to write into
2725 * and can use the ring_buffer_event_data() interface.
2726 *
2727 * The length is the length of the data needed, not the event length
2728 * which also includes the event header.
2729 *
2730 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2731 * If NULL is returned, then nothing has been allocated or locked.
2732 */
2733struct ring_buffer_event *
0a987751 2734ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
7a8e76a3
SR
2735{
2736 struct ring_buffer_per_cpu *cpu_buffer;
2737 struct ring_buffer_event *event;
5168ae50 2738 int cpu;
7a8e76a3 2739
033601a3 2740 if (ring_buffer_flags != RB_BUFFERS_ON)
a3583244
SR
2741 return NULL;
2742
bf41a158 2743 /* If we are tracing schedule, we don't want to recurse */
5168ae50 2744 preempt_disable_notrace();
bf41a158 2745
52fbe9cd
LJ
2746 if (atomic_read(&buffer->record_disabled))
2747 goto out_nocheck;
2748
261842b7
SR
2749 if (trace_recursive_lock())
2750 goto out_nocheck;
2751
7a8e76a3
SR
2752 cpu = raw_smp_processor_id();
2753
9e01c1b7 2754 if (!cpumask_test_cpu(cpu, buffer->cpumask))
d769041f 2755 goto out;
7a8e76a3
SR
2756
2757 cpu_buffer = buffer->buffers[cpu];
7a8e76a3
SR
2758
2759 if (atomic_read(&cpu_buffer->record_disabled))
d769041f 2760 goto out;
7a8e76a3 2761
be957c44 2762 if (length > BUF_MAX_DATA_SIZE)
bf41a158 2763 goto out;
7a8e76a3 2764
62f0b3eb 2765 event = rb_reserve_next_event(buffer, cpu_buffer, length);
7a8e76a3 2766 if (!event)
d769041f 2767 goto out;
7a8e76a3
SR
2768
2769 return event;
2770
d769041f 2771 out:
261842b7
SR
2772 trace_recursive_unlock();
2773
2774 out_nocheck:
5168ae50 2775 preempt_enable_notrace();
7a8e76a3
SR
2776 return NULL;
2777}
c4f50183 2778EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
7a8e76a3 2779
a1863c21
SR
2780static void
2781rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
7a8e76a3
SR
2782 struct ring_buffer_event *event)
2783{
69d1b839
SR
2784 u64 delta;
2785
fa743953
SR
2786 /*
2787 * The event first in the commit queue updates the
2788 * time stamp.
2789 */
69d1b839
SR
2790 if (rb_event_is_commit(cpu_buffer, event)) {
2791 /*
2792 * A commit event that is first on a page
2793 * updates the write timestamp with the page stamp
2794 */
2795 if (!rb_event_index(event))
2796 cpu_buffer->write_stamp =
2797 cpu_buffer->commit_page->page->time_stamp;
2798 else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
2799 delta = event->array[0];
2800 delta <<= TS_SHIFT;
2801 delta += event->time_delta;
2802 cpu_buffer->write_stamp += delta;
2803 } else
2804 cpu_buffer->write_stamp += event->time_delta;
2805 }
a1863c21 2806}
bf41a158 2807
a1863c21
SR
2808static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2809 struct ring_buffer_event *event)
2810{
2811 local_inc(&cpu_buffer->entries);
2812 rb_update_write_stamp(cpu_buffer, event);
fa743953 2813 rb_end_commit(cpu_buffer);
7a8e76a3
SR
2814}
2815
15693458
SRRH
2816static __always_inline void
2817rb_wakeups(struct ring_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
2818{
2819 if (buffer->irq_work.waiters_pending) {
2820 buffer->irq_work.waiters_pending = false;
2821 /* irq_work_queue() supplies it's own memory barriers */
2822 irq_work_queue(&buffer->irq_work.work);
2823 }
2824
2825 if (cpu_buffer->irq_work.waiters_pending) {
2826 cpu_buffer->irq_work.waiters_pending = false;
2827 /* irq_work_queue() supplies it's own memory barriers */
2828 irq_work_queue(&cpu_buffer->irq_work.work);
2829 }
2830}
2831
7a8e76a3
SR
2832/**
2833 * ring_buffer_unlock_commit - commit a reserved
2834 * @buffer: The buffer to commit to
2835 * @event: The event pointer to commit.
7a8e76a3
SR
2836 *
2837 * This commits the data to the ring buffer, and releases any locks held.
2838 *
2839 * Must be paired with ring_buffer_lock_reserve.
2840 */
2841int ring_buffer_unlock_commit(struct ring_buffer *buffer,
0a987751 2842 struct ring_buffer_event *event)
7a8e76a3
SR
2843{
2844 struct ring_buffer_per_cpu *cpu_buffer;
2845 int cpu = raw_smp_processor_id();
2846
2847 cpu_buffer = buffer->buffers[cpu];
2848
7a8e76a3
SR
2849 rb_commit(cpu_buffer, event);
2850
15693458
SRRH
2851 rb_wakeups(buffer, cpu_buffer);
2852
261842b7
SR
2853 trace_recursive_unlock();
2854
5168ae50 2855 preempt_enable_notrace();
7a8e76a3
SR
2856
2857 return 0;
2858}
c4f50183 2859EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
7a8e76a3 2860
f3b9aae1
FW
2861static inline void rb_event_discard(struct ring_buffer_event *event)
2862{
69d1b839
SR
2863 if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
2864 event = skip_time_extend(event);
2865
334d4169
LJ
2866 /* array[0] holds the actual length for the discarded event */
2867 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2868 event->type_len = RINGBUF_TYPE_PADDING;
f3b9aae1
FW
2869 /* time delta must be non zero */
2870 if (!event->time_delta)
2871 event->time_delta = 1;
2872}
2873
a1863c21
SR
2874/*
2875 * Decrement the entries to the page that an event is on.
2876 * The event does not even need to exist, only the pointer
2877 * to the page it is on. This may only be called before the commit
2878 * takes place.
2879 */
2880static inline void
2881rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2882 struct ring_buffer_event *event)
2883{
2884 unsigned long addr = (unsigned long)event;
2885 struct buffer_page *bpage = cpu_buffer->commit_page;
2886 struct buffer_page *start;
2887
2888 addr &= PAGE_MASK;
2889
2890 /* Do the likely case first */
2891 if (likely(bpage->page == (void *)addr)) {
2892 local_dec(&bpage->entries);
2893 return;
2894 }
2895
2896 /*
2897 * Because the commit page may be on the reader page we
2898 * start with the next page and check the end loop there.
2899 */
2900 rb_inc_page(cpu_buffer, &bpage);
2901 start = bpage;
2902 do {
2903 if (bpage->page == (void *)addr) {
2904 local_dec(&bpage->entries);
2905 return;
2906 }
2907 rb_inc_page(cpu_buffer, &bpage);
2908 } while (bpage != start);
2909
2910 /* commit not part of this buffer?? */
2911 RB_WARN_ON(cpu_buffer, 1);
2912}
2913
fa1b47dd
SR
2914/**
2915 * ring_buffer_commit_discard - discard an event that has not been committed
2916 * @buffer: the ring buffer
2917 * @event: non committed event to discard
2918 *
dc892f73
SR
2919 * Sometimes an event that is in the ring buffer needs to be ignored.
2920 * This function lets the user discard an event in the ring buffer
2921 * and then that event will not be read later.
2922 *
2923 * This function only works if it is called before the the item has been
2924 * committed. It will try to free the event from the ring buffer
fa1b47dd
SR
2925 * if another event has not been added behind it.
2926 *
2927 * If another event has been added behind it, it will set the event
2928 * up as discarded, and perform the commit.
2929 *
2930 * If this function is called, do not call ring_buffer_unlock_commit on
2931 * the event.
2932 */
2933void ring_buffer_discard_commit(struct ring_buffer *buffer,
2934 struct ring_buffer_event *event)
2935{
2936 struct ring_buffer_per_cpu *cpu_buffer;
fa1b47dd
SR
2937 int cpu;
2938
2939 /* The event is discarded regardless */
f3b9aae1 2940 rb_event_discard(event);
fa1b47dd 2941
fa743953
SR
2942 cpu = smp_processor_id();
2943 cpu_buffer = buffer->buffers[cpu];
2944
fa1b47dd
SR
2945 /*
2946 * This must only be called if the event has not been
2947 * committed yet. Thus we can assume that preemption
2948 * is still disabled.
2949 */
fa743953 2950 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
fa1b47dd 2951
a1863c21 2952 rb_decrement_entry(cpu_buffer, event);
0f2541d2 2953 if (rb_try_to_discard(cpu_buffer, event))
edd813bf 2954 goto out;
fa1b47dd
SR
2955
2956 /*
2957 * The commit is still visible by the reader, so we
a1863c21 2958 * must still update the timestamp.
fa1b47dd 2959 */
a1863c21 2960 rb_update_write_stamp(cpu_buffer, event);
fa1b47dd 2961 out:
fa743953 2962 rb_end_commit(cpu_buffer);
fa1b47dd 2963
f3b9aae1
FW
2964 trace_recursive_unlock();
2965
5168ae50 2966 preempt_enable_notrace();
fa1b47dd
SR
2967
2968}
2969EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2970
7a8e76a3
SR
2971/**
2972 * ring_buffer_write - write data to the buffer without reserving
2973 * @buffer: The ring buffer to write to.
2974 * @length: The length of the data being written (excluding the event header)
2975 * @data: The data to write to the buffer.
2976 *
2977 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2978 * one function. If you already have the data to write to the buffer, it
2979 * may be easier to simply call this function.
2980 *
2981 * Note, like ring_buffer_lock_reserve, the length is the length of the data
2982 * and not the length of the event which would hold the header.
2983 */
2984int ring_buffer_write(struct ring_buffer *buffer,
01e3e710
DS
2985 unsigned long length,
2986 void *data)
7a8e76a3
SR
2987{
2988 struct ring_buffer_per_cpu *cpu_buffer;
2989 struct ring_buffer_event *event;
7a8e76a3
SR
2990 void *body;
2991 int ret = -EBUSY;
5168ae50 2992 int cpu;
7a8e76a3 2993
033601a3 2994 if (ring_buffer_flags != RB_BUFFERS_ON)
a3583244
SR
2995 return -EBUSY;
2996
5168ae50 2997 preempt_disable_notrace();
bf41a158 2998
52fbe9cd
LJ
2999 if (atomic_read(&buffer->record_disabled))
3000 goto out;
3001
7a8e76a3
SR
3002 cpu = raw_smp_processor_id();
3003
9e01c1b7 3004 if (!cpumask_test_cpu(cpu, buffer->cpumask))
d769041f 3005 goto out;
7a8e76a3
SR
3006
3007 cpu_buffer = buffer->buffers[cpu];
7a8e76a3
SR
3008
3009 if (atomic_read(&cpu_buffer->record_disabled))
3010 goto out;
3011
be957c44
SR
3012 if (length > BUF_MAX_DATA_SIZE)
3013 goto out;
3014
62f0b3eb 3015 event = rb_reserve_next_event(buffer, cpu_buffer, length);
7a8e76a3
SR
3016 if (!event)
3017 goto out;
3018
3019 body = rb_event_data(event);
3020
3021 memcpy(body, data, length);
3022
3023 rb_commit(cpu_buffer, event);
3024
15693458
SRRH
3025 rb_wakeups(buffer, cpu_buffer);
3026
7a8e76a3
SR
3027 ret = 0;
3028 out:
5168ae50 3029 preempt_enable_notrace();
7a8e76a3
SR
3030
3031 return ret;
3032}
c4f50183 3033EXPORT_SYMBOL_GPL(ring_buffer_write);
7a8e76a3 3034
34a148bf 3035static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
bf41a158
SR
3036{
3037 struct buffer_page *reader = cpu_buffer->reader_page;
77ae365e 3038 struct buffer_page *head = rb_set_head_page(cpu_buffer);
bf41a158
SR
3039 struct buffer_page *commit = cpu_buffer->commit_page;
3040
77ae365e
SR
3041 /* In case of error, head will be NULL */
3042 if (unlikely(!head))
3043 return 1;
3044
bf41a158
SR
3045 return reader->read == rb_page_commit(reader) &&
3046 (commit == reader ||
3047 (commit == head &&
3048 head->read == rb_page_commit(commit)));
3049}
3050
7a8e76a3
SR
3051/**
3052 * ring_buffer_record_disable - stop all writes into the buffer
3053 * @buffer: The ring buffer to stop writes to.
3054 *
3055 * This prevents all writes to the buffer. Any attempt to write
3056 * to the buffer after this will fail and return NULL.
3057 *
3058 * The caller should call synchronize_sched() after this.
3059 */
3060void ring_buffer_record_disable(struct ring_buffer *buffer)
3061{
3062 atomic_inc(&buffer->record_disabled);
3063}
c4f50183 3064EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
7a8e76a3
SR
3065
3066/**
3067 * ring_buffer_record_enable - enable writes to the buffer
3068 * @buffer: The ring buffer to enable writes
3069 *
3070 * Note, multiple disables will need the same number of enables
c41b20e7 3071 * to truly enable the writing (much like preempt_disable).
7a8e76a3
SR
3072 */
3073void ring_buffer_record_enable(struct ring_buffer *buffer)
3074{
3075 atomic_dec(&buffer->record_disabled);
3076}
c4f50183 3077EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
7a8e76a3 3078
499e5470
SR
3079/**
3080 * ring_buffer_record_off - stop all writes into the buffer
3081 * @buffer: The ring buffer to stop writes to.
3082 *
3083 * This prevents all writes to the buffer. Any attempt to write
3084 * to the buffer after this will fail and return NULL.
3085 *
3086 * This is different than ring_buffer_record_disable() as
87abb3b1 3087 * it works like an on/off switch, where as the disable() version
499e5470
SR
3088 * must be paired with a enable().
3089 */
3090void ring_buffer_record_off(struct ring_buffer *buffer)
3091{
3092 unsigned int rd;
3093 unsigned int new_rd;
3094
3095 do {
3096 rd = atomic_read(&buffer->record_disabled);
3097 new_rd = rd | RB_BUFFER_OFF;
3098 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3099}
3100EXPORT_SYMBOL_GPL(ring_buffer_record_off);
3101
3102/**
3103 * ring_buffer_record_on - restart writes into the buffer
3104 * @buffer: The ring buffer to start writes to.
3105 *
3106 * This enables all writes to the buffer that was disabled by
3107 * ring_buffer_record_off().
3108 *
3109 * This is different than ring_buffer_record_enable() as
87abb3b1 3110 * it works like an on/off switch, where as the enable() version
499e5470
SR
3111 * must be paired with a disable().
3112 */
3113void ring_buffer_record_on(struct ring_buffer *buffer)
3114{
3115 unsigned int rd;
3116 unsigned int new_rd;
3117
3118 do {
3119 rd = atomic_read(&buffer->record_disabled);
3120 new_rd = rd & ~RB_BUFFER_OFF;
3121 } while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
3122}
3123EXPORT_SYMBOL_GPL(ring_buffer_record_on);
3124
3125/**
3126 * ring_buffer_record_is_on - return true if the ring buffer can write
3127 * @buffer: The ring buffer to see if write is enabled
3128 *
3129 * Returns true if the ring buffer is in a state that it accepts writes.
3130 */
3131int ring_buffer_record_is_on(struct ring_buffer *buffer)
3132{
3133 return !atomic_read(&buffer->record_disabled);
3134}
3135
7a8e76a3
SR
3136/**
3137 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3138 * @buffer: The ring buffer to stop writes to.
3139 * @cpu: The CPU buffer to stop
3140 *
3141 * This prevents all writes to the buffer. Any attempt to write
3142 * to the buffer after this will fail and return NULL.
3143 *
3144 * The caller should call synchronize_sched() after this.
3145 */
3146void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
3147{
3148 struct ring_buffer_per_cpu *cpu_buffer;
3149
9e01c1b7 3150 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3151 return;
7a8e76a3
SR
3152
3153 cpu_buffer = buffer->buffers[cpu];
3154 atomic_inc(&cpu_buffer->record_disabled);
3155}
c4f50183 3156EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
7a8e76a3
SR
3157
3158/**
3159 * ring_buffer_record_enable_cpu - enable writes to the buffer
3160 * @buffer: The ring buffer to enable writes
3161 * @cpu: The CPU to enable.
3162 *
3163 * Note, multiple disables will need the same number of enables
c41b20e7 3164 * to truly enable the writing (much like preempt_disable).
7a8e76a3
SR
3165 */
3166void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
3167{
3168 struct ring_buffer_per_cpu *cpu_buffer;
3169
9e01c1b7 3170 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3171 return;
7a8e76a3
SR
3172
3173 cpu_buffer = buffer->buffers[cpu];
3174 atomic_dec(&cpu_buffer->record_disabled);
3175}
c4f50183 3176EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
7a8e76a3 3177
f6195aa0
SR
3178/*
3179 * The total entries in the ring buffer is the running counter
3180 * of entries entered into the ring buffer, minus the sum of
3181 * the entries read from the ring buffer and the number of
3182 * entries that were overwritten.
3183 */
3184static inline unsigned long
3185rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
3186{
3187 return local_read(&cpu_buffer->entries) -
3188 (local_read(&cpu_buffer->overrun) + cpu_buffer->read);
3189}
3190
c64e148a
VN
3191/**
3192 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3193 * @buffer: The ring buffer
3194 * @cpu: The per CPU buffer to read from.
3195 */
50ecf2c3 3196u64 ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
c64e148a
VN
3197{
3198 unsigned long flags;
3199 struct ring_buffer_per_cpu *cpu_buffer;
3200 struct buffer_page *bpage;
da830e58 3201 u64 ret = 0;
c64e148a
VN
3202
3203 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3204 return 0;
3205
3206 cpu_buffer = buffer->buffers[cpu];
7115e3fc 3207 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
c64e148a
VN
3208 /*
3209 * if the tail is on reader_page, oldest time stamp is on the reader
3210 * page
3211 */
3212 if (cpu_buffer->tail_page == cpu_buffer->reader_page)
3213 bpage = cpu_buffer->reader_page;
3214 else
3215 bpage = rb_set_head_page(cpu_buffer);
54f7be5b
SR
3216 if (bpage)
3217 ret = bpage->page->time_stamp;
7115e3fc 3218 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
c64e148a
VN
3219
3220 return ret;
3221}
3222EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
3223
3224/**
3225 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3226 * @buffer: The ring buffer
3227 * @cpu: The per CPU buffer to read from.
3228 */
3229unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
3230{
3231 struct ring_buffer_per_cpu *cpu_buffer;
3232 unsigned long ret;
3233
3234 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3235 return 0;
3236
3237 cpu_buffer = buffer->buffers[cpu];
3238 ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
3239
3240 return ret;
3241}
3242EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
3243
7a8e76a3
SR
3244/**
3245 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3246 * @buffer: The ring buffer
3247 * @cpu: The per CPU buffer to get the entries from.
3248 */
3249unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
3250{
3251 struct ring_buffer_per_cpu *cpu_buffer;
3252
9e01c1b7 3253 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3254 return 0;
7a8e76a3
SR
3255
3256 cpu_buffer = buffer->buffers[cpu];
554f786e 3257
f6195aa0 3258 return rb_num_of_entries(cpu_buffer);
7a8e76a3 3259}
c4f50183 3260EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
7a8e76a3
SR
3261
3262/**
884bfe89
SP
3263 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3264 * buffer wrapping around (only if RB_FL_OVERWRITE is on).
7a8e76a3
SR
3265 * @buffer: The ring buffer
3266 * @cpu: The per CPU buffer to get the number of overruns from
3267 */
3268unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
3269{
3270 struct ring_buffer_per_cpu *cpu_buffer;
8aabee57 3271 unsigned long ret;
7a8e76a3 3272
9e01c1b7 3273 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3274 return 0;
7a8e76a3
SR
3275
3276 cpu_buffer = buffer->buffers[cpu];
77ae365e 3277 ret = local_read(&cpu_buffer->overrun);
554f786e
SR
3278
3279 return ret;
7a8e76a3 3280}
c4f50183 3281EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
7a8e76a3 3282
f0d2c681 3283/**
884bfe89
SP
3284 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3285 * commits failing due to the buffer wrapping around while there are uncommitted
3286 * events, such as during an interrupt storm.
f0d2c681
SR
3287 * @buffer: The ring buffer
3288 * @cpu: The per CPU buffer to get the number of overruns from
3289 */
3290unsigned long
3291ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
3292{
3293 struct ring_buffer_per_cpu *cpu_buffer;
3294 unsigned long ret;
3295
3296 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3297 return 0;
3298
3299 cpu_buffer = buffer->buffers[cpu];
77ae365e 3300 ret = local_read(&cpu_buffer->commit_overrun);
f0d2c681
SR
3301
3302 return ret;
3303}
3304EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
3305
884bfe89
SP
3306/**
3307 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3308 * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3309 * @buffer: The ring buffer
3310 * @cpu: The per CPU buffer to get the number of overruns from
3311 */
3312unsigned long
3313ring_buffer_dropped_events_cpu(struct ring_buffer *buffer, int cpu)
3314{
3315 struct ring_buffer_per_cpu *cpu_buffer;
3316 unsigned long ret;
3317
3318 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3319 return 0;
3320
3321 cpu_buffer = buffer->buffers[cpu];
3322 ret = local_read(&cpu_buffer->dropped_events);
3323
3324 return ret;
3325}
3326EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
3327
ad964704
SRRH
3328/**
3329 * ring_buffer_read_events_cpu - get the number of events successfully read
3330 * @buffer: The ring buffer
3331 * @cpu: The per CPU buffer to get the number of events read
3332 */
3333unsigned long
3334ring_buffer_read_events_cpu(struct ring_buffer *buffer, int cpu)
3335{
3336 struct ring_buffer_per_cpu *cpu_buffer;
3337
3338 if (!cpumask_test_cpu(cpu, buffer->cpumask))
3339 return 0;
3340
3341 cpu_buffer = buffer->buffers[cpu];
3342 return cpu_buffer->read;
3343}
3344EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
3345
7a8e76a3
SR
3346/**
3347 * ring_buffer_entries - get the number of entries in a buffer
3348 * @buffer: The ring buffer
3349 *
3350 * Returns the total number of entries in the ring buffer
3351 * (all CPU entries)
3352 */
3353unsigned long ring_buffer_entries(struct ring_buffer *buffer)
3354{
3355 struct ring_buffer_per_cpu *cpu_buffer;
3356 unsigned long entries = 0;
3357 int cpu;
3358
3359 /* if you care about this being correct, lock the buffer */
3360 for_each_buffer_cpu(buffer, cpu) {
3361 cpu_buffer = buffer->buffers[cpu];
f6195aa0 3362 entries += rb_num_of_entries(cpu_buffer);
7a8e76a3
SR
3363 }
3364
3365 return entries;
3366}
c4f50183 3367EXPORT_SYMBOL_GPL(ring_buffer_entries);
7a8e76a3
SR
3368
3369/**
67b394f7 3370 * ring_buffer_overruns - get the number of overruns in buffer
7a8e76a3
SR
3371 * @buffer: The ring buffer
3372 *
3373 * Returns the total number of overruns in the ring buffer
3374 * (all CPU entries)
3375 */
3376unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
3377{
3378 struct ring_buffer_per_cpu *cpu_buffer;
3379 unsigned long overruns = 0;
3380 int cpu;
3381
3382 /* if you care about this being correct, lock the buffer */
3383 for_each_buffer_cpu(buffer, cpu) {
3384 cpu_buffer = buffer->buffers[cpu];
77ae365e 3385 overruns += local_read(&cpu_buffer->overrun);
7a8e76a3
SR
3386 }
3387
3388 return overruns;
3389}
c4f50183 3390EXPORT_SYMBOL_GPL(ring_buffer_overruns);
7a8e76a3 3391
642edba5 3392static void rb_iter_reset(struct ring_buffer_iter *iter)
7a8e76a3
SR
3393{
3394 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3395
d769041f 3396 /* Iterator usage is expected to have record disabled */
814aa5ad
SRRH
3397 iter->head_page = cpu_buffer->reader_page;
3398 iter->head = cpu_buffer->reader_page->read;
3399
3400 iter->cache_reader_page = iter->head_page;
78a3db11 3401 iter->cache_read = cpu_buffer->read;
814aa5ad 3402
d769041f
SR
3403 if (iter->head)
3404 iter->read_stamp = cpu_buffer->read_stamp;
3405 else
abc9b56d 3406 iter->read_stamp = iter->head_page->page->time_stamp;
642edba5 3407}
f83c9d0f 3408
642edba5
SR
3409/**
3410 * ring_buffer_iter_reset - reset an iterator
3411 * @iter: The iterator to reset
3412 *
3413 * Resets the iterator, so that it will start from the beginning
3414 * again.
3415 */
3416void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
3417{
554f786e 3418 struct ring_buffer_per_cpu *cpu_buffer;
642edba5
SR
3419 unsigned long flags;
3420
554f786e
SR
3421 if (!iter)
3422 return;
3423
3424 cpu_buffer = iter->cpu_buffer;
3425
5389f6fa 3426 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
642edba5 3427 rb_iter_reset(iter);
5389f6fa 3428 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3 3429}
c4f50183 3430EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
7a8e76a3
SR
3431
3432/**
3433 * ring_buffer_iter_empty - check if an iterator has no more to read
3434 * @iter: The iterator to check
3435 */
3436int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
3437{
3438 struct ring_buffer_per_cpu *cpu_buffer;
3439
3440 cpu_buffer = iter->cpu_buffer;
3441
bf41a158
SR
3442 return iter->head_page == cpu_buffer->commit_page &&
3443 iter->head == rb_commit_index(cpu_buffer);
7a8e76a3 3444}
c4f50183 3445EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
7a8e76a3
SR
3446
3447static void
3448rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3449 struct ring_buffer_event *event)
3450{
3451 u64 delta;
3452
334d4169 3453 switch (event->type_len) {
7a8e76a3
SR
3454 case RINGBUF_TYPE_PADDING:
3455 return;
3456
3457 case RINGBUF_TYPE_TIME_EXTEND:
3458 delta = event->array[0];
3459 delta <<= TS_SHIFT;
3460 delta += event->time_delta;
3461 cpu_buffer->read_stamp += delta;
3462 return;
3463
3464 case RINGBUF_TYPE_TIME_STAMP:
3465 /* FIXME: not implemented */
3466 return;
3467
3468 case RINGBUF_TYPE_DATA:
3469 cpu_buffer->read_stamp += event->time_delta;
3470 return;
3471
3472 default:
3473 BUG();
3474 }
3475 return;
3476}
3477
3478static void
3479rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
3480 struct ring_buffer_event *event)
3481{
3482 u64 delta;
3483
334d4169 3484 switch (event->type_len) {
7a8e76a3
SR
3485 case RINGBUF_TYPE_PADDING:
3486 return;
3487
3488 case RINGBUF_TYPE_TIME_EXTEND:
3489 delta = event->array[0];
3490 delta <<= TS_SHIFT;
3491 delta += event->time_delta;
3492 iter->read_stamp += delta;
3493 return;
3494
3495 case RINGBUF_TYPE_TIME_STAMP:
3496 /* FIXME: not implemented */
3497 return;
3498
3499 case RINGBUF_TYPE_DATA:
3500 iter->read_stamp += event->time_delta;
3501 return;
3502
3503 default:
3504 BUG();
3505 }
3506 return;
3507}
3508
d769041f
SR
3509static struct buffer_page *
3510rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
7a8e76a3 3511{
d769041f 3512 struct buffer_page *reader = NULL;
66a8cb95 3513 unsigned long overwrite;
d769041f 3514 unsigned long flags;
818e3dd3 3515 int nr_loops = 0;
77ae365e 3516 int ret;
d769041f 3517
3e03fb7f 3518 local_irq_save(flags);
0199c4e6 3519 arch_spin_lock(&cpu_buffer->lock);
d769041f
SR
3520
3521 again:
818e3dd3
SR
3522 /*
3523 * This should normally only loop twice. But because the
3524 * start of the reader inserts an empty page, it causes
3525 * a case where we will loop three times. There should be no
3526 * reason to loop four times (that I know of).
3527 */
3e89c7bb 3528 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
818e3dd3
SR
3529 reader = NULL;
3530 goto out;
3531 }
3532
d769041f
SR
3533 reader = cpu_buffer->reader_page;
3534
3535 /* If there's more to read, return this page */
bf41a158 3536 if (cpu_buffer->reader_page->read < rb_page_size(reader))
d769041f
SR
3537 goto out;
3538
3539 /* Never should we have an index greater than the size */
3e89c7bb
SR
3540 if (RB_WARN_ON(cpu_buffer,
3541 cpu_buffer->reader_page->read > rb_page_size(reader)))
3542 goto out;
d769041f
SR
3543
3544 /* check if we caught up to the tail */
3545 reader = NULL;
bf41a158 3546 if (cpu_buffer->commit_page == cpu_buffer->reader_page)
d769041f 3547 goto out;
7a8e76a3 3548
a5fb8331
SR
3549 /* Don't bother swapping if the ring buffer is empty */
3550 if (rb_num_of_entries(cpu_buffer) == 0)
3551 goto out;
3552
7a8e76a3 3553 /*
d769041f 3554 * Reset the reader page to size zero.
7a8e76a3 3555 */
77ae365e
SR
3556 local_set(&cpu_buffer->reader_page->write, 0);
3557 local_set(&cpu_buffer->reader_page->entries, 0);
3558 local_set(&cpu_buffer->reader_page->page->commit, 0);
ff0ff84a 3559 cpu_buffer->reader_page->real_end = 0;
7a8e76a3 3560
77ae365e
SR
3561 spin:
3562 /*
3563 * Splice the empty reader page into the list around the head.
3564 */
3565 reader = rb_set_head_page(cpu_buffer);
54f7be5b
SR
3566 if (!reader)
3567 goto out;
0e1ff5d7 3568 cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
d769041f 3569 cpu_buffer->reader_page->list.prev = reader->list.prev;
bf41a158 3570
3adc54fa
SR
3571 /*
3572 * cpu_buffer->pages just needs to point to the buffer, it
3573 * has no specific buffer page to point to. Lets move it out
25985edc 3574 * of our way so we don't accidentally swap it.
3adc54fa
SR
3575 */
3576 cpu_buffer->pages = reader->list.prev;
3577
77ae365e
SR
3578 /* The reader page will be pointing to the new head */
3579 rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
7a8e76a3 3580
66a8cb95
SR
3581 /*
3582 * We want to make sure we read the overruns after we set up our
3583 * pointers to the next object. The writer side does a
3584 * cmpxchg to cross pages which acts as the mb on the writer
3585 * side. Note, the reader will constantly fail the swap
3586 * while the writer is updating the pointers, so this
3587 * guarantees that the overwrite recorded here is the one we
3588 * want to compare with the last_overrun.
3589 */
3590 smp_mb();
3591 overwrite = local_read(&(cpu_buffer->overrun));
3592
77ae365e
SR
3593 /*
3594 * Here's the tricky part.
3595 *
3596 * We need to move the pointer past the header page.
3597 * But we can only do that if a writer is not currently
3598 * moving it. The page before the header page has the
3599 * flag bit '1' set if it is pointing to the page we want.
3600 * but if the writer is in the process of moving it
3601 * than it will be '2' or already moved '0'.
3602 */
3603
3604 ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
7a8e76a3
SR
3605
3606 /*
77ae365e 3607 * If we did not convert it, then we must try again.
7a8e76a3 3608 */
77ae365e
SR
3609 if (!ret)
3610 goto spin;
7a8e76a3 3611
77ae365e
SR
3612 /*
3613 * Yeah! We succeeded in replacing the page.
3614 *
3615 * Now make the new head point back to the reader page.
3616 */
5ded3dc6 3617 rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
77ae365e 3618 rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
d769041f
SR
3619
3620 /* Finally update the reader page to the new head */
3621 cpu_buffer->reader_page = reader;
3622 rb_reset_reader_page(cpu_buffer);
3623
66a8cb95
SR
3624 if (overwrite != cpu_buffer->last_overrun) {
3625 cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
3626 cpu_buffer->last_overrun = overwrite;
3627 }
3628
d769041f
SR
3629 goto again;
3630
3631 out:
0199c4e6 3632 arch_spin_unlock(&cpu_buffer->lock);
3e03fb7f 3633 local_irq_restore(flags);
d769041f
SR
3634
3635 return reader;
3636}
3637
3638static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
3639{
3640 struct ring_buffer_event *event;
3641 struct buffer_page *reader;
3642 unsigned length;
3643
3644 reader = rb_get_reader_page(cpu_buffer);
7a8e76a3 3645
d769041f 3646 /* This function should not be called when buffer is empty */
3e89c7bb
SR
3647 if (RB_WARN_ON(cpu_buffer, !reader))
3648 return;
7a8e76a3 3649
d769041f
SR
3650 event = rb_reader_event(cpu_buffer);
3651
a1863c21 3652 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
e4906eff 3653 cpu_buffer->read++;
d769041f
SR
3654
3655 rb_update_read_stamp(cpu_buffer, event);
3656
3657 length = rb_event_length(event);
6f807acd 3658 cpu_buffer->reader_page->read += length;
7a8e76a3
SR
3659}
3660
3661static void rb_advance_iter(struct ring_buffer_iter *iter)
3662{
7a8e76a3
SR
3663 struct ring_buffer_per_cpu *cpu_buffer;
3664 struct ring_buffer_event *event;
3665 unsigned length;
3666
3667 cpu_buffer = iter->cpu_buffer;
7a8e76a3
SR
3668
3669 /*
3670 * Check if we are at the end of the buffer.
3671 */
bf41a158 3672 if (iter->head >= rb_page_size(iter->head_page)) {
ea05b57c
SR
3673 /* discarded commits can make the page empty */
3674 if (iter->head_page == cpu_buffer->commit_page)
3e89c7bb 3675 return;
d769041f 3676 rb_inc_iter(iter);
7a8e76a3
SR
3677 return;
3678 }
3679
3680 event = rb_iter_head_event(iter);
3681
3682 length = rb_event_length(event);
3683
3684 /*
3685 * This should not be called to advance the header if we are
3686 * at the tail of the buffer.
3687 */
3e89c7bb 3688 if (RB_WARN_ON(cpu_buffer,
f536aafc 3689 (iter->head_page == cpu_buffer->commit_page) &&
3e89c7bb
SR
3690 (iter->head + length > rb_commit_index(cpu_buffer))))
3691 return;
7a8e76a3
SR
3692
3693 rb_update_iter_read_stamp(iter, event);
3694
3695 iter->head += length;
3696
3697 /* check for end of page padding */
bf41a158
SR
3698 if ((iter->head >= rb_page_size(iter->head_page)) &&
3699 (iter->head_page != cpu_buffer->commit_page))
771e0384 3700 rb_inc_iter(iter);
7a8e76a3
SR
3701}
3702
66a8cb95
SR
3703static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
3704{
3705 return cpu_buffer->lost_events;
3706}
3707
f83c9d0f 3708static struct ring_buffer_event *
66a8cb95
SR
3709rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
3710 unsigned long *lost_events)
7a8e76a3 3711{
7a8e76a3 3712 struct ring_buffer_event *event;
d769041f 3713 struct buffer_page *reader;
818e3dd3 3714 int nr_loops = 0;
7a8e76a3 3715
7a8e76a3 3716 again:
818e3dd3 3717 /*
69d1b839
SR
3718 * We repeat when a time extend is encountered.
3719 * Since the time extend is always attached to a data event,
3720 * we should never loop more than once.
3721 * (We never hit the following condition more than twice).
818e3dd3 3722 */
69d1b839 3723 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
818e3dd3 3724 return NULL;
818e3dd3 3725
d769041f
SR
3726 reader = rb_get_reader_page(cpu_buffer);
3727 if (!reader)
7a8e76a3
SR
3728 return NULL;
3729
d769041f 3730 event = rb_reader_event(cpu_buffer);
7a8e76a3 3731
334d4169 3732 switch (event->type_len) {
7a8e76a3 3733 case RINGBUF_TYPE_PADDING:
2d622719
TZ
3734 if (rb_null_event(event))
3735 RB_WARN_ON(cpu_buffer, 1);
3736 /*
3737 * Because the writer could be discarding every
3738 * event it creates (which would probably be bad)
3739 * if we were to go back to "again" then we may never
3740 * catch up, and will trigger the warn on, or lock
3741 * the box. Return the padding, and we will release
3742 * the current locks, and try again.
3743 */
2d622719 3744 return event;
7a8e76a3
SR
3745
3746 case RINGBUF_TYPE_TIME_EXTEND:
3747 /* Internal data, OK to advance */
d769041f 3748 rb_advance_reader(cpu_buffer);
7a8e76a3
SR
3749 goto again;
3750
3751 case RINGBUF_TYPE_TIME_STAMP:
3752 /* FIXME: not implemented */
d769041f 3753 rb_advance_reader(cpu_buffer);
7a8e76a3
SR
3754 goto again;
3755
3756 case RINGBUF_TYPE_DATA:
3757 if (ts) {
3758 *ts = cpu_buffer->read_stamp + event->time_delta;
d8eeb2d3 3759 ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
37886f6a 3760 cpu_buffer->cpu, ts);
7a8e76a3 3761 }
66a8cb95
SR
3762 if (lost_events)
3763 *lost_events = rb_lost_events(cpu_buffer);
7a8e76a3
SR
3764 return event;
3765
3766 default:
3767 BUG();
3768 }
3769
3770 return NULL;
3771}
c4f50183 3772EXPORT_SYMBOL_GPL(ring_buffer_peek);
7a8e76a3 3773
f83c9d0f
SR
3774static struct ring_buffer_event *
3775rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
7a8e76a3
SR
3776{
3777 struct ring_buffer *buffer;
3778 struct ring_buffer_per_cpu *cpu_buffer;
3779 struct ring_buffer_event *event;
818e3dd3 3780 int nr_loops = 0;
7a8e76a3 3781
7a8e76a3
SR
3782 cpu_buffer = iter->cpu_buffer;
3783 buffer = cpu_buffer->buffer;
3784
492a74f4
SR
3785 /*
3786 * Check if someone performed a consuming read to
3787 * the buffer. A consuming read invalidates the iterator
3788 * and we need to reset the iterator in this case.
3789 */
3790 if (unlikely(iter->cache_read != cpu_buffer->read ||
3791 iter->cache_reader_page != cpu_buffer->reader_page))
3792 rb_iter_reset(iter);
3793
7a8e76a3 3794 again:
3c05d748
SR
3795 if (ring_buffer_iter_empty(iter))
3796 return NULL;
3797
818e3dd3 3798 /*
7f70b62e
SRRH
3799 * We repeat when a time extend is encountered or we hit
3800 * the end of the page. Since the time extend is always attached
3801 * to a data event, we should never loop more than three times.
3802 * Once for going to next page, once on time extend, and
3803 * finally once to get the event.
3804 * (We never hit the following condition more than thrice).
818e3dd3 3805 */
7f70b62e 3806 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3))
818e3dd3 3807 return NULL;
818e3dd3 3808
7a8e76a3
SR
3809 if (rb_per_cpu_empty(cpu_buffer))
3810 return NULL;
3811
3c05d748
SR
3812 if (iter->head >= local_read(&iter->head_page->page->commit)) {
3813 rb_inc_iter(iter);
3814 goto again;
3815 }
3816
7a8e76a3
SR
3817 event = rb_iter_head_event(iter);
3818
334d4169 3819 switch (event->type_len) {
7a8e76a3 3820 case RINGBUF_TYPE_PADDING:
2d622719
TZ
3821 if (rb_null_event(event)) {
3822 rb_inc_iter(iter);
3823 goto again;
3824 }
3825 rb_advance_iter(iter);
3826 return event;
7a8e76a3
SR
3827
3828 case RINGBUF_TYPE_TIME_EXTEND:
3829 /* Internal data, OK to advance */
3830 rb_advance_iter(iter);
3831 goto again;
3832
3833 case RINGBUF_TYPE_TIME_STAMP:
3834 /* FIXME: not implemented */
3835 rb_advance_iter(iter);
3836 goto again;
3837
3838 case RINGBUF_TYPE_DATA:
3839 if (ts) {
3840 *ts = iter->read_stamp + event->time_delta;
37886f6a
SR
3841 ring_buffer_normalize_time_stamp(buffer,
3842 cpu_buffer->cpu, ts);
7a8e76a3
SR
3843 }
3844 return event;
3845
3846 default:
3847 BUG();
3848 }
3849
3850 return NULL;
3851}
c4f50183 3852EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
7a8e76a3 3853
8d707e8e
SR
3854static inline int rb_ok_to_lock(void)
3855{
3856 /*
3857 * If an NMI die dumps out the content of the ring buffer
3858 * do not grab locks. We also permanently disable the ring
3859 * buffer too. A one time deal is all you get from reading
3860 * the ring buffer from an NMI.
3861 */
464e85eb 3862 if (likely(!in_nmi()))
8d707e8e
SR
3863 return 1;
3864
3865 tracing_off_permanent();
3866 return 0;
3867}
3868
f83c9d0f
SR
3869/**
3870 * ring_buffer_peek - peek at the next event to be read
3871 * @buffer: The ring buffer to read
3872 * @cpu: The cpu to peak at
3873 * @ts: The timestamp counter of this event.
66a8cb95 3874 * @lost_events: a variable to store if events were lost (may be NULL)
f83c9d0f
SR
3875 *
3876 * This will return the event that will be read next, but does
3877 * not consume the data.
3878 */
3879struct ring_buffer_event *
66a8cb95
SR
3880ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
3881 unsigned long *lost_events)
f83c9d0f
SR
3882{
3883 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
8aabee57 3884 struct ring_buffer_event *event;
f83c9d0f 3885 unsigned long flags;
8d707e8e 3886 int dolock;
f83c9d0f 3887
554f786e 3888 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 3889 return NULL;
554f786e 3890
8d707e8e 3891 dolock = rb_ok_to_lock();
2d622719 3892 again:
8d707e8e
SR
3893 local_irq_save(flags);
3894 if (dolock)
5389f6fa 3895 raw_spin_lock(&cpu_buffer->reader_lock);
66a8cb95 3896 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
469535a5
RR
3897 if (event && event->type_len == RINGBUF_TYPE_PADDING)
3898 rb_advance_reader(cpu_buffer);
8d707e8e 3899 if (dolock)
5389f6fa 3900 raw_spin_unlock(&cpu_buffer->reader_lock);
8d707e8e 3901 local_irq_restore(flags);
f83c9d0f 3902
1b959e18 3903 if (event && event->type_len == RINGBUF_TYPE_PADDING)
2d622719 3904 goto again;
2d622719 3905
f83c9d0f
SR
3906 return event;
3907}
3908
3909/**
3910 * ring_buffer_iter_peek - peek at the next event to be read
3911 * @iter: The ring buffer iterator
3912 * @ts: The timestamp counter of this event.
3913 *
3914 * This will return the event that will be read next, but does
3915 * not increment the iterator.
3916 */
3917struct ring_buffer_event *
3918ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3919{
3920 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3921 struct ring_buffer_event *event;
3922 unsigned long flags;
3923
2d622719 3924 again:
5389f6fa 3925 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
f83c9d0f 3926 event = rb_iter_peek(iter, ts);
5389f6fa 3927 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
f83c9d0f 3928
1b959e18 3929 if (event && event->type_len == RINGBUF_TYPE_PADDING)
2d622719 3930 goto again;
2d622719 3931
f83c9d0f
SR
3932 return event;
3933}
3934
7a8e76a3
SR
3935/**
3936 * ring_buffer_consume - return an event and consume it
3937 * @buffer: The ring buffer to get the next event from
66a8cb95
SR
3938 * @cpu: the cpu to read the buffer from
3939 * @ts: a variable to store the timestamp (may be NULL)
3940 * @lost_events: a variable to store if events were lost (may be NULL)
7a8e76a3
SR
3941 *
3942 * Returns the next event in the ring buffer, and that event is consumed.
3943 * Meaning, that sequential reads will keep returning a different event,
3944 * and eventually empty the ring buffer if the producer is slower.
3945 */
3946struct ring_buffer_event *
66a8cb95
SR
3947ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
3948 unsigned long *lost_events)
7a8e76a3 3949{
554f786e
SR
3950 struct ring_buffer_per_cpu *cpu_buffer;
3951 struct ring_buffer_event *event = NULL;
f83c9d0f 3952 unsigned long flags;
8d707e8e
SR
3953 int dolock;
3954
3955 dolock = rb_ok_to_lock();
7a8e76a3 3956
2d622719 3957 again:
554f786e
SR
3958 /* might be called in atomic */
3959 preempt_disable();
3960
9e01c1b7 3961 if (!cpumask_test_cpu(cpu, buffer->cpumask))
554f786e 3962 goto out;
7a8e76a3 3963
554f786e 3964 cpu_buffer = buffer->buffers[cpu];
8d707e8e
SR
3965 local_irq_save(flags);
3966 if (dolock)
5389f6fa 3967 raw_spin_lock(&cpu_buffer->reader_lock);
f83c9d0f 3968
66a8cb95
SR
3969 event = rb_buffer_peek(cpu_buffer, ts, lost_events);
3970 if (event) {
3971 cpu_buffer->lost_events = 0;
469535a5 3972 rb_advance_reader(cpu_buffer);
66a8cb95 3973 }
7a8e76a3 3974
8d707e8e 3975 if (dolock)
5389f6fa 3976 raw_spin_unlock(&cpu_buffer->reader_lock);
8d707e8e 3977 local_irq_restore(flags);
f83c9d0f 3978
554f786e
SR
3979 out:
3980 preempt_enable();
3981
1b959e18 3982 if (event && event->type_len == RINGBUF_TYPE_PADDING)
2d622719 3983 goto again;
2d622719 3984
7a8e76a3
SR
3985 return event;
3986}
c4f50183 3987EXPORT_SYMBOL_GPL(ring_buffer_consume);
7a8e76a3
SR
3988
3989/**
72c9ddfd 3990 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
7a8e76a3
SR
3991 * @buffer: The ring buffer to read from
3992 * @cpu: The cpu buffer to iterate over
3993 *
72c9ddfd
DM
3994 * This performs the initial preparations necessary to iterate
3995 * through the buffer. Memory is allocated, buffer recording
3996 * is disabled, and the iterator pointer is returned to the caller.
7a8e76a3 3997 *
72c9ddfd
DM
3998 * Disabling buffer recordng prevents the reading from being
3999 * corrupted. This is not a consuming read, so a producer is not
4000 * expected.
4001 *
4002 * After a sequence of ring_buffer_read_prepare calls, the user is
4003 * expected to make at least one call to ring_buffer_prepare_sync.
4004 * Afterwards, ring_buffer_read_start is invoked to get things going
4005 * for real.
4006 *
4007 * This overall must be paired with ring_buffer_finish.
7a8e76a3
SR
4008 */
4009struct ring_buffer_iter *
72c9ddfd 4010ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
7a8e76a3
SR
4011{
4012 struct ring_buffer_per_cpu *cpu_buffer;
8aabee57 4013 struct ring_buffer_iter *iter;
7a8e76a3 4014
9e01c1b7 4015 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 4016 return NULL;
7a8e76a3
SR
4017
4018 iter = kmalloc(sizeof(*iter), GFP_KERNEL);
4019 if (!iter)
8aabee57 4020 return NULL;
7a8e76a3
SR
4021
4022 cpu_buffer = buffer->buffers[cpu];
4023
4024 iter->cpu_buffer = cpu_buffer;
4025
83f40318 4026 atomic_inc(&buffer->resize_disabled);
7a8e76a3 4027 atomic_inc(&cpu_buffer->record_disabled);
72c9ddfd
DM
4028
4029 return iter;
4030}
4031EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
4032
4033/**
4034 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
4035 *
4036 * All previously invoked ring_buffer_read_prepare calls to prepare
4037 * iterators will be synchronized. Afterwards, read_buffer_read_start
4038 * calls on those iterators are allowed.
4039 */
4040void
4041ring_buffer_read_prepare_sync(void)
4042{
7a8e76a3 4043 synchronize_sched();
72c9ddfd
DM
4044}
4045EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
4046
4047/**
4048 * ring_buffer_read_start - start a non consuming read of the buffer
4049 * @iter: The iterator returned by ring_buffer_read_prepare
4050 *
4051 * This finalizes the startup of an iteration through the buffer.
4052 * The iterator comes from a call to ring_buffer_read_prepare and
4053 * an intervening ring_buffer_read_prepare_sync must have been
4054 * performed.
4055 *
4056 * Must be paired with ring_buffer_finish.
4057 */
4058void
4059ring_buffer_read_start(struct ring_buffer_iter *iter)
4060{
4061 struct ring_buffer_per_cpu *cpu_buffer;
4062 unsigned long flags;
4063
4064 if (!iter)
4065 return;
4066
4067 cpu_buffer = iter->cpu_buffer;
7a8e76a3 4068
5389f6fa 4069 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
0199c4e6 4070 arch_spin_lock(&cpu_buffer->lock);
642edba5 4071 rb_iter_reset(iter);
0199c4e6 4072 arch_spin_unlock(&cpu_buffer->lock);
5389f6fa 4073 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3 4074}
c4f50183 4075EXPORT_SYMBOL_GPL(ring_buffer_read_start);
7a8e76a3
SR
4076
4077/**
4078 * ring_buffer_finish - finish reading the iterator of the buffer
4079 * @iter: The iterator retrieved by ring_buffer_start
4080 *
4081 * This re-enables the recording to the buffer, and frees the
4082 * iterator.
4083 */
4084void
4085ring_buffer_read_finish(struct ring_buffer_iter *iter)
4086{
4087 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
9366c1ba 4088 unsigned long flags;
7a8e76a3 4089
659f451f
SR
4090 /*
4091 * Ring buffer is disabled from recording, here's a good place
9366c1ba
SR
4092 * to check the integrity of the ring buffer.
4093 * Must prevent readers from trying to read, as the check
4094 * clears the HEAD page and readers require it.
659f451f 4095 */
9366c1ba 4096 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
659f451f 4097 rb_check_pages(cpu_buffer);
9366c1ba 4098 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
659f451f 4099
7a8e76a3 4100 atomic_dec(&cpu_buffer->record_disabled);
83f40318 4101 atomic_dec(&cpu_buffer->buffer->resize_disabled);
7a8e76a3
SR
4102 kfree(iter);
4103}
c4f50183 4104EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
7a8e76a3
SR
4105
4106/**
4107 * ring_buffer_read - read the next item in the ring buffer by the iterator
4108 * @iter: The ring buffer iterator
4109 * @ts: The time stamp of the event read.
4110 *
4111 * This reads the next event in the ring buffer and increments the iterator.
4112 */
4113struct ring_buffer_event *
4114ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
4115{
4116 struct ring_buffer_event *event;
f83c9d0f
SR
4117 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
4118 unsigned long flags;
7a8e76a3 4119
5389f6fa 4120 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7e9391cf 4121 again:
f83c9d0f 4122 event = rb_iter_peek(iter, ts);
7a8e76a3 4123 if (!event)
f83c9d0f 4124 goto out;
7a8e76a3 4125
7e9391cf
SR
4126 if (event->type_len == RINGBUF_TYPE_PADDING)
4127 goto again;
4128
7a8e76a3 4129 rb_advance_iter(iter);
f83c9d0f 4130 out:
5389f6fa 4131 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7a8e76a3
SR
4132
4133 return event;
4134}
c4f50183 4135EXPORT_SYMBOL_GPL(ring_buffer_read);
7a8e76a3
SR
4136
4137/**
4138 * ring_buffer_size - return the size of the ring buffer (in bytes)
4139 * @buffer: The ring buffer.
4140 */
438ced17 4141unsigned long ring_buffer_size(struct ring_buffer *buffer, int cpu)
7a8e76a3 4142{
438ced17
VN
4143 /*
4144 * Earlier, this method returned
4145 * BUF_PAGE_SIZE * buffer->nr_pages
4146 * Since the nr_pages field is now removed, we have converted this to
4147 * return the per cpu buffer value.
4148 */
4149 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4150 return 0;
4151
4152 return BUF_PAGE_SIZE * buffer->buffers[cpu]->nr_pages;
7a8e76a3 4153}
c4f50183 4154EXPORT_SYMBOL_GPL(ring_buffer_size);
7a8e76a3
SR
4155
4156static void
4157rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
4158{
77ae365e
SR
4159 rb_head_page_deactivate(cpu_buffer);
4160
7a8e76a3 4161 cpu_buffer->head_page
3adc54fa 4162 = list_entry(cpu_buffer->pages, struct buffer_page, list);
bf41a158 4163 local_set(&cpu_buffer->head_page->write, 0);
778c55d4 4164 local_set(&cpu_buffer->head_page->entries, 0);
abc9b56d 4165 local_set(&cpu_buffer->head_page->page->commit, 0);
d769041f 4166
6f807acd 4167 cpu_buffer->head_page->read = 0;
bf41a158
SR
4168
4169 cpu_buffer->tail_page = cpu_buffer->head_page;
4170 cpu_buffer->commit_page = cpu_buffer->head_page;
4171
4172 INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
5040b4b7 4173 INIT_LIST_HEAD(&cpu_buffer->new_pages);
bf41a158 4174 local_set(&cpu_buffer->reader_page->write, 0);
778c55d4 4175 local_set(&cpu_buffer->reader_page->entries, 0);
abc9b56d 4176 local_set(&cpu_buffer->reader_page->page->commit, 0);
6f807acd 4177 cpu_buffer->reader_page->read = 0;
7a8e76a3 4178
c64e148a 4179 local_set(&cpu_buffer->entries_bytes, 0);
77ae365e 4180 local_set(&cpu_buffer->overrun, 0);
884bfe89
SP
4181 local_set(&cpu_buffer->commit_overrun, 0);
4182 local_set(&cpu_buffer->dropped_events, 0);
e4906eff 4183 local_set(&cpu_buffer->entries, 0);
fa743953
SR
4184 local_set(&cpu_buffer->committing, 0);
4185 local_set(&cpu_buffer->commits, 0);
77ae365e 4186 cpu_buffer->read = 0;
c64e148a 4187 cpu_buffer->read_bytes = 0;
69507c06
SR
4188
4189 cpu_buffer->write_stamp = 0;
4190 cpu_buffer->read_stamp = 0;
77ae365e 4191
66a8cb95
SR
4192 cpu_buffer->lost_events = 0;
4193 cpu_buffer->last_overrun = 0;
4194
77ae365e 4195 rb_head_page_activate(cpu_buffer);
7a8e76a3
SR
4196}
4197
4198/**
4199 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4200 * @buffer: The ring buffer to reset a per cpu buffer of
4201 * @cpu: The CPU buffer to be reset
4202 */
4203void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
4204{
4205 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4206 unsigned long flags;
4207
9e01c1b7 4208 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 4209 return;
7a8e76a3 4210
83f40318 4211 atomic_inc(&buffer->resize_disabled);
41ede23e
SR
4212 atomic_inc(&cpu_buffer->record_disabled);
4213
83f40318
VN
4214 /* Make sure all commits have finished */
4215 synchronize_sched();
4216
5389f6fa 4217 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
f83c9d0f 4218
41b6a95d
SR
4219 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
4220 goto out;
4221
0199c4e6 4222 arch_spin_lock(&cpu_buffer->lock);
7a8e76a3
SR
4223
4224 rb_reset_cpu(cpu_buffer);
4225
0199c4e6 4226 arch_spin_unlock(&cpu_buffer->lock);
f83c9d0f 4227
41b6a95d 4228 out:
5389f6fa 4229 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
41ede23e
SR
4230
4231 atomic_dec(&cpu_buffer->record_disabled);
83f40318 4232 atomic_dec(&buffer->resize_disabled);
7a8e76a3 4233}
c4f50183 4234EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
7a8e76a3
SR
4235
4236/**
4237 * ring_buffer_reset - reset a ring buffer
4238 * @buffer: The ring buffer to reset all cpu buffers
4239 */
4240void ring_buffer_reset(struct ring_buffer *buffer)
4241{
7a8e76a3
SR
4242 int cpu;
4243
7a8e76a3 4244 for_each_buffer_cpu(buffer, cpu)
d769041f 4245 ring_buffer_reset_cpu(buffer, cpu);
7a8e76a3 4246}
c4f50183 4247EXPORT_SYMBOL_GPL(ring_buffer_reset);
7a8e76a3
SR
4248
4249/**
4250 * rind_buffer_empty - is the ring buffer empty?
4251 * @buffer: The ring buffer to test
4252 */
4253int ring_buffer_empty(struct ring_buffer *buffer)
4254{
4255 struct ring_buffer_per_cpu *cpu_buffer;
d4788207 4256 unsigned long flags;
8d707e8e 4257 int dolock;
7a8e76a3 4258 int cpu;
d4788207 4259 int ret;
7a8e76a3 4260
8d707e8e 4261 dolock = rb_ok_to_lock();
7a8e76a3
SR
4262
4263 /* yes this is racy, but if you don't like the race, lock the buffer */
4264 for_each_buffer_cpu(buffer, cpu) {
4265 cpu_buffer = buffer->buffers[cpu];
8d707e8e
SR
4266 local_irq_save(flags);
4267 if (dolock)
5389f6fa 4268 raw_spin_lock(&cpu_buffer->reader_lock);
d4788207 4269 ret = rb_per_cpu_empty(cpu_buffer);
8d707e8e 4270 if (dolock)
5389f6fa 4271 raw_spin_unlock(&cpu_buffer->reader_lock);
8d707e8e
SR
4272 local_irq_restore(flags);
4273
d4788207 4274 if (!ret)
7a8e76a3
SR
4275 return 0;
4276 }
554f786e 4277
7a8e76a3
SR
4278 return 1;
4279}
c4f50183 4280EXPORT_SYMBOL_GPL(ring_buffer_empty);
7a8e76a3
SR
4281
4282/**
4283 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4284 * @buffer: The ring buffer
4285 * @cpu: The CPU buffer to test
4286 */
4287int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
4288{
4289 struct ring_buffer_per_cpu *cpu_buffer;
d4788207 4290 unsigned long flags;
8d707e8e 4291 int dolock;
8aabee57 4292 int ret;
7a8e76a3 4293
9e01c1b7 4294 if (!cpumask_test_cpu(cpu, buffer->cpumask))
8aabee57 4295 return 1;
7a8e76a3 4296
8d707e8e
SR
4297 dolock = rb_ok_to_lock();
4298
7a8e76a3 4299 cpu_buffer = buffer->buffers[cpu];
8d707e8e
SR
4300 local_irq_save(flags);
4301 if (dolock)
5389f6fa 4302 raw_spin_lock(&cpu_buffer->reader_lock);
554f786e 4303 ret = rb_per_cpu_empty(cpu_buffer);
8d707e8e 4304 if (dolock)
5389f6fa 4305 raw_spin_unlock(&cpu_buffer->reader_lock);
8d707e8e 4306 local_irq_restore(flags);
554f786e
SR
4307
4308 return ret;
7a8e76a3 4309}
c4f50183 4310EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
7a8e76a3 4311
85bac32c 4312#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
7a8e76a3
SR
4313/**
4314 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4315 * @buffer_a: One buffer to swap with
4316 * @buffer_b: The other buffer to swap with
4317 *
4318 * This function is useful for tracers that want to take a "snapshot"
4319 * of a CPU buffer and has another back up buffer lying around.
4320 * it is expected that the tracer handles the cpu buffer not being
4321 * used at the moment.
4322 */
4323int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
4324 struct ring_buffer *buffer_b, int cpu)
4325{
4326 struct ring_buffer_per_cpu *cpu_buffer_a;
4327 struct ring_buffer_per_cpu *cpu_buffer_b;
554f786e
SR
4328 int ret = -EINVAL;
4329
9e01c1b7
RR
4330 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
4331 !cpumask_test_cpu(cpu, buffer_b->cpumask))
554f786e 4332 goto out;
7a8e76a3 4333
438ced17
VN
4334 cpu_buffer_a = buffer_a->buffers[cpu];
4335 cpu_buffer_b = buffer_b->buffers[cpu];
4336
7a8e76a3 4337 /* At least make sure the two buffers are somewhat the same */
438ced17 4338 if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
554f786e
SR
4339 goto out;
4340
4341 ret = -EAGAIN;
7a8e76a3 4342
97b17efe 4343 if (ring_buffer_flags != RB_BUFFERS_ON)
554f786e 4344 goto out;
97b17efe
SR
4345
4346 if (atomic_read(&buffer_a->record_disabled))
554f786e 4347 goto out;
97b17efe
SR
4348
4349 if (atomic_read(&buffer_b->record_disabled))
554f786e 4350 goto out;
97b17efe 4351
97b17efe 4352 if (atomic_read(&cpu_buffer_a->record_disabled))
554f786e 4353 goto out;
97b17efe
SR
4354
4355 if (atomic_read(&cpu_buffer_b->record_disabled))
554f786e 4356 goto out;
97b17efe 4357
7a8e76a3
SR
4358 /*
4359 * We can't do a synchronize_sched here because this
4360 * function can be called in atomic context.
4361 * Normally this will be called from the same CPU as cpu.
4362 * If not it's up to the caller to protect this.
4363 */
4364 atomic_inc(&cpu_buffer_a->record_disabled);
4365 atomic_inc(&cpu_buffer_b->record_disabled);
4366
98277991
SR
4367 ret = -EBUSY;
4368 if (local_read(&cpu_buffer_a->committing))
4369 goto out_dec;
4370 if (local_read(&cpu_buffer_b->committing))
4371 goto out_dec;
4372
7a8e76a3
SR
4373 buffer_a->buffers[cpu] = cpu_buffer_b;
4374 buffer_b->buffers[cpu] = cpu_buffer_a;
4375
4376 cpu_buffer_b->buffer = buffer_a;
4377 cpu_buffer_a->buffer = buffer_b;
4378
98277991
SR
4379 ret = 0;
4380
4381out_dec:
7a8e76a3
SR
4382 atomic_dec(&cpu_buffer_a->record_disabled);
4383 atomic_dec(&cpu_buffer_b->record_disabled);
554f786e 4384out:
554f786e 4385 return ret;
7a8e76a3 4386}
c4f50183 4387EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
85bac32c 4388#endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
7a8e76a3 4389
8789a9e7
SR
4390/**
4391 * ring_buffer_alloc_read_page - allocate a page to read from buffer
4392 * @buffer: the buffer to allocate for.
4393 *
4394 * This function is used in conjunction with ring_buffer_read_page.
4395 * When reading a full page from the ring buffer, these functions
4396 * can be used to speed up the process. The calling function should
4397 * allocate a few pages first with this function. Then when it
4398 * needs to get pages from the ring buffer, it passes the result
4399 * of this function into ring_buffer_read_page, which will swap
4400 * the page that was allocated, with the read page of the buffer.
4401 *
4402 * Returns:
4403 * The page allocated, or NULL on error.
4404 */
7ea59064 4405void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
8789a9e7 4406{
044fa782 4407 struct buffer_data_page *bpage;
7ea59064 4408 struct page *page;
8789a9e7 4409
d7ec4bfe
VN
4410 page = alloc_pages_node(cpu_to_node(cpu),
4411 GFP_KERNEL | __GFP_NORETRY, 0);
7ea59064 4412 if (!page)
8789a9e7
SR
4413 return NULL;
4414
7ea59064 4415 bpage = page_address(page);
8789a9e7 4416
ef7a4a16
SR
4417 rb_init_page(bpage);
4418
044fa782 4419 return bpage;
8789a9e7 4420}
d6ce96da 4421EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
8789a9e7
SR
4422
4423/**
4424 * ring_buffer_free_read_page - free an allocated read page
4425 * @buffer: the buffer the page was allocate for
4426 * @data: the page to free
4427 *
4428 * Free a page allocated from ring_buffer_alloc_read_page.
4429 */
4430void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
4431{
4432 free_page((unsigned long)data);
4433}
d6ce96da 4434EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
8789a9e7
SR
4435
4436/**
4437 * ring_buffer_read_page - extract a page from the ring buffer
4438 * @buffer: buffer to extract from
4439 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
ef7a4a16 4440 * @len: amount to extract
8789a9e7
SR
4441 * @cpu: the cpu of the buffer to extract
4442 * @full: should the extraction only happen when the page is full.
4443 *
4444 * This function will pull out a page from the ring buffer and consume it.
4445 * @data_page must be the address of the variable that was returned
4446 * from ring_buffer_alloc_read_page. This is because the page might be used
4447 * to swap with a page in the ring buffer.
4448 *
4449 * for example:
b85fa01e 4450 * rpage = ring_buffer_alloc_read_page(buffer);
8789a9e7
SR
4451 * if (!rpage)
4452 * return error;
ef7a4a16 4453 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
667d2412
LJ
4454 * if (ret >= 0)
4455 * process_page(rpage, ret);
8789a9e7
SR
4456 *
4457 * When @full is set, the function will not return true unless
4458 * the writer is off the reader page.
4459 *
4460 * Note: it is up to the calling functions to handle sleeps and wakeups.
4461 * The ring buffer can be used anywhere in the kernel and can not
4462 * blindly call wake_up. The layer that uses the ring buffer must be
4463 * responsible for that.
4464 *
4465 * Returns:
667d2412
LJ
4466 * >=0 if data has been transferred, returns the offset of consumed data.
4467 * <0 if no data has been transferred.
8789a9e7
SR
4468 */
4469int ring_buffer_read_page(struct ring_buffer *buffer,
ef7a4a16 4470 void **data_page, size_t len, int cpu, int full)
8789a9e7
SR
4471{
4472 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
4473 struct ring_buffer_event *event;
044fa782 4474 struct buffer_data_page *bpage;
ef7a4a16 4475 struct buffer_page *reader;
ff0ff84a 4476 unsigned long missed_events;
8789a9e7 4477 unsigned long flags;
ef7a4a16 4478 unsigned int commit;
667d2412 4479 unsigned int read;
4f3640f8 4480 u64 save_timestamp;
667d2412 4481 int ret = -1;
8789a9e7 4482
554f786e
SR
4483 if (!cpumask_test_cpu(cpu, buffer->cpumask))
4484 goto out;
4485
474d32b6
SR
4486 /*
4487 * If len is not big enough to hold the page header, then
4488 * we can not copy anything.
4489 */
4490 if (len <= BUF_PAGE_HDR_SIZE)
554f786e 4491 goto out;
474d32b6
SR
4492
4493 len -= BUF_PAGE_HDR_SIZE;
4494
8789a9e7 4495 if (!data_page)
554f786e 4496 goto out;
8789a9e7 4497
044fa782
SR
4498 bpage = *data_page;
4499 if (!bpage)
554f786e 4500 goto out;
8789a9e7 4501
5389f6fa 4502 raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
8789a9e7 4503
ef7a4a16
SR
4504 reader = rb_get_reader_page(cpu_buffer);
4505 if (!reader)
554f786e 4506 goto out_unlock;
8789a9e7 4507
ef7a4a16
SR
4508 event = rb_reader_event(cpu_buffer);
4509
4510 read = reader->read;
4511 commit = rb_page_commit(reader);
667d2412 4512
66a8cb95 4513 /* Check if any events were dropped */
ff0ff84a 4514 missed_events = cpu_buffer->lost_events;
66a8cb95 4515
8789a9e7 4516 /*
474d32b6
SR
4517 * If this page has been partially read or
4518 * if len is not big enough to read the rest of the page or
4519 * a writer is still on the page, then
4520 * we must copy the data from the page to the buffer.
4521 * Otherwise, we can simply swap the page with the one passed in.
8789a9e7 4522 */
474d32b6 4523 if (read || (len < (commit - read)) ||
ef7a4a16 4524 cpu_buffer->reader_page == cpu_buffer->commit_page) {
667d2412 4525 struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
474d32b6
SR
4526 unsigned int rpos = read;
4527 unsigned int pos = 0;
ef7a4a16 4528 unsigned int size;
8789a9e7
SR
4529
4530 if (full)
554f786e 4531 goto out_unlock;
8789a9e7 4532
ef7a4a16
SR
4533 if (len > (commit - read))
4534 len = (commit - read);
4535
69d1b839
SR
4536 /* Always keep the time extend and data together */
4537 size = rb_event_ts_length(event);
ef7a4a16
SR
4538
4539 if (len < size)
554f786e 4540 goto out_unlock;
ef7a4a16 4541
4f3640f8
SR
4542 /* save the current timestamp, since the user will need it */
4543 save_timestamp = cpu_buffer->read_stamp;
4544
ef7a4a16
SR
4545 /* Need to copy one event at a time */
4546 do {
e1e35927
DS
4547 /* We need the size of one event, because
4548 * rb_advance_reader only advances by one event,
4549 * whereas rb_event_ts_length may include the size of
4550 * one or two events.
4551 * We have already ensured there's enough space if this
4552 * is a time extend. */
4553 size = rb_event_length(event);
474d32b6 4554 memcpy(bpage->data + pos, rpage->data + rpos, size);
ef7a4a16
SR
4555
4556 len -= size;
4557
4558 rb_advance_reader(cpu_buffer);
474d32b6
SR
4559 rpos = reader->read;
4560 pos += size;
ef7a4a16 4561
18fab912
HY
4562 if (rpos >= commit)
4563 break;
4564
ef7a4a16 4565 event = rb_reader_event(cpu_buffer);
69d1b839
SR
4566 /* Always keep the time extend and data together */
4567 size = rb_event_ts_length(event);
e1e35927 4568 } while (len >= size);
667d2412
LJ
4569
4570 /* update bpage */
ef7a4a16 4571 local_set(&bpage->commit, pos);
4f3640f8 4572 bpage->time_stamp = save_timestamp;
ef7a4a16 4573
474d32b6
SR
4574 /* we copied everything to the beginning */
4575 read = 0;
8789a9e7 4576 } else {
afbab76a 4577 /* update the entry counter */
77ae365e 4578 cpu_buffer->read += rb_page_entries(reader);
c64e148a 4579 cpu_buffer->read_bytes += BUF_PAGE_SIZE;
afbab76a 4580
8789a9e7 4581 /* swap the pages */
044fa782 4582 rb_init_page(bpage);
ef7a4a16
SR
4583 bpage = reader->page;
4584 reader->page = *data_page;
4585 local_set(&reader->write, 0);
778c55d4 4586 local_set(&reader->entries, 0);
ef7a4a16 4587 reader->read = 0;
044fa782 4588 *data_page = bpage;
ff0ff84a
SR
4589
4590 /*
4591 * Use the real_end for the data size,
4592 * This gives us a chance to store the lost events
4593 * on the page.
4594 */
4595 if (reader->real_end)
4596 local_set(&bpage->commit, reader->real_end);
8789a9e7 4597 }
667d2412 4598 ret = read;
8789a9e7 4599
66a8cb95 4600 cpu_buffer->lost_events = 0;
2711ca23
SR
4601
4602 commit = local_read(&bpage->commit);
66a8cb95
SR
4603 /*
4604 * Set a flag in the commit field if we lost events
4605 */
ff0ff84a 4606 if (missed_events) {
ff0ff84a
SR
4607 /* If there is room at the end of the page to save the
4608 * missed events, then record it there.
4609 */
4610 if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
4611 memcpy(&bpage->data[commit], &missed_events,
4612 sizeof(missed_events));
4613 local_add(RB_MISSED_STORED, &bpage->commit);
2711ca23 4614 commit += sizeof(missed_events);
ff0ff84a 4615 }
66a8cb95 4616 local_add(RB_MISSED_EVENTS, &bpage->commit);
ff0ff84a 4617 }
66a8cb95 4618
2711ca23
SR
4619 /*
4620 * This page may be off to user land. Zero it out here.
4621 */
4622 if (commit < BUF_PAGE_SIZE)
4623 memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
4624
554f786e 4625 out_unlock:
5389f6fa 4626 raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
8789a9e7 4627
554f786e 4628 out:
8789a9e7
SR
4629 return ret;
4630}
d6ce96da 4631EXPORT_SYMBOL_GPL(ring_buffer_read_page);
8789a9e7 4632
59222efe 4633#ifdef CONFIG_HOTPLUG_CPU
09c9e84d
FW
4634static int rb_cpu_notify(struct notifier_block *self,
4635 unsigned long action, void *hcpu)
554f786e
SR
4636{
4637 struct ring_buffer *buffer =
4638 container_of(self, struct ring_buffer, cpu_notify);
4639 long cpu = (long)hcpu;
438ced17
VN
4640 int cpu_i, nr_pages_same;
4641 unsigned int nr_pages;
554f786e
SR
4642
4643 switch (action) {
4644 case CPU_UP_PREPARE:
4645 case CPU_UP_PREPARE_FROZEN:
3f237a79 4646 if (cpumask_test_cpu(cpu, buffer->cpumask))
554f786e
SR
4647 return NOTIFY_OK;
4648
438ced17
VN
4649 nr_pages = 0;
4650 nr_pages_same = 1;
4651 /* check if all cpu sizes are same */
4652 for_each_buffer_cpu(buffer, cpu_i) {
4653 /* fill in the size from first enabled cpu */
4654 if (nr_pages == 0)
4655 nr_pages = buffer->buffers[cpu_i]->nr_pages;
4656 if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
4657 nr_pages_same = 0;
4658 break;
4659 }
4660 }
4661 /* allocate minimum pages, user can later expand it */
4662 if (!nr_pages_same)
4663 nr_pages = 2;
554f786e 4664 buffer->buffers[cpu] =
438ced17 4665 rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
554f786e
SR
4666 if (!buffer->buffers[cpu]) {
4667 WARN(1, "failed to allocate ring buffer on CPU %ld\n",
4668 cpu);
4669 return NOTIFY_OK;
4670 }
4671 smp_wmb();
3f237a79 4672 cpumask_set_cpu(cpu, buffer->cpumask);
554f786e
SR
4673 break;
4674 case CPU_DOWN_PREPARE:
4675 case CPU_DOWN_PREPARE_FROZEN:
4676 /*
4677 * Do nothing.
4678 * If we were to free the buffer, then the user would
4679 * lose any trace that was in the buffer.
4680 */
4681 break;
4682 default:
4683 break;
4684 }
4685 return NOTIFY_OK;
4686}
4687#endif
6c43e554
SRRH
4688
4689#ifdef CONFIG_RING_BUFFER_STARTUP_TEST
4690/*
4691 * This is a basic integrity check of the ring buffer.
4692 * Late in the boot cycle this test will run when configured in.
4693 * It will kick off a thread per CPU that will go into a loop
4694 * writing to the per cpu ring buffer various sizes of data.
4695 * Some of the data will be large items, some small.
4696 *
4697 * Another thread is created that goes into a spin, sending out
4698 * IPIs to the other CPUs to also write into the ring buffer.
4699 * this is to test the nesting ability of the buffer.
4700 *
4701 * Basic stats are recorded and reported. If something in the
4702 * ring buffer should happen that's not expected, a big warning
4703 * is displayed and all ring buffers are disabled.
4704 */
4705static struct task_struct *rb_threads[NR_CPUS] __initdata;
4706
4707struct rb_test_data {
4708 struct ring_buffer *buffer;
4709 unsigned long events;
4710 unsigned long bytes_written;
4711 unsigned long bytes_alloc;
4712 unsigned long bytes_dropped;
4713 unsigned long events_nested;
4714 unsigned long bytes_written_nested;
4715 unsigned long bytes_alloc_nested;
4716 unsigned long bytes_dropped_nested;
4717 int min_size_nested;
4718 int max_size_nested;
4719 int max_size;
4720 int min_size;
4721 int cpu;
4722 int cnt;
4723};
4724
4725static struct rb_test_data rb_data[NR_CPUS] __initdata;
4726
4727/* 1 meg per cpu */
4728#define RB_TEST_BUFFER_SIZE 1048576
4729
4730static char rb_string[] __initdata =
4731 "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
4732 "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
4733 "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
4734
4735static bool rb_test_started __initdata;
4736
4737struct rb_item {
4738 int size;
4739 char str[];
4740};
4741
4742static __init int rb_write_something(struct rb_test_data *data, bool nested)
4743{
4744 struct ring_buffer_event *event;
4745 struct rb_item *item;
4746 bool started;
4747 int event_len;
4748 int size;
4749 int len;
4750 int cnt;
4751
4752 /* Have nested writes different that what is written */
4753 cnt = data->cnt + (nested ? 27 : 0);
4754
4755 /* Multiply cnt by ~e, to make some unique increment */
4756 size = (data->cnt * 68 / 25) % (sizeof(rb_string) - 1);
4757
4758 len = size + sizeof(struct rb_item);
4759
4760 started = rb_test_started;
4761 /* read rb_test_started before checking buffer enabled */
4762 smp_rmb();
4763
4764 event = ring_buffer_lock_reserve(data->buffer, len);
4765 if (!event) {
4766 /* Ignore dropped events before test starts. */
4767 if (started) {
4768 if (nested)
4769 data->bytes_dropped += len;
4770 else
4771 data->bytes_dropped_nested += len;
4772 }
4773 return len;
4774 }
4775
4776 event_len = ring_buffer_event_length(event);
4777
4778 if (RB_WARN_ON(data->buffer, event_len < len))
4779 goto out;
4780
4781 item = ring_buffer_event_data(event);
4782 item->size = size;
4783 memcpy(item->str, rb_string, size);
4784
4785 if (nested) {
4786 data->bytes_alloc_nested += event_len;
4787 data->bytes_written_nested += len;
4788 data->events_nested++;
4789 if (!data->min_size_nested || len < data->min_size_nested)
4790 data->min_size_nested = len;
4791 if (len > data->max_size_nested)
4792 data->max_size_nested = len;
4793 } else {
4794 data->bytes_alloc += event_len;
4795 data->bytes_written += len;
4796 data->events++;
4797 if (!data->min_size || len < data->min_size)
4798 data->max_size = len;
4799 if (len > data->max_size)
4800 data->max_size = len;
4801 }
4802
4803 out:
4804 ring_buffer_unlock_commit(data->buffer, event);
4805
4806 return 0;
4807}
4808
4809static __init int rb_test(void *arg)
4810{
4811 struct rb_test_data *data = arg;
4812
4813 while (!kthread_should_stop()) {
4814 rb_write_something(data, false);
4815 data->cnt++;
4816
4817 set_current_state(TASK_INTERRUPTIBLE);
4818 /* Now sleep between a min of 100-300us and a max of 1ms */
4819 usleep_range(((data->cnt % 3) + 1) * 100, 1000);
4820 }
4821
4822 return 0;
4823}
4824
4825static __init void rb_ipi(void *ignore)
4826{
4827 struct rb_test_data *data;
4828 int cpu = smp_processor_id();
4829
4830 data = &rb_data[cpu];
4831 rb_write_something(data, true);
4832}
4833
4834static __init int rb_hammer_test(void *arg)
4835{
4836 while (!kthread_should_stop()) {
4837
4838 /* Send an IPI to all cpus to write data! */
4839 smp_call_function(rb_ipi, NULL, 1);
4840 /* No sleep, but for non preempt, let others run */
4841 schedule();
4842 }
4843
4844 return 0;
4845}
4846
4847static __init int test_ringbuffer(void)
4848{
4849 struct task_struct *rb_hammer;
4850 struct ring_buffer *buffer;
4851 int cpu;
4852 int ret = 0;
4853
4854 pr_info("Running ring buffer tests...\n");
4855
4856 buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
4857 if (WARN_ON(!buffer))
4858 return 0;
4859
4860 /* Disable buffer so that threads can't write to it yet */
4861 ring_buffer_record_off(buffer);
4862
4863 for_each_online_cpu(cpu) {
4864 rb_data[cpu].buffer = buffer;
4865 rb_data[cpu].cpu = cpu;
4866 rb_data[cpu].cnt = cpu;
4867 rb_threads[cpu] = kthread_create(rb_test, &rb_data[cpu],
4868 "rbtester/%d", cpu);
4869 if (WARN_ON(!rb_threads[cpu])) {
4870 pr_cont("FAILED\n");
4871 ret = -1;
4872 goto out_free;
4873 }
4874
4875 kthread_bind(rb_threads[cpu], cpu);
4876 wake_up_process(rb_threads[cpu]);
4877 }
4878
4879 /* Now create the rb hammer! */
4880 rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
4881 if (WARN_ON(!rb_hammer)) {
4882 pr_cont("FAILED\n");
4883 ret = -1;
4884 goto out_free;
4885 }
4886
4887 ring_buffer_record_on(buffer);
4888 /*
4889 * Show buffer is enabled before setting rb_test_started.
4890 * Yes there's a small race window where events could be
4891 * dropped and the thread wont catch it. But when a ring
4892 * buffer gets enabled, there will always be some kind of
4893 * delay before other CPUs see it. Thus, we don't care about
4894 * those dropped events. We care about events dropped after
4895 * the threads see that the buffer is active.
4896 */
4897 smp_wmb();
4898 rb_test_started = true;
4899
4900 set_current_state(TASK_INTERRUPTIBLE);
4901 /* Just run for 10 seconds */;
4902 schedule_timeout(10 * HZ);
4903
4904 kthread_stop(rb_hammer);
4905
4906 out_free:
4907 for_each_online_cpu(cpu) {
4908 if (!rb_threads[cpu])
4909 break;
4910 kthread_stop(rb_threads[cpu]);
4911 }
4912 if (ret) {
4913 ring_buffer_free(buffer);
4914 return ret;
4915 }
4916
4917 /* Report! */
4918 pr_info("finished\n");
4919 for_each_online_cpu(cpu) {
4920 struct ring_buffer_event *event;
4921 struct rb_test_data *data = &rb_data[cpu];
4922 struct rb_item *item;
4923 unsigned long total_events;
4924 unsigned long total_dropped;
4925 unsigned long total_written;
4926 unsigned long total_alloc;
4927 unsigned long total_read = 0;
4928 unsigned long total_size = 0;
4929 unsigned long total_len = 0;
4930 unsigned long total_lost = 0;
4931 unsigned long lost;
4932 int big_event_size;
4933 int small_event_size;
4934
4935 ret = -1;
4936
4937 total_events = data->events + data->events_nested;
4938 total_written = data->bytes_written + data->bytes_written_nested;
4939 total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
4940 total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
4941
4942 big_event_size = data->max_size + data->max_size_nested;
4943 small_event_size = data->min_size + data->min_size_nested;
4944
4945 pr_info("CPU %d:\n", cpu);
4946 pr_info(" events: %ld\n", total_events);
4947 pr_info(" dropped bytes: %ld\n", total_dropped);
4948 pr_info(" alloced bytes: %ld\n", total_alloc);
4949 pr_info(" written bytes: %ld\n", total_written);
4950 pr_info(" biggest event: %d\n", big_event_size);
4951 pr_info(" smallest event: %d\n", small_event_size);
4952
4953 if (RB_WARN_ON(buffer, total_dropped))
4954 break;
4955
4956 ret = 0;
4957
4958 while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
4959 total_lost += lost;
4960 item = ring_buffer_event_data(event);
4961 total_len += ring_buffer_event_length(event);
4962 total_size += item->size + sizeof(struct rb_item);
4963 if (memcmp(&item->str[0], rb_string, item->size) != 0) {
4964 pr_info("FAILED!\n");
4965 pr_info("buffer had: %.*s\n", item->size, item->str);
4966 pr_info("expected: %.*s\n", item->size, rb_string);
4967 RB_WARN_ON(buffer, 1);
4968 ret = -1;
4969 break;
4970 }
4971 total_read++;
4972 }
4973 if (ret)
4974 break;
4975
4976 ret = -1;
4977
4978 pr_info(" read events: %ld\n", total_read);
4979 pr_info(" lost events: %ld\n", total_lost);
4980 pr_info(" total events: %ld\n", total_lost + total_read);
4981 pr_info(" recorded len bytes: %ld\n", total_len);
4982 pr_info(" recorded size bytes: %ld\n", total_size);
4983 if (total_lost)
4984 pr_info(" With dropped events, record len and size may not match\n"
4985 " alloced and written from above\n");
4986 if (!total_lost) {
4987 if (RB_WARN_ON(buffer, total_len != total_alloc ||
4988 total_size != total_written))
4989 break;
4990 }
4991 if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
4992 break;
4993
4994 ret = 0;
4995 }
4996 if (!ret)
4997 pr_info("Ring buffer PASSED!\n");
4998
4999 ring_buffer_free(buffer);
5000 return 0;
5001}
5002
5003late_initcall(test_ringbuffer);
5004#endif /* CONFIG_RING_BUFFER_STARTUP_TEST */