tracing: Allocate the snapshot buffer before enabling probe
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / timer.c
CommitLineData
1da177e4
LT
1/*
2 * linux/kernel/timer.c
3 *
4a22f166 4 * Kernel internal timers
1da177e4
LT
5 *
6 * Copyright (C) 1991, 1992 Linus Torvalds
7 *
8 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
9 *
10 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
11 * "A Kernel Model for Precision Timekeeping" by Dave Mills
12 * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
13 * serialize accesses to xtime/lost_ticks).
14 * Copyright (C) 1998 Andrea Arcangeli
15 * 1999-03-10 Improved NTP compatibility by Ulrich Windl
16 * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love
17 * 2000-10-05 Implemented scalable SMP per-CPU timer handling.
18 * Copyright (C) 2000, 2001, 2002 Ingo Molnar
19 * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
20 */
21
22#include <linux/kernel_stat.h>
9984de1a 23#include <linux/export.h>
1da177e4
LT
24#include <linux/interrupt.h>
25#include <linux/percpu.h>
26#include <linux/init.h>
27#include <linux/mm.h>
28#include <linux/swap.h>
b488893a 29#include <linux/pid_namespace.h>
1da177e4
LT
30#include <linux/notifier.h>
31#include <linux/thread_info.h>
32#include <linux/time.h>
33#include <linux/jiffies.h>
34#include <linux/posix-timers.h>
35#include <linux/cpu.h>
36#include <linux/syscalls.h>
97a41e26 37#include <linux/delay.h>
79bf2bb3 38#include <linux/tick.h>
82f67cd9 39#include <linux/kallsyms.h>
e360adbe 40#include <linux/irq_work.h>
eea08f32 41#include <linux/sched.h>
cf4aebc2 42#include <linux/sched/sysctl.h>
5a0e3ad6 43#include <linux/slab.h>
1a0df594 44#include <linux/compat.h>
1da177e4
LT
45
46#include <asm/uaccess.h>
47#include <asm/unistd.h>
48#include <asm/div64.h>
49#include <asm/timex.h>
50#include <asm/io.h>
51
2b022e3d
XG
52#define CREATE_TRACE_POINTS
53#include <trace/events/timer.h>
54
ecea8d19
TG
55u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
56
57EXPORT_SYMBOL(jiffies_64);
58
1da177e4
LT
59/*
60 * per-CPU timer vector definitions:
61 */
1da177e4
LT
62#define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
63#define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
64#define TVN_SIZE (1 << TVN_BITS)
65#define TVR_SIZE (1 << TVR_BITS)
66#define TVN_MASK (TVN_SIZE - 1)
67#define TVR_MASK (TVR_SIZE - 1)
26cff4e2 68#define MAX_TVAL ((unsigned long)((1ULL << (TVR_BITS + 4*TVN_BITS)) - 1))
1da177e4 69
a6fa8e5a 70struct tvec {
1da177e4 71 struct list_head vec[TVN_SIZE];
a6fa8e5a 72};
1da177e4 73
a6fa8e5a 74struct tvec_root {
1da177e4 75 struct list_head vec[TVR_SIZE];
a6fa8e5a 76};
1da177e4 77
a6fa8e5a 78struct tvec_base {
3691c519
ON
79 spinlock_t lock;
80 struct timer_list *running_timer;
1da177e4 81 unsigned long timer_jiffies;
97fd9ed4 82 unsigned long next_timer;
99d5f3aa 83 unsigned long active_timers;
a6fa8e5a
PM
84 struct tvec_root tv1;
85 struct tvec tv2;
86 struct tvec tv3;
87 struct tvec tv4;
88 struct tvec tv5;
6e453a67 89} ____cacheline_aligned;
1da177e4 90
a6fa8e5a 91struct tvec_base boot_tvec_bases;
3691c519 92EXPORT_SYMBOL(boot_tvec_bases);
a6fa8e5a 93static DEFINE_PER_CPU(struct tvec_base *, tvec_bases) = &boot_tvec_bases;
1da177e4 94
6e453a67 95/* Functions below help us manage 'deferrable' flag */
a6fa8e5a 96static inline unsigned int tbase_get_deferrable(struct tvec_base *base)
6e453a67 97{
e52b1db3 98 return ((unsigned int)(unsigned long)base & TIMER_DEFERRABLE);
6e453a67
VP
99}
100
c5f66e99
TH
101static inline unsigned int tbase_get_irqsafe(struct tvec_base *base)
102{
103 return ((unsigned int)(unsigned long)base & TIMER_IRQSAFE);
104}
105
a6fa8e5a 106static inline struct tvec_base *tbase_get_base(struct tvec_base *base)
6e453a67 107{
e52b1db3 108 return ((struct tvec_base *)((unsigned long)base & ~TIMER_FLAG_MASK));
6e453a67
VP
109}
110
6e453a67 111static inline void
a6fa8e5a 112timer_set_base(struct timer_list *timer, struct tvec_base *new_base)
6e453a67 113{
e52b1db3
TH
114 unsigned long flags = (unsigned long)timer->base & TIMER_FLAG_MASK;
115
116 timer->base = (struct tvec_base *)((unsigned long)(new_base) | flags);
6e453a67
VP
117}
118
9c133c46
AS
119static unsigned long round_jiffies_common(unsigned long j, int cpu,
120 bool force_up)
4c36a5de
AV
121{
122 int rem;
123 unsigned long original = j;
124
125 /*
126 * We don't want all cpus firing their timers at once hitting the
127 * same lock or cachelines, so we skew each extra cpu with an extra
128 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
129 * already did this.
130 * The skew is done by adding 3*cpunr, then round, then subtract this
131 * extra offset again.
132 */
133 j += cpu * 3;
134
135 rem = j % HZ;
136
137 /*
138 * If the target jiffie is just after a whole second (which can happen
139 * due to delays of the timer irq, long irq off times etc etc) then
140 * we should round down to the whole second, not up. Use 1/4th second
141 * as cutoff for this rounding as an extreme upper bound for this.
9c133c46 142 * But never round down if @force_up is set.
4c36a5de 143 */
9c133c46 144 if (rem < HZ/4 && !force_up) /* round down */
4c36a5de
AV
145 j = j - rem;
146 else /* round up */
147 j = j - rem + HZ;
148
149 /* now that we have rounded, subtract the extra skew again */
150 j -= cpu * 3;
151
d2f59334
BVA
152 /*
153 * Make sure j is still in the future. Otherwise return the
154 * unmodified value.
155 */
156 return time_is_after_jiffies(j) ? j : original;
4c36a5de 157}
9c133c46
AS
158
159/**
160 * __round_jiffies - function to round jiffies to a full second
161 * @j: the time in (absolute) jiffies that should be rounded
162 * @cpu: the processor number on which the timeout will happen
163 *
164 * __round_jiffies() rounds an absolute time in the future (in jiffies)
165 * up or down to (approximately) full seconds. This is useful for timers
166 * for which the exact time they fire does not matter too much, as long as
167 * they fire approximately every X seconds.
168 *
169 * By rounding these timers to whole seconds, all such timers will fire
170 * at the same time, rather than at various times spread out. The goal
171 * of this is to have the CPU wake up less, which saves power.
172 *
173 * The exact rounding is skewed for each processor to avoid all
174 * processors firing at the exact same time, which could lead
175 * to lock contention or spurious cache line bouncing.
176 *
177 * The return value is the rounded version of the @j parameter.
178 */
179unsigned long __round_jiffies(unsigned long j, int cpu)
180{
181 return round_jiffies_common(j, cpu, false);
182}
4c36a5de
AV
183EXPORT_SYMBOL_GPL(__round_jiffies);
184
185/**
186 * __round_jiffies_relative - function to round jiffies to a full second
187 * @j: the time in (relative) jiffies that should be rounded
188 * @cpu: the processor number on which the timeout will happen
189 *
72fd4a35 190 * __round_jiffies_relative() rounds a time delta in the future (in jiffies)
4c36a5de
AV
191 * up or down to (approximately) full seconds. This is useful for timers
192 * for which the exact time they fire does not matter too much, as long as
193 * they fire approximately every X seconds.
194 *
195 * By rounding these timers to whole seconds, all such timers will fire
196 * at the same time, rather than at various times spread out. The goal
197 * of this is to have the CPU wake up less, which saves power.
198 *
199 * The exact rounding is skewed for each processor to avoid all
200 * processors firing at the exact same time, which could lead
201 * to lock contention or spurious cache line bouncing.
202 *
72fd4a35 203 * The return value is the rounded version of the @j parameter.
4c36a5de
AV
204 */
205unsigned long __round_jiffies_relative(unsigned long j, int cpu)
206{
9c133c46
AS
207 unsigned long j0 = jiffies;
208
209 /* Use j0 because jiffies might change while we run */
210 return round_jiffies_common(j + j0, cpu, false) - j0;
4c36a5de
AV
211}
212EXPORT_SYMBOL_GPL(__round_jiffies_relative);
213
214/**
215 * round_jiffies - function to round jiffies to a full second
216 * @j: the time in (absolute) jiffies that should be rounded
217 *
72fd4a35 218 * round_jiffies() rounds an absolute time in the future (in jiffies)
4c36a5de
AV
219 * up or down to (approximately) full seconds. This is useful for timers
220 * for which the exact time they fire does not matter too much, as long as
221 * they fire approximately every X seconds.
222 *
223 * By rounding these timers to whole seconds, all such timers will fire
224 * at the same time, rather than at various times spread out. The goal
225 * of this is to have the CPU wake up less, which saves power.
226 *
72fd4a35 227 * The return value is the rounded version of the @j parameter.
4c36a5de
AV
228 */
229unsigned long round_jiffies(unsigned long j)
230{
9c133c46 231 return round_jiffies_common(j, raw_smp_processor_id(), false);
4c36a5de
AV
232}
233EXPORT_SYMBOL_GPL(round_jiffies);
234
235/**
236 * round_jiffies_relative - function to round jiffies to a full second
237 * @j: the time in (relative) jiffies that should be rounded
238 *
72fd4a35 239 * round_jiffies_relative() rounds a time delta in the future (in jiffies)
4c36a5de
AV
240 * up or down to (approximately) full seconds. This is useful for timers
241 * for which the exact time they fire does not matter too much, as long as
242 * they fire approximately every X seconds.
243 *
244 * By rounding these timers to whole seconds, all such timers will fire
245 * at the same time, rather than at various times spread out. The goal
246 * of this is to have the CPU wake up less, which saves power.
247 *
72fd4a35 248 * The return value is the rounded version of the @j parameter.
4c36a5de
AV
249 */
250unsigned long round_jiffies_relative(unsigned long j)
251{
252 return __round_jiffies_relative(j, raw_smp_processor_id());
253}
254EXPORT_SYMBOL_GPL(round_jiffies_relative);
255
9c133c46
AS
256/**
257 * __round_jiffies_up - function to round jiffies up to a full second
258 * @j: the time in (absolute) jiffies that should be rounded
259 * @cpu: the processor number on which the timeout will happen
260 *
261 * This is the same as __round_jiffies() except that it will never
262 * round down. This is useful for timeouts for which the exact time
263 * of firing does not matter too much, as long as they don't fire too
264 * early.
265 */
266unsigned long __round_jiffies_up(unsigned long j, int cpu)
267{
268 return round_jiffies_common(j, cpu, true);
269}
270EXPORT_SYMBOL_GPL(__round_jiffies_up);
271
272/**
273 * __round_jiffies_up_relative - function to round jiffies up to a full second
274 * @j: the time in (relative) jiffies that should be rounded
275 * @cpu: the processor number on which the timeout will happen
276 *
277 * This is the same as __round_jiffies_relative() except that it will never
278 * round down. This is useful for timeouts for which the exact time
279 * of firing does not matter too much, as long as they don't fire too
280 * early.
281 */
282unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
283{
284 unsigned long j0 = jiffies;
285
286 /* Use j0 because jiffies might change while we run */
287 return round_jiffies_common(j + j0, cpu, true) - j0;
288}
289EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);
290
291/**
292 * round_jiffies_up - function to round jiffies up to a full second
293 * @j: the time in (absolute) jiffies that should be rounded
294 *
295 * This is the same as round_jiffies() except that it will never
296 * round down. This is useful for timeouts for which the exact time
297 * of firing does not matter too much, as long as they don't fire too
298 * early.
299 */
300unsigned long round_jiffies_up(unsigned long j)
301{
302 return round_jiffies_common(j, raw_smp_processor_id(), true);
303}
304EXPORT_SYMBOL_GPL(round_jiffies_up);
305
306/**
307 * round_jiffies_up_relative - function to round jiffies up to a full second
308 * @j: the time in (relative) jiffies that should be rounded
309 *
310 * This is the same as round_jiffies_relative() except that it will never
311 * round down. This is useful for timeouts for which the exact time
312 * of firing does not matter too much, as long as they don't fire too
313 * early.
314 */
315unsigned long round_jiffies_up_relative(unsigned long j)
316{
317 return __round_jiffies_up_relative(j, raw_smp_processor_id());
318}
319EXPORT_SYMBOL_GPL(round_jiffies_up_relative);
320
3bbb9ec9
AV
321/**
322 * set_timer_slack - set the allowed slack for a timer
0caa6210 323 * @timer: the timer to be modified
3bbb9ec9
AV
324 * @slack_hz: the amount of time (in jiffies) allowed for rounding
325 *
326 * Set the amount of time, in jiffies, that a certain timer has
327 * in terms of slack. By setting this value, the timer subsystem
328 * will schedule the actual timer somewhere between
329 * the time mod_timer() asks for, and that time plus the slack.
330 *
331 * By setting the slack to -1, a percentage of the delay is used
332 * instead.
333 */
334void set_timer_slack(struct timer_list *timer, int slack_hz)
335{
336 timer->slack = slack_hz;
337}
338EXPORT_SYMBOL_GPL(set_timer_slack);
339
facbb4a7
TG
340static void
341__internal_add_timer(struct tvec_base *base, struct timer_list *timer)
1da177e4
LT
342{
343 unsigned long expires = timer->expires;
344 unsigned long idx = expires - base->timer_jiffies;
345 struct list_head *vec;
346
347 if (idx < TVR_SIZE) {
348 int i = expires & TVR_MASK;
349 vec = base->tv1.vec + i;
350 } else if (idx < 1 << (TVR_BITS + TVN_BITS)) {
351 int i = (expires >> TVR_BITS) & TVN_MASK;
352 vec = base->tv2.vec + i;
353 } else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) {
354 int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK;
355 vec = base->tv3.vec + i;
356 } else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) {
357 int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK;
358 vec = base->tv4.vec + i;
359 } else if ((signed long) idx < 0) {
360 /*
361 * Can happen if you add a timer with expires == jiffies,
362 * or you set a timer to go off in the past
363 */
364 vec = base->tv1.vec + (base->timer_jiffies & TVR_MASK);
365 } else {
366 int i;
26cff4e2
HC
367 /* If the timeout is larger than MAX_TVAL (on 64-bit
368 * architectures or with CONFIG_BASE_SMALL=1) then we
369 * use the maximum timeout.
1da177e4 370 */
26cff4e2
HC
371 if (idx > MAX_TVAL) {
372 idx = MAX_TVAL;
1da177e4
LT
373 expires = idx + base->timer_jiffies;
374 }
375 i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK;
376 vec = base->tv5.vec + i;
377 }
378 /*
379 * Timers are FIFO:
380 */
381 list_add_tail(&timer->entry, vec);
382}
383
facbb4a7
TG
384static void internal_add_timer(struct tvec_base *base, struct timer_list *timer)
385{
386 __internal_add_timer(base, timer);
387 /*
99d5f3aa 388 * Update base->active_timers and base->next_timer
facbb4a7 389 */
99d5f3aa
TG
390 if (!tbase_get_deferrable(timer->base)) {
391 if (time_before(timer->expires, base->next_timer))
392 base->next_timer = timer->expires;
393 base->active_timers++;
394 }
facbb4a7
TG
395}
396
82f67cd9
IM
397#ifdef CONFIG_TIMER_STATS
398void __timer_stats_timer_set_start_info(struct timer_list *timer, void *addr)
399{
400 if (timer->start_site)
401 return;
402
403 timer->start_site = addr;
404 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
405 timer->start_pid = current->pid;
406}
c5c061b8
VP
407
408static void timer_stats_account_timer(struct timer_list *timer)
409{
410 unsigned int flag = 0;
411
507e1231
HC
412 if (likely(!timer->start_site))
413 return;
c5c061b8
VP
414 if (unlikely(tbase_get_deferrable(timer->base)))
415 flag |= TIMER_STATS_FLAG_DEFERRABLE;
416
417 timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
418 timer->function, timer->start_comm, flag);
419}
420
421#else
422static void timer_stats_account_timer(struct timer_list *timer) {}
82f67cd9
IM
423#endif
424
c6f3a97f
TG
425#ifdef CONFIG_DEBUG_OBJECTS_TIMERS
426
427static struct debug_obj_descr timer_debug_descr;
428
99777288
SG
429static void *timer_debug_hint(void *addr)
430{
431 return ((struct timer_list *) addr)->function;
432}
433
c6f3a97f
TG
434/*
435 * fixup_init is called when:
436 * - an active object is initialized
55c888d6 437 */
c6f3a97f
TG
438static int timer_fixup_init(void *addr, enum debug_obj_state state)
439{
440 struct timer_list *timer = addr;
441
442 switch (state) {
443 case ODEBUG_STATE_ACTIVE:
444 del_timer_sync(timer);
445 debug_object_init(timer, &timer_debug_descr);
446 return 1;
447 default:
448 return 0;
449 }
450}
451
fb16b8cf
SB
452/* Stub timer callback for improperly used timers. */
453static void stub_timer(unsigned long data)
454{
455 WARN_ON(1);
456}
457
c6f3a97f
TG
458/*
459 * fixup_activate is called when:
460 * - an active object is activated
461 * - an unknown object is activated (might be a statically initialized object)
462 */
463static int timer_fixup_activate(void *addr, enum debug_obj_state state)
464{
465 struct timer_list *timer = addr;
466
467 switch (state) {
468
469 case ODEBUG_STATE_NOTAVAILABLE:
470 /*
471 * This is not really a fixup. The timer was
472 * statically initialized. We just make sure that it
473 * is tracked in the object tracker.
474 */
475 if (timer->entry.next == NULL &&
476 timer->entry.prev == TIMER_ENTRY_STATIC) {
477 debug_object_init(timer, &timer_debug_descr);
478 debug_object_activate(timer, &timer_debug_descr);
479 return 0;
480 } else {
fb16b8cf
SB
481 setup_timer(timer, stub_timer, 0);
482 return 1;
c6f3a97f
TG
483 }
484 return 0;
485
486 case ODEBUG_STATE_ACTIVE:
487 WARN_ON(1);
488
489 default:
490 return 0;
491 }
492}
493
494/*
495 * fixup_free is called when:
496 * - an active object is freed
497 */
498static int timer_fixup_free(void *addr, enum debug_obj_state state)
499{
500 struct timer_list *timer = addr;
501
502 switch (state) {
503 case ODEBUG_STATE_ACTIVE:
504 del_timer_sync(timer);
505 debug_object_free(timer, &timer_debug_descr);
506 return 1;
507 default:
508 return 0;
509 }
510}
511
dc4218bd
CC
512/*
513 * fixup_assert_init is called when:
514 * - an untracked/uninit-ed object is found
515 */
516static int timer_fixup_assert_init(void *addr, enum debug_obj_state state)
517{
518 struct timer_list *timer = addr;
519
520 switch (state) {
521 case ODEBUG_STATE_NOTAVAILABLE:
522 if (timer->entry.prev == TIMER_ENTRY_STATIC) {
523 /*
524 * This is not really a fixup. The timer was
525 * statically initialized. We just make sure that it
526 * is tracked in the object tracker.
527 */
528 debug_object_init(timer, &timer_debug_descr);
529 return 0;
530 } else {
531 setup_timer(timer, stub_timer, 0);
532 return 1;
533 }
534 default:
535 return 0;
536 }
537}
538
c6f3a97f 539static struct debug_obj_descr timer_debug_descr = {
dc4218bd
CC
540 .name = "timer_list",
541 .debug_hint = timer_debug_hint,
542 .fixup_init = timer_fixup_init,
543 .fixup_activate = timer_fixup_activate,
544 .fixup_free = timer_fixup_free,
545 .fixup_assert_init = timer_fixup_assert_init,
c6f3a97f
TG
546};
547
548static inline void debug_timer_init(struct timer_list *timer)
549{
550 debug_object_init(timer, &timer_debug_descr);
551}
552
553static inline void debug_timer_activate(struct timer_list *timer)
554{
555 debug_object_activate(timer, &timer_debug_descr);
556}
557
558static inline void debug_timer_deactivate(struct timer_list *timer)
559{
560 debug_object_deactivate(timer, &timer_debug_descr);
561}
562
563static inline void debug_timer_free(struct timer_list *timer)
564{
565 debug_object_free(timer, &timer_debug_descr);
566}
567
dc4218bd
CC
568static inline void debug_timer_assert_init(struct timer_list *timer)
569{
570 debug_object_assert_init(timer, &timer_debug_descr);
571}
572
fc683995
TH
573static void do_init_timer(struct timer_list *timer, unsigned int flags,
574 const char *name, struct lock_class_key *key);
c6f3a97f 575
fc683995
TH
576void init_timer_on_stack_key(struct timer_list *timer, unsigned int flags,
577 const char *name, struct lock_class_key *key)
c6f3a97f
TG
578{
579 debug_object_init_on_stack(timer, &timer_debug_descr);
fc683995 580 do_init_timer(timer, flags, name, key);
c6f3a97f 581}
6f2b9b9a 582EXPORT_SYMBOL_GPL(init_timer_on_stack_key);
c6f3a97f
TG
583
584void destroy_timer_on_stack(struct timer_list *timer)
585{
586 debug_object_free(timer, &timer_debug_descr);
587}
588EXPORT_SYMBOL_GPL(destroy_timer_on_stack);
589
590#else
591static inline void debug_timer_init(struct timer_list *timer) { }
592static inline void debug_timer_activate(struct timer_list *timer) { }
593static inline void debug_timer_deactivate(struct timer_list *timer) { }
dc4218bd 594static inline void debug_timer_assert_init(struct timer_list *timer) { }
c6f3a97f
TG
595#endif
596
2b022e3d
XG
597static inline void debug_init(struct timer_list *timer)
598{
599 debug_timer_init(timer);
600 trace_timer_init(timer);
601}
602
603static inline void
604debug_activate(struct timer_list *timer, unsigned long expires)
605{
606 debug_timer_activate(timer);
607 trace_timer_start(timer, expires);
608}
609
610static inline void debug_deactivate(struct timer_list *timer)
611{
612 debug_timer_deactivate(timer);
613 trace_timer_cancel(timer);
614}
615
dc4218bd
CC
616static inline void debug_assert_init(struct timer_list *timer)
617{
618 debug_timer_assert_init(timer);
619}
620
fc683995
TH
621static void do_init_timer(struct timer_list *timer, unsigned int flags,
622 const char *name, struct lock_class_key *key)
55c888d6 623{
fc683995
TH
624 struct tvec_base *base = __raw_get_cpu_var(tvec_bases);
625
55c888d6 626 timer->entry.next = NULL;
fc683995 627 timer->base = (void *)((unsigned long)base | flags);
3bbb9ec9 628 timer->slack = -1;
82f67cd9
IM
629#ifdef CONFIG_TIMER_STATS
630 timer->start_site = NULL;
631 timer->start_pid = -1;
632 memset(timer->start_comm, 0, TASK_COMM_LEN);
633#endif
6f2b9b9a 634 lockdep_init_map(&timer->lockdep_map, name, key, 0);
55c888d6 635}
c6f3a97f
TG
636
637/**
633fe795 638 * init_timer_key - initialize a timer
c6f3a97f 639 * @timer: the timer to be initialized
fc683995 640 * @flags: timer flags
633fe795
RD
641 * @name: name of the timer
642 * @key: lockdep class key of the fake lock used for tracking timer
643 * sync lock dependencies
c6f3a97f 644 *
633fe795 645 * init_timer_key() must be done to a timer prior calling *any* of the
c6f3a97f
TG
646 * other timer functions.
647 */
fc683995
TH
648void init_timer_key(struct timer_list *timer, unsigned int flags,
649 const char *name, struct lock_class_key *key)
c6f3a97f 650{
2b022e3d 651 debug_init(timer);
fc683995 652 do_init_timer(timer, flags, name, key);
c6f3a97f 653}
6f2b9b9a 654EXPORT_SYMBOL(init_timer_key);
55c888d6 655
ec44bc7a 656static inline void detach_timer(struct timer_list *timer, bool clear_pending)
55c888d6
ON
657{
658 struct list_head *entry = &timer->entry;
659
2b022e3d 660 debug_deactivate(timer);
c6f3a97f 661
55c888d6
ON
662 __list_del(entry->prev, entry->next);
663 if (clear_pending)
664 entry->next = NULL;
665 entry->prev = LIST_POISON2;
666}
667
99d5f3aa
TG
668static inline void
669detach_expired_timer(struct timer_list *timer, struct tvec_base *base)
670{
671 detach_timer(timer, true);
672 if (!tbase_get_deferrable(timer->base))
e52b1db3 673 base->active_timers--;
99d5f3aa
TG
674}
675
ec44bc7a
TG
676static int detach_if_pending(struct timer_list *timer, struct tvec_base *base,
677 bool clear_pending)
678{
679 if (!timer_pending(timer))
680 return 0;
681
682 detach_timer(timer, clear_pending);
99d5f3aa 683 if (!tbase_get_deferrable(timer->base)) {
e52b1db3 684 base->active_timers--;
99d5f3aa
TG
685 if (timer->expires == base->next_timer)
686 base->next_timer = base->timer_jiffies;
687 }
ec44bc7a
TG
688 return 1;
689}
690
55c888d6 691/*
3691c519 692 * We are using hashed locking: holding per_cpu(tvec_bases).lock
55c888d6
ON
693 * means that all timers which are tied to this base via timer->base are
694 * locked, and the base itself is locked too.
695 *
696 * So __run_timers/migrate_timers can safely modify all timers which could
697 * be found on ->tvX lists.
698 *
699 * When the timer's base is locked, and the timer removed from list, it is
700 * possible to set timer->base = NULL and drop the lock: the timer remains
701 * locked.
702 */
a6fa8e5a 703static struct tvec_base *lock_timer_base(struct timer_list *timer,
55c888d6 704 unsigned long *flags)
89e7e374 705 __acquires(timer->base->lock)
55c888d6 706{
a6fa8e5a 707 struct tvec_base *base;
55c888d6
ON
708
709 for (;;) {
a6fa8e5a 710 struct tvec_base *prelock_base = timer->base;
6e453a67 711 base = tbase_get_base(prelock_base);
55c888d6
ON
712 if (likely(base != NULL)) {
713 spin_lock_irqsave(&base->lock, *flags);
6e453a67 714 if (likely(prelock_base == timer->base))
55c888d6
ON
715 return base;
716 /* The timer has migrated to another CPU */
717 spin_unlock_irqrestore(&base->lock, *flags);
718 }
719 cpu_relax();
720 }
721}
722
74019224 723static inline int
597d0275
AB
724__mod_timer(struct timer_list *timer, unsigned long expires,
725 bool pending_only, int pinned)
1da177e4 726{
a6fa8e5a 727 struct tvec_base *base, *new_base;
1da177e4 728 unsigned long flags;
eea08f32 729 int ret = 0 , cpu;
1da177e4 730
82f67cd9 731 timer_stats_timer_set_start_info(timer);
1da177e4 732 BUG_ON(!timer->function);
1da177e4 733
55c888d6
ON
734 base = lock_timer_base(timer, &flags);
735
ec44bc7a
TG
736 ret = detach_if_pending(timer, base, false);
737 if (!ret && pending_only)
738 goto out_unlock;
55c888d6 739
2b022e3d 740 debug_activate(timer, expires);
c6f3a97f 741
eea08f32
AB
742 cpu = smp_processor_id();
743
3451d024 744#if defined(CONFIG_NO_HZ_COMMON) && defined(CONFIG_SMP)
83cd4fe2
VP
745 if (!pinned && get_sysctl_timer_migration() && idle_cpu(cpu))
746 cpu = get_nohz_timer_target();
eea08f32
AB
747#endif
748 new_base = per_cpu(tvec_bases, cpu);
749
3691c519 750 if (base != new_base) {
1da177e4 751 /*
55c888d6
ON
752 * We are trying to schedule the timer on the local CPU.
753 * However we can't change timer's base while it is running,
754 * otherwise del_timer_sync() can't detect that the timer's
755 * handler yet has not finished. This also guarantees that
756 * the timer is serialized wrt itself.
1da177e4 757 */
a2c348fe 758 if (likely(base->running_timer != timer)) {
55c888d6 759 /* See the comment in lock_timer_base() */
6e453a67 760 timer_set_base(timer, NULL);
55c888d6 761 spin_unlock(&base->lock);
a2c348fe
ON
762 base = new_base;
763 spin_lock(&base->lock);
6e453a67 764 timer_set_base(timer, base);
1da177e4
LT
765 }
766 }
767
1da177e4 768 timer->expires = expires;
a2c348fe 769 internal_add_timer(base, timer);
74019224
IM
770
771out_unlock:
a2c348fe 772 spin_unlock_irqrestore(&base->lock, flags);
1da177e4
LT
773
774 return ret;
775}
776
2aae4a10 777/**
74019224
IM
778 * mod_timer_pending - modify a pending timer's timeout
779 * @timer: the pending timer to be modified
780 * @expires: new timeout in jiffies
1da177e4 781 *
74019224
IM
782 * mod_timer_pending() is the same for pending timers as mod_timer(),
783 * but will not re-activate and modify already deleted timers.
784 *
785 * It is useful for unserialized use of timers.
1da177e4 786 */
74019224 787int mod_timer_pending(struct timer_list *timer, unsigned long expires)
1da177e4 788{
597d0275 789 return __mod_timer(timer, expires, true, TIMER_NOT_PINNED);
1da177e4 790}
74019224 791EXPORT_SYMBOL(mod_timer_pending);
1da177e4 792
3bbb9ec9
AV
793/*
794 * Decide where to put the timer while taking the slack into account
795 *
796 * Algorithm:
797 * 1) calculate the maximum (absolute) time
798 * 2) calculate the highest bit where the expires and new max are different
799 * 3) use this bit to make a mask
800 * 4) use the bitmask to round down the maximum time, so that all last
801 * bits are zeros
802 */
803static inline
804unsigned long apply_slack(struct timer_list *timer, unsigned long expires)
805{
806 unsigned long expires_limit, mask;
807 int bit;
808
8e63d779 809 if (timer->slack >= 0) {
f00e047e 810 expires_limit = expires + timer->slack;
8e63d779 811 } else {
1c3cc116
SAS
812 long delta = expires - jiffies;
813
814 if (delta < 256)
815 return expires;
3bbb9ec9 816
1c3cc116 817 expires_limit = expires + delta / 256;
8e63d779 818 }
3bbb9ec9 819 mask = expires ^ expires_limit;
3bbb9ec9
AV
820 if (mask == 0)
821 return expires;
822
823 bit = find_last_bit(&mask, BITS_PER_LONG);
824
44d4037e 825 mask = (1UL << bit) - 1;
3bbb9ec9
AV
826
827 expires_limit = expires_limit & ~(mask);
828
829 return expires_limit;
830}
831
2aae4a10 832/**
1da177e4
LT
833 * mod_timer - modify a timer's timeout
834 * @timer: the timer to be modified
2aae4a10 835 * @expires: new timeout in jiffies
1da177e4 836 *
72fd4a35 837 * mod_timer() is a more efficient way to update the expire field of an
1da177e4
LT
838 * active timer (if the timer is inactive it will be activated)
839 *
840 * mod_timer(timer, expires) is equivalent to:
841 *
842 * del_timer(timer); timer->expires = expires; add_timer(timer);
843 *
844 * Note that if there are multiple unserialized concurrent users of the
845 * same timer, then mod_timer() is the only safe way to modify the timeout,
846 * since add_timer() cannot modify an already running timer.
847 *
848 * The function returns whether it has modified a pending timer or not.
849 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
850 * active timer returns 1.)
851 */
852int mod_timer(struct timer_list *timer, unsigned long expires)
853{
1c3cc116
SAS
854 expires = apply_slack(timer, expires);
855
1da177e4
LT
856 /*
857 * This is a common optimization triggered by the
858 * networking code - if the timer is re-modified
859 * to be the same thing then just return:
860 */
4841158b 861 if (timer_pending(timer) && timer->expires == expires)
1da177e4
LT
862 return 1;
863
597d0275 864 return __mod_timer(timer, expires, false, TIMER_NOT_PINNED);
1da177e4 865}
1da177e4
LT
866EXPORT_SYMBOL(mod_timer);
867
597d0275
AB
868/**
869 * mod_timer_pinned - modify a timer's timeout
870 * @timer: the timer to be modified
871 * @expires: new timeout in jiffies
872 *
873 * mod_timer_pinned() is a way to update the expire field of an
874 * active timer (if the timer is inactive it will be activated)
048a0e8f
PM
875 * and to ensure that the timer is scheduled on the current CPU.
876 *
877 * Note that this does not prevent the timer from being migrated
878 * when the current CPU goes offline. If this is a problem for
879 * you, use CPU-hotplug notifiers to handle it correctly, for
880 * example, cancelling the timer when the corresponding CPU goes
881 * offline.
597d0275
AB
882 *
883 * mod_timer_pinned(timer, expires) is equivalent to:
884 *
885 * del_timer(timer); timer->expires = expires; add_timer(timer);
886 */
887int mod_timer_pinned(struct timer_list *timer, unsigned long expires)
888{
889 if (timer->expires == expires && timer_pending(timer))
890 return 1;
891
892 return __mod_timer(timer, expires, false, TIMER_PINNED);
893}
894EXPORT_SYMBOL(mod_timer_pinned);
895
74019224
IM
896/**
897 * add_timer - start a timer
898 * @timer: the timer to be added
899 *
900 * The kernel will do a ->function(->data) callback from the
901 * timer interrupt at the ->expires point in the future. The
902 * current time is 'jiffies'.
903 *
904 * The timer's ->expires, ->function (and if the handler uses it, ->data)
905 * fields must be set prior calling this function.
906 *
907 * Timers with an ->expires field in the past will be executed in the next
908 * timer tick.
909 */
910void add_timer(struct timer_list *timer)
911{
912 BUG_ON(timer_pending(timer));
913 mod_timer(timer, timer->expires);
914}
915EXPORT_SYMBOL(add_timer);
916
917/**
918 * add_timer_on - start a timer on a particular CPU
919 * @timer: the timer to be added
920 * @cpu: the CPU to start it on
921 *
922 * This is not very scalable on SMP. Double adds are not possible.
923 */
924void add_timer_on(struct timer_list *timer, int cpu)
925{
de3e6236
TH
926 struct tvec_base *new_base = per_cpu(tvec_bases, cpu);
927 struct tvec_base *base;
74019224
IM
928 unsigned long flags;
929
930 timer_stats_timer_set_start_info(timer);
931 BUG_ON(timer_pending(timer) || !timer->function);
de3e6236
TH
932
933 /*
934 * If @timer was on a different CPU, it should be migrated with the
935 * old base locked to prevent other operations proceeding with the
936 * wrong base locked. See lock_timer_base().
937 */
938 base = lock_timer_base(timer, &flags);
939 if (base != new_base) {
940 timer_set_base(timer, NULL);
941 spin_unlock(&base->lock);
942 base = new_base;
943 spin_lock(&base->lock);
944 timer_set_base(timer, base);
945 }
2b022e3d 946 debug_activate(timer, timer->expires);
74019224
IM
947 internal_add_timer(base, timer);
948 /*
1c20091e
FW
949 * Check whether the other CPU is in dynticks mode and needs
950 * to be triggered to reevaluate the timer wheel.
951 * We are protected against the other CPU fiddling
74019224 952 * with the timer by holding the timer base lock. This also
1c20091e
FW
953 * makes sure that a CPU on the way to stop its tick can not
954 * evaluate the timer wheel.
74019224 955 */
1c20091e 956 wake_up_nohz_cpu(cpu);
74019224
IM
957 spin_unlock_irqrestore(&base->lock, flags);
958}
a9862e05 959EXPORT_SYMBOL_GPL(add_timer_on);
74019224 960
2aae4a10 961/**
1da177e4
LT
962 * del_timer - deactive a timer.
963 * @timer: the timer to be deactivated
964 *
965 * del_timer() deactivates a timer - this works on both active and inactive
966 * timers.
967 *
968 * The function returns whether it has deactivated a pending timer or not.
969 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
970 * active timer returns 1.)
971 */
972int del_timer(struct timer_list *timer)
973{
a6fa8e5a 974 struct tvec_base *base;
1da177e4 975 unsigned long flags;
55c888d6 976 int ret = 0;
1da177e4 977
dc4218bd
CC
978 debug_assert_init(timer);
979
82f67cd9 980 timer_stats_timer_clear_start_info(timer);
55c888d6
ON
981 if (timer_pending(timer)) {
982 base = lock_timer_base(timer, &flags);
ec44bc7a 983 ret = detach_if_pending(timer, base, true);
1da177e4 984 spin_unlock_irqrestore(&base->lock, flags);
1da177e4 985 }
1da177e4 986
55c888d6 987 return ret;
1da177e4 988}
1da177e4
LT
989EXPORT_SYMBOL(del_timer);
990
2aae4a10
REB
991/**
992 * try_to_del_timer_sync - Try to deactivate a timer
993 * @timer: timer do del
994 *
fd450b73
ON
995 * This function tries to deactivate a timer. Upon successful (ret >= 0)
996 * exit the timer is not queued and the handler is not running on any CPU.
fd450b73
ON
997 */
998int try_to_del_timer_sync(struct timer_list *timer)
999{
a6fa8e5a 1000 struct tvec_base *base;
fd450b73
ON
1001 unsigned long flags;
1002 int ret = -1;
1003
dc4218bd
CC
1004 debug_assert_init(timer);
1005
fd450b73
ON
1006 base = lock_timer_base(timer, &flags);
1007
ec44bc7a
TG
1008 if (base->running_timer != timer) {
1009 timer_stats_timer_clear_start_info(timer);
1010 ret = detach_if_pending(timer, base, true);
fd450b73 1011 }
fd450b73
ON
1012 spin_unlock_irqrestore(&base->lock, flags);
1013
1014 return ret;
1015}
e19dff1f
DH
1016EXPORT_SYMBOL(try_to_del_timer_sync);
1017
6f1bc451 1018#ifdef CONFIG_SMP
2aae4a10 1019/**
1da177e4
LT
1020 * del_timer_sync - deactivate a timer and wait for the handler to finish.
1021 * @timer: the timer to be deactivated
1022 *
1023 * This function only differs from del_timer() on SMP: besides deactivating
1024 * the timer it also makes sure the handler has finished executing on other
1025 * CPUs.
1026 *
72fd4a35 1027 * Synchronization rules: Callers must prevent restarting of the timer,
1da177e4 1028 * otherwise this function is meaningless. It must not be called from
c5f66e99
TH
1029 * interrupt contexts unless the timer is an irqsafe one. The caller must
1030 * not hold locks which would prevent completion of the timer's
1031 * handler. The timer's handler must not call add_timer_on(). Upon exit the
1032 * timer is not queued and the handler is not running on any CPU.
1da177e4 1033 *
c5f66e99
TH
1034 * Note: For !irqsafe timers, you must not hold locks that are held in
1035 * interrupt context while calling this function. Even if the lock has
1036 * nothing to do with the timer in question. Here's why:
48228f7b
SR
1037 *
1038 * CPU0 CPU1
1039 * ---- ----
1040 * <SOFTIRQ>
1041 * call_timer_fn();
1042 * base->running_timer = mytimer;
1043 * spin_lock_irq(somelock);
1044 * <IRQ>
1045 * spin_lock(somelock);
1046 * del_timer_sync(mytimer);
1047 * while (base->running_timer == mytimer);
1048 *
1049 * Now del_timer_sync() will never return and never release somelock.
1050 * The interrupt on the other CPU is waiting to grab somelock but
1051 * it has interrupted the softirq that CPU0 is waiting to finish.
1052 *
1da177e4 1053 * The function returns whether it has deactivated a pending timer or not.
1da177e4
LT
1054 */
1055int del_timer_sync(struct timer_list *timer)
1056{
6f2b9b9a 1057#ifdef CONFIG_LOCKDEP
f266a511
PZ
1058 unsigned long flags;
1059
48228f7b
SR
1060 /*
1061 * If lockdep gives a backtrace here, please reference
1062 * the synchronization rules above.
1063 */
7ff20792 1064 local_irq_save(flags);
6f2b9b9a
JB
1065 lock_map_acquire(&timer->lockdep_map);
1066 lock_map_release(&timer->lockdep_map);
7ff20792 1067 local_irq_restore(flags);
6f2b9b9a 1068#endif
466bd303
YZ
1069 /*
1070 * don't use it in hardirq context, because it
1071 * could lead to deadlock.
1072 */
c5f66e99 1073 WARN_ON(in_irq() && !tbase_get_irqsafe(timer->base));
fd450b73
ON
1074 for (;;) {
1075 int ret = try_to_del_timer_sync(timer);
1076 if (ret >= 0)
1077 return ret;
a0009652 1078 cpu_relax();
fd450b73 1079 }
1da177e4 1080}
55c888d6 1081EXPORT_SYMBOL(del_timer_sync);
1da177e4
LT
1082#endif
1083
a6fa8e5a 1084static int cascade(struct tvec_base *base, struct tvec *tv, int index)
1da177e4
LT
1085{
1086 /* cascade all the timers from tv up one level */
3439dd86
P
1087 struct timer_list *timer, *tmp;
1088 struct list_head tv_list;
1089
1090 list_replace_init(tv->vec + index, &tv_list);
1da177e4 1091
1da177e4 1092 /*
3439dd86
P
1093 * We are removing _all_ timers from the list, so we
1094 * don't have to detach them individually.
1da177e4 1095 */
3439dd86 1096 list_for_each_entry_safe(timer, tmp, &tv_list, entry) {
6e453a67 1097 BUG_ON(tbase_get_base(timer->base) != base);
facbb4a7
TG
1098 /* No accounting, while moving them */
1099 __internal_add_timer(base, timer);
1da177e4 1100 }
1da177e4
LT
1101
1102 return index;
1103}
1104
576da126
TG
1105static void call_timer_fn(struct timer_list *timer, void (*fn)(unsigned long),
1106 unsigned long data)
1107{
1108 int preempt_count = preempt_count();
1109
1110#ifdef CONFIG_LOCKDEP
1111 /*
1112 * It is permissible to free the timer from inside the
1113 * function that is called from it, this we need to take into
1114 * account for lockdep too. To avoid bogus "held lock freed"
1115 * warnings as well as problems when looking into
1116 * timer->lockdep_map, make a copy and use that here.
1117 */
4d82a1de
PZ
1118 struct lockdep_map lockdep_map;
1119
1120 lockdep_copy_map(&lockdep_map, &timer->lockdep_map);
576da126
TG
1121#endif
1122 /*
1123 * Couple the lock chain with the lock chain at
1124 * del_timer_sync() by acquiring the lock_map around the fn()
1125 * call here and in del_timer_sync().
1126 */
1127 lock_map_acquire(&lockdep_map);
1128
1129 trace_timer_expire_entry(timer);
1130 fn(data);
1131 trace_timer_expire_exit(timer);
1132
1133 lock_map_release(&lockdep_map);
1134
1135 if (preempt_count != preempt_count()) {
802702e0
TG
1136 WARN_ONCE(1, "timer: %pF preempt leak: %08x -> %08x\n",
1137 fn, preempt_count, preempt_count());
1138 /*
1139 * Restore the preempt count. That gives us a decent
1140 * chance to survive and extract information. If the
1141 * callback kept a lock held, bad luck, but not worse
1142 * than the BUG() we had.
1143 */
1144 preempt_count() = preempt_count;
576da126
TG
1145 }
1146}
1147
2aae4a10
REB
1148#define INDEX(N) ((base->timer_jiffies >> (TVR_BITS + (N) * TVN_BITS)) & TVN_MASK)
1149
1150/**
1da177e4
LT
1151 * __run_timers - run all expired timers (if any) on this CPU.
1152 * @base: the timer vector to be processed.
1153 *
1154 * This function cascades all vectors and executes all expired timer
1155 * vectors.
1156 */
a6fa8e5a 1157static inline void __run_timers(struct tvec_base *base)
1da177e4
LT
1158{
1159 struct timer_list *timer;
1160
3691c519 1161 spin_lock_irq(&base->lock);
1da177e4 1162 while (time_after_eq(jiffies, base->timer_jiffies)) {
626ab0e6 1163 struct list_head work_list;
1da177e4 1164 struct list_head *head = &work_list;
6819457d 1165 int index = base->timer_jiffies & TVR_MASK;
626ab0e6 1166
1da177e4
LT
1167 /*
1168 * Cascade timers:
1169 */
1170 if (!index &&
1171 (!cascade(base, &base->tv2, INDEX(0))) &&
1172 (!cascade(base, &base->tv3, INDEX(1))) &&
1173 !cascade(base, &base->tv4, INDEX(2)))
1174 cascade(base, &base->tv5, INDEX(3));
626ab0e6
ON
1175 ++base->timer_jiffies;
1176 list_replace_init(base->tv1.vec + index, &work_list);
55c888d6 1177 while (!list_empty(head)) {
1da177e4
LT
1178 void (*fn)(unsigned long);
1179 unsigned long data;
c5f66e99 1180 bool irqsafe;
1da177e4 1181
b5e61818 1182 timer = list_first_entry(head, struct timer_list,entry);
6819457d
TG
1183 fn = timer->function;
1184 data = timer->data;
c5f66e99 1185 irqsafe = tbase_get_irqsafe(timer->base);
1da177e4 1186
82f67cd9
IM
1187 timer_stats_account_timer(timer);
1188
6f1bc451 1189 base->running_timer = timer;
99d5f3aa 1190 detach_expired_timer(timer, base);
6f2b9b9a 1191
c5f66e99
TH
1192 if (irqsafe) {
1193 spin_unlock(&base->lock);
1194 call_timer_fn(timer, fn, data);
1195 spin_lock(&base->lock);
1196 } else {
1197 spin_unlock_irq(&base->lock);
1198 call_timer_fn(timer, fn, data);
1199 spin_lock_irq(&base->lock);
1200 }
1da177e4
LT
1201 }
1202 }
6f1bc451 1203 base->running_timer = NULL;
3691c519 1204 spin_unlock_irq(&base->lock);
1da177e4
LT
1205}
1206
3451d024 1207#ifdef CONFIG_NO_HZ_COMMON
1da177e4
LT
1208/*
1209 * Find out when the next timer event is due to happen. This
90cba64a
RD
1210 * is used on S/390 to stop all activity when a CPU is idle.
1211 * This function needs to be called with interrupts disabled.
1da177e4 1212 */
a6fa8e5a 1213static unsigned long __next_timer_interrupt(struct tvec_base *base)
1da177e4 1214{
1cfd6849 1215 unsigned long timer_jiffies = base->timer_jiffies;
eaad084b 1216 unsigned long expires = timer_jiffies + NEXT_TIMER_MAX_DELTA;
1cfd6849 1217 int index, slot, array, found = 0;
1da177e4 1218 struct timer_list *nte;
a6fa8e5a 1219 struct tvec *varray[4];
1da177e4
LT
1220
1221 /* Look for timer events in tv1. */
1cfd6849 1222 index = slot = timer_jiffies & TVR_MASK;
1da177e4 1223 do {
1cfd6849 1224 list_for_each_entry(nte, base->tv1.vec + slot, entry) {
6819457d
TG
1225 if (tbase_get_deferrable(nte->base))
1226 continue;
6e453a67 1227
1cfd6849 1228 found = 1;
1da177e4 1229 expires = nte->expires;
1cfd6849
TG
1230 /* Look at the cascade bucket(s)? */
1231 if (!index || slot < index)
1232 goto cascade;
1233 return expires;
1da177e4 1234 }
1cfd6849
TG
1235 slot = (slot + 1) & TVR_MASK;
1236 } while (slot != index);
1237
1238cascade:
1239 /* Calculate the next cascade event */
1240 if (index)
1241 timer_jiffies += TVR_SIZE - index;
1242 timer_jiffies >>= TVR_BITS;
1da177e4
LT
1243
1244 /* Check tv2-tv5. */
1245 varray[0] = &base->tv2;
1246 varray[1] = &base->tv3;
1247 varray[2] = &base->tv4;
1248 varray[3] = &base->tv5;
1cfd6849
TG
1249
1250 for (array = 0; array < 4; array++) {
a6fa8e5a 1251 struct tvec *varp = varray[array];
1cfd6849
TG
1252
1253 index = slot = timer_jiffies & TVN_MASK;
1da177e4 1254 do {
1cfd6849 1255 list_for_each_entry(nte, varp->vec + slot, entry) {
a0419888
JH
1256 if (tbase_get_deferrable(nte->base))
1257 continue;
1258
1cfd6849 1259 found = 1;
1da177e4
LT
1260 if (time_before(nte->expires, expires))
1261 expires = nte->expires;
1cfd6849
TG
1262 }
1263 /*
1264 * Do we still search for the first timer or are
1265 * we looking up the cascade buckets ?
1266 */
1267 if (found) {
1268 /* Look at the cascade bucket(s)? */
1269 if (!index || slot < index)
1270 break;
1271 return expires;
1272 }
1273 slot = (slot + 1) & TVN_MASK;
1274 } while (slot != index);
1275
1276 if (index)
1277 timer_jiffies += TVN_SIZE - index;
1278 timer_jiffies >>= TVN_BITS;
1da177e4 1279 }
1cfd6849
TG
1280 return expires;
1281}
69239749 1282
1cfd6849
TG
1283/*
1284 * Check, if the next hrtimer event is before the next timer wheel
1285 * event:
1286 */
1287static unsigned long cmp_next_hrtimer_event(unsigned long now,
1288 unsigned long expires)
1289{
1290 ktime_t hr_delta = hrtimer_get_next_event();
1291 struct timespec tsdelta;
9501b6cf 1292 unsigned long delta;
1cfd6849
TG
1293
1294 if (hr_delta.tv64 == KTIME_MAX)
1295 return expires;
0662b713 1296
9501b6cf
TG
1297 /*
1298 * Expired timer available, let it expire in the next tick
1299 */
1300 if (hr_delta.tv64 <= 0)
1301 return now + 1;
69239749 1302
1cfd6849 1303 tsdelta = ktime_to_timespec(hr_delta);
9501b6cf 1304 delta = timespec_to_jiffies(&tsdelta);
eaad084b
TG
1305
1306 /*
1307 * Limit the delta to the max value, which is checked in
1308 * tick_nohz_stop_sched_tick():
1309 */
1310 if (delta > NEXT_TIMER_MAX_DELTA)
1311 delta = NEXT_TIMER_MAX_DELTA;
1312
9501b6cf
TG
1313 /*
1314 * Take rounding errors in to account and make sure, that it
1315 * expires in the next tick. Otherwise we go into an endless
1316 * ping pong due to tick_nohz_stop_sched_tick() retriggering
1317 * the timer softirq
1318 */
1319 if (delta < 1)
1320 delta = 1;
1321 now += delta;
1cfd6849
TG
1322 if (time_before(now, expires))
1323 return now;
1da177e4
LT
1324 return expires;
1325}
1cfd6849
TG
1326
1327/**
8dce39c2 1328 * get_next_timer_interrupt - return the jiffy of the next pending timer
05fb6bf0 1329 * @now: current time (in jiffies)
1cfd6849 1330 */
fd064b9b 1331unsigned long get_next_timer_interrupt(unsigned long now)
1cfd6849 1332{
7496351a 1333 struct tvec_base *base = __this_cpu_read(tvec_bases);
e40468a5 1334 unsigned long expires = now + NEXT_TIMER_MAX_DELTA;
1cfd6849 1335
dbd87b5a
HC
1336 /*
1337 * Pretend that there is no timer pending if the cpu is offline.
1338 * Possible pending timers will be migrated later to an active cpu.
1339 */
1340 if (cpu_is_offline(smp_processor_id()))
e40468a5
TG
1341 return expires;
1342
1cfd6849 1343 spin_lock(&base->lock);
e40468a5
TG
1344 if (base->active_timers) {
1345 if (time_before_eq(base->next_timer, base->timer_jiffies))
1346 base->next_timer = __next_timer_interrupt(base);
1347 expires = base->next_timer;
1348 }
1cfd6849
TG
1349 spin_unlock(&base->lock);
1350
1351 if (time_before_eq(expires, now))
1352 return now;
1353
1354 return cmp_next_hrtimer_event(now, expires);
1355}
1da177e4
LT
1356#endif
1357
1da177e4 1358/*
5b4db0c2 1359 * Called from the timer interrupt handler to charge one tick to the current
1da177e4
LT
1360 * process. user_tick is 1 if the tick is user time, 0 for system.
1361 */
1362void update_process_times(int user_tick)
1363{
1364 struct task_struct *p = current;
1365 int cpu = smp_processor_id();
1366
1367 /* Note: this timer irq context must be accounted for as well. */
fa13a5a1 1368 account_process_tick(p, user_tick);
1da177e4 1369 run_local_timers();
a157229c 1370 rcu_check_callbacks(cpu, user_tick);
e360adbe
PZ
1371#ifdef CONFIG_IRQ_WORK
1372 if (in_irq())
1373 irq_work_run();
1374#endif
1da177e4 1375 scheduler_tick();
6819457d 1376 run_posix_cpu_timers(p);
1da177e4
LT
1377}
1378
1da177e4
LT
1379/*
1380 * This function runs timers and the timer-tq in bottom half context.
1381 */
1382static void run_timer_softirq(struct softirq_action *h)
1383{
7496351a 1384 struct tvec_base *base = __this_cpu_read(tvec_bases);
1da177e4 1385
d3d74453 1386 hrtimer_run_pending();
82f67cd9 1387
1da177e4
LT
1388 if (time_after_eq(jiffies, base->timer_jiffies))
1389 __run_timers(base);
1390}
1391
1392/*
1393 * Called by the local, per-CPU timer interrupt on SMP.
1394 */
1395void run_local_timers(void)
1396{
d3d74453 1397 hrtimer_run_queues();
1da177e4
LT
1398 raise_softirq(TIMER_SOFTIRQ);
1399}
1400
1da177e4
LT
1401#ifdef __ARCH_WANT_SYS_ALARM
1402
1403/*
1404 * For backwards compatibility? This can be done in libc so Alpha
1405 * and all newer ports shouldn't need it.
1406 */
58fd3aa2 1407SYSCALL_DEFINE1(alarm, unsigned int, seconds)
1da177e4 1408{
c08b8a49 1409 return alarm_setitimer(seconds);
1da177e4
LT
1410}
1411
1412#endif
1413
1da177e4
LT
1414static void process_timeout(unsigned long __data)
1415{
36c8b586 1416 wake_up_process((struct task_struct *)__data);
1da177e4
LT
1417}
1418
1419/**
1420 * schedule_timeout - sleep until timeout
1421 * @timeout: timeout value in jiffies
1422 *
1423 * Make the current task sleep until @timeout jiffies have
1424 * elapsed. The routine will return immediately unless
1425 * the current task state has been set (see set_current_state()).
1426 *
1427 * You can set the task state as follows -
1428 *
1429 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1430 * pass before the routine returns. The routine will return 0
1431 *
1432 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1433 * delivered to the current task. In this case the remaining time
1434 * in jiffies will be returned, or 0 if the timer expired in time
1435 *
1436 * The current task state is guaranteed to be TASK_RUNNING when this
1437 * routine returns.
1438 *
1439 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1440 * the CPU away without a bound on the timeout. In this case the return
1441 * value will be %MAX_SCHEDULE_TIMEOUT.
1442 *
1443 * In all cases the return value is guaranteed to be non-negative.
1444 */
7ad5b3a5 1445signed long __sched schedule_timeout(signed long timeout)
1da177e4
LT
1446{
1447 struct timer_list timer;
1448 unsigned long expire;
1449
1450 switch (timeout)
1451 {
1452 case MAX_SCHEDULE_TIMEOUT:
1453 /*
1454 * These two special cases are useful to be comfortable
1455 * in the caller. Nothing more. We could take
1456 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1457 * but I' d like to return a valid offset (>=0) to allow
1458 * the caller to do everything it want with the retval.
1459 */
1460 schedule();
1461 goto out;
1462 default:
1463 /*
1464 * Another bit of PARANOID. Note that the retval will be
1465 * 0 since no piece of kernel is supposed to do a check
1466 * for a negative retval of schedule_timeout() (since it
1467 * should never happens anyway). You just have the printk()
1468 * that will tell you if something is gone wrong and where.
1469 */
5b149bcc 1470 if (timeout < 0) {
1da177e4 1471 printk(KERN_ERR "schedule_timeout: wrong timeout "
5b149bcc
AM
1472 "value %lx\n", timeout);
1473 dump_stack();
1da177e4
LT
1474 current->state = TASK_RUNNING;
1475 goto out;
1476 }
1477 }
1478
1479 expire = timeout + jiffies;
1480
c6f3a97f 1481 setup_timer_on_stack(&timer, process_timeout, (unsigned long)current);
597d0275 1482 __mod_timer(&timer, expire, false, TIMER_NOT_PINNED);
1da177e4
LT
1483 schedule();
1484 del_singleshot_timer_sync(&timer);
1485
c6f3a97f
TG
1486 /* Remove the timer from the object tracker */
1487 destroy_timer_on_stack(&timer);
1488
1da177e4
LT
1489 timeout = expire - jiffies;
1490
1491 out:
1492 return timeout < 0 ? 0 : timeout;
1493}
1da177e4
LT
1494EXPORT_SYMBOL(schedule_timeout);
1495
8a1c1757
AM
1496/*
1497 * We can use __set_current_state() here because schedule_timeout() calls
1498 * schedule() unconditionally.
1499 */
64ed93a2
NA
1500signed long __sched schedule_timeout_interruptible(signed long timeout)
1501{
a5a0d52c
AM
1502 __set_current_state(TASK_INTERRUPTIBLE);
1503 return schedule_timeout(timeout);
64ed93a2
NA
1504}
1505EXPORT_SYMBOL(schedule_timeout_interruptible);
1506
294d5cc2
MW
1507signed long __sched schedule_timeout_killable(signed long timeout)
1508{
1509 __set_current_state(TASK_KILLABLE);
1510 return schedule_timeout(timeout);
1511}
1512EXPORT_SYMBOL(schedule_timeout_killable);
1513
64ed93a2
NA
1514signed long __sched schedule_timeout_uninterruptible(signed long timeout)
1515{
a5a0d52c
AM
1516 __set_current_state(TASK_UNINTERRUPTIBLE);
1517 return schedule_timeout(timeout);
64ed93a2
NA
1518}
1519EXPORT_SYMBOL(schedule_timeout_uninterruptible);
1520
b4be6258 1521static int __cpuinit init_timers_cpu(int cpu)
1da177e4
LT
1522{
1523 int j;
a6fa8e5a 1524 struct tvec_base *base;
b4be6258 1525 static char __cpuinitdata tvec_base_done[NR_CPUS];
55c888d6 1526
ba6edfcd 1527 if (!tvec_base_done[cpu]) {
a4a6198b
JB
1528 static char boot_done;
1529
a4a6198b 1530 if (boot_done) {
ba6edfcd
AM
1531 /*
1532 * The APs use this path later in boot
1533 */
94f6030c
CL
1534 base = kmalloc_node(sizeof(*base),
1535 GFP_KERNEL | __GFP_ZERO,
a4a6198b
JB
1536 cpu_to_node(cpu));
1537 if (!base)
1538 return -ENOMEM;
6e453a67
VP
1539
1540 /* Make sure that tvec_base is 2 byte aligned */
1541 if (tbase_get_deferrable(base)) {
1542 WARN_ON(1);
1543 kfree(base);
1544 return -ENOMEM;
1545 }
ba6edfcd 1546 per_cpu(tvec_bases, cpu) = base;
a4a6198b 1547 } else {
ba6edfcd
AM
1548 /*
1549 * This is for the boot CPU - we use compile-time
1550 * static initialisation because per-cpu memory isn't
1551 * ready yet and because the memory allocators are not
1552 * initialised either.
1553 */
a4a6198b 1554 boot_done = 1;
ba6edfcd 1555 base = &boot_tvec_bases;
a4a6198b 1556 }
42a5cf46 1557 spin_lock_init(&base->lock);
ba6edfcd
AM
1558 tvec_base_done[cpu] = 1;
1559 } else {
1560 base = per_cpu(tvec_bases, cpu);
a4a6198b 1561 }
ba6edfcd 1562
d730e882 1563
1da177e4
LT
1564 for (j = 0; j < TVN_SIZE; j++) {
1565 INIT_LIST_HEAD(base->tv5.vec + j);
1566 INIT_LIST_HEAD(base->tv4.vec + j);
1567 INIT_LIST_HEAD(base->tv3.vec + j);
1568 INIT_LIST_HEAD(base->tv2.vec + j);
1569 }
1570 for (j = 0; j < TVR_SIZE; j++)
1571 INIT_LIST_HEAD(base->tv1.vec + j);
1572
1573 base->timer_jiffies = jiffies;
97fd9ed4 1574 base->next_timer = base->timer_jiffies;
99d5f3aa 1575 base->active_timers = 0;
a4a6198b 1576 return 0;
1da177e4
LT
1577}
1578
1579#ifdef CONFIG_HOTPLUG_CPU
a6fa8e5a 1580static void migrate_timer_list(struct tvec_base *new_base, struct list_head *head)
1da177e4
LT
1581{
1582 struct timer_list *timer;
1583
1584 while (!list_empty(head)) {
b5e61818 1585 timer = list_first_entry(head, struct timer_list, entry);
99d5f3aa 1586 /* We ignore the accounting on the dying cpu */
ec44bc7a 1587 detach_timer(timer, false);
6e453a67 1588 timer_set_base(timer, new_base);
1da177e4 1589 internal_add_timer(new_base, timer);
1da177e4 1590 }
1da177e4
LT
1591}
1592
48ccf3da 1593static void __cpuinit migrate_timers(int cpu)
1da177e4 1594{
a6fa8e5a
PM
1595 struct tvec_base *old_base;
1596 struct tvec_base *new_base;
1da177e4
LT
1597 int i;
1598
1599 BUG_ON(cpu_online(cpu));
a4a6198b
JB
1600 old_base = per_cpu(tvec_bases, cpu);
1601 new_base = get_cpu_var(tvec_bases);
d82f0b0f
ON
1602 /*
1603 * The caller is globally serialized and nobody else
1604 * takes two locks at once, deadlock is not possible.
1605 */
1606 spin_lock_irq(&new_base->lock);
0d180406 1607 spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
3691c519
ON
1608
1609 BUG_ON(old_base->running_timer);
1da177e4 1610
1da177e4 1611 for (i = 0; i < TVR_SIZE; i++)
55c888d6
ON
1612 migrate_timer_list(new_base, old_base->tv1.vec + i);
1613 for (i = 0; i < TVN_SIZE; i++) {
1614 migrate_timer_list(new_base, old_base->tv2.vec + i);
1615 migrate_timer_list(new_base, old_base->tv3.vec + i);
1616 migrate_timer_list(new_base, old_base->tv4.vec + i);
1617 migrate_timer_list(new_base, old_base->tv5.vec + i);
1618 }
1619
0d180406 1620 spin_unlock(&old_base->lock);
d82f0b0f 1621 spin_unlock_irq(&new_base->lock);
1da177e4 1622 put_cpu_var(tvec_bases);
1da177e4
LT
1623}
1624#endif /* CONFIG_HOTPLUG_CPU */
1625
8c78f307 1626static int __cpuinit timer_cpu_notify(struct notifier_block *self,
1da177e4
LT
1627 unsigned long action, void *hcpu)
1628{
1629 long cpu = (long)hcpu;
80b5184c
AM
1630 int err;
1631
1da177e4
LT
1632 switch(action) {
1633 case CPU_UP_PREPARE:
8bb78442 1634 case CPU_UP_PREPARE_FROZEN:
80b5184c
AM
1635 err = init_timers_cpu(cpu);
1636 if (err < 0)
1637 return notifier_from_errno(err);
1da177e4
LT
1638 break;
1639#ifdef CONFIG_HOTPLUG_CPU
1640 case CPU_DEAD:
8bb78442 1641 case CPU_DEAD_FROZEN:
1da177e4
LT
1642 migrate_timers(cpu);
1643 break;
1644#endif
1645 default:
1646 break;
1647 }
1648 return NOTIFY_OK;
1649}
1650
8c78f307 1651static struct notifier_block __cpuinitdata timers_nb = {
1da177e4
LT
1652 .notifier_call = timer_cpu_notify,
1653};
1654
1655
1656void __init init_timers(void)
1657{
e52b1db3
TH
1658 int err;
1659
1660 /* ensure there are enough low bits for flags in timer->base pointer */
1661 BUILD_BUG_ON(__alignof__(struct tvec_base) & TIMER_FLAG_MASK);
07dccf33 1662
e52b1db3
TH
1663 err = timer_cpu_notify(&timers_nb, (unsigned long)CPU_UP_PREPARE,
1664 (void *)(long)smp_processor_id());
82f67cd9
IM
1665 init_timer_stats();
1666
9e506f7a 1667 BUG_ON(err != NOTIFY_OK);
1da177e4 1668 register_cpu_notifier(&timers_nb);
962cf36c 1669 open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
1da177e4
LT
1670}
1671
1da177e4
LT
1672/**
1673 * msleep - sleep safely even with waitqueue interruptions
1674 * @msecs: Time in milliseconds to sleep for
1675 */
1676void msleep(unsigned int msecs)
1677{
1678 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1679
75bcc8c5
NA
1680 while (timeout)
1681 timeout = schedule_timeout_uninterruptible(timeout);
1da177e4
LT
1682}
1683
1684EXPORT_SYMBOL(msleep);
1685
1686/**
96ec3efd 1687 * msleep_interruptible - sleep waiting for signals
1da177e4
LT
1688 * @msecs: Time in milliseconds to sleep for
1689 */
1690unsigned long msleep_interruptible(unsigned int msecs)
1691{
1692 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1693
75bcc8c5
NA
1694 while (timeout && !signal_pending(current))
1695 timeout = schedule_timeout_interruptible(timeout);
1da177e4
LT
1696 return jiffies_to_msecs(timeout);
1697}
1698
1699EXPORT_SYMBOL(msleep_interruptible);
5e7f5a17
PP
1700
1701static int __sched do_usleep_range(unsigned long min, unsigned long max)
1702{
1703 ktime_t kmin;
1704 unsigned long delta;
1705
1706 kmin = ktime_set(0, min * NSEC_PER_USEC);
1707 delta = (max - min) * NSEC_PER_USEC;
1708 return schedule_hrtimeout_range(&kmin, delta, HRTIMER_MODE_REL);
1709}
1710
1711/**
1712 * usleep_range - Drop in replacement for udelay where wakeup is flexible
1713 * @min: Minimum time in usecs to sleep
1714 * @max: Maximum time in usecs to sleep
1715 */
1716void usleep_range(unsigned long min, unsigned long max)
1717{
1718 __set_current_state(TASK_UNINTERRUPTIBLE);
1719 do_usleep_range(min, max);
1720}
1721EXPORT_SYMBOL(usleep_range);