timekeeping: Fix invalid getboottime() value
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / timer.c
CommitLineData
1da177e4
LT
1/*
2 * linux/kernel/timer.c
3 *
8524070b 4 * Kernel internal timers, basic process system calls
1da177e4
LT
5 *
6 * Copyright (C) 1991, 1992 Linus Torvalds
7 *
8 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
9 *
10 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
11 * "A Kernel Model for Precision Timekeeping" by Dave Mills
12 * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
13 * serialize accesses to xtime/lost_ticks).
14 * Copyright (C) 1998 Andrea Arcangeli
15 * 1999-03-10 Improved NTP compatibility by Ulrich Windl
16 * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love
17 * 2000-10-05 Implemented scalable SMP per-CPU timer handling.
18 * Copyright (C) 2000, 2001, 2002 Ingo Molnar
19 * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
20 */
21
22#include <linux/kernel_stat.h>
23#include <linux/module.h>
24#include <linux/interrupt.h>
25#include <linux/percpu.h>
26#include <linux/init.h>
27#include <linux/mm.h>
28#include <linux/swap.h>
b488893a 29#include <linux/pid_namespace.h>
1da177e4
LT
30#include <linux/notifier.h>
31#include <linux/thread_info.h>
32#include <linux/time.h>
33#include <linux/jiffies.h>
34#include <linux/posix-timers.h>
35#include <linux/cpu.h>
36#include <linux/syscalls.h>
97a41e26 37#include <linux/delay.h>
79bf2bb3 38#include <linux/tick.h>
82f67cd9 39#include <linux/kallsyms.h>
925d519a 40#include <linux/perf_counter.h>
eea08f32 41#include <linux/sched.h>
1da177e4
LT
42
43#include <asm/uaccess.h>
44#include <asm/unistd.h>
45#include <asm/div64.h>
46#include <asm/timex.h>
47#include <asm/io.h>
48
ecea8d19
TG
49u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
50
51EXPORT_SYMBOL(jiffies_64);
52
1da177e4
LT
53/*
54 * per-CPU timer vector definitions:
55 */
1da177e4
LT
56#define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
57#define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
58#define TVN_SIZE (1 << TVN_BITS)
59#define TVR_SIZE (1 << TVR_BITS)
60#define TVN_MASK (TVN_SIZE - 1)
61#define TVR_MASK (TVR_SIZE - 1)
62
a6fa8e5a 63struct tvec {
1da177e4 64 struct list_head vec[TVN_SIZE];
a6fa8e5a 65};
1da177e4 66
a6fa8e5a 67struct tvec_root {
1da177e4 68 struct list_head vec[TVR_SIZE];
a6fa8e5a 69};
1da177e4 70
a6fa8e5a 71struct tvec_base {
3691c519
ON
72 spinlock_t lock;
73 struct timer_list *running_timer;
1da177e4 74 unsigned long timer_jiffies;
97fd9ed4 75 unsigned long next_timer;
a6fa8e5a
PM
76 struct tvec_root tv1;
77 struct tvec tv2;
78 struct tvec tv3;
79 struct tvec tv4;
80 struct tvec tv5;
6e453a67 81} ____cacheline_aligned;
1da177e4 82
a6fa8e5a 83struct tvec_base boot_tvec_bases;
3691c519 84EXPORT_SYMBOL(boot_tvec_bases);
a6fa8e5a 85static DEFINE_PER_CPU(struct tvec_base *, tvec_bases) = &boot_tvec_bases;
1da177e4 86
6e453a67 87/*
a6fa8e5a 88 * Note that all tvec_bases are 2 byte aligned and lower bit of
6e453a67
VP
89 * base in timer_list is guaranteed to be zero. Use the LSB for
90 * the new flag to indicate whether the timer is deferrable
91 */
92#define TBASE_DEFERRABLE_FLAG (0x1)
93
94/* Functions below help us manage 'deferrable' flag */
a6fa8e5a 95static inline unsigned int tbase_get_deferrable(struct tvec_base *base)
6e453a67 96{
e9910846 97 return ((unsigned int)(unsigned long)base & TBASE_DEFERRABLE_FLAG);
6e453a67
VP
98}
99
a6fa8e5a 100static inline struct tvec_base *tbase_get_base(struct tvec_base *base)
6e453a67 101{
a6fa8e5a 102 return ((struct tvec_base *)((unsigned long)base & ~TBASE_DEFERRABLE_FLAG));
6e453a67
VP
103}
104
105static inline void timer_set_deferrable(struct timer_list *timer)
106{
a6fa8e5a 107 timer->base = ((struct tvec_base *)((unsigned long)(timer->base) |
6819457d 108 TBASE_DEFERRABLE_FLAG));
6e453a67
VP
109}
110
111static inline void
a6fa8e5a 112timer_set_base(struct timer_list *timer, struct tvec_base *new_base)
6e453a67 113{
a6fa8e5a 114 timer->base = (struct tvec_base *)((unsigned long)(new_base) |
6819457d 115 tbase_get_deferrable(timer->base));
6e453a67
VP
116}
117
9c133c46
AS
118static unsigned long round_jiffies_common(unsigned long j, int cpu,
119 bool force_up)
4c36a5de
AV
120{
121 int rem;
122 unsigned long original = j;
123
124 /*
125 * We don't want all cpus firing their timers at once hitting the
126 * same lock or cachelines, so we skew each extra cpu with an extra
127 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
128 * already did this.
129 * The skew is done by adding 3*cpunr, then round, then subtract this
130 * extra offset again.
131 */
132 j += cpu * 3;
133
134 rem = j % HZ;
135
136 /*
137 * If the target jiffie is just after a whole second (which can happen
138 * due to delays of the timer irq, long irq off times etc etc) then
139 * we should round down to the whole second, not up. Use 1/4th second
140 * as cutoff for this rounding as an extreme upper bound for this.
9c133c46 141 * But never round down if @force_up is set.
4c36a5de 142 */
9c133c46 143 if (rem < HZ/4 && !force_up) /* round down */
4c36a5de
AV
144 j = j - rem;
145 else /* round up */
146 j = j - rem + HZ;
147
148 /* now that we have rounded, subtract the extra skew again */
149 j -= cpu * 3;
150
151 if (j <= jiffies) /* rounding ate our timeout entirely; */
152 return original;
153 return j;
154}
9c133c46
AS
155
156/**
157 * __round_jiffies - function to round jiffies to a full second
158 * @j: the time in (absolute) jiffies that should be rounded
159 * @cpu: the processor number on which the timeout will happen
160 *
161 * __round_jiffies() rounds an absolute time in the future (in jiffies)
162 * up or down to (approximately) full seconds. This is useful for timers
163 * for which the exact time they fire does not matter too much, as long as
164 * they fire approximately every X seconds.
165 *
166 * By rounding these timers to whole seconds, all such timers will fire
167 * at the same time, rather than at various times spread out. The goal
168 * of this is to have the CPU wake up less, which saves power.
169 *
170 * The exact rounding is skewed for each processor to avoid all
171 * processors firing at the exact same time, which could lead
172 * to lock contention or spurious cache line bouncing.
173 *
174 * The return value is the rounded version of the @j parameter.
175 */
176unsigned long __round_jiffies(unsigned long j, int cpu)
177{
178 return round_jiffies_common(j, cpu, false);
179}
4c36a5de
AV
180EXPORT_SYMBOL_GPL(__round_jiffies);
181
182/**
183 * __round_jiffies_relative - function to round jiffies to a full second
184 * @j: the time in (relative) jiffies that should be rounded
185 * @cpu: the processor number on which the timeout will happen
186 *
72fd4a35 187 * __round_jiffies_relative() rounds a time delta in the future (in jiffies)
4c36a5de
AV
188 * up or down to (approximately) full seconds. This is useful for timers
189 * for which the exact time they fire does not matter too much, as long as
190 * they fire approximately every X seconds.
191 *
192 * By rounding these timers to whole seconds, all such timers will fire
193 * at the same time, rather than at various times spread out. The goal
194 * of this is to have the CPU wake up less, which saves power.
195 *
196 * The exact rounding is skewed for each processor to avoid all
197 * processors firing at the exact same time, which could lead
198 * to lock contention or spurious cache line bouncing.
199 *
72fd4a35 200 * The return value is the rounded version of the @j parameter.
4c36a5de
AV
201 */
202unsigned long __round_jiffies_relative(unsigned long j, int cpu)
203{
9c133c46
AS
204 unsigned long j0 = jiffies;
205
206 /* Use j0 because jiffies might change while we run */
207 return round_jiffies_common(j + j0, cpu, false) - j0;
4c36a5de
AV
208}
209EXPORT_SYMBOL_GPL(__round_jiffies_relative);
210
211/**
212 * round_jiffies - function to round jiffies to a full second
213 * @j: the time in (absolute) jiffies that should be rounded
214 *
72fd4a35 215 * round_jiffies() rounds an absolute time in the future (in jiffies)
4c36a5de
AV
216 * up or down to (approximately) full seconds. This is useful for timers
217 * for which the exact time they fire does not matter too much, as long as
218 * they fire approximately every X seconds.
219 *
220 * By rounding these timers to whole seconds, all such timers will fire
221 * at the same time, rather than at various times spread out. The goal
222 * of this is to have the CPU wake up less, which saves power.
223 *
72fd4a35 224 * The return value is the rounded version of the @j parameter.
4c36a5de
AV
225 */
226unsigned long round_jiffies(unsigned long j)
227{
9c133c46 228 return round_jiffies_common(j, raw_smp_processor_id(), false);
4c36a5de
AV
229}
230EXPORT_SYMBOL_GPL(round_jiffies);
231
232/**
233 * round_jiffies_relative - function to round jiffies to a full second
234 * @j: the time in (relative) jiffies that should be rounded
235 *
72fd4a35 236 * round_jiffies_relative() rounds a time delta in the future (in jiffies)
4c36a5de
AV
237 * up or down to (approximately) full seconds. This is useful for timers
238 * for which the exact time they fire does not matter too much, as long as
239 * they fire approximately every X seconds.
240 *
241 * By rounding these timers to whole seconds, all such timers will fire
242 * at the same time, rather than at various times spread out. The goal
243 * of this is to have the CPU wake up less, which saves power.
244 *
72fd4a35 245 * The return value is the rounded version of the @j parameter.
4c36a5de
AV
246 */
247unsigned long round_jiffies_relative(unsigned long j)
248{
249 return __round_jiffies_relative(j, raw_smp_processor_id());
250}
251EXPORT_SYMBOL_GPL(round_jiffies_relative);
252
9c133c46
AS
253/**
254 * __round_jiffies_up - function to round jiffies up to a full second
255 * @j: the time in (absolute) jiffies that should be rounded
256 * @cpu: the processor number on which the timeout will happen
257 *
258 * This is the same as __round_jiffies() except that it will never
259 * round down. This is useful for timeouts for which the exact time
260 * of firing does not matter too much, as long as they don't fire too
261 * early.
262 */
263unsigned long __round_jiffies_up(unsigned long j, int cpu)
264{
265 return round_jiffies_common(j, cpu, true);
266}
267EXPORT_SYMBOL_GPL(__round_jiffies_up);
268
269/**
270 * __round_jiffies_up_relative - function to round jiffies up to a full second
271 * @j: the time in (relative) jiffies that should be rounded
272 * @cpu: the processor number on which the timeout will happen
273 *
274 * This is the same as __round_jiffies_relative() except that it will never
275 * round down. This is useful for timeouts for which the exact time
276 * of firing does not matter too much, as long as they don't fire too
277 * early.
278 */
279unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
280{
281 unsigned long j0 = jiffies;
282
283 /* Use j0 because jiffies might change while we run */
284 return round_jiffies_common(j + j0, cpu, true) - j0;
285}
286EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);
287
288/**
289 * round_jiffies_up - function to round jiffies up to a full second
290 * @j: the time in (absolute) jiffies that should be rounded
291 *
292 * This is the same as round_jiffies() except that it will never
293 * round down. This is useful for timeouts for which the exact time
294 * of firing does not matter too much, as long as they don't fire too
295 * early.
296 */
297unsigned long round_jiffies_up(unsigned long j)
298{
299 return round_jiffies_common(j, raw_smp_processor_id(), true);
300}
301EXPORT_SYMBOL_GPL(round_jiffies_up);
302
303/**
304 * round_jiffies_up_relative - function to round jiffies up to a full second
305 * @j: the time in (relative) jiffies that should be rounded
306 *
307 * This is the same as round_jiffies_relative() except that it will never
308 * round down. This is useful for timeouts for which the exact time
309 * of firing does not matter too much, as long as they don't fire too
310 * early.
311 */
312unsigned long round_jiffies_up_relative(unsigned long j)
313{
314 return __round_jiffies_up_relative(j, raw_smp_processor_id());
315}
316EXPORT_SYMBOL_GPL(round_jiffies_up_relative);
317
4c36a5de 318
a6fa8e5a 319static inline void set_running_timer(struct tvec_base *base,
1da177e4
LT
320 struct timer_list *timer)
321{
322#ifdef CONFIG_SMP
3691c519 323 base->running_timer = timer;
1da177e4
LT
324#endif
325}
326
a6fa8e5a 327static void internal_add_timer(struct tvec_base *base, struct timer_list *timer)
1da177e4
LT
328{
329 unsigned long expires = timer->expires;
330 unsigned long idx = expires - base->timer_jiffies;
331 struct list_head *vec;
332
333 if (idx < TVR_SIZE) {
334 int i = expires & TVR_MASK;
335 vec = base->tv1.vec + i;
336 } else if (idx < 1 << (TVR_BITS + TVN_BITS)) {
337 int i = (expires >> TVR_BITS) & TVN_MASK;
338 vec = base->tv2.vec + i;
339 } else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) {
340 int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK;
341 vec = base->tv3.vec + i;
342 } else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) {
343 int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK;
344 vec = base->tv4.vec + i;
345 } else if ((signed long) idx < 0) {
346 /*
347 * Can happen if you add a timer with expires == jiffies,
348 * or you set a timer to go off in the past
349 */
350 vec = base->tv1.vec + (base->timer_jiffies & TVR_MASK);
351 } else {
352 int i;
353 /* If the timeout is larger than 0xffffffff on 64-bit
354 * architectures then we use the maximum timeout:
355 */
356 if (idx > 0xffffffffUL) {
357 idx = 0xffffffffUL;
358 expires = idx + base->timer_jiffies;
359 }
360 i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK;
361 vec = base->tv5.vec + i;
362 }
363 /*
364 * Timers are FIFO:
365 */
366 list_add_tail(&timer->entry, vec);
367}
368
82f67cd9
IM
369#ifdef CONFIG_TIMER_STATS
370void __timer_stats_timer_set_start_info(struct timer_list *timer, void *addr)
371{
372 if (timer->start_site)
373 return;
374
375 timer->start_site = addr;
376 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
377 timer->start_pid = current->pid;
378}
c5c061b8
VP
379
380static void timer_stats_account_timer(struct timer_list *timer)
381{
382 unsigned int flag = 0;
383
507e1231
HC
384 if (likely(!timer->start_site))
385 return;
c5c061b8
VP
386 if (unlikely(tbase_get_deferrable(timer->base)))
387 flag |= TIMER_STATS_FLAG_DEFERRABLE;
388
389 timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
390 timer->function, timer->start_comm, flag);
391}
392
393#else
394static void timer_stats_account_timer(struct timer_list *timer) {}
82f67cd9
IM
395#endif
396
c6f3a97f
TG
397#ifdef CONFIG_DEBUG_OBJECTS_TIMERS
398
399static struct debug_obj_descr timer_debug_descr;
400
401/*
402 * fixup_init is called when:
403 * - an active object is initialized
55c888d6 404 */
c6f3a97f
TG
405static int timer_fixup_init(void *addr, enum debug_obj_state state)
406{
407 struct timer_list *timer = addr;
408
409 switch (state) {
410 case ODEBUG_STATE_ACTIVE:
411 del_timer_sync(timer);
412 debug_object_init(timer, &timer_debug_descr);
413 return 1;
414 default:
415 return 0;
416 }
417}
418
419/*
420 * fixup_activate is called when:
421 * - an active object is activated
422 * - an unknown object is activated (might be a statically initialized object)
423 */
424static int timer_fixup_activate(void *addr, enum debug_obj_state state)
425{
426 struct timer_list *timer = addr;
427
428 switch (state) {
429
430 case ODEBUG_STATE_NOTAVAILABLE:
431 /*
432 * This is not really a fixup. The timer was
433 * statically initialized. We just make sure that it
434 * is tracked in the object tracker.
435 */
436 if (timer->entry.next == NULL &&
437 timer->entry.prev == TIMER_ENTRY_STATIC) {
438 debug_object_init(timer, &timer_debug_descr);
439 debug_object_activate(timer, &timer_debug_descr);
440 return 0;
441 } else {
442 WARN_ON_ONCE(1);
443 }
444 return 0;
445
446 case ODEBUG_STATE_ACTIVE:
447 WARN_ON(1);
448
449 default:
450 return 0;
451 }
452}
453
454/*
455 * fixup_free is called when:
456 * - an active object is freed
457 */
458static int timer_fixup_free(void *addr, enum debug_obj_state state)
459{
460 struct timer_list *timer = addr;
461
462 switch (state) {
463 case ODEBUG_STATE_ACTIVE:
464 del_timer_sync(timer);
465 debug_object_free(timer, &timer_debug_descr);
466 return 1;
467 default:
468 return 0;
469 }
470}
471
472static struct debug_obj_descr timer_debug_descr = {
473 .name = "timer_list",
474 .fixup_init = timer_fixup_init,
475 .fixup_activate = timer_fixup_activate,
476 .fixup_free = timer_fixup_free,
477};
478
479static inline void debug_timer_init(struct timer_list *timer)
480{
481 debug_object_init(timer, &timer_debug_descr);
482}
483
484static inline void debug_timer_activate(struct timer_list *timer)
485{
486 debug_object_activate(timer, &timer_debug_descr);
487}
488
489static inline void debug_timer_deactivate(struct timer_list *timer)
490{
491 debug_object_deactivate(timer, &timer_debug_descr);
492}
493
494static inline void debug_timer_free(struct timer_list *timer)
495{
496 debug_object_free(timer, &timer_debug_descr);
497}
498
6f2b9b9a
JB
499static void __init_timer(struct timer_list *timer,
500 const char *name,
501 struct lock_class_key *key);
c6f3a97f 502
6f2b9b9a
JB
503void init_timer_on_stack_key(struct timer_list *timer,
504 const char *name,
505 struct lock_class_key *key)
c6f3a97f
TG
506{
507 debug_object_init_on_stack(timer, &timer_debug_descr);
6f2b9b9a 508 __init_timer(timer, name, key);
c6f3a97f 509}
6f2b9b9a 510EXPORT_SYMBOL_GPL(init_timer_on_stack_key);
c6f3a97f
TG
511
512void destroy_timer_on_stack(struct timer_list *timer)
513{
514 debug_object_free(timer, &timer_debug_descr);
515}
516EXPORT_SYMBOL_GPL(destroy_timer_on_stack);
517
518#else
519static inline void debug_timer_init(struct timer_list *timer) { }
520static inline void debug_timer_activate(struct timer_list *timer) { }
521static inline void debug_timer_deactivate(struct timer_list *timer) { }
522#endif
523
6f2b9b9a
JB
524static void __init_timer(struct timer_list *timer,
525 const char *name,
526 struct lock_class_key *key)
55c888d6
ON
527{
528 timer->entry.next = NULL;
bfe5d834 529 timer->base = __raw_get_cpu_var(tvec_bases);
82f67cd9
IM
530#ifdef CONFIG_TIMER_STATS
531 timer->start_site = NULL;
532 timer->start_pid = -1;
533 memset(timer->start_comm, 0, TASK_COMM_LEN);
534#endif
6f2b9b9a 535 lockdep_init_map(&timer->lockdep_map, name, key, 0);
55c888d6 536}
c6f3a97f
TG
537
538/**
633fe795 539 * init_timer_key - initialize a timer
c6f3a97f 540 * @timer: the timer to be initialized
633fe795
RD
541 * @name: name of the timer
542 * @key: lockdep class key of the fake lock used for tracking timer
543 * sync lock dependencies
c6f3a97f 544 *
633fe795 545 * init_timer_key() must be done to a timer prior calling *any* of the
c6f3a97f
TG
546 * other timer functions.
547 */
6f2b9b9a
JB
548void init_timer_key(struct timer_list *timer,
549 const char *name,
550 struct lock_class_key *key)
c6f3a97f
TG
551{
552 debug_timer_init(timer);
6f2b9b9a 553 __init_timer(timer, name, key);
c6f3a97f 554}
6f2b9b9a 555EXPORT_SYMBOL(init_timer_key);
55c888d6 556
6f2b9b9a
JB
557void init_timer_deferrable_key(struct timer_list *timer,
558 const char *name,
559 struct lock_class_key *key)
6e453a67 560{
6f2b9b9a 561 init_timer_key(timer, name, key);
6e453a67
VP
562 timer_set_deferrable(timer);
563}
6f2b9b9a 564EXPORT_SYMBOL(init_timer_deferrable_key);
6e453a67 565
55c888d6 566static inline void detach_timer(struct timer_list *timer,
82f67cd9 567 int clear_pending)
55c888d6
ON
568{
569 struct list_head *entry = &timer->entry;
570
c6f3a97f
TG
571 debug_timer_deactivate(timer);
572
55c888d6
ON
573 __list_del(entry->prev, entry->next);
574 if (clear_pending)
575 entry->next = NULL;
576 entry->prev = LIST_POISON2;
577}
578
579/*
3691c519 580 * We are using hashed locking: holding per_cpu(tvec_bases).lock
55c888d6
ON
581 * means that all timers which are tied to this base via timer->base are
582 * locked, and the base itself is locked too.
583 *
584 * So __run_timers/migrate_timers can safely modify all timers which could
585 * be found on ->tvX lists.
586 *
587 * When the timer's base is locked, and the timer removed from list, it is
588 * possible to set timer->base = NULL and drop the lock: the timer remains
589 * locked.
590 */
a6fa8e5a 591static struct tvec_base *lock_timer_base(struct timer_list *timer,
55c888d6 592 unsigned long *flags)
89e7e374 593 __acquires(timer->base->lock)
55c888d6 594{
a6fa8e5a 595 struct tvec_base *base;
55c888d6
ON
596
597 for (;;) {
a6fa8e5a 598 struct tvec_base *prelock_base = timer->base;
6e453a67 599 base = tbase_get_base(prelock_base);
55c888d6
ON
600 if (likely(base != NULL)) {
601 spin_lock_irqsave(&base->lock, *flags);
6e453a67 602 if (likely(prelock_base == timer->base))
55c888d6
ON
603 return base;
604 /* The timer has migrated to another CPU */
605 spin_unlock_irqrestore(&base->lock, *flags);
606 }
607 cpu_relax();
608 }
609}
610
74019224 611static inline int
597d0275
AB
612__mod_timer(struct timer_list *timer, unsigned long expires,
613 bool pending_only, int pinned)
1da177e4 614{
a6fa8e5a 615 struct tvec_base *base, *new_base;
1da177e4 616 unsigned long flags;
eea08f32 617 int ret = 0 , cpu;
1da177e4 618
82f67cd9 619 timer_stats_timer_set_start_info(timer);
1da177e4 620 BUG_ON(!timer->function);
1da177e4 621
55c888d6
ON
622 base = lock_timer_base(timer, &flags);
623
624 if (timer_pending(timer)) {
625 detach_timer(timer, 0);
97fd9ed4
MS
626 if (timer->expires == base->next_timer &&
627 !tbase_get_deferrable(timer->base))
628 base->next_timer = base->timer_jiffies;
55c888d6 629 ret = 1;
74019224
IM
630 } else {
631 if (pending_only)
632 goto out_unlock;
55c888d6
ON
633 }
634
c6f3a97f
TG
635 debug_timer_activate(timer);
636
a4a6198b 637 new_base = __get_cpu_var(tvec_bases);
1da177e4 638
eea08f32
AB
639 cpu = smp_processor_id();
640
641#if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
642 if (!pinned && get_sysctl_timer_migration() && idle_cpu(cpu)) {
643 int preferred_cpu = get_nohz_load_balancer();
644
645 if (preferred_cpu >= 0)
646 cpu = preferred_cpu;
647 }
648#endif
649 new_base = per_cpu(tvec_bases, cpu);
650
3691c519 651 if (base != new_base) {
1da177e4 652 /*
55c888d6
ON
653 * We are trying to schedule the timer on the local CPU.
654 * However we can't change timer's base while it is running,
655 * otherwise del_timer_sync() can't detect that the timer's
656 * handler yet has not finished. This also guarantees that
657 * the timer is serialized wrt itself.
1da177e4 658 */
a2c348fe 659 if (likely(base->running_timer != timer)) {
55c888d6 660 /* See the comment in lock_timer_base() */
6e453a67 661 timer_set_base(timer, NULL);
55c888d6 662 spin_unlock(&base->lock);
a2c348fe
ON
663 base = new_base;
664 spin_lock(&base->lock);
6e453a67 665 timer_set_base(timer, base);
1da177e4
LT
666 }
667 }
668
1da177e4 669 timer->expires = expires;
97fd9ed4
MS
670 if (time_before(timer->expires, base->next_timer) &&
671 !tbase_get_deferrable(timer->base))
672 base->next_timer = timer->expires;
a2c348fe 673 internal_add_timer(base, timer);
74019224
IM
674
675out_unlock:
a2c348fe 676 spin_unlock_irqrestore(&base->lock, flags);
1da177e4
LT
677
678 return ret;
679}
680
2aae4a10 681/**
74019224
IM
682 * mod_timer_pending - modify a pending timer's timeout
683 * @timer: the pending timer to be modified
684 * @expires: new timeout in jiffies
1da177e4 685 *
74019224
IM
686 * mod_timer_pending() is the same for pending timers as mod_timer(),
687 * but will not re-activate and modify already deleted timers.
688 *
689 * It is useful for unserialized use of timers.
1da177e4 690 */
74019224 691int mod_timer_pending(struct timer_list *timer, unsigned long expires)
1da177e4 692{
597d0275 693 return __mod_timer(timer, expires, true, TIMER_NOT_PINNED);
1da177e4 694}
74019224 695EXPORT_SYMBOL(mod_timer_pending);
1da177e4 696
2aae4a10 697/**
1da177e4
LT
698 * mod_timer - modify a timer's timeout
699 * @timer: the timer to be modified
2aae4a10 700 * @expires: new timeout in jiffies
1da177e4 701 *
72fd4a35 702 * mod_timer() is a more efficient way to update the expire field of an
1da177e4
LT
703 * active timer (if the timer is inactive it will be activated)
704 *
705 * mod_timer(timer, expires) is equivalent to:
706 *
707 * del_timer(timer); timer->expires = expires; add_timer(timer);
708 *
709 * Note that if there are multiple unserialized concurrent users of the
710 * same timer, then mod_timer() is the only safe way to modify the timeout,
711 * since add_timer() cannot modify an already running timer.
712 *
713 * The function returns whether it has modified a pending timer or not.
714 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
715 * active timer returns 1.)
716 */
717int mod_timer(struct timer_list *timer, unsigned long expires)
718{
1da177e4
LT
719 /*
720 * This is a common optimization triggered by the
721 * networking code - if the timer is re-modified
722 * to be the same thing then just return:
723 */
4841158b 724 if (timer_pending(timer) && timer->expires == expires)
1da177e4
LT
725 return 1;
726
597d0275 727 return __mod_timer(timer, expires, false, TIMER_NOT_PINNED);
1da177e4 728}
1da177e4
LT
729EXPORT_SYMBOL(mod_timer);
730
597d0275
AB
731/**
732 * mod_timer_pinned - modify a timer's timeout
733 * @timer: the timer to be modified
734 * @expires: new timeout in jiffies
735 *
736 * mod_timer_pinned() is a way to update the expire field of an
737 * active timer (if the timer is inactive it will be activated)
738 * and not allow the timer to be migrated to a different CPU.
739 *
740 * mod_timer_pinned(timer, expires) is equivalent to:
741 *
742 * del_timer(timer); timer->expires = expires; add_timer(timer);
743 */
744int mod_timer_pinned(struct timer_list *timer, unsigned long expires)
745{
746 if (timer->expires == expires && timer_pending(timer))
747 return 1;
748
749 return __mod_timer(timer, expires, false, TIMER_PINNED);
750}
751EXPORT_SYMBOL(mod_timer_pinned);
752
74019224
IM
753/**
754 * add_timer - start a timer
755 * @timer: the timer to be added
756 *
757 * The kernel will do a ->function(->data) callback from the
758 * timer interrupt at the ->expires point in the future. The
759 * current time is 'jiffies'.
760 *
761 * The timer's ->expires, ->function (and if the handler uses it, ->data)
762 * fields must be set prior calling this function.
763 *
764 * Timers with an ->expires field in the past will be executed in the next
765 * timer tick.
766 */
767void add_timer(struct timer_list *timer)
768{
769 BUG_ON(timer_pending(timer));
770 mod_timer(timer, timer->expires);
771}
772EXPORT_SYMBOL(add_timer);
773
774/**
775 * add_timer_on - start a timer on a particular CPU
776 * @timer: the timer to be added
777 * @cpu: the CPU to start it on
778 *
779 * This is not very scalable on SMP. Double adds are not possible.
780 */
781void add_timer_on(struct timer_list *timer, int cpu)
782{
783 struct tvec_base *base = per_cpu(tvec_bases, cpu);
784 unsigned long flags;
785
786 timer_stats_timer_set_start_info(timer);
787 BUG_ON(timer_pending(timer) || !timer->function);
788 spin_lock_irqsave(&base->lock, flags);
789 timer_set_base(timer, base);
790 debug_timer_activate(timer);
97fd9ed4
MS
791 if (time_before(timer->expires, base->next_timer) &&
792 !tbase_get_deferrable(timer->base))
793 base->next_timer = timer->expires;
74019224
IM
794 internal_add_timer(base, timer);
795 /*
796 * Check whether the other CPU is idle and needs to be
797 * triggered to reevaluate the timer wheel when nohz is
798 * active. We are protected against the other CPU fiddling
799 * with the timer by holding the timer base lock. This also
800 * makes sure that a CPU on the way to idle can not evaluate
801 * the timer wheel.
802 */
803 wake_up_idle_cpu(cpu);
804 spin_unlock_irqrestore(&base->lock, flags);
805}
a9862e05 806EXPORT_SYMBOL_GPL(add_timer_on);
74019224 807
2aae4a10 808/**
1da177e4
LT
809 * del_timer - deactive a timer.
810 * @timer: the timer to be deactivated
811 *
812 * del_timer() deactivates a timer - this works on both active and inactive
813 * timers.
814 *
815 * The function returns whether it has deactivated a pending timer or not.
816 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
817 * active timer returns 1.)
818 */
819int del_timer(struct timer_list *timer)
820{
a6fa8e5a 821 struct tvec_base *base;
1da177e4 822 unsigned long flags;
55c888d6 823 int ret = 0;
1da177e4 824
82f67cd9 825 timer_stats_timer_clear_start_info(timer);
55c888d6
ON
826 if (timer_pending(timer)) {
827 base = lock_timer_base(timer, &flags);
828 if (timer_pending(timer)) {
829 detach_timer(timer, 1);
97fd9ed4
MS
830 if (timer->expires == base->next_timer &&
831 !tbase_get_deferrable(timer->base))
832 base->next_timer = base->timer_jiffies;
55c888d6
ON
833 ret = 1;
834 }
1da177e4 835 spin_unlock_irqrestore(&base->lock, flags);
1da177e4 836 }
1da177e4 837
55c888d6 838 return ret;
1da177e4 839}
1da177e4
LT
840EXPORT_SYMBOL(del_timer);
841
842#ifdef CONFIG_SMP
2aae4a10
REB
843/**
844 * try_to_del_timer_sync - Try to deactivate a timer
845 * @timer: timer do del
846 *
fd450b73
ON
847 * This function tries to deactivate a timer. Upon successful (ret >= 0)
848 * exit the timer is not queued and the handler is not running on any CPU.
849 *
850 * It must not be called from interrupt contexts.
851 */
852int try_to_del_timer_sync(struct timer_list *timer)
853{
a6fa8e5a 854 struct tvec_base *base;
fd450b73
ON
855 unsigned long flags;
856 int ret = -1;
857
858 base = lock_timer_base(timer, &flags);
859
860 if (base->running_timer == timer)
861 goto out;
862
863 ret = 0;
864 if (timer_pending(timer)) {
865 detach_timer(timer, 1);
97fd9ed4
MS
866 if (timer->expires == base->next_timer &&
867 !tbase_get_deferrable(timer->base))
868 base->next_timer = base->timer_jiffies;
fd450b73
ON
869 ret = 1;
870 }
871out:
872 spin_unlock_irqrestore(&base->lock, flags);
873
874 return ret;
875}
e19dff1f
DH
876EXPORT_SYMBOL(try_to_del_timer_sync);
877
2aae4a10 878/**
1da177e4
LT
879 * del_timer_sync - deactivate a timer and wait for the handler to finish.
880 * @timer: the timer to be deactivated
881 *
882 * This function only differs from del_timer() on SMP: besides deactivating
883 * the timer it also makes sure the handler has finished executing on other
884 * CPUs.
885 *
72fd4a35 886 * Synchronization rules: Callers must prevent restarting of the timer,
1da177e4
LT
887 * otherwise this function is meaningless. It must not be called from
888 * interrupt contexts. The caller must not hold locks which would prevent
55c888d6
ON
889 * completion of the timer's handler. The timer's handler must not call
890 * add_timer_on(). Upon exit the timer is not queued and the handler is
891 * not running on any CPU.
1da177e4
LT
892 *
893 * The function returns whether it has deactivated a pending timer or not.
1da177e4
LT
894 */
895int del_timer_sync(struct timer_list *timer)
896{
6f2b9b9a
JB
897#ifdef CONFIG_LOCKDEP
898 unsigned long flags;
899
900 local_irq_save(flags);
901 lock_map_acquire(&timer->lockdep_map);
902 lock_map_release(&timer->lockdep_map);
903 local_irq_restore(flags);
904#endif
905
fd450b73
ON
906 for (;;) {
907 int ret = try_to_del_timer_sync(timer);
908 if (ret >= 0)
909 return ret;
a0009652 910 cpu_relax();
fd450b73 911 }
1da177e4 912}
55c888d6 913EXPORT_SYMBOL(del_timer_sync);
1da177e4
LT
914#endif
915
a6fa8e5a 916static int cascade(struct tvec_base *base, struct tvec *tv, int index)
1da177e4
LT
917{
918 /* cascade all the timers from tv up one level */
3439dd86
P
919 struct timer_list *timer, *tmp;
920 struct list_head tv_list;
921
922 list_replace_init(tv->vec + index, &tv_list);
1da177e4 923
1da177e4 924 /*
3439dd86
P
925 * We are removing _all_ timers from the list, so we
926 * don't have to detach them individually.
1da177e4 927 */
3439dd86 928 list_for_each_entry_safe(timer, tmp, &tv_list, entry) {
6e453a67 929 BUG_ON(tbase_get_base(timer->base) != base);
3439dd86 930 internal_add_timer(base, timer);
1da177e4 931 }
1da177e4
LT
932
933 return index;
934}
935
2aae4a10
REB
936#define INDEX(N) ((base->timer_jiffies >> (TVR_BITS + (N) * TVN_BITS)) & TVN_MASK)
937
938/**
1da177e4
LT
939 * __run_timers - run all expired timers (if any) on this CPU.
940 * @base: the timer vector to be processed.
941 *
942 * This function cascades all vectors and executes all expired timer
943 * vectors.
944 */
a6fa8e5a 945static inline void __run_timers(struct tvec_base *base)
1da177e4
LT
946{
947 struct timer_list *timer;
948
3691c519 949 spin_lock_irq(&base->lock);
1da177e4 950 while (time_after_eq(jiffies, base->timer_jiffies)) {
626ab0e6 951 struct list_head work_list;
1da177e4 952 struct list_head *head = &work_list;
6819457d 953 int index = base->timer_jiffies & TVR_MASK;
626ab0e6 954
1da177e4
LT
955 /*
956 * Cascade timers:
957 */
958 if (!index &&
959 (!cascade(base, &base->tv2, INDEX(0))) &&
960 (!cascade(base, &base->tv3, INDEX(1))) &&
961 !cascade(base, &base->tv4, INDEX(2)))
962 cascade(base, &base->tv5, INDEX(3));
626ab0e6
ON
963 ++base->timer_jiffies;
964 list_replace_init(base->tv1.vec + index, &work_list);
55c888d6 965 while (!list_empty(head)) {
1da177e4
LT
966 void (*fn)(unsigned long);
967 unsigned long data;
968
b5e61818 969 timer = list_first_entry(head, struct timer_list,entry);
6819457d
TG
970 fn = timer->function;
971 data = timer->data;
1da177e4 972
82f67cd9
IM
973 timer_stats_account_timer(timer);
974
1da177e4 975 set_running_timer(base, timer);
55c888d6 976 detach_timer(timer, 1);
6f2b9b9a 977
3691c519 978 spin_unlock_irq(&base->lock);
1da177e4 979 {
be5b4fbd 980 int preempt_count = preempt_count();
6f2b9b9a
JB
981
982#ifdef CONFIG_LOCKDEP
983 /*
984 * It is permissible to free the timer from
985 * inside the function that is called from
986 * it, this we need to take into account for
987 * lockdep too. To avoid bogus "held lock
988 * freed" warnings as well as problems when
989 * looking into timer->lockdep_map, make a
990 * copy and use that here.
991 */
992 struct lockdep_map lockdep_map =
993 timer->lockdep_map;
994#endif
995 /*
996 * Couple the lock chain with the lock chain at
997 * del_timer_sync() by acquiring the lock_map
998 * around the fn() call here and in
999 * del_timer_sync().
1000 */
1001 lock_map_acquire(&lockdep_map);
1002
1da177e4 1003 fn(data);
6f2b9b9a
JB
1004
1005 lock_map_release(&lockdep_map);
1006
1da177e4 1007 if (preempt_count != preempt_count()) {
4c9dc641 1008 printk(KERN_ERR "huh, entered %p "
be5b4fbd
JJ
1009 "with preempt_count %08x, exited"
1010 " with %08x?\n",
1011 fn, preempt_count,
1012 preempt_count());
1da177e4
LT
1013 BUG();
1014 }
1015 }
3691c519 1016 spin_lock_irq(&base->lock);
1da177e4
LT
1017 }
1018 }
1019 set_running_timer(base, NULL);
3691c519 1020 spin_unlock_irq(&base->lock);
1da177e4
LT
1021}
1022
ee9c5785 1023#ifdef CONFIG_NO_HZ
1da177e4
LT
1024/*
1025 * Find out when the next timer event is due to happen. This
1026 * is used on S/390 to stop all activity when a cpus is idle.
1027 * This functions needs to be called disabled.
1028 */
a6fa8e5a 1029static unsigned long __next_timer_interrupt(struct tvec_base *base)
1da177e4 1030{
1cfd6849 1031 unsigned long timer_jiffies = base->timer_jiffies;
eaad084b 1032 unsigned long expires = timer_jiffies + NEXT_TIMER_MAX_DELTA;
1cfd6849 1033 int index, slot, array, found = 0;
1da177e4 1034 struct timer_list *nte;
a6fa8e5a 1035 struct tvec *varray[4];
1da177e4
LT
1036
1037 /* Look for timer events in tv1. */
1cfd6849 1038 index = slot = timer_jiffies & TVR_MASK;
1da177e4 1039 do {
1cfd6849 1040 list_for_each_entry(nte, base->tv1.vec + slot, entry) {
6819457d
TG
1041 if (tbase_get_deferrable(nte->base))
1042 continue;
6e453a67 1043
1cfd6849 1044 found = 1;
1da177e4 1045 expires = nte->expires;
1cfd6849
TG
1046 /* Look at the cascade bucket(s)? */
1047 if (!index || slot < index)
1048 goto cascade;
1049 return expires;
1da177e4 1050 }
1cfd6849
TG
1051 slot = (slot + 1) & TVR_MASK;
1052 } while (slot != index);
1053
1054cascade:
1055 /* Calculate the next cascade event */
1056 if (index)
1057 timer_jiffies += TVR_SIZE - index;
1058 timer_jiffies >>= TVR_BITS;
1da177e4
LT
1059
1060 /* Check tv2-tv5. */
1061 varray[0] = &base->tv2;
1062 varray[1] = &base->tv3;
1063 varray[2] = &base->tv4;
1064 varray[3] = &base->tv5;
1cfd6849
TG
1065
1066 for (array = 0; array < 4; array++) {
a6fa8e5a 1067 struct tvec *varp = varray[array];
1cfd6849
TG
1068
1069 index = slot = timer_jiffies & TVN_MASK;
1da177e4 1070 do {
1cfd6849 1071 list_for_each_entry(nte, varp->vec + slot, entry) {
a0419888
JH
1072 if (tbase_get_deferrable(nte->base))
1073 continue;
1074
1cfd6849 1075 found = 1;
1da177e4
LT
1076 if (time_before(nte->expires, expires))
1077 expires = nte->expires;
1cfd6849
TG
1078 }
1079 /*
1080 * Do we still search for the first timer or are
1081 * we looking up the cascade buckets ?
1082 */
1083 if (found) {
1084 /* Look at the cascade bucket(s)? */
1085 if (!index || slot < index)
1086 break;
1087 return expires;
1088 }
1089 slot = (slot + 1) & TVN_MASK;
1090 } while (slot != index);
1091
1092 if (index)
1093 timer_jiffies += TVN_SIZE - index;
1094 timer_jiffies >>= TVN_BITS;
1da177e4 1095 }
1cfd6849
TG
1096 return expires;
1097}
69239749 1098
1cfd6849
TG
1099/*
1100 * Check, if the next hrtimer event is before the next timer wheel
1101 * event:
1102 */
1103static unsigned long cmp_next_hrtimer_event(unsigned long now,
1104 unsigned long expires)
1105{
1106 ktime_t hr_delta = hrtimer_get_next_event();
1107 struct timespec tsdelta;
9501b6cf 1108 unsigned long delta;
1cfd6849
TG
1109
1110 if (hr_delta.tv64 == KTIME_MAX)
1111 return expires;
0662b713 1112
9501b6cf
TG
1113 /*
1114 * Expired timer available, let it expire in the next tick
1115 */
1116 if (hr_delta.tv64 <= 0)
1117 return now + 1;
69239749 1118
1cfd6849 1119 tsdelta = ktime_to_timespec(hr_delta);
9501b6cf 1120 delta = timespec_to_jiffies(&tsdelta);
eaad084b
TG
1121
1122 /*
1123 * Limit the delta to the max value, which is checked in
1124 * tick_nohz_stop_sched_tick():
1125 */
1126 if (delta > NEXT_TIMER_MAX_DELTA)
1127 delta = NEXT_TIMER_MAX_DELTA;
1128
9501b6cf
TG
1129 /*
1130 * Take rounding errors in to account and make sure, that it
1131 * expires in the next tick. Otherwise we go into an endless
1132 * ping pong due to tick_nohz_stop_sched_tick() retriggering
1133 * the timer softirq
1134 */
1135 if (delta < 1)
1136 delta = 1;
1137 now += delta;
1cfd6849
TG
1138 if (time_before(now, expires))
1139 return now;
1da177e4
LT
1140 return expires;
1141}
1cfd6849
TG
1142
1143/**
8dce39c2 1144 * get_next_timer_interrupt - return the jiffy of the next pending timer
05fb6bf0 1145 * @now: current time (in jiffies)
1cfd6849 1146 */
fd064b9b 1147unsigned long get_next_timer_interrupt(unsigned long now)
1cfd6849 1148{
a6fa8e5a 1149 struct tvec_base *base = __get_cpu_var(tvec_bases);
fd064b9b 1150 unsigned long expires;
1cfd6849
TG
1151
1152 spin_lock(&base->lock);
97fd9ed4
MS
1153 if (time_before_eq(base->next_timer, base->timer_jiffies))
1154 base->next_timer = __next_timer_interrupt(base);
1155 expires = base->next_timer;
1cfd6849
TG
1156 spin_unlock(&base->lock);
1157
1158 if (time_before_eq(expires, now))
1159 return now;
1160
1161 return cmp_next_hrtimer_event(now, expires);
1162}
1da177e4
LT
1163#endif
1164
1da177e4 1165/*
5b4db0c2 1166 * Called from the timer interrupt handler to charge one tick to the current
1da177e4
LT
1167 * process. user_tick is 1 if the tick is user time, 0 for system.
1168 */
1169void update_process_times(int user_tick)
1170{
1171 struct task_struct *p = current;
1172 int cpu = smp_processor_id();
1173
1174 /* Note: this timer irq context must be accounted for as well. */
fa13a5a1 1175 account_process_tick(p, user_tick);
1da177e4
LT
1176 run_local_timers();
1177 if (rcu_pending(cpu))
1178 rcu_check_callbacks(cpu, user_tick);
b845b517 1179 printk_tick();
1da177e4 1180 scheduler_tick();
6819457d 1181 run_posix_cpu_timers(p);
1da177e4
LT
1182}
1183
1da177e4
LT
1184/*
1185 * This function runs timers and the timer-tq in bottom half context.
1186 */
1187static void run_timer_softirq(struct softirq_action *h)
1188{
a6fa8e5a 1189 struct tvec_base *base = __get_cpu_var(tvec_bases);
1da177e4 1190
925d519a
PZ
1191 perf_counter_do_pending();
1192
d3d74453 1193 hrtimer_run_pending();
82f67cd9 1194
1da177e4
LT
1195 if (time_after_eq(jiffies, base->timer_jiffies))
1196 __run_timers(base);
1197}
1198
1199/*
1200 * Called by the local, per-CPU timer interrupt on SMP.
1201 */
1202void run_local_timers(void)
1203{
d3d74453 1204 hrtimer_run_queues();
1da177e4 1205 raise_softirq(TIMER_SOFTIRQ);
6687a97d 1206 softlockup_tick();
1da177e4
LT
1207}
1208
1da177e4
LT
1209/*
1210 * The 64-bit jiffies value is not atomic - you MUST NOT read it
1211 * without sampling the sequence number in xtime_lock.
1212 * jiffies is defined in the linker script...
1213 */
1214
3171a030 1215void do_timer(unsigned long ticks)
1da177e4 1216{
3171a030 1217 jiffies_64 += ticks;
dce48a84
TG
1218 update_wall_time();
1219 calc_global_load();
1da177e4
LT
1220}
1221
1222#ifdef __ARCH_WANT_SYS_ALARM
1223
1224/*
1225 * For backwards compatibility? This can be done in libc so Alpha
1226 * and all newer ports shouldn't need it.
1227 */
58fd3aa2 1228SYSCALL_DEFINE1(alarm, unsigned int, seconds)
1da177e4 1229{
c08b8a49 1230 return alarm_setitimer(seconds);
1da177e4
LT
1231}
1232
1233#endif
1234
1235#ifndef __alpha__
1236
1237/*
1238 * The Alpha uses getxpid, getxuid, and getxgid instead. Maybe this
1239 * should be moved into arch/i386 instead?
1240 */
1241
1242/**
1243 * sys_getpid - return the thread group id of the current process
1244 *
1245 * Note, despite the name, this returns the tgid not the pid. The tgid and
1246 * the pid are identical unless CLONE_THREAD was specified on clone() in
1247 * which case the tgid is the same in all threads of the same group.
1248 *
1249 * This is SMP safe as current->tgid does not change.
1250 */
58fd3aa2 1251SYSCALL_DEFINE0(getpid)
1da177e4 1252{
b488893a 1253 return task_tgid_vnr(current);
1da177e4
LT
1254}
1255
1256/*
6997a6fa
KK
1257 * Accessing ->real_parent is not SMP-safe, it could
1258 * change from under us. However, we can use a stale
1259 * value of ->real_parent under rcu_read_lock(), see
1260 * release_task()->call_rcu(delayed_put_task_struct).
1da177e4 1261 */
dbf040d9 1262SYSCALL_DEFINE0(getppid)
1da177e4
LT
1263{
1264 int pid;
1da177e4 1265
6997a6fa 1266 rcu_read_lock();
6c5f3e7b 1267 pid = task_tgid_vnr(current->real_parent);
6997a6fa 1268 rcu_read_unlock();
1da177e4 1269
1da177e4
LT
1270 return pid;
1271}
1272
dbf040d9 1273SYSCALL_DEFINE0(getuid)
1da177e4
LT
1274{
1275 /* Only we change this so SMP safe */
76aac0e9 1276 return current_uid();
1da177e4
LT
1277}
1278
dbf040d9 1279SYSCALL_DEFINE0(geteuid)
1da177e4
LT
1280{
1281 /* Only we change this so SMP safe */
76aac0e9 1282 return current_euid();
1da177e4
LT
1283}
1284
dbf040d9 1285SYSCALL_DEFINE0(getgid)
1da177e4
LT
1286{
1287 /* Only we change this so SMP safe */
76aac0e9 1288 return current_gid();
1da177e4
LT
1289}
1290
dbf040d9 1291SYSCALL_DEFINE0(getegid)
1da177e4
LT
1292{
1293 /* Only we change this so SMP safe */
76aac0e9 1294 return current_egid();
1da177e4
LT
1295}
1296
1297#endif
1298
1299static void process_timeout(unsigned long __data)
1300{
36c8b586 1301 wake_up_process((struct task_struct *)__data);
1da177e4
LT
1302}
1303
1304/**
1305 * schedule_timeout - sleep until timeout
1306 * @timeout: timeout value in jiffies
1307 *
1308 * Make the current task sleep until @timeout jiffies have
1309 * elapsed. The routine will return immediately unless
1310 * the current task state has been set (see set_current_state()).
1311 *
1312 * You can set the task state as follows -
1313 *
1314 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1315 * pass before the routine returns. The routine will return 0
1316 *
1317 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1318 * delivered to the current task. In this case the remaining time
1319 * in jiffies will be returned, or 0 if the timer expired in time
1320 *
1321 * The current task state is guaranteed to be TASK_RUNNING when this
1322 * routine returns.
1323 *
1324 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1325 * the CPU away without a bound on the timeout. In this case the return
1326 * value will be %MAX_SCHEDULE_TIMEOUT.
1327 *
1328 * In all cases the return value is guaranteed to be non-negative.
1329 */
7ad5b3a5 1330signed long __sched schedule_timeout(signed long timeout)
1da177e4
LT
1331{
1332 struct timer_list timer;
1333 unsigned long expire;
1334
1335 switch (timeout)
1336 {
1337 case MAX_SCHEDULE_TIMEOUT:
1338 /*
1339 * These two special cases are useful to be comfortable
1340 * in the caller. Nothing more. We could take
1341 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1342 * but I' d like to return a valid offset (>=0) to allow
1343 * the caller to do everything it want with the retval.
1344 */
1345 schedule();
1346 goto out;
1347 default:
1348 /*
1349 * Another bit of PARANOID. Note that the retval will be
1350 * 0 since no piece of kernel is supposed to do a check
1351 * for a negative retval of schedule_timeout() (since it
1352 * should never happens anyway). You just have the printk()
1353 * that will tell you if something is gone wrong and where.
1354 */
5b149bcc 1355 if (timeout < 0) {
1da177e4 1356 printk(KERN_ERR "schedule_timeout: wrong timeout "
5b149bcc
AM
1357 "value %lx\n", timeout);
1358 dump_stack();
1da177e4
LT
1359 current->state = TASK_RUNNING;
1360 goto out;
1361 }
1362 }
1363
1364 expire = timeout + jiffies;
1365
c6f3a97f 1366 setup_timer_on_stack(&timer, process_timeout, (unsigned long)current);
597d0275 1367 __mod_timer(&timer, expire, false, TIMER_NOT_PINNED);
1da177e4
LT
1368 schedule();
1369 del_singleshot_timer_sync(&timer);
1370
c6f3a97f
TG
1371 /* Remove the timer from the object tracker */
1372 destroy_timer_on_stack(&timer);
1373
1da177e4
LT
1374 timeout = expire - jiffies;
1375
1376 out:
1377 return timeout < 0 ? 0 : timeout;
1378}
1da177e4
LT
1379EXPORT_SYMBOL(schedule_timeout);
1380
8a1c1757
AM
1381/*
1382 * We can use __set_current_state() here because schedule_timeout() calls
1383 * schedule() unconditionally.
1384 */
64ed93a2
NA
1385signed long __sched schedule_timeout_interruptible(signed long timeout)
1386{
a5a0d52c
AM
1387 __set_current_state(TASK_INTERRUPTIBLE);
1388 return schedule_timeout(timeout);
64ed93a2
NA
1389}
1390EXPORT_SYMBOL(schedule_timeout_interruptible);
1391
294d5cc2
MW
1392signed long __sched schedule_timeout_killable(signed long timeout)
1393{
1394 __set_current_state(TASK_KILLABLE);
1395 return schedule_timeout(timeout);
1396}
1397EXPORT_SYMBOL(schedule_timeout_killable);
1398
64ed93a2
NA
1399signed long __sched schedule_timeout_uninterruptible(signed long timeout)
1400{
a5a0d52c
AM
1401 __set_current_state(TASK_UNINTERRUPTIBLE);
1402 return schedule_timeout(timeout);
64ed93a2
NA
1403}
1404EXPORT_SYMBOL(schedule_timeout_uninterruptible);
1405
1da177e4 1406/* Thread ID - the internal kernel "pid" */
58fd3aa2 1407SYSCALL_DEFINE0(gettid)
1da177e4 1408{
b488893a 1409 return task_pid_vnr(current);
1da177e4
LT
1410}
1411
2aae4a10 1412/**
d4d23add 1413 * do_sysinfo - fill in sysinfo struct
2aae4a10 1414 * @info: pointer to buffer to fill
6819457d 1415 */
d4d23add 1416int do_sysinfo(struct sysinfo *info)
1da177e4 1417{
1da177e4
LT
1418 unsigned long mem_total, sav_total;
1419 unsigned int mem_unit, bitcount;
2d02494f 1420 struct timespec tp;
1da177e4 1421
d4d23add 1422 memset(info, 0, sizeof(struct sysinfo));
1da177e4 1423
2d02494f
TG
1424 ktime_get_ts(&tp);
1425 monotonic_to_bootbased(&tp);
1426 info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
1da177e4 1427
2d02494f 1428 get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT);
1da177e4 1429
2d02494f 1430 info->procs = nr_threads;
1da177e4 1431
d4d23add
KM
1432 si_meminfo(info);
1433 si_swapinfo(info);
1da177e4
LT
1434
1435 /*
1436 * If the sum of all the available memory (i.e. ram + swap)
1437 * is less than can be stored in a 32 bit unsigned long then
1438 * we can be binary compatible with 2.2.x kernels. If not,
1439 * well, in that case 2.2.x was broken anyways...
1440 *
1441 * -Erik Andersen <andersee@debian.org>
1442 */
1443
d4d23add
KM
1444 mem_total = info->totalram + info->totalswap;
1445 if (mem_total < info->totalram || mem_total < info->totalswap)
1da177e4
LT
1446 goto out;
1447 bitcount = 0;
d4d23add 1448 mem_unit = info->mem_unit;
1da177e4
LT
1449 while (mem_unit > 1) {
1450 bitcount++;
1451 mem_unit >>= 1;
1452 sav_total = mem_total;
1453 mem_total <<= 1;
1454 if (mem_total < sav_total)
1455 goto out;
1456 }
1457
1458 /*
1459 * If mem_total did not overflow, multiply all memory values by
d4d23add 1460 * info->mem_unit and set it to 1. This leaves things compatible
1da177e4
LT
1461 * with 2.2.x, and also retains compatibility with earlier 2.4.x
1462 * kernels...
1463 */
1464
d4d23add
KM
1465 info->mem_unit = 1;
1466 info->totalram <<= bitcount;
1467 info->freeram <<= bitcount;
1468 info->sharedram <<= bitcount;
1469 info->bufferram <<= bitcount;
1470 info->totalswap <<= bitcount;
1471 info->freeswap <<= bitcount;
1472 info->totalhigh <<= bitcount;
1473 info->freehigh <<= bitcount;
1474
1475out:
1476 return 0;
1477}
1478
1e7bfb21 1479SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
d4d23add
KM
1480{
1481 struct sysinfo val;
1482
1483 do_sysinfo(&val);
1da177e4 1484
1da177e4
LT
1485 if (copy_to_user(info, &val, sizeof(struct sysinfo)))
1486 return -EFAULT;
1487
1488 return 0;
1489}
1490
b4be6258 1491static int __cpuinit init_timers_cpu(int cpu)
1da177e4
LT
1492{
1493 int j;
a6fa8e5a 1494 struct tvec_base *base;
b4be6258 1495 static char __cpuinitdata tvec_base_done[NR_CPUS];
55c888d6 1496
ba6edfcd 1497 if (!tvec_base_done[cpu]) {
a4a6198b
JB
1498 static char boot_done;
1499
a4a6198b 1500 if (boot_done) {
ba6edfcd
AM
1501 /*
1502 * The APs use this path later in boot
1503 */
94f6030c
CL
1504 base = kmalloc_node(sizeof(*base),
1505 GFP_KERNEL | __GFP_ZERO,
a4a6198b
JB
1506 cpu_to_node(cpu));
1507 if (!base)
1508 return -ENOMEM;
6e453a67
VP
1509
1510 /* Make sure that tvec_base is 2 byte aligned */
1511 if (tbase_get_deferrable(base)) {
1512 WARN_ON(1);
1513 kfree(base);
1514 return -ENOMEM;
1515 }
ba6edfcd 1516 per_cpu(tvec_bases, cpu) = base;
a4a6198b 1517 } else {
ba6edfcd
AM
1518 /*
1519 * This is for the boot CPU - we use compile-time
1520 * static initialisation because per-cpu memory isn't
1521 * ready yet and because the memory allocators are not
1522 * initialised either.
1523 */
a4a6198b 1524 boot_done = 1;
ba6edfcd 1525 base = &boot_tvec_bases;
a4a6198b 1526 }
ba6edfcd
AM
1527 tvec_base_done[cpu] = 1;
1528 } else {
1529 base = per_cpu(tvec_bases, cpu);
a4a6198b 1530 }
ba6edfcd 1531
3691c519 1532 spin_lock_init(&base->lock);
d730e882 1533
1da177e4
LT
1534 for (j = 0; j < TVN_SIZE; j++) {
1535 INIT_LIST_HEAD(base->tv5.vec + j);
1536 INIT_LIST_HEAD(base->tv4.vec + j);
1537 INIT_LIST_HEAD(base->tv3.vec + j);
1538 INIT_LIST_HEAD(base->tv2.vec + j);
1539 }
1540 for (j = 0; j < TVR_SIZE; j++)
1541 INIT_LIST_HEAD(base->tv1.vec + j);
1542
1543 base->timer_jiffies = jiffies;
97fd9ed4 1544 base->next_timer = base->timer_jiffies;
a4a6198b 1545 return 0;
1da177e4
LT
1546}
1547
1548#ifdef CONFIG_HOTPLUG_CPU
a6fa8e5a 1549static void migrate_timer_list(struct tvec_base *new_base, struct list_head *head)
1da177e4
LT
1550{
1551 struct timer_list *timer;
1552
1553 while (!list_empty(head)) {
b5e61818 1554 timer = list_first_entry(head, struct timer_list, entry);
55c888d6 1555 detach_timer(timer, 0);
6e453a67 1556 timer_set_base(timer, new_base);
97fd9ed4
MS
1557 if (time_before(timer->expires, new_base->next_timer) &&
1558 !tbase_get_deferrable(timer->base))
1559 new_base->next_timer = timer->expires;
1da177e4 1560 internal_add_timer(new_base, timer);
1da177e4 1561 }
1da177e4
LT
1562}
1563
48ccf3da 1564static void __cpuinit migrate_timers(int cpu)
1da177e4 1565{
a6fa8e5a
PM
1566 struct tvec_base *old_base;
1567 struct tvec_base *new_base;
1da177e4
LT
1568 int i;
1569
1570 BUG_ON(cpu_online(cpu));
a4a6198b
JB
1571 old_base = per_cpu(tvec_bases, cpu);
1572 new_base = get_cpu_var(tvec_bases);
d82f0b0f
ON
1573 /*
1574 * The caller is globally serialized and nobody else
1575 * takes two locks at once, deadlock is not possible.
1576 */
1577 spin_lock_irq(&new_base->lock);
0d180406 1578 spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
3691c519
ON
1579
1580 BUG_ON(old_base->running_timer);
1da177e4 1581
1da177e4 1582 for (i = 0; i < TVR_SIZE; i++)
55c888d6
ON
1583 migrate_timer_list(new_base, old_base->tv1.vec + i);
1584 for (i = 0; i < TVN_SIZE; i++) {
1585 migrate_timer_list(new_base, old_base->tv2.vec + i);
1586 migrate_timer_list(new_base, old_base->tv3.vec + i);
1587 migrate_timer_list(new_base, old_base->tv4.vec + i);
1588 migrate_timer_list(new_base, old_base->tv5.vec + i);
1589 }
1590
0d180406 1591 spin_unlock(&old_base->lock);
d82f0b0f 1592 spin_unlock_irq(&new_base->lock);
1da177e4 1593 put_cpu_var(tvec_bases);
1da177e4
LT
1594}
1595#endif /* CONFIG_HOTPLUG_CPU */
1596
8c78f307 1597static int __cpuinit timer_cpu_notify(struct notifier_block *self,
1da177e4
LT
1598 unsigned long action, void *hcpu)
1599{
1600 long cpu = (long)hcpu;
1601 switch(action) {
1602 case CPU_UP_PREPARE:
8bb78442 1603 case CPU_UP_PREPARE_FROZEN:
a4a6198b
JB
1604 if (init_timers_cpu(cpu) < 0)
1605 return NOTIFY_BAD;
1da177e4
LT
1606 break;
1607#ifdef CONFIG_HOTPLUG_CPU
1608 case CPU_DEAD:
8bb78442 1609 case CPU_DEAD_FROZEN:
1da177e4
LT
1610 migrate_timers(cpu);
1611 break;
1612#endif
1613 default:
1614 break;
1615 }
1616 return NOTIFY_OK;
1617}
1618
8c78f307 1619static struct notifier_block __cpuinitdata timers_nb = {
1da177e4
LT
1620 .notifier_call = timer_cpu_notify,
1621};
1622
1623
1624void __init init_timers(void)
1625{
07dccf33 1626 int err = timer_cpu_notify(&timers_nb, (unsigned long)CPU_UP_PREPARE,
1da177e4 1627 (void *)(long)smp_processor_id());
07dccf33 1628
82f67cd9
IM
1629 init_timer_stats();
1630
07dccf33 1631 BUG_ON(err == NOTIFY_BAD);
1da177e4 1632 register_cpu_notifier(&timers_nb);
962cf36c 1633 open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
1da177e4
LT
1634}
1635
1da177e4
LT
1636/**
1637 * msleep - sleep safely even with waitqueue interruptions
1638 * @msecs: Time in milliseconds to sleep for
1639 */
1640void msleep(unsigned int msecs)
1641{
1642 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1643
75bcc8c5
NA
1644 while (timeout)
1645 timeout = schedule_timeout_uninterruptible(timeout);
1da177e4
LT
1646}
1647
1648EXPORT_SYMBOL(msleep);
1649
1650/**
96ec3efd 1651 * msleep_interruptible - sleep waiting for signals
1da177e4
LT
1652 * @msecs: Time in milliseconds to sleep for
1653 */
1654unsigned long msleep_interruptible(unsigned int msecs)
1655{
1656 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1657
75bcc8c5
NA
1658 while (timeout && !signal_pending(current))
1659 timeout = schedule_timeout_interruptible(timeout);
1da177e4
LT
1660 return jiffies_to_msecs(timeout);
1661}
1662
1663EXPORT_SYMBOL(msleep_interruptible);