timers: Create detach_if_pending() and use it
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / timer.c
CommitLineData
1da177e4
LT
1/*
2 * linux/kernel/timer.c
3 *
8524070b 4 * Kernel internal timers, basic process system calls
1da177e4
LT
5 *
6 * Copyright (C) 1991, 1992 Linus Torvalds
7 *
8 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
9 *
10 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
11 * "A Kernel Model for Precision Timekeeping" by Dave Mills
12 * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
13 * serialize accesses to xtime/lost_ticks).
14 * Copyright (C) 1998 Andrea Arcangeli
15 * 1999-03-10 Improved NTP compatibility by Ulrich Windl
16 * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love
17 * 2000-10-05 Implemented scalable SMP per-CPU timer handling.
18 * Copyright (C) 2000, 2001, 2002 Ingo Molnar
19 * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
20 */
21
22#include <linux/kernel_stat.h>
9984de1a 23#include <linux/export.h>
1da177e4
LT
24#include <linux/interrupt.h>
25#include <linux/percpu.h>
26#include <linux/init.h>
27#include <linux/mm.h>
28#include <linux/swap.h>
b488893a 29#include <linux/pid_namespace.h>
1da177e4
LT
30#include <linux/notifier.h>
31#include <linux/thread_info.h>
32#include <linux/time.h>
33#include <linux/jiffies.h>
34#include <linux/posix-timers.h>
35#include <linux/cpu.h>
36#include <linux/syscalls.h>
97a41e26 37#include <linux/delay.h>
79bf2bb3 38#include <linux/tick.h>
82f67cd9 39#include <linux/kallsyms.h>
e360adbe 40#include <linux/irq_work.h>
eea08f32 41#include <linux/sched.h>
5a0e3ad6 42#include <linux/slab.h>
1da177e4
LT
43
44#include <asm/uaccess.h>
45#include <asm/unistd.h>
46#include <asm/div64.h>
47#include <asm/timex.h>
48#include <asm/io.h>
49
2b022e3d
XG
50#define CREATE_TRACE_POINTS
51#include <trace/events/timer.h>
52
ecea8d19
TG
53u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
54
55EXPORT_SYMBOL(jiffies_64);
56
1da177e4
LT
57/*
58 * per-CPU timer vector definitions:
59 */
1da177e4
LT
60#define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
61#define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
62#define TVN_SIZE (1 << TVN_BITS)
63#define TVR_SIZE (1 << TVR_BITS)
64#define TVN_MASK (TVN_SIZE - 1)
65#define TVR_MASK (TVR_SIZE - 1)
66
a6fa8e5a 67struct tvec {
1da177e4 68 struct list_head vec[TVN_SIZE];
a6fa8e5a 69};
1da177e4 70
a6fa8e5a 71struct tvec_root {
1da177e4 72 struct list_head vec[TVR_SIZE];
a6fa8e5a 73};
1da177e4 74
a6fa8e5a 75struct tvec_base {
3691c519
ON
76 spinlock_t lock;
77 struct timer_list *running_timer;
1da177e4 78 unsigned long timer_jiffies;
97fd9ed4 79 unsigned long next_timer;
a6fa8e5a
PM
80 struct tvec_root tv1;
81 struct tvec tv2;
82 struct tvec tv3;
83 struct tvec tv4;
84 struct tvec tv5;
6e453a67 85} ____cacheline_aligned;
1da177e4 86
a6fa8e5a 87struct tvec_base boot_tvec_bases;
3691c519 88EXPORT_SYMBOL(boot_tvec_bases);
a6fa8e5a 89static DEFINE_PER_CPU(struct tvec_base *, tvec_bases) = &boot_tvec_bases;
1da177e4 90
6e453a67 91/* Functions below help us manage 'deferrable' flag */
a6fa8e5a 92static inline unsigned int tbase_get_deferrable(struct tvec_base *base)
6e453a67 93{
e9910846 94 return ((unsigned int)(unsigned long)base & TBASE_DEFERRABLE_FLAG);
6e453a67
VP
95}
96
a6fa8e5a 97static inline struct tvec_base *tbase_get_base(struct tvec_base *base)
6e453a67 98{
a6fa8e5a 99 return ((struct tvec_base *)((unsigned long)base & ~TBASE_DEFERRABLE_FLAG));
6e453a67
VP
100}
101
102static inline void timer_set_deferrable(struct timer_list *timer)
103{
dd6414b5 104 timer->base = TBASE_MAKE_DEFERRED(timer->base);
6e453a67
VP
105}
106
107static inline void
a6fa8e5a 108timer_set_base(struct timer_list *timer, struct tvec_base *new_base)
6e453a67 109{
a6fa8e5a 110 timer->base = (struct tvec_base *)((unsigned long)(new_base) |
6819457d 111 tbase_get_deferrable(timer->base));
6e453a67
VP
112}
113
9c133c46
AS
114static unsigned long round_jiffies_common(unsigned long j, int cpu,
115 bool force_up)
4c36a5de
AV
116{
117 int rem;
118 unsigned long original = j;
119
120 /*
121 * We don't want all cpus firing their timers at once hitting the
122 * same lock or cachelines, so we skew each extra cpu with an extra
123 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
124 * already did this.
125 * The skew is done by adding 3*cpunr, then round, then subtract this
126 * extra offset again.
127 */
128 j += cpu * 3;
129
130 rem = j % HZ;
131
132 /*
133 * If the target jiffie is just after a whole second (which can happen
134 * due to delays of the timer irq, long irq off times etc etc) then
135 * we should round down to the whole second, not up. Use 1/4th second
136 * as cutoff for this rounding as an extreme upper bound for this.
9c133c46 137 * But never round down if @force_up is set.
4c36a5de 138 */
9c133c46 139 if (rem < HZ/4 && !force_up) /* round down */
4c36a5de
AV
140 j = j - rem;
141 else /* round up */
142 j = j - rem + HZ;
143
144 /* now that we have rounded, subtract the extra skew again */
145 j -= cpu * 3;
146
147 if (j <= jiffies) /* rounding ate our timeout entirely; */
148 return original;
149 return j;
150}
9c133c46
AS
151
152/**
153 * __round_jiffies - function to round jiffies to a full second
154 * @j: the time in (absolute) jiffies that should be rounded
155 * @cpu: the processor number on which the timeout will happen
156 *
157 * __round_jiffies() rounds an absolute time in the future (in jiffies)
158 * up or down to (approximately) full seconds. This is useful for timers
159 * for which the exact time they fire does not matter too much, as long as
160 * they fire approximately every X seconds.
161 *
162 * By rounding these timers to whole seconds, all such timers will fire
163 * at the same time, rather than at various times spread out. The goal
164 * of this is to have the CPU wake up less, which saves power.
165 *
166 * The exact rounding is skewed for each processor to avoid all
167 * processors firing at the exact same time, which could lead
168 * to lock contention or spurious cache line bouncing.
169 *
170 * The return value is the rounded version of the @j parameter.
171 */
172unsigned long __round_jiffies(unsigned long j, int cpu)
173{
174 return round_jiffies_common(j, cpu, false);
175}
4c36a5de
AV
176EXPORT_SYMBOL_GPL(__round_jiffies);
177
178/**
179 * __round_jiffies_relative - function to round jiffies to a full second
180 * @j: the time in (relative) jiffies that should be rounded
181 * @cpu: the processor number on which the timeout will happen
182 *
72fd4a35 183 * __round_jiffies_relative() rounds a time delta in the future (in jiffies)
4c36a5de
AV
184 * up or down to (approximately) full seconds. This is useful for timers
185 * for which the exact time they fire does not matter too much, as long as
186 * they fire approximately every X seconds.
187 *
188 * By rounding these timers to whole seconds, all such timers will fire
189 * at the same time, rather than at various times spread out. The goal
190 * of this is to have the CPU wake up less, which saves power.
191 *
192 * The exact rounding is skewed for each processor to avoid all
193 * processors firing at the exact same time, which could lead
194 * to lock contention or spurious cache line bouncing.
195 *
72fd4a35 196 * The return value is the rounded version of the @j parameter.
4c36a5de
AV
197 */
198unsigned long __round_jiffies_relative(unsigned long j, int cpu)
199{
9c133c46
AS
200 unsigned long j0 = jiffies;
201
202 /* Use j0 because jiffies might change while we run */
203 return round_jiffies_common(j + j0, cpu, false) - j0;
4c36a5de
AV
204}
205EXPORT_SYMBOL_GPL(__round_jiffies_relative);
206
207/**
208 * round_jiffies - function to round jiffies to a full second
209 * @j: the time in (absolute) jiffies that should be rounded
210 *
72fd4a35 211 * round_jiffies() rounds an absolute time in the future (in jiffies)
4c36a5de
AV
212 * up or down to (approximately) full seconds. This is useful for timers
213 * for which the exact time they fire does not matter too much, as long as
214 * they fire approximately every X seconds.
215 *
216 * By rounding these timers to whole seconds, all such timers will fire
217 * at the same time, rather than at various times spread out. The goal
218 * of this is to have the CPU wake up less, which saves power.
219 *
72fd4a35 220 * The return value is the rounded version of the @j parameter.
4c36a5de
AV
221 */
222unsigned long round_jiffies(unsigned long j)
223{
9c133c46 224 return round_jiffies_common(j, raw_smp_processor_id(), false);
4c36a5de
AV
225}
226EXPORT_SYMBOL_GPL(round_jiffies);
227
228/**
229 * round_jiffies_relative - function to round jiffies to a full second
230 * @j: the time in (relative) jiffies that should be rounded
231 *
72fd4a35 232 * round_jiffies_relative() rounds a time delta in the future (in jiffies)
4c36a5de
AV
233 * up or down to (approximately) full seconds. This is useful for timers
234 * for which the exact time they fire does not matter too much, as long as
235 * they fire approximately every X seconds.
236 *
237 * By rounding these timers to whole seconds, all such timers will fire
238 * at the same time, rather than at various times spread out. The goal
239 * of this is to have the CPU wake up less, which saves power.
240 *
72fd4a35 241 * The return value is the rounded version of the @j parameter.
4c36a5de
AV
242 */
243unsigned long round_jiffies_relative(unsigned long j)
244{
245 return __round_jiffies_relative(j, raw_smp_processor_id());
246}
247EXPORT_SYMBOL_GPL(round_jiffies_relative);
248
9c133c46
AS
249/**
250 * __round_jiffies_up - function to round jiffies up to a full second
251 * @j: the time in (absolute) jiffies that should be rounded
252 * @cpu: the processor number on which the timeout will happen
253 *
254 * This is the same as __round_jiffies() except that it will never
255 * round down. This is useful for timeouts for which the exact time
256 * of firing does not matter too much, as long as they don't fire too
257 * early.
258 */
259unsigned long __round_jiffies_up(unsigned long j, int cpu)
260{
261 return round_jiffies_common(j, cpu, true);
262}
263EXPORT_SYMBOL_GPL(__round_jiffies_up);
264
265/**
266 * __round_jiffies_up_relative - function to round jiffies up to a full second
267 * @j: the time in (relative) jiffies that should be rounded
268 * @cpu: the processor number on which the timeout will happen
269 *
270 * This is the same as __round_jiffies_relative() except that it will never
271 * round down. This is useful for timeouts for which the exact time
272 * of firing does not matter too much, as long as they don't fire too
273 * early.
274 */
275unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
276{
277 unsigned long j0 = jiffies;
278
279 /* Use j0 because jiffies might change while we run */
280 return round_jiffies_common(j + j0, cpu, true) - j0;
281}
282EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);
283
284/**
285 * round_jiffies_up - function to round jiffies up to a full second
286 * @j: the time in (absolute) jiffies that should be rounded
287 *
288 * This is the same as round_jiffies() except that it will never
289 * round down. This is useful for timeouts for which the exact time
290 * of firing does not matter too much, as long as they don't fire too
291 * early.
292 */
293unsigned long round_jiffies_up(unsigned long j)
294{
295 return round_jiffies_common(j, raw_smp_processor_id(), true);
296}
297EXPORT_SYMBOL_GPL(round_jiffies_up);
298
299/**
300 * round_jiffies_up_relative - function to round jiffies up to a full second
301 * @j: the time in (relative) jiffies that should be rounded
302 *
303 * This is the same as round_jiffies_relative() except that it will never
304 * round down. This is useful for timeouts for which the exact time
305 * of firing does not matter too much, as long as they don't fire too
306 * early.
307 */
308unsigned long round_jiffies_up_relative(unsigned long j)
309{
310 return __round_jiffies_up_relative(j, raw_smp_processor_id());
311}
312EXPORT_SYMBOL_GPL(round_jiffies_up_relative);
313
3bbb9ec9
AV
314/**
315 * set_timer_slack - set the allowed slack for a timer
0caa6210 316 * @timer: the timer to be modified
3bbb9ec9
AV
317 * @slack_hz: the amount of time (in jiffies) allowed for rounding
318 *
319 * Set the amount of time, in jiffies, that a certain timer has
320 * in terms of slack. By setting this value, the timer subsystem
321 * will schedule the actual timer somewhere between
322 * the time mod_timer() asks for, and that time plus the slack.
323 *
324 * By setting the slack to -1, a percentage of the delay is used
325 * instead.
326 */
327void set_timer_slack(struct timer_list *timer, int slack_hz)
328{
329 timer->slack = slack_hz;
330}
331EXPORT_SYMBOL_GPL(set_timer_slack);
332
a6fa8e5a 333static void internal_add_timer(struct tvec_base *base, struct timer_list *timer)
1da177e4
LT
334{
335 unsigned long expires = timer->expires;
336 unsigned long idx = expires - base->timer_jiffies;
337 struct list_head *vec;
338
339 if (idx < TVR_SIZE) {
340 int i = expires & TVR_MASK;
341 vec = base->tv1.vec + i;
342 } else if (idx < 1 << (TVR_BITS + TVN_BITS)) {
343 int i = (expires >> TVR_BITS) & TVN_MASK;
344 vec = base->tv2.vec + i;
345 } else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) {
346 int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK;
347 vec = base->tv3.vec + i;
348 } else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) {
349 int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK;
350 vec = base->tv4.vec + i;
351 } else if ((signed long) idx < 0) {
352 /*
353 * Can happen if you add a timer with expires == jiffies,
354 * or you set a timer to go off in the past
355 */
356 vec = base->tv1.vec + (base->timer_jiffies & TVR_MASK);
357 } else {
358 int i;
359 /* If the timeout is larger than 0xffffffff on 64-bit
360 * architectures then we use the maximum timeout:
361 */
362 if (idx > 0xffffffffUL) {
363 idx = 0xffffffffUL;
364 expires = idx + base->timer_jiffies;
365 }
366 i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK;
367 vec = base->tv5.vec + i;
368 }
369 /*
370 * Timers are FIFO:
371 */
372 list_add_tail(&timer->entry, vec);
373}
374
82f67cd9
IM
375#ifdef CONFIG_TIMER_STATS
376void __timer_stats_timer_set_start_info(struct timer_list *timer, void *addr)
377{
378 if (timer->start_site)
379 return;
380
381 timer->start_site = addr;
382 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
383 timer->start_pid = current->pid;
384}
c5c061b8
VP
385
386static void timer_stats_account_timer(struct timer_list *timer)
387{
388 unsigned int flag = 0;
389
507e1231
HC
390 if (likely(!timer->start_site))
391 return;
c5c061b8
VP
392 if (unlikely(tbase_get_deferrable(timer->base)))
393 flag |= TIMER_STATS_FLAG_DEFERRABLE;
394
395 timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
396 timer->function, timer->start_comm, flag);
397}
398
399#else
400static void timer_stats_account_timer(struct timer_list *timer) {}
82f67cd9
IM
401#endif
402
c6f3a97f
TG
403#ifdef CONFIG_DEBUG_OBJECTS_TIMERS
404
405static struct debug_obj_descr timer_debug_descr;
406
99777288
SG
407static void *timer_debug_hint(void *addr)
408{
409 return ((struct timer_list *) addr)->function;
410}
411
c6f3a97f
TG
412/*
413 * fixup_init is called when:
414 * - an active object is initialized
55c888d6 415 */
c6f3a97f
TG
416static int timer_fixup_init(void *addr, enum debug_obj_state state)
417{
418 struct timer_list *timer = addr;
419
420 switch (state) {
421 case ODEBUG_STATE_ACTIVE:
422 del_timer_sync(timer);
423 debug_object_init(timer, &timer_debug_descr);
424 return 1;
425 default:
426 return 0;
427 }
428}
429
fb16b8cf
SB
430/* Stub timer callback for improperly used timers. */
431static void stub_timer(unsigned long data)
432{
433 WARN_ON(1);
434}
435
c6f3a97f
TG
436/*
437 * fixup_activate is called when:
438 * - an active object is activated
439 * - an unknown object is activated (might be a statically initialized object)
440 */
441static int timer_fixup_activate(void *addr, enum debug_obj_state state)
442{
443 struct timer_list *timer = addr;
444
445 switch (state) {
446
447 case ODEBUG_STATE_NOTAVAILABLE:
448 /*
449 * This is not really a fixup. The timer was
450 * statically initialized. We just make sure that it
451 * is tracked in the object tracker.
452 */
453 if (timer->entry.next == NULL &&
454 timer->entry.prev == TIMER_ENTRY_STATIC) {
455 debug_object_init(timer, &timer_debug_descr);
456 debug_object_activate(timer, &timer_debug_descr);
457 return 0;
458 } else {
fb16b8cf
SB
459 setup_timer(timer, stub_timer, 0);
460 return 1;
c6f3a97f
TG
461 }
462 return 0;
463
464 case ODEBUG_STATE_ACTIVE:
465 WARN_ON(1);
466
467 default:
468 return 0;
469 }
470}
471
472/*
473 * fixup_free is called when:
474 * - an active object is freed
475 */
476static int timer_fixup_free(void *addr, enum debug_obj_state state)
477{
478 struct timer_list *timer = addr;
479
480 switch (state) {
481 case ODEBUG_STATE_ACTIVE:
482 del_timer_sync(timer);
483 debug_object_free(timer, &timer_debug_descr);
484 return 1;
485 default:
486 return 0;
487 }
488}
489
dc4218bd
CC
490/*
491 * fixup_assert_init is called when:
492 * - an untracked/uninit-ed object is found
493 */
494static int timer_fixup_assert_init(void *addr, enum debug_obj_state state)
495{
496 struct timer_list *timer = addr;
497
498 switch (state) {
499 case ODEBUG_STATE_NOTAVAILABLE:
500 if (timer->entry.prev == TIMER_ENTRY_STATIC) {
501 /*
502 * This is not really a fixup. The timer was
503 * statically initialized. We just make sure that it
504 * is tracked in the object tracker.
505 */
506 debug_object_init(timer, &timer_debug_descr);
507 return 0;
508 } else {
509 setup_timer(timer, stub_timer, 0);
510 return 1;
511 }
512 default:
513 return 0;
514 }
515}
516
c6f3a97f 517static struct debug_obj_descr timer_debug_descr = {
dc4218bd
CC
518 .name = "timer_list",
519 .debug_hint = timer_debug_hint,
520 .fixup_init = timer_fixup_init,
521 .fixup_activate = timer_fixup_activate,
522 .fixup_free = timer_fixup_free,
523 .fixup_assert_init = timer_fixup_assert_init,
c6f3a97f
TG
524};
525
526static inline void debug_timer_init(struct timer_list *timer)
527{
528 debug_object_init(timer, &timer_debug_descr);
529}
530
531static inline void debug_timer_activate(struct timer_list *timer)
532{
533 debug_object_activate(timer, &timer_debug_descr);
534}
535
536static inline void debug_timer_deactivate(struct timer_list *timer)
537{
538 debug_object_deactivate(timer, &timer_debug_descr);
539}
540
541static inline void debug_timer_free(struct timer_list *timer)
542{
543 debug_object_free(timer, &timer_debug_descr);
544}
545
dc4218bd
CC
546static inline void debug_timer_assert_init(struct timer_list *timer)
547{
548 debug_object_assert_init(timer, &timer_debug_descr);
549}
550
6f2b9b9a
JB
551static void __init_timer(struct timer_list *timer,
552 const char *name,
553 struct lock_class_key *key);
c6f3a97f 554
6f2b9b9a
JB
555void init_timer_on_stack_key(struct timer_list *timer,
556 const char *name,
557 struct lock_class_key *key)
c6f3a97f
TG
558{
559 debug_object_init_on_stack(timer, &timer_debug_descr);
6f2b9b9a 560 __init_timer(timer, name, key);
c6f3a97f 561}
6f2b9b9a 562EXPORT_SYMBOL_GPL(init_timer_on_stack_key);
c6f3a97f
TG
563
564void destroy_timer_on_stack(struct timer_list *timer)
565{
566 debug_object_free(timer, &timer_debug_descr);
567}
568EXPORT_SYMBOL_GPL(destroy_timer_on_stack);
569
570#else
571static inline void debug_timer_init(struct timer_list *timer) { }
572static inline void debug_timer_activate(struct timer_list *timer) { }
573static inline void debug_timer_deactivate(struct timer_list *timer) { }
dc4218bd 574static inline void debug_timer_assert_init(struct timer_list *timer) { }
c6f3a97f
TG
575#endif
576
2b022e3d
XG
577static inline void debug_init(struct timer_list *timer)
578{
579 debug_timer_init(timer);
580 trace_timer_init(timer);
581}
582
583static inline void
584debug_activate(struct timer_list *timer, unsigned long expires)
585{
586 debug_timer_activate(timer);
587 trace_timer_start(timer, expires);
588}
589
590static inline void debug_deactivate(struct timer_list *timer)
591{
592 debug_timer_deactivate(timer);
593 trace_timer_cancel(timer);
594}
595
dc4218bd
CC
596static inline void debug_assert_init(struct timer_list *timer)
597{
598 debug_timer_assert_init(timer);
599}
600
6f2b9b9a
JB
601static void __init_timer(struct timer_list *timer,
602 const char *name,
603 struct lock_class_key *key)
55c888d6
ON
604{
605 timer->entry.next = NULL;
bfe5d834 606 timer->base = __raw_get_cpu_var(tvec_bases);
3bbb9ec9 607 timer->slack = -1;
82f67cd9
IM
608#ifdef CONFIG_TIMER_STATS
609 timer->start_site = NULL;
610 timer->start_pid = -1;
611 memset(timer->start_comm, 0, TASK_COMM_LEN);
612#endif
6f2b9b9a 613 lockdep_init_map(&timer->lockdep_map, name, key, 0);
55c888d6 614}
c6f3a97f 615
8cadd283
JB
616void setup_deferrable_timer_on_stack_key(struct timer_list *timer,
617 const char *name,
618 struct lock_class_key *key,
619 void (*function)(unsigned long),
620 unsigned long data)
621{
622 timer->function = function;
623 timer->data = data;
624 init_timer_on_stack_key(timer, name, key);
625 timer_set_deferrable(timer);
626}
627EXPORT_SYMBOL_GPL(setup_deferrable_timer_on_stack_key);
628
c6f3a97f 629/**
633fe795 630 * init_timer_key - initialize a timer
c6f3a97f 631 * @timer: the timer to be initialized
633fe795
RD
632 * @name: name of the timer
633 * @key: lockdep class key of the fake lock used for tracking timer
634 * sync lock dependencies
c6f3a97f 635 *
633fe795 636 * init_timer_key() must be done to a timer prior calling *any* of the
c6f3a97f
TG
637 * other timer functions.
638 */
6f2b9b9a
JB
639void init_timer_key(struct timer_list *timer,
640 const char *name,
641 struct lock_class_key *key)
c6f3a97f 642{
2b022e3d 643 debug_init(timer);
6f2b9b9a 644 __init_timer(timer, name, key);
c6f3a97f 645}
6f2b9b9a 646EXPORT_SYMBOL(init_timer_key);
55c888d6 647
6f2b9b9a
JB
648void init_timer_deferrable_key(struct timer_list *timer,
649 const char *name,
650 struct lock_class_key *key)
6e453a67 651{
6f2b9b9a 652 init_timer_key(timer, name, key);
6e453a67
VP
653 timer_set_deferrable(timer);
654}
6f2b9b9a 655EXPORT_SYMBOL(init_timer_deferrable_key);
6e453a67 656
ec44bc7a 657static inline void detach_timer(struct timer_list *timer, bool clear_pending)
55c888d6
ON
658{
659 struct list_head *entry = &timer->entry;
660
2b022e3d 661 debug_deactivate(timer);
c6f3a97f 662
55c888d6
ON
663 __list_del(entry->prev, entry->next);
664 if (clear_pending)
665 entry->next = NULL;
666 entry->prev = LIST_POISON2;
667}
668
ec44bc7a
TG
669static int detach_if_pending(struct timer_list *timer, struct tvec_base *base,
670 bool clear_pending)
671{
672 if (!timer_pending(timer))
673 return 0;
674
675 detach_timer(timer, clear_pending);
676 if (timer->expires == base->next_timer &&
677 !tbase_get_deferrable(timer->base))
678 base->next_timer = base->timer_jiffies;
679 return 1;
680}
681
55c888d6 682/*
3691c519 683 * We are using hashed locking: holding per_cpu(tvec_bases).lock
55c888d6
ON
684 * means that all timers which are tied to this base via timer->base are
685 * locked, and the base itself is locked too.
686 *
687 * So __run_timers/migrate_timers can safely modify all timers which could
688 * be found on ->tvX lists.
689 *
690 * When the timer's base is locked, and the timer removed from list, it is
691 * possible to set timer->base = NULL and drop the lock: the timer remains
692 * locked.
693 */
a6fa8e5a 694static struct tvec_base *lock_timer_base(struct timer_list *timer,
55c888d6 695 unsigned long *flags)
89e7e374 696 __acquires(timer->base->lock)
55c888d6 697{
a6fa8e5a 698 struct tvec_base *base;
55c888d6
ON
699
700 for (;;) {
a6fa8e5a 701 struct tvec_base *prelock_base = timer->base;
6e453a67 702 base = tbase_get_base(prelock_base);
55c888d6
ON
703 if (likely(base != NULL)) {
704 spin_lock_irqsave(&base->lock, *flags);
6e453a67 705 if (likely(prelock_base == timer->base))
55c888d6
ON
706 return base;
707 /* The timer has migrated to another CPU */
708 spin_unlock_irqrestore(&base->lock, *flags);
709 }
710 cpu_relax();
711 }
712}
713
74019224 714static inline int
597d0275
AB
715__mod_timer(struct timer_list *timer, unsigned long expires,
716 bool pending_only, int pinned)
1da177e4 717{
a6fa8e5a 718 struct tvec_base *base, *new_base;
1da177e4 719 unsigned long flags;
eea08f32 720 int ret = 0 , cpu;
1da177e4 721
82f67cd9 722 timer_stats_timer_set_start_info(timer);
1da177e4 723 BUG_ON(!timer->function);
1da177e4 724
55c888d6
ON
725 base = lock_timer_base(timer, &flags);
726
ec44bc7a
TG
727 ret = detach_if_pending(timer, base, false);
728 if (!ret && pending_only)
729 goto out_unlock;
55c888d6 730
2b022e3d 731 debug_activate(timer, expires);
c6f3a97f 732
eea08f32
AB
733 cpu = smp_processor_id();
734
735#if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
83cd4fe2
VP
736 if (!pinned && get_sysctl_timer_migration() && idle_cpu(cpu))
737 cpu = get_nohz_timer_target();
eea08f32
AB
738#endif
739 new_base = per_cpu(tvec_bases, cpu);
740
3691c519 741 if (base != new_base) {
1da177e4 742 /*
55c888d6
ON
743 * We are trying to schedule the timer on the local CPU.
744 * However we can't change timer's base while it is running,
745 * otherwise del_timer_sync() can't detect that the timer's
746 * handler yet has not finished. This also guarantees that
747 * the timer is serialized wrt itself.
1da177e4 748 */
a2c348fe 749 if (likely(base->running_timer != timer)) {
55c888d6 750 /* See the comment in lock_timer_base() */
6e453a67 751 timer_set_base(timer, NULL);
55c888d6 752 spin_unlock(&base->lock);
a2c348fe
ON
753 base = new_base;
754 spin_lock(&base->lock);
6e453a67 755 timer_set_base(timer, base);
1da177e4
LT
756 }
757 }
758
1da177e4 759 timer->expires = expires;
97fd9ed4
MS
760 if (time_before(timer->expires, base->next_timer) &&
761 !tbase_get_deferrable(timer->base))
762 base->next_timer = timer->expires;
a2c348fe 763 internal_add_timer(base, timer);
74019224
IM
764
765out_unlock:
a2c348fe 766 spin_unlock_irqrestore(&base->lock, flags);
1da177e4
LT
767
768 return ret;
769}
770
2aae4a10 771/**
74019224
IM
772 * mod_timer_pending - modify a pending timer's timeout
773 * @timer: the pending timer to be modified
774 * @expires: new timeout in jiffies
1da177e4 775 *
74019224
IM
776 * mod_timer_pending() is the same for pending timers as mod_timer(),
777 * but will not re-activate and modify already deleted timers.
778 *
779 * It is useful for unserialized use of timers.
1da177e4 780 */
74019224 781int mod_timer_pending(struct timer_list *timer, unsigned long expires)
1da177e4 782{
597d0275 783 return __mod_timer(timer, expires, true, TIMER_NOT_PINNED);
1da177e4 784}
74019224 785EXPORT_SYMBOL(mod_timer_pending);
1da177e4 786
3bbb9ec9
AV
787/*
788 * Decide where to put the timer while taking the slack into account
789 *
790 * Algorithm:
791 * 1) calculate the maximum (absolute) time
792 * 2) calculate the highest bit where the expires and new max are different
793 * 3) use this bit to make a mask
794 * 4) use the bitmask to round down the maximum time, so that all last
795 * bits are zeros
796 */
797static inline
798unsigned long apply_slack(struct timer_list *timer, unsigned long expires)
799{
800 unsigned long expires_limit, mask;
801 int bit;
802
8e63d779 803 if (timer->slack >= 0) {
f00e047e 804 expires_limit = expires + timer->slack;
8e63d779 805 } else {
1c3cc116
SAS
806 long delta = expires - jiffies;
807
808 if (delta < 256)
809 return expires;
3bbb9ec9 810
1c3cc116 811 expires_limit = expires + delta / 256;
8e63d779 812 }
3bbb9ec9 813 mask = expires ^ expires_limit;
3bbb9ec9
AV
814 if (mask == 0)
815 return expires;
816
817 bit = find_last_bit(&mask, BITS_PER_LONG);
818
819 mask = (1 << bit) - 1;
820
821 expires_limit = expires_limit & ~(mask);
822
823 return expires_limit;
824}
825
2aae4a10 826/**
1da177e4
LT
827 * mod_timer - modify a timer's timeout
828 * @timer: the timer to be modified
2aae4a10 829 * @expires: new timeout in jiffies
1da177e4 830 *
72fd4a35 831 * mod_timer() is a more efficient way to update the expire field of an
1da177e4
LT
832 * active timer (if the timer is inactive it will be activated)
833 *
834 * mod_timer(timer, expires) is equivalent to:
835 *
836 * del_timer(timer); timer->expires = expires; add_timer(timer);
837 *
838 * Note that if there are multiple unserialized concurrent users of the
839 * same timer, then mod_timer() is the only safe way to modify the timeout,
840 * since add_timer() cannot modify an already running timer.
841 *
842 * The function returns whether it has modified a pending timer or not.
843 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
844 * active timer returns 1.)
845 */
846int mod_timer(struct timer_list *timer, unsigned long expires)
847{
1c3cc116
SAS
848 expires = apply_slack(timer, expires);
849
1da177e4
LT
850 /*
851 * This is a common optimization triggered by the
852 * networking code - if the timer is re-modified
853 * to be the same thing then just return:
854 */
4841158b 855 if (timer_pending(timer) && timer->expires == expires)
1da177e4
LT
856 return 1;
857
597d0275 858 return __mod_timer(timer, expires, false, TIMER_NOT_PINNED);
1da177e4 859}
1da177e4
LT
860EXPORT_SYMBOL(mod_timer);
861
597d0275
AB
862/**
863 * mod_timer_pinned - modify a timer's timeout
864 * @timer: the timer to be modified
865 * @expires: new timeout in jiffies
866 *
867 * mod_timer_pinned() is a way to update the expire field of an
868 * active timer (if the timer is inactive it will be activated)
048a0e8f
PM
869 * and to ensure that the timer is scheduled on the current CPU.
870 *
871 * Note that this does not prevent the timer from being migrated
872 * when the current CPU goes offline. If this is a problem for
873 * you, use CPU-hotplug notifiers to handle it correctly, for
874 * example, cancelling the timer when the corresponding CPU goes
875 * offline.
597d0275
AB
876 *
877 * mod_timer_pinned(timer, expires) is equivalent to:
878 *
879 * del_timer(timer); timer->expires = expires; add_timer(timer);
880 */
881int mod_timer_pinned(struct timer_list *timer, unsigned long expires)
882{
883 if (timer->expires == expires && timer_pending(timer))
884 return 1;
885
886 return __mod_timer(timer, expires, false, TIMER_PINNED);
887}
888EXPORT_SYMBOL(mod_timer_pinned);
889
74019224
IM
890/**
891 * add_timer - start a timer
892 * @timer: the timer to be added
893 *
894 * The kernel will do a ->function(->data) callback from the
895 * timer interrupt at the ->expires point in the future. The
896 * current time is 'jiffies'.
897 *
898 * The timer's ->expires, ->function (and if the handler uses it, ->data)
899 * fields must be set prior calling this function.
900 *
901 * Timers with an ->expires field in the past will be executed in the next
902 * timer tick.
903 */
904void add_timer(struct timer_list *timer)
905{
906 BUG_ON(timer_pending(timer));
907 mod_timer(timer, timer->expires);
908}
909EXPORT_SYMBOL(add_timer);
910
911/**
912 * add_timer_on - start a timer on a particular CPU
913 * @timer: the timer to be added
914 * @cpu: the CPU to start it on
915 *
916 * This is not very scalable on SMP. Double adds are not possible.
917 */
918void add_timer_on(struct timer_list *timer, int cpu)
919{
920 struct tvec_base *base = per_cpu(tvec_bases, cpu);
921 unsigned long flags;
922
923 timer_stats_timer_set_start_info(timer);
924 BUG_ON(timer_pending(timer) || !timer->function);
925 spin_lock_irqsave(&base->lock, flags);
926 timer_set_base(timer, base);
2b022e3d 927 debug_activate(timer, timer->expires);
97fd9ed4
MS
928 if (time_before(timer->expires, base->next_timer) &&
929 !tbase_get_deferrable(timer->base))
930 base->next_timer = timer->expires;
74019224
IM
931 internal_add_timer(base, timer);
932 /*
933 * Check whether the other CPU is idle and needs to be
934 * triggered to reevaluate the timer wheel when nohz is
935 * active. We are protected against the other CPU fiddling
936 * with the timer by holding the timer base lock. This also
937 * makes sure that a CPU on the way to idle can not evaluate
938 * the timer wheel.
939 */
940 wake_up_idle_cpu(cpu);
941 spin_unlock_irqrestore(&base->lock, flags);
942}
a9862e05 943EXPORT_SYMBOL_GPL(add_timer_on);
74019224 944
2aae4a10 945/**
1da177e4
LT
946 * del_timer - deactive a timer.
947 * @timer: the timer to be deactivated
948 *
949 * del_timer() deactivates a timer - this works on both active and inactive
950 * timers.
951 *
952 * The function returns whether it has deactivated a pending timer or not.
953 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
954 * active timer returns 1.)
955 */
956int del_timer(struct timer_list *timer)
957{
a6fa8e5a 958 struct tvec_base *base;
1da177e4 959 unsigned long flags;
55c888d6 960 int ret = 0;
1da177e4 961
dc4218bd
CC
962 debug_assert_init(timer);
963
82f67cd9 964 timer_stats_timer_clear_start_info(timer);
55c888d6
ON
965 if (timer_pending(timer)) {
966 base = lock_timer_base(timer, &flags);
ec44bc7a 967 ret = detach_if_pending(timer, base, true);
1da177e4 968 spin_unlock_irqrestore(&base->lock, flags);
1da177e4 969 }
1da177e4 970
55c888d6 971 return ret;
1da177e4 972}
1da177e4
LT
973EXPORT_SYMBOL(del_timer);
974
2aae4a10
REB
975/**
976 * try_to_del_timer_sync - Try to deactivate a timer
977 * @timer: timer do del
978 *
fd450b73
ON
979 * This function tries to deactivate a timer. Upon successful (ret >= 0)
980 * exit the timer is not queued and the handler is not running on any CPU.
fd450b73
ON
981 */
982int try_to_del_timer_sync(struct timer_list *timer)
983{
a6fa8e5a 984 struct tvec_base *base;
fd450b73
ON
985 unsigned long flags;
986 int ret = -1;
987
dc4218bd
CC
988 debug_assert_init(timer);
989
fd450b73
ON
990 base = lock_timer_base(timer, &flags);
991
ec44bc7a
TG
992 if (base->running_timer != timer) {
993 timer_stats_timer_clear_start_info(timer);
994 ret = detach_if_pending(timer, base, true);
fd450b73 995 }
fd450b73
ON
996 spin_unlock_irqrestore(&base->lock, flags);
997
998 return ret;
999}
e19dff1f
DH
1000EXPORT_SYMBOL(try_to_del_timer_sync);
1001
6f1bc451 1002#ifdef CONFIG_SMP
2aae4a10 1003/**
1da177e4
LT
1004 * del_timer_sync - deactivate a timer and wait for the handler to finish.
1005 * @timer: the timer to be deactivated
1006 *
1007 * This function only differs from del_timer() on SMP: besides deactivating
1008 * the timer it also makes sure the handler has finished executing on other
1009 * CPUs.
1010 *
72fd4a35 1011 * Synchronization rules: Callers must prevent restarting of the timer,
1da177e4 1012 * otherwise this function is meaningless. It must not be called from
7ff20792 1013 * interrupt contexts. The caller must not hold locks which would prevent
55c888d6
ON
1014 * completion of the timer's handler. The timer's handler must not call
1015 * add_timer_on(). Upon exit the timer is not queued and the handler is
1016 * not running on any CPU.
1da177e4 1017 *
48228f7b
SR
1018 * Note: You must not hold locks that are held in interrupt context
1019 * while calling this function. Even if the lock has nothing to do
1020 * with the timer in question. Here's why:
1021 *
1022 * CPU0 CPU1
1023 * ---- ----
1024 * <SOFTIRQ>
1025 * call_timer_fn();
1026 * base->running_timer = mytimer;
1027 * spin_lock_irq(somelock);
1028 * <IRQ>
1029 * spin_lock(somelock);
1030 * del_timer_sync(mytimer);
1031 * while (base->running_timer == mytimer);
1032 *
1033 * Now del_timer_sync() will never return and never release somelock.
1034 * The interrupt on the other CPU is waiting to grab somelock but
1035 * it has interrupted the softirq that CPU0 is waiting to finish.
1036 *
1da177e4 1037 * The function returns whether it has deactivated a pending timer or not.
1da177e4
LT
1038 */
1039int del_timer_sync(struct timer_list *timer)
1040{
6f2b9b9a 1041#ifdef CONFIG_LOCKDEP
f266a511
PZ
1042 unsigned long flags;
1043
48228f7b
SR
1044 /*
1045 * If lockdep gives a backtrace here, please reference
1046 * the synchronization rules above.
1047 */
7ff20792 1048 local_irq_save(flags);
6f2b9b9a
JB
1049 lock_map_acquire(&timer->lockdep_map);
1050 lock_map_release(&timer->lockdep_map);
7ff20792 1051 local_irq_restore(flags);
6f2b9b9a 1052#endif
466bd303
YZ
1053 /*
1054 * don't use it in hardirq context, because it
1055 * could lead to deadlock.
1056 */
1057 WARN_ON(in_irq());
fd450b73
ON
1058 for (;;) {
1059 int ret = try_to_del_timer_sync(timer);
1060 if (ret >= 0)
1061 return ret;
a0009652 1062 cpu_relax();
fd450b73 1063 }
1da177e4 1064}
55c888d6 1065EXPORT_SYMBOL(del_timer_sync);
1da177e4
LT
1066#endif
1067
a6fa8e5a 1068static int cascade(struct tvec_base *base, struct tvec *tv, int index)
1da177e4
LT
1069{
1070 /* cascade all the timers from tv up one level */
3439dd86
P
1071 struct timer_list *timer, *tmp;
1072 struct list_head tv_list;
1073
1074 list_replace_init(tv->vec + index, &tv_list);
1da177e4 1075
1da177e4 1076 /*
3439dd86
P
1077 * We are removing _all_ timers from the list, so we
1078 * don't have to detach them individually.
1da177e4 1079 */
3439dd86 1080 list_for_each_entry_safe(timer, tmp, &tv_list, entry) {
6e453a67 1081 BUG_ON(tbase_get_base(timer->base) != base);
3439dd86 1082 internal_add_timer(base, timer);
1da177e4 1083 }
1da177e4
LT
1084
1085 return index;
1086}
1087
576da126
TG
1088static void call_timer_fn(struct timer_list *timer, void (*fn)(unsigned long),
1089 unsigned long data)
1090{
1091 int preempt_count = preempt_count();
1092
1093#ifdef CONFIG_LOCKDEP
1094 /*
1095 * It is permissible to free the timer from inside the
1096 * function that is called from it, this we need to take into
1097 * account for lockdep too. To avoid bogus "held lock freed"
1098 * warnings as well as problems when looking into
1099 * timer->lockdep_map, make a copy and use that here.
1100 */
4d82a1de
PZ
1101 struct lockdep_map lockdep_map;
1102
1103 lockdep_copy_map(&lockdep_map, &timer->lockdep_map);
576da126
TG
1104#endif
1105 /*
1106 * Couple the lock chain with the lock chain at
1107 * del_timer_sync() by acquiring the lock_map around the fn()
1108 * call here and in del_timer_sync().
1109 */
1110 lock_map_acquire(&lockdep_map);
1111
1112 trace_timer_expire_entry(timer);
1113 fn(data);
1114 trace_timer_expire_exit(timer);
1115
1116 lock_map_release(&lockdep_map);
1117
1118 if (preempt_count != preempt_count()) {
802702e0
TG
1119 WARN_ONCE(1, "timer: %pF preempt leak: %08x -> %08x\n",
1120 fn, preempt_count, preempt_count());
1121 /*
1122 * Restore the preempt count. That gives us a decent
1123 * chance to survive and extract information. If the
1124 * callback kept a lock held, bad luck, but not worse
1125 * than the BUG() we had.
1126 */
1127 preempt_count() = preempt_count;
576da126
TG
1128 }
1129}
1130
2aae4a10
REB
1131#define INDEX(N) ((base->timer_jiffies >> (TVR_BITS + (N) * TVN_BITS)) & TVN_MASK)
1132
1133/**
1da177e4
LT
1134 * __run_timers - run all expired timers (if any) on this CPU.
1135 * @base: the timer vector to be processed.
1136 *
1137 * This function cascades all vectors and executes all expired timer
1138 * vectors.
1139 */
a6fa8e5a 1140static inline void __run_timers(struct tvec_base *base)
1da177e4
LT
1141{
1142 struct timer_list *timer;
1143
3691c519 1144 spin_lock_irq(&base->lock);
1da177e4 1145 while (time_after_eq(jiffies, base->timer_jiffies)) {
626ab0e6 1146 struct list_head work_list;
1da177e4 1147 struct list_head *head = &work_list;
6819457d 1148 int index = base->timer_jiffies & TVR_MASK;
626ab0e6 1149
1da177e4
LT
1150 /*
1151 * Cascade timers:
1152 */
1153 if (!index &&
1154 (!cascade(base, &base->tv2, INDEX(0))) &&
1155 (!cascade(base, &base->tv3, INDEX(1))) &&
1156 !cascade(base, &base->tv4, INDEX(2)))
1157 cascade(base, &base->tv5, INDEX(3));
626ab0e6
ON
1158 ++base->timer_jiffies;
1159 list_replace_init(base->tv1.vec + index, &work_list);
55c888d6 1160 while (!list_empty(head)) {
1da177e4
LT
1161 void (*fn)(unsigned long);
1162 unsigned long data;
1163
b5e61818 1164 timer = list_first_entry(head, struct timer_list,entry);
6819457d
TG
1165 fn = timer->function;
1166 data = timer->data;
1da177e4 1167
82f67cd9
IM
1168 timer_stats_account_timer(timer);
1169
6f1bc451 1170 base->running_timer = timer;
ec44bc7a 1171 detach_timer(timer, true);
6f2b9b9a 1172
3691c519 1173 spin_unlock_irq(&base->lock);
576da126 1174 call_timer_fn(timer, fn, data);
3691c519 1175 spin_lock_irq(&base->lock);
1da177e4
LT
1176 }
1177 }
6f1bc451 1178 base->running_timer = NULL;
3691c519 1179 spin_unlock_irq(&base->lock);
1da177e4
LT
1180}
1181
ee9c5785 1182#ifdef CONFIG_NO_HZ
1da177e4
LT
1183/*
1184 * Find out when the next timer event is due to happen. This
90cba64a
RD
1185 * is used on S/390 to stop all activity when a CPU is idle.
1186 * This function needs to be called with interrupts disabled.
1da177e4 1187 */
a6fa8e5a 1188static unsigned long __next_timer_interrupt(struct tvec_base *base)
1da177e4 1189{
1cfd6849 1190 unsigned long timer_jiffies = base->timer_jiffies;
eaad084b 1191 unsigned long expires = timer_jiffies + NEXT_TIMER_MAX_DELTA;
1cfd6849 1192 int index, slot, array, found = 0;
1da177e4 1193 struct timer_list *nte;
a6fa8e5a 1194 struct tvec *varray[4];
1da177e4
LT
1195
1196 /* Look for timer events in tv1. */
1cfd6849 1197 index = slot = timer_jiffies & TVR_MASK;
1da177e4 1198 do {
1cfd6849 1199 list_for_each_entry(nte, base->tv1.vec + slot, entry) {
6819457d
TG
1200 if (tbase_get_deferrable(nte->base))
1201 continue;
6e453a67 1202
1cfd6849 1203 found = 1;
1da177e4 1204 expires = nte->expires;
1cfd6849
TG
1205 /* Look at the cascade bucket(s)? */
1206 if (!index || slot < index)
1207 goto cascade;
1208 return expires;
1da177e4 1209 }
1cfd6849
TG
1210 slot = (slot + 1) & TVR_MASK;
1211 } while (slot != index);
1212
1213cascade:
1214 /* Calculate the next cascade event */
1215 if (index)
1216 timer_jiffies += TVR_SIZE - index;
1217 timer_jiffies >>= TVR_BITS;
1da177e4
LT
1218
1219 /* Check tv2-tv5. */
1220 varray[0] = &base->tv2;
1221 varray[1] = &base->tv3;
1222 varray[2] = &base->tv4;
1223 varray[3] = &base->tv5;
1cfd6849
TG
1224
1225 for (array = 0; array < 4; array++) {
a6fa8e5a 1226 struct tvec *varp = varray[array];
1cfd6849
TG
1227
1228 index = slot = timer_jiffies & TVN_MASK;
1da177e4 1229 do {
1cfd6849 1230 list_for_each_entry(nte, varp->vec + slot, entry) {
a0419888
JH
1231 if (tbase_get_deferrable(nte->base))
1232 continue;
1233
1cfd6849 1234 found = 1;
1da177e4
LT
1235 if (time_before(nte->expires, expires))
1236 expires = nte->expires;
1cfd6849
TG
1237 }
1238 /*
1239 * Do we still search for the first timer or are
1240 * we looking up the cascade buckets ?
1241 */
1242 if (found) {
1243 /* Look at the cascade bucket(s)? */
1244 if (!index || slot < index)
1245 break;
1246 return expires;
1247 }
1248 slot = (slot + 1) & TVN_MASK;
1249 } while (slot != index);
1250
1251 if (index)
1252 timer_jiffies += TVN_SIZE - index;
1253 timer_jiffies >>= TVN_BITS;
1da177e4 1254 }
1cfd6849
TG
1255 return expires;
1256}
69239749 1257
1cfd6849
TG
1258/*
1259 * Check, if the next hrtimer event is before the next timer wheel
1260 * event:
1261 */
1262static unsigned long cmp_next_hrtimer_event(unsigned long now,
1263 unsigned long expires)
1264{
1265 ktime_t hr_delta = hrtimer_get_next_event();
1266 struct timespec tsdelta;
9501b6cf 1267 unsigned long delta;
1cfd6849
TG
1268
1269 if (hr_delta.tv64 == KTIME_MAX)
1270 return expires;
0662b713 1271
9501b6cf
TG
1272 /*
1273 * Expired timer available, let it expire in the next tick
1274 */
1275 if (hr_delta.tv64 <= 0)
1276 return now + 1;
69239749 1277
1cfd6849 1278 tsdelta = ktime_to_timespec(hr_delta);
9501b6cf 1279 delta = timespec_to_jiffies(&tsdelta);
eaad084b
TG
1280
1281 /*
1282 * Limit the delta to the max value, which is checked in
1283 * tick_nohz_stop_sched_tick():
1284 */
1285 if (delta > NEXT_TIMER_MAX_DELTA)
1286 delta = NEXT_TIMER_MAX_DELTA;
1287
9501b6cf
TG
1288 /*
1289 * Take rounding errors in to account and make sure, that it
1290 * expires in the next tick. Otherwise we go into an endless
1291 * ping pong due to tick_nohz_stop_sched_tick() retriggering
1292 * the timer softirq
1293 */
1294 if (delta < 1)
1295 delta = 1;
1296 now += delta;
1cfd6849
TG
1297 if (time_before(now, expires))
1298 return now;
1da177e4
LT
1299 return expires;
1300}
1cfd6849
TG
1301
1302/**
8dce39c2 1303 * get_next_timer_interrupt - return the jiffy of the next pending timer
05fb6bf0 1304 * @now: current time (in jiffies)
1cfd6849 1305 */
fd064b9b 1306unsigned long get_next_timer_interrupt(unsigned long now)
1cfd6849 1307{
7496351a 1308 struct tvec_base *base = __this_cpu_read(tvec_bases);
fd064b9b 1309 unsigned long expires;
1cfd6849 1310
dbd87b5a
HC
1311 /*
1312 * Pretend that there is no timer pending if the cpu is offline.
1313 * Possible pending timers will be migrated later to an active cpu.
1314 */
1315 if (cpu_is_offline(smp_processor_id()))
1316 return now + NEXT_TIMER_MAX_DELTA;
1cfd6849 1317 spin_lock(&base->lock);
97fd9ed4
MS
1318 if (time_before_eq(base->next_timer, base->timer_jiffies))
1319 base->next_timer = __next_timer_interrupt(base);
1320 expires = base->next_timer;
1cfd6849
TG
1321 spin_unlock(&base->lock);
1322
1323 if (time_before_eq(expires, now))
1324 return now;
1325
1326 return cmp_next_hrtimer_event(now, expires);
1327}
1da177e4
LT
1328#endif
1329
1da177e4 1330/*
5b4db0c2 1331 * Called from the timer interrupt handler to charge one tick to the current
1da177e4
LT
1332 * process. user_tick is 1 if the tick is user time, 0 for system.
1333 */
1334void update_process_times(int user_tick)
1335{
1336 struct task_struct *p = current;
1337 int cpu = smp_processor_id();
1338
1339 /* Note: this timer irq context must be accounted for as well. */
fa13a5a1 1340 account_process_tick(p, user_tick);
1da177e4 1341 run_local_timers();
a157229c 1342 rcu_check_callbacks(cpu, user_tick);
b845b517 1343 printk_tick();
e360adbe
PZ
1344#ifdef CONFIG_IRQ_WORK
1345 if (in_irq())
1346 irq_work_run();
1347#endif
1da177e4 1348 scheduler_tick();
6819457d 1349 run_posix_cpu_timers(p);
1da177e4
LT
1350}
1351
1da177e4
LT
1352/*
1353 * This function runs timers and the timer-tq in bottom half context.
1354 */
1355static void run_timer_softirq(struct softirq_action *h)
1356{
7496351a 1357 struct tvec_base *base = __this_cpu_read(tvec_bases);
1da177e4 1358
d3d74453 1359 hrtimer_run_pending();
82f67cd9 1360
1da177e4
LT
1361 if (time_after_eq(jiffies, base->timer_jiffies))
1362 __run_timers(base);
1363}
1364
1365/*
1366 * Called by the local, per-CPU timer interrupt on SMP.
1367 */
1368void run_local_timers(void)
1369{
d3d74453 1370 hrtimer_run_queues();
1da177e4
LT
1371 raise_softirq(TIMER_SOFTIRQ);
1372}
1373
1da177e4
LT
1374#ifdef __ARCH_WANT_SYS_ALARM
1375
1376/*
1377 * For backwards compatibility? This can be done in libc so Alpha
1378 * and all newer ports shouldn't need it.
1379 */
58fd3aa2 1380SYSCALL_DEFINE1(alarm, unsigned int, seconds)
1da177e4 1381{
c08b8a49 1382 return alarm_setitimer(seconds);
1da177e4
LT
1383}
1384
1385#endif
1386
1387#ifndef __alpha__
1388
1389/*
1390 * The Alpha uses getxpid, getxuid, and getxgid instead. Maybe this
1391 * should be moved into arch/i386 instead?
1392 */
1393
1394/**
1395 * sys_getpid - return the thread group id of the current process
1396 *
1397 * Note, despite the name, this returns the tgid not the pid. The tgid and
1398 * the pid are identical unless CLONE_THREAD was specified on clone() in
1399 * which case the tgid is the same in all threads of the same group.
1400 *
1401 * This is SMP safe as current->tgid does not change.
1402 */
58fd3aa2 1403SYSCALL_DEFINE0(getpid)
1da177e4 1404{
b488893a 1405 return task_tgid_vnr(current);
1da177e4
LT
1406}
1407
1408/*
6997a6fa
KK
1409 * Accessing ->real_parent is not SMP-safe, it could
1410 * change from under us. However, we can use a stale
1411 * value of ->real_parent under rcu_read_lock(), see
1412 * release_task()->call_rcu(delayed_put_task_struct).
1da177e4 1413 */
dbf040d9 1414SYSCALL_DEFINE0(getppid)
1da177e4
LT
1415{
1416 int pid;
1da177e4 1417
6997a6fa 1418 rcu_read_lock();
031af165 1419 pid = task_tgid_vnr(rcu_dereference(current->real_parent));
6997a6fa 1420 rcu_read_unlock();
1da177e4 1421
1da177e4
LT
1422 return pid;
1423}
1424
dbf040d9 1425SYSCALL_DEFINE0(getuid)
1da177e4
LT
1426{
1427 /* Only we change this so SMP safe */
a29c33f4 1428 return from_kuid_munged(current_user_ns(), current_uid());
1da177e4
LT
1429}
1430
dbf040d9 1431SYSCALL_DEFINE0(geteuid)
1da177e4
LT
1432{
1433 /* Only we change this so SMP safe */
a29c33f4 1434 return from_kuid_munged(current_user_ns(), current_euid());
1da177e4
LT
1435}
1436
dbf040d9 1437SYSCALL_DEFINE0(getgid)
1da177e4
LT
1438{
1439 /* Only we change this so SMP safe */
a29c33f4 1440 return from_kgid_munged(current_user_ns(), current_gid());
1da177e4
LT
1441}
1442
dbf040d9 1443SYSCALL_DEFINE0(getegid)
1da177e4
LT
1444{
1445 /* Only we change this so SMP safe */
a29c33f4 1446 return from_kgid_munged(current_user_ns(), current_egid());
1da177e4
LT
1447}
1448
1449#endif
1450
1451static void process_timeout(unsigned long __data)
1452{
36c8b586 1453 wake_up_process((struct task_struct *)__data);
1da177e4
LT
1454}
1455
1456/**
1457 * schedule_timeout - sleep until timeout
1458 * @timeout: timeout value in jiffies
1459 *
1460 * Make the current task sleep until @timeout jiffies have
1461 * elapsed. The routine will return immediately unless
1462 * the current task state has been set (see set_current_state()).
1463 *
1464 * You can set the task state as follows -
1465 *
1466 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1467 * pass before the routine returns. The routine will return 0
1468 *
1469 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1470 * delivered to the current task. In this case the remaining time
1471 * in jiffies will be returned, or 0 if the timer expired in time
1472 *
1473 * The current task state is guaranteed to be TASK_RUNNING when this
1474 * routine returns.
1475 *
1476 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1477 * the CPU away without a bound on the timeout. In this case the return
1478 * value will be %MAX_SCHEDULE_TIMEOUT.
1479 *
1480 * In all cases the return value is guaranteed to be non-negative.
1481 */
7ad5b3a5 1482signed long __sched schedule_timeout(signed long timeout)
1da177e4
LT
1483{
1484 struct timer_list timer;
1485 unsigned long expire;
1486
1487 switch (timeout)
1488 {
1489 case MAX_SCHEDULE_TIMEOUT:
1490 /*
1491 * These two special cases are useful to be comfortable
1492 * in the caller. Nothing more. We could take
1493 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1494 * but I' d like to return a valid offset (>=0) to allow
1495 * the caller to do everything it want with the retval.
1496 */
1497 schedule();
1498 goto out;
1499 default:
1500 /*
1501 * Another bit of PARANOID. Note that the retval will be
1502 * 0 since no piece of kernel is supposed to do a check
1503 * for a negative retval of schedule_timeout() (since it
1504 * should never happens anyway). You just have the printk()
1505 * that will tell you if something is gone wrong and where.
1506 */
5b149bcc 1507 if (timeout < 0) {
1da177e4 1508 printk(KERN_ERR "schedule_timeout: wrong timeout "
5b149bcc
AM
1509 "value %lx\n", timeout);
1510 dump_stack();
1da177e4
LT
1511 current->state = TASK_RUNNING;
1512 goto out;
1513 }
1514 }
1515
1516 expire = timeout + jiffies;
1517
c6f3a97f 1518 setup_timer_on_stack(&timer, process_timeout, (unsigned long)current);
597d0275 1519 __mod_timer(&timer, expire, false, TIMER_NOT_PINNED);
1da177e4
LT
1520 schedule();
1521 del_singleshot_timer_sync(&timer);
1522
c6f3a97f
TG
1523 /* Remove the timer from the object tracker */
1524 destroy_timer_on_stack(&timer);
1525
1da177e4
LT
1526 timeout = expire - jiffies;
1527
1528 out:
1529 return timeout < 0 ? 0 : timeout;
1530}
1da177e4
LT
1531EXPORT_SYMBOL(schedule_timeout);
1532
8a1c1757
AM
1533/*
1534 * We can use __set_current_state() here because schedule_timeout() calls
1535 * schedule() unconditionally.
1536 */
64ed93a2
NA
1537signed long __sched schedule_timeout_interruptible(signed long timeout)
1538{
a5a0d52c
AM
1539 __set_current_state(TASK_INTERRUPTIBLE);
1540 return schedule_timeout(timeout);
64ed93a2
NA
1541}
1542EXPORT_SYMBOL(schedule_timeout_interruptible);
1543
294d5cc2
MW
1544signed long __sched schedule_timeout_killable(signed long timeout)
1545{
1546 __set_current_state(TASK_KILLABLE);
1547 return schedule_timeout(timeout);
1548}
1549EXPORT_SYMBOL(schedule_timeout_killable);
1550
64ed93a2
NA
1551signed long __sched schedule_timeout_uninterruptible(signed long timeout)
1552{
a5a0d52c
AM
1553 __set_current_state(TASK_UNINTERRUPTIBLE);
1554 return schedule_timeout(timeout);
64ed93a2
NA
1555}
1556EXPORT_SYMBOL(schedule_timeout_uninterruptible);
1557
1da177e4 1558/* Thread ID - the internal kernel "pid" */
58fd3aa2 1559SYSCALL_DEFINE0(gettid)
1da177e4 1560{
b488893a 1561 return task_pid_vnr(current);
1da177e4
LT
1562}
1563
2aae4a10 1564/**
d4d23add 1565 * do_sysinfo - fill in sysinfo struct
2aae4a10 1566 * @info: pointer to buffer to fill
6819457d 1567 */
d4d23add 1568int do_sysinfo(struct sysinfo *info)
1da177e4 1569{
1da177e4
LT
1570 unsigned long mem_total, sav_total;
1571 unsigned int mem_unit, bitcount;
2d02494f 1572 struct timespec tp;
1da177e4 1573
d4d23add 1574 memset(info, 0, sizeof(struct sysinfo));
1da177e4 1575
2d02494f
TG
1576 ktime_get_ts(&tp);
1577 monotonic_to_bootbased(&tp);
1578 info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
1da177e4 1579
2d02494f 1580 get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT);
1da177e4 1581
2d02494f 1582 info->procs = nr_threads;
1da177e4 1583
d4d23add
KM
1584 si_meminfo(info);
1585 si_swapinfo(info);
1da177e4
LT
1586
1587 /*
1588 * If the sum of all the available memory (i.e. ram + swap)
1589 * is less than can be stored in a 32 bit unsigned long then
1590 * we can be binary compatible with 2.2.x kernels. If not,
1591 * well, in that case 2.2.x was broken anyways...
1592 *
1593 * -Erik Andersen <andersee@debian.org>
1594 */
1595
d4d23add
KM
1596 mem_total = info->totalram + info->totalswap;
1597 if (mem_total < info->totalram || mem_total < info->totalswap)
1da177e4
LT
1598 goto out;
1599 bitcount = 0;
d4d23add 1600 mem_unit = info->mem_unit;
1da177e4
LT
1601 while (mem_unit > 1) {
1602 bitcount++;
1603 mem_unit >>= 1;
1604 sav_total = mem_total;
1605 mem_total <<= 1;
1606 if (mem_total < sav_total)
1607 goto out;
1608 }
1609
1610 /*
1611 * If mem_total did not overflow, multiply all memory values by
d4d23add 1612 * info->mem_unit and set it to 1. This leaves things compatible
1da177e4
LT
1613 * with 2.2.x, and also retains compatibility with earlier 2.4.x
1614 * kernels...
1615 */
1616
d4d23add
KM
1617 info->mem_unit = 1;
1618 info->totalram <<= bitcount;
1619 info->freeram <<= bitcount;
1620 info->sharedram <<= bitcount;
1621 info->bufferram <<= bitcount;
1622 info->totalswap <<= bitcount;
1623 info->freeswap <<= bitcount;
1624 info->totalhigh <<= bitcount;
1625 info->freehigh <<= bitcount;
1626
1627out:
1628 return 0;
1629}
1630
1e7bfb21 1631SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
d4d23add
KM
1632{
1633 struct sysinfo val;
1634
1635 do_sysinfo(&val);
1da177e4 1636
1da177e4
LT
1637 if (copy_to_user(info, &val, sizeof(struct sysinfo)))
1638 return -EFAULT;
1639
1640 return 0;
1641}
1642
b4be6258 1643static int __cpuinit init_timers_cpu(int cpu)
1da177e4
LT
1644{
1645 int j;
a6fa8e5a 1646 struct tvec_base *base;
b4be6258 1647 static char __cpuinitdata tvec_base_done[NR_CPUS];
55c888d6 1648
ba6edfcd 1649 if (!tvec_base_done[cpu]) {
a4a6198b
JB
1650 static char boot_done;
1651
a4a6198b 1652 if (boot_done) {
ba6edfcd
AM
1653 /*
1654 * The APs use this path later in boot
1655 */
94f6030c
CL
1656 base = kmalloc_node(sizeof(*base),
1657 GFP_KERNEL | __GFP_ZERO,
a4a6198b
JB
1658 cpu_to_node(cpu));
1659 if (!base)
1660 return -ENOMEM;
6e453a67
VP
1661
1662 /* Make sure that tvec_base is 2 byte aligned */
1663 if (tbase_get_deferrable(base)) {
1664 WARN_ON(1);
1665 kfree(base);
1666 return -ENOMEM;
1667 }
ba6edfcd 1668 per_cpu(tvec_bases, cpu) = base;
a4a6198b 1669 } else {
ba6edfcd
AM
1670 /*
1671 * This is for the boot CPU - we use compile-time
1672 * static initialisation because per-cpu memory isn't
1673 * ready yet and because the memory allocators are not
1674 * initialised either.
1675 */
a4a6198b 1676 boot_done = 1;
ba6edfcd 1677 base = &boot_tvec_bases;
a4a6198b 1678 }
ba6edfcd
AM
1679 tvec_base_done[cpu] = 1;
1680 } else {
1681 base = per_cpu(tvec_bases, cpu);
a4a6198b 1682 }
ba6edfcd 1683
3691c519 1684 spin_lock_init(&base->lock);
d730e882 1685
1da177e4
LT
1686 for (j = 0; j < TVN_SIZE; j++) {
1687 INIT_LIST_HEAD(base->tv5.vec + j);
1688 INIT_LIST_HEAD(base->tv4.vec + j);
1689 INIT_LIST_HEAD(base->tv3.vec + j);
1690 INIT_LIST_HEAD(base->tv2.vec + j);
1691 }
1692 for (j = 0; j < TVR_SIZE; j++)
1693 INIT_LIST_HEAD(base->tv1.vec + j);
1694
1695 base->timer_jiffies = jiffies;
97fd9ed4 1696 base->next_timer = base->timer_jiffies;
a4a6198b 1697 return 0;
1da177e4
LT
1698}
1699
1700#ifdef CONFIG_HOTPLUG_CPU
a6fa8e5a 1701static void migrate_timer_list(struct tvec_base *new_base, struct list_head *head)
1da177e4
LT
1702{
1703 struct timer_list *timer;
1704
1705 while (!list_empty(head)) {
b5e61818 1706 timer = list_first_entry(head, struct timer_list, entry);
ec44bc7a 1707 detach_timer(timer, false);
6e453a67 1708 timer_set_base(timer, new_base);
97fd9ed4
MS
1709 if (time_before(timer->expires, new_base->next_timer) &&
1710 !tbase_get_deferrable(timer->base))
1711 new_base->next_timer = timer->expires;
1da177e4 1712 internal_add_timer(new_base, timer);
1da177e4 1713 }
1da177e4
LT
1714}
1715
48ccf3da 1716static void __cpuinit migrate_timers(int cpu)
1da177e4 1717{
a6fa8e5a
PM
1718 struct tvec_base *old_base;
1719 struct tvec_base *new_base;
1da177e4
LT
1720 int i;
1721
1722 BUG_ON(cpu_online(cpu));
a4a6198b
JB
1723 old_base = per_cpu(tvec_bases, cpu);
1724 new_base = get_cpu_var(tvec_bases);
d82f0b0f
ON
1725 /*
1726 * The caller is globally serialized and nobody else
1727 * takes two locks at once, deadlock is not possible.
1728 */
1729 spin_lock_irq(&new_base->lock);
0d180406 1730 spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
3691c519
ON
1731
1732 BUG_ON(old_base->running_timer);
1da177e4 1733
1da177e4 1734 for (i = 0; i < TVR_SIZE; i++)
55c888d6
ON
1735 migrate_timer_list(new_base, old_base->tv1.vec + i);
1736 for (i = 0; i < TVN_SIZE; i++) {
1737 migrate_timer_list(new_base, old_base->tv2.vec + i);
1738 migrate_timer_list(new_base, old_base->tv3.vec + i);
1739 migrate_timer_list(new_base, old_base->tv4.vec + i);
1740 migrate_timer_list(new_base, old_base->tv5.vec + i);
1741 }
1742
0d180406 1743 spin_unlock(&old_base->lock);
d82f0b0f 1744 spin_unlock_irq(&new_base->lock);
1da177e4 1745 put_cpu_var(tvec_bases);
1da177e4
LT
1746}
1747#endif /* CONFIG_HOTPLUG_CPU */
1748
8c78f307 1749static int __cpuinit timer_cpu_notify(struct notifier_block *self,
1da177e4
LT
1750 unsigned long action, void *hcpu)
1751{
1752 long cpu = (long)hcpu;
80b5184c
AM
1753 int err;
1754
1da177e4
LT
1755 switch(action) {
1756 case CPU_UP_PREPARE:
8bb78442 1757 case CPU_UP_PREPARE_FROZEN:
80b5184c
AM
1758 err = init_timers_cpu(cpu);
1759 if (err < 0)
1760 return notifier_from_errno(err);
1da177e4
LT
1761 break;
1762#ifdef CONFIG_HOTPLUG_CPU
1763 case CPU_DEAD:
8bb78442 1764 case CPU_DEAD_FROZEN:
1da177e4
LT
1765 migrate_timers(cpu);
1766 break;
1767#endif
1768 default:
1769 break;
1770 }
1771 return NOTIFY_OK;
1772}
1773
8c78f307 1774static struct notifier_block __cpuinitdata timers_nb = {
1da177e4
LT
1775 .notifier_call = timer_cpu_notify,
1776};
1777
1778
1779void __init init_timers(void)
1780{
07dccf33 1781 int err = timer_cpu_notify(&timers_nb, (unsigned long)CPU_UP_PREPARE,
1da177e4 1782 (void *)(long)smp_processor_id());
07dccf33 1783
82f67cd9
IM
1784 init_timer_stats();
1785
9e506f7a 1786 BUG_ON(err != NOTIFY_OK);
1da177e4 1787 register_cpu_notifier(&timers_nb);
962cf36c 1788 open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
1da177e4
LT
1789}
1790
1da177e4
LT
1791/**
1792 * msleep - sleep safely even with waitqueue interruptions
1793 * @msecs: Time in milliseconds to sleep for
1794 */
1795void msleep(unsigned int msecs)
1796{
1797 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1798
75bcc8c5
NA
1799 while (timeout)
1800 timeout = schedule_timeout_uninterruptible(timeout);
1da177e4
LT
1801}
1802
1803EXPORT_SYMBOL(msleep);
1804
1805/**
96ec3efd 1806 * msleep_interruptible - sleep waiting for signals
1da177e4
LT
1807 * @msecs: Time in milliseconds to sleep for
1808 */
1809unsigned long msleep_interruptible(unsigned int msecs)
1810{
1811 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1812
75bcc8c5
NA
1813 while (timeout && !signal_pending(current))
1814 timeout = schedule_timeout_interruptible(timeout);
1da177e4
LT
1815 return jiffies_to_msecs(timeout);
1816}
1817
1818EXPORT_SYMBOL(msleep_interruptible);
5e7f5a17
PP
1819
1820static int __sched do_usleep_range(unsigned long min, unsigned long max)
1821{
1822 ktime_t kmin;
1823 unsigned long delta;
1824
1825 kmin = ktime_set(0, min * NSEC_PER_USEC);
1826 delta = (max - min) * NSEC_PER_USEC;
1827 return schedule_hrtimeout_range(&kmin, delta, HRTIMER_MODE_REL);
1828}
1829
1830/**
1831 * usleep_range - Drop in replacement for udelay where wakeup is flexible
1832 * @min: Minimum time in usecs to sleep
1833 * @max: Maximum time in usecs to sleep
1834 */
1835void usleep_range(unsigned long min, unsigned long max)
1836{
1837 __set_current_state(TASK_UNINTERRUPTIBLE);
1838 do_usleep_range(min, max);
1839}
1840EXPORT_SYMBOL(usleep_range);