[PATCH] sched: remove lb_stopbalance counter
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 */
20
21#include <linux/mm.h>
22#include <linux/module.h>
23#include <linux/nmi.h>
24#include <linux/init.h>
25#include <asm/uaccess.h>
26#include <linux/highmem.h>
27#include <linux/smp_lock.h>
28#include <asm/mmu_context.h>
29#include <linux/interrupt.h>
c59ede7b 30#include <linux/capability.h>
1da177e4
LT
31#include <linux/completion.h>
32#include <linux/kernel_stat.h>
9a11b49a 33#include <linux/debug_locks.h>
1da177e4
LT
34#include <linux/security.h>
35#include <linux/notifier.h>
36#include <linux/profile.h>
7dfb7103 37#include <linux/freezer.h>
198e2f18 38#include <linux/vmalloc.h>
1da177e4
LT
39#include <linux/blkdev.h>
40#include <linux/delay.h>
41#include <linux/smp.h>
42#include <linux/threads.h>
43#include <linux/timer.h>
44#include <linux/rcupdate.h>
45#include <linux/cpu.h>
46#include <linux/cpuset.h>
47#include <linux/percpu.h>
48#include <linux/kthread.h>
49#include <linux/seq_file.h>
50#include <linux/syscalls.h>
51#include <linux/times.h>
8f0ab514 52#include <linux/tsacct_kern.h>
c6fd91f0 53#include <linux/kprobes.h>
0ff92245 54#include <linux/delayacct.h>
1da177e4
LT
55#include <asm/tlb.h>
56
57#include <asm/unistd.h>
58
59/*
60 * Convert user-nice values [ -20 ... 0 ... 19 ]
61 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
62 * and back.
63 */
64#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
65#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
66#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
67
68/*
69 * 'User priority' is the nice value converted to something we
70 * can work with better when scaling various scheduler parameters,
71 * it's a [ 0 ... 39 ] range.
72 */
73#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
74#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
75#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
76
77/*
78 * Some helpers for converting nanosecond timing to jiffy resolution
79 */
80#define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
81#define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
82
83/*
84 * These are the 'tuning knobs' of the scheduler:
85 *
86 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
87 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
88 * Timeslices get refilled after they expire.
89 */
90#define MIN_TIMESLICE max(5 * HZ / 1000, 1)
91#define DEF_TIMESLICE (100 * HZ / 1000)
92#define ON_RUNQUEUE_WEIGHT 30
93#define CHILD_PENALTY 95
94#define PARENT_PENALTY 100
95#define EXIT_WEIGHT 3
96#define PRIO_BONUS_RATIO 25
97#define MAX_BONUS (MAX_USER_PRIO * PRIO_BONUS_RATIO / 100)
98#define INTERACTIVE_DELTA 2
99#define MAX_SLEEP_AVG (DEF_TIMESLICE * MAX_BONUS)
100#define STARVATION_LIMIT (MAX_SLEEP_AVG)
101#define NS_MAX_SLEEP_AVG (JIFFIES_TO_NS(MAX_SLEEP_AVG))
102
103/*
104 * If a task is 'interactive' then we reinsert it in the active
105 * array after it has expired its current timeslice. (it will not
106 * continue to run immediately, it will still roundrobin with
107 * other interactive tasks.)
108 *
109 * This part scales the interactivity limit depending on niceness.
110 *
111 * We scale it linearly, offset by the INTERACTIVE_DELTA delta.
112 * Here are a few examples of different nice levels:
113 *
114 * TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0]
115 * TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0]
116 * TASK_INTERACTIVE( 0): [1,1,1,1,0,0,0,0,0,0,0]
117 * TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0]
118 * TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0]
119 *
120 * (the X axis represents the possible -5 ... 0 ... +5 dynamic
121 * priority range a task can explore, a value of '1' means the
122 * task is rated interactive.)
123 *
124 * Ie. nice +19 tasks can never get 'interactive' enough to be
125 * reinserted into the active array. And only heavily CPU-hog nice -20
126 * tasks will be expired. Default nice 0 tasks are somewhere between,
127 * it takes some effort for them to get interactive, but it's not
128 * too hard.
129 */
130
131#define CURRENT_BONUS(p) \
132 (NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / \
133 MAX_SLEEP_AVG)
134
135#define GRANULARITY (10 * HZ / 1000 ? : 1)
136
137#ifdef CONFIG_SMP
138#define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
139 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)) * \
140 num_online_cpus())
141#else
142#define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
143 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)))
144#endif
145
146#define SCALE(v1,v1_max,v2_max) \
147 (v1) * (v2_max) / (v1_max)
148
149#define DELTA(p) \
013d3868
MA
150 (SCALE(TASK_NICE(p) + 20, 40, MAX_BONUS) - 20 * MAX_BONUS / 40 + \
151 INTERACTIVE_DELTA)
1da177e4
LT
152
153#define TASK_INTERACTIVE(p) \
154 ((p)->prio <= (p)->static_prio - DELTA(p))
155
156#define INTERACTIVE_SLEEP(p) \
157 (JIFFIES_TO_NS(MAX_SLEEP_AVG * \
158 (MAX_BONUS / 2 + DELTA((p)) + 1) / MAX_BONUS - 1))
159
160#define TASK_PREEMPTS_CURR(p, rq) \
161 ((p)->prio < (rq)->curr->prio)
162
1da177e4 163#define SCALE_PRIO(x, prio) \
2dd73a4f 164 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_TIMESLICE)
1da177e4 165
2dd73a4f 166static unsigned int static_prio_timeslice(int static_prio)
1da177e4 167{
2dd73a4f
PW
168 if (static_prio < NICE_TO_PRIO(0))
169 return SCALE_PRIO(DEF_TIMESLICE * 4, static_prio);
1da177e4 170 else
2dd73a4f 171 return SCALE_PRIO(DEF_TIMESLICE, static_prio);
1da177e4 172}
2dd73a4f 173
91fcdd4e
BP
174/*
175 * task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
176 * to time slice values: [800ms ... 100ms ... 5ms]
177 *
178 * The higher a thread's priority, the bigger timeslices
179 * it gets during one round of execution. But even the lowest
180 * priority thread gets MIN_TIMESLICE worth of execution time.
181 */
182
36c8b586 183static inline unsigned int task_timeslice(struct task_struct *p)
2dd73a4f
PW
184{
185 return static_prio_timeslice(p->static_prio);
186}
187
1da177e4
LT
188/*
189 * These are the runqueue data structures:
190 */
191
1da177e4
LT
192struct prio_array {
193 unsigned int nr_active;
d444886e 194 DECLARE_BITMAP(bitmap, MAX_PRIO+1); /* include 1 bit for delimiter */
1da177e4
LT
195 struct list_head queue[MAX_PRIO];
196};
197
198/*
199 * This is the main, per-CPU runqueue data structure.
200 *
201 * Locking rule: those places that want to lock multiple runqueues
202 * (such as the load balancing or the thread migration code), lock
203 * acquire operations must be ordered by ascending &runqueue.
204 */
70b97a7f 205struct rq {
1da177e4
LT
206 spinlock_t lock;
207
208 /*
209 * nr_running and cpu_load should be in the same cacheline because
210 * remote CPUs use both these fields when doing load calculation.
211 */
212 unsigned long nr_running;
2dd73a4f 213 unsigned long raw_weighted_load;
1da177e4 214#ifdef CONFIG_SMP
7897986b 215 unsigned long cpu_load[3];
1da177e4
LT
216#endif
217 unsigned long long nr_switches;
218
219 /*
220 * This is part of a global counter where only the total sum
221 * over all CPUs matters. A task can increase this counter on
222 * one CPU and if it got migrated afterwards it may decrease
223 * it on another CPU. Always updated under the runqueue lock:
224 */
225 unsigned long nr_uninterruptible;
226
227 unsigned long expired_timestamp;
b18ec803
MG
228 /* Cached timestamp set by update_cpu_clock() */
229 unsigned long long most_recent_timestamp;
36c8b586 230 struct task_struct *curr, *idle;
c9819f45 231 unsigned long next_balance;
1da177e4 232 struct mm_struct *prev_mm;
70b97a7f 233 struct prio_array *active, *expired, arrays[2];
1da177e4
LT
234 int best_expired_prio;
235 atomic_t nr_iowait;
236
237#ifdef CONFIG_SMP
238 struct sched_domain *sd;
239
240 /* For active balancing */
241 int active_balance;
242 int push_cpu;
0a2966b4 243 int cpu; /* cpu of this runqueue */
1da177e4 244
36c8b586 245 struct task_struct *migration_thread;
1da177e4
LT
246 struct list_head migration_queue;
247#endif
248
249#ifdef CONFIG_SCHEDSTATS
250 /* latency stats */
251 struct sched_info rq_sched_info;
252
253 /* sys_sched_yield() stats */
254 unsigned long yld_exp_empty;
255 unsigned long yld_act_empty;
256 unsigned long yld_both_empty;
257 unsigned long yld_cnt;
258
259 /* schedule() stats */
260 unsigned long sched_switch;
261 unsigned long sched_cnt;
262 unsigned long sched_goidle;
263
264 /* try_to_wake_up() stats */
265 unsigned long ttwu_cnt;
266 unsigned long ttwu_local;
267#endif
fcb99371 268 struct lock_class_key rq_lock_key;
1da177e4
LT
269};
270
70b97a7f 271static DEFINE_PER_CPU(struct rq, runqueues);
1da177e4 272
0a2966b4
CL
273static inline int cpu_of(struct rq *rq)
274{
275#ifdef CONFIG_SMP
276 return rq->cpu;
277#else
278 return 0;
279#endif
280}
281
674311d5
NP
282/*
283 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 284 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
285 *
286 * The domain tree of any CPU may only be accessed from within
287 * preempt-disabled sections.
288 */
48f24c4d
IM
289#define for_each_domain(cpu, __sd) \
290 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
291
292#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
293#define this_rq() (&__get_cpu_var(runqueues))
294#define task_rq(p) cpu_rq(task_cpu(p))
295#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
296
1da177e4 297#ifndef prepare_arch_switch
4866cde0
NP
298# define prepare_arch_switch(next) do { } while (0)
299#endif
300#ifndef finish_arch_switch
301# define finish_arch_switch(prev) do { } while (0)
302#endif
303
304#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 305static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
306{
307 return rq->curr == p;
308}
309
70b97a7f 310static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
311{
312}
313
70b97a7f 314static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 315{
da04c035
IM
316#ifdef CONFIG_DEBUG_SPINLOCK
317 /* this is a valid case when another task releases the spinlock */
318 rq->lock.owner = current;
319#endif
8a25d5de
IM
320 /*
321 * If we are tracking spinlock dependencies then we have to
322 * fix up the runqueue lock - which gets 'carried over' from
323 * prev into current:
324 */
325 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
326
4866cde0
NP
327 spin_unlock_irq(&rq->lock);
328}
329
330#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 331static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
332{
333#ifdef CONFIG_SMP
334 return p->oncpu;
335#else
336 return rq->curr == p;
337#endif
338}
339
70b97a7f 340static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
341{
342#ifdef CONFIG_SMP
343 /*
344 * We can optimise this out completely for !SMP, because the
345 * SMP rebalancing from interrupt is the only thing that cares
346 * here.
347 */
348 next->oncpu = 1;
349#endif
350#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
351 spin_unlock_irq(&rq->lock);
352#else
353 spin_unlock(&rq->lock);
354#endif
355}
356
70b97a7f 357static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
358{
359#ifdef CONFIG_SMP
360 /*
361 * After ->oncpu is cleared, the task can be moved to a different CPU.
362 * We must ensure this doesn't happen until the switch is completely
363 * finished.
364 */
365 smp_wmb();
366 prev->oncpu = 0;
367#endif
368#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
369 local_irq_enable();
1da177e4 370#endif
4866cde0
NP
371}
372#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 373
b29739f9
IM
374/*
375 * __task_rq_lock - lock the runqueue a given task resides on.
376 * Must be called interrupts disabled.
377 */
70b97a7f 378static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
379 __acquires(rq->lock)
380{
70b97a7f 381 struct rq *rq;
b29739f9
IM
382
383repeat_lock_task:
384 rq = task_rq(p);
385 spin_lock(&rq->lock);
386 if (unlikely(rq != task_rq(p))) {
387 spin_unlock(&rq->lock);
388 goto repeat_lock_task;
389 }
390 return rq;
391}
392
1da177e4
LT
393/*
394 * task_rq_lock - lock the runqueue a given task resides on and disable
395 * interrupts. Note the ordering: we can safely lookup the task_rq without
396 * explicitly disabling preemption.
397 */
70b97a7f 398static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
399 __acquires(rq->lock)
400{
70b97a7f 401 struct rq *rq;
1da177e4
LT
402
403repeat_lock_task:
404 local_irq_save(*flags);
405 rq = task_rq(p);
406 spin_lock(&rq->lock);
407 if (unlikely(rq != task_rq(p))) {
408 spin_unlock_irqrestore(&rq->lock, *flags);
409 goto repeat_lock_task;
410 }
411 return rq;
412}
413
70b97a7f 414static inline void __task_rq_unlock(struct rq *rq)
b29739f9
IM
415 __releases(rq->lock)
416{
417 spin_unlock(&rq->lock);
418}
419
70b97a7f 420static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
421 __releases(rq->lock)
422{
423 spin_unlock_irqrestore(&rq->lock, *flags);
424}
425
426#ifdef CONFIG_SCHEDSTATS
427/*
428 * bump this up when changing the output format or the meaning of an existing
429 * format, so that tools can adapt (or abort)
430 */
06066714 431#define SCHEDSTAT_VERSION 14
1da177e4
LT
432
433static int show_schedstat(struct seq_file *seq, void *v)
434{
435 int cpu;
436
437 seq_printf(seq, "version %d\n", SCHEDSTAT_VERSION);
438 seq_printf(seq, "timestamp %lu\n", jiffies);
439 for_each_online_cpu(cpu) {
70b97a7f 440 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
441#ifdef CONFIG_SMP
442 struct sched_domain *sd;
443 int dcnt = 0;
444#endif
445
446 /* runqueue-specific stats */
447 seq_printf(seq,
448 "cpu%d %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu",
449 cpu, rq->yld_both_empty,
450 rq->yld_act_empty, rq->yld_exp_empty, rq->yld_cnt,
451 rq->sched_switch, rq->sched_cnt, rq->sched_goidle,
452 rq->ttwu_cnt, rq->ttwu_local,
453 rq->rq_sched_info.cpu_time,
454 rq->rq_sched_info.run_delay, rq->rq_sched_info.pcnt);
455
456 seq_printf(seq, "\n");
457
458#ifdef CONFIG_SMP
459 /* domain-specific stats */
674311d5 460 preempt_disable();
1da177e4
LT
461 for_each_domain(cpu, sd) {
462 enum idle_type itype;
463 char mask_str[NR_CPUS];
464
465 cpumask_scnprintf(mask_str, NR_CPUS, sd->span);
466 seq_printf(seq, "domain%d %s", dcnt++, mask_str);
467 for (itype = SCHED_IDLE; itype < MAX_IDLE_TYPES;
468 itype++) {
06066714 469 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu",
1da177e4
LT
470 sd->lb_cnt[itype],
471 sd->lb_balanced[itype],
472 sd->lb_failed[itype],
473 sd->lb_imbalance[itype],
474 sd->lb_gained[itype],
475 sd->lb_hot_gained[itype],
476 sd->lb_nobusyq[itype],
06066714 477 sd->lb_nobusyg[itype]);
1da177e4 478 }
68767a0a 479 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu\n",
1da177e4 480 sd->alb_cnt, sd->alb_failed, sd->alb_pushed,
68767a0a
NP
481 sd->sbe_cnt, sd->sbe_balanced, sd->sbe_pushed,
482 sd->sbf_cnt, sd->sbf_balanced, sd->sbf_pushed,
1da177e4
LT
483 sd->ttwu_wake_remote, sd->ttwu_move_affine, sd->ttwu_move_balance);
484 }
674311d5 485 preempt_enable();
1da177e4
LT
486#endif
487 }
488 return 0;
489}
490
491static int schedstat_open(struct inode *inode, struct file *file)
492{
493 unsigned int size = PAGE_SIZE * (1 + num_online_cpus() / 32);
494 char *buf = kmalloc(size, GFP_KERNEL);
495 struct seq_file *m;
496 int res;
497
498 if (!buf)
499 return -ENOMEM;
500 res = single_open(file, show_schedstat, NULL);
501 if (!res) {
502 m = file->private_data;
503 m->buf = buf;
504 m->size = size;
505 } else
506 kfree(buf);
507 return res;
508}
509
15ad7cdc 510const struct file_operations proc_schedstat_operations = {
1da177e4
LT
511 .open = schedstat_open,
512 .read = seq_read,
513 .llseek = seq_lseek,
514 .release = single_release,
515};
516
52f17b6c
CS
517/*
518 * Expects runqueue lock to be held for atomicity of update
519 */
520static inline void
521rq_sched_info_arrive(struct rq *rq, unsigned long delta_jiffies)
522{
523 if (rq) {
524 rq->rq_sched_info.run_delay += delta_jiffies;
525 rq->rq_sched_info.pcnt++;
526 }
527}
528
529/*
530 * Expects runqueue lock to be held for atomicity of update
531 */
532static inline void
533rq_sched_info_depart(struct rq *rq, unsigned long delta_jiffies)
534{
535 if (rq)
536 rq->rq_sched_info.cpu_time += delta_jiffies;
537}
1da177e4
LT
538# define schedstat_inc(rq, field) do { (rq)->field++; } while (0)
539# define schedstat_add(rq, field, amt) do { (rq)->field += (amt); } while (0)
540#else /* !CONFIG_SCHEDSTATS */
52f17b6c
CS
541static inline void
542rq_sched_info_arrive(struct rq *rq, unsigned long delta_jiffies)
543{}
544static inline void
545rq_sched_info_depart(struct rq *rq, unsigned long delta_jiffies)
546{}
1da177e4
LT
547# define schedstat_inc(rq, field) do { } while (0)
548# define schedstat_add(rq, field, amt) do { } while (0)
549#endif
550
551/*
cc2a73b5 552 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 553 */
70b97a7f 554static inline struct rq *this_rq_lock(void)
1da177e4
LT
555 __acquires(rq->lock)
556{
70b97a7f 557 struct rq *rq;
1da177e4
LT
558
559 local_irq_disable();
560 rq = this_rq();
561 spin_lock(&rq->lock);
562
563 return rq;
564}
565
52f17b6c 566#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1da177e4
LT
567/*
568 * Called when a process is dequeued from the active array and given
569 * the cpu. We should note that with the exception of interactive
570 * tasks, the expired queue will become the active queue after the active
571 * queue is empty, without explicitly dequeuing and requeuing tasks in the
572 * expired queue. (Interactive tasks may be requeued directly to the
573 * active queue, thus delaying tasks in the expired queue from running;
574 * see scheduler_tick()).
575 *
576 * This function is only called from sched_info_arrive(), rather than
577 * dequeue_task(). Even though a task may be queued and dequeued multiple
578 * times as it is shuffled about, we're really interested in knowing how
579 * long it was from the *first* time it was queued to the time that it
580 * finally hit a cpu.
581 */
36c8b586 582static inline void sched_info_dequeued(struct task_struct *t)
1da177e4
LT
583{
584 t->sched_info.last_queued = 0;
585}
586
587/*
588 * Called when a task finally hits the cpu. We can now calculate how
589 * long it was waiting to run. We also note when it began so that we
590 * can keep stats on how long its timeslice is.
591 */
36c8b586 592static void sched_info_arrive(struct task_struct *t)
1da177e4 593{
52f17b6c 594 unsigned long now = jiffies, delta_jiffies = 0;
1da177e4
LT
595
596 if (t->sched_info.last_queued)
52f17b6c 597 delta_jiffies = now - t->sched_info.last_queued;
1da177e4 598 sched_info_dequeued(t);
52f17b6c 599 t->sched_info.run_delay += delta_jiffies;
1da177e4
LT
600 t->sched_info.last_arrival = now;
601 t->sched_info.pcnt++;
602
52f17b6c 603 rq_sched_info_arrive(task_rq(t), delta_jiffies);
1da177e4
LT
604}
605
606/*
607 * Called when a process is queued into either the active or expired
608 * array. The time is noted and later used to determine how long we
609 * had to wait for us to reach the cpu. Since the expired queue will
610 * become the active queue after active queue is empty, without dequeuing
611 * and requeuing any tasks, we are interested in queuing to either. It
612 * is unusual but not impossible for tasks to be dequeued and immediately
613 * requeued in the same or another array: this can happen in sched_yield(),
614 * set_user_nice(), and even load_balance() as it moves tasks from runqueue
615 * to runqueue.
616 *
617 * This function is only called from enqueue_task(), but also only updates
618 * the timestamp if it is already not set. It's assumed that
619 * sched_info_dequeued() will clear that stamp when appropriate.
620 */
36c8b586 621static inline void sched_info_queued(struct task_struct *t)
1da177e4 622{
52f17b6c
CS
623 if (unlikely(sched_info_on()))
624 if (!t->sched_info.last_queued)
625 t->sched_info.last_queued = jiffies;
1da177e4
LT
626}
627
628/*
629 * Called when a process ceases being the active-running process, either
630 * voluntarily or involuntarily. Now we can calculate how long we ran.
631 */
36c8b586 632static inline void sched_info_depart(struct task_struct *t)
1da177e4 633{
52f17b6c 634 unsigned long delta_jiffies = jiffies - t->sched_info.last_arrival;
1da177e4 635
52f17b6c
CS
636 t->sched_info.cpu_time += delta_jiffies;
637 rq_sched_info_depart(task_rq(t), delta_jiffies);
1da177e4
LT
638}
639
640/*
641 * Called when tasks are switched involuntarily due, typically, to expiring
642 * their time slice. (This may also be called when switching to or from
643 * the idle task.) We are only called when prev != next.
644 */
36c8b586 645static inline void
52f17b6c 646__sched_info_switch(struct task_struct *prev, struct task_struct *next)
1da177e4 647{
70b97a7f 648 struct rq *rq = task_rq(prev);
1da177e4
LT
649
650 /*
651 * prev now departs the cpu. It's not interesting to record
652 * stats about how efficient we were at scheduling the idle
653 * process, however.
654 */
655 if (prev != rq->idle)
656 sched_info_depart(prev);
657
658 if (next != rq->idle)
659 sched_info_arrive(next);
660}
52f17b6c
CS
661static inline void
662sched_info_switch(struct task_struct *prev, struct task_struct *next)
663{
664 if (unlikely(sched_info_on()))
665 __sched_info_switch(prev, next);
666}
1da177e4
LT
667#else
668#define sched_info_queued(t) do { } while (0)
669#define sched_info_switch(t, next) do { } while (0)
52f17b6c 670#endif /* CONFIG_SCHEDSTATS || CONFIG_TASK_DELAY_ACCT */
1da177e4
LT
671
672/*
673 * Adding/removing a task to/from a priority array:
674 */
70b97a7f 675static void dequeue_task(struct task_struct *p, struct prio_array *array)
1da177e4
LT
676{
677 array->nr_active--;
678 list_del(&p->run_list);
679 if (list_empty(array->queue + p->prio))
680 __clear_bit(p->prio, array->bitmap);
681}
682
70b97a7f 683static void enqueue_task(struct task_struct *p, struct prio_array *array)
1da177e4
LT
684{
685 sched_info_queued(p);
686 list_add_tail(&p->run_list, array->queue + p->prio);
687 __set_bit(p->prio, array->bitmap);
688 array->nr_active++;
689 p->array = array;
690}
691
692/*
693 * Put task to the end of the run list without the overhead of dequeue
694 * followed by enqueue.
695 */
70b97a7f 696static void requeue_task(struct task_struct *p, struct prio_array *array)
1da177e4
LT
697{
698 list_move_tail(&p->run_list, array->queue + p->prio);
699}
700
70b97a7f
IM
701static inline void
702enqueue_task_head(struct task_struct *p, struct prio_array *array)
1da177e4
LT
703{
704 list_add(&p->run_list, array->queue + p->prio);
705 __set_bit(p->prio, array->bitmap);
706 array->nr_active++;
707 p->array = array;
708}
709
710/*
b29739f9 711 * __normal_prio - return the priority that is based on the static
1da177e4
LT
712 * priority but is modified by bonuses/penalties.
713 *
714 * We scale the actual sleep average [0 .... MAX_SLEEP_AVG]
715 * into the -5 ... 0 ... +5 bonus/penalty range.
716 *
717 * We use 25% of the full 0...39 priority range so that:
718 *
719 * 1) nice +19 interactive tasks do not preempt nice 0 CPU hogs.
720 * 2) nice -20 CPU hogs do not get preempted by nice 0 tasks.
721 *
722 * Both properties are important to certain workloads.
723 */
b29739f9 724
36c8b586 725static inline int __normal_prio(struct task_struct *p)
1da177e4
LT
726{
727 int bonus, prio;
728
1da177e4
LT
729 bonus = CURRENT_BONUS(p) - MAX_BONUS / 2;
730
731 prio = p->static_prio - bonus;
732 if (prio < MAX_RT_PRIO)
733 prio = MAX_RT_PRIO;
734 if (prio > MAX_PRIO-1)
735 prio = MAX_PRIO-1;
736 return prio;
737}
738
2dd73a4f
PW
739/*
740 * To aid in avoiding the subversion of "niceness" due to uneven distribution
741 * of tasks with abnormal "nice" values across CPUs the contribution that
742 * each task makes to its run queue's load is weighted according to its
743 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
744 * scaled version of the new time slice allocation that they receive on time
745 * slice expiry etc.
746 */
747
748/*
749 * Assume: static_prio_timeslice(NICE_TO_PRIO(0)) == DEF_TIMESLICE
750 * If static_prio_timeslice() is ever changed to break this assumption then
751 * this code will need modification
752 */
753#define TIME_SLICE_NICE_ZERO DEF_TIMESLICE
754#define LOAD_WEIGHT(lp) \
755 (((lp) * SCHED_LOAD_SCALE) / TIME_SLICE_NICE_ZERO)
756#define PRIO_TO_LOAD_WEIGHT(prio) \
757 LOAD_WEIGHT(static_prio_timeslice(prio))
758#define RTPRIO_TO_LOAD_WEIGHT(rp) \
759 (PRIO_TO_LOAD_WEIGHT(MAX_RT_PRIO) + LOAD_WEIGHT(rp))
760
36c8b586 761static void set_load_weight(struct task_struct *p)
2dd73a4f 762{
b29739f9 763 if (has_rt_policy(p)) {
2dd73a4f
PW
764#ifdef CONFIG_SMP
765 if (p == task_rq(p)->migration_thread)
766 /*
767 * The migration thread does the actual balancing.
768 * Giving its load any weight will skew balancing
769 * adversely.
770 */
771 p->load_weight = 0;
772 else
773#endif
774 p->load_weight = RTPRIO_TO_LOAD_WEIGHT(p->rt_priority);
775 } else
776 p->load_weight = PRIO_TO_LOAD_WEIGHT(p->static_prio);
777}
778
36c8b586 779static inline void
70b97a7f 780inc_raw_weighted_load(struct rq *rq, const struct task_struct *p)
2dd73a4f
PW
781{
782 rq->raw_weighted_load += p->load_weight;
783}
784
36c8b586 785static inline void
70b97a7f 786dec_raw_weighted_load(struct rq *rq, const struct task_struct *p)
2dd73a4f
PW
787{
788 rq->raw_weighted_load -= p->load_weight;
789}
790
70b97a7f 791static inline void inc_nr_running(struct task_struct *p, struct rq *rq)
2dd73a4f
PW
792{
793 rq->nr_running++;
794 inc_raw_weighted_load(rq, p);
795}
796
70b97a7f 797static inline void dec_nr_running(struct task_struct *p, struct rq *rq)
2dd73a4f
PW
798{
799 rq->nr_running--;
800 dec_raw_weighted_load(rq, p);
801}
802
b29739f9
IM
803/*
804 * Calculate the expected normal priority: i.e. priority
805 * without taking RT-inheritance into account. Might be
806 * boosted by interactivity modifiers. Changes upon fork,
807 * setprio syscalls, and whenever the interactivity
808 * estimator recalculates.
809 */
36c8b586 810static inline int normal_prio(struct task_struct *p)
b29739f9
IM
811{
812 int prio;
813
814 if (has_rt_policy(p))
815 prio = MAX_RT_PRIO-1 - p->rt_priority;
816 else
817 prio = __normal_prio(p);
818 return prio;
819}
820
821/*
822 * Calculate the current priority, i.e. the priority
823 * taken into account by the scheduler. This value might
824 * be boosted by RT tasks, or might be boosted by
825 * interactivity modifiers. Will be RT if the task got
826 * RT-boosted. If not then it returns p->normal_prio.
827 */
36c8b586 828static int effective_prio(struct task_struct *p)
b29739f9
IM
829{
830 p->normal_prio = normal_prio(p);
831 /*
832 * If we are RT tasks or we were boosted to RT priority,
833 * keep the priority unchanged. Otherwise, update priority
834 * to the normal priority:
835 */
836 if (!rt_prio(p->prio))
837 return p->normal_prio;
838 return p->prio;
839}
840
1da177e4
LT
841/*
842 * __activate_task - move a task to the runqueue.
843 */
70b97a7f 844static void __activate_task(struct task_struct *p, struct rq *rq)
1da177e4 845{
70b97a7f 846 struct prio_array *target = rq->active;
d425b274 847
f1adad78 848 if (batch_task(p))
d425b274
CK
849 target = rq->expired;
850 enqueue_task(p, target);
2dd73a4f 851 inc_nr_running(p, rq);
1da177e4
LT
852}
853
854/*
855 * __activate_idle_task - move idle task to the _front_ of runqueue.
856 */
70b97a7f 857static inline void __activate_idle_task(struct task_struct *p, struct rq *rq)
1da177e4
LT
858{
859 enqueue_task_head(p, rq->active);
2dd73a4f 860 inc_nr_running(p, rq);
1da177e4
LT
861}
862
b29739f9
IM
863/*
864 * Recalculate p->normal_prio and p->prio after having slept,
865 * updating the sleep-average too:
866 */
36c8b586 867static int recalc_task_prio(struct task_struct *p, unsigned long long now)
1da177e4
LT
868{
869 /* Caller must always ensure 'now >= p->timestamp' */
72d2854d 870 unsigned long sleep_time = now - p->timestamp;
1da177e4 871
d425b274 872 if (batch_task(p))
b0a9499c 873 sleep_time = 0;
1da177e4
LT
874
875 if (likely(sleep_time > 0)) {
876 /*
72d2854d
CK
877 * This ceiling is set to the lowest priority that would allow
878 * a task to be reinserted into the active array on timeslice
879 * completion.
1da177e4 880 */
72d2854d 881 unsigned long ceiling = INTERACTIVE_SLEEP(p);
e72ff0bb 882
72d2854d
CK
883 if (p->mm && sleep_time > ceiling && p->sleep_avg < ceiling) {
884 /*
885 * Prevents user tasks from achieving best priority
886 * with one single large enough sleep.
887 */
888 p->sleep_avg = ceiling;
889 /*
890 * Using INTERACTIVE_SLEEP() as a ceiling places a
891 * nice(0) task 1ms sleep away from promotion, and
892 * gives it 700ms to round-robin with no chance of
893 * being demoted. This is more than generous, so
894 * mark this sleep as non-interactive to prevent the
895 * on-runqueue bonus logic from intervening should
896 * this task not receive cpu immediately.
897 */
898 p->sleep_type = SLEEP_NONINTERACTIVE;
1da177e4 899 } else {
1da177e4
LT
900 /*
901 * Tasks waking from uninterruptible sleep are
902 * limited in their sleep_avg rise as they
903 * are likely to be waiting on I/O
904 */
3dee386e 905 if (p->sleep_type == SLEEP_NONINTERACTIVE && p->mm) {
72d2854d 906 if (p->sleep_avg >= ceiling)
1da177e4
LT
907 sleep_time = 0;
908 else if (p->sleep_avg + sleep_time >=
72d2854d
CK
909 ceiling) {
910 p->sleep_avg = ceiling;
911 sleep_time = 0;
1da177e4
LT
912 }
913 }
914
915 /*
916 * This code gives a bonus to interactive tasks.
917 *
918 * The boost works by updating the 'average sleep time'
919 * value here, based on ->timestamp. The more time a
920 * task spends sleeping, the higher the average gets -
921 * and the higher the priority boost gets as well.
922 */
923 p->sleep_avg += sleep_time;
924
1da177e4 925 }
72d2854d
CK
926 if (p->sleep_avg > NS_MAX_SLEEP_AVG)
927 p->sleep_avg = NS_MAX_SLEEP_AVG;
1da177e4
LT
928 }
929
a3464a10 930 return effective_prio(p);
1da177e4
LT
931}
932
933/*
934 * activate_task - move a task to the runqueue and do priority recalculation
935 *
936 * Update all the scheduling statistics stuff. (sleep average
937 * calculation, priority modifiers, etc.)
938 */
70b97a7f 939static void activate_task(struct task_struct *p, struct rq *rq, int local)
1da177e4
LT
940{
941 unsigned long long now;
942
943 now = sched_clock();
944#ifdef CONFIG_SMP
945 if (!local) {
946 /* Compensate for drifting sched_clock */
70b97a7f 947 struct rq *this_rq = this_rq();
b18ec803
MG
948 now = (now - this_rq->most_recent_timestamp)
949 + rq->most_recent_timestamp;
1da177e4
LT
950 }
951#endif
952
ece8a684
IM
953 /*
954 * Sleep time is in units of nanosecs, so shift by 20 to get a
955 * milliseconds-range estimation of the amount of time that the task
956 * spent sleeping:
957 */
958 if (unlikely(prof_on == SLEEP_PROFILING)) {
959 if (p->state == TASK_UNINTERRUPTIBLE)
960 profile_hits(SLEEP_PROFILING, (void *)get_wchan(p),
961 (now - p->timestamp) >> 20);
962 }
963
a47ab937
KC
964 if (!rt_task(p))
965 p->prio = recalc_task_prio(p, now);
1da177e4
LT
966
967 /*
968 * This checks to make sure it's not an uninterruptible task
969 * that is now waking up.
970 */
3dee386e 971 if (p->sleep_type == SLEEP_NORMAL) {
1da177e4
LT
972 /*
973 * Tasks which were woken up by interrupts (ie. hw events)
974 * are most likely of interactive nature. So we give them
975 * the credit of extending their sleep time to the period
976 * of time they spend on the runqueue, waiting for execution
977 * on a CPU, first time around:
978 */
979 if (in_interrupt())
3dee386e 980 p->sleep_type = SLEEP_INTERRUPTED;
1da177e4
LT
981 else {
982 /*
983 * Normal first-time wakeups get a credit too for
984 * on-runqueue time, but it will be weighted down:
985 */
3dee386e 986 p->sleep_type = SLEEP_INTERACTIVE;
1da177e4
LT
987 }
988 }
989 p->timestamp = now;
990
991 __activate_task(p, rq);
992}
993
994/*
995 * deactivate_task - remove a task from the runqueue.
996 */
70b97a7f 997static void deactivate_task(struct task_struct *p, struct rq *rq)
1da177e4 998{
2dd73a4f 999 dec_nr_running(p, rq);
1da177e4
LT
1000 dequeue_task(p, p->array);
1001 p->array = NULL;
1002}
1003
1004/*
1005 * resched_task - mark a task 'to be rescheduled now'.
1006 *
1007 * On UP this means the setting of the need_resched flag, on SMP it
1008 * might also involve a cross-CPU call to trigger the scheduler on
1009 * the target CPU.
1010 */
1011#ifdef CONFIG_SMP
495ab9c0
AK
1012
1013#ifndef tsk_is_polling
1014#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1015#endif
1016
36c8b586 1017static void resched_task(struct task_struct *p)
1da177e4 1018{
64c7c8f8 1019 int cpu;
1da177e4
LT
1020
1021 assert_spin_locked(&task_rq(p)->lock);
1022
64c7c8f8
NP
1023 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
1024 return;
1025
1026 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
1da177e4 1027
64c7c8f8
NP
1028 cpu = task_cpu(p);
1029 if (cpu == smp_processor_id())
1030 return;
1031
495ab9c0 1032 /* NEED_RESCHED must be visible before we test polling */
64c7c8f8 1033 smp_mb();
495ab9c0 1034 if (!tsk_is_polling(p))
64c7c8f8 1035 smp_send_reschedule(cpu);
1da177e4
LT
1036}
1037#else
36c8b586 1038static inline void resched_task(struct task_struct *p)
1da177e4 1039{
64c7c8f8 1040 assert_spin_locked(&task_rq(p)->lock);
1da177e4
LT
1041 set_tsk_need_resched(p);
1042}
1043#endif
1044
1045/**
1046 * task_curr - is this task currently executing on a CPU?
1047 * @p: the task in question.
1048 */
36c8b586 1049inline int task_curr(const struct task_struct *p)
1da177e4
LT
1050{
1051 return cpu_curr(task_cpu(p)) == p;
1052}
1053
2dd73a4f
PW
1054/* Used instead of source_load when we know the type == 0 */
1055unsigned long weighted_cpuload(const int cpu)
1056{
1057 return cpu_rq(cpu)->raw_weighted_load;
1058}
1059
1da177e4 1060#ifdef CONFIG_SMP
70b97a7f 1061struct migration_req {
1da177e4 1062 struct list_head list;
1da177e4 1063
36c8b586 1064 struct task_struct *task;
1da177e4
LT
1065 int dest_cpu;
1066
1da177e4 1067 struct completion done;
70b97a7f 1068};
1da177e4
LT
1069
1070/*
1071 * The task's runqueue lock must be held.
1072 * Returns true if you have to wait for migration thread.
1073 */
36c8b586 1074static int
70b97a7f 1075migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 1076{
70b97a7f 1077 struct rq *rq = task_rq(p);
1da177e4
LT
1078
1079 /*
1080 * If the task is not on a runqueue (and not running), then
1081 * it is sufficient to simply update the task's cpu field.
1082 */
1083 if (!p->array && !task_running(rq, p)) {
1084 set_task_cpu(p, dest_cpu);
1085 return 0;
1086 }
1087
1088 init_completion(&req->done);
1da177e4
LT
1089 req->task = p;
1090 req->dest_cpu = dest_cpu;
1091 list_add(&req->list, &rq->migration_queue);
48f24c4d 1092
1da177e4
LT
1093 return 1;
1094}
1095
1096/*
1097 * wait_task_inactive - wait for a thread to unschedule.
1098 *
1099 * The caller must ensure that the task *will* unschedule sometime soon,
1100 * else this function might spin for a *long* time. This function can't
1101 * be called with interrupts off, or it may introduce deadlock with
1102 * smp_call_function() if an IPI is sent by the same process we are
1103 * waiting to become inactive.
1104 */
36c8b586 1105void wait_task_inactive(struct task_struct *p)
1da177e4
LT
1106{
1107 unsigned long flags;
70b97a7f 1108 struct rq *rq;
1da177e4
LT
1109 int preempted;
1110
1111repeat:
1112 rq = task_rq_lock(p, &flags);
1113 /* Must be off runqueue entirely, not preempted. */
1114 if (unlikely(p->array || task_running(rq, p))) {
1115 /* If it's preempted, we yield. It could be a while. */
1116 preempted = !task_running(rq, p);
1117 task_rq_unlock(rq, &flags);
1118 cpu_relax();
1119 if (preempted)
1120 yield();
1121 goto repeat;
1122 }
1123 task_rq_unlock(rq, &flags);
1124}
1125
1126/***
1127 * kick_process - kick a running thread to enter/exit the kernel
1128 * @p: the to-be-kicked thread
1129 *
1130 * Cause a process which is running on another CPU to enter
1131 * kernel-mode, without any delay. (to get signals handled.)
1132 *
1133 * NOTE: this function doesnt have to take the runqueue lock,
1134 * because all it wants to ensure is that the remote task enters
1135 * the kernel. If the IPI races and the task has been migrated
1136 * to another CPU then no harm is done and the purpose has been
1137 * achieved as well.
1138 */
36c8b586 1139void kick_process(struct task_struct *p)
1da177e4
LT
1140{
1141 int cpu;
1142
1143 preempt_disable();
1144 cpu = task_cpu(p);
1145 if ((cpu != smp_processor_id()) && task_curr(p))
1146 smp_send_reschedule(cpu);
1147 preempt_enable();
1148}
1149
1150/*
2dd73a4f
PW
1151 * Return a low guess at the load of a migration-source cpu weighted
1152 * according to the scheduling class and "nice" value.
1da177e4
LT
1153 *
1154 * We want to under-estimate the load of migration sources, to
1155 * balance conservatively.
1156 */
a2000572 1157static inline unsigned long source_load(int cpu, int type)
1da177e4 1158{
70b97a7f 1159 struct rq *rq = cpu_rq(cpu);
2dd73a4f 1160
3b0bd9bc 1161 if (type == 0)
2dd73a4f 1162 return rq->raw_weighted_load;
b910472d 1163
2dd73a4f 1164 return min(rq->cpu_load[type-1], rq->raw_weighted_load);
1da177e4
LT
1165}
1166
1167/*
2dd73a4f
PW
1168 * Return a high guess at the load of a migration-target cpu weighted
1169 * according to the scheduling class and "nice" value.
1da177e4 1170 */
a2000572 1171static inline unsigned long target_load(int cpu, int type)
1da177e4 1172{
70b97a7f 1173 struct rq *rq = cpu_rq(cpu);
2dd73a4f 1174
7897986b 1175 if (type == 0)
2dd73a4f 1176 return rq->raw_weighted_load;
3b0bd9bc 1177
2dd73a4f
PW
1178 return max(rq->cpu_load[type-1], rq->raw_weighted_load);
1179}
1180
1181/*
1182 * Return the average load per task on the cpu's run queue
1183 */
1184static inline unsigned long cpu_avg_load_per_task(int cpu)
1185{
70b97a7f 1186 struct rq *rq = cpu_rq(cpu);
2dd73a4f
PW
1187 unsigned long n = rq->nr_running;
1188
48f24c4d 1189 return n ? rq->raw_weighted_load / n : SCHED_LOAD_SCALE;
1da177e4
LT
1190}
1191
147cbb4b
NP
1192/*
1193 * find_idlest_group finds and returns the least busy CPU group within the
1194 * domain.
1195 */
1196static struct sched_group *
1197find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1198{
1199 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1200 unsigned long min_load = ULONG_MAX, this_load = 0;
1201 int load_idx = sd->forkexec_idx;
1202 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1203
1204 do {
1205 unsigned long load, avg_load;
1206 int local_group;
1207 int i;
1208
da5a5522
BD
1209 /* Skip over this group if it has no CPUs allowed */
1210 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
1211 goto nextgroup;
1212
147cbb4b 1213 local_group = cpu_isset(this_cpu, group->cpumask);
147cbb4b
NP
1214
1215 /* Tally up the load of all CPUs in the group */
1216 avg_load = 0;
1217
1218 for_each_cpu_mask(i, group->cpumask) {
1219 /* Bias balancing toward cpus of our domain */
1220 if (local_group)
1221 load = source_load(i, load_idx);
1222 else
1223 load = target_load(i, load_idx);
1224
1225 avg_load += load;
1226 }
1227
1228 /* Adjust by relative CPU power of the group */
1229 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1230
1231 if (local_group) {
1232 this_load = avg_load;
1233 this = group;
1234 } else if (avg_load < min_load) {
1235 min_load = avg_load;
1236 idlest = group;
1237 }
da5a5522 1238nextgroup:
147cbb4b
NP
1239 group = group->next;
1240 } while (group != sd->groups);
1241
1242 if (!idlest || 100*this_load < imbalance*min_load)
1243 return NULL;
1244 return idlest;
1245}
1246
1247/*
0feaece9 1248 * find_idlest_cpu - find the idlest cpu among the cpus in group.
147cbb4b 1249 */
95cdf3b7
IM
1250static int
1251find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
147cbb4b 1252{
da5a5522 1253 cpumask_t tmp;
147cbb4b
NP
1254 unsigned long load, min_load = ULONG_MAX;
1255 int idlest = -1;
1256 int i;
1257
da5a5522
BD
1258 /* Traverse only the allowed CPUs */
1259 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1260
1261 for_each_cpu_mask(i, tmp) {
2dd73a4f 1262 load = weighted_cpuload(i);
147cbb4b
NP
1263
1264 if (load < min_load || (load == min_load && i == this_cpu)) {
1265 min_load = load;
1266 idlest = i;
1267 }
1268 }
1269
1270 return idlest;
1271}
1272
476d139c
NP
1273/*
1274 * sched_balance_self: balance the current task (running on cpu) in domains
1275 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1276 * SD_BALANCE_EXEC.
1277 *
1278 * Balance, ie. select the least loaded group.
1279 *
1280 * Returns the target CPU number, or the same CPU if no balancing is needed.
1281 *
1282 * preempt must be disabled.
1283 */
1284static int sched_balance_self(int cpu, int flag)
1285{
1286 struct task_struct *t = current;
1287 struct sched_domain *tmp, *sd = NULL;
147cbb4b 1288
c96d145e 1289 for_each_domain(cpu, tmp) {
5c45bf27
SS
1290 /*
1291 * If power savings logic is enabled for a domain, stop there.
1292 */
1293 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1294 break;
476d139c
NP
1295 if (tmp->flags & flag)
1296 sd = tmp;
c96d145e 1297 }
476d139c
NP
1298
1299 while (sd) {
1300 cpumask_t span;
1301 struct sched_group *group;
1a848870
SS
1302 int new_cpu, weight;
1303
1304 if (!(sd->flags & flag)) {
1305 sd = sd->child;
1306 continue;
1307 }
476d139c
NP
1308
1309 span = sd->span;
1310 group = find_idlest_group(sd, t, cpu);
1a848870
SS
1311 if (!group) {
1312 sd = sd->child;
1313 continue;
1314 }
476d139c 1315
da5a5522 1316 new_cpu = find_idlest_cpu(group, t, cpu);
1a848870
SS
1317 if (new_cpu == -1 || new_cpu == cpu) {
1318 /* Now try balancing at a lower domain level of cpu */
1319 sd = sd->child;
1320 continue;
1321 }
476d139c 1322
1a848870 1323 /* Now try balancing at a lower domain level of new_cpu */
476d139c 1324 cpu = new_cpu;
476d139c
NP
1325 sd = NULL;
1326 weight = cpus_weight(span);
1327 for_each_domain(cpu, tmp) {
1328 if (weight <= cpus_weight(tmp->span))
1329 break;
1330 if (tmp->flags & flag)
1331 sd = tmp;
1332 }
1333 /* while loop will break here if sd == NULL */
1334 }
1335
1336 return cpu;
1337}
1338
1339#endif /* CONFIG_SMP */
1da177e4
LT
1340
1341/*
1342 * wake_idle() will wake a task on an idle cpu if task->cpu is
1343 * not idle and an idle cpu is available. The span of cpus to
1344 * search starts with cpus closest then further out as needed,
1345 * so we always favor a closer, idle cpu.
1346 *
1347 * Returns the CPU we should wake onto.
1348 */
1349#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
36c8b586 1350static int wake_idle(int cpu, struct task_struct *p)
1da177e4
LT
1351{
1352 cpumask_t tmp;
1353 struct sched_domain *sd;
1354 int i;
1355
1356 if (idle_cpu(cpu))
1357 return cpu;
1358
1359 for_each_domain(cpu, sd) {
1360 if (sd->flags & SD_WAKE_IDLE) {
e0f364f4 1361 cpus_and(tmp, sd->span, p->cpus_allowed);
1da177e4
LT
1362 for_each_cpu_mask(i, tmp) {
1363 if (idle_cpu(i))
1364 return i;
1365 }
1366 }
e0f364f4
NP
1367 else
1368 break;
1da177e4
LT
1369 }
1370 return cpu;
1371}
1372#else
36c8b586 1373static inline int wake_idle(int cpu, struct task_struct *p)
1da177e4
LT
1374{
1375 return cpu;
1376}
1377#endif
1378
1379/***
1380 * try_to_wake_up - wake up a thread
1381 * @p: the to-be-woken-up thread
1382 * @state: the mask of task states that can be woken
1383 * @sync: do a synchronous wakeup?
1384 *
1385 * Put it on the run-queue if it's not already there. The "current"
1386 * thread is always on the run-queue (except when the actual
1387 * re-schedule is in progress), and as such you're allowed to do
1388 * the simpler "current->state = TASK_RUNNING" to mark yourself
1389 * runnable without the overhead of this.
1390 *
1391 * returns failure only if the task is already active.
1392 */
36c8b586 1393static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1da177e4
LT
1394{
1395 int cpu, this_cpu, success = 0;
1396 unsigned long flags;
1397 long old_state;
70b97a7f 1398 struct rq *rq;
1da177e4 1399#ifdef CONFIG_SMP
7897986b 1400 struct sched_domain *sd, *this_sd = NULL;
70b97a7f 1401 unsigned long load, this_load;
1da177e4
LT
1402 int new_cpu;
1403#endif
1404
1405 rq = task_rq_lock(p, &flags);
1406 old_state = p->state;
1407 if (!(old_state & state))
1408 goto out;
1409
1410 if (p->array)
1411 goto out_running;
1412
1413 cpu = task_cpu(p);
1414 this_cpu = smp_processor_id();
1415
1416#ifdef CONFIG_SMP
1417 if (unlikely(task_running(rq, p)))
1418 goto out_activate;
1419
7897986b
NP
1420 new_cpu = cpu;
1421
1da177e4
LT
1422 schedstat_inc(rq, ttwu_cnt);
1423 if (cpu == this_cpu) {
1424 schedstat_inc(rq, ttwu_local);
7897986b
NP
1425 goto out_set_cpu;
1426 }
1427
1428 for_each_domain(this_cpu, sd) {
1429 if (cpu_isset(cpu, sd->span)) {
1430 schedstat_inc(sd, ttwu_wake_remote);
1431 this_sd = sd;
1432 break;
1da177e4
LT
1433 }
1434 }
1da177e4 1435
7897986b 1436 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1da177e4
LT
1437 goto out_set_cpu;
1438
1da177e4 1439 /*
7897986b 1440 * Check for affine wakeup and passive balancing possibilities.
1da177e4 1441 */
7897986b
NP
1442 if (this_sd) {
1443 int idx = this_sd->wake_idx;
1444 unsigned int imbalance;
1da177e4 1445
a3f21bce
NP
1446 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1447
7897986b
NP
1448 load = source_load(cpu, idx);
1449 this_load = target_load(this_cpu, idx);
1da177e4 1450
7897986b
NP
1451 new_cpu = this_cpu; /* Wake to this CPU if we can */
1452
a3f21bce
NP
1453 if (this_sd->flags & SD_WAKE_AFFINE) {
1454 unsigned long tl = this_load;
2dd73a4f
PW
1455 unsigned long tl_per_task = cpu_avg_load_per_task(this_cpu);
1456
1da177e4 1457 /*
a3f21bce
NP
1458 * If sync wakeup then subtract the (maximum possible)
1459 * effect of the currently running task from the load
1460 * of the current CPU:
1da177e4 1461 */
a3f21bce 1462 if (sync)
2dd73a4f 1463 tl -= current->load_weight;
a3f21bce
NP
1464
1465 if ((tl <= load &&
2dd73a4f
PW
1466 tl + target_load(cpu, idx) <= tl_per_task) ||
1467 100*(tl + p->load_weight) <= imbalance*load) {
a3f21bce
NP
1468 /*
1469 * This domain has SD_WAKE_AFFINE and
1470 * p is cache cold in this domain, and
1471 * there is no bad imbalance.
1472 */
1473 schedstat_inc(this_sd, ttwu_move_affine);
1474 goto out_set_cpu;
1475 }
1476 }
1477
1478 /*
1479 * Start passive balancing when half the imbalance_pct
1480 * limit is reached.
1481 */
1482 if (this_sd->flags & SD_WAKE_BALANCE) {
1483 if (imbalance*this_load <= 100*load) {
1484 schedstat_inc(this_sd, ttwu_move_balance);
1485 goto out_set_cpu;
1486 }
1da177e4
LT
1487 }
1488 }
1489
1490 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1491out_set_cpu:
1492 new_cpu = wake_idle(new_cpu, p);
1493 if (new_cpu != cpu) {
1494 set_task_cpu(p, new_cpu);
1495 task_rq_unlock(rq, &flags);
1496 /* might preempt at this point */
1497 rq = task_rq_lock(p, &flags);
1498 old_state = p->state;
1499 if (!(old_state & state))
1500 goto out;
1501 if (p->array)
1502 goto out_running;
1503
1504 this_cpu = smp_processor_id();
1505 cpu = task_cpu(p);
1506 }
1507
1508out_activate:
1509#endif /* CONFIG_SMP */
1510 if (old_state == TASK_UNINTERRUPTIBLE) {
1511 rq->nr_uninterruptible--;
1512 /*
1513 * Tasks on involuntary sleep don't earn
1514 * sleep_avg beyond just interactive state.
1515 */
3dee386e 1516 p->sleep_type = SLEEP_NONINTERACTIVE;
e7c38cb4 1517 } else
1da177e4 1518
d79fc0fc
IM
1519 /*
1520 * Tasks that have marked their sleep as noninteractive get
e7c38cb4
CK
1521 * woken up with their sleep average not weighted in an
1522 * interactive way.
d79fc0fc 1523 */
e7c38cb4
CK
1524 if (old_state & TASK_NONINTERACTIVE)
1525 p->sleep_type = SLEEP_NONINTERACTIVE;
1526
1527
1528 activate_task(p, rq, cpu == this_cpu);
1da177e4
LT
1529 /*
1530 * Sync wakeups (i.e. those types of wakeups where the waker
1531 * has indicated that it will leave the CPU in short order)
1532 * don't trigger a preemption, if the woken up task will run on
1533 * this cpu. (in this case the 'I will reschedule' promise of
1534 * the waker guarantees that the freshly woken up task is going
1535 * to be considered on this CPU.)
1536 */
1da177e4
LT
1537 if (!sync || cpu != this_cpu) {
1538 if (TASK_PREEMPTS_CURR(p, rq))
1539 resched_task(rq->curr);
1540 }
1541 success = 1;
1542
1543out_running:
1544 p->state = TASK_RUNNING;
1545out:
1546 task_rq_unlock(rq, &flags);
1547
1548 return success;
1549}
1550
36c8b586 1551int fastcall wake_up_process(struct task_struct *p)
1da177e4
LT
1552{
1553 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1554 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1555}
1da177e4
LT
1556EXPORT_SYMBOL(wake_up_process);
1557
36c8b586 1558int fastcall wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1559{
1560 return try_to_wake_up(p, state, 0);
1561}
1562
1da177e4
LT
1563/*
1564 * Perform scheduler related setup for a newly forked process p.
1565 * p is forked by current.
1566 */
36c8b586 1567void fastcall sched_fork(struct task_struct *p, int clone_flags)
1da177e4 1568{
476d139c
NP
1569 int cpu = get_cpu();
1570
1571#ifdef CONFIG_SMP
1572 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1573#endif
1574 set_task_cpu(p, cpu);
1575
1da177e4
LT
1576 /*
1577 * We mark the process as running here, but have not actually
1578 * inserted it onto the runqueue yet. This guarantees that
1579 * nobody will actually run it, and a signal or other external
1580 * event cannot wake it up and insert it on the runqueue either.
1581 */
1582 p->state = TASK_RUNNING;
b29739f9
IM
1583
1584 /*
1585 * Make sure we do not leak PI boosting priority to the child:
1586 */
1587 p->prio = current->normal_prio;
1588
1da177e4
LT
1589 INIT_LIST_HEAD(&p->run_list);
1590 p->array = NULL;
52f17b6c
CS
1591#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
1592 if (unlikely(sched_info_on()))
1593 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 1594#endif
d6077cb8 1595#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
1596 p->oncpu = 0;
1597#endif
1da177e4 1598#ifdef CONFIG_PREEMPT
4866cde0 1599 /* Want to start with kernel preemption disabled. */
a1261f54 1600 task_thread_info(p)->preempt_count = 1;
1da177e4
LT
1601#endif
1602 /*
1603 * Share the timeslice between parent and child, thus the
1604 * total amount of pending timeslices in the system doesn't change,
1605 * resulting in more scheduling fairness.
1606 */
1607 local_irq_disable();
1608 p->time_slice = (current->time_slice + 1) >> 1;
1609 /*
1610 * The remainder of the first timeslice might be recovered by
1611 * the parent if the child exits early enough.
1612 */
1613 p->first_time_slice = 1;
1614 current->time_slice >>= 1;
1615 p->timestamp = sched_clock();
1616 if (unlikely(!current->time_slice)) {
1617 /*
1618 * This case is rare, it happens when the parent has only
1619 * a single jiffy left from its timeslice. Taking the
1620 * runqueue lock is not a problem.
1621 */
1622 current->time_slice = 1;
1da177e4 1623 scheduler_tick();
476d139c
NP
1624 }
1625 local_irq_enable();
1626 put_cpu();
1da177e4
LT
1627}
1628
1629/*
1630 * wake_up_new_task - wake up a newly created task for the first time.
1631 *
1632 * This function will do some initial scheduler statistics housekeeping
1633 * that must be done for every newly created context, then puts the task
1634 * on the runqueue and wakes it.
1635 */
36c8b586 1636void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4 1637{
70b97a7f 1638 struct rq *rq, *this_rq;
1da177e4
LT
1639 unsigned long flags;
1640 int this_cpu, cpu;
1da177e4
LT
1641
1642 rq = task_rq_lock(p, &flags);
147cbb4b 1643 BUG_ON(p->state != TASK_RUNNING);
1da177e4 1644 this_cpu = smp_processor_id();
147cbb4b 1645 cpu = task_cpu(p);
1da177e4 1646
1da177e4
LT
1647 /*
1648 * We decrease the sleep average of forking parents
1649 * and children as well, to keep max-interactive tasks
1650 * from forking tasks that are max-interactive. The parent
1651 * (current) is done further down, under its lock.
1652 */
1653 p->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(p) *
1654 CHILD_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1655
1656 p->prio = effective_prio(p);
1657
1658 if (likely(cpu == this_cpu)) {
1659 if (!(clone_flags & CLONE_VM)) {
1660 /*
1661 * The VM isn't cloned, so we're in a good position to
1662 * do child-runs-first in anticipation of an exec. This
1663 * usually avoids a lot of COW overhead.
1664 */
1665 if (unlikely(!current->array))
1666 __activate_task(p, rq);
1667 else {
1668 p->prio = current->prio;
b29739f9 1669 p->normal_prio = current->normal_prio;
1da177e4
LT
1670 list_add_tail(&p->run_list, &current->run_list);
1671 p->array = current->array;
1672 p->array->nr_active++;
2dd73a4f 1673 inc_nr_running(p, rq);
1da177e4
LT
1674 }
1675 set_need_resched();
1676 } else
1677 /* Run child last */
1678 __activate_task(p, rq);
1679 /*
1680 * We skip the following code due to cpu == this_cpu
1681 *
1682 * task_rq_unlock(rq, &flags);
1683 * this_rq = task_rq_lock(current, &flags);
1684 */
1685 this_rq = rq;
1686 } else {
1687 this_rq = cpu_rq(this_cpu);
1688
1689 /*
1690 * Not the local CPU - must adjust timestamp. This should
1691 * get optimised away in the !CONFIG_SMP case.
1692 */
b18ec803
MG
1693 p->timestamp = (p->timestamp - this_rq->most_recent_timestamp)
1694 + rq->most_recent_timestamp;
1da177e4
LT
1695 __activate_task(p, rq);
1696 if (TASK_PREEMPTS_CURR(p, rq))
1697 resched_task(rq->curr);
1698
1699 /*
1700 * Parent and child are on different CPUs, now get the
1701 * parent runqueue to update the parent's ->sleep_avg:
1702 */
1703 task_rq_unlock(rq, &flags);
1704 this_rq = task_rq_lock(current, &flags);
1705 }
1706 current->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(current) *
1707 PARENT_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1708 task_rq_unlock(this_rq, &flags);
1709}
1710
1711/*
1712 * Potentially available exiting-child timeslices are
1713 * retrieved here - this way the parent does not get
1714 * penalized for creating too many threads.
1715 *
1716 * (this cannot be used to 'generate' timeslices
1717 * artificially, because any timeslice recovered here
1718 * was given away by the parent in the first place.)
1719 */
36c8b586 1720void fastcall sched_exit(struct task_struct *p)
1da177e4
LT
1721{
1722 unsigned long flags;
70b97a7f 1723 struct rq *rq;
1da177e4
LT
1724
1725 /*
1726 * If the child was a (relative-) CPU hog then decrease
1727 * the sleep_avg of the parent as well.
1728 */
1729 rq = task_rq_lock(p->parent, &flags);
889dfafe 1730 if (p->first_time_slice && task_cpu(p) == task_cpu(p->parent)) {
1da177e4
LT
1731 p->parent->time_slice += p->time_slice;
1732 if (unlikely(p->parent->time_slice > task_timeslice(p)))
1733 p->parent->time_slice = task_timeslice(p);
1734 }
1735 if (p->sleep_avg < p->parent->sleep_avg)
1736 p->parent->sleep_avg = p->parent->sleep_avg /
1737 (EXIT_WEIGHT + 1) * EXIT_WEIGHT + p->sleep_avg /
1738 (EXIT_WEIGHT + 1);
1739 task_rq_unlock(rq, &flags);
1740}
1741
4866cde0
NP
1742/**
1743 * prepare_task_switch - prepare to switch tasks
1744 * @rq: the runqueue preparing to switch
1745 * @next: the task we are going to switch to.
1746 *
1747 * This is called with the rq lock held and interrupts off. It must
1748 * be paired with a subsequent finish_task_switch after the context
1749 * switch.
1750 *
1751 * prepare_task_switch sets up locking and calls architecture specific
1752 * hooks.
1753 */
70b97a7f 1754static inline void prepare_task_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
1755{
1756 prepare_lock_switch(rq, next);
1757 prepare_arch_switch(next);
1758}
1759
1da177e4
LT
1760/**
1761 * finish_task_switch - clean up after a task-switch
344babaa 1762 * @rq: runqueue associated with task-switch
1da177e4
LT
1763 * @prev: the thread we just switched away from.
1764 *
4866cde0
NP
1765 * finish_task_switch must be called after the context switch, paired
1766 * with a prepare_task_switch call before the context switch.
1767 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1768 * and do any other architecture-specific cleanup actions.
1da177e4
LT
1769 *
1770 * Note that we may have delayed dropping an mm in context_switch(). If
1771 * so, we finish that here outside of the runqueue lock. (Doing it
1772 * with the lock held can cause deadlocks; see schedule() for
1773 * details.)
1774 */
70b97a7f 1775static inline void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
1776 __releases(rq->lock)
1777{
1da177e4 1778 struct mm_struct *mm = rq->prev_mm;
55a101f8 1779 long prev_state;
1da177e4
LT
1780
1781 rq->prev_mm = NULL;
1782
1783 /*
1784 * A task struct has one reference for the use as "current".
c394cc9f 1785 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
1786 * schedule one last time. The schedule call will never return, and
1787 * the scheduled task must drop that reference.
c394cc9f 1788 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
1789 * still held, otherwise prev could be scheduled on another cpu, die
1790 * there before we look at prev->state, and then the reference would
1791 * be dropped twice.
1792 * Manfred Spraul <manfred@colorfullife.com>
1793 */
55a101f8 1794 prev_state = prev->state;
4866cde0
NP
1795 finish_arch_switch(prev);
1796 finish_lock_switch(rq, prev);
1da177e4
LT
1797 if (mm)
1798 mmdrop(mm);
c394cc9f 1799 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 1800 /*
1801 * Remove function-return probe instances associated with this
1802 * task and put them back on the free list.
1803 */
1804 kprobe_flush_task(prev);
1da177e4 1805 put_task_struct(prev);
c6fd91f0 1806 }
1da177e4
LT
1807}
1808
1809/**
1810 * schedule_tail - first thing a freshly forked thread must call.
1811 * @prev: the thread we just switched away from.
1812 */
36c8b586 1813asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
1814 __releases(rq->lock)
1815{
70b97a7f
IM
1816 struct rq *rq = this_rq();
1817
4866cde0
NP
1818 finish_task_switch(rq, prev);
1819#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1820 /* In this case, finish_task_switch does not reenable preemption */
1821 preempt_enable();
1822#endif
1da177e4
LT
1823 if (current->set_child_tid)
1824 put_user(current->pid, current->set_child_tid);
1825}
1826
1827/*
1828 * context_switch - switch to the new MM and the new
1829 * thread's register state.
1830 */
36c8b586 1831static inline struct task_struct *
70b97a7f 1832context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 1833 struct task_struct *next)
1da177e4
LT
1834{
1835 struct mm_struct *mm = next->mm;
1836 struct mm_struct *oldmm = prev->active_mm;
1837
beed33a8 1838 if (!mm) {
1da177e4
LT
1839 next->active_mm = oldmm;
1840 atomic_inc(&oldmm->mm_count);
1841 enter_lazy_tlb(oldmm, next);
1842 } else
1843 switch_mm(oldmm, mm, next);
1844
beed33a8 1845 if (!prev->mm) {
1da177e4
LT
1846 prev->active_mm = NULL;
1847 WARN_ON(rq->prev_mm);
1848 rq->prev_mm = oldmm;
1849 }
3a5f5e48
IM
1850 /*
1851 * Since the runqueue lock will be released by the next
1852 * task (which is an invalid locking op but in the case
1853 * of the scheduler it's an obvious special-case), so we
1854 * do an early lockdep release here:
1855 */
1856#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 1857 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 1858#endif
1da177e4
LT
1859
1860 /* Here we just switch the register state and the stack. */
1861 switch_to(prev, next, prev);
1862
1863 return prev;
1864}
1865
1866/*
1867 * nr_running, nr_uninterruptible and nr_context_switches:
1868 *
1869 * externally visible scheduler statistics: current number of runnable
1870 * threads, current number of uninterruptible-sleeping threads, total
1871 * number of context switches performed since bootup.
1872 */
1873unsigned long nr_running(void)
1874{
1875 unsigned long i, sum = 0;
1876
1877 for_each_online_cpu(i)
1878 sum += cpu_rq(i)->nr_running;
1879
1880 return sum;
1881}
1882
1883unsigned long nr_uninterruptible(void)
1884{
1885 unsigned long i, sum = 0;
1886
0a945022 1887 for_each_possible_cpu(i)
1da177e4
LT
1888 sum += cpu_rq(i)->nr_uninterruptible;
1889
1890 /*
1891 * Since we read the counters lockless, it might be slightly
1892 * inaccurate. Do not allow it to go below zero though:
1893 */
1894 if (unlikely((long)sum < 0))
1895 sum = 0;
1896
1897 return sum;
1898}
1899
1900unsigned long long nr_context_switches(void)
1901{
cc94abfc
SR
1902 int i;
1903 unsigned long long sum = 0;
1da177e4 1904
0a945022 1905 for_each_possible_cpu(i)
1da177e4
LT
1906 sum += cpu_rq(i)->nr_switches;
1907
1908 return sum;
1909}
1910
1911unsigned long nr_iowait(void)
1912{
1913 unsigned long i, sum = 0;
1914
0a945022 1915 for_each_possible_cpu(i)
1da177e4
LT
1916 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1917
1918 return sum;
1919}
1920
db1b1fef
JS
1921unsigned long nr_active(void)
1922{
1923 unsigned long i, running = 0, uninterruptible = 0;
1924
1925 for_each_online_cpu(i) {
1926 running += cpu_rq(i)->nr_running;
1927 uninterruptible += cpu_rq(i)->nr_uninterruptible;
1928 }
1929
1930 if (unlikely((long)uninterruptible < 0))
1931 uninterruptible = 0;
1932
1933 return running + uninterruptible;
1934}
1935
1da177e4
LT
1936#ifdef CONFIG_SMP
1937
48f24c4d
IM
1938/*
1939 * Is this task likely cache-hot:
1940 */
1941static inline int
1942task_hot(struct task_struct *p, unsigned long long now, struct sched_domain *sd)
1943{
1944 return (long long)(now - p->last_ran) < (long long)sd->cache_hot_time;
1945}
1946
1da177e4
LT
1947/*
1948 * double_rq_lock - safely lock two runqueues
1949 *
1950 * Note this does not disable interrupts like task_rq_lock,
1951 * you need to do so manually before calling.
1952 */
70b97a7f 1953static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
1954 __acquires(rq1->lock)
1955 __acquires(rq2->lock)
1956{
054b9108 1957 BUG_ON(!irqs_disabled());
1da177e4
LT
1958 if (rq1 == rq2) {
1959 spin_lock(&rq1->lock);
1960 __acquire(rq2->lock); /* Fake it out ;) */
1961 } else {
c96d145e 1962 if (rq1 < rq2) {
1da177e4
LT
1963 spin_lock(&rq1->lock);
1964 spin_lock(&rq2->lock);
1965 } else {
1966 spin_lock(&rq2->lock);
1967 spin_lock(&rq1->lock);
1968 }
1969 }
1970}
1971
1972/*
1973 * double_rq_unlock - safely unlock two runqueues
1974 *
1975 * Note this does not restore interrupts like task_rq_unlock,
1976 * you need to do so manually after calling.
1977 */
70b97a7f 1978static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
1979 __releases(rq1->lock)
1980 __releases(rq2->lock)
1981{
1982 spin_unlock(&rq1->lock);
1983 if (rq1 != rq2)
1984 spin_unlock(&rq2->lock);
1985 else
1986 __release(rq2->lock);
1987}
1988
1989/*
1990 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1991 */
70b97a7f 1992static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
1da177e4
LT
1993 __releases(this_rq->lock)
1994 __acquires(busiest->lock)
1995 __acquires(this_rq->lock)
1996{
054b9108
KK
1997 if (unlikely(!irqs_disabled())) {
1998 /* printk() doesn't work good under rq->lock */
1999 spin_unlock(&this_rq->lock);
2000 BUG_ON(1);
2001 }
1da177e4 2002 if (unlikely(!spin_trylock(&busiest->lock))) {
c96d145e 2003 if (busiest < this_rq) {
1da177e4
LT
2004 spin_unlock(&this_rq->lock);
2005 spin_lock(&busiest->lock);
2006 spin_lock(&this_rq->lock);
2007 } else
2008 spin_lock(&busiest->lock);
2009 }
2010}
2011
1da177e4
LT
2012/*
2013 * If dest_cpu is allowed for this process, migrate the task to it.
2014 * This is accomplished by forcing the cpu_allowed mask to only
2015 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2016 * the cpu_allowed mask is restored.
2017 */
36c8b586 2018static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 2019{
70b97a7f 2020 struct migration_req req;
1da177e4 2021 unsigned long flags;
70b97a7f 2022 struct rq *rq;
1da177e4
LT
2023
2024 rq = task_rq_lock(p, &flags);
2025 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2026 || unlikely(cpu_is_offline(dest_cpu)))
2027 goto out;
2028
2029 /* force the process onto the specified CPU */
2030 if (migrate_task(p, dest_cpu, &req)) {
2031 /* Need to wait for migration thread (might exit: take ref). */
2032 struct task_struct *mt = rq->migration_thread;
36c8b586 2033
1da177e4
LT
2034 get_task_struct(mt);
2035 task_rq_unlock(rq, &flags);
2036 wake_up_process(mt);
2037 put_task_struct(mt);
2038 wait_for_completion(&req.done);
36c8b586 2039
1da177e4
LT
2040 return;
2041 }
2042out:
2043 task_rq_unlock(rq, &flags);
2044}
2045
2046/*
476d139c
NP
2047 * sched_exec - execve() is a valuable balancing opportunity, because at
2048 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
2049 */
2050void sched_exec(void)
2051{
1da177e4 2052 int new_cpu, this_cpu = get_cpu();
476d139c 2053 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 2054 put_cpu();
476d139c
NP
2055 if (new_cpu != this_cpu)
2056 sched_migrate_task(current, new_cpu);
1da177e4
LT
2057}
2058
2059/*
2060 * pull_task - move a task from a remote runqueue to the local runqueue.
2061 * Both runqueues must be locked.
2062 */
70b97a7f
IM
2063static void pull_task(struct rq *src_rq, struct prio_array *src_array,
2064 struct task_struct *p, struct rq *this_rq,
2065 struct prio_array *this_array, int this_cpu)
1da177e4
LT
2066{
2067 dequeue_task(p, src_array);
2dd73a4f 2068 dec_nr_running(p, src_rq);
1da177e4 2069 set_task_cpu(p, this_cpu);
2dd73a4f 2070 inc_nr_running(p, this_rq);
1da177e4 2071 enqueue_task(p, this_array);
b18ec803
MG
2072 p->timestamp = (p->timestamp - src_rq->most_recent_timestamp)
2073 + this_rq->most_recent_timestamp;
1da177e4
LT
2074 /*
2075 * Note that idle threads have a prio of MAX_PRIO, for this test
2076 * to be always true for them.
2077 */
2078 if (TASK_PREEMPTS_CURR(p, this_rq))
2079 resched_task(this_rq->curr);
2080}
2081
2082/*
2083 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2084 */
858119e1 2085static
70b97a7f 2086int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
95cdf3b7
IM
2087 struct sched_domain *sd, enum idle_type idle,
2088 int *all_pinned)
1da177e4
LT
2089{
2090 /*
2091 * We do not migrate tasks that are:
2092 * 1) running (obviously), or
2093 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2094 * 3) are cache-hot on their current CPU.
2095 */
1da177e4
LT
2096 if (!cpu_isset(this_cpu, p->cpus_allowed))
2097 return 0;
81026794
NP
2098 *all_pinned = 0;
2099
2100 if (task_running(rq, p))
2101 return 0;
1da177e4
LT
2102
2103 /*
2104 * Aggressive migration if:
cafb20c1 2105 * 1) task is cache cold, or
1da177e4
LT
2106 * 2) too many balance attempts have failed.
2107 */
2108
b18ec803
MG
2109 if (sd->nr_balance_failed > sd->cache_nice_tries) {
2110#ifdef CONFIG_SCHEDSTATS
2111 if (task_hot(p, rq->most_recent_timestamp, sd))
2112 schedstat_inc(sd, lb_hot_gained[idle]);
2113#endif
1da177e4 2114 return 1;
b18ec803 2115 }
1da177e4 2116
b18ec803 2117 if (task_hot(p, rq->most_recent_timestamp, sd))
81026794 2118 return 0;
1da177e4
LT
2119 return 1;
2120}
2121
615052dc 2122#define rq_best_prio(rq) min((rq)->curr->prio, (rq)->best_expired_prio)
48f24c4d 2123
1da177e4 2124/*
2dd73a4f
PW
2125 * move_tasks tries to move up to max_nr_move tasks and max_load_move weighted
2126 * load from busiest to this_rq, as part of a balancing operation within
2127 * "domain". Returns the number of tasks moved.
1da177e4
LT
2128 *
2129 * Called with both runqueues locked.
2130 */
70b97a7f 2131static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2dd73a4f
PW
2132 unsigned long max_nr_move, unsigned long max_load_move,
2133 struct sched_domain *sd, enum idle_type idle,
2134 int *all_pinned)
1da177e4 2135{
48f24c4d
IM
2136 int idx, pulled = 0, pinned = 0, this_best_prio, best_prio,
2137 best_prio_seen, skip_for_load;
70b97a7f 2138 struct prio_array *array, *dst_array;
1da177e4 2139 struct list_head *head, *curr;
36c8b586 2140 struct task_struct *tmp;
2dd73a4f 2141 long rem_load_move;
1da177e4 2142
2dd73a4f 2143 if (max_nr_move == 0 || max_load_move == 0)
1da177e4
LT
2144 goto out;
2145
2dd73a4f 2146 rem_load_move = max_load_move;
81026794 2147 pinned = 1;
615052dc 2148 this_best_prio = rq_best_prio(this_rq);
48f24c4d 2149 best_prio = rq_best_prio(busiest);
615052dc
PW
2150 /*
2151 * Enable handling of the case where there is more than one task
2152 * with the best priority. If the current running task is one
48f24c4d 2153 * of those with prio==best_prio we know it won't be moved
615052dc
PW
2154 * and therefore it's safe to override the skip (based on load) of
2155 * any task we find with that prio.
2156 */
48f24c4d 2157 best_prio_seen = best_prio == busiest->curr->prio;
81026794 2158
1da177e4
LT
2159 /*
2160 * We first consider expired tasks. Those will likely not be
2161 * executed in the near future, and they are most likely to
2162 * be cache-cold, thus switching CPUs has the least effect
2163 * on them.
2164 */
2165 if (busiest->expired->nr_active) {
2166 array = busiest->expired;
2167 dst_array = this_rq->expired;
2168 } else {
2169 array = busiest->active;
2170 dst_array = this_rq->active;
2171 }
2172
2173new_array:
2174 /* Start searching at priority 0: */
2175 idx = 0;
2176skip_bitmap:
2177 if (!idx)
2178 idx = sched_find_first_bit(array->bitmap);
2179 else
2180 idx = find_next_bit(array->bitmap, MAX_PRIO, idx);
2181 if (idx >= MAX_PRIO) {
2182 if (array == busiest->expired && busiest->active->nr_active) {
2183 array = busiest->active;
2184 dst_array = this_rq->active;
2185 goto new_array;
2186 }
2187 goto out;
2188 }
2189
2190 head = array->queue + idx;
2191 curr = head->prev;
2192skip_queue:
36c8b586 2193 tmp = list_entry(curr, struct task_struct, run_list);
1da177e4
LT
2194
2195 curr = curr->prev;
2196
50ddd969
PW
2197 /*
2198 * To help distribute high priority tasks accross CPUs we don't
2199 * skip a task if it will be the highest priority task (i.e. smallest
2200 * prio value) on its new queue regardless of its load weight
2201 */
615052dc
PW
2202 skip_for_load = tmp->load_weight > rem_load_move;
2203 if (skip_for_load && idx < this_best_prio)
48f24c4d 2204 skip_for_load = !best_prio_seen && idx == best_prio;
615052dc 2205 if (skip_for_load ||
2dd73a4f 2206 !can_migrate_task(tmp, busiest, this_cpu, sd, idle, &pinned)) {
48f24c4d
IM
2207
2208 best_prio_seen |= idx == best_prio;
1da177e4
LT
2209 if (curr != head)
2210 goto skip_queue;
2211 idx++;
2212 goto skip_bitmap;
2213 }
2214
1da177e4
LT
2215 pull_task(busiest, array, tmp, this_rq, dst_array, this_cpu);
2216 pulled++;
2dd73a4f 2217 rem_load_move -= tmp->load_weight;
1da177e4 2218
2dd73a4f
PW
2219 /*
2220 * We only want to steal up to the prescribed number of tasks
2221 * and the prescribed amount of weighted load.
2222 */
2223 if (pulled < max_nr_move && rem_load_move > 0) {
615052dc
PW
2224 if (idx < this_best_prio)
2225 this_best_prio = idx;
1da177e4
LT
2226 if (curr != head)
2227 goto skip_queue;
2228 idx++;
2229 goto skip_bitmap;
2230 }
2231out:
2232 /*
2233 * Right now, this is the only place pull_task() is called,
2234 * so we can safely collect pull_task() stats here rather than
2235 * inside pull_task().
2236 */
2237 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
2238
2239 if (all_pinned)
2240 *all_pinned = pinned;
1da177e4
LT
2241 return pulled;
2242}
2243
2244/*
2245 * find_busiest_group finds and returns the busiest CPU group within the
48f24c4d
IM
2246 * domain. It calculates and returns the amount of weighted load which
2247 * should be moved to restore balance via the imbalance parameter.
1da177e4
LT
2248 */
2249static struct sched_group *
2250find_busiest_group(struct sched_domain *sd, int this_cpu,
0a2966b4 2251 unsigned long *imbalance, enum idle_type idle, int *sd_idle,
783609c6 2252 cpumask_t *cpus, int *balance)
1da177e4
LT
2253{
2254 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2255 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
0c117f1b 2256 unsigned long max_pull;
2dd73a4f
PW
2257 unsigned long busiest_load_per_task, busiest_nr_running;
2258 unsigned long this_load_per_task, this_nr_running;
7897986b 2259 int load_idx;
5c45bf27
SS
2260#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2261 int power_savings_balance = 1;
2262 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2263 unsigned long min_nr_running = ULONG_MAX;
2264 struct sched_group *group_min = NULL, *group_leader = NULL;
2265#endif
1da177e4
LT
2266
2267 max_load = this_load = total_load = total_pwr = 0;
2dd73a4f
PW
2268 busiest_load_per_task = busiest_nr_running = 0;
2269 this_load_per_task = this_nr_running = 0;
7897986b
NP
2270 if (idle == NOT_IDLE)
2271 load_idx = sd->busy_idx;
2272 else if (idle == NEWLY_IDLE)
2273 load_idx = sd->newidle_idx;
2274 else
2275 load_idx = sd->idle_idx;
1da177e4
LT
2276
2277 do {
5c45bf27 2278 unsigned long load, group_capacity;
1da177e4
LT
2279 int local_group;
2280 int i;
783609c6 2281 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2dd73a4f 2282 unsigned long sum_nr_running, sum_weighted_load;
1da177e4
LT
2283
2284 local_group = cpu_isset(this_cpu, group->cpumask);
2285
783609c6
SS
2286 if (local_group)
2287 balance_cpu = first_cpu(group->cpumask);
2288
1da177e4 2289 /* Tally up the load of all CPUs in the group */
2dd73a4f 2290 sum_weighted_load = sum_nr_running = avg_load = 0;
1da177e4
LT
2291
2292 for_each_cpu_mask(i, group->cpumask) {
0a2966b4
CL
2293 struct rq *rq;
2294
2295 if (!cpu_isset(i, *cpus))
2296 continue;
2297
2298 rq = cpu_rq(i);
2dd73a4f 2299
5969fe06
NP
2300 if (*sd_idle && !idle_cpu(i))
2301 *sd_idle = 0;
2302
1da177e4 2303 /* Bias balancing toward cpus of our domain */
783609c6
SS
2304 if (local_group) {
2305 if (idle_cpu(i) && !first_idle_cpu) {
2306 first_idle_cpu = 1;
2307 balance_cpu = i;
2308 }
2309
a2000572 2310 load = target_load(i, load_idx);
783609c6 2311 } else
a2000572 2312 load = source_load(i, load_idx);
1da177e4
LT
2313
2314 avg_load += load;
2dd73a4f
PW
2315 sum_nr_running += rq->nr_running;
2316 sum_weighted_load += rq->raw_weighted_load;
1da177e4
LT
2317 }
2318
783609c6
SS
2319 /*
2320 * First idle cpu or the first cpu(busiest) in this sched group
2321 * is eligible for doing load balancing at this and above
2322 * domains.
2323 */
2324 if (local_group && balance_cpu != this_cpu && balance) {
2325 *balance = 0;
2326 goto ret;
2327 }
2328
1da177e4
LT
2329 total_load += avg_load;
2330 total_pwr += group->cpu_power;
2331
2332 /* Adjust by relative CPU power of the group */
2333 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
2334
5c45bf27
SS
2335 group_capacity = group->cpu_power / SCHED_LOAD_SCALE;
2336
1da177e4
LT
2337 if (local_group) {
2338 this_load = avg_load;
2339 this = group;
2dd73a4f
PW
2340 this_nr_running = sum_nr_running;
2341 this_load_per_task = sum_weighted_load;
2342 } else if (avg_load > max_load &&
5c45bf27 2343 sum_nr_running > group_capacity) {
1da177e4
LT
2344 max_load = avg_load;
2345 busiest = group;
2dd73a4f
PW
2346 busiest_nr_running = sum_nr_running;
2347 busiest_load_per_task = sum_weighted_load;
1da177e4 2348 }
5c45bf27
SS
2349
2350#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2351 /*
2352 * Busy processors will not participate in power savings
2353 * balance.
2354 */
2355 if (idle == NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2356 goto group_next;
2357
2358 /*
2359 * If the local group is idle or completely loaded
2360 * no need to do power savings balance at this domain
2361 */
2362 if (local_group && (this_nr_running >= group_capacity ||
2363 !this_nr_running))
2364 power_savings_balance = 0;
2365
2366 /*
2367 * If a group is already running at full capacity or idle,
2368 * don't include that group in power savings calculations
2369 */
2370 if (!power_savings_balance || sum_nr_running >= group_capacity
2371 || !sum_nr_running)
2372 goto group_next;
2373
2374 /*
2375 * Calculate the group which has the least non-idle load.
2376 * This is the group from where we need to pick up the load
2377 * for saving power
2378 */
2379 if ((sum_nr_running < min_nr_running) ||
2380 (sum_nr_running == min_nr_running &&
2381 first_cpu(group->cpumask) <
2382 first_cpu(group_min->cpumask))) {
2383 group_min = group;
2384 min_nr_running = sum_nr_running;
2385 min_load_per_task = sum_weighted_load /
2386 sum_nr_running;
2387 }
2388
2389 /*
2390 * Calculate the group which is almost near its
2391 * capacity but still has some space to pick up some load
2392 * from other group and save more power
2393 */
48f24c4d 2394 if (sum_nr_running <= group_capacity - 1) {
5c45bf27
SS
2395 if (sum_nr_running > leader_nr_running ||
2396 (sum_nr_running == leader_nr_running &&
2397 first_cpu(group->cpumask) >
2398 first_cpu(group_leader->cpumask))) {
2399 group_leader = group;
2400 leader_nr_running = sum_nr_running;
2401 }
48f24c4d 2402 }
5c45bf27
SS
2403group_next:
2404#endif
1da177e4
LT
2405 group = group->next;
2406 } while (group != sd->groups);
2407
2dd73a4f 2408 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
1da177e4
LT
2409 goto out_balanced;
2410
2411 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2412
2413 if (this_load >= avg_load ||
2414 100*max_load <= sd->imbalance_pct*this_load)
2415 goto out_balanced;
2416
2dd73a4f 2417 busiest_load_per_task /= busiest_nr_running;
1da177e4
LT
2418 /*
2419 * We're trying to get all the cpus to the average_load, so we don't
2420 * want to push ourselves above the average load, nor do we wish to
2421 * reduce the max loaded cpu below the average load, as either of these
2422 * actions would just result in more rebalancing later, and ping-pong
2423 * tasks around. Thus we look for the minimum possible imbalance.
2424 * Negative imbalances (*we* are more loaded than anyone else) will
2425 * be counted as no imbalance for these purposes -- we can't fix that
2426 * by pulling tasks to us. Be careful of negative numbers as they'll
2427 * appear as very large values with unsigned longs.
2428 */
2dd73a4f
PW
2429 if (max_load <= busiest_load_per_task)
2430 goto out_balanced;
2431
2432 /*
2433 * In the presence of smp nice balancing, certain scenarios can have
2434 * max load less than avg load(as we skip the groups at or below
2435 * its cpu_power, while calculating max_load..)
2436 */
2437 if (max_load < avg_load) {
2438 *imbalance = 0;
2439 goto small_imbalance;
2440 }
0c117f1b
SS
2441
2442 /* Don't want to pull so many tasks that a group would go idle */
2dd73a4f 2443 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
0c117f1b 2444
1da177e4 2445 /* How much load to actually move to equalise the imbalance */
0c117f1b 2446 *imbalance = min(max_pull * busiest->cpu_power,
1da177e4
LT
2447 (avg_load - this_load) * this->cpu_power)
2448 / SCHED_LOAD_SCALE;
2449
2dd73a4f
PW
2450 /*
2451 * if *imbalance is less than the average load per runnable task
2452 * there is no gaurantee that any tasks will be moved so we'll have
2453 * a think about bumping its value to force at least one task to be
2454 * moved
2455 */
2456 if (*imbalance < busiest_load_per_task) {
48f24c4d 2457 unsigned long tmp, pwr_now, pwr_move;
2dd73a4f
PW
2458 unsigned int imbn;
2459
2460small_imbalance:
2461 pwr_move = pwr_now = 0;
2462 imbn = 2;
2463 if (this_nr_running) {
2464 this_load_per_task /= this_nr_running;
2465 if (busiest_load_per_task > this_load_per_task)
2466 imbn = 1;
2467 } else
2468 this_load_per_task = SCHED_LOAD_SCALE;
1da177e4 2469
2dd73a4f
PW
2470 if (max_load - this_load >= busiest_load_per_task * imbn) {
2471 *imbalance = busiest_load_per_task;
1da177e4
LT
2472 return busiest;
2473 }
2474
2475 /*
2476 * OK, we don't have enough imbalance to justify moving tasks,
2477 * however we may be able to increase total CPU power used by
2478 * moving them.
2479 */
2480
2dd73a4f
PW
2481 pwr_now += busiest->cpu_power *
2482 min(busiest_load_per_task, max_load);
2483 pwr_now += this->cpu_power *
2484 min(this_load_per_task, this_load);
1da177e4
LT
2485 pwr_now /= SCHED_LOAD_SCALE;
2486
2487 /* Amount of load we'd subtract */
2dd73a4f 2488 tmp = busiest_load_per_task*SCHED_LOAD_SCALE/busiest->cpu_power;
1da177e4 2489 if (max_load > tmp)
2dd73a4f
PW
2490 pwr_move += busiest->cpu_power *
2491 min(busiest_load_per_task, max_load - tmp);
1da177e4
LT
2492
2493 /* Amount of load we'd add */
2494 if (max_load*busiest->cpu_power <
2dd73a4f 2495 busiest_load_per_task*SCHED_LOAD_SCALE)
1da177e4
LT
2496 tmp = max_load*busiest->cpu_power/this->cpu_power;
2497 else
2dd73a4f
PW
2498 tmp = busiest_load_per_task*SCHED_LOAD_SCALE/this->cpu_power;
2499 pwr_move += this->cpu_power*min(this_load_per_task, this_load + tmp);
1da177e4
LT
2500 pwr_move /= SCHED_LOAD_SCALE;
2501
2502 /* Move if we gain throughput */
2503 if (pwr_move <= pwr_now)
2504 goto out_balanced;
2505
2dd73a4f 2506 *imbalance = busiest_load_per_task;
1da177e4
LT
2507 }
2508
1da177e4
LT
2509 return busiest;
2510
2511out_balanced:
5c45bf27
SS
2512#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2513 if (idle == NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2514 goto ret;
1da177e4 2515
5c45bf27
SS
2516 if (this == group_leader && group_leader != group_min) {
2517 *imbalance = min_load_per_task;
2518 return group_min;
2519 }
5c45bf27 2520#endif
783609c6 2521ret:
1da177e4
LT
2522 *imbalance = 0;
2523 return NULL;
2524}
2525
2526/*
2527 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2528 */
70b97a7f 2529static struct rq *
48f24c4d 2530find_busiest_queue(struct sched_group *group, enum idle_type idle,
0a2966b4 2531 unsigned long imbalance, cpumask_t *cpus)
1da177e4 2532{
70b97a7f 2533 struct rq *busiest = NULL, *rq;
2dd73a4f 2534 unsigned long max_load = 0;
1da177e4
LT
2535 int i;
2536
2537 for_each_cpu_mask(i, group->cpumask) {
0a2966b4
CL
2538
2539 if (!cpu_isset(i, *cpus))
2540 continue;
2541
48f24c4d 2542 rq = cpu_rq(i);
2dd73a4f 2543
48f24c4d 2544 if (rq->nr_running == 1 && rq->raw_weighted_load > imbalance)
2dd73a4f 2545 continue;
1da177e4 2546
48f24c4d
IM
2547 if (rq->raw_weighted_load > max_load) {
2548 max_load = rq->raw_weighted_load;
2549 busiest = rq;
1da177e4
LT
2550 }
2551 }
2552
2553 return busiest;
2554}
2555
77391d71
NP
2556/*
2557 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2558 * so long as it is large enough.
2559 */
2560#define MAX_PINNED_INTERVAL 512
2561
48f24c4d
IM
2562static inline unsigned long minus_1_or_zero(unsigned long n)
2563{
2564 return n > 0 ? n - 1 : 0;
2565}
2566
1da177e4
LT
2567/*
2568 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2569 * tasks if there is an imbalance.
1da177e4 2570 */
70b97a7f 2571static int load_balance(int this_cpu, struct rq *this_rq,
783609c6
SS
2572 struct sched_domain *sd, enum idle_type idle,
2573 int *balance)
1da177e4 2574{
48f24c4d 2575 int nr_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 2576 struct sched_group *group;
1da177e4 2577 unsigned long imbalance;
70b97a7f 2578 struct rq *busiest;
0a2966b4 2579 cpumask_t cpus = CPU_MASK_ALL;
fe2eea3f 2580 unsigned long flags;
5969fe06 2581
89c4710e
SS
2582 /*
2583 * When power savings policy is enabled for the parent domain, idle
2584 * sibling can pick up load irrespective of busy siblings. In this case,
2585 * let the state of idle sibling percolate up as IDLE, instead of
2586 * portraying it as NOT_IDLE.
2587 */
5c45bf27 2588 if (idle != NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2589 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2590 sd_idle = 1;
1da177e4 2591
1da177e4
LT
2592 schedstat_inc(sd, lb_cnt[idle]);
2593
0a2966b4
CL
2594redo:
2595 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
783609c6
SS
2596 &cpus, balance);
2597
06066714 2598 if (*balance == 0)
783609c6 2599 goto out_balanced;
783609c6 2600
1da177e4
LT
2601 if (!group) {
2602 schedstat_inc(sd, lb_nobusyg[idle]);
2603 goto out_balanced;
2604 }
2605
0a2966b4 2606 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
1da177e4
LT
2607 if (!busiest) {
2608 schedstat_inc(sd, lb_nobusyq[idle]);
2609 goto out_balanced;
2610 }
2611
db935dbd 2612 BUG_ON(busiest == this_rq);
1da177e4
LT
2613
2614 schedstat_add(sd, lb_imbalance[idle], imbalance);
2615
2616 nr_moved = 0;
2617 if (busiest->nr_running > 1) {
2618 /*
2619 * Attempt to move tasks. If find_busiest_group has found
2620 * an imbalance but busiest->nr_running <= 1, the group is
2621 * still unbalanced. nr_moved simply stays zero, so it is
2622 * correctly treated as an imbalance.
2623 */
fe2eea3f 2624 local_irq_save(flags);
e17224bf 2625 double_rq_lock(this_rq, busiest);
1da177e4 2626 nr_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d
IM
2627 minus_1_or_zero(busiest->nr_running),
2628 imbalance, sd, idle, &all_pinned);
e17224bf 2629 double_rq_unlock(this_rq, busiest);
fe2eea3f 2630 local_irq_restore(flags);
81026794
NP
2631
2632 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4
CL
2633 if (unlikely(all_pinned)) {
2634 cpu_clear(cpu_of(busiest), cpus);
2635 if (!cpus_empty(cpus))
2636 goto redo;
81026794 2637 goto out_balanced;
0a2966b4 2638 }
1da177e4 2639 }
81026794 2640
1da177e4
LT
2641 if (!nr_moved) {
2642 schedstat_inc(sd, lb_failed[idle]);
2643 sd->nr_balance_failed++;
2644
2645 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 2646
fe2eea3f 2647 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
2648
2649 /* don't kick the migration_thread, if the curr
2650 * task on busiest cpu can't be moved to this_cpu
2651 */
2652 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
fe2eea3f 2653 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
2654 all_pinned = 1;
2655 goto out_one_pinned;
2656 }
2657
1da177e4
LT
2658 if (!busiest->active_balance) {
2659 busiest->active_balance = 1;
2660 busiest->push_cpu = this_cpu;
81026794 2661 active_balance = 1;
1da177e4 2662 }
fe2eea3f 2663 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 2664 if (active_balance)
1da177e4
LT
2665 wake_up_process(busiest->migration_thread);
2666
2667 /*
2668 * We've kicked active balancing, reset the failure
2669 * counter.
2670 */
39507451 2671 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 2672 }
81026794 2673 } else
1da177e4
LT
2674 sd->nr_balance_failed = 0;
2675
81026794 2676 if (likely(!active_balance)) {
1da177e4
LT
2677 /* We were unbalanced, so reset the balancing interval */
2678 sd->balance_interval = sd->min_interval;
81026794
NP
2679 } else {
2680 /*
2681 * If we've begun active balancing, start to back off. This
2682 * case may not be covered by the all_pinned logic if there
2683 * is only 1 task on the busy runqueue (because we don't call
2684 * move_tasks).
2685 */
2686 if (sd->balance_interval < sd->max_interval)
2687 sd->balance_interval *= 2;
1da177e4
LT
2688 }
2689
5c45bf27 2690 if (!nr_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2691 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2692 return -1;
1da177e4
LT
2693 return nr_moved;
2694
2695out_balanced:
1da177e4
LT
2696 schedstat_inc(sd, lb_balanced[idle]);
2697
16cfb1c0 2698 sd->nr_balance_failed = 0;
fa3b6ddc
SS
2699
2700out_one_pinned:
1da177e4 2701 /* tune up the balancing interval */
77391d71
NP
2702 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2703 (sd->balance_interval < sd->max_interval))
1da177e4
LT
2704 sd->balance_interval *= 2;
2705
48f24c4d 2706 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2707 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2708 return -1;
1da177e4
LT
2709 return 0;
2710}
2711
2712/*
2713 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2714 * tasks if there is an imbalance.
2715 *
2716 * Called from schedule when this_rq is about to become idle (NEWLY_IDLE).
2717 * this_rq is locked.
2718 */
48f24c4d 2719static int
70b97a7f 2720load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
1da177e4
LT
2721{
2722 struct sched_group *group;
70b97a7f 2723 struct rq *busiest = NULL;
1da177e4
LT
2724 unsigned long imbalance;
2725 int nr_moved = 0;
5969fe06 2726 int sd_idle = 0;
0a2966b4 2727 cpumask_t cpus = CPU_MASK_ALL;
5969fe06 2728
89c4710e
SS
2729 /*
2730 * When power savings policy is enabled for the parent domain, idle
2731 * sibling can pick up load irrespective of busy siblings. In this case,
2732 * let the state of idle sibling percolate up as IDLE, instead of
2733 * portraying it as NOT_IDLE.
2734 */
2735 if (sd->flags & SD_SHARE_CPUPOWER &&
2736 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2737 sd_idle = 1;
1da177e4
LT
2738
2739 schedstat_inc(sd, lb_cnt[NEWLY_IDLE]);
0a2966b4
CL
2740redo:
2741 group = find_busiest_group(sd, this_cpu, &imbalance, NEWLY_IDLE,
783609c6 2742 &sd_idle, &cpus, NULL);
1da177e4 2743 if (!group) {
1da177e4 2744 schedstat_inc(sd, lb_nobusyg[NEWLY_IDLE]);
16cfb1c0 2745 goto out_balanced;
1da177e4
LT
2746 }
2747
0a2966b4
CL
2748 busiest = find_busiest_queue(group, NEWLY_IDLE, imbalance,
2749 &cpus);
db935dbd 2750 if (!busiest) {
1da177e4 2751 schedstat_inc(sd, lb_nobusyq[NEWLY_IDLE]);
16cfb1c0 2752 goto out_balanced;
1da177e4
LT
2753 }
2754
db935dbd
NP
2755 BUG_ON(busiest == this_rq);
2756
1da177e4 2757 schedstat_add(sd, lb_imbalance[NEWLY_IDLE], imbalance);
d6d5cfaf
NP
2758
2759 nr_moved = 0;
2760 if (busiest->nr_running > 1) {
2761 /* Attempt to move tasks */
2762 double_lock_balance(this_rq, busiest);
2763 nr_moved = move_tasks(this_rq, this_cpu, busiest,
2dd73a4f 2764 minus_1_or_zero(busiest->nr_running),
81026794 2765 imbalance, sd, NEWLY_IDLE, NULL);
d6d5cfaf 2766 spin_unlock(&busiest->lock);
0a2966b4
CL
2767
2768 if (!nr_moved) {
2769 cpu_clear(cpu_of(busiest), cpus);
2770 if (!cpus_empty(cpus))
2771 goto redo;
2772 }
d6d5cfaf
NP
2773 }
2774
5969fe06 2775 if (!nr_moved) {
1da177e4 2776 schedstat_inc(sd, lb_failed[NEWLY_IDLE]);
89c4710e
SS
2777 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2778 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06
NP
2779 return -1;
2780 } else
16cfb1c0 2781 sd->nr_balance_failed = 0;
1da177e4 2782
1da177e4 2783 return nr_moved;
16cfb1c0
NP
2784
2785out_balanced:
2786 schedstat_inc(sd, lb_balanced[NEWLY_IDLE]);
48f24c4d 2787 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2788 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2789 return -1;
16cfb1c0 2790 sd->nr_balance_failed = 0;
48f24c4d 2791
16cfb1c0 2792 return 0;
1da177e4
LT
2793}
2794
2795/*
2796 * idle_balance is called by schedule() if this_cpu is about to become
2797 * idle. Attempts to pull tasks from other CPUs.
2798 */
70b97a7f 2799static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
2800{
2801 struct sched_domain *sd;
1bd77f2d
CL
2802 int pulled_task = 0;
2803 unsigned long next_balance = jiffies + 60 * HZ;
1da177e4
LT
2804
2805 for_each_domain(this_cpu, sd) {
2806 if (sd->flags & SD_BALANCE_NEWIDLE) {
48f24c4d 2807 /* If we've pulled tasks over stop searching: */
1bd77f2d
CL
2808 pulled_task = load_balance_newidle(this_cpu,
2809 this_rq, sd);
2810 if (time_after(next_balance,
2811 sd->last_balance + sd->balance_interval))
2812 next_balance = sd->last_balance
2813 + sd->balance_interval;
2814 if (pulled_task)
1da177e4 2815 break;
1da177e4
LT
2816 }
2817 }
1bd77f2d
CL
2818 if (!pulled_task)
2819 /*
2820 * We are going idle. next_balance may be set based on
2821 * a busy processor. So reset next_balance.
2822 */
2823 this_rq->next_balance = next_balance;
1da177e4
LT
2824}
2825
2826/*
2827 * active_load_balance is run by migration threads. It pushes running tasks
2828 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2829 * running on each physical CPU where possible, and avoids physical /
2830 * logical imbalances.
2831 *
2832 * Called with busiest_rq locked.
2833 */
70b97a7f 2834static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 2835{
39507451 2836 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
2837 struct sched_domain *sd;
2838 struct rq *target_rq;
39507451 2839
48f24c4d 2840 /* Is there any task to move? */
39507451 2841 if (busiest_rq->nr_running <= 1)
39507451
NP
2842 return;
2843
2844 target_rq = cpu_rq(target_cpu);
1da177e4
LT
2845
2846 /*
39507451
NP
2847 * This condition is "impossible", if it occurs
2848 * we need to fix it. Originally reported by
2849 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 2850 */
39507451 2851 BUG_ON(busiest_rq == target_rq);
1da177e4 2852
39507451
NP
2853 /* move a task from busiest_rq to target_rq */
2854 double_lock_balance(busiest_rq, target_rq);
2855
2856 /* Search for an sd spanning us and the target CPU. */
c96d145e 2857 for_each_domain(target_cpu, sd) {
39507451 2858 if ((sd->flags & SD_LOAD_BALANCE) &&
48f24c4d 2859 cpu_isset(busiest_cpu, sd->span))
39507451 2860 break;
c96d145e 2861 }
39507451 2862
48f24c4d
IM
2863 if (likely(sd)) {
2864 schedstat_inc(sd, alb_cnt);
39507451 2865
48f24c4d
IM
2866 if (move_tasks(target_rq, target_cpu, busiest_rq, 1,
2867 RTPRIO_TO_LOAD_WEIGHT(100), sd, SCHED_IDLE,
2868 NULL))
2869 schedstat_inc(sd, alb_pushed);
2870 else
2871 schedstat_inc(sd, alb_failed);
2872 }
39507451 2873 spin_unlock(&target_rq->lock);
1da177e4
LT
2874}
2875
7835b98b 2876static void update_load(struct rq *this_rq)
1da177e4 2877{
7835b98b 2878 unsigned long this_load;
48f24c4d 2879 int i, scale;
1da177e4 2880
2dd73a4f 2881 this_load = this_rq->raw_weighted_load;
48f24c4d
IM
2882
2883 /* Update our load: */
2884 for (i = 0, scale = 1; i < 3; i++, scale <<= 1) {
2885 unsigned long old_load, new_load;
2886
7897986b 2887 old_load = this_rq->cpu_load[i];
48f24c4d 2888 new_load = this_load;
7897986b
NP
2889 /*
2890 * Round up the averaging division if load is increasing. This
2891 * prevents us from getting stuck on 9 if the load is 10, for
2892 * example.
2893 */
2894 if (new_load > old_load)
2895 new_load += scale-1;
2896 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) / scale;
2897 }
7835b98b
CL
2898}
2899
2900/*
c9819f45 2901 * run_rebalance_domains is triggered when needed from the scheduler tick.
7835b98b
CL
2902 *
2903 * It checks each scheduling domain to see if it is due to be balanced,
2904 * and initiates a balancing operation if so.
2905 *
2906 * Balancing parameters are set up in arch_init_sched_domains.
2907 */
08c183f3 2908static DEFINE_SPINLOCK(balancing);
7835b98b 2909
c9819f45 2910static void run_rebalance_domains(struct softirq_action *h)
7835b98b 2911{
783609c6 2912 int this_cpu = smp_processor_id(), balance = 1;
c9819f45 2913 struct rq *this_rq = cpu_rq(this_cpu);
7835b98b
CL
2914 unsigned long interval;
2915 struct sched_domain *sd;
e418e1c2
CL
2916 /*
2917 * We are idle if there are no processes running. This
2918 * is valid even if we are the idle process (SMT).
2919 */
2920 enum idle_type idle = !this_rq->nr_running ?
2921 SCHED_IDLE : NOT_IDLE;
c9819f45
CL
2922 /* Earliest time when we have to call run_rebalance_domains again */
2923 unsigned long next_balance = jiffies + 60*HZ;
1da177e4
LT
2924
2925 for_each_domain(this_cpu, sd) {
1da177e4
LT
2926 if (!(sd->flags & SD_LOAD_BALANCE))
2927 continue;
2928
2929 interval = sd->balance_interval;
2930 if (idle != SCHED_IDLE)
2931 interval *= sd->busy_factor;
2932
2933 /* scale ms to jiffies */
2934 interval = msecs_to_jiffies(interval);
2935 if (unlikely(!interval))
2936 interval = 1;
2937
08c183f3
CL
2938 if (sd->flags & SD_SERIALIZE) {
2939 if (!spin_trylock(&balancing))
2940 goto out;
2941 }
2942
c9819f45 2943 if (time_after_eq(jiffies, sd->last_balance + interval)) {
783609c6 2944 if (load_balance(this_cpu, this_rq, sd, idle, &balance)) {
fa3b6ddc
SS
2945 /*
2946 * We've pulled tasks over so either we're no
5969fe06
NP
2947 * longer idle, or one of our SMT siblings is
2948 * not idle.
2949 */
1da177e4
LT
2950 idle = NOT_IDLE;
2951 }
1bd77f2d 2952 sd->last_balance = jiffies;
1da177e4 2953 }
08c183f3
CL
2954 if (sd->flags & SD_SERIALIZE)
2955 spin_unlock(&balancing);
2956out:
c9819f45
CL
2957 if (time_after(next_balance, sd->last_balance + interval))
2958 next_balance = sd->last_balance + interval;
783609c6
SS
2959
2960 /*
2961 * Stop the load balance at this level. There is another
2962 * CPU in our sched group which is doing load balancing more
2963 * actively.
2964 */
2965 if (!balance)
2966 break;
1da177e4 2967 }
c9819f45 2968 this_rq->next_balance = next_balance;
1da177e4
LT
2969}
2970#else
2971/*
2972 * on UP we do not need to balance between CPUs:
2973 */
70b97a7f 2974static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
2975{
2976}
2977#endif
2978
e418e1c2 2979static inline void wake_priority_sleeper(struct rq *rq)
1da177e4 2980{
1da177e4 2981#ifdef CONFIG_SCHED_SMT
571f6d2f 2982 if (!rq->nr_running)
e418e1c2 2983 return;
571f6d2f 2984
1da177e4
LT
2985 spin_lock(&rq->lock);
2986 /*
2987 * If an SMT sibling task has been put to sleep for priority
2988 * reasons reschedule the idle task to see if it can now run.
2989 */
e418e1c2 2990 if (rq->nr_running)
1da177e4 2991 resched_task(rq->idle);
1da177e4
LT
2992 spin_unlock(&rq->lock);
2993#endif
1da177e4
LT
2994}
2995
2996DEFINE_PER_CPU(struct kernel_stat, kstat);
2997
2998EXPORT_PER_CPU_SYMBOL(kstat);
2999
3000/*
3001 * This is called on clock ticks and on context switches.
3002 * Bank in p->sched_time the ns elapsed since the last tick or switch.
3003 */
48f24c4d 3004static inline void
70b97a7f 3005update_cpu_clock(struct task_struct *p, struct rq *rq, unsigned long long now)
1da177e4 3006{
b18ec803
MG
3007 p->sched_time += now - p->last_ran;
3008 p->last_ran = rq->most_recent_timestamp = now;
1da177e4
LT
3009}
3010
3011/*
3012 * Return current->sched_time plus any more ns on the sched_clock
3013 * that have not yet been banked.
3014 */
36c8b586 3015unsigned long long current_sched_time(const struct task_struct *p)
1da177e4
LT
3016{
3017 unsigned long long ns;
3018 unsigned long flags;
48f24c4d 3019
1da177e4 3020 local_irq_save(flags);
b18ec803 3021 ns = p->sched_time + sched_clock() - p->last_ran;
1da177e4 3022 local_irq_restore(flags);
48f24c4d 3023
1da177e4
LT
3024 return ns;
3025}
3026
f1adad78
LT
3027/*
3028 * We place interactive tasks back into the active array, if possible.
3029 *
3030 * To guarantee that this does not starve expired tasks we ignore the
3031 * interactivity of a task if the first expired task had to wait more
3032 * than a 'reasonable' amount of time. This deadline timeout is
3033 * load-dependent, as the frequency of array switched decreases with
3034 * increasing number of running tasks. We also ignore the interactivity
3035 * if a better static_prio task has expired:
3036 */
70b97a7f 3037static inline int expired_starving(struct rq *rq)
48f24c4d
IM
3038{
3039 if (rq->curr->static_prio > rq->best_expired_prio)
3040 return 1;
3041 if (!STARVATION_LIMIT || !rq->expired_timestamp)
3042 return 0;
3043 if (jiffies - rq->expired_timestamp > STARVATION_LIMIT * rq->nr_running)
3044 return 1;
3045 return 0;
3046}
f1adad78 3047
1da177e4
LT
3048/*
3049 * Account user cpu time to a process.
3050 * @p: the process that the cpu time gets accounted to
3051 * @hardirq_offset: the offset to subtract from hardirq_count()
3052 * @cputime: the cpu time spent in user space since the last update
3053 */
3054void account_user_time(struct task_struct *p, cputime_t cputime)
3055{
3056 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3057 cputime64_t tmp;
3058
3059 p->utime = cputime_add(p->utime, cputime);
3060
3061 /* Add user time to cpustat. */
3062 tmp = cputime_to_cputime64(cputime);
3063 if (TASK_NICE(p) > 0)
3064 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3065 else
3066 cpustat->user = cputime64_add(cpustat->user, tmp);
3067}
3068
3069/*
3070 * Account system cpu time to a process.
3071 * @p: the process that the cpu time gets accounted to
3072 * @hardirq_offset: the offset to subtract from hardirq_count()
3073 * @cputime: the cpu time spent in kernel space since the last update
3074 */
3075void account_system_time(struct task_struct *p, int hardirq_offset,
3076 cputime_t cputime)
3077{
3078 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
70b97a7f 3079 struct rq *rq = this_rq();
1da177e4
LT
3080 cputime64_t tmp;
3081
3082 p->stime = cputime_add(p->stime, cputime);
3083
3084 /* Add system time to cpustat. */
3085 tmp = cputime_to_cputime64(cputime);
3086 if (hardirq_count() - hardirq_offset)
3087 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3088 else if (softirq_count())
3089 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3090 else if (p != rq->idle)
3091 cpustat->system = cputime64_add(cpustat->system, tmp);
3092 else if (atomic_read(&rq->nr_iowait) > 0)
3093 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3094 else
3095 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3096 /* Account for system time used */
3097 acct_update_integrals(p);
1da177e4
LT
3098}
3099
3100/*
3101 * Account for involuntary wait time.
3102 * @p: the process from which the cpu time has been stolen
3103 * @steal: the cpu time spent in involuntary wait
3104 */
3105void account_steal_time(struct task_struct *p, cputime_t steal)
3106{
3107 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3108 cputime64_t tmp = cputime_to_cputime64(steal);
70b97a7f 3109 struct rq *rq = this_rq();
1da177e4
LT
3110
3111 if (p == rq->idle) {
3112 p->stime = cputime_add(p->stime, steal);
3113 if (atomic_read(&rq->nr_iowait) > 0)
3114 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3115 else
3116 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3117 } else
3118 cpustat->steal = cputime64_add(cpustat->steal, tmp);
3119}
3120
7835b98b 3121static void task_running_tick(struct rq *rq, struct task_struct *p)
1da177e4 3122{
1da177e4 3123 if (p->array != rq->active) {
7835b98b 3124 /* Task has expired but was not scheduled yet */
1da177e4 3125 set_tsk_need_resched(p);
7835b98b 3126 return;
1da177e4
LT
3127 }
3128 spin_lock(&rq->lock);
3129 /*
3130 * The task was running during this tick - update the
3131 * time slice counter. Note: we do not update a thread's
3132 * priority until it either goes to sleep or uses up its
3133 * timeslice. This makes it possible for interactive tasks
3134 * to use up their timeslices at their highest priority levels.
3135 */
3136 if (rt_task(p)) {
3137 /*
3138 * RR tasks need a special form of timeslice management.
3139 * FIFO tasks have no timeslices.
3140 */
3141 if ((p->policy == SCHED_RR) && !--p->time_slice) {
3142 p->time_slice = task_timeslice(p);
3143 p->first_time_slice = 0;
3144 set_tsk_need_resched(p);
3145
3146 /* put it at the end of the queue: */
3147 requeue_task(p, rq->active);
3148 }
3149 goto out_unlock;
3150 }
3151 if (!--p->time_slice) {
3152 dequeue_task(p, rq->active);
3153 set_tsk_need_resched(p);
3154 p->prio = effective_prio(p);
3155 p->time_slice = task_timeslice(p);
3156 p->first_time_slice = 0;
3157
3158 if (!rq->expired_timestamp)
3159 rq->expired_timestamp = jiffies;
48f24c4d 3160 if (!TASK_INTERACTIVE(p) || expired_starving(rq)) {
1da177e4
LT
3161 enqueue_task(p, rq->expired);
3162 if (p->static_prio < rq->best_expired_prio)
3163 rq->best_expired_prio = p->static_prio;
3164 } else
3165 enqueue_task(p, rq->active);
3166 } else {
3167 /*
3168 * Prevent a too long timeslice allowing a task to monopolize
3169 * the CPU. We do this by splitting up the timeslice into
3170 * smaller pieces.
3171 *
3172 * Note: this does not mean the task's timeslices expire or
3173 * get lost in any way, they just might be preempted by
3174 * another task of equal priority. (one with higher
3175 * priority would have preempted this task already.) We
3176 * requeue this task to the end of the list on this priority
3177 * level, which is in essence a round-robin of tasks with
3178 * equal priority.
3179 *
3180 * This only applies to tasks in the interactive
3181 * delta range with at least TIMESLICE_GRANULARITY to requeue.
3182 */
3183 if (TASK_INTERACTIVE(p) && !((task_timeslice(p) -
3184 p->time_slice) % TIMESLICE_GRANULARITY(p)) &&
3185 (p->time_slice >= TIMESLICE_GRANULARITY(p)) &&
3186 (p->array == rq->active)) {
3187
3188 requeue_task(p, rq->active);
3189 set_tsk_need_resched(p);
3190 }
3191 }
3192out_unlock:
3193 spin_unlock(&rq->lock);
7835b98b
CL
3194}
3195
3196/*
3197 * This function gets called by the timer code, with HZ frequency.
3198 * We call it with interrupts disabled.
3199 *
3200 * It also gets called by the fork code, when changing the parent's
3201 * timeslices.
3202 */
3203void scheduler_tick(void)
3204{
3205 unsigned long long now = sched_clock();
3206 struct task_struct *p = current;
3207 int cpu = smp_processor_id();
3208 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
3209
3210 update_cpu_clock(p, rq, now);
3211
e418e1c2 3212 if (p == rq->idle)
7835b98b 3213 /* Task on the idle queue */
e418e1c2
CL
3214 wake_priority_sleeper(rq);
3215 else
7835b98b 3216 task_running_tick(rq, p);
e418e1c2 3217#ifdef CONFIG_SMP
7835b98b 3218 update_load(rq);
c9819f45
CL
3219 if (time_after_eq(jiffies, rq->next_balance))
3220 raise_softirq(SCHED_SOFTIRQ);
e418e1c2 3221#endif
1da177e4
LT
3222}
3223
3224#ifdef CONFIG_SCHED_SMT
70b97a7f 3225static inline void wakeup_busy_runqueue(struct rq *rq)
fc38ed75
CK
3226{
3227 /* If an SMT runqueue is sleeping due to priority reasons wake it up */
3228 if (rq->curr == rq->idle && rq->nr_running)
3229 resched_task(rq->idle);
3230}
3231
c96d145e
KC
3232/*
3233 * Called with interrupt disabled and this_rq's runqueue locked.
3234 */
3235static void wake_sleeping_dependent(int this_cpu)
1da177e4 3236{
41c7ce9a 3237 struct sched_domain *tmp, *sd = NULL;
1da177e4
LT
3238 int i;
3239
c96d145e
KC
3240 for_each_domain(this_cpu, tmp) {
3241 if (tmp->flags & SD_SHARE_CPUPOWER) {
41c7ce9a 3242 sd = tmp;
c96d145e
KC
3243 break;
3244 }
3245 }
41c7ce9a
NP
3246
3247 if (!sd)
1da177e4
LT
3248 return;
3249
c96d145e 3250 for_each_cpu_mask(i, sd->span) {
70b97a7f 3251 struct rq *smt_rq = cpu_rq(i);
1da177e4 3252
c96d145e
KC
3253 if (i == this_cpu)
3254 continue;
3255 if (unlikely(!spin_trylock(&smt_rq->lock)))
3256 continue;
3257
fc38ed75 3258 wakeup_busy_runqueue(smt_rq);
c96d145e 3259 spin_unlock(&smt_rq->lock);
1da177e4 3260 }
1da177e4
LT
3261}
3262
67f9a619
IM
3263/*
3264 * number of 'lost' timeslices this task wont be able to fully
3265 * utilize, if another task runs on a sibling. This models the
3266 * slowdown effect of other tasks running on siblings:
3267 */
36c8b586
IM
3268static inline unsigned long
3269smt_slice(struct task_struct *p, struct sched_domain *sd)
67f9a619
IM
3270{
3271 return p->time_slice * (100 - sd->per_cpu_gain) / 100;
3272}
3273
c96d145e
KC
3274/*
3275 * To minimise lock contention and not have to drop this_rq's runlock we only
3276 * trylock the sibling runqueues and bypass those runqueues if we fail to
3277 * acquire their lock. As we only trylock the normal locking order does not
3278 * need to be obeyed.
3279 */
36c8b586 3280static int
70b97a7f 3281dependent_sleeper(int this_cpu, struct rq *this_rq, struct task_struct *p)
1da177e4 3282{
41c7ce9a 3283 struct sched_domain *tmp, *sd = NULL;
1da177e4 3284 int ret = 0, i;
1da177e4 3285
c96d145e
KC
3286 /* kernel/rt threads do not participate in dependent sleeping */
3287 if (!p->mm || rt_task(p))
3288 return 0;
3289
3290 for_each_domain(this_cpu, tmp) {
3291 if (tmp->flags & SD_SHARE_CPUPOWER) {
41c7ce9a 3292 sd = tmp;
c96d145e
KC
3293 break;
3294 }
3295 }
41c7ce9a
NP
3296
3297 if (!sd)
1da177e4
LT
3298 return 0;
3299
c96d145e 3300 for_each_cpu_mask(i, sd->span) {
36c8b586 3301 struct task_struct *smt_curr;
70b97a7f 3302 struct rq *smt_rq;
1da177e4 3303
c96d145e
KC
3304 if (i == this_cpu)
3305 continue;
1da177e4 3306
c96d145e
KC
3307 smt_rq = cpu_rq(i);
3308 if (unlikely(!spin_trylock(&smt_rq->lock)))
3309 continue;
1da177e4 3310
c96d145e 3311 smt_curr = smt_rq->curr;
1da177e4 3312
c96d145e
KC
3313 if (!smt_curr->mm)
3314 goto unlock;
fc38ed75 3315
1da177e4
LT
3316 /*
3317 * If a user task with lower static priority than the
3318 * running task on the SMT sibling is trying to schedule,
3319 * delay it till there is proportionately less timeslice
3320 * left of the sibling task to prevent a lower priority
3321 * task from using an unfair proportion of the
3322 * physical cpu's resources. -ck
3323 */
fc38ed75
CK
3324 if (rt_task(smt_curr)) {
3325 /*
3326 * With real time tasks we run non-rt tasks only
3327 * per_cpu_gain% of the time.
3328 */
3329 if ((jiffies % DEF_TIMESLICE) >
3330 (sd->per_cpu_gain * DEF_TIMESLICE / 100))
3331 ret = 1;
c96d145e 3332 } else {
67f9a619
IM
3333 if (smt_curr->static_prio < p->static_prio &&
3334 !TASK_PREEMPTS_CURR(p, smt_rq) &&
3335 smt_slice(smt_curr, sd) > task_timeslice(p))
fc38ed75 3336 ret = 1;
fc38ed75 3337 }
c96d145e
KC
3338unlock:
3339 spin_unlock(&smt_rq->lock);
1da177e4 3340 }
1da177e4
LT
3341 return ret;
3342}
3343#else
c96d145e 3344static inline void wake_sleeping_dependent(int this_cpu)
1da177e4
LT
3345{
3346}
48f24c4d 3347static inline int
70b97a7f 3348dependent_sleeper(int this_cpu, struct rq *this_rq, struct task_struct *p)
1da177e4
LT
3349{
3350 return 0;
3351}
3352#endif
3353
3354#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3355
3356void fastcall add_preempt_count(int val)
3357{
3358 /*
3359 * Underflow?
3360 */
9a11b49a
IM
3361 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3362 return;
1da177e4
LT
3363 preempt_count() += val;
3364 /*
3365 * Spinlock count overflowing soon?
3366 */
9a11b49a 3367 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= PREEMPT_MASK-10);
1da177e4
LT
3368}
3369EXPORT_SYMBOL(add_preempt_count);
3370
3371void fastcall sub_preempt_count(int val)
3372{
3373 /*
3374 * Underflow?
3375 */
9a11b49a
IM
3376 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3377 return;
1da177e4
LT
3378 /*
3379 * Is the spinlock portion underflowing?
3380 */
9a11b49a
IM
3381 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3382 !(preempt_count() & PREEMPT_MASK)))
3383 return;
3384
1da177e4
LT
3385 preempt_count() -= val;
3386}
3387EXPORT_SYMBOL(sub_preempt_count);
3388
3389#endif
3390
3dee386e
CK
3391static inline int interactive_sleep(enum sleep_type sleep_type)
3392{
3393 return (sleep_type == SLEEP_INTERACTIVE ||
3394 sleep_type == SLEEP_INTERRUPTED);
3395}
3396
1da177e4
LT
3397/*
3398 * schedule() is the main scheduler function.
3399 */
3400asmlinkage void __sched schedule(void)
3401{
36c8b586 3402 struct task_struct *prev, *next;
70b97a7f 3403 struct prio_array *array;
1da177e4
LT
3404 struct list_head *queue;
3405 unsigned long long now;
3406 unsigned long run_time;
a3464a10 3407 int cpu, idx, new_prio;
48f24c4d 3408 long *switch_count;
70b97a7f 3409 struct rq *rq;
1da177e4
LT
3410
3411 /*
3412 * Test if we are atomic. Since do_exit() needs to call into
3413 * schedule() atomically, we ignore that path for now.
3414 * Otherwise, whine if we are scheduling when we should not be.
3415 */
77e4bfbc
AM
3416 if (unlikely(in_atomic() && !current->exit_state)) {
3417 printk(KERN_ERR "BUG: scheduling while atomic: "
3418 "%s/0x%08x/%d\n",
3419 current->comm, preempt_count(), current->pid);
a4c410f0 3420 debug_show_held_locks(current);
77e4bfbc 3421 dump_stack();
1da177e4
LT
3422 }
3423 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3424
3425need_resched:
3426 preempt_disable();
3427 prev = current;
3428 release_kernel_lock(prev);
3429need_resched_nonpreemptible:
3430 rq = this_rq();
3431
3432 /*
3433 * The idle thread is not allowed to schedule!
3434 * Remove this check after it has been exercised a bit.
3435 */
3436 if (unlikely(prev == rq->idle) && prev->state != TASK_RUNNING) {
3437 printk(KERN_ERR "bad: scheduling from the idle thread!\n");
3438 dump_stack();
3439 }
3440
3441 schedstat_inc(rq, sched_cnt);
3442 now = sched_clock();
238628ed 3443 if (likely((long long)(now - prev->timestamp) < NS_MAX_SLEEP_AVG)) {
1da177e4 3444 run_time = now - prev->timestamp;
238628ed 3445 if (unlikely((long long)(now - prev->timestamp) < 0))
1da177e4
LT
3446 run_time = 0;
3447 } else
3448 run_time = NS_MAX_SLEEP_AVG;
3449
3450 /*
3451 * Tasks charged proportionately less run_time at high sleep_avg to
3452 * delay them losing their interactive status
3453 */
3454 run_time /= (CURRENT_BONUS(prev) ? : 1);
3455
3456 spin_lock_irq(&rq->lock);
3457
1da177e4
LT
3458 switch_count = &prev->nivcsw;
3459 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3460 switch_count = &prev->nvcsw;
3461 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
3462 unlikely(signal_pending(prev))))
3463 prev->state = TASK_RUNNING;
3464 else {
3465 if (prev->state == TASK_UNINTERRUPTIBLE)
3466 rq->nr_uninterruptible++;
3467 deactivate_task(prev, rq);
3468 }
3469 }
3470
3471 cpu = smp_processor_id();
3472 if (unlikely(!rq->nr_running)) {
1da177e4
LT
3473 idle_balance(cpu, rq);
3474 if (!rq->nr_running) {
3475 next = rq->idle;
3476 rq->expired_timestamp = 0;
c96d145e 3477 wake_sleeping_dependent(cpu);
1da177e4
LT
3478 goto switch_tasks;
3479 }
1da177e4
LT
3480 }
3481
3482 array = rq->active;
3483 if (unlikely(!array->nr_active)) {
3484 /*
3485 * Switch the active and expired arrays.
3486 */
3487 schedstat_inc(rq, sched_switch);
3488 rq->active = rq->expired;
3489 rq->expired = array;
3490 array = rq->active;
3491 rq->expired_timestamp = 0;
3492 rq->best_expired_prio = MAX_PRIO;
3493 }
3494
3495 idx = sched_find_first_bit(array->bitmap);
3496 queue = array->queue + idx;
36c8b586 3497 next = list_entry(queue->next, struct task_struct, run_list);
1da177e4 3498
3dee386e 3499 if (!rt_task(next) && interactive_sleep(next->sleep_type)) {
1da177e4 3500 unsigned long long delta = now - next->timestamp;
238628ed 3501 if (unlikely((long long)(now - next->timestamp) < 0))
1da177e4
LT
3502 delta = 0;
3503
3dee386e 3504 if (next->sleep_type == SLEEP_INTERACTIVE)
1da177e4
LT
3505 delta = delta * (ON_RUNQUEUE_WEIGHT * 128 / 100) / 128;
3506
3507 array = next->array;
a3464a10
CS
3508 new_prio = recalc_task_prio(next, next->timestamp + delta);
3509
3510 if (unlikely(next->prio != new_prio)) {
3511 dequeue_task(next, array);
3512 next->prio = new_prio;
3513 enqueue_task(next, array);
7c4bb1f9 3514 }
1da177e4 3515 }
3dee386e 3516 next->sleep_type = SLEEP_NORMAL;
c96d145e
KC
3517 if (dependent_sleeper(cpu, rq, next))
3518 next = rq->idle;
1da177e4
LT
3519switch_tasks:
3520 if (next == rq->idle)
3521 schedstat_inc(rq, sched_goidle);
3522 prefetch(next);
383f2835 3523 prefetch_stack(next);
1da177e4
LT
3524 clear_tsk_need_resched(prev);
3525 rcu_qsctr_inc(task_cpu(prev));
3526
3527 update_cpu_clock(prev, rq, now);
3528
3529 prev->sleep_avg -= run_time;
3530 if ((long)prev->sleep_avg <= 0)
3531 prev->sleep_avg = 0;
3532 prev->timestamp = prev->last_ran = now;
3533
3534 sched_info_switch(prev, next);
3535 if (likely(prev != next)) {
3536 next->timestamp = now;
3537 rq->nr_switches++;
3538 rq->curr = next;
3539 ++*switch_count;
3540
4866cde0 3541 prepare_task_switch(rq, next);
1da177e4
LT
3542 prev = context_switch(rq, prev, next);
3543 barrier();
4866cde0
NP
3544 /*
3545 * this_rq must be evaluated again because prev may have moved
3546 * CPUs since it called schedule(), thus the 'rq' on its stack
3547 * frame will be invalid.
3548 */
3549 finish_task_switch(this_rq(), prev);
1da177e4
LT
3550 } else
3551 spin_unlock_irq(&rq->lock);
3552
3553 prev = current;
3554 if (unlikely(reacquire_kernel_lock(prev) < 0))
3555 goto need_resched_nonpreemptible;
3556 preempt_enable_no_resched();
3557 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3558 goto need_resched;
3559}
1da177e4
LT
3560EXPORT_SYMBOL(schedule);
3561
3562#ifdef CONFIG_PREEMPT
3563/*
2ed6e34f 3564 * this is the entry point to schedule() from in-kernel preemption
1da177e4
LT
3565 * off of preempt_enable. Kernel preemptions off return from interrupt
3566 * occur there and call schedule directly.
3567 */
3568asmlinkage void __sched preempt_schedule(void)
3569{
3570 struct thread_info *ti = current_thread_info();
3571#ifdef CONFIG_PREEMPT_BKL
3572 struct task_struct *task = current;
3573 int saved_lock_depth;
3574#endif
3575 /*
3576 * If there is a non-zero preempt_count or interrupts are disabled,
3577 * we do not want to preempt the current task. Just return..
3578 */
beed33a8 3579 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
3580 return;
3581
3582need_resched:
3583 add_preempt_count(PREEMPT_ACTIVE);
3584 /*
3585 * We keep the big kernel semaphore locked, but we
3586 * clear ->lock_depth so that schedule() doesnt
3587 * auto-release the semaphore:
3588 */
3589#ifdef CONFIG_PREEMPT_BKL
3590 saved_lock_depth = task->lock_depth;
3591 task->lock_depth = -1;
3592#endif
3593 schedule();
3594#ifdef CONFIG_PREEMPT_BKL
3595 task->lock_depth = saved_lock_depth;
3596#endif
3597 sub_preempt_count(PREEMPT_ACTIVE);
3598
3599 /* we could miss a preemption opportunity between schedule and now */
3600 barrier();
3601 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3602 goto need_resched;
3603}
1da177e4
LT
3604EXPORT_SYMBOL(preempt_schedule);
3605
3606/*
2ed6e34f 3607 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3608 * off of irq context.
3609 * Note, that this is called and return with irqs disabled. This will
3610 * protect us against recursive calling from irq.
3611 */
3612asmlinkage void __sched preempt_schedule_irq(void)
3613{
3614 struct thread_info *ti = current_thread_info();
3615#ifdef CONFIG_PREEMPT_BKL
3616 struct task_struct *task = current;
3617 int saved_lock_depth;
3618#endif
2ed6e34f 3619 /* Catch callers which need to be fixed */
1da177e4
LT
3620 BUG_ON(ti->preempt_count || !irqs_disabled());
3621
3622need_resched:
3623 add_preempt_count(PREEMPT_ACTIVE);
3624 /*
3625 * We keep the big kernel semaphore locked, but we
3626 * clear ->lock_depth so that schedule() doesnt
3627 * auto-release the semaphore:
3628 */
3629#ifdef CONFIG_PREEMPT_BKL
3630 saved_lock_depth = task->lock_depth;
3631 task->lock_depth = -1;
3632#endif
3633 local_irq_enable();
3634 schedule();
3635 local_irq_disable();
3636#ifdef CONFIG_PREEMPT_BKL
3637 task->lock_depth = saved_lock_depth;
3638#endif
3639 sub_preempt_count(PREEMPT_ACTIVE);
3640
3641 /* we could miss a preemption opportunity between schedule and now */
3642 barrier();
3643 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3644 goto need_resched;
3645}
3646
3647#endif /* CONFIG_PREEMPT */
3648
95cdf3b7
IM
3649int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3650 void *key)
1da177e4 3651{
48f24c4d 3652 return try_to_wake_up(curr->private, mode, sync);
1da177e4 3653}
1da177e4
LT
3654EXPORT_SYMBOL(default_wake_function);
3655
3656/*
3657 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3658 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3659 * number) then we wake all the non-exclusive tasks and one exclusive task.
3660 *
3661 * There are circumstances in which we can try to wake a task which has already
3662 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3663 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3664 */
3665static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3666 int nr_exclusive, int sync, void *key)
3667{
3668 struct list_head *tmp, *next;
3669
3670 list_for_each_safe(tmp, next, &q->task_list) {
48f24c4d
IM
3671 wait_queue_t *curr = list_entry(tmp, wait_queue_t, task_list);
3672 unsigned flags = curr->flags;
3673
1da177e4 3674 if (curr->func(curr, mode, sync, key) &&
48f24c4d 3675 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
3676 break;
3677 }
3678}
3679
3680/**
3681 * __wake_up - wake up threads blocked on a waitqueue.
3682 * @q: the waitqueue
3683 * @mode: which threads
3684 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 3685 * @key: is directly passed to the wakeup function
1da177e4
LT
3686 */
3687void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 3688 int nr_exclusive, void *key)
1da177e4
LT
3689{
3690 unsigned long flags;
3691
3692 spin_lock_irqsave(&q->lock, flags);
3693 __wake_up_common(q, mode, nr_exclusive, 0, key);
3694 spin_unlock_irqrestore(&q->lock, flags);
3695}
1da177e4
LT
3696EXPORT_SYMBOL(__wake_up);
3697
3698/*
3699 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3700 */
3701void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3702{
3703 __wake_up_common(q, mode, 1, 0, NULL);
3704}
3705
3706/**
67be2dd1 3707 * __wake_up_sync - wake up threads blocked on a waitqueue.
1da177e4
LT
3708 * @q: the waitqueue
3709 * @mode: which threads
3710 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3711 *
3712 * The sync wakeup differs that the waker knows that it will schedule
3713 * away soon, so while the target thread will be woken up, it will not
3714 * be migrated to another CPU - ie. the two threads are 'synchronized'
3715 * with each other. This can prevent needless bouncing between CPUs.
3716 *
3717 * On UP it can prevent extra preemption.
3718 */
95cdf3b7
IM
3719void fastcall
3720__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
1da177e4
LT
3721{
3722 unsigned long flags;
3723 int sync = 1;
3724
3725 if (unlikely(!q))
3726 return;
3727
3728 if (unlikely(!nr_exclusive))
3729 sync = 0;
3730
3731 spin_lock_irqsave(&q->lock, flags);
3732 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3733 spin_unlock_irqrestore(&q->lock, flags);
3734}
3735EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3736
3737void fastcall complete(struct completion *x)
3738{
3739 unsigned long flags;
3740
3741 spin_lock_irqsave(&x->wait.lock, flags);
3742 x->done++;
3743 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3744 1, 0, NULL);
3745 spin_unlock_irqrestore(&x->wait.lock, flags);
3746}
3747EXPORT_SYMBOL(complete);
3748
3749void fastcall complete_all(struct completion *x)
3750{
3751 unsigned long flags;
3752
3753 spin_lock_irqsave(&x->wait.lock, flags);
3754 x->done += UINT_MAX/2;
3755 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3756 0, 0, NULL);
3757 spin_unlock_irqrestore(&x->wait.lock, flags);
3758}
3759EXPORT_SYMBOL(complete_all);
3760
3761void fastcall __sched wait_for_completion(struct completion *x)
3762{
3763 might_sleep();
48f24c4d 3764
1da177e4
LT
3765 spin_lock_irq(&x->wait.lock);
3766 if (!x->done) {
3767 DECLARE_WAITQUEUE(wait, current);
3768
3769 wait.flags |= WQ_FLAG_EXCLUSIVE;
3770 __add_wait_queue_tail(&x->wait, &wait);
3771 do {
3772 __set_current_state(TASK_UNINTERRUPTIBLE);
3773 spin_unlock_irq(&x->wait.lock);
3774 schedule();
3775 spin_lock_irq(&x->wait.lock);
3776 } while (!x->done);
3777 __remove_wait_queue(&x->wait, &wait);
3778 }
3779 x->done--;
3780 spin_unlock_irq(&x->wait.lock);
3781}
3782EXPORT_SYMBOL(wait_for_completion);
3783
3784unsigned long fastcall __sched
3785wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3786{
3787 might_sleep();
3788
3789 spin_lock_irq(&x->wait.lock);
3790 if (!x->done) {
3791 DECLARE_WAITQUEUE(wait, current);
3792
3793 wait.flags |= WQ_FLAG_EXCLUSIVE;
3794 __add_wait_queue_tail(&x->wait, &wait);
3795 do {
3796 __set_current_state(TASK_UNINTERRUPTIBLE);
3797 spin_unlock_irq(&x->wait.lock);
3798 timeout = schedule_timeout(timeout);
3799 spin_lock_irq(&x->wait.lock);
3800 if (!timeout) {
3801 __remove_wait_queue(&x->wait, &wait);
3802 goto out;
3803 }
3804 } while (!x->done);
3805 __remove_wait_queue(&x->wait, &wait);
3806 }
3807 x->done--;
3808out:
3809 spin_unlock_irq(&x->wait.lock);
3810 return timeout;
3811}
3812EXPORT_SYMBOL(wait_for_completion_timeout);
3813
3814int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3815{
3816 int ret = 0;
3817
3818 might_sleep();
3819
3820 spin_lock_irq(&x->wait.lock);
3821 if (!x->done) {
3822 DECLARE_WAITQUEUE(wait, current);
3823
3824 wait.flags |= WQ_FLAG_EXCLUSIVE;
3825 __add_wait_queue_tail(&x->wait, &wait);
3826 do {
3827 if (signal_pending(current)) {
3828 ret = -ERESTARTSYS;
3829 __remove_wait_queue(&x->wait, &wait);
3830 goto out;
3831 }
3832 __set_current_state(TASK_INTERRUPTIBLE);
3833 spin_unlock_irq(&x->wait.lock);
3834 schedule();
3835 spin_lock_irq(&x->wait.lock);
3836 } while (!x->done);
3837 __remove_wait_queue(&x->wait, &wait);
3838 }
3839 x->done--;
3840out:
3841 spin_unlock_irq(&x->wait.lock);
3842
3843 return ret;
3844}
3845EXPORT_SYMBOL(wait_for_completion_interruptible);
3846
3847unsigned long fastcall __sched
3848wait_for_completion_interruptible_timeout(struct completion *x,
3849 unsigned long timeout)
3850{
3851 might_sleep();
3852
3853 spin_lock_irq(&x->wait.lock);
3854 if (!x->done) {
3855 DECLARE_WAITQUEUE(wait, current);
3856
3857 wait.flags |= WQ_FLAG_EXCLUSIVE;
3858 __add_wait_queue_tail(&x->wait, &wait);
3859 do {
3860 if (signal_pending(current)) {
3861 timeout = -ERESTARTSYS;
3862 __remove_wait_queue(&x->wait, &wait);
3863 goto out;
3864 }
3865 __set_current_state(TASK_INTERRUPTIBLE);
3866 spin_unlock_irq(&x->wait.lock);
3867 timeout = schedule_timeout(timeout);
3868 spin_lock_irq(&x->wait.lock);
3869 if (!timeout) {
3870 __remove_wait_queue(&x->wait, &wait);
3871 goto out;
3872 }
3873 } while (!x->done);
3874 __remove_wait_queue(&x->wait, &wait);
3875 }
3876 x->done--;
3877out:
3878 spin_unlock_irq(&x->wait.lock);
3879 return timeout;
3880}
3881EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3882
3883
3884#define SLEEP_ON_VAR \
3885 unsigned long flags; \
3886 wait_queue_t wait; \
3887 init_waitqueue_entry(&wait, current);
3888
3889#define SLEEP_ON_HEAD \
3890 spin_lock_irqsave(&q->lock,flags); \
3891 __add_wait_queue(q, &wait); \
3892 spin_unlock(&q->lock);
3893
3894#define SLEEP_ON_TAIL \
3895 spin_lock_irq(&q->lock); \
3896 __remove_wait_queue(q, &wait); \
3897 spin_unlock_irqrestore(&q->lock, flags);
3898
3899void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q)
3900{
3901 SLEEP_ON_VAR
3902
3903 current->state = TASK_INTERRUPTIBLE;
3904
3905 SLEEP_ON_HEAD
3906 schedule();
3907 SLEEP_ON_TAIL
3908}
1da177e4
LT
3909EXPORT_SYMBOL(interruptible_sleep_on);
3910
95cdf3b7
IM
3911long fastcall __sched
3912interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4
LT
3913{
3914 SLEEP_ON_VAR
3915
3916 current->state = TASK_INTERRUPTIBLE;
3917
3918 SLEEP_ON_HEAD
3919 timeout = schedule_timeout(timeout);
3920 SLEEP_ON_TAIL
3921
3922 return timeout;
3923}
1da177e4
LT
3924EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3925
3926void fastcall __sched sleep_on(wait_queue_head_t *q)
3927{
3928 SLEEP_ON_VAR
3929
3930 current->state = TASK_UNINTERRUPTIBLE;
3931
3932 SLEEP_ON_HEAD
3933 schedule();
3934 SLEEP_ON_TAIL
3935}
1da177e4
LT
3936EXPORT_SYMBOL(sleep_on);
3937
3938long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3939{
3940 SLEEP_ON_VAR
3941
3942 current->state = TASK_UNINTERRUPTIBLE;
3943
3944 SLEEP_ON_HEAD
3945 timeout = schedule_timeout(timeout);
3946 SLEEP_ON_TAIL
3947
3948 return timeout;
3949}
3950
3951EXPORT_SYMBOL(sleep_on_timeout);
3952
b29739f9
IM
3953#ifdef CONFIG_RT_MUTEXES
3954
3955/*
3956 * rt_mutex_setprio - set the current priority of a task
3957 * @p: task
3958 * @prio: prio value (kernel-internal form)
3959 *
3960 * This function changes the 'effective' priority of a task. It does
3961 * not touch ->normal_prio like __setscheduler().
3962 *
3963 * Used by the rt_mutex code to implement priority inheritance logic.
3964 */
36c8b586 3965void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 3966{
70b97a7f 3967 struct prio_array *array;
b29739f9 3968 unsigned long flags;
70b97a7f 3969 struct rq *rq;
b29739f9
IM
3970 int oldprio;
3971
3972 BUG_ON(prio < 0 || prio > MAX_PRIO);
3973
3974 rq = task_rq_lock(p, &flags);
3975
3976 oldprio = p->prio;
3977 array = p->array;
3978 if (array)
3979 dequeue_task(p, array);
3980 p->prio = prio;
3981
3982 if (array) {
3983 /*
3984 * If changing to an RT priority then queue it
3985 * in the active array!
3986 */
3987 if (rt_task(p))
3988 array = rq->active;
3989 enqueue_task(p, array);
3990 /*
3991 * Reschedule if we are currently running on this runqueue and
3992 * our priority decreased, or if we are not currently running on
3993 * this runqueue and our priority is higher than the current's
3994 */
3995 if (task_running(rq, p)) {
3996 if (p->prio > oldprio)
3997 resched_task(rq->curr);
3998 } else if (TASK_PREEMPTS_CURR(p, rq))
3999 resched_task(rq->curr);
4000 }
4001 task_rq_unlock(rq, &flags);
4002}
4003
4004#endif
4005
36c8b586 4006void set_user_nice(struct task_struct *p, long nice)
1da177e4 4007{
70b97a7f 4008 struct prio_array *array;
48f24c4d 4009 int old_prio, delta;
1da177e4 4010 unsigned long flags;
70b97a7f 4011 struct rq *rq;
1da177e4
LT
4012
4013 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4014 return;
4015 /*
4016 * We have to be careful, if called from sys_setpriority(),
4017 * the task might be in the middle of scheduling on another CPU.
4018 */
4019 rq = task_rq_lock(p, &flags);
4020 /*
4021 * The RT priorities are set via sched_setscheduler(), but we still
4022 * allow the 'normal' nice value to be set - but as expected
4023 * it wont have any effect on scheduling until the task is
b0a9499c 4024 * not SCHED_NORMAL/SCHED_BATCH:
1da177e4 4025 */
b29739f9 4026 if (has_rt_policy(p)) {
1da177e4
LT
4027 p->static_prio = NICE_TO_PRIO(nice);
4028 goto out_unlock;
4029 }
4030 array = p->array;
2dd73a4f 4031 if (array) {
1da177e4 4032 dequeue_task(p, array);
2dd73a4f
PW
4033 dec_raw_weighted_load(rq, p);
4034 }
1da177e4 4035
1da177e4 4036 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 4037 set_load_weight(p);
b29739f9
IM
4038 old_prio = p->prio;
4039 p->prio = effective_prio(p);
4040 delta = p->prio - old_prio;
1da177e4
LT
4041
4042 if (array) {
4043 enqueue_task(p, array);
2dd73a4f 4044 inc_raw_weighted_load(rq, p);
1da177e4
LT
4045 /*
4046 * If the task increased its priority or is running and
4047 * lowered its priority, then reschedule its CPU:
4048 */
4049 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4050 resched_task(rq->curr);
4051 }
4052out_unlock:
4053 task_rq_unlock(rq, &flags);
4054}
1da177e4
LT
4055EXPORT_SYMBOL(set_user_nice);
4056
e43379f1
MM
4057/*
4058 * can_nice - check if a task can reduce its nice value
4059 * @p: task
4060 * @nice: nice value
4061 */
36c8b586 4062int can_nice(const struct task_struct *p, const int nice)
e43379f1 4063{
024f4747
MM
4064 /* convert nice value [19,-20] to rlimit style value [1,40] */
4065 int nice_rlim = 20 - nice;
48f24c4d 4066
e43379f1
MM
4067 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4068 capable(CAP_SYS_NICE));
4069}
4070
1da177e4
LT
4071#ifdef __ARCH_WANT_SYS_NICE
4072
4073/*
4074 * sys_nice - change the priority of the current process.
4075 * @increment: priority increment
4076 *
4077 * sys_setpriority is a more generic, but much slower function that
4078 * does similar things.
4079 */
4080asmlinkage long sys_nice(int increment)
4081{
48f24c4d 4082 long nice, retval;
1da177e4
LT
4083
4084 /*
4085 * Setpriority might change our priority at the same moment.
4086 * We don't have to worry. Conceptually one call occurs first
4087 * and we have a single winner.
4088 */
e43379f1
MM
4089 if (increment < -40)
4090 increment = -40;
1da177e4
LT
4091 if (increment > 40)
4092 increment = 40;
4093
4094 nice = PRIO_TO_NICE(current->static_prio) + increment;
4095 if (nice < -20)
4096 nice = -20;
4097 if (nice > 19)
4098 nice = 19;
4099
e43379f1
MM
4100 if (increment < 0 && !can_nice(current, nice))
4101 return -EPERM;
4102
1da177e4
LT
4103 retval = security_task_setnice(current, nice);
4104 if (retval)
4105 return retval;
4106
4107 set_user_nice(current, nice);
4108 return 0;
4109}
4110
4111#endif
4112
4113/**
4114 * task_prio - return the priority value of a given task.
4115 * @p: the task in question.
4116 *
4117 * This is the priority value as seen by users in /proc.
4118 * RT tasks are offset by -200. Normal tasks are centered
4119 * around 0, value goes from -16 to +15.
4120 */
36c8b586 4121int task_prio(const struct task_struct *p)
1da177e4
LT
4122{
4123 return p->prio - MAX_RT_PRIO;
4124}
4125
4126/**
4127 * task_nice - return the nice value of a given task.
4128 * @p: the task in question.
4129 */
36c8b586 4130int task_nice(const struct task_struct *p)
1da177e4
LT
4131{
4132 return TASK_NICE(p);
4133}
1da177e4 4134EXPORT_SYMBOL_GPL(task_nice);
1da177e4
LT
4135
4136/**
4137 * idle_cpu - is a given cpu idle currently?
4138 * @cpu: the processor in question.
4139 */
4140int idle_cpu(int cpu)
4141{
4142 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4143}
4144
1da177e4
LT
4145/**
4146 * idle_task - return the idle task for a given cpu.
4147 * @cpu: the processor in question.
4148 */
36c8b586 4149struct task_struct *idle_task(int cpu)
1da177e4
LT
4150{
4151 return cpu_rq(cpu)->idle;
4152}
4153
4154/**
4155 * find_process_by_pid - find a process with a matching PID value.
4156 * @pid: the pid in question.
4157 */
36c8b586 4158static inline struct task_struct *find_process_by_pid(pid_t pid)
1da177e4
LT
4159{
4160 return pid ? find_task_by_pid(pid) : current;
4161}
4162
4163/* Actually do priority change: must hold rq lock. */
4164static void __setscheduler(struct task_struct *p, int policy, int prio)
4165{
4166 BUG_ON(p->array);
48f24c4d 4167
1da177e4
LT
4168 p->policy = policy;
4169 p->rt_priority = prio;
b29739f9
IM
4170 p->normal_prio = normal_prio(p);
4171 /* we are holding p->pi_lock already */
4172 p->prio = rt_mutex_getprio(p);
4173 /*
4174 * SCHED_BATCH tasks are treated as perpetual CPU hogs:
4175 */
4176 if (policy == SCHED_BATCH)
4177 p->sleep_avg = 0;
2dd73a4f 4178 set_load_weight(p);
1da177e4
LT
4179}
4180
4181/**
4182 * sched_setscheduler - change the scheduling policy and/or RT priority of
4183 * a thread.
4184 * @p: the task in question.
4185 * @policy: new policy.
4186 * @param: structure containing the new RT priority.
5fe1d75f
ON
4187 *
4188 * NOTE: the task may be already dead
1da177e4 4189 */
95cdf3b7
IM
4190int sched_setscheduler(struct task_struct *p, int policy,
4191 struct sched_param *param)
1da177e4 4192{
48f24c4d 4193 int retval, oldprio, oldpolicy = -1;
70b97a7f 4194 struct prio_array *array;
1da177e4 4195 unsigned long flags;
70b97a7f 4196 struct rq *rq;
1da177e4 4197
66e5393a
SR
4198 /* may grab non-irq protected spin_locks */
4199 BUG_ON(in_interrupt());
1da177e4
LT
4200recheck:
4201 /* double check policy once rq lock held */
4202 if (policy < 0)
4203 policy = oldpolicy = p->policy;
4204 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
b0a9499c
IM
4205 policy != SCHED_NORMAL && policy != SCHED_BATCH)
4206 return -EINVAL;
1da177e4
LT
4207 /*
4208 * Valid priorities for SCHED_FIFO and SCHED_RR are
b0a9499c
IM
4209 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL and
4210 * SCHED_BATCH is 0.
1da177e4
LT
4211 */
4212 if (param->sched_priority < 0 ||
95cdf3b7 4213 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4214 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4215 return -EINVAL;
57a6f51c 4216 if (is_rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
4217 return -EINVAL;
4218
37e4ab3f
OC
4219 /*
4220 * Allow unprivileged RT tasks to decrease priority:
4221 */
4222 if (!capable(CAP_SYS_NICE)) {
8dc3e909
ON
4223 if (is_rt_policy(policy)) {
4224 unsigned long rlim_rtprio;
4225 unsigned long flags;
4226
4227 if (!lock_task_sighand(p, &flags))
4228 return -ESRCH;
4229 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4230 unlock_task_sighand(p, &flags);
4231
4232 /* can't set/change the rt policy */
4233 if (policy != p->policy && !rlim_rtprio)
4234 return -EPERM;
4235
4236 /* can't increase priority */
4237 if (param->sched_priority > p->rt_priority &&
4238 param->sched_priority > rlim_rtprio)
4239 return -EPERM;
4240 }
5fe1d75f 4241
37e4ab3f
OC
4242 /* can't change other user's priorities */
4243 if ((current->euid != p->euid) &&
4244 (current->euid != p->uid))
4245 return -EPERM;
4246 }
1da177e4
LT
4247
4248 retval = security_task_setscheduler(p, policy, param);
4249 if (retval)
4250 return retval;
b29739f9
IM
4251 /*
4252 * make sure no PI-waiters arrive (or leave) while we are
4253 * changing the priority of the task:
4254 */
4255 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
4256 /*
4257 * To be able to change p->policy safely, the apropriate
4258 * runqueue lock must be held.
4259 */
b29739f9 4260 rq = __task_rq_lock(p);
1da177e4
LT
4261 /* recheck policy now with rq lock held */
4262 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4263 policy = oldpolicy = -1;
b29739f9
IM
4264 __task_rq_unlock(rq);
4265 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4266 goto recheck;
4267 }
4268 array = p->array;
4269 if (array)
4270 deactivate_task(p, rq);
4271 oldprio = p->prio;
4272 __setscheduler(p, policy, param->sched_priority);
4273 if (array) {
4274 __activate_task(p, rq);
4275 /*
4276 * Reschedule if we are currently running on this runqueue and
4277 * our priority decreased, or if we are not currently running on
4278 * this runqueue and our priority is higher than the current's
4279 */
4280 if (task_running(rq, p)) {
4281 if (p->prio > oldprio)
4282 resched_task(rq->curr);
4283 } else if (TASK_PREEMPTS_CURR(p, rq))
4284 resched_task(rq->curr);
4285 }
b29739f9
IM
4286 __task_rq_unlock(rq);
4287 spin_unlock_irqrestore(&p->pi_lock, flags);
4288
95e02ca9
TG
4289 rt_mutex_adjust_pi(p);
4290
1da177e4
LT
4291 return 0;
4292}
4293EXPORT_SYMBOL_GPL(sched_setscheduler);
4294
95cdf3b7
IM
4295static int
4296do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4297{
1da177e4
LT
4298 struct sched_param lparam;
4299 struct task_struct *p;
36c8b586 4300 int retval;
1da177e4
LT
4301
4302 if (!param || pid < 0)
4303 return -EINVAL;
4304 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4305 return -EFAULT;
5fe1d75f
ON
4306
4307 rcu_read_lock();
4308 retval = -ESRCH;
1da177e4 4309 p = find_process_by_pid(pid);
5fe1d75f
ON
4310 if (p != NULL)
4311 retval = sched_setscheduler(p, policy, &lparam);
4312 rcu_read_unlock();
36c8b586 4313
1da177e4
LT
4314 return retval;
4315}
4316
4317/**
4318 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4319 * @pid: the pid in question.
4320 * @policy: new policy.
4321 * @param: structure containing the new RT priority.
4322 */
4323asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
4324 struct sched_param __user *param)
4325{
c21761f1
JB
4326 /* negative values for policy are not valid */
4327 if (policy < 0)
4328 return -EINVAL;
4329
1da177e4
LT
4330 return do_sched_setscheduler(pid, policy, param);
4331}
4332
4333/**
4334 * sys_sched_setparam - set/change the RT priority of a thread
4335 * @pid: the pid in question.
4336 * @param: structure containing the new RT priority.
4337 */
4338asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4339{
4340 return do_sched_setscheduler(pid, -1, param);
4341}
4342
4343/**
4344 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4345 * @pid: the pid in question.
4346 */
4347asmlinkage long sys_sched_getscheduler(pid_t pid)
4348{
36c8b586 4349 struct task_struct *p;
1da177e4 4350 int retval = -EINVAL;
1da177e4
LT
4351
4352 if (pid < 0)
4353 goto out_nounlock;
4354
4355 retval = -ESRCH;
4356 read_lock(&tasklist_lock);
4357 p = find_process_by_pid(pid);
4358 if (p) {
4359 retval = security_task_getscheduler(p);
4360 if (!retval)
4361 retval = p->policy;
4362 }
4363 read_unlock(&tasklist_lock);
4364
4365out_nounlock:
4366 return retval;
4367}
4368
4369/**
4370 * sys_sched_getscheduler - get the RT priority of a thread
4371 * @pid: the pid in question.
4372 * @param: structure containing the RT priority.
4373 */
4374asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4375{
4376 struct sched_param lp;
36c8b586 4377 struct task_struct *p;
1da177e4 4378 int retval = -EINVAL;
1da177e4
LT
4379
4380 if (!param || pid < 0)
4381 goto out_nounlock;
4382
4383 read_lock(&tasklist_lock);
4384 p = find_process_by_pid(pid);
4385 retval = -ESRCH;
4386 if (!p)
4387 goto out_unlock;
4388
4389 retval = security_task_getscheduler(p);
4390 if (retval)
4391 goto out_unlock;
4392
4393 lp.sched_priority = p->rt_priority;
4394 read_unlock(&tasklist_lock);
4395
4396 /*
4397 * This one might sleep, we cannot do it with a spinlock held ...
4398 */
4399 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4400
4401out_nounlock:
4402 return retval;
4403
4404out_unlock:
4405 read_unlock(&tasklist_lock);
4406 return retval;
4407}
4408
4409long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4410{
1da177e4 4411 cpumask_t cpus_allowed;
36c8b586
IM
4412 struct task_struct *p;
4413 int retval;
1da177e4
LT
4414
4415 lock_cpu_hotplug();
4416 read_lock(&tasklist_lock);
4417
4418 p = find_process_by_pid(pid);
4419 if (!p) {
4420 read_unlock(&tasklist_lock);
4421 unlock_cpu_hotplug();
4422 return -ESRCH;
4423 }
4424
4425 /*
4426 * It is not safe to call set_cpus_allowed with the
4427 * tasklist_lock held. We will bump the task_struct's
4428 * usage count and then drop tasklist_lock.
4429 */
4430 get_task_struct(p);
4431 read_unlock(&tasklist_lock);
4432
4433 retval = -EPERM;
4434 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4435 !capable(CAP_SYS_NICE))
4436 goto out_unlock;
4437
e7834f8f
DQ
4438 retval = security_task_setscheduler(p, 0, NULL);
4439 if (retval)
4440 goto out_unlock;
4441
1da177e4
LT
4442 cpus_allowed = cpuset_cpus_allowed(p);
4443 cpus_and(new_mask, new_mask, cpus_allowed);
4444 retval = set_cpus_allowed(p, new_mask);
4445
4446out_unlock:
4447 put_task_struct(p);
4448 unlock_cpu_hotplug();
4449 return retval;
4450}
4451
4452static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4453 cpumask_t *new_mask)
4454{
4455 if (len < sizeof(cpumask_t)) {
4456 memset(new_mask, 0, sizeof(cpumask_t));
4457 } else if (len > sizeof(cpumask_t)) {
4458 len = sizeof(cpumask_t);
4459 }
4460 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4461}
4462
4463/**
4464 * sys_sched_setaffinity - set the cpu affinity of a process
4465 * @pid: pid of the process
4466 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4467 * @user_mask_ptr: user-space pointer to the new cpu mask
4468 */
4469asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4470 unsigned long __user *user_mask_ptr)
4471{
4472 cpumask_t new_mask;
4473 int retval;
4474
4475 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4476 if (retval)
4477 return retval;
4478
4479 return sched_setaffinity(pid, new_mask);
4480}
4481
4482/*
4483 * Represents all cpu's present in the system
4484 * In systems capable of hotplug, this map could dynamically grow
4485 * as new cpu's are detected in the system via any platform specific
4486 * method, such as ACPI for e.g.
4487 */
4488
4cef0c61 4489cpumask_t cpu_present_map __read_mostly;
1da177e4
LT
4490EXPORT_SYMBOL(cpu_present_map);
4491
4492#ifndef CONFIG_SMP
4cef0c61 4493cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
e16b38f7
GB
4494EXPORT_SYMBOL(cpu_online_map);
4495
4cef0c61 4496cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
e16b38f7 4497EXPORT_SYMBOL(cpu_possible_map);
1da177e4
LT
4498#endif
4499
4500long sched_getaffinity(pid_t pid, cpumask_t *mask)
4501{
36c8b586 4502 struct task_struct *p;
1da177e4 4503 int retval;
1da177e4
LT
4504
4505 lock_cpu_hotplug();
4506 read_lock(&tasklist_lock);
4507
4508 retval = -ESRCH;
4509 p = find_process_by_pid(pid);
4510 if (!p)
4511 goto out_unlock;
4512
e7834f8f
DQ
4513 retval = security_task_getscheduler(p);
4514 if (retval)
4515 goto out_unlock;
4516
2f7016d9 4517 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
1da177e4
LT
4518
4519out_unlock:
4520 read_unlock(&tasklist_lock);
4521 unlock_cpu_hotplug();
4522 if (retval)
4523 return retval;
4524
4525 return 0;
4526}
4527
4528/**
4529 * sys_sched_getaffinity - get the cpu affinity of a process
4530 * @pid: pid of the process
4531 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4532 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4533 */
4534asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4535 unsigned long __user *user_mask_ptr)
4536{
4537 int ret;
4538 cpumask_t mask;
4539
4540 if (len < sizeof(cpumask_t))
4541 return -EINVAL;
4542
4543 ret = sched_getaffinity(pid, &mask);
4544 if (ret < 0)
4545 return ret;
4546
4547 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4548 return -EFAULT;
4549
4550 return sizeof(cpumask_t);
4551}
4552
4553/**
4554 * sys_sched_yield - yield the current processor to other threads.
4555 *
4556 * this function yields the current CPU by moving the calling thread
4557 * to the expired array. If there are no other threads running on this
4558 * CPU then this function will return.
4559 */
4560asmlinkage long sys_sched_yield(void)
4561{
70b97a7f
IM
4562 struct rq *rq = this_rq_lock();
4563 struct prio_array *array = current->array, *target = rq->expired;
1da177e4
LT
4564
4565 schedstat_inc(rq, yld_cnt);
4566 /*
4567 * We implement yielding by moving the task into the expired
4568 * queue.
4569 *
4570 * (special rule: RT tasks will just roundrobin in the active
4571 * array.)
4572 */
4573 if (rt_task(current))
4574 target = rq->active;
4575
5927ad78 4576 if (array->nr_active == 1) {
1da177e4
LT
4577 schedstat_inc(rq, yld_act_empty);
4578 if (!rq->expired->nr_active)
4579 schedstat_inc(rq, yld_both_empty);
4580 } else if (!rq->expired->nr_active)
4581 schedstat_inc(rq, yld_exp_empty);
4582
4583 if (array != target) {
4584 dequeue_task(current, array);
4585 enqueue_task(current, target);
4586 } else
4587 /*
4588 * requeue_task is cheaper so perform that if possible.
4589 */
4590 requeue_task(current, array);
4591
4592 /*
4593 * Since we are going to call schedule() anyway, there's
4594 * no need to preempt or enable interrupts:
4595 */
4596 __release(rq->lock);
8a25d5de 4597 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
4598 _raw_spin_unlock(&rq->lock);
4599 preempt_enable_no_resched();
4600
4601 schedule();
4602
4603 return 0;
4604}
4605
2d7d2535 4606static inline int __resched_legal(int expected_preempt_count)
e7b38404 4607{
2d7d2535 4608 if (unlikely(preempt_count() != expected_preempt_count))
e7b38404
AM
4609 return 0;
4610 if (unlikely(system_state != SYSTEM_RUNNING))
4611 return 0;
4612 return 1;
4613}
4614
4615static void __cond_resched(void)
1da177e4 4616{
8e0a43d8
IM
4617#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4618 __might_sleep(__FILE__, __LINE__);
4619#endif
5bbcfd90
IM
4620 /*
4621 * The BKS might be reacquired before we have dropped
4622 * PREEMPT_ACTIVE, which could trigger a second
4623 * cond_resched() call.
4624 */
1da177e4
LT
4625 do {
4626 add_preempt_count(PREEMPT_ACTIVE);
4627 schedule();
4628 sub_preempt_count(PREEMPT_ACTIVE);
4629 } while (need_resched());
4630}
4631
4632int __sched cond_resched(void)
4633{
2d7d2535 4634 if (need_resched() && __resched_legal(0)) {
1da177e4
LT
4635 __cond_resched();
4636 return 1;
4637 }
4638 return 0;
4639}
1da177e4
LT
4640EXPORT_SYMBOL(cond_resched);
4641
4642/*
4643 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4644 * call schedule, and on return reacquire the lock.
4645 *
4646 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4647 * operations here to prevent schedule() from being called twice (once via
4648 * spin_unlock(), once by hand).
4649 */
95cdf3b7 4650int cond_resched_lock(spinlock_t *lock)
1da177e4 4651{
6df3cecb
JK
4652 int ret = 0;
4653
1da177e4
LT
4654 if (need_lockbreak(lock)) {
4655 spin_unlock(lock);
4656 cpu_relax();
6df3cecb 4657 ret = 1;
1da177e4
LT
4658 spin_lock(lock);
4659 }
2d7d2535 4660 if (need_resched() && __resched_legal(1)) {
8a25d5de 4661 spin_release(&lock->dep_map, 1, _THIS_IP_);
1da177e4
LT
4662 _raw_spin_unlock(lock);
4663 preempt_enable_no_resched();
4664 __cond_resched();
6df3cecb 4665 ret = 1;
1da177e4 4666 spin_lock(lock);
1da177e4 4667 }
6df3cecb 4668 return ret;
1da177e4 4669}
1da177e4
LT
4670EXPORT_SYMBOL(cond_resched_lock);
4671
4672int __sched cond_resched_softirq(void)
4673{
4674 BUG_ON(!in_softirq());
4675
2d7d2535 4676 if (need_resched() && __resched_legal(0)) {
de30a2b3
IM
4677 raw_local_irq_disable();
4678 _local_bh_enable();
4679 raw_local_irq_enable();
1da177e4
LT
4680 __cond_resched();
4681 local_bh_disable();
4682 return 1;
4683 }
4684 return 0;
4685}
1da177e4
LT
4686EXPORT_SYMBOL(cond_resched_softirq);
4687
1da177e4
LT
4688/**
4689 * yield - yield the current processor to other threads.
4690 *
4691 * this is a shortcut for kernel-space yielding - it marks the
4692 * thread runnable and calls sys_sched_yield().
4693 */
4694void __sched yield(void)
4695{
4696 set_current_state(TASK_RUNNING);
4697 sys_sched_yield();
4698}
1da177e4
LT
4699EXPORT_SYMBOL(yield);
4700
4701/*
4702 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4703 * that process accounting knows that this is a task in IO wait state.
4704 *
4705 * But don't do that if it is a deliberate, throttling IO wait (this task
4706 * has set its backing_dev_info: the queue against which it should throttle)
4707 */
4708void __sched io_schedule(void)
4709{
70b97a7f 4710 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4 4711
0ff92245 4712 delayacct_blkio_start();
1da177e4
LT
4713 atomic_inc(&rq->nr_iowait);
4714 schedule();
4715 atomic_dec(&rq->nr_iowait);
0ff92245 4716 delayacct_blkio_end();
1da177e4 4717}
1da177e4
LT
4718EXPORT_SYMBOL(io_schedule);
4719
4720long __sched io_schedule_timeout(long timeout)
4721{
70b97a7f 4722 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4
LT
4723 long ret;
4724
0ff92245 4725 delayacct_blkio_start();
1da177e4
LT
4726 atomic_inc(&rq->nr_iowait);
4727 ret = schedule_timeout(timeout);
4728 atomic_dec(&rq->nr_iowait);
0ff92245 4729 delayacct_blkio_end();
1da177e4
LT
4730 return ret;
4731}
4732
4733/**
4734 * sys_sched_get_priority_max - return maximum RT priority.
4735 * @policy: scheduling class.
4736 *
4737 * this syscall returns the maximum rt_priority that can be used
4738 * by a given scheduling class.
4739 */
4740asmlinkage long sys_sched_get_priority_max(int policy)
4741{
4742 int ret = -EINVAL;
4743
4744 switch (policy) {
4745 case SCHED_FIFO:
4746 case SCHED_RR:
4747 ret = MAX_USER_RT_PRIO-1;
4748 break;
4749 case SCHED_NORMAL:
b0a9499c 4750 case SCHED_BATCH:
1da177e4
LT
4751 ret = 0;
4752 break;
4753 }
4754 return ret;
4755}
4756
4757/**
4758 * sys_sched_get_priority_min - return minimum RT priority.
4759 * @policy: scheduling class.
4760 *
4761 * this syscall returns the minimum rt_priority that can be used
4762 * by a given scheduling class.
4763 */
4764asmlinkage long sys_sched_get_priority_min(int policy)
4765{
4766 int ret = -EINVAL;
4767
4768 switch (policy) {
4769 case SCHED_FIFO:
4770 case SCHED_RR:
4771 ret = 1;
4772 break;
4773 case SCHED_NORMAL:
b0a9499c 4774 case SCHED_BATCH:
1da177e4
LT
4775 ret = 0;
4776 }
4777 return ret;
4778}
4779
4780/**
4781 * sys_sched_rr_get_interval - return the default timeslice of a process.
4782 * @pid: pid of the process.
4783 * @interval: userspace pointer to the timeslice value.
4784 *
4785 * this syscall writes the default timeslice value of a given process
4786 * into the user-space timespec buffer. A value of '0' means infinity.
4787 */
4788asmlinkage
4789long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4790{
36c8b586 4791 struct task_struct *p;
1da177e4
LT
4792 int retval = -EINVAL;
4793 struct timespec t;
1da177e4
LT
4794
4795 if (pid < 0)
4796 goto out_nounlock;
4797
4798 retval = -ESRCH;
4799 read_lock(&tasklist_lock);
4800 p = find_process_by_pid(pid);
4801 if (!p)
4802 goto out_unlock;
4803
4804 retval = security_task_getscheduler(p);
4805 if (retval)
4806 goto out_unlock;
4807
b78709cf 4808 jiffies_to_timespec(p->policy == SCHED_FIFO ?
1da177e4
LT
4809 0 : task_timeslice(p), &t);
4810 read_unlock(&tasklist_lock);
4811 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4812out_nounlock:
4813 return retval;
4814out_unlock:
4815 read_unlock(&tasklist_lock);
4816 return retval;
4817}
4818
4819static inline struct task_struct *eldest_child(struct task_struct *p)
4820{
48f24c4d
IM
4821 if (list_empty(&p->children))
4822 return NULL;
1da177e4
LT
4823 return list_entry(p->children.next,struct task_struct,sibling);
4824}
4825
4826static inline struct task_struct *older_sibling(struct task_struct *p)
4827{
48f24c4d
IM
4828 if (p->sibling.prev==&p->parent->children)
4829 return NULL;
1da177e4
LT
4830 return list_entry(p->sibling.prev,struct task_struct,sibling);
4831}
4832
4833static inline struct task_struct *younger_sibling(struct task_struct *p)
4834{
48f24c4d
IM
4835 if (p->sibling.next==&p->parent->children)
4836 return NULL;
1da177e4
LT
4837 return list_entry(p->sibling.next,struct task_struct,sibling);
4838}
4839
2ed6e34f 4840static const char stat_nam[] = "RSDTtZX";
36c8b586
IM
4841
4842static void show_task(struct task_struct *p)
1da177e4 4843{
36c8b586 4844 struct task_struct *relative;
1da177e4 4845 unsigned long free = 0;
36c8b586 4846 unsigned state;
1da177e4 4847
1da177e4 4848 state = p->state ? __ffs(p->state) + 1 : 0;
2ed6e34f
AM
4849 printk("%-13.13s %c", p->comm,
4850 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
1da177e4
LT
4851#if (BITS_PER_LONG == 32)
4852 if (state == TASK_RUNNING)
4853 printk(" running ");
4854 else
4855 printk(" %08lX ", thread_saved_pc(p));
4856#else
4857 if (state == TASK_RUNNING)
4858 printk(" running task ");
4859 else
4860 printk(" %016lx ", thread_saved_pc(p));
4861#endif
4862#ifdef CONFIG_DEBUG_STACK_USAGE
4863 {
10ebffde 4864 unsigned long *n = end_of_stack(p);
1da177e4
LT
4865 while (!*n)
4866 n++;
10ebffde 4867 free = (unsigned long)n - (unsigned long)end_of_stack(p);
1da177e4
LT
4868 }
4869#endif
4870 printk("%5lu %5d %6d ", free, p->pid, p->parent->pid);
4871 if ((relative = eldest_child(p)))
4872 printk("%5d ", relative->pid);
4873 else
4874 printk(" ");
4875 if ((relative = younger_sibling(p)))
4876 printk("%7d", relative->pid);
4877 else
4878 printk(" ");
4879 if ((relative = older_sibling(p)))
4880 printk(" %5d", relative->pid);
4881 else
4882 printk(" ");
4883 if (!p->mm)
4884 printk(" (L-TLB)\n");
4885 else
4886 printk(" (NOTLB)\n");
4887
4888 if (state != TASK_RUNNING)
4889 show_stack(p, NULL);
4890}
4891
e59e2ae2 4892void show_state_filter(unsigned long state_filter)
1da177e4 4893{
36c8b586 4894 struct task_struct *g, *p;
1da177e4
LT
4895
4896#if (BITS_PER_LONG == 32)
4897 printk("\n"
301827ac
CC
4898 " free sibling\n");
4899 printk(" task PC stack pid father child younger older\n");
1da177e4
LT
4900#else
4901 printk("\n"
301827ac
CC
4902 " free sibling\n");
4903 printk(" task PC stack pid father child younger older\n");
1da177e4
LT
4904#endif
4905 read_lock(&tasklist_lock);
4906 do_each_thread(g, p) {
4907 /*
4908 * reset the NMI-timeout, listing all files on a slow
4909 * console might take alot of time:
4910 */
4911 touch_nmi_watchdog();
e59e2ae2
IM
4912 if (p->state & state_filter)
4913 show_task(p);
1da177e4
LT
4914 } while_each_thread(g, p);
4915
4916 read_unlock(&tasklist_lock);
e59e2ae2
IM
4917 /*
4918 * Only show locks if all tasks are dumped:
4919 */
4920 if (state_filter == -1)
4921 debug_show_all_locks();
1da177e4
LT
4922}
4923
f340c0d1
IM
4924/**
4925 * init_idle - set up an idle thread for a given CPU
4926 * @idle: task in question
4927 * @cpu: cpu the idle task belongs to
4928 *
4929 * NOTE: this function does not set the idle thread's NEED_RESCHED
4930 * flag, to make booting more robust.
4931 */
5c1e1767 4932void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 4933{
70b97a7f 4934 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
4935 unsigned long flags;
4936
81c29a85 4937 idle->timestamp = sched_clock();
1da177e4
LT
4938 idle->sleep_avg = 0;
4939 idle->array = NULL;
b29739f9 4940 idle->prio = idle->normal_prio = MAX_PRIO;
1da177e4
LT
4941 idle->state = TASK_RUNNING;
4942 idle->cpus_allowed = cpumask_of_cpu(cpu);
4943 set_task_cpu(idle, cpu);
4944
4945 spin_lock_irqsave(&rq->lock, flags);
4946 rq->curr = rq->idle = idle;
4866cde0
NP
4947#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4948 idle->oncpu = 1;
4949#endif
1da177e4
LT
4950 spin_unlock_irqrestore(&rq->lock, flags);
4951
4952 /* Set the preempt count _outside_ the spinlocks! */
4953#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
a1261f54 4954 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
1da177e4 4955#else
a1261f54 4956 task_thread_info(idle)->preempt_count = 0;
1da177e4
LT
4957#endif
4958}
4959
4960/*
4961 * In a system that switches off the HZ timer nohz_cpu_mask
4962 * indicates which cpus entered this state. This is used
4963 * in the rcu update to wait only for active cpus. For system
4964 * which do not switch off the HZ timer nohz_cpu_mask should
4965 * always be CPU_MASK_NONE.
4966 */
4967cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4968
4969#ifdef CONFIG_SMP
4970/*
4971 * This is how migration works:
4972 *
70b97a7f 4973 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
4974 * runqueue and wake up that CPU's migration thread.
4975 * 2) we down() the locked semaphore => thread blocks.
4976 * 3) migration thread wakes up (implicitly it forces the migrated
4977 * thread off the CPU)
4978 * 4) it gets the migration request and checks whether the migrated
4979 * task is still in the wrong runqueue.
4980 * 5) if it's in the wrong runqueue then the migration thread removes
4981 * it and puts it into the right queue.
4982 * 6) migration thread up()s the semaphore.
4983 * 7) we wake up and the migration is done.
4984 */
4985
4986/*
4987 * Change a given task's CPU affinity. Migrate the thread to a
4988 * proper CPU and schedule it away if the CPU it's executing on
4989 * is removed from the allowed bitmask.
4990 *
4991 * NOTE: the caller must have a valid reference to the task, the
4992 * task must not exit() & deallocate itself prematurely. The
4993 * call is not atomic; no spinlocks may be held.
4994 */
36c8b586 4995int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1da177e4 4996{
70b97a7f 4997 struct migration_req req;
1da177e4 4998 unsigned long flags;
70b97a7f 4999 struct rq *rq;
48f24c4d 5000 int ret = 0;
1da177e4
LT
5001
5002 rq = task_rq_lock(p, &flags);
5003 if (!cpus_intersects(new_mask, cpu_online_map)) {
5004 ret = -EINVAL;
5005 goto out;
5006 }
5007
5008 p->cpus_allowed = new_mask;
5009 /* Can the task run on the task's current CPU? If so, we're done */
5010 if (cpu_isset(task_cpu(p), new_mask))
5011 goto out;
5012
5013 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
5014 /* Need help from migration thread: drop lock and wait. */
5015 task_rq_unlock(rq, &flags);
5016 wake_up_process(rq->migration_thread);
5017 wait_for_completion(&req.done);
5018 tlb_migrate_finish(p->mm);
5019 return 0;
5020 }
5021out:
5022 task_rq_unlock(rq, &flags);
48f24c4d 5023
1da177e4
LT
5024 return ret;
5025}
1da177e4
LT
5026EXPORT_SYMBOL_GPL(set_cpus_allowed);
5027
5028/*
5029 * Move (not current) task off this cpu, onto dest cpu. We're doing
5030 * this because either it can't run here any more (set_cpus_allowed()
5031 * away from this CPU, or CPU going down), or because we're
5032 * attempting to rebalance this task on exec (sched_exec).
5033 *
5034 * So we race with normal scheduler movements, but that's OK, as long
5035 * as the task is no longer on this CPU.
efc30814
KK
5036 *
5037 * Returns non-zero if task was successfully migrated.
1da177e4 5038 */
efc30814 5039static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 5040{
70b97a7f 5041 struct rq *rq_dest, *rq_src;
efc30814 5042 int ret = 0;
1da177e4
LT
5043
5044 if (unlikely(cpu_is_offline(dest_cpu)))
efc30814 5045 return ret;
1da177e4
LT
5046
5047 rq_src = cpu_rq(src_cpu);
5048 rq_dest = cpu_rq(dest_cpu);
5049
5050 double_rq_lock(rq_src, rq_dest);
5051 /* Already moved. */
5052 if (task_cpu(p) != src_cpu)
5053 goto out;
5054 /* Affinity changed (again). */
5055 if (!cpu_isset(dest_cpu, p->cpus_allowed))
5056 goto out;
5057
5058 set_task_cpu(p, dest_cpu);
5059 if (p->array) {
5060 /*
5061 * Sync timestamp with rq_dest's before activating.
5062 * The same thing could be achieved by doing this step
5063 * afterwards, and pretending it was a local activate.
5064 * This way is cleaner and logically correct.
5065 */
b18ec803
MG
5066 p->timestamp = p->timestamp - rq_src->most_recent_timestamp
5067 + rq_dest->most_recent_timestamp;
1da177e4 5068 deactivate_task(p, rq_src);
0a565f79 5069 __activate_task(p, rq_dest);
1da177e4
LT
5070 if (TASK_PREEMPTS_CURR(p, rq_dest))
5071 resched_task(rq_dest->curr);
5072 }
efc30814 5073 ret = 1;
1da177e4
LT
5074out:
5075 double_rq_unlock(rq_src, rq_dest);
efc30814 5076 return ret;
1da177e4
LT
5077}
5078
5079/*
5080 * migration_thread - this is a highprio system thread that performs
5081 * thread migration by bumping thread off CPU then 'pushing' onto
5082 * another runqueue.
5083 */
95cdf3b7 5084static int migration_thread(void *data)
1da177e4 5085{
1da177e4 5086 int cpu = (long)data;
70b97a7f 5087 struct rq *rq;
1da177e4
LT
5088
5089 rq = cpu_rq(cpu);
5090 BUG_ON(rq->migration_thread != current);
5091
5092 set_current_state(TASK_INTERRUPTIBLE);
5093 while (!kthread_should_stop()) {
70b97a7f 5094 struct migration_req *req;
1da177e4 5095 struct list_head *head;
1da177e4 5096
3e1d1d28 5097 try_to_freeze();
1da177e4
LT
5098
5099 spin_lock_irq(&rq->lock);
5100
5101 if (cpu_is_offline(cpu)) {
5102 spin_unlock_irq(&rq->lock);
5103 goto wait_to_die;
5104 }
5105
5106 if (rq->active_balance) {
5107 active_load_balance(rq, cpu);
5108 rq->active_balance = 0;
5109 }
5110
5111 head = &rq->migration_queue;
5112
5113 if (list_empty(head)) {
5114 spin_unlock_irq(&rq->lock);
5115 schedule();
5116 set_current_state(TASK_INTERRUPTIBLE);
5117 continue;
5118 }
70b97a7f 5119 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
5120 list_del_init(head->next);
5121
674311d5
NP
5122 spin_unlock(&rq->lock);
5123 __migrate_task(req->task, cpu, req->dest_cpu);
5124 local_irq_enable();
1da177e4
LT
5125
5126 complete(&req->done);
5127 }
5128 __set_current_state(TASK_RUNNING);
5129 return 0;
5130
5131wait_to_die:
5132 /* Wait for kthread_stop */
5133 set_current_state(TASK_INTERRUPTIBLE);
5134 while (!kthread_should_stop()) {
5135 schedule();
5136 set_current_state(TASK_INTERRUPTIBLE);
5137 }
5138 __set_current_state(TASK_RUNNING);
5139 return 0;
5140}
5141
5142#ifdef CONFIG_HOTPLUG_CPU
054b9108
KK
5143/*
5144 * Figure out where task on dead CPU should go, use force if neccessary.
5145 * NOTE: interrupts should be disabled by the caller
5146 */
48f24c4d 5147static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 5148{
efc30814 5149 unsigned long flags;
1da177e4 5150 cpumask_t mask;
70b97a7f
IM
5151 struct rq *rq;
5152 int dest_cpu;
1da177e4 5153
efc30814 5154restart:
1da177e4
LT
5155 /* On same node? */
5156 mask = node_to_cpumask(cpu_to_node(dead_cpu));
48f24c4d 5157 cpus_and(mask, mask, p->cpus_allowed);
1da177e4
LT
5158 dest_cpu = any_online_cpu(mask);
5159
5160 /* On any allowed CPU? */
5161 if (dest_cpu == NR_CPUS)
48f24c4d 5162 dest_cpu = any_online_cpu(p->cpus_allowed);
1da177e4
LT
5163
5164 /* No more Mr. Nice Guy. */
5165 if (dest_cpu == NR_CPUS) {
48f24c4d
IM
5166 rq = task_rq_lock(p, &flags);
5167 cpus_setall(p->cpus_allowed);
5168 dest_cpu = any_online_cpu(p->cpus_allowed);
efc30814 5169 task_rq_unlock(rq, &flags);
1da177e4
LT
5170
5171 /*
5172 * Don't tell them about moving exiting tasks or
5173 * kernel threads (both mm NULL), since they never
5174 * leave kernel.
5175 */
48f24c4d 5176 if (p->mm && printk_ratelimit())
1da177e4
LT
5177 printk(KERN_INFO "process %d (%s) no "
5178 "longer affine to cpu%d\n",
48f24c4d 5179 p->pid, p->comm, dead_cpu);
1da177e4 5180 }
48f24c4d 5181 if (!__migrate_task(p, dead_cpu, dest_cpu))
efc30814 5182 goto restart;
1da177e4
LT
5183}
5184
5185/*
5186 * While a dead CPU has no uninterruptible tasks queued at this point,
5187 * it might still have a nonzero ->nr_uninterruptible counter, because
5188 * for performance reasons the counter is not stricly tracking tasks to
5189 * their home CPUs. So we just add the counter to another CPU's counter,
5190 * to keep the global sum constant after CPU-down:
5191 */
70b97a7f 5192static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 5193{
70b97a7f 5194 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
1da177e4
LT
5195 unsigned long flags;
5196
5197 local_irq_save(flags);
5198 double_rq_lock(rq_src, rq_dest);
5199 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5200 rq_src->nr_uninterruptible = 0;
5201 double_rq_unlock(rq_src, rq_dest);
5202 local_irq_restore(flags);
5203}
5204
5205/* Run through task list and migrate tasks from the dead cpu. */
5206static void migrate_live_tasks(int src_cpu)
5207{
48f24c4d 5208 struct task_struct *p, *t;
1da177e4
LT
5209
5210 write_lock_irq(&tasklist_lock);
5211
48f24c4d
IM
5212 do_each_thread(t, p) {
5213 if (p == current)
1da177e4
LT
5214 continue;
5215
48f24c4d
IM
5216 if (task_cpu(p) == src_cpu)
5217 move_task_off_dead_cpu(src_cpu, p);
5218 } while_each_thread(t, p);
1da177e4
LT
5219
5220 write_unlock_irq(&tasklist_lock);
5221}
5222
5223/* Schedules idle task to be the next runnable task on current CPU.
5224 * It does so by boosting its priority to highest possible and adding it to
48f24c4d 5225 * the _front_ of the runqueue. Used by CPU offline code.
1da177e4
LT
5226 */
5227void sched_idle_next(void)
5228{
48f24c4d 5229 int this_cpu = smp_processor_id();
70b97a7f 5230 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
5231 struct task_struct *p = rq->idle;
5232 unsigned long flags;
5233
5234 /* cpu has to be offline */
48f24c4d 5235 BUG_ON(cpu_online(this_cpu));
1da177e4 5236
48f24c4d
IM
5237 /*
5238 * Strictly not necessary since rest of the CPUs are stopped by now
5239 * and interrupts disabled on the current cpu.
1da177e4
LT
5240 */
5241 spin_lock_irqsave(&rq->lock, flags);
5242
5243 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d
IM
5244
5245 /* Add idle task to the _front_ of its priority queue: */
1da177e4
LT
5246 __activate_idle_task(p, rq);
5247
5248 spin_unlock_irqrestore(&rq->lock, flags);
5249}
5250
48f24c4d
IM
5251/*
5252 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
5253 * offline.
5254 */
5255void idle_task_exit(void)
5256{
5257 struct mm_struct *mm = current->active_mm;
5258
5259 BUG_ON(cpu_online(smp_processor_id()));
5260
5261 if (mm != &init_mm)
5262 switch_mm(mm, &init_mm, current);
5263 mmdrop(mm);
5264}
5265
054b9108 5266/* called under rq->lock with disabled interrupts */
36c8b586 5267static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 5268{
70b97a7f 5269 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
5270
5271 /* Must be exiting, otherwise would be on tasklist. */
48f24c4d 5272 BUG_ON(p->exit_state != EXIT_ZOMBIE && p->exit_state != EXIT_DEAD);
1da177e4
LT
5273
5274 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 5275 BUG_ON(p->state == TASK_DEAD);
1da177e4 5276
48f24c4d 5277 get_task_struct(p);
1da177e4
LT
5278
5279 /*
5280 * Drop lock around migration; if someone else moves it,
5281 * that's OK. No task can be added to this CPU, so iteration is
5282 * fine.
054b9108 5283 * NOTE: interrupts should be left disabled --dev@
1da177e4 5284 */
054b9108 5285 spin_unlock(&rq->lock);
48f24c4d 5286 move_task_off_dead_cpu(dead_cpu, p);
054b9108 5287 spin_lock(&rq->lock);
1da177e4 5288
48f24c4d 5289 put_task_struct(p);
1da177e4
LT
5290}
5291
5292/* release_task() removes task from tasklist, so we won't find dead tasks. */
5293static void migrate_dead_tasks(unsigned int dead_cpu)
5294{
70b97a7f 5295 struct rq *rq = cpu_rq(dead_cpu);
48f24c4d 5296 unsigned int arr, i;
1da177e4
LT
5297
5298 for (arr = 0; arr < 2; arr++) {
5299 for (i = 0; i < MAX_PRIO; i++) {
5300 struct list_head *list = &rq->arrays[arr].queue[i];
48f24c4d 5301
1da177e4 5302 while (!list_empty(list))
36c8b586
IM
5303 migrate_dead(dead_cpu, list_entry(list->next,
5304 struct task_struct, run_list));
1da177e4
LT
5305 }
5306 }
5307}
5308#endif /* CONFIG_HOTPLUG_CPU */
5309
5310/*
5311 * migration_call - callback that gets triggered when a CPU is added.
5312 * Here we can start up the necessary migration thread for the new CPU.
5313 */
48f24c4d
IM
5314static int __cpuinit
5315migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5316{
1da177e4 5317 struct task_struct *p;
48f24c4d 5318 int cpu = (long)hcpu;
1da177e4 5319 unsigned long flags;
70b97a7f 5320 struct rq *rq;
1da177e4
LT
5321
5322 switch (action) {
5323 case CPU_UP_PREPARE:
5324 p = kthread_create(migration_thread, hcpu, "migration/%d",cpu);
5325 if (IS_ERR(p))
5326 return NOTIFY_BAD;
5327 p->flags |= PF_NOFREEZE;
5328 kthread_bind(p, cpu);
5329 /* Must be high prio: stop_machine expects to yield to it. */
5330 rq = task_rq_lock(p, &flags);
5331 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
5332 task_rq_unlock(rq, &flags);
5333 cpu_rq(cpu)->migration_thread = p;
5334 break;
48f24c4d 5335
1da177e4
LT
5336 case CPU_ONLINE:
5337 /* Strictly unneccessary, as first user will wake it. */
5338 wake_up_process(cpu_rq(cpu)->migration_thread);
5339 break;
48f24c4d 5340
1da177e4
LT
5341#ifdef CONFIG_HOTPLUG_CPU
5342 case CPU_UP_CANCELED:
fc75cdfa
HC
5343 if (!cpu_rq(cpu)->migration_thread)
5344 break;
1da177e4 5345 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c
HC
5346 kthread_bind(cpu_rq(cpu)->migration_thread,
5347 any_online_cpu(cpu_online_map));
1da177e4
LT
5348 kthread_stop(cpu_rq(cpu)->migration_thread);
5349 cpu_rq(cpu)->migration_thread = NULL;
5350 break;
48f24c4d 5351
1da177e4
LT
5352 case CPU_DEAD:
5353 migrate_live_tasks(cpu);
5354 rq = cpu_rq(cpu);
5355 kthread_stop(rq->migration_thread);
5356 rq->migration_thread = NULL;
5357 /* Idle task back to normal (off runqueue, low prio) */
5358 rq = task_rq_lock(rq->idle, &flags);
5359 deactivate_task(rq->idle, rq);
5360 rq->idle->static_prio = MAX_PRIO;
5361 __setscheduler(rq->idle, SCHED_NORMAL, 0);
5362 migrate_dead_tasks(cpu);
5363 task_rq_unlock(rq, &flags);
5364 migrate_nr_uninterruptible(rq);
5365 BUG_ON(rq->nr_running != 0);
5366
5367 /* No need to migrate the tasks: it was best-effort if
5368 * they didn't do lock_cpu_hotplug(). Just wake up
5369 * the requestors. */
5370 spin_lock_irq(&rq->lock);
5371 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
5372 struct migration_req *req;
5373
1da177e4 5374 req = list_entry(rq->migration_queue.next,
70b97a7f 5375 struct migration_req, list);
1da177e4
LT
5376 list_del_init(&req->list);
5377 complete(&req->done);
5378 }
5379 spin_unlock_irq(&rq->lock);
5380 break;
5381#endif
5382 }
5383 return NOTIFY_OK;
5384}
5385
5386/* Register at highest priority so that task migration (migrate_all_tasks)
5387 * happens before everything else.
5388 */
26c2143b 5389static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
5390 .notifier_call = migration_call,
5391 .priority = 10
5392};
5393
5394int __init migration_init(void)
5395{
5396 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5397 int err;
48f24c4d
IM
5398
5399 /* Start one for the boot CPU: */
07dccf33
AM
5400 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5401 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5402 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5403 register_cpu_notifier(&migration_notifier);
48f24c4d 5404
1da177e4
LT
5405 return 0;
5406}
5407#endif
5408
5409#ifdef CONFIG_SMP
1a20ff27 5410#undef SCHED_DOMAIN_DEBUG
1da177e4
LT
5411#ifdef SCHED_DOMAIN_DEBUG
5412static void sched_domain_debug(struct sched_domain *sd, int cpu)
5413{
5414 int level = 0;
5415
41c7ce9a
NP
5416 if (!sd) {
5417 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5418 return;
5419 }
5420
1da177e4
LT
5421 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5422
5423 do {
5424 int i;
5425 char str[NR_CPUS];
5426 struct sched_group *group = sd->groups;
5427 cpumask_t groupmask;
5428
5429 cpumask_scnprintf(str, NR_CPUS, sd->span);
5430 cpus_clear(groupmask);
5431
5432 printk(KERN_DEBUG);
5433 for (i = 0; i < level + 1; i++)
5434 printk(" ");
5435 printk("domain %d: ", level);
5436
5437 if (!(sd->flags & SD_LOAD_BALANCE)) {
5438 printk("does not load-balance\n");
5439 if (sd->parent)
5440 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain has parent");
5441 break;
5442 }
5443
5444 printk("span %s\n", str);
5445
5446 if (!cpu_isset(cpu, sd->span))
5447 printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
5448 if (!cpu_isset(cpu, group->cpumask))
5449 printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
5450
5451 printk(KERN_DEBUG);
5452 for (i = 0; i < level + 2; i++)
5453 printk(" ");
5454 printk("groups:");
5455 do {
5456 if (!group) {
5457 printk("\n");
5458 printk(KERN_ERR "ERROR: group is NULL\n");
5459 break;
5460 }
5461
5462 if (!group->cpu_power) {
5463 printk("\n");
5464 printk(KERN_ERR "ERROR: domain->cpu_power not set\n");
5465 }
5466
5467 if (!cpus_weight(group->cpumask)) {
5468 printk("\n");
5469 printk(KERN_ERR "ERROR: empty group\n");
5470 }
5471
5472 if (cpus_intersects(groupmask, group->cpumask)) {
5473 printk("\n");
5474 printk(KERN_ERR "ERROR: repeated CPUs\n");
5475 }
5476
5477 cpus_or(groupmask, groupmask, group->cpumask);
5478
5479 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
5480 printk(" %s", str);
5481
5482 group = group->next;
5483 } while (group != sd->groups);
5484 printk("\n");
5485
5486 if (!cpus_equal(sd->span, groupmask))
5487 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
5488
5489 level++;
5490 sd = sd->parent;
5491
5492 if (sd) {
5493 if (!cpus_subset(groupmask, sd->span))
5494 printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
5495 }
5496
5497 } while (sd);
5498}
5499#else
48f24c4d 5500# define sched_domain_debug(sd, cpu) do { } while (0)
1da177e4
LT
5501#endif
5502
1a20ff27 5503static int sd_degenerate(struct sched_domain *sd)
245af2c7
SS
5504{
5505 if (cpus_weight(sd->span) == 1)
5506 return 1;
5507
5508 /* Following flags need at least 2 groups */
5509 if (sd->flags & (SD_LOAD_BALANCE |
5510 SD_BALANCE_NEWIDLE |
5511 SD_BALANCE_FORK |
89c4710e
SS
5512 SD_BALANCE_EXEC |
5513 SD_SHARE_CPUPOWER |
5514 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
5515 if (sd->groups != sd->groups->next)
5516 return 0;
5517 }
5518
5519 /* Following flags don't use groups */
5520 if (sd->flags & (SD_WAKE_IDLE |
5521 SD_WAKE_AFFINE |
5522 SD_WAKE_BALANCE))
5523 return 0;
5524
5525 return 1;
5526}
5527
48f24c4d
IM
5528static int
5529sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5530{
5531 unsigned long cflags = sd->flags, pflags = parent->flags;
5532
5533 if (sd_degenerate(parent))
5534 return 1;
5535
5536 if (!cpus_equal(sd->span, parent->span))
5537 return 0;
5538
5539 /* Does parent contain flags not in child? */
5540 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5541 if (cflags & SD_WAKE_AFFINE)
5542 pflags &= ~SD_WAKE_BALANCE;
5543 /* Flags needing groups don't count if only 1 group in parent */
5544 if (parent->groups == parent->groups->next) {
5545 pflags &= ~(SD_LOAD_BALANCE |
5546 SD_BALANCE_NEWIDLE |
5547 SD_BALANCE_FORK |
89c4710e
SS
5548 SD_BALANCE_EXEC |
5549 SD_SHARE_CPUPOWER |
5550 SD_SHARE_PKG_RESOURCES);
245af2c7
SS
5551 }
5552 if (~cflags & pflags)
5553 return 0;
5554
5555 return 1;
5556}
5557
1da177e4
LT
5558/*
5559 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5560 * hold the hotplug lock.
5561 */
9c1cfda2 5562static void cpu_attach_domain(struct sched_domain *sd, int cpu)
1da177e4 5563{
70b97a7f 5564 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5565 struct sched_domain *tmp;
5566
5567 /* Remove the sched domains which do not contribute to scheduling. */
5568 for (tmp = sd; tmp; tmp = tmp->parent) {
5569 struct sched_domain *parent = tmp->parent;
5570 if (!parent)
5571 break;
1a848870 5572 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5573 tmp->parent = parent->parent;
1a848870
SS
5574 if (parent->parent)
5575 parent->parent->child = tmp;
5576 }
245af2c7
SS
5577 }
5578
1a848870 5579 if (sd && sd_degenerate(sd)) {
245af2c7 5580 sd = sd->parent;
1a848870
SS
5581 if (sd)
5582 sd->child = NULL;
5583 }
1da177e4
LT
5584
5585 sched_domain_debug(sd, cpu);
5586
674311d5 5587 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
5588}
5589
5590/* cpus with isolated domains */
5c1e1767 5591static cpumask_t __cpuinitdata cpu_isolated_map = CPU_MASK_NONE;
1da177e4
LT
5592
5593/* Setup the mask of cpus configured for isolated domains */
5594static int __init isolated_cpu_setup(char *str)
5595{
5596 int ints[NR_CPUS], i;
5597
5598 str = get_options(str, ARRAY_SIZE(ints), ints);
5599 cpus_clear(cpu_isolated_map);
5600 for (i = 1; i <= ints[0]; i++)
5601 if (ints[i] < NR_CPUS)
5602 cpu_set(ints[i], cpu_isolated_map);
5603 return 1;
5604}
5605
5606__setup ("isolcpus=", isolated_cpu_setup);
5607
5608/*
6711cab4
SS
5609 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
5610 * to a function which identifies what group(along with sched group) a CPU
5611 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
5612 * (due to the fact that we keep track of groups covered with a cpumask_t).
1da177e4
LT
5613 *
5614 * init_sched_build_groups will build a circular linked list of the groups
5615 * covered by the given span, and will set each group's ->cpumask correctly,
5616 * and ->cpu_power to 0.
5617 */
a616058b 5618static void
6711cab4
SS
5619init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
5620 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
5621 struct sched_group **sg))
1da177e4
LT
5622{
5623 struct sched_group *first = NULL, *last = NULL;
5624 cpumask_t covered = CPU_MASK_NONE;
5625 int i;
5626
5627 for_each_cpu_mask(i, span) {
6711cab4
SS
5628 struct sched_group *sg;
5629 int group = group_fn(i, cpu_map, &sg);
1da177e4
LT
5630 int j;
5631
5632 if (cpu_isset(i, covered))
5633 continue;
5634
5635 sg->cpumask = CPU_MASK_NONE;
5636 sg->cpu_power = 0;
5637
5638 for_each_cpu_mask(j, span) {
6711cab4 5639 if (group_fn(j, cpu_map, NULL) != group)
1da177e4
LT
5640 continue;
5641
5642 cpu_set(j, covered);
5643 cpu_set(j, sg->cpumask);
5644 }
5645 if (!first)
5646 first = sg;
5647 if (last)
5648 last->next = sg;
5649 last = sg;
5650 }
5651 last->next = first;
5652}
5653
9c1cfda2 5654#define SD_NODES_PER_DOMAIN 16
1da177e4 5655
198e2f18
AM
5656/*
5657 * Self-tuning task migration cost measurement between source and target CPUs.
5658 *
5659 * This is done by measuring the cost of manipulating buffers of varying
5660 * sizes. For a given buffer-size here are the steps that are taken:
5661 *
5662 * 1) the source CPU reads+dirties a shared buffer
5663 * 2) the target CPU reads+dirties the same shared buffer
5664 *
5665 * We measure how long they take, in the following 4 scenarios:
5666 *
5667 * - source: CPU1, target: CPU2 | cost1
5668 * - source: CPU2, target: CPU1 | cost2
5669 * - source: CPU1, target: CPU1 | cost3
5670 * - source: CPU2, target: CPU2 | cost4
5671 *
5672 * We then calculate the cost3+cost4-cost1-cost2 difference - this is
5673 * the cost of migration.
5674 *
5675 * We then start off from a small buffer-size and iterate up to larger
5676 * buffer sizes, in 5% steps - measuring each buffer-size separately, and
5677 * doing a maximum search for the cost. (The maximum cost for a migration
5678 * normally occurs when the working set size is around the effective cache
5679 * size.)
5680 */
5681#define SEARCH_SCOPE 2
5682#define MIN_CACHE_SIZE (64*1024U)
5683#define DEFAULT_CACHE_SIZE (5*1024*1024U)
70b4d63e 5684#define ITERATIONS 1
198e2f18
AM
5685#define SIZE_THRESH 130
5686#define COST_THRESH 130
5687
5688/*
5689 * The migration cost is a function of 'domain distance'. Domain
5690 * distance is the number of steps a CPU has to iterate down its
5691 * domain tree to share a domain with the other CPU. The farther
5692 * two CPUs are from each other, the larger the distance gets.
5693 *
5694 * Note that we use the distance only to cache measurement results,
5695 * the distance value is not used numerically otherwise. When two
5696 * CPUs have the same distance it is assumed that the migration
5697 * cost is the same. (this is a simplification but quite practical)
5698 */
5699#define MAX_DOMAIN_DISTANCE 32
5700
5701static unsigned long long migration_cost[MAX_DOMAIN_DISTANCE] =
4bbf39c2
IM
5702 { [ 0 ... MAX_DOMAIN_DISTANCE-1 ] =
5703/*
5704 * Architectures may override the migration cost and thus avoid
5705 * boot-time calibration. Unit is nanoseconds. Mostly useful for
5706 * virtualized hardware:
5707 */
5708#ifdef CONFIG_DEFAULT_MIGRATION_COST
5709 CONFIG_DEFAULT_MIGRATION_COST
5710#else
5711 -1LL
5712#endif
5713};
198e2f18
AM
5714
5715/*
5716 * Allow override of migration cost - in units of microseconds.
5717 * E.g. migration_cost=1000,2000,3000 will set up a level-1 cost
5718 * of 1 msec, level-2 cost of 2 msecs and level3 cost of 3 msecs:
5719 */
5720static int __init migration_cost_setup(char *str)
5721{
5722 int ints[MAX_DOMAIN_DISTANCE+1], i;
5723
5724 str = get_options(str, ARRAY_SIZE(ints), ints);
5725
5726 printk("#ints: %d\n", ints[0]);
5727 for (i = 1; i <= ints[0]; i++) {
5728 migration_cost[i-1] = (unsigned long long)ints[i]*1000;
5729 printk("migration_cost[%d]: %Ld\n", i-1, migration_cost[i-1]);
5730 }
5731 return 1;
5732}
5733
5734__setup ("migration_cost=", migration_cost_setup);
5735
5736/*
5737 * Global multiplier (divisor) for migration-cutoff values,
5738 * in percentiles. E.g. use a value of 150 to get 1.5 times
5739 * longer cache-hot cutoff times.
5740 *
5741 * (We scale it from 100 to 128 to long long handling easier.)
5742 */
5743
5744#define MIGRATION_FACTOR_SCALE 128
5745
5746static unsigned int migration_factor = MIGRATION_FACTOR_SCALE;
5747
5748static int __init setup_migration_factor(char *str)
5749{
5750 get_option(&str, &migration_factor);
5751 migration_factor = migration_factor * MIGRATION_FACTOR_SCALE / 100;
5752 return 1;
5753}
5754
5755__setup("migration_factor=", setup_migration_factor);
5756
5757/*
5758 * Estimated distance of two CPUs, measured via the number of domains
5759 * we have to pass for the two CPUs to be in the same span:
5760 */
5761static unsigned long domain_distance(int cpu1, int cpu2)
5762{
5763 unsigned long distance = 0;
5764 struct sched_domain *sd;
5765
5766 for_each_domain(cpu1, sd) {
5767 WARN_ON(!cpu_isset(cpu1, sd->span));
5768 if (cpu_isset(cpu2, sd->span))
5769 return distance;
5770 distance++;
5771 }
5772 if (distance >= MAX_DOMAIN_DISTANCE) {
5773 WARN_ON(1);
5774 distance = MAX_DOMAIN_DISTANCE-1;
5775 }
5776
5777 return distance;
5778}
5779
5780static unsigned int migration_debug;
5781
5782static int __init setup_migration_debug(char *str)
5783{
5784 get_option(&str, &migration_debug);
5785 return 1;
5786}
5787
5788__setup("migration_debug=", setup_migration_debug);
5789
5790/*
5791 * Maximum cache-size that the scheduler should try to measure.
5792 * Architectures with larger caches should tune this up during
5793 * bootup. Gets used in the domain-setup code (i.e. during SMP
5794 * bootup).
5795 */
5796unsigned int max_cache_size;
5797
5798static int __init setup_max_cache_size(char *str)
5799{
5800 get_option(&str, &max_cache_size);
5801 return 1;
5802}
5803
5804__setup("max_cache_size=", setup_max_cache_size);
5805
5806/*
5807 * Dirty a big buffer in a hard-to-predict (for the L2 cache) way. This
5808 * is the operation that is timed, so we try to generate unpredictable
5809 * cachemisses that still end up filling the L2 cache:
5810 */
5811static void touch_cache(void *__cache, unsigned long __size)
5812{
5813 unsigned long size = __size/sizeof(long), chunk1 = size/3,
5814 chunk2 = 2*size/3;
5815 unsigned long *cache = __cache;
5816 int i;
5817
5818 for (i = 0; i < size/6; i += 8) {
5819 switch (i % 6) {
5820 case 0: cache[i]++;
5821 case 1: cache[size-1-i]++;
5822 case 2: cache[chunk1-i]++;
5823 case 3: cache[chunk1+i]++;
5824 case 4: cache[chunk2-i]++;
5825 case 5: cache[chunk2+i]++;
5826 }
5827 }
5828}
5829
5830/*
5831 * Measure the cache-cost of one task migration. Returns in units of nsec.
5832 */
48f24c4d
IM
5833static unsigned long long
5834measure_one(void *cache, unsigned long size, int source, int target)
198e2f18
AM
5835{
5836 cpumask_t mask, saved_mask;
5837 unsigned long long t0, t1, t2, t3, cost;
5838
5839 saved_mask = current->cpus_allowed;
5840
5841 /*
5842 * Flush source caches to RAM and invalidate them:
5843 */
5844 sched_cacheflush();
5845
5846 /*
5847 * Migrate to the source CPU:
5848 */
5849 mask = cpumask_of_cpu(source);
5850 set_cpus_allowed(current, mask);
5851 WARN_ON(smp_processor_id() != source);
5852
5853 /*
5854 * Dirty the working set:
5855 */
5856 t0 = sched_clock();
5857 touch_cache(cache, size);
5858 t1 = sched_clock();
5859
5860 /*
5861 * Migrate to the target CPU, dirty the L2 cache and access
5862 * the shared buffer. (which represents the working set
5863 * of a migrated task.)
5864 */
5865 mask = cpumask_of_cpu(target);
5866 set_cpus_allowed(current, mask);
5867 WARN_ON(smp_processor_id() != target);
5868
5869 t2 = sched_clock();
5870 touch_cache(cache, size);
5871 t3 = sched_clock();
5872
5873 cost = t1-t0 + t3-t2;
5874
5875 if (migration_debug >= 2)
5876 printk("[%d->%d]: %8Ld %8Ld %8Ld => %10Ld.\n",
5877 source, target, t1-t0, t1-t0, t3-t2, cost);
5878 /*
5879 * Flush target caches to RAM and invalidate them:
5880 */
5881 sched_cacheflush();
5882
5883 set_cpus_allowed(current, saved_mask);
5884
5885 return cost;
5886}
5887
5888/*
5889 * Measure a series of task migrations and return the average
5890 * result. Since this code runs early during bootup the system
5891 * is 'undisturbed' and the average latency makes sense.
5892 *
5893 * The algorithm in essence auto-detects the relevant cache-size,
5894 * so it will properly detect different cachesizes for different
5895 * cache-hierarchies, depending on how the CPUs are connected.
5896 *
5897 * Architectures can prime the upper limit of the search range via
5898 * max_cache_size, otherwise the search range defaults to 20MB...64K.
5899 */
5900static unsigned long long
5901measure_cost(int cpu1, int cpu2, void *cache, unsigned int size)
5902{
5903 unsigned long long cost1, cost2;
5904 int i;
5905
5906 /*
5907 * Measure the migration cost of 'size' bytes, over an
5908 * average of 10 runs:
5909 *
5910 * (We perturb the cache size by a small (0..4k)
5911 * value to compensate size/alignment related artifacts.
5912 * We also subtract the cost of the operation done on
5913 * the same CPU.)
5914 */
5915 cost1 = 0;
5916
5917 /*
5918 * dry run, to make sure we start off cache-cold on cpu1,
5919 * and to get any vmalloc pagefaults in advance:
5920 */
5921 measure_one(cache, size, cpu1, cpu2);
5922 for (i = 0; i < ITERATIONS; i++)
5923 cost1 += measure_one(cache, size - i*1024, cpu1, cpu2);
5924
5925 measure_one(cache, size, cpu2, cpu1);
5926 for (i = 0; i < ITERATIONS; i++)
5927 cost1 += measure_one(cache, size - i*1024, cpu2, cpu1);
5928
5929 /*
5930 * (We measure the non-migrating [cached] cost on both
5931 * cpu1 and cpu2, to handle CPUs with different speeds)
5932 */
5933 cost2 = 0;
5934
5935 measure_one(cache, size, cpu1, cpu1);
5936 for (i = 0; i < ITERATIONS; i++)
5937 cost2 += measure_one(cache, size - i*1024, cpu1, cpu1);
5938
5939 measure_one(cache, size, cpu2, cpu2);
5940 for (i = 0; i < ITERATIONS; i++)
5941 cost2 += measure_one(cache, size - i*1024, cpu2, cpu2);
5942
5943 /*
5944 * Get the per-iteration migration cost:
5945 */
5946 do_div(cost1, 2*ITERATIONS);
5947 do_div(cost2, 2*ITERATIONS);
5948
5949 return cost1 - cost2;
5950}
5951
5952static unsigned long long measure_migration_cost(int cpu1, int cpu2)
5953{
5954 unsigned long long max_cost = 0, fluct = 0, avg_fluct = 0;
5955 unsigned int max_size, size, size_found = 0;
5956 long long cost = 0, prev_cost;
5957 void *cache;
5958
5959 /*
5960 * Search from max_cache_size*5 down to 64K - the real relevant
5961 * cachesize has to lie somewhere inbetween.
5962 */
5963 if (max_cache_size) {
5964 max_size = max(max_cache_size * SEARCH_SCOPE, MIN_CACHE_SIZE);
5965 size = max(max_cache_size / SEARCH_SCOPE, MIN_CACHE_SIZE);
5966 } else {
5967 /*
5968 * Since we have no estimation about the relevant
5969 * search range
5970 */
5971 max_size = DEFAULT_CACHE_SIZE * SEARCH_SCOPE;
5972 size = MIN_CACHE_SIZE;
5973 }
5974
5975 if (!cpu_online(cpu1) || !cpu_online(cpu2)) {
5976 printk("cpu %d and %d not both online!\n", cpu1, cpu2);
5977 return 0;
5978 }
5979
5980 /*
5981 * Allocate the working set:
5982 */
5983 cache = vmalloc(max_size);
5984 if (!cache) {
5985 printk("could not vmalloc %d bytes for cache!\n", 2*max_size);
2ed6e34f 5986 return 1000000; /* return 1 msec on very small boxen */
198e2f18
AM
5987 }
5988
5989 while (size <= max_size) {
5990 prev_cost = cost;
5991 cost = measure_cost(cpu1, cpu2, cache, size);
5992
5993 /*
5994 * Update the max:
5995 */
5996 if (cost > 0) {
5997 if (max_cost < cost) {
5998 max_cost = cost;
5999 size_found = size;
6000 }
6001 }
6002 /*
6003 * Calculate average fluctuation, we use this to prevent
6004 * noise from triggering an early break out of the loop:
6005 */
6006 fluct = abs(cost - prev_cost);
6007 avg_fluct = (avg_fluct + fluct)/2;
6008
6009 if (migration_debug)
6010 printk("-> [%d][%d][%7d] %3ld.%ld [%3ld.%ld] (%ld): (%8Ld %8Ld)\n",
6011 cpu1, cpu2, size,
6012 (long)cost / 1000000,
6013 ((long)cost / 100000) % 10,
6014 (long)max_cost / 1000000,
6015 ((long)max_cost / 100000) % 10,
6016 domain_distance(cpu1, cpu2),
6017 cost, avg_fluct);
6018
6019 /*
6020 * If we iterated at least 20% past the previous maximum,
6021 * and the cost has dropped by more than 20% already,
6022 * (taking fluctuations into account) then we assume to
6023 * have found the maximum and break out of the loop early:
6024 */
6025 if (size_found && (size*100 > size_found*SIZE_THRESH))
6026 if (cost+avg_fluct <= 0 ||
6027 max_cost*100 > (cost+avg_fluct)*COST_THRESH) {
6028
6029 if (migration_debug)
6030 printk("-> found max.\n");
6031 break;
6032 }
6033 /*
70b4d63e 6034 * Increase the cachesize in 10% steps:
198e2f18 6035 */
70b4d63e 6036 size = size * 10 / 9;
198e2f18
AM
6037 }
6038
6039 if (migration_debug)
6040 printk("[%d][%d] working set size found: %d, cost: %Ld\n",
6041 cpu1, cpu2, size_found, max_cost);
6042
6043 vfree(cache);
6044
6045 /*
6046 * A task is considered 'cache cold' if at least 2 times
6047 * the worst-case cost of migration has passed.
6048 *
6049 * (this limit is only listened to if the load-balancing
6050 * situation is 'nice' - if there is a large imbalance we
6051 * ignore it for the sake of CPU utilization and
6052 * processing fairness.)
6053 */
6054 return 2 * max_cost * migration_factor / MIGRATION_FACTOR_SCALE;
6055}
6056
6057static void calibrate_migration_costs(const cpumask_t *cpu_map)
6058{
6059 int cpu1 = -1, cpu2 = -1, cpu, orig_cpu = raw_smp_processor_id();
6060 unsigned long j0, j1, distance, max_distance = 0;
6061 struct sched_domain *sd;
6062
6063 j0 = jiffies;
6064
6065 /*
6066 * First pass - calculate the cacheflush times:
6067 */
6068 for_each_cpu_mask(cpu1, *cpu_map) {
6069 for_each_cpu_mask(cpu2, *cpu_map) {
6070 if (cpu1 == cpu2)
6071 continue;
6072 distance = domain_distance(cpu1, cpu2);
6073 max_distance = max(max_distance, distance);
6074 /*
6075 * No result cached yet?
6076 */
6077 if (migration_cost[distance] == -1LL)
6078 migration_cost[distance] =
6079 measure_migration_cost(cpu1, cpu2);
6080 }
6081 }
6082 /*
6083 * Second pass - update the sched domain hierarchy with
6084 * the new cache-hot-time estimations:
6085 */
6086 for_each_cpu_mask(cpu, *cpu_map) {
6087 distance = 0;
6088 for_each_domain(cpu, sd) {
6089 sd->cache_hot_time = migration_cost[distance];
6090 distance++;
6091 }
6092 }
6093 /*
6094 * Print the matrix:
6095 */
6096 if (migration_debug)
6097 printk("migration: max_cache_size: %d, cpu: %d MHz:\n",
6098 max_cache_size,
6099#ifdef CONFIG_X86
6100 cpu_khz/1000
6101#else
6102 -1
6103#endif
6104 );
bd576c95 6105 if (system_state == SYSTEM_BOOTING) {
74732646
DJ
6106 if (num_online_cpus() > 1) {
6107 printk("migration_cost=");
6108 for (distance = 0; distance <= max_distance; distance++) {
6109 if (distance)
6110 printk(",");
6111 printk("%ld", (long)migration_cost[distance] / 1000);
6112 }
6113 printk("\n");
bd576c95 6114 }
198e2f18 6115 }
198e2f18
AM
6116 j1 = jiffies;
6117 if (migration_debug)
6118 printk("migration: %ld seconds\n", (j1-j0)/HZ);
6119
6120 /*
6121 * Move back to the original CPU. NUMA-Q gets confused
6122 * if we migrate to another quad during bootup.
6123 */
6124 if (raw_smp_processor_id() != orig_cpu) {
6125 cpumask_t mask = cpumask_of_cpu(orig_cpu),
6126 saved_mask = current->cpus_allowed;
6127
6128 set_cpus_allowed(current, mask);
6129 set_cpus_allowed(current, saved_mask);
6130 }
6131}
6132
9c1cfda2 6133#ifdef CONFIG_NUMA
198e2f18 6134
9c1cfda2
JH
6135/**
6136 * find_next_best_node - find the next node to include in a sched_domain
6137 * @node: node whose sched_domain we're building
6138 * @used_nodes: nodes already in the sched_domain
6139 *
6140 * Find the next node to include in a given scheduling domain. Simply
6141 * finds the closest node not already in the @used_nodes map.
6142 *
6143 * Should use nodemask_t.
6144 */
6145static int find_next_best_node(int node, unsigned long *used_nodes)
6146{
6147 int i, n, val, min_val, best_node = 0;
6148
6149 min_val = INT_MAX;
6150
6151 for (i = 0; i < MAX_NUMNODES; i++) {
6152 /* Start at @node */
6153 n = (node + i) % MAX_NUMNODES;
6154
6155 if (!nr_cpus_node(n))
6156 continue;
6157
6158 /* Skip already used nodes */
6159 if (test_bit(n, used_nodes))
6160 continue;
6161
6162 /* Simple min distance search */
6163 val = node_distance(node, n);
6164
6165 if (val < min_val) {
6166 min_val = val;
6167 best_node = n;
6168 }
6169 }
6170
6171 set_bit(best_node, used_nodes);
6172 return best_node;
6173}
6174
6175/**
6176 * sched_domain_node_span - get a cpumask for a node's sched_domain
6177 * @node: node whose cpumask we're constructing
6178 * @size: number of nodes to include in this span
6179 *
6180 * Given a node, construct a good cpumask for its sched_domain to span. It
6181 * should be one that prevents unnecessary balancing, but also spreads tasks
6182 * out optimally.
6183 */
6184static cpumask_t sched_domain_node_span(int node)
6185{
9c1cfda2 6186 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
48f24c4d
IM
6187 cpumask_t span, nodemask;
6188 int i;
9c1cfda2
JH
6189
6190 cpus_clear(span);
6191 bitmap_zero(used_nodes, MAX_NUMNODES);
6192
6193 nodemask = node_to_cpumask(node);
6194 cpus_or(span, span, nodemask);
6195 set_bit(node, used_nodes);
6196
6197 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6198 int next_node = find_next_best_node(node, used_nodes);
48f24c4d 6199
9c1cfda2
JH
6200 nodemask = node_to_cpumask(next_node);
6201 cpus_or(span, span, nodemask);
6202 }
6203
6204 return span;
6205}
6206#endif
6207
5c45bf27 6208int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 6209
9c1cfda2 6210/*
48f24c4d 6211 * SMT sched-domains:
9c1cfda2 6212 */
1da177e4
LT
6213#ifdef CONFIG_SCHED_SMT
6214static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6711cab4 6215static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
48f24c4d 6216
6711cab4
SS
6217static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
6218 struct sched_group **sg)
1da177e4 6219{
6711cab4
SS
6220 if (sg)
6221 *sg = &per_cpu(sched_group_cpus, cpu);
1da177e4
LT
6222 return cpu;
6223}
6224#endif
6225
48f24c4d
IM
6226/*
6227 * multi-core sched-domains:
6228 */
1e9f28fa
SS
6229#ifdef CONFIG_SCHED_MC
6230static DEFINE_PER_CPU(struct sched_domain, core_domains);
6711cab4 6231static DEFINE_PER_CPU(struct sched_group, sched_group_core);
1e9f28fa
SS
6232#endif
6233
6234#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6711cab4
SS
6235static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
6236 struct sched_group **sg)
1e9f28fa 6237{
6711cab4 6238 int group;
a616058b
SS
6239 cpumask_t mask = cpu_sibling_map[cpu];
6240 cpus_and(mask, mask, *cpu_map);
6711cab4
SS
6241 group = first_cpu(mask);
6242 if (sg)
6243 *sg = &per_cpu(sched_group_core, group);
6244 return group;
1e9f28fa
SS
6245}
6246#elif defined(CONFIG_SCHED_MC)
6711cab4
SS
6247static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
6248 struct sched_group **sg)
1e9f28fa 6249{
6711cab4
SS
6250 if (sg)
6251 *sg = &per_cpu(sched_group_core, cpu);
1e9f28fa
SS
6252 return cpu;
6253}
6254#endif
6255
1da177e4 6256static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6711cab4 6257static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
48f24c4d 6258
6711cab4
SS
6259static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
6260 struct sched_group **sg)
1da177e4 6261{
6711cab4 6262 int group;
48f24c4d 6263#ifdef CONFIG_SCHED_MC
1e9f28fa 6264 cpumask_t mask = cpu_coregroup_map(cpu);
a616058b 6265 cpus_and(mask, mask, *cpu_map);
6711cab4 6266 group = first_cpu(mask);
1e9f28fa 6267#elif defined(CONFIG_SCHED_SMT)
a616058b
SS
6268 cpumask_t mask = cpu_sibling_map[cpu];
6269 cpus_and(mask, mask, *cpu_map);
6711cab4 6270 group = first_cpu(mask);
1da177e4 6271#else
6711cab4 6272 group = cpu;
1da177e4 6273#endif
6711cab4
SS
6274 if (sg)
6275 *sg = &per_cpu(sched_group_phys, group);
6276 return group;
1da177e4
LT
6277}
6278
6279#ifdef CONFIG_NUMA
1da177e4 6280/*
9c1cfda2
JH
6281 * The init_sched_build_groups can't handle what we want to do with node
6282 * groups, so roll our own. Now each node has its own list of groups which
6283 * gets dynamically allocated.
1da177e4 6284 */
9c1cfda2 6285static DEFINE_PER_CPU(struct sched_domain, node_domains);
d1b55138 6286static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
1da177e4 6287
9c1cfda2 6288static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6711cab4 6289static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
9c1cfda2 6290
6711cab4
SS
6291static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
6292 struct sched_group **sg)
9c1cfda2 6293{
6711cab4
SS
6294 cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
6295 int group;
6296
6297 cpus_and(nodemask, nodemask, *cpu_map);
6298 group = first_cpu(nodemask);
6299
6300 if (sg)
6301 *sg = &per_cpu(sched_group_allnodes, group);
6302 return group;
1da177e4 6303}
6711cab4 6304
08069033
SS
6305static void init_numa_sched_groups_power(struct sched_group *group_head)
6306{
6307 struct sched_group *sg = group_head;
6308 int j;
6309
6310 if (!sg)
6311 return;
6312next_sg:
6313 for_each_cpu_mask(j, sg->cpumask) {
6314 struct sched_domain *sd;
6315
6316 sd = &per_cpu(phys_domains, j);
6317 if (j != first_cpu(sd->groups->cpumask)) {
6318 /*
6319 * Only add "power" once for each
6320 * physical package.
6321 */
6322 continue;
6323 }
6324
6325 sg->cpu_power += sd->groups->cpu_power;
6326 }
6327 sg = sg->next;
6328 if (sg != group_head)
6329 goto next_sg;
6330}
1da177e4
LT
6331#endif
6332
a616058b 6333#ifdef CONFIG_NUMA
51888ca2
SV
6334/* Free memory allocated for various sched_group structures */
6335static void free_sched_groups(const cpumask_t *cpu_map)
6336{
a616058b 6337 int cpu, i;
51888ca2
SV
6338
6339 for_each_cpu_mask(cpu, *cpu_map) {
51888ca2
SV
6340 struct sched_group **sched_group_nodes
6341 = sched_group_nodes_bycpu[cpu];
6342
51888ca2
SV
6343 if (!sched_group_nodes)
6344 continue;
6345
6346 for (i = 0; i < MAX_NUMNODES; i++) {
6347 cpumask_t nodemask = node_to_cpumask(i);
6348 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6349
6350 cpus_and(nodemask, nodemask, *cpu_map);
6351 if (cpus_empty(nodemask))
6352 continue;
6353
6354 if (sg == NULL)
6355 continue;
6356 sg = sg->next;
6357next_sg:
6358 oldsg = sg;
6359 sg = sg->next;
6360 kfree(oldsg);
6361 if (oldsg != sched_group_nodes[i])
6362 goto next_sg;
6363 }
6364 kfree(sched_group_nodes);
6365 sched_group_nodes_bycpu[cpu] = NULL;
6366 }
51888ca2 6367}
a616058b
SS
6368#else
6369static void free_sched_groups(const cpumask_t *cpu_map)
6370{
6371}
6372#endif
51888ca2 6373
89c4710e
SS
6374/*
6375 * Initialize sched groups cpu_power.
6376 *
6377 * cpu_power indicates the capacity of sched group, which is used while
6378 * distributing the load between different sched groups in a sched domain.
6379 * Typically cpu_power for all the groups in a sched domain will be same unless
6380 * there are asymmetries in the topology. If there are asymmetries, group
6381 * having more cpu_power will pickup more load compared to the group having
6382 * less cpu_power.
6383 *
6384 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
6385 * the maximum number of tasks a group can handle in the presence of other idle
6386 * or lightly loaded groups in the same sched domain.
6387 */
6388static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6389{
6390 struct sched_domain *child;
6391 struct sched_group *group;
6392
6393 WARN_ON(!sd || !sd->groups);
6394
6395 if (cpu != first_cpu(sd->groups->cpumask))
6396 return;
6397
6398 child = sd->child;
6399
6400 /*
6401 * For perf policy, if the groups in child domain share resources
6402 * (for example cores sharing some portions of the cache hierarchy
6403 * or SMT), then set this domain groups cpu_power such that each group
6404 * can handle only one task, when there are other idle groups in the
6405 * same sched domain.
6406 */
6407 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
6408 (child->flags &
6409 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
6410 sd->groups->cpu_power = SCHED_LOAD_SCALE;
6411 return;
6412 }
6413
6414 sd->groups->cpu_power = 0;
6415
6416 /*
6417 * add cpu_power of each child group to this groups cpu_power
6418 */
6419 group = child->groups;
6420 do {
6421 sd->groups->cpu_power += group->cpu_power;
6422 group = group->next;
6423 } while (group != child->groups);
6424}
6425
1da177e4 6426/*
1a20ff27
DG
6427 * Build sched domains for a given set of cpus and attach the sched domains
6428 * to the individual cpus
1da177e4 6429 */
51888ca2 6430static int build_sched_domains(const cpumask_t *cpu_map)
1da177e4
LT
6431{
6432 int i;
89c4710e 6433 struct sched_domain *sd;
d1b55138
JH
6434#ifdef CONFIG_NUMA
6435 struct sched_group **sched_group_nodes = NULL;
6711cab4 6436 int sd_allnodes = 0;
d1b55138
JH
6437
6438 /*
6439 * Allocate the per-node list of sched groups
6440 */
51888ca2 6441 sched_group_nodes = kzalloc(sizeof(struct sched_group*)*MAX_NUMNODES,
d3a5aa98 6442 GFP_KERNEL);
d1b55138
JH
6443 if (!sched_group_nodes) {
6444 printk(KERN_WARNING "Can not alloc sched group node list\n");
51888ca2 6445 return -ENOMEM;
d1b55138
JH
6446 }
6447 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6448#endif
1da177e4
LT
6449
6450 /*
1a20ff27 6451 * Set up domains for cpus specified by the cpu_map.
1da177e4 6452 */
1a20ff27 6453 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
6454 struct sched_domain *sd = NULL, *p;
6455 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
6456
1a20ff27 6457 cpus_and(nodemask, nodemask, *cpu_map);
1da177e4
LT
6458
6459#ifdef CONFIG_NUMA
d1b55138 6460 if (cpus_weight(*cpu_map)
9c1cfda2
JH
6461 > SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
6462 sd = &per_cpu(allnodes_domains, i);
6463 *sd = SD_ALLNODES_INIT;
6464 sd->span = *cpu_map;
6711cab4 6465 cpu_to_allnodes_group(i, cpu_map, &sd->groups);
9c1cfda2 6466 p = sd;
6711cab4 6467 sd_allnodes = 1;
9c1cfda2
JH
6468 } else
6469 p = NULL;
6470
1da177e4 6471 sd = &per_cpu(node_domains, i);
1da177e4 6472 *sd = SD_NODE_INIT;
9c1cfda2
JH
6473 sd->span = sched_domain_node_span(cpu_to_node(i));
6474 sd->parent = p;
1a848870
SS
6475 if (p)
6476 p->child = sd;
9c1cfda2 6477 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4
LT
6478#endif
6479
6480 p = sd;
6481 sd = &per_cpu(phys_domains, i);
1da177e4
LT
6482 *sd = SD_CPU_INIT;
6483 sd->span = nodemask;
6484 sd->parent = p;
1a848870
SS
6485 if (p)
6486 p->child = sd;
6711cab4 6487 cpu_to_phys_group(i, cpu_map, &sd->groups);
1da177e4 6488
1e9f28fa
SS
6489#ifdef CONFIG_SCHED_MC
6490 p = sd;
6491 sd = &per_cpu(core_domains, i);
1e9f28fa
SS
6492 *sd = SD_MC_INIT;
6493 sd->span = cpu_coregroup_map(i);
6494 cpus_and(sd->span, sd->span, *cpu_map);
6495 sd->parent = p;
1a848870 6496 p->child = sd;
6711cab4 6497 cpu_to_core_group(i, cpu_map, &sd->groups);
1e9f28fa
SS
6498#endif
6499
1da177e4
LT
6500#ifdef CONFIG_SCHED_SMT
6501 p = sd;
6502 sd = &per_cpu(cpu_domains, i);
1da177e4
LT
6503 *sd = SD_SIBLING_INIT;
6504 sd->span = cpu_sibling_map[i];
1a20ff27 6505 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4 6506 sd->parent = p;
1a848870 6507 p->child = sd;
6711cab4 6508 cpu_to_cpu_group(i, cpu_map, &sd->groups);
1da177e4
LT
6509#endif
6510 }
6511
6512#ifdef CONFIG_SCHED_SMT
6513 /* Set up CPU (sibling) groups */
9c1cfda2 6514 for_each_cpu_mask(i, *cpu_map) {
1da177e4 6515 cpumask_t this_sibling_map = cpu_sibling_map[i];
1a20ff27 6516 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
1da177e4
LT
6517 if (i != first_cpu(this_sibling_map))
6518 continue;
6519
6711cab4 6520 init_sched_build_groups(this_sibling_map, cpu_map, &cpu_to_cpu_group);
1da177e4
LT
6521 }
6522#endif
6523
1e9f28fa
SS
6524#ifdef CONFIG_SCHED_MC
6525 /* Set up multi-core groups */
6526 for_each_cpu_mask(i, *cpu_map) {
6527 cpumask_t this_core_map = cpu_coregroup_map(i);
6528 cpus_and(this_core_map, this_core_map, *cpu_map);
6529 if (i != first_cpu(this_core_map))
6530 continue;
6711cab4 6531 init_sched_build_groups(this_core_map, cpu_map, &cpu_to_core_group);
1e9f28fa
SS
6532 }
6533#endif
6534
6535
1da177e4
LT
6536 /* Set up physical groups */
6537 for (i = 0; i < MAX_NUMNODES; i++) {
6538 cpumask_t nodemask = node_to_cpumask(i);
6539
1a20ff27 6540 cpus_and(nodemask, nodemask, *cpu_map);
1da177e4
LT
6541 if (cpus_empty(nodemask))
6542 continue;
6543
6711cab4 6544 init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
1da177e4
LT
6545 }
6546
6547#ifdef CONFIG_NUMA
6548 /* Set up node groups */
6711cab4
SS
6549 if (sd_allnodes)
6550 init_sched_build_groups(*cpu_map, cpu_map, &cpu_to_allnodes_group);
9c1cfda2
JH
6551
6552 for (i = 0; i < MAX_NUMNODES; i++) {
6553 /* Set up node groups */
6554 struct sched_group *sg, *prev;
6555 cpumask_t nodemask = node_to_cpumask(i);
6556 cpumask_t domainspan;
6557 cpumask_t covered = CPU_MASK_NONE;
6558 int j;
6559
6560 cpus_and(nodemask, nodemask, *cpu_map);
d1b55138
JH
6561 if (cpus_empty(nodemask)) {
6562 sched_group_nodes[i] = NULL;
9c1cfda2 6563 continue;
d1b55138 6564 }
9c1cfda2
JH
6565
6566 domainspan = sched_domain_node_span(i);
6567 cpus_and(domainspan, domainspan, *cpu_map);
6568
15f0b676 6569 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
51888ca2
SV
6570 if (!sg) {
6571 printk(KERN_WARNING "Can not alloc domain group for "
6572 "node %d\n", i);
6573 goto error;
6574 }
9c1cfda2
JH
6575 sched_group_nodes[i] = sg;
6576 for_each_cpu_mask(j, nodemask) {
6577 struct sched_domain *sd;
6578 sd = &per_cpu(node_domains, j);
6579 sd->groups = sg;
9c1cfda2
JH
6580 }
6581 sg->cpu_power = 0;
6582 sg->cpumask = nodemask;
51888ca2 6583 sg->next = sg;
9c1cfda2
JH
6584 cpus_or(covered, covered, nodemask);
6585 prev = sg;
6586
6587 for (j = 0; j < MAX_NUMNODES; j++) {
6588 cpumask_t tmp, notcovered;
6589 int n = (i + j) % MAX_NUMNODES;
6590
6591 cpus_complement(notcovered, covered);
6592 cpus_and(tmp, notcovered, *cpu_map);
6593 cpus_and(tmp, tmp, domainspan);
6594 if (cpus_empty(tmp))
6595 break;
6596
6597 nodemask = node_to_cpumask(n);
6598 cpus_and(tmp, tmp, nodemask);
6599 if (cpus_empty(tmp))
6600 continue;
6601
15f0b676
SV
6602 sg = kmalloc_node(sizeof(struct sched_group),
6603 GFP_KERNEL, i);
9c1cfda2
JH
6604 if (!sg) {
6605 printk(KERN_WARNING
6606 "Can not alloc domain group for node %d\n", j);
51888ca2 6607 goto error;
9c1cfda2
JH
6608 }
6609 sg->cpu_power = 0;
6610 sg->cpumask = tmp;
51888ca2 6611 sg->next = prev->next;
9c1cfda2
JH
6612 cpus_or(covered, covered, tmp);
6613 prev->next = sg;
6614 prev = sg;
6615 }
9c1cfda2 6616 }
1da177e4
LT
6617#endif
6618
6619 /* Calculate CPU power for physical packages and nodes */
5c45bf27 6620#ifdef CONFIG_SCHED_SMT
1a20ff27 6621 for_each_cpu_mask(i, *cpu_map) {
1da177e4 6622 sd = &per_cpu(cpu_domains, i);
89c4710e 6623 init_sched_groups_power(i, sd);
5c45bf27 6624 }
1da177e4 6625#endif
1e9f28fa 6626#ifdef CONFIG_SCHED_MC
5c45bf27 6627 for_each_cpu_mask(i, *cpu_map) {
1e9f28fa 6628 sd = &per_cpu(core_domains, i);
89c4710e 6629 init_sched_groups_power(i, sd);
5c45bf27
SS
6630 }
6631#endif
1e9f28fa 6632
5c45bf27 6633 for_each_cpu_mask(i, *cpu_map) {
1da177e4 6634 sd = &per_cpu(phys_domains, i);
89c4710e 6635 init_sched_groups_power(i, sd);
1da177e4
LT
6636 }
6637
9c1cfda2 6638#ifdef CONFIG_NUMA
08069033
SS
6639 for (i = 0; i < MAX_NUMNODES; i++)
6640 init_numa_sched_groups_power(sched_group_nodes[i]);
9c1cfda2 6641
6711cab4
SS
6642 if (sd_allnodes) {
6643 struct sched_group *sg;
f712c0c7 6644
6711cab4 6645 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
f712c0c7
SS
6646 init_numa_sched_groups_power(sg);
6647 }
9c1cfda2
JH
6648#endif
6649
1da177e4 6650 /* Attach the domains */
1a20ff27 6651 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
6652 struct sched_domain *sd;
6653#ifdef CONFIG_SCHED_SMT
6654 sd = &per_cpu(cpu_domains, i);
1e9f28fa
SS
6655#elif defined(CONFIG_SCHED_MC)
6656 sd = &per_cpu(core_domains, i);
1da177e4
LT
6657#else
6658 sd = &per_cpu(phys_domains, i);
6659#endif
6660 cpu_attach_domain(sd, i);
6661 }
198e2f18
AM
6662 /*
6663 * Tune cache-hot values:
6664 */
6665 calibrate_migration_costs(cpu_map);
51888ca2
SV
6666
6667 return 0;
6668
a616058b 6669#ifdef CONFIG_NUMA
51888ca2
SV
6670error:
6671 free_sched_groups(cpu_map);
6672 return -ENOMEM;
a616058b 6673#endif
1da177e4 6674}
1a20ff27
DG
6675/*
6676 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
6677 */
51888ca2 6678static int arch_init_sched_domains(const cpumask_t *cpu_map)
1a20ff27
DG
6679{
6680 cpumask_t cpu_default_map;
51888ca2 6681 int err;
1da177e4 6682
1a20ff27
DG
6683 /*
6684 * Setup mask for cpus without special case scheduling requirements.
6685 * For now this just excludes isolated cpus, but could be used to
6686 * exclude other special cases in the future.
6687 */
6688 cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
6689
51888ca2
SV
6690 err = build_sched_domains(&cpu_default_map);
6691
6692 return err;
1a20ff27
DG
6693}
6694
6695static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
1da177e4 6696{
51888ca2 6697 free_sched_groups(cpu_map);
9c1cfda2 6698}
1da177e4 6699
1a20ff27
DG
6700/*
6701 * Detach sched domains from a group of cpus specified in cpu_map
6702 * These cpus will now be attached to the NULL domain
6703 */
858119e1 6704static void detach_destroy_domains(const cpumask_t *cpu_map)
1a20ff27
DG
6705{
6706 int i;
6707
6708 for_each_cpu_mask(i, *cpu_map)
6709 cpu_attach_domain(NULL, i);
6710 synchronize_sched();
6711 arch_destroy_sched_domains(cpu_map);
6712}
6713
6714/*
6715 * Partition sched domains as specified by the cpumasks below.
6716 * This attaches all cpus from the cpumasks to the NULL domain,
6717 * waits for a RCU quiescent period, recalculates sched
6718 * domain information and then attaches them back to the
6719 * correct sched domains
6720 * Call with hotplug lock held
6721 */
51888ca2 6722int partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
1a20ff27
DG
6723{
6724 cpumask_t change_map;
51888ca2 6725 int err = 0;
1a20ff27
DG
6726
6727 cpus_and(*partition1, *partition1, cpu_online_map);
6728 cpus_and(*partition2, *partition2, cpu_online_map);
6729 cpus_or(change_map, *partition1, *partition2);
6730
6731 /* Detach sched domains from all of the affected cpus */
6732 detach_destroy_domains(&change_map);
6733 if (!cpus_empty(*partition1))
51888ca2
SV
6734 err = build_sched_domains(partition1);
6735 if (!err && !cpus_empty(*partition2))
6736 err = build_sched_domains(partition2);
6737
6738 return err;
1a20ff27
DG
6739}
6740
5c45bf27
SS
6741#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6742int arch_reinit_sched_domains(void)
6743{
6744 int err;
6745
6746 lock_cpu_hotplug();
6747 detach_destroy_domains(&cpu_online_map);
6748 err = arch_init_sched_domains(&cpu_online_map);
6749 unlock_cpu_hotplug();
6750
6751 return err;
6752}
6753
6754static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6755{
6756 int ret;
6757
6758 if (buf[0] != '0' && buf[0] != '1')
6759 return -EINVAL;
6760
6761 if (smt)
6762 sched_smt_power_savings = (buf[0] == '1');
6763 else
6764 sched_mc_power_savings = (buf[0] == '1');
6765
6766 ret = arch_reinit_sched_domains();
6767
6768 return ret ? ret : count;
6769}
6770
6771int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6772{
6773 int err = 0;
48f24c4d 6774
5c45bf27
SS
6775#ifdef CONFIG_SCHED_SMT
6776 if (smt_capable())
6777 err = sysfs_create_file(&cls->kset.kobj,
6778 &attr_sched_smt_power_savings.attr);
6779#endif
6780#ifdef CONFIG_SCHED_MC
6781 if (!err && mc_capable())
6782 err = sysfs_create_file(&cls->kset.kobj,
6783 &attr_sched_mc_power_savings.attr);
6784#endif
6785 return err;
6786}
6787#endif
6788
6789#ifdef CONFIG_SCHED_MC
6790static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6791{
6792 return sprintf(page, "%u\n", sched_mc_power_savings);
6793}
48f24c4d
IM
6794static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6795 const char *buf, size_t count)
5c45bf27
SS
6796{
6797 return sched_power_savings_store(buf, count, 0);
6798}
6799SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6800 sched_mc_power_savings_store);
6801#endif
6802
6803#ifdef CONFIG_SCHED_SMT
6804static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6805{
6806 return sprintf(page, "%u\n", sched_smt_power_savings);
6807}
48f24c4d
IM
6808static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
6809 const char *buf, size_t count)
5c45bf27
SS
6810{
6811 return sched_power_savings_store(buf, count, 1);
6812}
6813SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6814 sched_smt_power_savings_store);
6815#endif
6816
1da177e4
LT
6817/*
6818 * Force a reinitialization of the sched domains hierarchy. The domains
6819 * and groups cannot be updated in place without racing with the balancing
41c7ce9a 6820 * code, so we temporarily attach all running cpus to the NULL domain
1da177e4
LT
6821 * which will prevent rebalancing while the sched domains are recalculated.
6822 */
6823static int update_sched_domains(struct notifier_block *nfb,
6824 unsigned long action, void *hcpu)
6825{
1da177e4
LT
6826 switch (action) {
6827 case CPU_UP_PREPARE:
6828 case CPU_DOWN_PREPARE:
1a20ff27 6829 detach_destroy_domains(&cpu_online_map);
1da177e4
LT
6830 return NOTIFY_OK;
6831
6832 case CPU_UP_CANCELED:
6833 case CPU_DOWN_FAILED:
6834 case CPU_ONLINE:
6835 case CPU_DEAD:
6836 /*
6837 * Fall through and re-initialise the domains.
6838 */
6839 break;
6840 default:
6841 return NOTIFY_DONE;
6842 }
6843
6844 /* The hotplug lock is already held by cpu_up/cpu_down */
1a20ff27 6845 arch_init_sched_domains(&cpu_online_map);
1da177e4
LT
6846
6847 return NOTIFY_OK;
6848}
1da177e4
LT
6849
6850void __init sched_init_smp(void)
6851{
5c1e1767
NP
6852 cpumask_t non_isolated_cpus;
6853
1da177e4 6854 lock_cpu_hotplug();
1a20ff27 6855 arch_init_sched_domains(&cpu_online_map);
5c1e1767
NP
6856 cpus_andnot(non_isolated_cpus, cpu_online_map, cpu_isolated_map);
6857 if (cpus_empty(non_isolated_cpus))
6858 cpu_set(smp_processor_id(), non_isolated_cpus);
1da177e4
LT
6859 unlock_cpu_hotplug();
6860 /* XXX: Theoretical race here - CPU may be hotplugged now */
6861 hotcpu_notifier(update_sched_domains, 0);
5c1e1767
NP
6862
6863 /* Move init over to a non-isolated CPU */
6864 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
6865 BUG();
1da177e4
LT
6866}
6867#else
6868void __init sched_init_smp(void)
6869{
6870}
6871#endif /* CONFIG_SMP */
6872
6873int in_sched_functions(unsigned long addr)
6874{
6875 /* Linker adds these: start and end of __sched functions */
6876 extern char __sched_text_start[], __sched_text_end[];
48f24c4d 6877
1da177e4
LT
6878 return in_lock_functions(addr) ||
6879 (addr >= (unsigned long)__sched_text_start
6880 && addr < (unsigned long)__sched_text_end);
6881}
6882
6883void __init sched_init(void)
6884{
1da177e4
LT
6885 int i, j, k;
6886
0a945022 6887 for_each_possible_cpu(i) {
70b97a7f
IM
6888 struct prio_array *array;
6889 struct rq *rq;
1da177e4
LT
6890
6891 rq = cpu_rq(i);
6892 spin_lock_init(&rq->lock);
fcb99371 6893 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
7897986b 6894 rq->nr_running = 0;
1da177e4
LT
6895 rq->active = rq->arrays;
6896 rq->expired = rq->arrays + 1;
6897 rq->best_expired_prio = MAX_PRIO;
6898
6899#ifdef CONFIG_SMP
41c7ce9a 6900 rq->sd = NULL;
7897986b
NP
6901 for (j = 1; j < 3; j++)
6902 rq->cpu_load[j] = 0;
1da177e4
LT
6903 rq->active_balance = 0;
6904 rq->push_cpu = 0;
0a2966b4 6905 rq->cpu = i;
1da177e4
LT
6906 rq->migration_thread = NULL;
6907 INIT_LIST_HEAD(&rq->migration_queue);
6908#endif
6909 atomic_set(&rq->nr_iowait, 0);
6910
6911 for (j = 0; j < 2; j++) {
6912 array = rq->arrays + j;
6913 for (k = 0; k < MAX_PRIO; k++) {
6914 INIT_LIST_HEAD(array->queue + k);
6915 __clear_bit(k, array->bitmap);
6916 }
6917 // delimiter for bitsearch
6918 __set_bit(MAX_PRIO, array->bitmap);
6919 }
6920 }
6921
2dd73a4f 6922 set_load_weight(&init_task);
b50f60ce 6923
c9819f45
CL
6924#ifdef CONFIG_SMP
6925 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
6926#endif
6927
b50f60ce
HC
6928#ifdef CONFIG_RT_MUTEXES
6929 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
6930#endif
6931
1da177e4
LT
6932 /*
6933 * The boot idle thread does lazy MMU switching as well:
6934 */
6935 atomic_inc(&init_mm.mm_count);
6936 enter_lazy_tlb(&init_mm, current);
6937
6938 /*
6939 * Make us the idle thread. Technically, schedule() should not be
6940 * called from this thread, however somewhere below it might be,
6941 * but because we are the idle thread, we just pick up running again
6942 * when this runqueue becomes "idle".
6943 */
6944 init_idle(current, smp_processor_id());
6945}
6946
6947#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6948void __might_sleep(char *file, int line)
6949{
48f24c4d 6950#ifdef in_atomic
1da177e4
LT
6951 static unsigned long prev_jiffy; /* ratelimiting */
6952
6953 if ((in_atomic() || irqs_disabled()) &&
6954 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6955 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6956 return;
6957 prev_jiffy = jiffies;
91368d73 6958 printk(KERN_ERR "BUG: sleeping function called from invalid"
1da177e4
LT
6959 " context at %s:%d\n", file, line);
6960 printk("in_atomic():%d, irqs_disabled():%d\n",
6961 in_atomic(), irqs_disabled());
a4c410f0 6962 debug_show_held_locks(current);
1da177e4
LT
6963 dump_stack();
6964 }
6965#endif
6966}
6967EXPORT_SYMBOL(__might_sleep);
6968#endif
6969
6970#ifdef CONFIG_MAGIC_SYSRQ
6971void normalize_rt_tasks(void)
6972{
70b97a7f 6973 struct prio_array *array;
1da177e4 6974 struct task_struct *p;
1da177e4 6975 unsigned long flags;
70b97a7f 6976 struct rq *rq;
1da177e4
LT
6977
6978 read_lock_irq(&tasklist_lock);
c96d145e 6979 for_each_process(p) {
1da177e4
LT
6980 if (!rt_task(p))
6981 continue;
6982
b29739f9
IM
6983 spin_lock_irqsave(&p->pi_lock, flags);
6984 rq = __task_rq_lock(p);
1da177e4
LT
6985
6986 array = p->array;
6987 if (array)
6988 deactivate_task(p, task_rq(p));
6989 __setscheduler(p, SCHED_NORMAL, 0);
6990 if (array) {
6991 __activate_task(p, task_rq(p));
6992 resched_task(rq->curr);
6993 }
6994
b29739f9
IM
6995 __task_rq_unlock(rq);
6996 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
6997 }
6998 read_unlock_irq(&tasklist_lock);
6999}
7000
7001#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
7002
7003#ifdef CONFIG_IA64
7004/*
7005 * These functions are only useful for the IA64 MCA handling.
7006 *
7007 * They can only be called when the whole system has been
7008 * stopped - every CPU needs to be quiescent, and no scheduling
7009 * activity can take place. Using them for anything else would
7010 * be a serious bug, and as a result, they aren't even visible
7011 * under any other configuration.
7012 */
7013
7014/**
7015 * curr_task - return the current task for a given cpu.
7016 * @cpu: the processor in question.
7017 *
7018 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7019 */
36c8b586 7020struct task_struct *curr_task(int cpu)
1df5c10a
LT
7021{
7022 return cpu_curr(cpu);
7023}
7024
7025/**
7026 * set_curr_task - set the current task for a given cpu.
7027 * @cpu: the processor in question.
7028 * @p: the task pointer to set.
7029 *
7030 * Description: This function must only be used when non-maskable interrupts
7031 * are serviced on a separate stack. It allows the architecture to switch the
7032 * notion of the current task on a cpu in a non-blocking manner. This function
7033 * must be called with all CPU's synchronized, and interrupts disabled, the
7034 * and caller must save the original value of the current task (see
7035 * curr_task() above) and restore that value before reenabling interrupts and
7036 * re-starting the system.
7037 *
7038 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7039 */
36c8b586 7040void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7041{
7042 cpu_curr(cpu) = p;
7043}
7044
7045#endif