[PATCH] sched: cleanup task_activated()
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 */
20
21#include <linux/mm.h>
22#include <linux/module.h>
23#include <linux/nmi.h>
24#include <linux/init.h>
25#include <asm/uaccess.h>
26#include <linux/highmem.h>
27#include <linux/smp_lock.h>
28#include <asm/mmu_context.h>
29#include <linux/interrupt.h>
c59ede7b 30#include <linux/capability.h>
1da177e4
LT
31#include <linux/completion.h>
32#include <linux/kernel_stat.h>
33#include <linux/security.h>
34#include <linux/notifier.h>
35#include <linux/profile.h>
36#include <linux/suspend.h>
198e2f18 37#include <linux/vmalloc.h>
1da177e4
LT
38#include <linux/blkdev.h>
39#include <linux/delay.h>
40#include <linux/smp.h>
41#include <linux/threads.h>
42#include <linux/timer.h>
43#include <linux/rcupdate.h>
44#include <linux/cpu.h>
45#include <linux/cpuset.h>
46#include <linux/percpu.h>
47#include <linux/kthread.h>
48#include <linux/seq_file.h>
49#include <linux/syscalls.h>
50#include <linux/times.h>
51#include <linux/acct.h>
c6fd91f0 52#include <linux/kprobes.h>
1da177e4
LT
53#include <asm/tlb.h>
54
55#include <asm/unistd.h>
56
57/*
58 * Convert user-nice values [ -20 ... 0 ... 19 ]
59 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
60 * and back.
61 */
62#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
63#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
64#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
65
66/*
67 * 'User priority' is the nice value converted to something we
68 * can work with better when scaling various scheduler parameters,
69 * it's a [ 0 ... 39 ] range.
70 */
71#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
72#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
73#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
74
75/*
76 * Some helpers for converting nanosecond timing to jiffy resolution
77 */
78#define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
79#define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
80
81/*
82 * These are the 'tuning knobs' of the scheduler:
83 *
84 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
85 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
86 * Timeslices get refilled after they expire.
87 */
88#define MIN_TIMESLICE max(5 * HZ / 1000, 1)
89#define DEF_TIMESLICE (100 * HZ / 1000)
90#define ON_RUNQUEUE_WEIGHT 30
91#define CHILD_PENALTY 95
92#define PARENT_PENALTY 100
93#define EXIT_WEIGHT 3
94#define PRIO_BONUS_RATIO 25
95#define MAX_BONUS (MAX_USER_PRIO * PRIO_BONUS_RATIO / 100)
96#define INTERACTIVE_DELTA 2
97#define MAX_SLEEP_AVG (DEF_TIMESLICE * MAX_BONUS)
98#define STARVATION_LIMIT (MAX_SLEEP_AVG)
99#define NS_MAX_SLEEP_AVG (JIFFIES_TO_NS(MAX_SLEEP_AVG))
100
101/*
102 * If a task is 'interactive' then we reinsert it in the active
103 * array after it has expired its current timeslice. (it will not
104 * continue to run immediately, it will still roundrobin with
105 * other interactive tasks.)
106 *
107 * This part scales the interactivity limit depending on niceness.
108 *
109 * We scale it linearly, offset by the INTERACTIVE_DELTA delta.
110 * Here are a few examples of different nice levels:
111 *
112 * TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0]
113 * TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0]
114 * TASK_INTERACTIVE( 0): [1,1,1,1,0,0,0,0,0,0,0]
115 * TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0]
116 * TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0]
117 *
118 * (the X axis represents the possible -5 ... 0 ... +5 dynamic
119 * priority range a task can explore, a value of '1' means the
120 * task is rated interactive.)
121 *
122 * Ie. nice +19 tasks can never get 'interactive' enough to be
123 * reinserted into the active array. And only heavily CPU-hog nice -20
124 * tasks will be expired. Default nice 0 tasks are somewhere between,
125 * it takes some effort for them to get interactive, but it's not
126 * too hard.
127 */
128
129#define CURRENT_BONUS(p) \
130 (NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / \
131 MAX_SLEEP_AVG)
132
133#define GRANULARITY (10 * HZ / 1000 ? : 1)
134
135#ifdef CONFIG_SMP
136#define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
137 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)) * \
138 num_online_cpus())
139#else
140#define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
141 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)))
142#endif
143
144#define SCALE(v1,v1_max,v2_max) \
145 (v1) * (v2_max) / (v1_max)
146
147#define DELTA(p) \
013d3868
MA
148 (SCALE(TASK_NICE(p) + 20, 40, MAX_BONUS) - 20 * MAX_BONUS / 40 + \
149 INTERACTIVE_DELTA)
1da177e4
LT
150
151#define TASK_INTERACTIVE(p) \
152 ((p)->prio <= (p)->static_prio - DELTA(p))
153
154#define INTERACTIVE_SLEEP(p) \
155 (JIFFIES_TO_NS(MAX_SLEEP_AVG * \
156 (MAX_BONUS / 2 + DELTA((p)) + 1) / MAX_BONUS - 1))
157
158#define TASK_PREEMPTS_CURR(p, rq) \
159 ((p)->prio < (rq)->curr->prio)
160
161/*
162 * task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
163 * to time slice values: [800ms ... 100ms ... 5ms]
164 *
165 * The higher a thread's priority, the bigger timeslices
166 * it gets during one round of execution. But even the lowest
167 * priority thread gets MIN_TIMESLICE worth of execution time.
168 */
169
170#define SCALE_PRIO(x, prio) \
171 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO/2), MIN_TIMESLICE)
172
48c08d3f 173static unsigned int task_timeslice(task_t *p)
1da177e4
LT
174{
175 if (p->static_prio < NICE_TO_PRIO(0))
176 return SCALE_PRIO(DEF_TIMESLICE*4, p->static_prio);
177 else
178 return SCALE_PRIO(DEF_TIMESLICE, p->static_prio);
179}
180#define task_hot(p, now, sd) ((long long) ((now) - (p)->last_ran) \
181 < (long long) (sd)->cache_hot_time)
182
183/*
184 * These are the runqueue data structures:
185 */
186
187#define BITMAP_SIZE ((((MAX_PRIO+1+7)/8)+sizeof(long)-1)/sizeof(long))
188
189typedef struct runqueue runqueue_t;
190
191struct prio_array {
192 unsigned int nr_active;
193 unsigned long bitmap[BITMAP_SIZE];
194 struct list_head queue[MAX_PRIO];
195};
196
197/*
198 * This is the main, per-CPU runqueue data structure.
199 *
200 * Locking rule: those places that want to lock multiple runqueues
201 * (such as the load balancing or the thread migration code), lock
202 * acquire operations must be ordered by ascending &runqueue.
203 */
204struct runqueue {
205 spinlock_t lock;
206
207 /*
208 * nr_running and cpu_load should be in the same cacheline because
209 * remote CPUs use both these fields when doing load calculation.
210 */
211 unsigned long nr_running;
212#ifdef CONFIG_SMP
7897986b 213 unsigned long cpu_load[3];
1da177e4
LT
214#endif
215 unsigned long long nr_switches;
216
217 /*
218 * This is part of a global counter where only the total sum
219 * over all CPUs matters. A task can increase this counter on
220 * one CPU and if it got migrated afterwards it may decrease
221 * it on another CPU. Always updated under the runqueue lock:
222 */
223 unsigned long nr_uninterruptible;
224
225 unsigned long expired_timestamp;
226 unsigned long long timestamp_last_tick;
227 task_t *curr, *idle;
228 struct mm_struct *prev_mm;
229 prio_array_t *active, *expired, arrays[2];
230 int best_expired_prio;
231 atomic_t nr_iowait;
232
233#ifdef CONFIG_SMP
234 struct sched_domain *sd;
235
236 /* For active balancing */
237 int active_balance;
238 int push_cpu;
239
240 task_t *migration_thread;
241 struct list_head migration_queue;
e9028b0f 242 int cpu;
1da177e4
LT
243#endif
244
245#ifdef CONFIG_SCHEDSTATS
246 /* latency stats */
247 struct sched_info rq_sched_info;
248
249 /* sys_sched_yield() stats */
250 unsigned long yld_exp_empty;
251 unsigned long yld_act_empty;
252 unsigned long yld_both_empty;
253 unsigned long yld_cnt;
254
255 /* schedule() stats */
256 unsigned long sched_switch;
257 unsigned long sched_cnt;
258 unsigned long sched_goidle;
259
260 /* try_to_wake_up() stats */
261 unsigned long ttwu_cnt;
262 unsigned long ttwu_local;
263#endif
264};
265
266static DEFINE_PER_CPU(struct runqueue, runqueues);
267
674311d5
NP
268/*
269 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 270 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
271 *
272 * The domain tree of any CPU may only be accessed from within
273 * preempt-disabled sections.
274 */
1da177e4 275#define for_each_domain(cpu, domain) \
674311d5 276for (domain = rcu_dereference(cpu_rq(cpu)->sd); domain; domain = domain->parent)
1da177e4
LT
277
278#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
279#define this_rq() (&__get_cpu_var(runqueues))
280#define task_rq(p) cpu_rq(task_cpu(p))
281#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
282
1da177e4 283#ifndef prepare_arch_switch
4866cde0
NP
284# define prepare_arch_switch(next) do { } while (0)
285#endif
286#ifndef finish_arch_switch
287# define finish_arch_switch(prev) do { } while (0)
288#endif
289
290#ifndef __ARCH_WANT_UNLOCKED_CTXSW
291static inline int task_running(runqueue_t *rq, task_t *p)
292{
293 return rq->curr == p;
294}
295
296static inline void prepare_lock_switch(runqueue_t *rq, task_t *next)
297{
298}
299
300static inline void finish_lock_switch(runqueue_t *rq, task_t *prev)
301{
da04c035
IM
302#ifdef CONFIG_DEBUG_SPINLOCK
303 /* this is a valid case when another task releases the spinlock */
304 rq->lock.owner = current;
305#endif
4866cde0
NP
306 spin_unlock_irq(&rq->lock);
307}
308
309#else /* __ARCH_WANT_UNLOCKED_CTXSW */
310static inline int task_running(runqueue_t *rq, task_t *p)
311{
312#ifdef CONFIG_SMP
313 return p->oncpu;
314#else
315 return rq->curr == p;
316#endif
317}
318
319static inline void prepare_lock_switch(runqueue_t *rq, task_t *next)
320{
321#ifdef CONFIG_SMP
322 /*
323 * We can optimise this out completely for !SMP, because the
324 * SMP rebalancing from interrupt is the only thing that cares
325 * here.
326 */
327 next->oncpu = 1;
328#endif
329#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
330 spin_unlock_irq(&rq->lock);
331#else
332 spin_unlock(&rq->lock);
333#endif
334}
335
336static inline void finish_lock_switch(runqueue_t *rq, task_t *prev)
337{
338#ifdef CONFIG_SMP
339 /*
340 * After ->oncpu is cleared, the task can be moved to a different CPU.
341 * We must ensure this doesn't happen until the switch is completely
342 * finished.
343 */
344 smp_wmb();
345 prev->oncpu = 0;
346#endif
347#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
348 local_irq_enable();
1da177e4 349#endif
4866cde0
NP
350}
351#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4
LT
352
353/*
354 * task_rq_lock - lock the runqueue a given task resides on and disable
355 * interrupts. Note the ordering: we can safely lookup the task_rq without
356 * explicitly disabling preemption.
357 */
358static inline runqueue_t *task_rq_lock(task_t *p, unsigned long *flags)
359 __acquires(rq->lock)
360{
361 struct runqueue *rq;
362
363repeat_lock_task:
364 local_irq_save(*flags);
365 rq = task_rq(p);
366 spin_lock(&rq->lock);
367 if (unlikely(rq != task_rq(p))) {
368 spin_unlock_irqrestore(&rq->lock, *flags);
369 goto repeat_lock_task;
370 }
371 return rq;
372}
373
374static inline void task_rq_unlock(runqueue_t *rq, unsigned long *flags)
375 __releases(rq->lock)
376{
377 spin_unlock_irqrestore(&rq->lock, *flags);
378}
379
380#ifdef CONFIG_SCHEDSTATS
381/*
382 * bump this up when changing the output format or the meaning of an existing
383 * format, so that tools can adapt (or abort)
384 */
68767a0a 385#define SCHEDSTAT_VERSION 12
1da177e4
LT
386
387static int show_schedstat(struct seq_file *seq, void *v)
388{
389 int cpu;
390
391 seq_printf(seq, "version %d\n", SCHEDSTAT_VERSION);
392 seq_printf(seq, "timestamp %lu\n", jiffies);
393 for_each_online_cpu(cpu) {
394 runqueue_t *rq = cpu_rq(cpu);
395#ifdef CONFIG_SMP
396 struct sched_domain *sd;
397 int dcnt = 0;
398#endif
399
400 /* runqueue-specific stats */
401 seq_printf(seq,
402 "cpu%d %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu",
403 cpu, rq->yld_both_empty,
404 rq->yld_act_empty, rq->yld_exp_empty, rq->yld_cnt,
405 rq->sched_switch, rq->sched_cnt, rq->sched_goidle,
406 rq->ttwu_cnt, rq->ttwu_local,
407 rq->rq_sched_info.cpu_time,
408 rq->rq_sched_info.run_delay, rq->rq_sched_info.pcnt);
409
410 seq_printf(seq, "\n");
411
412#ifdef CONFIG_SMP
413 /* domain-specific stats */
674311d5 414 preempt_disable();
1da177e4
LT
415 for_each_domain(cpu, sd) {
416 enum idle_type itype;
417 char mask_str[NR_CPUS];
418
419 cpumask_scnprintf(mask_str, NR_CPUS, sd->span);
420 seq_printf(seq, "domain%d %s", dcnt++, mask_str);
421 for (itype = SCHED_IDLE; itype < MAX_IDLE_TYPES;
422 itype++) {
423 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu",
424 sd->lb_cnt[itype],
425 sd->lb_balanced[itype],
426 sd->lb_failed[itype],
427 sd->lb_imbalance[itype],
428 sd->lb_gained[itype],
429 sd->lb_hot_gained[itype],
430 sd->lb_nobusyq[itype],
431 sd->lb_nobusyg[itype]);
432 }
68767a0a 433 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu\n",
1da177e4 434 sd->alb_cnt, sd->alb_failed, sd->alb_pushed,
68767a0a
NP
435 sd->sbe_cnt, sd->sbe_balanced, sd->sbe_pushed,
436 sd->sbf_cnt, sd->sbf_balanced, sd->sbf_pushed,
1da177e4
LT
437 sd->ttwu_wake_remote, sd->ttwu_move_affine, sd->ttwu_move_balance);
438 }
674311d5 439 preempt_enable();
1da177e4
LT
440#endif
441 }
442 return 0;
443}
444
445static int schedstat_open(struct inode *inode, struct file *file)
446{
447 unsigned int size = PAGE_SIZE * (1 + num_online_cpus() / 32);
448 char *buf = kmalloc(size, GFP_KERNEL);
449 struct seq_file *m;
450 int res;
451
452 if (!buf)
453 return -ENOMEM;
454 res = single_open(file, show_schedstat, NULL);
455 if (!res) {
456 m = file->private_data;
457 m->buf = buf;
458 m->size = size;
459 } else
460 kfree(buf);
461 return res;
462}
463
464struct file_operations proc_schedstat_operations = {
465 .open = schedstat_open,
466 .read = seq_read,
467 .llseek = seq_lseek,
468 .release = single_release,
469};
470
471# define schedstat_inc(rq, field) do { (rq)->field++; } while (0)
472# define schedstat_add(rq, field, amt) do { (rq)->field += (amt); } while (0)
473#else /* !CONFIG_SCHEDSTATS */
474# define schedstat_inc(rq, field) do { } while (0)
475# define schedstat_add(rq, field, amt) do { } while (0)
476#endif
477
478/*
479 * rq_lock - lock a given runqueue and disable interrupts.
480 */
481static inline runqueue_t *this_rq_lock(void)
482 __acquires(rq->lock)
483{
484 runqueue_t *rq;
485
486 local_irq_disable();
487 rq = this_rq();
488 spin_lock(&rq->lock);
489
490 return rq;
491}
492
1da177e4
LT
493#ifdef CONFIG_SCHEDSTATS
494/*
495 * Called when a process is dequeued from the active array and given
496 * the cpu. We should note that with the exception of interactive
497 * tasks, the expired queue will become the active queue after the active
498 * queue is empty, without explicitly dequeuing and requeuing tasks in the
499 * expired queue. (Interactive tasks may be requeued directly to the
500 * active queue, thus delaying tasks in the expired queue from running;
501 * see scheduler_tick()).
502 *
503 * This function is only called from sched_info_arrive(), rather than
504 * dequeue_task(). Even though a task may be queued and dequeued multiple
505 * times as it is shuffled about, we're really interested in knowing how
506 * long it was from the *first* time it was queued to the time that it
507 * finally hit a cpu.
508 */
509static inline void sched_info_dequeued(task_t *t)
510{
511 t->sched_info.last_queued = 0;
512}
513
514/*
515 * Called when a task finally hits the cpu. We can now calculate how
516 * long it was waiting to run. We also note when it began so that we
517 * can keep stats on how long its timeslice is.
518 */
858119e1 519static void sched_info_arrive(task_t *t)
1da177e4
LT
520{
521 unsigned long now = jiffies, diff = 0;
522 struct runqueue *rq = task_rq(t);
523
524 if (t->sched_info.last_queued)
525 diff = now - t->sched_info.last_queued;
526 sched_info_dequeued(t);
527 t->sched_info.run_delay += diff;
528 t->sched_info.last_arrival = now;
529 t->sched_info.pcnt++;
530
531 if (!rq)
532 return;
533
534 rq->rq_sched_info.run_delay += diff;
535 rq->rq_sched_info.pcnt++;
536}
537
538/*
539 * Called when a process is queued into either the active or expired
540 * array. The time is noted and later used to determine how long we
541 * had to wait for us to reach the cpu. Since the expired queue will
542 * become the active queue after active queue is empty, without dequeuing
543 * and requeuing any tasks, we are interested in queuing to either. It
544 * is unusual but not impossible for tasks to be dequeued and immediately
545 * requeued in the same or another array: this can happen in sched_yield(),
546 * set_user_nice(), and even load_balance() as it moves tasks from runqueue
547 * to runqueue.
548 *
549 * This function is only called from enqueue_task(), but also only updates
550 * the timestamp if it is already not set. It's assumed that
551 * sched_info_dequeued() will clear that stamp when appropriate.
552 */
553static inline void sched_info_queued(task_t *t)
554{
555 if (!t->sched_info.last_queued)
556 t->sched_info.last_queued = jiffies;
557}
558
559/*
560 * Called when a process ceases being the active-running process, either
561 * voluntarily or involuntarily. Now we can calculate how long we ran.
562 */
563static inline void sched_info_depart(task_t *t)
564{
565 struct runqueue *rq = task_rq(t);
566 unsigned long diff = jiffies - t->sched_info.last_arrival;
567
568 t->sched_info.cpu_time += diff;
569
570 if (rq)
571 rq->rq_sched_info.cpu_time += diff;
572}
573
574/*
575 * Called when tasks are switched involuntarily due, typically, to expiring
576 * their time slice. (This may also be called when switching to or from
577 * the idle task.) We are only called when prev != next.
578 */
579static inline void sched_info_switch(task_t *prev, task_t *next)
580{
581 struct runqueue *rq = task_rq(prev);
582
583 /*
584 * prev now departs the cpu. It's not interesting to record
585 * stats about how efficient we were at scheduling the idle
586 * process, however.
587 */
588 if (prev != rq->idle)
589 sched_info_depart(prev);
590
591 if (next != rq->idle)
592 sched_info_arrive(next);
593}
594#else
595#define sched_info_queued(t) do { } while (0)
596#define sched_info_switch(t, next) do { } while (0)
597#endif /* CONFIG_SCHEDSTATS */
598
599/*
600 * Adding/removing a task to/from a priority array:
601 */
602static void dequeue_task(struct task_struct *p, prio_array_t *array)
603{
604 array->nr_active--;
605 list_del(&p->run_list);
606 if (list_empty(array->queue + p->prio))
607 __clear_bit(p->prio, array->bitmap);
608}
609
610static void enqueue_task(struct task_struct *p, prio_array_t *array)
611{
612 sched_info_queued(p);
613 list_add_tail(&p->run_list, array->queue + p->prio);
614 __set_bit(p->prio, array->bitmap);
615 array->nr_active++;
616 p->array = array;
617}
618
619/*
620 * Put task to the end of the run list without the overhead of dequeue
621 * followed by enqueue.
622 */
623static void requeue_task(struct task_struct *p, prio_array_t *array)
624{
625 list_move_tail(&p->run_list, array->queue + p->prio);
626}
627
628static inline void enqueue_task_head(struct task_struct *p, prio_array_t *array)
629{
630 list_add(&p->run_list, array->queue + p->prio);
631 __set_bit(p->prio, array->bitmap);
632 array->nr_active++;
633 p->array = array;
634}
635
636/*
637 * effective_prio - return the priority that is based on the static
638 * priority but is modified by bonuses/penalties.
639 *
640 * We scale the actual sleep average [0 .... MAX_SLEEP_AVG]
641 * into the -5 ... 0 ... +5 bonus/penalty range.
642 *
643 * We use 25% of the full 0...39 priority range so that:
644 *
645 * 1) nice +19 interactive tasks do not preempt nice 0 CPU hogs.
646 * 2) nice -20 CPU hogs do not get preempted by nice 0 tasks.
647 *
648 * Both properties are important to certain workloads.
649 */
650static int effective_prio(task_t *p)
651{
652 int bonus, prio;
653
654 if (rt_task(p))
655 return p->prio;
656
657 bonus = CURRENT_BONUS(p) - MAX_BONUS / 2;
658
659 prio = p->static_prio - bonus;
660 if (prio < MAX_RT_PRIO)
661 prio = MAX_RT_PRIO;
662 if (prio > MAX_PRIO-1)
663 prio = MAX_PRIO-1;
664 return prio;
665}
666
667/*
668 * __activate_task - move a task to the runqueue.
669 */
670static inline void __activate_task(task_t *p, runqueue_t *rq)
671{
672 enqueue_task(p, rq->active);
a2000572 673 rq->nr_running++;
1da177e4
LT
674}
675
676/*
677 * __activate_idle_task - move idle task to the _front_ of runqueue.
678 */
679static inline void __activate_idle_task(task_t *p, runqueue_t *rq)
680{
681 enqueue_task_head(p, rq->active);
a2000572 682 rq->nr_running++;
1da177e4
LT
683}
684
a3464a10 685static int recalc_task_prio(task_t *p, unsigned long long now)
1da177e4
LT
686{
687 /* Caller must always ensure 'now >= p->timestamp' */
688 unsigned long long __sleep_time = now - p->timestamp;
689 unsigned long sleep_time;
690
b0a9499c
IM
691 if (unlikely(p->policy == SCHED_BATCH))
692 sleep_time = 0;
693 else {
694 if (__sleep_time > NS_MAX_SLEEP_AVG)
695 sleep_time = NS_MAX_SLEEP_AVG;
696 else
697 sleep_time = (unsigned long)__sleep_time;
698 }
1da177e4
LT
699
700 if (likely(sleep_time > 0)) {
701 /*
702 * User tasks that sleep a long time are categorised as
703 * idle and will get just interactive status to stay active &
704 * prevent them suddenly becoming cpu hogs and starving
705 * other processes.
706 */
3dee386e 707 if (p->mm && p->sleep_type != SLEEP_NONINTERACTIVE &&
1da177e4
LT
708 sleep_time > INTERACTIVE_SLEEP(p)) {
709 p->sleep_avg = JIFFIES_TO_NS(MAX_SLEEP_AVG -
710 DEF_TIMESLICE);
711 } else {
1da177e4
LT
712 /*
713 * Tasks waking from uninterruptible sleep are
714 * limited in their sleep_avg rise as they
715 * are likely to be waiting on I/O
716 */
3dee386e 717 if (p->sleep_type == SLEEP_NONINTERACTIVE && p->mm) {
1da177e4
LT
718 if (p->sleep_avg >= INTERACTIVE_SLEEP(p))
719 sleep_time = 0;
720 else if (p->sleep_avg + sleep_time >=
721 INTERACTIVE_SLEEP(p)) {
722 p->sleep_avg = INTERACTIVE_SLEEP(p);
723 sleep_time = 0;
724 }
725 }
726
727 /*
728 * This code gives a bonus to interactive tasks.
729 *
730 * The boost works by updating the 'average sleep time'
731 * value here, based on ->timestamp. The more time a
732 * task spends sleeping, the higher the average gets -
733 * and the higher the priority boost gets as well.
734 */
735 p->sleep_avg += sleep_time;
736
737 if (p->sleep_avg > NS_MAX_SLEEP_AVG)
738 p->sleep_avg = NS_MAX_SLEEP_AVG;
739 }
740 }
741
a3464a10 742 return effective_prio(p);
1da177e4
LT
743}
744
745/*
746 * activate_task - move a task to the runqueue and do priority recalculation
747 *
748 * Update all the scheduling statistics stuff. (sleep average
749 * calculation, priority modifiers, etc.)
750 */
751static void activate_task(task_t *p, runqueue_t *rq, int local)
752{
753 unsigned long long now;
754
755 now = sched_clock();
756#ifdef CONFIG_SMP
757 if (!local) {
758 /* Compensate for drifting sched_clock */
759 runqueue_t *this_rq = this_rq();
760 now = (now - this_rq->timestamp_last_tick)
761 + rq->timestamp_last_tick;
762 }
763#endif
764
a47ab937
KC
765 if (!rt_task(p))
766 p->prio = recalc_task_prio(p, now);
1da177e4
LT
767
768 /*
769 * This checks to make sure it's not an uninterruptible task
770 * that is now waking up.
771 */
3dee386e 772 if (p->sleep_type == SLEEP_NORMAL) {
1da177e4
LT
773 /*
774 * Tasks which were woken up by interrupts (ie. hw events)
775 * are most likely of interactive nature. So we give them
776 * the credit of extending their sleep time to the period
777 * of time they spend on the runqueue, waiting for execution
778 * on a CPU, first time around:
779 */
780 if (in_interrupt())
3dee386e 781 p->sleep_type = SLEEP_INTERRUPTED;
1da177e4
LT
782 else {
783 /*
784 * Normal first-time wakeups get a credit too for
785 * on-runqueue time, but it will be weighted down:
786 */
3dee386e 787 p->sleep_type = SLEEP_INTERACTIVE;
1da177e4
LT
788 }
789 }
790 p->timestamp = now;
791
792 __activate_task(p, rq);
793}
794
795/*
796 * deactivate_task - remove a task from the runqueue.
797 */
798static void deactivate_task(struct task_struct *p, runqueue_t *rq)
799{
a2000572 800 rq->nr_running--;
1da177e4
LT
801 dequeue_task(p, p->array);
802 p->array = NULL;
803}
804
805/*
806 * resched_task - mark a task 'to be rescheduled now'.
807 *
808 * On UP this means the setting of the need_resched flag, on SMP it
809 * might also involve a cross-CPU call to trigger the scheduler on
810 * the target CPU.
811 */
812#ifdef CONFIG_SMP
813static void resched_task(task_t *p)
814{
64c7c8f8 815 int cpu;
1da177e4
LT
816
817 assert_spin_locked(&task_rq(p)->lock);
818
64c7c8f8
NP
819 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
820 return;
821
822 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
1da177e4 823
64c7c8f8
NP
824 cpu = task_cpu(p);
825 if (cpu == smp_processor_id())
826 return;
827
828 /* NEED_RESCHED must be visible before we test POLLING_NRFLAG */
829 smp_mb();
830 if (!test_tsk_thread_flag(p, TIF_POLLING_NRFLAG))
831 smp_send_reschedule(cpu);
1da177e4
LT
832}
833#else
834static inline void resched_task(task_t *p)
835{
64c7c8f8 836 assert_spin_locked(&task_rq(p)->lock);
1da177e4
LT
837 set_tsk_need_resched(p);
838}
839#endif
840
841/**
842 * task_curr - is this task currently executing on a CPU?
843 * @p: the task in question.
844 */
845inline int task_curr(const task_t *p)
846{
847 return cpu_curr(task_cpu(p)) == p;
848}
849
850#ifdef CONFIG_SMP
1da177e4
LT
851typedef struct {
852 struct list_head list;
1da177e4 853
1da177e4
LT
854 task_t *task;
855 int dest_cpu;
856
1da177e4
LT
857 struct completion done;
858} migration_req_t;
859
860/*
861 * The task's runqueue lock must be held.
862 * Returns true if you have to wait for migration thread.
863 */
864static int migrate_task(task_t *p, int dest_cpu, migration_req_t *req)
865{
866 runqueue_t *rq = task_rq(p);
867
868 /*
869 * If the task is not on a runqueue (and not running), then
870 * it is sufficient to simply update the task's cpu field.
871 */
872 if (!p->array && !task_running(rq, p)) {
873 set_task_cpu(p, dest_cpu);
874 return 0;
875 }
876
877 init_completion(&req->done);
1da177e4
LT
878 req->task = p;
879 req->dest_cpu = dest_cpu;
880 list_add(&req->list, &rq->migration_queue);
881 return 1;
882}
883
884/*
885 * wait_task_inactive - wait for a thread to unschedule.
886 *
887 * The caller must ensure that the task *will* unschedule sometime soon,
888 * else this function might spin for a *long* time. This function can't
889 * be called with interrupts off, or it may introduce deadlock with
890 * smp_call_function() if an IPI is sent by the same process we are
891 * waiting to become inactive.
892 */
95cdf3b7 893void wait_task_inactive(task_t *p)
1da177e4
LT
894{
895 unsigned long flags;
896 runqueue_t *rq;
897 int preempted;
898
899repeat:
900 rq = task_rq_lock(p, &flags);
901 /* Must be off runqueue entirely, not preempted. */
902 if (unlikely(p->array || task_running(rq, p))) {
903 /* If it's preempted, we yield. It could be a while. */
904 preempted = !task_running(rq, p);
905 task_rq_unlock(rq, &flags);
906 cpu_relax();
907 if (preempted)
908 yield();
909 goto repeat;
910 }
911 task_rq_unlock(rq, &flags);
912}
913
914/***
915 * kick_process - kick a running thread to enter/exit the kernel
916 * @p: the to-be-kicked thread
917 *
918 * Cause a process which is running on another CPU to enter
919 * kernel-mode, without any delay. (to get signals handled.)
920 *
921 * NOTE: this function doesnt have to take the runqueue lock,
922 * because all it wants to ensure is that the remote task enters
923 * the kernel. If the IPI races and the task has been migrated
924 * to another CPU then no harm is done and the purpose has been
925 * achieved as well.
926 */
927void kick_process(task_t *p)
928{
929 int cpu;
930
931 preempt_disable();
932 cpu = task_cpu(p);
933 if ((cpu != smp_processor_id()) && task_curr(p))
934 smp_send_reschedule(cpu);
935 preempt_enable();
936}
937
938/*
939 * Return a low guess at the load of a migration-source cpu.
940 *
941 * We want to under-estimate the load of migration sources, to
942 * balance conservatively.
943 */
a2000572 944static inline unsigned long source_load(int cpu, int type)
1da177e4
LT
945{
946 runqueue_t *rq = cpu_rq(cpu);
a2000572 947 unsigned long load_now = rq->nr_running * SCHED_LOAD_SCALE;
3b0bd9bc 948 if (type == 0)
a2000572 949 return load_now;
b910472d 950
a2000572 951 return min(rq->cpu_load[type-1], load_now);
1da177e4
LT
952}
953
954/*
955 * Return a high guess at the load of a migration-target cpu
956 */
a2000572 957static inline unsigned long target_load(int cpu, int type)
1da177e4
LT
958{
959 runqueue_t *rq = cpu_rq(cpu);
a2000572 960 unsigned long load_now = rq->nr_running * SCHED_LOAD_SCALE;
7897986b 961 if (type == 0)
a2000572 962 return load_now;
3b0bd9bc 963
a2000572 964 return max(rq->cpu_load[type-1], load_now);
1da177e4
LT
965}
966
147cbb4b
NP
967/*
968 * find_idlest_group finds and returns the least busy CPU group within the
969 * domain.
970 */
971static struct sched_group *
972find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
973{
974 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
975 unsigned long min_load = ULONG_MAX, this_load = 0;
976 int load_idx = sd->forkexec_idx;
977 int imbalance = 100 + (sd->imbalance_pct-100)/2;
978
979 do {
980 unsigned long load, avg_load;
981 int local_group;
982 int i;
983
da5a5522
BD
984 /* Skip over this group if it has no CPUs allowed */
985 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
986 goto nextgroup;
987
147cbb4b 988 local_group = cpu_isset(this_cpu, group->cpumask);
147cbb4b
NP
989
990 /* Tally up the load of all CPUs in the group */
991 avg_load = 0;
992
993 for_each_cpu_mask(i, group->cpumask) {
994 /* Bias balancing toward cpus of our domain */
995 if (local_group)
996 load = source_load(i, load_idx);
997 else
998 load = target_load(i, load_idx);
999
1000 avg_load += load;
1001 }
1002
1003 /* Adjust by relative CPU power of the group */
1004 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1005
1006 if (local_group) {
1007 this_load = avg_load;
1008 this = group;
1009 } else if (avg_load < min_load) {
1010 min_load = avg_load;
1011 idlest = group;
1012 }
da5a5522 1013nextgroup:
147cbb4b
NP
1014 group = group->next;
1015 } while (group != sd->groups);
1016
1017 if (!idlest || 100*this_load < imbalance*min_load)
1018 return NULL;
1019 return idlest;
1020}
1021
1022/*
1023 * find_idlest_queue - find the idlest runqueue among the cpus in group.
1024 */
95cdf3b7
IM
1025static int
1026find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
147cbb4b 1027{
da5a5522 1028 cpumask_t tmp;
147cbb4b
NP
1029 unsigned long load, min_load = ULONG_MAX;
1030 int idlest = -1;
1031 int i;
1032
da5a5522
BD
1033 /* Traverse only the allowed CPUs */
1034 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1035
1036 for_each_cpu_mask(i, tmp) {
147cbb4b
NP
1037 load = source_load(i, 0);
1038
1039 if (load < min_load || (load == min_load && i == this_cpu)) {
1040 min_load = load;
1041 idlest = i;
1042 }
1043 }
1044
1045 return idlest;
1046}
1047
476d139c
NP
1048/*
1049 * sched_balance_self: balance the current task (running on cpu) in domains
1050 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1051 * SD_BALANCE_EXEC.
1052 *
1053 * Balance, ie. select the least loaded group.
1054 *
1055 * Returns the target CPU number, or the same CPU if no balancing is needed.
1056 *
1057 * preempt must be disabled.
1058 */
1059static int sched_balance_self(int cpu, int flag)
1060{
1061 struct task_struct *t = current;
1062 struct sched_domain *tmp, *sd = NULL;
147cbb4b 1063
476d139c
NP
1064 for_each_domain(cpu, tmp)
1065 if (tmp->flags & flag)
1066 sd = tmp;
1067
1068 while (sd) {
1069 cpumask_t span;
1070 struct sched_group *group;
1071 int new_cpu;
1072 int weight;
1073
1074 span = sd->span;
1075 group = find_idlest_group(sd, t, cpu);
1076 if (!group)
1077 goto nextlevel;
1078
da5a5522 1079 new_cpu = find_idlest_cpu(group, t, cpu);
476d139c
NP
1080 if (new_cpu == -1 || new_cpu == cpu)
1081 goto nextlevel;
1082
1083 /* Now try balancing at a lower domain level */
1084 cpu = new_cpu;
1085nextlevel:
1086 sd = NULL;
1087 weight = cpus_weight(span);
1088 for_each_domain(cpu, tmp) {
1089 if (weight <= cpus_weight(tmp->span))
1090 break;
1091 if (tmp->flags & flag)
1092 sd = tmp;
1093 }
1094 /* while loop will break here if sd == NULL */
1095 }
1096
1097 return cpu;
1098}
1099
1100#endif /* CONFIG_SMP */
1da177e4
LT
1101
1102/*
1103 * wake_idle() will wake a task on an idle cpu if task->cpu is
1104 * not idle and an idle cpu is available. The span of cpus to
1105 * search starts with cpus closest then further out as needed,
1106 * so we always favor a closer, idle cpu.
1107 *
1108 * Returns the CPU we should wake onto.
1109 */
1110#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1111static int wake_idle(int cpu, task_t *p)
1112{
1113 cpumask_t tmp;
1114 struct sched_domain *sd;
1115 int i;
1116
1117 if (idle_cpu(cpu))
1118 return cpu;
1119
1120 for_each_domain(cpu, sd) {
1121 if (sd->flags & SD_WAKE_IDLE) {
e0f364f4 1122 cpus_and(tmp, sd->span, p->cpus_allowed);
1da177e4
LT
1123 for_each_cpu_mask(i, tmp) {
1124 if (idle_cpu(i))
1125 return i;
1126 }
1127 }
e0f364f4
NP
1128 else
1129 break;
1da177e4
LT
1130 }
1131 return cpu;
1132}
1133#else
1134static inline int wake_idle(int cpu, task_t *p)
1135{
1136 return cpu;
1137}
1138#endif
1139
1140/***
1141 * try_to_wake_up - wake up a thread
1142 * @p: the to-be-woken-up thread
1143 * @state: the mask of task states that can be woken
1144 * @sync: do a synchronous wakeup?
1145 *
1146 * Put it on the run-queue if it's not already there. The "current"
1147 * thread is always on the run-queue (except when the actual
1148 * re-schedule is in progress), and as such you're allowed to do
1149 * the simpler "current->state = TASK_RUNNING" to mark yourself
1150 * runnable without the overhead of this.
1151 *
1152 * returns failure only if the task is already active.
1153 */
95cdf3b7 1154static int try_to_wake_up(task_t *p, unsigned int state, int sync)
1da177e4
LT
1155{
1156 int cpu, this_cpu, success = 0;
1157 unsigned long flags;
1158 long old_state;
1159 runqueue_t *rq;
1160#ifdef CONFIG_SMP
1161 unsigned long load, this_load;
7897986b 1162 struct sched_domain *sd, *this_sd = NULL;
1da177e4
LT
1163 int new_cpu;
1164#endif
1165
1166 rq = task_rq_lock(p, &flags);
1167 old_state = p->state;
1168 if (!(old_state & state))
1169 goto out;
1170
1171 if (p->array)
1172 goto out_running;
1173
1174 cpu = task_cpu(p);
1175 this_cpu = smp_processor_id();
1176
1177#ifdef CONFIG_SMP
1178 if (unlikely(task_running(rq, p)))
1179 goto out_activate;
1180
7897986b
NP
1181 new_cpu = cpu;
1182
1da177e4
LT
1183 schedstat_inc(rq, ttwu_cnt);
1184 if (cpu == this_cpu) {
1185 schedstat_inc(rq, ttwu_local);
7897986b
NP
1186 goto out_set_cpu;
1187 }
1188
1189 for_each_domain(this_cpu, sd) {
1190 if (cpu_isset(cpu, sd->span)) {
1191 schedstat_inc(sd, ttwu_wake_remote);
1192 this_sd = sd;
1193 break;
1da177e4
LT
1194 }
1195 }
1da177e4 1196
7897986b 1197 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1da177e4
LT
1198 goto out_set_cpu;
1199
1da177e4 1200 /*
7897986b 1201 * Check for affine wakeup and passive balancing possibilities.
1da177e4 1202 */
7897986b
NP
1203 if (this_sd) {
1204 int idx = this_sd->wake_idx;
1205 unsigned int imbalance;
1da177e4 1206
a3f21bce
NP
1207 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1208
7897986b
NP
1209 load = source_load(cpu, idx);
1210 this_load = target_load(this_cpu, idx);
1da177e4 1211
7897986b
NP
1212 new_cpu = this_cpu; /* Wake to this CPU if we can */
1213
a3f21bce
NP
1214 if (this_sd->flags & SD_WAKE_AFFINE) {
1215 unsigned long tl = this_load;
1da177e4 1216 /*
a3f21bce
NP
1217 * If sync wakeup then subtract the (maximum possible)
1218 * effect of the currently running task from the load
1219 * of the current CPU:
1da177e4 1220 */
a3f21bce
NP
1221 if (sync)
1222 tl -= SCHED_LOAD_SCALE;
1223
1224 if ((tl <= load &&
1225 tl + target_load(cpu, idx) <= SCHED_LOAD_SCALE) ||
1226 100*(tl + SCHED_LOAD_SCALE) <= imbalance*load) {
1227 /*
1228 * This domain has SD_WAKE_AFFINE and
1229 * p is cache cold in this domain, and
1230 * there is no bad imbalance.
1231 */
1232 schedstat_inc(this_sd, ttwu_move_affine);
1233 goto out_set_cpu;
1234 }
1235 }
1236
1237 /*
1238 * Start passive balancing when half the imbalance_pct
1239 * limit is reached.
1240 */
1241 if (this_sd->flags & SD_WAKE_BALANCE) {
1242 if (imbalance*this_load <= 100*load) {
1243 schedstat_inc(this_sd, ttwu_move_balance);
1244 goto out_set_cpu;
1245 }
1da177e4
LT
1246 }
1247 }
1248
1249 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1250out_set_cpu:
1251 new_cpu = wake_idle(new_cpu, p);
1252 if (new_cpu != cpu) {
1253 set_task_cpu(p, new_cpu);
1254 task_rq_unlock(rq, &flags);
1255 /* might preempt at this point */
1256 rq = task_rq_lock(p, &flags);
1257 old_state = p->state;
1258 if (!(old_state & state))
1259 goto out;
1260 if (p->array)
1261 goto out_running;
1262
1263 this_cpu = smp_processor_id();
1264 cpu = task_cpu(p);
1265 }
1266
1267out_activate:
1268#endif /* CONFIG_SMP */
1269 if (old_state == TASK_UNINTERRUPTIBLE) {
1270 rq->nr_uninterruptible--;
1271 /*
1272 * Tasks on involuntary sleep don't earn
1273 * sleep_avg beyond just interactive state.
1274 */
3dee386e 1275 p->sleep_type = SLEEP_NONINTERACTIVE;
1da177e4
LT
1276 }
1277
d79fc0fc
IM
1278 /*
1279 * Tasks that have marked their sleep as noninteractive get
1280 * woken up without updating their sleep average. (i.e. their
1281 * sleep is handled in a priority-neutral manner, no priority
1282 * boost and no penalty.)
1283 */
1284 if (old_state & TASK_NONINTERACTIVE)
1285 __activate_task(p, rq);
1286 else
1287 activate_task(p, rq, cpu == this_cpu);
1da177e4
LT
1288 /*
1289 * Sync wakeups (i.e. those types of wakeups where the waker
1290 * has indicated that it will leave the CPU in short order)
1291 * don't trigger a preemption, if the woken up task will run on
1292 * this cpu. (in this case the 'I will reschedule' promise of
1293 * the waker guarantees that the freshly woken up task is going
1294 * to be considered on this CPU.)
1295 */
1da177e4
LT
1296 if (!sync || cpu != this_cpu) {
1297 if (TASK_PREEMPTS_CURR(p, rq))
1298 resched_task(rq->curr);
1299 }
1300 success = 1;
1301
1302out_running:
1303 p->state = TASK_RUNNING;
1304out:
1305 task_rq_unlock(rq, &flags);
1306
1307 return success;
1308}
1309
95cdf3b7 1310int fastcall wake_up_process(task_t *p)
1da177e4
LT
1311{
1312 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1313 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1314}
1315
1316EXPORT_SYMBOL(wake_up_process);
1317
1318int fastcall wake_up_state(task_t *p, unsigned int state)
1319{
1320 return try_to_wake_up(p, state, 0);
1321}
1322
1da177e4
LT
1323/*
1324 * Perform scheduler related setup for a newly forked process p.
1325 * p is forked by current.
1326 */
476d139c 1327void fastcall sched_fork(task_t *p, int clone_flags)
1da177e4 1328{
476d139c
NP
1329 int cpu = get_cpu();
1330
1331#ifdef CONFIG_SMP
1332 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1333#endif
1334 set_task_cpu(p, cpu);
1335
1da177e4
LT
1336 /*
1337 * We mark the process as running here, but have not actually
1338 * inserted it onto the runqueue yet. This guarantees that
1339 * nobody will actually run it, and a signal or other external
1340 * event cannot wake it up and insert it on the runqueue either.
1341 */
1342 p->state = TASK_RUNNING;
1343 INIT_LIST_HEAD(&p->run_list);
1344 p->array = NULL;
1da177e4
LT
1345#ifdef CONFIG_SCHEDSTATS
1346 memset(&p->sched_info, 0, sizeof(p->sched_info));
1347#endif
d6077cb8 1348#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
1349 p->oncpu = 0;
1350#endif
1da177e4 1351#ifdef CONFIG_PREEMPT
4866cde0 1352 /* Want to start with kernel preemption disabled. */
a1261f54 1353 task_thread_info(p)->preempt_count = 1;
1da177e4
LT
1354#endif
1355 /*
1356 * Share the timeslice between parent and child, thus the
1357 * total amount of pending timeslices in the system doesn't change,
1358 * resulting in more scheduling fairness.
1359 */
1360 local_irq_disable();
1361 p->time_slice = (current->time_slice + 1) >> 1;
1362 /*
1363 * The remainder of the first timeslice might be recovered by
1364 * the parent if the child exits early enough.
1365 */
1366 p->first_time_slice = 1;
1367 current->time_slice >>= 1;
1368 p->timestamp = sched_clock();
1369 if (unlikely(!current->time_slice)) {
1370 /*
1371 * This case is rare, it happens when the parent has only
1372 * a single jiffy left from its timeslice. Taking the
1373 * runqueue lock is not a problem.
1374 */
1375 current->time_slice = 1;
1da177e4 1376 scheduler_tick();
476d139c
NP
1377 }
1378 local_irq_enable();
1379 put_cpu();
1da177e4
LT
1380}
1381
1382/*
1383 * wake_up_new_task - wake up a newly created task for the first time.
1384 *
1385 * This function will do some initial scheduler statistics housekeeping
1386 * that must be done for every newly created context, then puts the task
1387 * on the runqueue and wakes it.
1388 */
95cdf3b7 1389void fastcall wake_up_new_task(task_t *p, unsigned long clone_flags)
1da177e4
LT
1390{
1391 unsigned long flags;
1392 int this_cpu, cpu;
1393 runqueue_t *rq, *this_rq;
1394
1395 rq = task_rq_lock(p, &flags);
147cbb4b 1396 BUG_ON(p->state != TASK_RUNNING);
1da177e4 1397 this_cpu = smp_processor_id();
147cbb4b 1398 cpu = task_cpu(p);
1da177e4 1399
1da177e4
LT
1400 /*
1401 * We decrease the sleep average of forking parents
1402 * and children as well, to keep max-interactive tasks
1403 * from forking tasks that are max-interactive. The parent
1404 * (current) is done further down, under its lock.
1405 */
1406 p->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(p) *
1407 CHILD_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1408
1409 p->prio = effective_prio(p);
1410
1411 if (likely(cpu == this_cpu)) {
1412 if (!(clone_flags & CLONE_VM)) {
1413 /*
1414 * The VM isn't cloned, so we're in a good position to
1415 * do child-runs-first in anticipation of an exec. This
1416 * usually avoids a lot of COW overhead.
1417 */
1418 if (unlikely(!current->array))
1419 __activate_task(p, rq);
1420 else {
1421 p->prio = current->prio;
1422 list_add_tail(&p->run_list, &current->run_list);
1423 p->array = current->array;
1424 p->array->nr_active++;
a2000572 1425 rq->nr_running++;
1da177e4
LT
1426 }
1427 set_need_resched();
1428 } else
1429 /* Run child last */
1430 __activate_task(p, rq);
1431 /*
1432 * We skip the following code due to cpu == this_cpu
1433 *
1434 * task_rq_unlock(rq, &flags);
1435 * this_rq = task_rq_lock(current, &flags);
1436 */
1437 this_rq = rq;
1438 } else {
1439 this_rq = cpu_rq(this_cpu);
1440
1441 /*
1442 * Not the local CPU - must adjust timestamp. This should
1443 * get optimised away in the !CONFIG_SMP case.
1444 */
1445 p->timestamp = (p->timestamp - this_rq->timestamp_last_tick)
1446 + rq->timestamp_last_tick;
1447 __activate_task(p, rq);
1448 if (TASK_PREEMPTS_CURR(p, rq))
1449 resched_task(rq->curr);
1450
1451 /*
1452 * Parent and child are on different CPUs, now get the
1453 * parent runqueue to update the parent's ->sleep_avg:
1454 */
1455 task_rq_unlock(rq, &flags);
1456 this_rq = task_rq_lock(current, &flags);
1457 }
1458 current->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(current) *
1459 PARENT_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1460 task_rq_unlock(this_rq, &flags);
1461}
1462
1463/*
1464 * Potentially available exiting-child timeslices are
1465 * retrieved here - this way the parent does not get
1466 * penalized for creating too many threads.
1467 *
1468 * (this cannot be used to 'generate' timeslices
1469 * artificially, because any timeslice recovered here
1470 * was given away by the parent in the first place.)
1471 */
95cdf3b7 1472void fastcall sched_exit(task_t *p)
1da177e4
LT
1473{
1474 unsigned long flags;
1475 runqueue_t *rq;
1476
1477 /*
1478 * If the child was a (relative-) CPU hog then decrease
1479 * the sleep_avg of the parent as well.
1480 */
1481 rq = task_rq_lock(p->parent, &flags);
889dfafe 1482 if (p->first_time_slice && task_cpu(p) == task_cpu(p->parent)) {
1da177e4
LT
1483 p->parent->time_slice += p->time_slice;
1484 if (unlikely(p->parent->time_slice > task_timeslice(p)))
1485 p->parent->time_slice = task_timeslice(p);
1486 }
1487 if (p->sleep_avg < p->parent->sleep_avg)
1488 p->parent->sleep_avg = p->parent->sleep_avg /
1489 (EXIT_WEIGHT + 1) * EXIT_WEIGHT + p->sleep_avg /
1490 (EXIT_WEIGHT + 1);
1491 task_rq_unlock(rq, &flags);
1492}
1493
4866cde0
NP
1494/**
1495 * prepare_task_switch - prepare to switch tasks
1496 * @rq: the runqueue preparing to switch
1497 * @next: the task we are going to switch to.
1498 *
1499 * This is called with the rq lock held and interrupts off. It must
1500 * be paired with a subsequent finish_task_switch after the context
1501 * switch.
1502 *
1503 * prepare_task_switch sets up locking and calls architecture specific
1504 * hooks.
1505 */
1506static inline void prepare_task_switch(runqueue_t *rq, task_t *next)
1507{
1508 prepare_lock_switch(rq, next);
1509 prepare_arch_switch(next);
1510}
1511
1da177e4
LT
1512/**
1513 * finish_task_switch - clean up after a task-switch
344babaa 1514 * @rq: runqueue associated with task-switch
1da177e4
LT
1515 * @prev: the thread we just switched away from.
1516 *
4866cde0
NP
1517 * finish_task_switch must be called after the context switch, paired
1518 * with a prepare_task_switch call before the context switch.
1519 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1520 * and do any other architecture-specific cleanup actions.
1da177e4
LT
1521 *
1522 * Note that we may have delayed dropping an mm in context_switch(). If
1523 * so, we finish that here outside of the runqueue lock. (Doing it
1524 * with the lock held can cause deadlocks; see schedule() for
1525 * details.)
1526 */
4866cde0 1527static inline void finish_task_switch(runqueue_t *rq, task_t *prev)
1da177e4
LT
1528 __releases(rq->lock)
1529{
1da177e4
LT
1530 struct mm_struct *mm = rq->prev_mm;
1531 unsigned long prev_task_flags;
1532
1533 rq->prev_mm = NULL;
1534
1535 /*
1536 * A task struct has one reference for the use as "current".
1537 * If a task dies, then it sets EXIT_ZOMBIE in tsk->exit_state and
1538 * calls schedule one last time. The schedule call will never return,
1539 * and the scheduled task must drop that reference.
1540 * The test for EXIT_ZOMBIE must occur while the runqueue locks are
1541 * still held, otherwise prev could be scheduled on another cpu, die
1542 * there before we look at prev->state, and then the reference would
1543 * be dropped twice.
1544 * Manfred Spraul <manfred@colorfullife.com>
1545 */
1546 prev_task_flags = prev->flags;
4866cde0
NP
1547 finish_arch_switch(prev);
1548 finish_lock_switch(rq, prev);
1da177e4
LT
1549 if (mm)
1550 mmdrop(mm);
c6fd91f0 1551 if (unlikely(prev_task_flags & PF_DEAD)) {
1552 /*
1553 * Remove function-return probe instances associated with this
1554 * task and put them back on the free list.
1555 */
1556 kprobe_flush_task(prev);
1da177e4 1557 put_task_struct(prev);
c6fd91f0 1558 }
1da177e4
LT
1559}
1560
1561/**
1562 * schedule_tail - first thing a freshly forked thread must call.
1563 * @prev: the thread we just switched away from.
1564 */
1565asmlinkage void schedule_tail(task_t *prev)
1566 __releases(rq->lock)
1567{
4866cde0
NP
1568 runqueue_t *rq = this_rq();
1569 finish_task_switch(rq, prev);
1570#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1571 /* In this case, finish_task_switch does not reenable preemption */
1572 preempt_enable();
1573#endif
1da177e4
LT
1574 if (current->set_child_tid)
1575 put_user(current->pid, current->set_child_tid);
1576}
1577
1578/*
1579 * context_switch - switch to the new MM and the new
1580 * thread's register state.
1581 */
1582static inline
1583task_t * context_switch(runqueue_t *rq, task_t *prev, task_t *next)
1584{
1585 struct mm_struct *mm = next->mm;
1586 struct mm_struct *oldmm = prev->active_mm;
1587
1588 if (unlikely(!mm)) {
1589 next->active_mm = oldmm;
1590 atomic_inc(&oldmm->mm_count);
1591 enter_lazy_tlb(oldmm, next);
1592 } else
1593 switch_mm(oldmm, mm, next);
1594
1595 if (unlikely(!prev->mm)) {
1596 prev->active_mm = NULL;
1597 WARN_ON(rq->prev_mm);
1598 rq->prev_mm = oldmm;
1599 }
1600
1601 /* Here we just switch the register state and the stack. */
1602 switch_to(prev, next, prev);
1603
1604 return prev;
1605}
1606
1607/*
1608 * nr_running, nr_uninterruptible and nr_context_switches:
1609 *
1610 * externally visible scheduler statistics: current number of runnable
1611 * threads, current number of uninterruptible-sleeping threads, total
1612 * number of context switches performed since bootup.
1613 */
1614unsigned long nr_running(void)
1615{
1616 unsigned long i, sum = 0;
1617
1618 for_each_online_cpu(i)
1619 sum += cpu_rq(i)->nr_running;
1620
1621 return sum;
1622}
1623
1624unsigned long nr_uninterruptible(void)
1625{
1626 unsigned long i, sum = 0;
1627
0a945022 1628 for_each_possible_cpu(i)
1da177e4
LT
1629 sum += cpu_rq(i)->nr_uninterruptible;
1630
1631 /*
1632 * Since we read the counters lockless, it might be slightly
1633 * inaccurate. Do not allow it to go below zero though:
1634 */
1635 if (unlikely((long)sum < 0))
1636 sum = 0;
1637
1638 return sum;
1639}
1640
1641unsigned long long nr_context_switches(void)
1642{
1643 unsigned long long i, sum = 0;
1644
0a945022 1645 for_each_possible_cpu(i)
1da177e4
LT
1646 sum += cpu_rq(i)->nr_switches;
1647
1648 return sum;
1649}
1650
1651unsigned long nr_iowait(void)
1652{
1653 unsigned long i, sum = 0;
1654
0a945022 1655 for_each_possible_cpu(i)
1da177e4
LT
1656 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1657
1658 return sum;
1659}
1660
db1b1fef
JS
1661unsigned long nr_active(void)
1662{
1663 unsigned long i, running = 0, uninterruptible = 0;
1664
1665 for_each_online_cpu(i) {
1666 running += cpu_rq(i)->nr_running;
1667 uninterruptible += cpu_rq(i)->nr_uninterruptible;
1668 }
1669
1670 if (unlikely((long)uninterruptible < 0))
1671 uninterruptible = 0;
1672
1673 return running + uninterruptible;
1674}
1675
1da177e4
LT
1676#ifdef CONFIG_SMP
1677
1678/*
1679 * double_rq_lock - safely lock two runqueues
1680 *
e9028b0f
AB
1681 * We must take them in cpu order to match code in
1682 * dependent_sleeper and wake_dependent_sleeper.
1683 *
1da177e4
LT
1684 * Note this does not disable interrupts like task_rq_lock,
1685 * you need to do so manually before calling.
1686 */
1687static void double_rq_lock(runqueue_t *rq1, runqueue_t *rq2)
1688 __acquires(rq1->lock)
1689 __acquires(rq2->lock)
1690{
1691 if (rq1 == rq2) {
1692 spin_lock(&rq1->lock);
1693 __acquire(rq2->lock); /* Fake it out ;) */
1694 } else {
e9028b0f 1695 if (rq1->cpu < rq2->cpu) {
1da177e4
LT
1696 spin_lock(&rq1->lock);
1697 spin_lock(&rq2->lock);
1698 } else {
1699 spin_lock(&rq2->lock);
1700 spin_lock(&rq1->lock);
1701 }
1702 }
1703}
1704
1705/*
1706 * double_rq_unlock - safely unlock two runqueues
1707 *
1708 * Note this does not restore interrupts like task_rq_unlock,
1709 * you need to do so manually after calling.
1710 */
1711static void double_rq_unlock(runqueue_t *rq1, runqueue_t *rq2)
1712 __releases(rq1->lock)
1713 __releases(rq2->lock)
1714{
1715 spin_unlock(&rq1->lock);
1716 if (rq1 != rq2)
1717 spin_unlock(&rq2->lock);
1718 else
1719 __release(rq2->lock);
1720}
1721
1722/*
1723 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1724 */
1725static void double_lock_balance(runqueue_t *this_rq, runqueue_t *busiest)
1726 __releases(this_rq->lock)
1727 __acquires(busiest->lock)
1728 __acquires(this_rq->lock)
1729{
1730 if (unlikely(!spin_trylock(&busiest->lock))) {
e9028b0f 1731 if (busiest->cpu < this_rq->cpu) {
1da177e4
LT
1732 spin_unlock(&this_rq->lock);
1733 spin_lock(&busiest->lock);
1734 spin_lock(&this_rq->lock);
1735 } else
1736 spin_lock(&busiest->lock);
1737 }
1738}
1739
1da177e4
LT
1740/*
1741 * If dest_cpu is allowed for this process, migrate the task to it.
1742 * This is accomplished by forcing the cpu_allowed mask to only
1743 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1744 * the cpu_allowed mask is restored.
1745 */
1746static void sched_migrate_task(task_t *p, int dest_cpu)
1747{
1748 migration_req_t req;
1749 runqueue_t *rq;
1750 unsigned long flags;
1751
1752 rq = task_rq_lock(p, &flags);
1753 if (!cpu_isset(dest_cpu, p->cpus_allowed)
1754 || unlikely(cpu_is_offline(dest_cpu)))
1755 goto out;
1756
1757 /* force the process onto the specified CPU */
1758 if (migrate_task(p, dest_cpu, &req)) {
1759 /* Need to wait for migration thread (might exit: take ref). */
1760 struct task_struct *mt = rq->migration_thread;
1761 get_task_struct(mt);
1762 task_rq_unlock(rq, &flags);
1763 wake_up_process(mt);
1764 put_task_struct(mt);
1765 wait_for_completion(&req.done);
1766 return;
1767 }
1768out:
1769 task_rq_unlock(rq, &flags);
1770}
1771
1772/*
476d139c
NP
1773 * sched_exec - execve() is a valuable balancing opportunity, because at
1774 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
1775 */
1776void sched_exec(void)
1777{
1da177e4 1778 int new_cpu, this_cpu = get_cpu();
476d139c 1779 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 1780 put_cpu();
476d139c
NP
1781 if (new_cpu != this_cpu)
1782 sched_migrate_task(current, new_cpu);
1da177e4
LT
1783}
1784
1785/*
1786 * pull_task - move a task from a remote runqueue to the local runqueue.
1787 * Both runqueues must be locked.
1788 */
858119e1 1789static
1da177e4
LT
1790void pull_task(runqueue_t *src_rq, prio_array_t *src_array, task_t *p,
1791 runqueue_t *this_rq, prio_array_t *this_array, int this_cpu)
1792{
1793 dequeue_task(p, src_array);
a2000572 1794 src_rq->nr_running--;
1da177e4 1795 set_task_cpu(p, this_cpu);
a2000572 1796 this_rq->nr_running++;
1da177e4
LT
1797 enqueue_task(p, this_array);
1798 p->timestamp = (p->timestamp - src_rq->timestamp_last_tick)
1799 + this_rq->timestamp_last_tick;
1800 /*
1801 * Note that idle threads have a prio of MAX_PRIO, for this test
1802 * to be always true for them.
1803 */
1804 if (TASK_PREEMPTS_CURR(p, this_rq))
1805 resched_task(this_rq->curr);
1806}
1807
1808/*
1809 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
1810 */
858119e1 1811static
1da177e4 1812int can_migrate_task(task_t *p, runqueue_t *rq, int this_cpu,
95cdf3b7
IM
1813 struct sched_domain *sd, enum idle_type idle,
1814 int *all_pinned)
1da177e4
LT
1815{
1816 /*
1817 * We do not migrate tasks that are:
1818 * 1) running (obviously), or
1819 * 2) cannot be migrated to this CPU due to cpus_allowed, or
1820 * 3) are cache-hot on their current CPU.
1821 */
1da177e4
LT
1822 if (!cpu_isset(this_cpu, p->cpus_allowed))
1823 return 0;
81026794
NP
1824 *all_pinned = 0;
1825
1826 if (task_running(rq, p))
1827 return 0;
1da177e4
LT
1828
1829 /*
1830 * Aggressive migration if:
cafb20c1 1831 * 1) task is cache cold, or
1da177e4
LT
1832 * 2) too many balance attempts have failed.
1833 */
1834
cafb20c1 1835 if (sd->nr_balance_failed > sd->cache_nice_tries)
1da177e4
LT
1836 return 1;
1837
1838 if (task_hot(p, rq->timestamp_last_tick, sd))
81026794 1839 return 0;
1da177e4
LT
1840 return 1;
1841}
1842
1843/*
1844 * move_tasks tries to move up to max_nr_move tasks from busiest to this_rq,
1845 * as part of a balancing operation within "domain". Returns the number of
1846 * tasks moved.
1847 *
1848 * Called with both runqueues locked.
1849 */
1850static int move_tasks(runqueue_t *this_rq, int this_cpu, runqueue_t *busiest,
1851 unsigned long max_nr_move, struct sched_domain *sd,
81026794 1852 enum idle_type idle, int *all_pinned)
1da177e4
LT
1853{
1854 prio_array_t *array, *dst_array;
1855 struct list_head *head, *curr;
81026794 1856 int idx, pulled = 0, pinned = 0;
1da177e4
LT
1857 task_t *tmp;
1858
81026794 1859 if (max_nr_move == 0)
1da177e4
LT
1860 goto out;
1861
81026794
NP
1862 pinned = 1;
1863
1da177e4
LT
1864 /*
1865 * We first consider expired tasks. Those will likely not be
1866 * executed in the near future, and they are most likely to
1867 * be cache-cold, thus switching CPUs has the least effect
1868 * on them.
1869 */
1870 if (busiest->expired->nr_active) {
1871 array = busiest->expired;
1872 dst_array = this_rq->expired;
1873 } else {
1874 array = busiest->active;
1875 dst_array = this_rq->active;
1876 }
1877
1878new_array:
1879 /* Start searching at priority 0: */
1880 idx = 0;
1881skip_bitmap:
1882 if (!idx)
1883 idx = sched_find_first_bit(array->bitmap);
1884 else
1885 idx = find_next_bit(array->bitmap, MAX_PRIO, idx);
1886 if (idx >= MAX_PRIO) {
1887 if (array == busiest->expired && busiest->active->nr_active) {
1888 array = busiest->active;
1889 dst_array = this_rq->active;
1890 goto new_array;
1891 }
1892 goto out;
1893 }
1894
1895 head = array->queue + idx;
1896 curr = head->prev;
1897skip_queue:
1898 tmp = list_entry(curr, task_t, run_list);
1899
1900 curr = curr->prev;
1901
81026794 1902 if (!can_migrate_task(tmp, busiest, this_cpu, sd, idle, &pinned)) {
1da177e4
LT
1903 if (curr != head)
1904 goto skip_queue;
1905 idx++;
1906 goto skip_bitmap;
1907 }
1908
1909#ifdef CONFIG_SCHEDSTATS
1910 if (task_hot(tmp, busiest->timestamp_last_tick, sd))
1911 schedstat_inc(sd, lb_hot_gained[idle]);
1912#endif
1913
1914 pull_task(busiest, array, tmp, this_rq, dst_array, this_cpu);
1915 pulled++;
1916
1917 /* We only want to steal up to the prescribed number of tasks. */
1918 if (pulled < max_nr_move) {
1919 if (curr != head)
1920 goto skip_queue;
1921 idx++;
1922 goto skip_bitmap;
1923 }
1924out:
1925 /*
1926 * Right now, this is the only place pull_task() is called,
1927 * so we can safely collect pull_task() stats here rather than
1928 * inside pull_task().
1929 */
1930 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
1931
1932 if (all_pinned)
1933 *all_pinned = pinned;
1da177e4
LT
1934 return pulled;
1935}
1936
1937/*
1938 * find_busiest_group finds and returns the busiest CPU group within the
1939 * domain. It calculates and returns the number of tasks which should be
1940 * moved to restore balance via the imbalance parameter.
1941 */
1942static struct sched_group *
1943find_busiest_group(struct sched_domain *sd, int this_cpu,
5969fe06 1944 unsigned long *imbalance, enum idle_type idle, int *sd_idle)
1da177e4
LT
1945{
1946 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
1947 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
0c117f1b 1948 unsigned long max_pull;
7897986b 1949 int load_idx;
1da177e4
LT
1950
1951 max_load = this_load = total_load = total_pwr = 0;
7897986b
NP
1952 if (idle == NOT_IDLE)
1953 load_idx = sd->busy_idx;
1954 else if (idle == NEWLY_IDLE)
1955 load_idx = sd->newidle_idx;
1956 else
1957 load_idx = sd->idle_idx;
1da177e4
LT
1958
1959 do {
1960 unsigned long load;
1961 int local_group;
1962 int i;
1963
1964 local_group = cpu_isset(this_cpu, group->cpumask);
1965
1966 /* Tally up the load of all CPUs in the group */
1967 avg_load = 0;
1968
1969 for_each_cpu_mask(i, group->cpumask) {
5969fe06
NP
1970 if (*sd_idle && !idle_cpu(i))
1971 *sd_idle = 0;
1972
1da177e4
LT
1973 /* Bias balancing toward cpus of our domain */
1974 if (local_group)
a2000572 1975 load = target_load(i, load_idx);
1da177e4 1976 else
a2000572 1977 load = source_load(i, load_idx);
1da177e4
LT
1978
1979 avg_load += load;
1980 }
1981
1982 total_load += avg_load;
1983 total_pwr += group->cpu_power;
1984
1985 /* Adjust by relative CPU power of the group */
1986 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1987
1988 if (local_group) {
1989 this_load = avg_load;
1990 this = group;
1da177e4
LT
1991 } else if (avg_load > max_load) {
1992 max_load = avg_load;
1993 busiest = group;
1994 }
1da177e4
LT
1995 group = group->next;
1996 } while (group != sd->groups);
1997
0c117f1b 1998 if (!busiest || this_load >= max_load || max_load <= SCHED_LOAD_SCALE)
1da177e4
LT
1999 goto out_balanced;
2000
2001 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2002
2003 if (this_load >= avg_load ||
2004 100*max_load <= sd->imbalance_pct*this_load)
2005 goto out_balanced;
2006
2007 /*
2008 * We're trying to get all the cpus to the average_load, so we don't
2009 * want to push ourselves above the average load, nor do we wish to
2010 * reduce the max loaded cpu below the average load, as either of these
2011 * actions would just result in more rebalancing later, and ping-pong
2012 * tasks around. Thus we look for the minimum possible imbalance.
2013 * Negative imbalances (*we* are more loaded than anyone else) will
2014 * be counted as no imbalance for these purposes -- we can't fix that
2015 * by pulling tasks to us. Be careful of negative numbers as they'll
2016 * appear as very large values with unsigned longs.
2017 */
0c117f1b
SS
2018
2019 /* Don't want to pull so many tasks that a group would go idle */
2020 max_pull = min(max_load - avg_load, max_load - SCHED_LOAD_SCALE);
2021
1da177e4 2022 /* How much load to actually move to equalise the imbalance */
0c117f1b 2023 *imbalance = min(max_pull * busiest->cpu_power,
1da177e4
LT
2024 (avg_load - this_load) * this->cpu_power)
2025 / SCHED_LOAD_SCALE;
2026
2027 if (*imbalance < SCHED_LOAD_SCALE) {
2028 unsigned long pwr_now = 0, pwr_move = 0;
2029 unsigned long tmp;
2030
2031 if (max_load - this_load >= SCHED_LOAD_SCALE*2) {
2032 *imbalance = 1;
2033 return busiest;
2034 }
2035
2036 /*
2037 * OK, we don't have enough imbalance to justify moving tasks,
2038 * however we may be able to increase total CPU power used by
2039 * moving them.
2040 */
2041
2042 pwr_now += busiest->cpu_power*min(SCHED_LOAD_SCALE, max_load);
2043 pwr_now += this->cpu_power*min(SCHED_LOAD_SCALE, this_load);
2044 pwr_now /= SCHED_LOAD_SCALE;
2045
2046 /* Amount of load we'd subtract */
2047 tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/busiest->cpu_power;
2048 if (max_load > tmp)
2049 pwr_move += busiest->cpu_power*min(SCHED_LOAD_SCALE,
2050 max_load - tmp);
2051
2052 /* Amount of load we'd add */
2053 if (max_load*busiest->cpu_power <
2054 SCHED_LOAD_SCALE*SCHED_LOAD_SCALE)
2055 tmp = max_load*busiest->cpu_power/this->cpu_power;
2056 else
2057 tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/this->cpu_power;
2058 pwr_move += this->cpu_power*min(SCHED_LOAD_SCALE, this_load + tmp);
2059 pwr_move /= SCHED_LOAD_SCALE;
2060
2061 /* Move if we gain throughput */
2062 if (pwr_move <= pwr_now)
2063 goto out_balanced;
2064
2065 *imbalance = 1;
2066 return busiest;
2067 }
2068
2069 /* Get rid of the scaling factor, rounding down as we divide */
2070 *imbalance = *imbalance / SCHED_LOAD_SCALE;
1da177e4
LT
2071 return busiest;
2072
2073out_balanced:
1da177e4
LT
2074
2075 *imbalance = 0;
2076 return NULL;
2077}
2078
2079/*
2080 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2081 */
b910472d
CK
2082static runqueue_t *find_busiest_queue(struct sched_group *group,
2083 enum idle_type idle)
1da177e4
LT
2084{
2085 unsigned long load, max_load = 0;
2086 runqueue_t *busiest = NULL;
2087 int i;
2088
2089 for_each_cpu_mask(i, group->cpumask) {
a2000572 2090 load = source_load(i, 0);
1da177e4
LT
2091
2092 if (load > max_load) {
2093 max_load = load;
2094 busiest = cpu_rq(i);
2095 }
2096 }
2097
2098 return busiest;
2099}
2100
77391d71
NP
2101/*
2102 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2103 * so long as it is large enough.
2104 */
2105#define MAX_PINNED_INTERVAL 512
2106
1da177e4
LT
2107/*
2108 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2109 * tasks if there is an imbalance.
2110 *
2111 * Called with this_rq unlocked.
2112 */
2113static int load_balance(int this_cpu, runqueue_t *this_rq,
2114 struct sched_domain *sd, enum idle_type idle)
2115{
2116 struct sched_group *group;
2117 runqueue_t *busiest;
2118 unsigned long imbalance;
77391d71 2119 int nr_moved, all_pinned = 0;
81026794 2120 int active_balance = 0;
5969fe06
NP
2121 int sd_idle = 0;
2122
2123 if (idle != NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER)
2124 sd_idle = 1;
1da177e4 2125
1da177e4
LT
2126 schedstat_inc(sd, lb_cnt[idle]);
2127
5969fe06 2128 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle);
1da177e4
LT
2129 if (!group) {
2130 schedstat_inc(sd, lb_nobusyg[idle]);
2131 goto out_balanced;
2132 }
2133
b910472d 2134 busiest = find_busiest_queue(group, idle);
1da177e4
LT
2135 if (!busiest) {
2136 schedstat_inc(sd, lb_nobusyq[idle]);
2137 goto out_balanced;
2138 }
2139
db935dbd 2140 BUG_ON(busiest == this_rq);
1da177e4
LT
2141
2142 schedstat_add(sd, lb_imbalance[idle], imbalance);
2143
2144 nr_moved = 0;
2145 if (busiest->nr_running > 1) {
2146 /*
2147 * Attempt to move tasks. If find_busiest_group has found
2148 * an imbalance but busiest->nr_running <= 1, the group is
2149 * still unbalanced. nr_moved simply stays zero, so it is
2150 * correctly treated as an imbalance.
2151 */
e17224bf 2152 double_rq_lock(this_rq, busiest);
1da177e4 2153 nr_moved = move_tasks(this_rq, this_cpu, busiest,
d6d5cfaf 2154 imbalance, sd, idle, &all_pinned);
e17224bf 2155 double_rq_unlock(this_rq, busiest);
81026794
NP
2156
2157 /* All tasks on this runqueue were pinned by CPU affinity */
2158 if (unlikely(all_pinned))
2159 goto out_balanced;
1da177e4 2160 }
81026794 2161
1da177e4
LT
2162 if (!nr_moved) {
2163 schedstat_inc(sd, lb_failed[idle]);
2164 sd->nr_balance_failed++;
2165
2166 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4
LT
2167
2168 spin_lock(&busiest->lock);
fa3b6ddc
SS
2169
2170 /* don't kick the migration_thread, if the curr
2171 * task on busiest cpu can't be moved to this_cpu
2172 */
2173 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2174 spin_unlock(&busiest->lock);
2175 all_pinned = 1;
2176 goto out_one_pinned;
2177 }
2178
1da177e4
LT
2179 if (!busiest->active_balance) {
2180 busiest->active_balance = 1;
2181 busiest->push_cpu = this_cpu;
81026794 2182 active_balance = 1;
1da177e4
LT
2183 }
2184 spin_unlock(&busiest->lock);
81026794 2185 if (active_balance)
1da177e4
LT
2186 wake_up_process(busiest->migration_thread);
2187
2188 /*
2189 * We've kicked active balancing, reset the failure
2190 * counter.
2191 */
39507451 2192 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 2193 }
81026794 2194 } else
1da177e4
LT
2195 sd->nr_balance_failed = 0;
2196
81026794 2197 if (likely(!active_balance)) {
1da177e4
LT
2198 /* We were unbalanced, so reset the balancing interval */
2199 sd->balance_interval = sd->min_interval;
81026794
NP
2200 } else {
2201 /*
2202 * If we've begun active balancing, start to back off. This
2203 * case may not be covered by the all_pinned logic if there
2204 * is only 1 task on the busy runqueue (because we don't call
2205 * move_tasks).
2206 */
2207 if (sd->balance_interval < sd->max_interval)
2208 sd->balance_interval *= 2;
1da177e4
LT
2209 }
2210
5969fe06
NP
2211 if (!nr_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2212 return -1;
1da177e4
LT
2213 return nr_moved;
2214
2215out_balanced:
1da177e4
LT
2216 schedstat_inc(sd, lb_balanced[idle]);
2217
16cfb1c0 2218 sd->nr_balance_failed = 0;
fa3b6ddc
SS
2219
2220out_one_pinned:
1da177e4 2221 /* tune up the balancing interval */
77391d71
NP
2222 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2223 (sd->balance_interval < sd->max_interval))
1da177e4
LT
2224 sd->balance_interval *= 2;
2225
5969fe06
NP
2226 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2227 return -1;
1da177e4
LT
2228 return 0;
2229}
2230
2231/*
2232 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2233 * tasks if there is an imbalance.
2234 *
2235 * Called from schedule when this_rq is about to become idle (NEWLY_IDLE).
2236 * this_rq is locked.
2237 */
2238static int load_balance_newidle(int this_cpu, runqueue_t *this_rq,
2239 struct sched_domain *sd)
2240{
2241 struct sched_group *group;
2242 runqueue_t *busiest = NULL;
2243 unsigned long imbalance;
2244 int nr_moved = 0;
5969fe06
NP
2245 int sd_idle = 0;
2246
2247 if (sd->flags & SD_SHARE_CPUPOWER)
2248 sd_idle = 1;
1da177e4
LT
2249
2250 schedstat_inc(sd, lb_cnt[NEWLY_IDLE]);
5969fe06 2251 group = find_busiest_group(sd, this_cpu, &imbalance, NEWLY_IDLE, &sd_idle);
1da177e4 2252 if (!group) {
1da177e4 2253 schedstat_inc(sd, lb_nobusyg[NEWLY_IDLE]);
16cfb1c0 2254 goto out_balanced;
1da177e4
LT
2255 }
2256
b910472d 2257 busiest = find_busiest_queue(group, NEWLY_IDLE);
db935dbd 2258 if (!busiest) {
1da177e4 2259 schedstat_inc(sd, lb_nobusyq[NEWLY_IDLE]);
16cfb1c0 2260 goto out_balanced;
1da177e4
LT
2261 }
2262
db935dbd
NP
2263 BUG_ON(busiest == this_rq);
2264
1da177e4 2265 schedstat_add(sd, lb_imbalance[NEWLY_IDLE], imbalance);
d6d5cfaf
NP
2266
2267 nr_moved = 0;
2268 if (busiest->nr_running > 1) {
2269 /* Attempt to move tasks */
2270 double_lock_balance(this_rq, busiest);
2271 nr_moved = move_tasks(this_rq, this_cpu, busiest,
81026794 2272 imbalance, sd, NEWLY_IDLE, NULL);
d6d5cfaf
NP
2273 spin_unlock(&busiest->lock);
2274 }
2275
5969fe06 2276 if (!nr_moved) {
1da177e4 2277 schedstat_inc(sd, lb_failed[NEWLY_IDLE]);
5969fe06
NP
2278 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2279 return -1;
2280 } else
16cfb1c0 2281 sd->nr_balance_failed = 0;
1da177e4 2282
1da177e4 2283 return nr_moved;
16cfb1c0
NP
2284
2285out_balanced:
2286 schedstat_inc(sd, lb_balanced[NEWLY_IDLE]);
5969fe06
NP
2287 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2288 return -1;
16cfb1c0
NP
2289 sd->nr_balance_failed = 0;
2290 return 0;
1da177e4
LT
2291}
2292
2293/*
2294 * idle_balance is called by schedule() if this_cpu is about to become
2295 * idle. Attempts to pull tasks from other CPUs.
2296 */
858119e1 2297static void idle_balance(int this_cpu, runqueue_t *this_rq)
1da177e4
LT
2298{
2299 struct sched_domain *sd;
2300
2301 for_each_domain(this_cpu, sd) {
2302 if (sd->flags & SD_BALANCE_NEWIDLE) {
2303 if (load_balance_newidle(this_cpu, this_rq, sd)) {
2304 /* We've pulled tasks over so stop searching */
2305 break;
2306 }
2307 }
2308 }
2309}
2310
2311/*
2312 * active_load_balance is run by migration threads. It pushes running tasks
2313 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2314 * running on each physical CPU where possible, and avoids physical /
2315 * logical imbalances.
2316 *
2317 * Called with busiest_rq locked.
2318 */
2319static void active_load_balance(runqueue_t *busiest_rq, int busiest_cpu)
2320{
2321 struct sched_domain *sd;
1da177e4 2322 runqueue_t *target_rq;
39507451
NP
2323 int target_cpu = busiest_rq->push_cpu;
2324
2325 if (busiest_rq->nr_running <= 1)
2326 /* no task to move */
2327 return;
2328
2329 target_rq = cpu_rq(target_cpu);
1da177e4
LT
2330
2331 /*
39507451
NP
2332 * This condition is "impossible", if it occurs
2333 * we need to fix it. Originally reported by
2334 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 2335 */
39507451 2336 BUG_ON(busiest_rq == target_rq);
1da177e4 2337
39507451
NP
2338 /* move a task from busiest_rq to target_rq */
2339 double_lock_balance(busiest_rq, target_rq);
2340
2341 /* Search for an sd spanning us and the target CPU. */
2342 for_each_domain(target_cpu, sd)
2343 if ((sd->flags & SD_LOAD_BALANCE) &&
2344 cpu_isset(busiest_cpu, sd->span))
2345 break;
2346
2347 if (unlikely(sd == NULL))
2348 goto out;
2349
2350 schedstat_inc(sd, alb_cnt);
2351
2352 if (move_tasks(target_rq, target_cpu, busiest_rq, 1, sd, SCHED_IDLE, NULL))
2353 schedstat_inc(sd, alb_pushed);
2354 else
2355 schedstat_inc(sd, alb_failed);
2356out:
2357 spin_unlock(&target_rq->lock);
1da177e4
LT
2358}
2359
2360/*
2361 * rebalance_tick will get called every timer tick, on every CPU.
2362 *
2363 * It checks each scheduling domain to see if it is due to be balanced,
2364 * and initiates a balancing operation if so.
2365 *
2366 * Balancing parameters are set up in arch_init_sched_domains.
2367 */
2368
2369/* Don't have all balancing operations going off at once */
2370#define CPU_OFFSET(cpu) (HZ * cpu / NR_CPUS)
2371
2372static void rebalance_tick(int this_cpu, runqueue_t *this_rq,
2373 enum idle_type idle)
2374{
2375 unsigned long old_load, this_load;
2376 unsigned long j = jiffies + CPU_OFFSET(this_cpu);
2377 struct sched_domain *sd;
7897986b 2378 int i;
1da177e4 2379
1da177e4 2380 this_load = this_rq->nr_running * SCHED_LOAD_SCALE;
7897986b
NP
2381 /* Update our load */
2382 for (i = 0; i < 3; i++) {
2383 unsigned long new_load = this_load;
2384 int scale = 1 << i;
2385 old_load = this_rq->cpu_load[i];
2386 /*
2387 * Round up the averaging division if load is increasing. This
2388 * prevents us from getting stuck on 9 if the load is 10, for
2389 * example.
2390 */
2391 if (new_load > old_load)
2392 new_load += scale-1;
2393 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) / scale;
2394 }
1da177e4
LT
2395
2396 for_each_domain(this_cpu, sd) {
2397 unsigned long interval;
2398
2399 if (!(sd->flags & SD_LOAD_BALANCE))
2400 continue;
2401
2402 interval = sd->balance_interval;
2403 if (idle != SCHED_IDLE)
2404 interval *= sd->busy_factor;
2405
2406 /* scale ms to jiffies */
2407 interval = msecs_to_jiffies(interval);
2408 if (unlikely(!interval))
2409 interval = 1;
2410
2411 if (j - sd->last_balance >= interval) {
2412 if (load_balance(this_cpu, this_rq, sd, idle)) {
fa3b6ddc
SS
2413 /*
2414 * We've pulled tasks over so either we're no
5969fe06
NP
2415 * longer idle, or one of our SMT siblings is
2416 * not idle.
2417 */
1da177e4
LT
2418 idle = NOT_IDLE;
2419 }
2420 sd->last_balance += interval;
2421 }
2422 }
2423}
2424#else
2425/*
2426 * on UP we do not need to balance between CPUs:
2427 */
2428static inline void rebalance_tick(int cpu, runqueue_t *rq, enum idle_type idle)
2429{
2430}
2431static inline void idle_balance(int cpu, runqueue_t *rq)
2432{
2433}
2434#endif
2435
2436static inline int wake_priority_sleeper(runqueue_t *rq)
2437{
2438 int ret = 0;
2439#ifdef CONFIG_SCHED_SMT
2440 spin_lock(&rq->lock);
2441 /*
2442 * If an SMT sibling task has been put to sleep for priority
2443 * reasons reschedule the idle task to see if it can now run.
2444 */
2445 if (rq->nr_running) {
2446 resched_task(rq->idle);
2447 ret = 1;
2448 }
2449 spin_unlock(&rq->lock);
2450#endif
2451 return ret;
2452}
2453
2454DEFINE_PER_CPU(struct kernel_stat, kstat);
2455
2456EXPORT_PER_CPU_SYMBOL(kstat);
2457
2458/*
2459 * This is called on clock ticks and on context switches.
2460 * Bank in p->sched_time the ns elapsed since the last tick or switch.
2461 */
2462static inline void update_cpu_clock(task_t *p, runqueue_t *rq,
2463 unsigned long long now)
2464{
2465 unsigned long long last = max(p->timestamp, rq->timestamp_last_tick);
2466 p->sched_time += now - last;
2467}
2468
2469/*
2470 * Return current->sched_time plus any more ns on the sched_clock
2471 * that have not yet been banked.
2472 */
2473unsigned long long current_sched_time(const task_t *tsk)
2474{
2475 unsigned long long ns;
2476 unsigned long flags;
2477 local_irq_save(flags);
2478 ns = max(tsk->timestamp, task_rq(tsk)->timestamp_last_tick);
2479 ns = tsk->sched_time + (sched_clock() - ns);
2480 local_irq_restore(flags);
2481 return ns;
2482}
2483
2484/*
2485 * We place interactive tasks back into the active array, if possible.
2486 *
2487 * To guarantee that this does not starve expired tasks we ignore the
2488 * interactivity of a task if the first expired task had to wait more
2489 * than a 'reasonable' amount of time. This deadline timeout is
2490 * load-dependent, as the frequency of array switched decreases with
2491 * increasing number of running tasks. We also ignore the interactivity
2492 * if a better static_prio task has expired:
2493 */
2494#define EXPIRED_STARVING(rq) \
2495 ((STARVATION_LIMIT && ((rq)->expired_timestamp && \
2496 (jiffies - (rq)->expired_timestamp >= \
2497 STARVATION_LIMIT * ((rq)->nr_running) + 1))) || \
2498 ((rq)->curr->static_prio > (rq)->best_expired_prio))
2499
2500/*
2501 * Account user cpu time to a process.
2502 * @p: the process that the cpu time gets accounted to
2503 * @hardirq_offset: the offset to subtract from hardirq_count()
2504 * @cputime: the cpu time spent in user space since the last update
2505 */
2506void account_user_time(struct task_struct *p, cputime_t cputime)
2507{
2508 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2509 cputime64_t tmp;
2510
2511 p->utime = cputime_add(p->utime, cputime);
2512
2513 /* Add user time to cpustat. */
2514 tmp = cputime_to_cputime64(cputime);
2515 if (TASK_NICE(p) > 0)
2516 cpustat->nice = cputime64_add(cpustat->nice, tmp);
2517 else
2518 cpustat->user = cputime64_add(cpustat->user, tmp);
2519}
2520
2521/*
2522 * Account system cpu time to a process.
2523 * @p: the process that the cpu time gets accounted to
2524 * @hardirq_offset: the offset to subtract from hardirq_count()
2525 * @cputime: the cpu time spent in kernel space since the last update
2526 */
2527void account_system_time(struct task_struct *p, int hardirq_offset,
2528 cputime_t cputime)
2529{
2530 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2531 runqueue_t *rq = this_rq();
2532 cputime64_t tmp;
2533
2534 p->stime = cputime_add(p->stime, cputime);
2535
2536 /* Add system time to cpustat. */
2537 tmp = cputime_to_cputime64(cputime);
2538 if (hardirq_count() - hardirq_offset)
2539 cpustat->irq = cputime64_add(cpustat->irq, tmp);
2540 else if (softirq_count())
2541 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
2542 else if (p != rq->idle)
2543 cpustat->system = cputime64_add(cpustat->system, tmp);
2544 else if (atomic_read(&rq->nr_iowait) > 0)
2545 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
2546 else
2547 cpustat->idle = cputime64_add(cpustat->idle, tmp);
2548 /* Account for system time used */
2549 acct_update_integrals(p);
1da177e4
LT
2550}
2551
2552/*
2553 * Account for involuntary wait time.
2554 * @p: the process from which the cpu time has been stolen
2555 * @steal: the cpu time spent in involuntary wait
2556 */
2557void account_steal_time(struct task_struct *p, cputime_t steal)
2558{
2559 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2560 cputime64_t tmp = cputime_to_cputime64(steal);
2561 runqueue_t *rq = this_rq();
2562
2563 if (p == rq->idle) {
2564 p->stime = cputime_add(p->stime, steal);
2565 if (atomic_read(&rq->nr_iowait) > 0)
2566 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
2567 else
2568 cpustat->idle = cputime64_add(cpustat->idle, tmp);
2569 } else
2570 cpustat->steal = cputime64_add(cpustat->steal, tmp);
2571}
2572
2573/*
2574 * This function gets called by the timer code, with HZ frequency.
2575 * We call it with interrupts disabled.
2576 *
2577 * It also gets called by the fork code, when changing the parent's
2578 * timeslices.
2579 */
2580void scheduler_tick(void)
2581{
2582 int cpu = smp_processor_id();
2583 runqueue_t *rq = this_rq();
2584 task_t *p = current;
2585 unsigned long long now = sched_clock();
2586
2587 update_cpu_clock(p, rq, now);
2588
2589 rq->timestamp_last_tick = now;
2590
2591 if (p == rq->idle) {
2592 if (wake_priority_sleeper(rq))
2593 goto out;
2594 rebalance_tick(cpu, rq, SCHED_IDLE);
2595 return;
2596 }
2597
2598 /* Task might have expired already, but not scheduled off yet */
2599 if (p->array != rq->active) {
2600 set_tsk_need_resched(p);
2601 goto out;
2602 }
2603 spin_lock(&rq->lock);
2604 /*
2605 * The task was running during this tick - update the
2606 * time slice counter. Note: we do not update a thread's
2607 * priority until it either goes to sleep or uses up its
2608 * timeslice. This makes it possible for interactive tasks
2609 * to use up their timeslices at their highest priority levels.
2610 */
2611 if (rt_task(p)) {
2612 /*
2613 * RR tasks need a special form of timeslice management.
2614 * FIFO tasks have no timeslices.
2615 */
2616 if ((p->policy == SCHED_RR) && !--p->time_slice) {
2617 p->time_slice = task_timeslice(p);
2618 p->first_time_slice = 0;
2619 set_tsk_need_resched(p);
2620
2621 /* put it at the end of the queue: */
2622 requeue_task(p, rq->active);
2623 }
2624 goto out_unlock;
2625 }
2626 if (!--p->time_slice) {
2627 dequeue_task(p, rq->active);
2628 set_tsk_need_resched(p);
2629 p->prio = effective_prio(p);
2630 p->time_slice = task_timeslice(p);
2631 p->first_time_slice = 0;
2632
2633 if (!rq->expired_timestamp)
2634 rq->expired_timestamp = jiffies;
2635 if (!TASK_INTERACTIVE(p) || EXPIRED_STARVING(rq)) {
2636 enqueue_task(p, rq->expired);
2637 if (p->static_prio < rq->best_expired_prio)
2638 rq->best_expired_prio = p->static_prio;
2639 } else
2640 enqueue_task(p, rq->active);
2641 } else {
2642 /*
2643 * Prevent a too long timeslice allowing a task to monopolize
2644 * the CPU. We do this by splitting up the timeslice into
2645 * smaller pieces.
2646 *
2647 * Note: this does not mean the task's timeslices expire or
2648 * get lost in any way, they just might be preempted by
2649 * another task of equal priority. (one with higher
2650 * priority would have preempted this task already.) We
2651 * requeue this task to the end of the list on this priority
2652 * level, which is in essence a round-robin of tasks with
2653 * equal priority.
2654 *
2655 * This only applies to tasks in the interactive
2656 * delta range with at least TIMESLICE_GRANULARITY to requeue.
2657 */
2658 if (TASK_INTERACTIVE(p) && !((task_timeslice(p) -
2659 p->time_slice) % TIMESLICE_GRANULARITY(p)) &&
2660 (p->time_slice >= TIMESLICE_GRANULARITY(p)) &&
2661 (p->array == rq->active)) {
2662
2663 requeue_task(p, rq->active);
2664 set_tsk_need_resched(p);
2665 }
2666 }
2667out_unlock:
2668 spin_unlock(&rq->lock);
2669out:
2670 rebalance_tick(cpu, rq, NOT_IDLE);
2671}
2672
2673#ifdef CONFIG_SCHED_SMT
fc38ed75
CK
2674static inline void wakeup_busy_runqueue(runqueue_t *rq)
2675{
2676 /* If an SMT runqueue is sleeping due to priority reasons wake it up */
2677 if (rq->curr == rq->idle && rq->nr_running)
2678 resched_task(rq->idle);
2679}
2680
858119e1 2681static void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq)
1da177e4 2682{
41c7ce9a 2683 struct sched_domain *tmp, *sd = NULL;
1da177e4
LT
2684 cpumask_t sibling_map;
2685 int i;
2686
41c7ce9a
NP
2687 for_each_domain(this_cpu, tmp)
2688 if (tmp->flags & SD_SHARE_CPUPOWER)
2689 sd = tmp;
2690
2691 if (!sd)
1da177e4
LT
2692 return;
2693
2694 /*
2695 * Unlock the current runqueue because we have to lock in
2696 * CPU order to avoid deadlocks. Caller knows that we might
2697 * unlock. We keep IRQs disabled.
2698 */
2699 spin_unlock(&this_rq->lock);
2700
2701 sibling_map = sd->span;
2702
2703 for_each_cpu_mask(i, sibling_map)
2704 spin_lock(&cpu_rq(i)->lock);
2705 /*
2706 * We clear this CPU from the mask. This both simplifies the
2707 * inner loop and keps this_rq locked when we exit:
2708 */
2709 cpu_clear(this_cpu, sibling_map);
2710
2711 for_each_cpu_mask(i, sibling_map) {
2712 runqueue_t *smt_rq = cpu_rq(i);
2713
fc38ed75 2714 wakeup_busy_runqueue(smt_rq);
1da177e4
LT
2715 }
2716
2717 for_each_cpu_mask(i, sibling_map)
2718 spin_unlock(&cpu_rq(i)->lock);
2719 /*
2720 * We exit with this_cpu's rq still held and IRQs
2721 * still disabled:
2722 */
2723}
2724
67f9a619
IM
2725/*
2726 * number of 'lost' timeslices this task wont be able to fully
2727 * utilize, if another task runs on a sibling. This models the
2728 * slowdown effect of other tasks running on siblings:
2729 */
2730static inline unsigned long smt_slice(task_t *p, struct sched_domain *sd)
2731{
2732 return p->time_slice * (100 - sd->per_cpu_gain) / 100;
2733}
2734
858119e1 2735static int dependent_sleeper(int this_cpu, runqueue_t *this_rq)
1da177e4 2736{
41c7ce9a 2737 struct sched_domain *tmp, *sd = NULL;
1da177e4
LT
2738 cpumask_t sibling_map;
2739 prio_array_t *array;
2740 int ret = 0, i;
2741 task_t *p;
2742
41c7ce9a
NP
2743 for_each_domain(this_cpu, tmp)
2744 if (tmp->flags & SD_SHARE_CPUPOWER)
2745 sd = tmp;
2746
2747 if (!sd)
1da177e4
LT
2748 return 0;
2749
2750 /*
2751 * The same locking rules and details apply as for
2752 * wake_sleeping_dependent():
2753 */
2754 spin_unlock(&this_rq->lock);
2755 sibling_map = sd->span;
2756 for_each_cpu_mask(i, sibling_map)
2757 spin_lock(&cpu_rq(i)->lock);
2758 cpu_clear(this_cpu, sibling_map);
2759
2760 /*
2761 * Establish next task to be run - it might have gone away because
2762 * we released the runqueue lock above:
2763 */
2764 if (!this_rq->nr_running)
2765 goto out_unlock;
2766 array = this_rq->active;
2767 if (!array->nr_active)
2768 array = this_rq->expired;
2769 BUG_ON(!array->nr_active);
2770
2771 p = list_entry(array->queue[sched_find_first_bit(array->bitmap)].next,
2772 task_t, run_list);
2773
2774 for_each_cpu_mask(i, sibling_map) {
2775 runqueue_t *smt_rq = cpu_rq(i);
2776 task_t *smt_curr = smt_rq->curr;
2777
fc38ed75
CK
2778 /* Kernel threads do not participate in dependent sleeping */
2779 if (!p->mm || !smt_curr->mm || rt_task(p))
2780 goto check_smt_task;
2781
1da177e4
LT
2782 /*
2783 * If a user task with lower static priority than the
2784 * running task on the SMT sibling is trying to schedule,
2785 * delay it till there is proportionately less timeslice
2786 * left of the sibling task to prevent a lower priority
2787 * task from using an unfair proportion of the
2788 * physical cpu's resources. -ck
2789 */
fc38ed75
CK
2790 if (rt_task(smt_curr)) {
2791 /*
2792 * With real time tasks we run non-rt tasks only
2793 * per_cpu_gain% of the time.
2794 */
2795 if ((jiffies % DEF_TIMESLICE) >
2796 (sd->per_cpu_gain * DEF_TIMESLICE / 100))
2797 ret = 1;
2798 } else
67f9a619
IM
2799 if (smt_curr->static_prio < p->static_prio &&
2800 !TASK_PREEMPTS_CURR(p, smt_rq) &&
2801 smt_slice(smt_curr, sd) > task_timeslice(p))
fc38ed75
CK
2802 ret = 1;
2803
2804check_smt_task:
2805 if ((!smt_curr->mm && smt_curr != smt_rq->idle) ||
2806 rt_task(smt_curr))
2807 continue;
2808 if (!p->mm) {
2809 wakeup_busy_runqueue(smt_rq);
2810 continue;
2811 }
1da177e4
LT
2812
2813 /*
fc38ed75
CK
2814 * Reschedule a lower priority task on the SMT sibling for
2815 * it to be put to sleep, or wake it up if it has been put to
2816 * sleep for priority reasons to see if it should run now.
1da177e4 2817 */
fc38ed75
CK
2818 if (rt_task(p)) {
2819 if ((jiffies % DEF_TIMESLICE) >
2820 (sd->per_cpu_gain * DEF_TIMESLICE / 100))
2821 resched_task(smt_curr);
2822 } else {
67f9a619
IM
2823 if (TASK_PREEMPTS_CURR(p, smt_rq) &&
2824 smt_slice(p, sd) > task_timeslice(smt_curr))
fc38ed75
CK
2825 resched_task(smt_curr);
2826 else
2827 wakeup_busy_runqueue(smt_rq);
2828 }
1da177e4
LT
2829 }
2830out_unlock:
2831 for_each_cpu_mask(i, sibling_map)
2832 spin_unlock(&cpu_rq(i)->lock);
2833 return ret;
2834}
2835#else
2836static inline void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq)
2837{
2838}
2839
2840static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq)
2841{
2842 return 0;
2843}
2844#endif
2845
2846#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
2847
2848void fastcall add_preempt_count(int val)
2849{
2850 /*
2851 * Underflow?
2852 */
be5b4fbd 2853 BUG_ON((preempt_count() < 0));
1da177e4
LT
2854 preempt_count() += val;
2855 /*
2856 * Spinlock count overflowing soon?
2857 */
2858 BUG_ON((preempt_count() & PREEMPT_MASK) >= PREEMPT_MASK-10);
2859}
2860EXPORT_SYMBOL(add_preempt_count);
2861
2862void fastcall sub_preempt_count(int val)
2863{
2864 /*
2865 * Underflow?
2866 */
2867 BUG_ON(val > preempt_count());
2868 /*
2869 * Is the spinlock portion underflowing?
2870 */
2871 BUG_ON((val < PREEMPT_MASK) && !(preempt_count() & PREEMPT_MASK));
2872 preempt_count() -= val;
2873}
2874EXPORT_SYMBOL(sub_preempt_count);
2875
2876#endif
2877
3dee386e
CK
2878static inline int interactive_sleep(enum sleep_type sleep_type)
2879{
2880 return (sleep_type == SLEEP_INTERACTIVE ||
2881 sleep_type == SLEEP_INTERRUPTED);
2882}
2883
1da177e4
LT
2884/*
2885 * schedule() is the main scheduler function.
2886 */
2887asmlinkage void __sched schedule(void)
2888{
2889 long *switch_count;
2890 task_t *prev, *next;
2891 runqueue_t *rq;
2892 prio_array_t *array;
2893 struct list_head *queue;
2894 unsigned long long now;
2895 unsigned long run_time;
a3464a10 2896 int cpu, idx, new_prio;
1da177e4
LT
2897
2898 /*
2899 * Test if we are atomic. Since do_exit() needs to call into
2900 * schedule() atomically, we ignore that path for now.
2901 * Otherwise, whine if we are scheduling when we should not be.
2902 */
77e4bfbc
AM
2903 if (unlikely(in_atomic() && !current->exit_state)) {
2904 printk(KERN_ERR "BUG: scheduling while atomic: "
2905 "%s/0x%08x/%d\n",
2906 current->comm, preempt_count(), current->pid);
2907 dump_stack();
1da177e4
LT
2908 }
2909 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2910
2911need_resched:
2912 preempt_disable();
2913 prev = current;
2914 release_kernel_lock(prev);
2915need_resched_nonpreemptible:
2916 rq = this_rq();
2917
2918 /*
2919 * The idle thread is not allowed to schedule!
2920 * Remove this check after it has been exercised a bit.
2921 */
2922 if (unlikely(prev == rq->idle) && prev->state != TASK_RUNNING) {
2923 printk(KERN_ERR "bad: scheduling from the idle thread!\n");
2924 dump_stack();
2925 }
2926
2927 schedstat_inc(rq, sched_cnt);
2928 now = sched_clock();
238628ed 2929 if (likely((long long)(now - prev->timestamp) < NS_MAX_SLEEP_AVG)) {
1da177e4 2930 run_time = now - prev->timestamp;
238628ed 2931 if (unlikely((long long)(now - prev->timestamp) < 0))
1da177e4
LT
2932 run_time = 0;
2933 } else
2934 run_time = NS_MAX_SLEEP_AVG;
2935
2936 /*
2937 * Tasks charged proportionately less run_time at high sleep_avg to
2938 * delay them losing their interactive status
2939 */
2940 run_time /= (CURRENT_BONUS(prev) ? : 1);
2941
2942 spin_lock_irq(&rq->lock);
2943
2944 if (unlikely(prev->flags & PF_DEAD))
2945 prev->state = EXIT_DEAD;
2946
2947 switch_count = &prev->nivcsw;
2948 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2949 switch_count = &prev->nvcsw;
2950 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
2951 unlikely(signal_pending(prev))))
2952 prev->state = TASK_RUNNING;
2953 else {
2954 if (prev->state == TASK_UNINTERRUPTIBLE)
2955 rq->nr_uninterruptible++;
2956 deactivate_task(prev, rq);
2957 }
2958 }
2959
2960 cpu = smp_processor_id();
2961 if (unlikely(!rq->nr_running)) {
2962go_idle:
2963 idle_balance(cpu, rq);
2964 if (!rq->nr_running) {
2965 next = rq->idle;
2966 rq->expired_timestamp = 0;
2967 wake_sleeping_dependent(cpu, rq);
2968 /*
2969 * wake_sleeping_dependent() might have released
2970 * the runqueue, so break out if we got new
2971 * tasks meanwhile:
2972 */
2973 if (!rq->nr_running)
2974 goto switch_tasks;
2975 }
2976 } else {
2977 if (dependent_sleeper(cpu, rq)) {
2978 next = rq->idle;
2979 goto switch_tasks;
2980 }
2981 /*
2982 * dependent_sleeper() releases and reacquires the runqueue
2983 * lock, hence go into the idle loop if the rq went
2984 * empty meanwhile:
2985 */
2986 if (unlikely(!rq->nr_running))
2987 goto go_idle;
2988 }
2989
2990 array = rq->active;
2991 if (unlikely(!array->nr_active)) {
2992 /*
2993 * Switch the active and expired arrays.
2994 */
2995 schedstat_inc(rq, sched_switch);
2996 rq->active = rq->expired;
2997 rq->expired = array;
2998 array = rq->active;
2999 rq->expired_timestamp = 0;
3000 rq->best_expired_prio = MAX_PRIO;
3001 }
3002
3003 idx = sched_find_first_bit(array->bitmap);
3004 queue = array->queue + idx;
3005 next = list_entry(queue->next, task_t, run_list);
3006
3dee386e 3007 if (!rt_task(next) && interactive_sleep(next->sleep_type)) {
1da177e4 3008 unsigned long long delta = now - next->timestamp;
238628ed 3009 if (unlikely((long long)(now - next->timestamp) < 0))
1da177e4
LT
3010 delta = 0;
3011
3dee386e 3012 if (next->sleep_type == SLEEP_INTERACTIVE)
1da177e4
LT
3013 delta = delta * (ON_RUNQUEUE_WEIGHT * 128 / 100) / 128;
3014
3015 array = next->array;
a3464a10
CS
3016 new_prio = recalc_task_prio(next, next->timestamp + delta);
3017
3018 if (unlikely(next->prio != new_prio)) {
3019 dequeue_task(next, array);
3020 next->prio = new_prio;
3021 enqueue_task(next, array);
3022 } else
3023 requeue_task(next, array);
1da177e4 3024 }
3dee386e 3025 next->sleep_type = SLEEP_NORMAL;
1da177e4
LT
3026switch_tasks:
3027 if (next == rq->idle)
3028 schedstat_inc(rq, sched_goidle);
3029 prefetch(next);
383f2835 3030 prefetch_stack(next);
1da177e4
LT
3031 clear_tsk_need_resched(prev);
3032 rcu_qsctr_inc(task_cpu(prev));
3033
3034 update_cpu_clock(prev, rq, now);
3035
3036 prev->sleep_avg -= run_time;
3037 if ((long)prev->sleep_avg <= 0)
3038 prev->sleep_avg = 0;
3039 prev->timestamp = prev->last_ran = now;
3040
3041 sched_info_switch(prev, next);
3042 if (likely(prev != next)) {
3043 next->timestamp = now;
3044 rq->nr_switches++;
3045 rq->curr = next;
3046 ++*switch_count;
3047
4866cde0 3048 prepare_task_switch(rq, next);
1da177e4
LT
3049 prev = context_switch(rq, prev, next);
3050 barrier();
4866cde0
NP
3051 /*
3052 * this_rq must be evaluated again because prev may have moved
3053 * CPUs since it called schedule(), thus the 'rq' on its stack
3054 * frame will be invalid.
3055 */
3056 finish_task_switch(this_rq(), prev);
1da177e4
LT
3057 } else
3058 spin_unlock_irq(&rq->lock);
3059
3060 prev = current;
3061 if (unlikely(reacquire_kernel_lock(prev) < 0))
3062 goto need_resched_nonpreemptible;
3063 preempt_enable_no_resched();
3064 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3065 goto need_resched;
3066}
3067
3068EXPORT_SYMBOL(schedule);
3069
3070#ifdef CONFIG_PREEMPT
3071/*
3072 * this is is the entry point to schedule() from in-kernel preemption
3073 * off of preempt_enable. Kernel preemptions off return from interrupt
3074 * occur there and call schedule directly.
3075 */
3076asmlinkage void __sched preempt_schedule(void)
3077{
3078 struct thread_info *ti = current_thread_info();
3079#ifdef CONFIG_PREEMPT_BKL
3080 struct task_struct *task = current;
3081 int saved_lock_depth;
3082#endif
3083 /*
3084 * If there is a non-zero preempt_count or interrupts are disabled,
3085 * we do not want to preempt the current task. Just return..
3086 */
3087 if (unlikely(ti->preempt_count || irqs_disabled()))
3088 return;
3089
3090need_resched:
3091 add_preempt_count(PREEMPT_ACTIVE);
3092 /*
3093 * We keep the big kernel semaphore locked, but we
3094 * clear ->lock_depth so that schedule() doesnt
3095 * auto-release the semaphore:
3096 */
3097#ifdef CONFIG_PREEMPT_BKL
3098 saved_lock_depth = task->lock_depth;
3099 task->lock_depth = -1;
3100#endif
3101 schedule();
3102#ifdef CONFIG_PREEMPT_BKL
3103 task->lock_depth = saved_lock_depth;
3104#endif
3105 sub_preempt_count(PREEMPT_ACTIVE);
3106
3107 /* we could miss a preemption opportunity between schedule and now */
3108 barrier();
3109 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3110 goto need_resched;
3111}
3112
3113EXPORT_SYMBOL(preempt_schedule);
3114
3115/*
3116 * this is is the entry point to schedule() from kernel preemption
3117 * off of irq context.
3118 * Note, that this is called and return with irqs disabled. This will
3119 * protect us against recursive calling from irq.
3120 */
3121asmlinkage void __sched preempt_schedule_irq(void)
3122{
3123 struct thread_info *ti = current_thread_info();
3124#ifdef CONFIG_PREEMPT_BKL
3125 struct task_struct *task = current;
3126 int saved_lock_depth;
3127#endif
3128 /* Catch callers which need to be fixed*/
3129 BUG_ON(ti->preempt_count || !irqs_disabled());
3130
3131need_resched:
3132 add_preempt_count(PREEMPT_ACTIVE);
3133 /*
3134 * We keep the big kernel semaphore locked, but we
3135 * clear ->lock_depth so that schedule() doesnt
3136 * auto-release the semaphore:
3137 */
3138#ifdef CONFIG_PREEMPT_BKL
3139 saved_lock_depth = task->lock_depth;
3140 task->lock_depth = -1;
3141#endif
3142 local_irq_enable();
3143 schedule();
3144 local_irq_disable();
3145#ifdef CONFIG_PREEMPT_BKL
3146 task->lock_depth = saved_lock_depth;
3147#endif
3148 sub_preempt_count(PREEMPT_ACTIVE);
3149
3150 /* we could miss a preemption opportunity between schedule and now */
3151 barrier();
3152 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3153 goto need_resched;
3154}
3155
3156#endif /* CONFIG_PREEMPT */
3157
95cdf3b7
IM
3158int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3159 void *key)
1da177e4 3160{
c43dc2fd 3161 task_t *p = curr->private;
1da177e4
LT
3162 return try_to_wake_up(p, mode, sync);
3163}
3164
3165EXPORT_SYMBOL(default_wake_function);
3166
3167/*
3168 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3169 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3170 * number) then we wake all the non-exclusive tasks and one exclusive task.
3171 *
3172 * There are circumstances in which we can try to wake a task which has already
3173 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3174 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3175 */
3176static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3177 int nr_exclusive, int sync, void *key)
3178{
3179 struct list_head *tmp, *next;
3180
3181 list_for_each_safe(tmp, next, &q->task_list) {
3182 wait_queue_t *curr;
3183 unsigned flags;
3184 curr = list_entry(tmp, wait_queue_t, task_list);
3185 flags = curr->flags;
3186 if (curr->func(curr, mode, sync, key) &&
3187 (flags & WQ_FLAG_EXCLUSIVE) &&
3188 !--nr_exclusive)
3189 break;
3190 }
3191}
3192
3193/**
3194 * __wake_up - wake up threads blocked on a waitqueue.
3195 * @q: the waitqueue
3196 * @mode: which threads
3197 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 3198 * @key: is directly passed to the wakeup function
1da177e4
LT
3199 */
3200void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 3201 int nr_exclusive, void *key)
1da177e4
LT
3202{
3203 unsigned long flags;
3204
3205 spin_lock_irqsave(&q->lock, flags);
3206 __wake_up_common(q, mode, nr_exclusive, 0, key);
3207 spin_unlock_irqrestore(&q->lock, flags);
3208}
3209
3210EXPORT_SYMBOL(__wake_up);
3211
3212/*
3213 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3214 */
3215void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3216{
3217 __wake_up_common(q, mode, 1, 0, NULL);
3218}
3219
3220/**
67be2dd1 3221 * __wake_up_sync - wake up threads blocked on a waitqueue.
1da177e4
LT
3222 * @q: the waitqueue
3223 * @mode: which threads
3224 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3225 *
3226 * The sync wakeup differs that the waker knows that it will schedule
3227 * away soon, so while the target thread will be woken up, it will not
3228 * be migrated to another CPU - ie. the two threads are 'synchronized'
3229 * with each other. This can prevent needless bouncing between CPUs.
3230 *
3231 * On UP it can prevent extra preemption.
3232 */
95cdf3b7
IM
3233void fastcall
3234__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
1da177e4
LT
3235{
3236 unsigned long flags;
3237 int sync = 1;
3238
3239 if (unlikely(!q))
3240 return;
3241
3242 if (unlikely(!nr_exclusive))
3243 sync = 0;
3244
3245 spin_lock_irqsave(&q->lock, flags);
3246 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3247 spin_unlock_irqrestore(&q->lock, flags);
3248}
3249EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3250
3251void fastcall complete(struct completion *x)
3252{
3253 unsigned long flags;
3254
3255 spin_lock_irqsave(&x->wait.lock, flags);
3256 x->done++;
3257 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3258 1, 0, NULL);
3259 spin_unlock_irqrestore(&x->wait.lock, flags);
3260}
3261EXPORT_SYMBOL(complete);
3262
3263void fastcall complete_all(struct completion *x)
3264{
3265 unsigned long flags;
3266
3267 spin_lock_irqsave(&x->wait.lock, flags);
3268 x->done += UINT_MAX/2;
3269 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3270 0, 0, NULL);
3271 spin_unlock_irqrestore(&x->wait.lock, flags);
3272}
3273EXPORT_SYMBOL(complete_all);
3274
3275void fastcall __sched wait_for_completion(struct completion *x)
3276{
3277 might_sleep();
3278 spin_lock_irq(&x->wait.lock);
3279 if (!x->done) {
3280 DECLARE_WAITQUEUE(wait, current);
3281
3282 wait.flags |= WQ_FLAG_EXCLUSIVE;
3283 __add_wait_queue_tail(&x->wait, &wait);
3284 do {
3285 __set_current_state(TASK_UNINTERRUPTIBLE);
3286 spin_unlock_irq(&x->wait.lock);
3287 schedule();
3288 spin_lock_irq(&x->wait.lock);
3289 } while (!x->done);
3290 __remove_wait_queue(&x->wait, &wait);
3291 }
3292 x->done--;
3293 spin_unlock_irq(&x->wait.lock);
3294}
3295EXPORT_SYMBOL(wait_for_completion);
3296
3297unsigned long fastcall __sched
3298wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3299{
3300 might_sleep();
3301
3302 spin_lock_irq(&x->wait.lock);
3303 if (!x->done) {
3304 DECLARE_WAITQUEUE(wait, current);
3305
3306 wait.flags |= WQ_FLAG_EXCLUSIVE;
3307 __add_wait_queue_tail(&x->wait, &wait);
3308 do {
3309 __set_current_state(TASK_UNINTERRUPTIBLE);
3310 spin_unlock_irq(&x->wait.lock);
3311 timeout = schedule_timeout(timeout);
3312 spin_lock_irq(&x->wait.lock);
3313 if (!timeout) {
3314 __remove_wait_queue(&x->wait, &wait);
3315 goto out;
3316 }
3317 } while (!x->done);
3318 __remove_wait_queue(&x->wait, &wait);
3319 }
3320 x->done--;
3321out:
3322 spin_unlock_irq(&x->wait.lock);
3323 return timeout;
3324}
3325EXPORT_SYMBOL(wait_for_completion_timeout);
3326
3327int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3328{
3329 int ret = 0;
3330
3331 might_sleep();
3332
3333 spin_lock_irq(&x->wait.lock);
3334 if (!x->done) {
3335 DECLARE_WAITQUEUE(wait, current);
3336
3337 wait.flags |= WQ_FLAG_EXCLUSIVE;
3338 __add_wait_queue_tail(&x->wait, &wait);
3339 do {
3340 if (signal_pending(current)) {
3341 ret = -ERESTARTSYS;
3342 __remove_wait_queue(&x->wait, &wait);
3343 goto out;
3344 }
3345 __set_current_state(TASK_INTERRUPTIBLE);
3346 spin_unlock_irq(&x->wait.lock);
3347 schedule();
3348 spin_lock_irq(&x->wait.lock);
3349 } while (!x->done);
3350 __remove_wait_queue(&x->wait, &wait);
3351 }
3352 x->done--;
3353out:
3354 spin_unlock_irq(&x->wait.lock);
3355
3356 return ret;
3357}
3358EXPORT_SYMBOL(wait_for_completion_interruptible);
3359
3360unsigned long fastcall __sched
3361wait_for_completion_interruptible_timeout(struct completion *x,
3362 unsigned long timeout)
3363{
3364 might_sleep();
3365
3366 spin_lock_irq(&x->wait.lock);
3367 if (!x->done) {
3368 DECLARE_WAITQUEUE(wait, current);
3369
3370 wait.flags |= WQ_FLAG_EXCLUSIVE;
3371 __add_wait_queue_tail(&x->wait, &wait);
3372 do {
3373 if (signal_pending(current)) {
3374 timeout = -ERESTARTSYS;
3375 __remove_wait_queue(&x->wait, &wait);
3376 goto out;
3377 }
3378 __set_current_state(TASK_INTERRUPTIBLE);
3379 spin_unlock_irq(&x->wait.lock);
3380 timeout = schedule_timeout(timeout);
3381 spin_lock_irq(&x->wait.lock);
3382 if (!timeout) {
3383 __remove_wait_queue(&x->wait, &wait);
3384 goto out;
3385 }
3386 } while (!x->done);
3387 __remove_wait_queue(&x->wait, &wait);
3388 }
3389 x->done--;
3390out:
3391 spin_unlock_irq(&x->wait.lock);
3392 return timeout;
3393}
3394EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3395
3396
3397#define SLEEP_ON_VAR \
3398 unsigned long flags; \
3399 wait_queue_t wait; \
3400 init_waitqueue_entry(&wait, current);
3401
3402#define SLEEP_ON_HEAD \
3403 spin_lock_irqsave(&q->lock,flags); \
3404 __add_wait_queue(q, &wait); \
3405 spin_unlock(&q->lock);
3406
3407#define SLEEP_ON_TAIL \
3408 spin_lock_irq(&q->lock); \
3409 __remove_wait_queue(q, &wait); \
3410 spin_unlock_irqrestore(&q->lock, flags);
3411
3412void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q)
3413{
3414 SLEEP_ON_VAR
3415
3416 current->state = TASK_INTERRUPTIBLE;
3417
3418 SLEEP_ON_HEAD
3419 schedule();
3420 SLEEP_ON_TAIL
3421}
3422
3423EXPORT_SYMBOL(interruptible_sleep_on);
3424
95cdf3b7
IM
3425long fastcall __sched
3426interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4
LT
3427{
3428 SLEEP_ON_VAR
3429
3430 current->state = TASK_INTERRUPTIBLE;
3431
3432 SLEEP_ON_HEAD
3433 timeout = schedule_timeout(timeout);
3434 SLEEP_ON_TAIL
3435
3436 return timeout;
3437}
3438
3439EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3440
3441void fastcall __sched sleep_on(wait_queue_head_t *q)
3442{
3443 SLEEP_ON_VAR
3444
3445 current->state = TASK_UNINTERRUPTIBLE;
3446
3447 SLEEP_ON_HEAD
3448 schedule();
3449 SLEEP_ON_TAIL
3450}
3451
3452EXPORT_SYMBOL(sleep_on);
3453
3454long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3455{
3456 SLEEP_ON_VAR
3457
3458 current->state = TASK_UNINTERRUPTIBLE;
3459
3460 SLEEP_ON_HEAD
3461 timeout = schedule_timeout(timeout);
3462 SLEEP_ON_TAIL
3463
3464 return timeout;
3465}
3466
3467EXPORT_SYMBOL(sleep_on_timeout);
3468
3469void set_user_nice(task_t *p, long nice)
3470{
3471 unsigned long flags;
3472 prio_array_t *array;
3473 runqueue_t *rq;
3474 int old_prio, new_prio, delta;
3475
3476 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3477 return;
3478 /*
3479 * We have to be careful, if called from sys_setpriority(),
3480 * the task might be in the middle of scheduling on another CPU.
3481 */
3482 rq = task_rq_lock(p, &flags);
3483 /*
3484 * The RT priorities are set via sched_setscheduler(), but we still
3485 * allow the 'normal' nice value to be set - but as expected
3486 * it wont have any effect on scheduling until the task is
b0a9499c 3487 * not SCHED_NORMAL/SCHED_BATCH:
1da177e4
LT
3488 */
3489 if (rt_task(p)) {
3490 p->static_prio = NICE_TO_PRIO(nice);
3491 goto out_unlock;
3492 }
3493 array = p->array;
a2000572 3494 if (array)
1da177e4
LT
3495 dequeue_task(p, array);
3496
3497 old_prio = p->prio;
3498 new_prio = NICE_TO_PRIO(nice);
3499 delta = new_prio - old_prio;
3500 p->static_prio = NICE_TO_PRIO(nice);
3501 p->prio += delta;
3502
3503 if (array) {
3504 enqueue_task(p, array);
3505 /*
3506 * If the task increased its priority or is running and
3507 * lowered its priority, then reschedule its CPU:
3508 */
3509 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3510 resched_task(rq->curr);
3511 }
3512out_unlock:
3513 task_rq_unlock(rq, &flags);
3514}
3515
3516EXPORT_SYMBOL(set_user_nice);
3517
e43379f1
MM
3518/*
3519 * can_nice - check if a task can reduce its nice value
3520 * @p: task
3521 * @nice: nice value
3522 */
3523int can_nice(const task_t *p, const int nice)
3524{
024f4747
MM
3525 /* convert nice value [19,-20] to rlimit style value [1,40] */
3526 int nice_rlim = 20 - nice;
e43379f1
MM
3527 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
3528 capable(CAP_SYS_NICE));
3529}
3530
1da177e4
LT
3531#ifdef __ARCH_WANT_SYS_NICE
3532
3533/*
3534 * sys_nice - change the priority of the current process.
3535 * @increment: priority increment
3536 *
3537 * sys_setpriority is a more generic, but much slower function that
3538 * does similar things.
3539 */
3540asmlinkage long sys_nice(int increment)
3541{
3542 int retval;
3543 long nice;
3544
3545 /*
3546 * Setpriority might change our priority at the same moment.
3547 * We don't have to worry. Conceptually one call occurs first
3548 * and we have a single winner.
3549 */
e43379f1
MM
3550 if (increment < -40)
3551 increment = -40;
1da177e4
LT
3552 if (increment > 40)
3553 increment = 40;
3554
3555 nice = PRIO_TO_NICE(current->static_prio) + increment;
3556 if (nice < -20)
3557 nice = -20;
3558 if (nice > 19)
3559 nice = 19;
3560
e43379f1
MM
3561 if (increment < 0 && !can_nice(current, nice))
3562 return -EPERM;
3563
1da177e4
LT
3564 retval = security_task_setnice(current, nice);
3565 if (retval)
3566 return retval;
3567
3568 set_user_nice(current, nice);
3569 return 0;
3570}
3571
3572#endif
3573
3574/**
3575 * task_prio - return the priority value of a given task.
3576 * @p: the task in question.
3577 *
3578 * This is the priority value as seen by users in /proc.
3579 * RT tasks are offset by -200. Normal tasks are centered
3580 * around 0, value goes from -16 to +15.
3581 */
3582int task_prio(const task_t *p)
3583{
3584 return p->prio - MAX_RT_PRIO;
3585}
3586
3587/**
3588 * task_nice - return the nice value of a given task.
3589 * @p: the task in question.
3590 */
3591int task_nice(const task_t *p)
3592{
3593 return TASK_NICE(p);
3594}
1da177e4 3595EXPORT_SYMBOL_GPL(task_nice);
1da177e4
LT
3596
3597/**
3598 * idle_cpu - is a given cpu idle currently?
3599 * @cpu: the processor in question.
3600 */
3601int idle_cpu(int cpu)
3602{
3603 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
3604}
3605
1da177e4
LT
3606/**
3607 * idle_task - return the idle task for a given cpu.
3608 * @cpu: the processor in question.
3609 */
3610task_t *idle_task(int cpu)
3611{
3612 return cpu_rq(cpu)->idle;
3613}
3614
3615/**
3616 * find_process_by_pid - find a process with a matching PID value.
3617 * @pid: the pid in question.
3618 */
3619static inline task_t *find_process_by_pid(pid_t pid)
3620{
3621 return pid ? find_task_by_pid(pid) : current;
3622}
3623
3624/* Actually do priority change: must hold rq lock. */
3625static void __setscheduler(struct task_struct *p, int policy, int prio)
3626{
3627 BUG_ON(p->array);
3628 p->policy = policy;
3629 p->rt_priority = prio;
b0a9499c 3630 if (policy != SCHED_NORMAL && policy != SCHED_BATCH) {
d46523ea 3631 p->prio = MAX_RT_PRIO-1 - p->rt_priority;
b0a9499c 3632 } else {
1da177e4 3633 p->prio = p->static_prio;
b0a9499c
IM
3634 /*
3635 * SCHED_BATCH tasks are treated as perpetual CPU hogs:
3636 */
3637 if (policy == SCHED_BATCH)
3638 p->sleep_avg = 0;
3639 }
1da177e4
LT
3640}
3641
3642/**
3643 * sched_setscheduler - change the scheduling policy and/or RT priority of
3644 * a thread.
3645 * @p: the task in question.
3646 * @policy: new policy.
3647 * @param: structure containing the new RT priority.
3648 */
95cdf3b7
IM
3649int sched_setscheduler(struct task_struct *p, int policy,
3650 struct sched_param *param)
1da177e4
LT
3651{
3652 int retval;
3653 int oldprio, oldpolicy = -1;
3654 prio_array_t *array;
3655 unsigned long flags;
3656 runqueue_t *rq;
3657
3658recheck:
3659 /* double check policy once rq lock held */
3660 if (policy < 0)
3661 policy = oldpolicy = p->policy;
3662 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
b0a9499c
IM
3663 policy != SCHED_NORMAL && policy != SCHED_BATCH)
3664 return -EINVAL;
1da177e4
LT
3665 /*
3666 * Valid priorities for SCHED_FIFO and SCHED_RR are
b0a9499c
IM
3667 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL and
3668 * SCHED_BATCH is 0.
1da177e4
LT
3669 */
3670 if (param->sched_priority < 0 ||
95cdf3b7 3671 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 3672 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 3673 return -EINVAL;
b0a9499c
IM
3674 if ((policy == SCHED_NORMAL || policy == SCHED_BATCH)
3675 != (param->sched_priority == 0))
1da177e4
LT
3676 return -EINVAL;
3677
37e4ab3f
OC
3678 /*
3679 * Allow unprivileged RT tasks to decrease priority:
3680 */
3681 if (!capable(CAP_SYS_NICE)) {
b0a9499c
IM
3682 /*
3683 * can't change policy, except between SCHED_NORMAL
3684 * and SCHED_BATCH:
3685 */
3686 if (((policy != SCHED_NORMAL && p->policy != SCHED_BATCH) &&
3687 (policy != SCHED_BATCH && p->policy != SCHED_NORMAL)) &&
3688 !p->signal->rlim[RLIMIT_RTPRIO].rlim_cur)
37e4ab3f
OC
3689 return -EPERM;
3690 /* can't increase priority */
b0a9499c 3691 if ((policy != SCHED_NORMAL && policy != SCHED_BATCH) &&
37e4ab3f
OC
3692 param->sched_priority > p->rt_priority &&
3693 param->sched_priority >
3694 p->signal->rlim[RLIMIT_RTPRIO].rlim_cur)
3695 return -EPERM;
3696 /* can't change other user's priorities */
3697 if ((current->euid != p->euid) &&
3698 (current->euid != p->uid))
3699 return -EPERM;
3700 }
1da177e4
LT
3701
3702 retval = security_task_setscheduler(p, policy, param);
3703 if (retval)
3704 return retval;
3705 /*
3706 * To be able to change p->policy safely, the apropriate
3707 * runqueue lock must be held.
3708 */
3709 rq = task_rq_lock(p, &flags);
3710 /* recheck policy now with rq lock held */
3711 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3712 policy = oldpolicy = -1;
3713 task_rq_unlock(rq, &flags);
3714 goto recheck;
3715 }
3716 array = p->array;
3717 if (array)
3718 deactivate_task(p, rq);
3719 oldprio = p->prio;
3720 __setscheduler(p, policy, param->sched_priority);
3721 if (array) {
3722 __activate_task(p, rq);
3723 /*
3724 * Reschedule if we are currently running on this runqueue and
3725 * our priority decreased, or if we are not currently running on
3726 * this runqueue and our priority is higher than the current's
3727 */
3728 if (task_running(rq, p)) {
3729 if (p->prio > oldprio)
3730 resched_task(rq->curr);
3731 } else if (TASK_PREEMPTS_CURR(p, rq))
3732 resched_task(rq->curr);
3733 }
3734 task_rq_unlock(rq, &flags);
3735 return 0;
3736}
3737EXPORT_SYMBOL_GPL(sched_setscheduler);
3738
95cdf3b7
IM
3739static int
3740do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4
LT
3741{
3742 int retval;
3743 struct sched_param lparam;
3744 struct task_struct *p;
3745
3746 if (!param || pid < 0)
3747 return -EINVAL;
3748 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3749 return -EFAULT;
3750 read_lock_irq(&tasklist_lock);
3751 p = find_process_by_pid(pid);
3752 if (!p) {
3753 read_unlock_irq(&tasklist_lock);
3754 return -ESRCH;
3755 }
3756 retval = sched_setscheduler(p, policy, &lparam);
3757 read_unlock_irq(&tasklist_lock);
3758 return retval;
3759}
3760
3761/**
3762 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3763 * @pid: the pid in question.
3764 * @policy: new policy.
3765 * @param: structure containing the new RT priority.
3766 */
3767asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
3768 struct sched_param __user *param)
3769{
c21761f1
JB
3770 /* negative values for policy are not valid */
3771 if (policy < 0)
3772 return -EINVAL;
3773
1da177e4
LT
3774 return do_sched_setscheduler(pid, policy, param);
3775}
3776
3777/**
3778 * sys_sched_setparam - set/change the RT priority of a thread
3779 * @pid: the pid in question.
3780 * @param: structure containing the new RT priority.
3781 */
3782asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
3783{
3784 return do_sched_setscheduler(pid, -1, param);
3785}
3786
3787/**
3788 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3789 * @pid: the pid in question.
3790 */
3791asmlinkage long sys_sched_getscheduler(pid_t pid)
3792{
3793 int retval = -EINVAL;
3794 task_t *p;
3795
3796 if (pid < 0)
3797 goto out_nounlock;
3798
3799 retval = -ESRCH;
3800 read_lock(&tasklist_lock);
3801 p = find_process_by_pid(pid);
3802 if (p) {
3803 retval = security_task_getscheduler(p);
3804 if (!retval)
3805 retval = p->policy;
3806 }
3807 read_unlock(&tasklist_lock);
3808
3809out_nounlock:
3810 return retval;
3811}
3812
3813/**
3814 * sys_sched_getscheduler - get the RT priority of a thread
3815 * @pid: the pid in question.
3816 * @param: structure containing the RT priority.
3817 */
3818asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
3819{
3820 struct sched_param lp;
3821 int retval = -EINVAL;
3822 task_t *p;
3823
3824 if (!param || pid < 0)
3825 goto out_nounlock;
3826
3827 read_lock(&tasklist_lock);
3828 p = find_process_by_pid(pid);
3829 retval = -ESRCH;
3830 if (!p)
3831 goto out_unlock;
3832
3833 retval = security_task_getscheduler(p);
3834 if (retval)
3835 goto out_unlock;
3836
3837 lp.sched_priority = p->rt_priority;
3838 read_unlock(&tasklist_lock);
3839
3840 /*
3841 * This one might sleep, we cannot do it with a spinlock held ...
3842 */
3843 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3844
3845out_nounlock:
3846 return retval;
3847
3848out_unlock:
3849 read_unlock(&tasklist_lock);
3850 return retval;
3851}
3852
3853long sched_setaffinity(pid_t pid, cpumask_t new_mask)
3854{
3855 task_t *p;
3856 int retval;
3857 cpumask_t cpus_allowed;
3858
3859 lock_cpu_hotplug();
3860 read_lock(&tasklist_lock);
3861
3862 p = find_process_by_pid(pid);
3863 if (!p) {
3864 read_unlock(&tasklist_lock);
3865 unlock_cpu_hotplug();
3866 return -ESRCH;
3867 }
3868
3869 /*
3870 * It is not safe to call set_cpus_allowed with the
3871 * tasklist_lock held. We will bump the task_struct's
3872 * usage count and then drop tasklist_lock.
3873 */
3874 get_task_struct(p);
3875 read_unlock(&tasklist_lock);
3876
3877 retval = -EPERM;
3878 if ((current->euid != p->euid) && (current->euid != p->uid) &&
3879 !capable(CAP_SYS_NICE))
3880 goto out_unlock;
3881
3882 cpus_allowed = cpuset_cpus_allowed(p);
3883 cpus_and(new_mask, new_mask, cpus_allowed);
3884 retval = set_cpus_allowed(p, new_mask);
3885
3886out_unlock:
3887 put_task_struct(p);
3888 unlock_cpu_hotplug();
3889 return retval;
3890}
3891
3892static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
3893 cpumask_t *new_mask)
3894{
3895 if (len < sizeof(cpumask_t)) {
3896 memset(new_mask, 0, sizeof(cpumask_t));
3897 } else if (len > sizeof(cpumask_t)) {
3898 len = sizeof(cpumask_t);
3899 }
3900 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3901}
3902
3903/**
3904 * sys_sched_setaffinity - set the cpu affinity of a process
3905 * @pid: pid of the process
3906 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3907 * @user_mask_ptr: user-space pointer to the new cpu mask
3908 */
3909asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
3910 unsigned long __user *user_mask_ptr)
3911{
3912 cpumask_t new_mask;
3913 int retval;
3914
3915 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
3916 if (retval)
3917 return retval;
3918
3919 return sched_setaffinity(pid, new_mask);
3920}
3921
3922/*
3923 * Represents all cpu's present in the system
3924 * In systems capable of hotplug, this map could dynamically grow
3925 * as new cpu's are detected in the system via any platform specific
3926 * method, such as ACPI for e.g.
3927 */
3928
4cef0c61 3929cpumask_t cpu_present_map __read_mostly;
1da177e4
LT
3930EXPORT_SYMBOL(cpu_present_map);
3931
3932#ifndef CONFIG_SMP
4cef0c61
AK
3933cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
3934cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
1da177e4
LT
3935#endif
3936
3937long sched_getaffinity(pid_t pid, cpumask_t *mask)
3938{
3939 int retval;
3940 task_t *p;
3941
3942 lock_cpu_hotplug();
3943 read_lock(&tasklist_lock);
3944
3945 retval = -ESRCH;
3946 p = find_process_by_pid(pid);
3947 if (!p)
3948 goto out_unlock;
3949
3950 retval = 0;
2f7016d9 3951 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
1da177e4
LT
3952
3953out_unlock:
3954 read_unlock(&tasklist_lock);
3955 unlock_cpu_hotplug();
3956 if (retval)
3957 return retval;
3958
3959 return 0;
3960}
3961
3962/**
3963 * sys_sched_getaffinity - get the cpu affinity of a process
3964 * @pid: pid of the process
3965 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3966 * @user_mask_ptr: user-space pointer to hold the current cpu mask
3967 */
3968asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
3969 unsigned long __user *user_mask_ptr)
3970{
3971 int ret;
3972 cpumask_t mask;
3973
3974 if (len < sizeof(cpumask_t))
3975 return -EINVAL;
3976
3977 ret = sched_getaffinity(pid, &mask);
3978 if (ret < 0)
3979 return ret;
3980
3981 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
3982 return -EFAULT;
3983
3984 return sizeof(cpumask_t);
3985}
3986
3987/**
3988 * sys_sched_yield - yield the current processor to other threads.
3989 *
3990 * this function yields the current CPU by moving the calling thread
3991 * to the expired array. If there are no other threads running on this
3992 * CPU then this function will return.
3993 */
3994asmlinkage long sys_sched_yield(void)
3995{
3996 runqueue_t *rq = this_rq_lock();
3997 prio_array_t *array = current->array;
3998 prio_array_t *target = rq->expired;
3999
4000 schedstat_inc(rq, yld_cnt);
4001 /*
4002 * We implement yielding by moving the task into the expired
4003 * queue.
4004 *
4005 * (special rule: RT tasks will just roundrobin in the active
4006 * array.)
4007 */
4008 if (rt_task(current))
4009 target = rq->active;
4010
5927ad78 4011 if (array->nr_active == 1) {
1da177e4
LT
4012 schedstat_inc(rq, yld_act_empty);
4013 if (!rq->expired->nr_active)
4014 schedstat_inc(rq, yld_both_empty);
4015 } else if (!rq->expired->nr_active)
4016 schedstat_inc(rq, yld_exp_empty);
4017
4018 if (array != target) {
4019 dequeue_task(current, array);
4020 enqueue_task(current, target);
4021 } else
4022 /*
4023 * requeue_task is cheaper so perform that if possible.
4024 */
4025 requeue_task(current, array);
4026
4027 /*
4028 * Since we are going to call schedule() anyway, there's
4029 * no need to preempt or enable interrupts:
4030 */
4031 __release(rq->lock);
4032 _raw_spin_unlock(&rq->lock);
4033 preempt_enable_no_resched();
4034
4035 schedule();
4036
4037 return 0;
4038}
4039
4040static inline void __cond_resched(void)
4041{
5bbcfd90
IM
4042 /*
4043 * The BKS might be reacquired before we have dropped
4044 * PREEMPT_ACTIVE, which could trigger a second
4045 * cond_resched() call.
4046 */
4047 if (unlikely(preempt_count()))
4048 return;
8ba7b0a1
LT
4049 if (unlikely(system_state != SYSTEM_RUNNING))
4050 return;
1da177e4
LT
4051 do {
4052 add_preempt_count(PREEMPT_ACTIVE);
4053 schedule();
4054 sub_preempt_count(PREEMPT_ACTIVE);
4055 } while (need_resched());
4056}
4057
4058int __sched cond_resched(void)
4059{
4060 if (need_resched()) {
4061 __cond_resched();
4062 return 1;
4063 }
4064 return 0;
4065}
4066
4067EXPORT_SYMBOL(cond_resched);
4068
4069/*
4070 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4071 * call schedule, and on return reacquire the lock.
4072 *
4073 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4074 * operations here to prevent schedule() from being called twice (once via
4075 * spin_unlock(), once by hand).
4076 */
95cdf3b7 4077int cond_resched_lock(spinlock_t *lock)
1da177e4 4078{
6df3cecb
JK
4079 int ret = 0;
4080
1da177e4
LT
4081 if (need_lockbreak(lock)) {
4082 spin_unlock(lock);
4083 cpu_relax();
6df3cecb 4084 ret = 1;
1da177e4
LT
4085 spin_lock(lock);
4086 }
4087 if (need_resched()) {
4088 _raw_spin_unlock(lock);
4089 preempt_enable_no_resched();
4090 __cond_resched();
6df3cecb 4091 ret = 1;
1da177e4 4092 spin_lock(lock);
1da177e4 4093 }
6df3cecb 4094 return ret;
1da177e4
LT
4095}
4096
4097EXPORT_SYMBOL(cond_resched_lock);
4098
4099int __sched cond_resched_softirq(void)
4100{
4101 BUG_ON(!in_softirq());
4102
4103 if (need_resched()) {
4104 __local_bh_enable();
4105 __cond_resched();
4106 local_bh_disable();
4107 return 1;
4108 }
4109 return 0;
4110}
4111
4112EXPORT_SYMBOL(cond_resched_softirq);
4113
4114
4115/**
4116 * yield - yield the current processor to other threads.
4117 *
4118 * this is a shortcut for kernel-space yielding - it marks the
4119 * thread runnable and calls sys_sched_yield().
4120 */
4121void __sched yield(void)
4122{
4123 set_current_state(TASK_RUNNING);
4124 sys_sched_yield();
4125}
4126
4127EXPORT_SYMBOL(yield);
4128
4129/*
4130 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4131 * that process accounting knows that this is a task in IO wait state.
4132 *
4133 * But don't do that if it is a deliberate, throttling IO wait (this task
4134 * has set its backing_dev_info: the queue against which it should throttle)
4135 */
4136void __sched io_schedule(void)
4137{
39c715b7 4138 struct runqueue *rq = &per_cpu(runqueues, raw_smp_processor_id());
1da177e4
LT
4139
4140 atomic_inc(&rq->nr_iowait);
4141 schedule();
4142 atomic_dec(&rq->nr_iowait);
4143}
4144
4145EXPORT_SYMBOL(io_schedule);
4146
4147long __sched io_schedule_timeout(long timeout)
4148{
39c715b7 4149 struct runqueue *rq = &per_cpu(runqueues, raw_smp_processor_id());
1da177e4
LT
4150 long ret;
4151
4152 atomic_inc(&rq->nr_iowait);
4153 ret = schedule_timeout(timeout);
4154 atomic_dec(&rq->nr_iowait);
4155 return ret;
4156}
4157
4158/**
4159 * sys_sched_get_priority_max - return maximum RT priority.
4160 * @policy: scheduling class.
4161 *
4162 * this syscall returns the maximum rt_priority that can be used
4163 * by a given scheduling class.
4164 */
4165asmlinkage long sys_sched_get_priority_max(int policy)
4166{
4167 int ret = -EINVAL;
4168
4169 switch (policy) {
4170 case SCHED_FIFO:
4171 case SCHED_RR:
4172 ret = MAX_USER_RT_PRIO-1;
4173 break;
4174 case SCHED_NORMAL:
b0a9499c 4175 case SCHED_BATCH:
1da177e4
LT
4176 ret = 0;
4177 break;
4178 }
4179 return ret;
4180}
4181
4182/**
4183 * sys_sched_get_priority_min - return minimum RT priority.
4184 * @policy: scheduling class.
4185 *
4186 * this syscall returns the minimum rt_priority that can be used
4187 * by a given scheduling class.
4188 */
4189asmlinkage long sys_sched_get_priority_min(int policy)
4190{
4191 int ret = -EINVAL;
4192
4193 switch (policy) {
4194 case SCHED_FIFO:
4195 case SCHED_RR:
4196 ret = 1;
4197 break;
4198 case SCHED_NORMAL:
b0a9499c 4199 case SCHED_BATCH:
1da177e4
LT
4200 ret = 0;
4201 }
4202 return ret;
4203}
4204
4205/**
4206 * sys_sched_rr_get_interval - return the default timeslice of a process.
4207 * @pid: pid of the process.
4208 * @interval: userspace pointer to the timeslice value.
4209 *
4210 * this syscall writes the default timeslice value of a given process
4211 * into the user-space timespec buffer. A value of '0' means infinity.
4212 */
4213asmlinkage
4214long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4215{
4216 int retval = -EINVAL;
4217 struct timespec t;
4218 task_t *p;
4219
4220 if (pid < 0)
4221 goto out_nounlock;
4222
4223 retval = -ESRCH;
4224 read_lock(&tasklist_lock);
4225 p = find_process_by_pid(pid);
4226 if (!p)
4227 goto out_unlock;
4228
4229 retval = security_task_getscheduler(p);
4230 if (retval)
4231 goto out_unlock;
4232
4233 jiffies_to_timespec(p->policy & SCHED_FIFO ?
4234 0 : task_timeslice(p), &t);
4235 read_unlock(&tasklist_lock);
4236 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4237out_nounlock:
4238 return retval;
4239out_unlock:
4240 read_unlock(&tasklist_lock);
4241 return retval;
4242}
4243
4244static inline struct task_struct *eldest_child(struct task_struct *p)
4245{
4246 if (list_empty(&p->children)) return NULL;
4247 return list_entry(p->children.next,struct task_struct,sibling);
4248}
4249
4250static inline struct task_struct *older_sibling(struct task_struct *p)
4251{
4252 if (p->sibling.prev==&p->parent->children) return NULL;
4253 return list_entry(p->sibling.prev,struct task_struct,sibling);
4254}
4255
4256static inline struct task_struct *younger_sibling(struct task_struct *p)
4257{
4258 if (p->sibling.next==&p->parent->children) return NULL;
4259 return list_entry(p->sibling.next,struct task_struct,sibling);
4260}
4261
95cdf3b7 4262static void show_task(task_t *p)
1da177e4
LT
4263{
4264 task_t *relative;
4265 unsigned state;
4266 unsigned long free = 0;
4267 static const char *stat_nam[] = { "R", "S", "D", "T", "t", "Z", "X" };
4268
4269 printk("%-13.13s ", p->comm);
4270 state = p->state ? __ffs(p->state) + 1 : 0;
4271 if (state < ARRAY_SIZE(stat_nam))
4272 printk(stat_nam[state]);
4273 else
4274 printk("?");
4275#if (BITS_PER_LONG == 32)
4276 if (state == TASK_RUNNING)
4277 printk(" running ");
4278 else
4279 printk(" %08lX ", thread_saved_pc(p));
4280#else
4281 if (state == TASK_RUNNING)
4282 printk(" running task ");
4283 else
4284 printk(" %016lx ", thread_saved_pc(p));
4285#endif
4286#ifdef CONFIG_DEBUG_STACK_USAGE
4287 {
10ebffde 4288 unsigned long *n = end_of_stack(p);
1da177e4
LT
4289 while (!*n)
4290 n++;
10ebffde 4291 free = (unsigned long)n - (unsigned long)end_of_stack(p);
1da177e4
LT
4292 }
4293#endif
4294 printk("%5lu %5d %6d ", free, p->pid, p->parent->pid);
4295 if ((relative = eldest_child(p)))
4296 printk("%5d ", relative->pid);
4297 else
4298 printk(" ");
4299 if ((relative = younger_sibling(p)))
4300 printk("%7d", relative->pid);
4301 else
4302 printk(" ");
4303 if ((relative = older_sibling(p)))
4304 printk(" %5d", relative->pid);
4305 else
4306 printk(" ");
4307 if (!p->mm)
4308 printk(" (L-TLB)\n");
4309 else
4310 printk(" (NOTLB)\n");
4311
4312 if (state != TASK_RUNNING)
4313 show_stack(p, NULL);
4314}
4315
4316void show_state(void)
4317{
4318 task_t *g, *p;
4319
4320#if (BITS_PER_LONG == 32)
4321 printk("\n"
4322 " sibling\n");
4323 printk(" task PC pid father child younger older\n");
4324#else
4325 printk("\n"
4326 " sibling\n");
4327 printk(" task PC pid father child younger older\n");
4328#endif
4329 read_lock(&tasklist_lock);
4330 do_each_thread(g, p) {
4331 /*
4332 * reset the NMI-timeout, listing all files on a slow
4333 * console might take alot of time:
4334 */
4335 touch_nmi_watchdog();
4336 show_task(p);
4337 } while_each_thread(g, p);
4338
4339 read_unlock(&tasklist_lock);
de5097c2 4340 mutex_debug_show_all_locks();
1da177e4
LT
4341}
4342
f340c0d1
IM
4343/**
4344 * init_idle - set up an idle thread for a given CPU
4345 * @idle: task in question
4346 * @cpu: cpu the idle task belongs to
4347 *
4348 * NOTE: this function does not set the idle thread's NEED_RESCHED
4349 * flag, to make booting more robust.
4350 */
1da177e4
LT
4351void __devinit init_idle(task_t *idle, int cpu)
4352{
4353 runqueue_t *rq = cpu_rq(cpu);
4354 unsigned long flags;
4355
81c29a85 4356 idle->timestamp = sched_clock();
1da177e4
LT
4357 idle->sleep_avg = 0;
4358 idle->array = NULL;
4359 idle->prio = MAX_PRIO;
4360 idle->state = TASK_RUNNING;
4361 idle->cpus_allowed = cpumask_of_cpu(cpu);
4362 set_task_cpu(idle, cpu);
4363
4364 spin_lock_irqsave(&rq->lock, flags);
4365 rq->curr = rq->idle = idle;
4866cde0
NP
4366#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4367 idle->oncpu = 1;
4368#endif
1da177e4
LT
4369 spin_unlock_irqrestore(&rq->lock, flags);
4370
4371 /* Set the preempt count _outside_ the spinlocks! */
4372#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
a1261f54 4373 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
1da177e4 4374#else
a1261f54 4375 task_thread_info(idle)->preempt_count = 0;
1da177e4
LT
4376#endif
4377}
4378
4379/*
4380 * In a system that switches off the HZ timer nohz_cpu_mask
4381 * indicates which cpus entered this state. This is used
4382 * in the rcu update to wait only for active cpus. For system
4383 * which do not switch off the HZ timer nohz_cpu_mask should
4384 * always be CPU_MASK_NONE.
4385 */
4386cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4387
4388#ifdef CONFIG_SMP
4389/*
4390 * This is how migration works:
4391 *
4392 * 1) we queue a migration_req_t structure in the source CPU's
4393 * runqueue and wake up that CPU's migration thread.
4394 * 2) we down() the locked semaphore => thread blocks.
4395 * 3) migration thread wakes up (implicitly it forces the migrated
4396 * thread off the CPU)
4397 * 4) it gets the migration request and checks whether the migrated
4398 * task is still in the wrong runqueue.
4399 * 5) if it's in the wrong runqueue then the migration thread removes
4400 * it and puts it into the right queue.
4401 * 6) migration thread up()s the semaphore.
4402 * 7) we wake up and the migration is done.
4403 */
4404
4405/*
4406 * Change a given task's CPU affinity. Migrate the thread to a
4407 * proper CPU and schedule it away if the CPU it's executing on
4408 * is removed from the allowed bitmask.
4409 *
4410 * NOTE: the caller must have a valid reference to the task, the
4411 * task must not exit() & deallocate itself prematurely. The
4412 * call is not atomic; no spinlocks may be held.
4413 */
4414int set_cpus_allowed(task_t *p, cpumask_t new_mask)
4415{
4416 unsigned long flags;
4417 int ret = 0;
4418 migration_req_t req;
4419 runqueue_t *rq;
4420
4421 rq = task_rq_lock(p, &flags);
4422 if (!cpus_intersects(new_mask, cpu_online_map)) {
4423 ret = -EINVAL;
4424 goto out;
4425 }
4426
4427 p->cpus_allowed = new_mask;
4428 /* Can the task run on the task's current CPU? If so, we're done */
4429 if (cpu_isset(task_cpu(p), new_mask))
4430 goto out;
4431
4432 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4433 /* Need help from migration thread: drop lock and wait. */
4434 task_rq_unlock(rq, &flags);
4435 wake_up_process(rq->migration_thread);
4436 wait_for_completion(&req.done);
4437 tlb_migrate_finish(p->mm);
4438 return 0;
4439 }
4440out:
4441 task_rq_unlock(rq, &flags);
4442 return ret;
4443}
4444
4445EXPORT_SYMBOL_GPL(set_cpus_allowed);
4446
4447/*
4448 * Move (not current) task off this cpu, onto dest cpu. We're doing
4449 * this because either it can't run here any more (set_cpus_allowed()
4450 * away from this CPU, or CPU going down), or because we're
4451 * attempting to rebalance this task on exec (sched_exec).
4452 *
4453 * So we race with normal scheduler movements, but that's OK, as long
4454 * as the task is no longer on this CPU.
4455 */
4456static void __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4457{
4458 runqueue_t *rq_dest, *rq_src;
4459
4460 if (unlikely(cpu_is_offline(dest_cpu)))
4461 return;
4462
4463 rq_src = cpu_rq(src_cpu);
4464 rq_dest = cpu_rq(dest_cpu);
4465
4466 double_rq_lock(rq_src, rq_dest);
4467 /* Already moved. */
4468 if (task_cpu(p) != src_cpu)
4469 goto out;
4470 /* Affinity changed (again). */
4471 if (!cpu_isset(dest_cpu, p->cpus_allowed))
4472 goto out;
4473
4474 set_task_cpu(p, dest_cpu);
4475 if (p->array) {
4476 /*
4477 * Sync timestamp with rq_dest's before activating.
4478 * The same thing could be achieved by doing this step
4479 * afterwards, and pretending it was a local activate.
4480 * This way is cleaner and logically correct.
4481 */
4482 p->timestamp = p->timestamp - rq_src->timestamp_last_tick
4483 + rq_dest->timestamp_last_tick;
4484 deactivate_task(p, rq_src);
4485 activate_task(p, rq_dest, 0);
4486 if (TASK_PREEMPTS_CURR(p, rq_dest))
4487 resched_task(rq_dest->curr);
4488 }
4489
4490out:
4491 double_rq_unlock(rq_src, rq_dest);
4492}
4493
4494/*
4495 * migration_thread - this is a highprio system thread that performs
4496 * thread migration by bumping thread off CPU then 'pushing' onto
4497 * another runqueue.
4498 */
95cdf3b7 4499static int migration_thread(void *data)
1da177e4
LT
4500{
4501 runqueue_t *rq;
4502 int cpu = (long)data;
4503
4504 rq = cpu_rq(cpu);
4505 BUG_ON(rq->migration_thread != current);
4506
4507 set_current_state(TASK_INTERRUPTIBLE);
4508 while (!kthread_should_stop()) {
4509 struct list_head *head;
4510 migration_req_t *req;
4511
3e1d1d28 4512 try_to_freeze();
1da177e4
LT
4513
4514 spin_lock_irq(&rq->lock);
4515
4516 if (cpu_is_offline(cpu)) {
4517 spin_unlock_irq(&rq->lock);
4518 goto wait_to_die;
4519 }
4520
4521 if (rq->active_balance) {
4522 active_load_balance(rq, cpu);
4523 rq->active_balance = 0;
4524 }
4525
4526 head = &rq->migration_queue;
4527
4528 if (list_empty(head)) {
4529 spin_unlock_irq(&rq->lock);
4530 schedule();
4531 set_current_state(TASK_INTERRUPTIBLE);
4532 continue;
4533 }
4534 req = list_entry(head->next, migration_req_t, list);
4535 list_del_init(head->next);
4536
674311d5
NP
4537 spin_unlock(&rq->lock);
4538 __migrate_task(req->task, cpu, req->dest_cpu);
4539 local_irq_enable();
1da177e4
LT
4540
4541 complete(&req->done);
4542 }
4543 __set_current_state(TASK_RUNNING);
4544 return 0;
4545
4546wait_to_die:
4547 /* Wait for kthread_stop */
4548 set_current_state(TASK_INTERRUPTIBLE);
4549 while (!kthread_should_stop()) {
4550 schedule();
4551 set_current_state(TASK_INTERRUPTIBLE);
4552 }
4553 __set_current_state(TASK_RUNNING);
4554 return 0;
4555}
4556
4557#ifdef CONFIG_HOTPLUG_CPU
4558/* Figure out where task on dead CPU should go, use force if neccessary. */
4559static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *tsk)
4560{
4561 int dest_cpu;
4562 cpumask_t mask;
4563
4564 /* On same node? */
4565 mask = node_to_cpumask(cpu_to_node(dead_cpu));
4566 cpus_and(mask, mask, tsk->cpus_allowed);
4567 dest_cpu = any_online_cpu(mask);
4568
4569 /* On any allowed CPU? */
4570 if (dest_cpu == NR_CPUS)
4571 dest_cpu = any_online_cpu(tsk->cpus_allowed);
4572
4573 /* No more Mr. Nice Guy. */
4574 if (dest_cpu == NR_CPUS) {
b39c4fab 4575 cpus_setall(tsk->cpus_allowed);
1da177e4
LT
4576 dest_cpu = any_online_cpu(tsk->cpus_allowed);
4577
4578 /*
4579 * Don't tell them about moving exiting tasks or
4580 * kernel threads (both mm NULL), since they never
4581 * leave kernel.
4582 */
4583 if (tsk->mm && printk_ratelimit())
4584 printk(KERN_INFO "process %d (%s) no "
4585 "longer affine to cpu%d\n",
4586 tsk->pid, tsk->comm, dead_cpu);
4587 }
4588 __migrate_task(tsk, dead_cpu, dest_cpu);
4589}
4590
4591/*
4592 * While a dead CPU has no uninterruptible tasks queued at this point,
4593 * it might still have a nonzero ->nr_uninterruptible counter, because
4594 * for performance reasons the counter is not stricly tracking tasks to
4595 * their home CPUs. So we just add the counter to another CPU's counter,
4596 * to keep the global sum constant after CPU-down:
4597 */
4598static void migrate_nr_uninterruptible(runqueue_t *rq_src)
4599{
4600 runqueue_t *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
4601 unsigned long flags;
4602
4603 local_irq_save(flags);
4604 double_rq_lock(rq_src, rq_dest);
4605 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
4606 rq_src->nr_uninterruptible = 0;
4607 double_rq_unlock(rq_src, rq_dest);
4608 local_irq_restore(flags);
4609}
4610
4611/* Run through task list and migrate tasks from the dead cpu. */
4612static void migrate_live_tasks(int src_cpu)
4613{
4614 struct task_struct *tsk, *t;
4615
4616 write_lock_irq(&tasklist_lock);
4617
4618 do_each_thread(t, tsk) {
4619 if (tsk == current)
4620 continue;
4621
4622 if (task_cpu(tsk) == src_cpu)
4623 move_task_off_dead_cpu(src_cpu, tsk);
4624 } while_each_thread(t, tsk);
4625
4626 write_unlock_irq(&tasklist_lock);
4627}
4628
4629/* Schedules idle task to be the next runnable task on current CPU.
4630 * It does so by boosting its priority to highest possible and adding it to
4631 * the _front_ of runqueue. Used by CPU offline code.
4632 */
4633void sched_idle_next(void)
4634{
4635 int cpu = smp_processor_id();
4636 runqueue_t *rq = this_rq();
4637 struct task_struct *p = rq->idle;
4638 unsigned long flags;
4639
4640 /* cpu has to be offline */
4641 BUG_ON(cpu_online(cpu));
4642
4643 /* Strictly not necessary since rest of the CPUs are stopped by now
4644 * and interrupts disabled on current cpu.
4645 */
4646 spin_lock_irqsave(&rq->lock, flags);
4647
4648 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
4649 /* Add idle task to _front_ of it's priority queue */
4650 __activate_idle_task(p, rq);
4651
4652 spin_unlock_irqrestore(&rq->lock, flags);
4653}
4654
4655/* Ensures that the idle task is using init_mm right before its cpu goes
4656 * offline.
4657 */
4658void idle_task_exit(void)
4659{
4660 struct mm_struct *mm = current->active_mm;
4661
4662 BUG_ON(cpu_online(smp_processor_id()));
4663
4664 if (mm != &init_mm)
4665 switch_mm(mm, &init_mm, current);
4666 mmdrop(mm);
4667}
4668
4669static void migrate_dead(unsigned int dead_cpu, task_t *tsk)
4670{
4671 struct runqueue *rq = cpu_rq(dead_cpu);
4672
4673 /* Must be exiting, otherwise would be on tasklist. */
4674 BUG_ON(tsk->exit_state != EXIT_ZOMBIE && tsk->exit_state != EXIT_DEAD);
4675
4676 /* Cannot have done final schedule yet: would have vanished. */
4677 BUG_ON(tsk->flags & PF_DEAD);
4678
4679 get_task_struct(tsk);
4680
4681 /*
4682 * Drop lock around migration; if someone else moves it,
4683 * that's OK. No task can be added to this CPU, so iteration is
4684 * fine.
4685 */
4686 spin_unlock_irq(&rq->lock);
4687 move_task_off_dead_cpu(dead_cpu, tsk);
4688 spin_lock_irq(&rq->lock);
4689
4690 put_task_struct(tsk);
4691}
4692
4693/* release_task() removes task from tasklist, so we won't find dead tasks. */
4694static void migrate_dead_tasks(unsigned int dead_cpu)
4695{
4696 unsigned arr, i;
4697 struct runqueue *rq = cpu_rq(dead_cpu);
4698
4699 for (arr = 0; arr < 2; arr++) {
4700 for (i = 0; i < MAX_PRIO; i++) {
4701 struct list_head *list = &rq->arrays[arr].queue[i];
4702 while (!list_empty(list))
4703 migrate_dead(dead_cpu,
4704 list_entry(list->next, task_t,
4705 run_list));
4706 }
4707 }
4708}
4709#endif /* CONFIG_HOTPLUG_CPU */
4710
4711/*
4712 * migration_call - callback that gets triggered when a CPU is added.
4713 * Here we can start up the necessary migration thread for the new CPU.
4714 */
4715static int migration_call(struct notifier_block *nfb, unsigned long action,
4716 void *hcpu)
4717{
4718 int cpu = (long)hcpu;
4719 struct task_struct *p;
4720 struct runqueue *rq;
4721 unsigned long flags;
4722
4723 switch (action) {
4724 case CPU_UP_PREPARE:
4725 p = kthread_create(migration_thread, hcpu, "migration/%d",cpu);
4726 if (IS_ERR(p))
4727 return NOTIFY_BAD;
4728 p->flags |= PF_NOFREEZE;
4729 kthread_bind(p, cpu);
4730 /* Must be high prio: stop_machine expects to yield to it. */
4731 rq = task_rq_lock(p, &flags);
4732 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
4733 task_rq_unlock(rq, &flags);
4734 cpu_rq(cpu)->migration_thread = p;
4735 break;
4736 case CPU_ONLINE:
4737 /* Strictly unneccessary, as first user will wake it. */
4738 wake_up_process(cpu_rq(cpu)->migration_thread);
4739 break;
4740#ifdef CONFIG_HOTPLUG_CPU
4741 case CPU_UP_CANCELED:
4742 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c
HC
4743 kthread_bind(cpu_rq(cpu)->migration_thread,
4744 any_online_cpu(cpu_online_map));
1da177e4
LT
4745 kthread_stop(cpu_rq(cpu)->migration_thread);
4746 cpu_rq(cpu)->migration_thread = NULL;
4747 break;
4748 case CPU_DEAD:
4749 migrate_live_tasks(cpu);
4750 rq = cpu_rq(cpu);
4751 kthread_stop(rq->migration_thread);
4752 rq->migration_thread = NULL;
4753 /* Idle task back to normal (off runqueue, low prio) */
4754 rq = task_rq_lock(rq->idle, &flags);
4755 deactivate_task(rq->idle, rq);
4756 rq->idle->static_prio = MAX_PRIO;
4757 __setscheduler(rq->idle, SCHED_NORMAL, 0);
4758 migrate_dead_tasks(cpu);
4759 task_rq_unlock(rq, &flags);
4760 migrate_nr_uninterruptible(rq);
4761 BUG_ON(rq->nr_running != 0);
4762
4763 /* No need to migrate the tasks: it was best-effort if
4764 * they didn't do lock_cpu_hotplug(). Just wake up
4765 * the requestors. */
4766 spin_lock_irq(&rq->lock);
4767 while (!list_empty(&rq->migration_queue)) {
4768 migration_req_t *req;
4769 req = list_entry(rq->migration_queue.next,
4770 migration_req_t, list);
1da177e4
LT
4771 list_del_init(&req->list);
4772 complete(&req->done);
4773 }
4774 spin_unlock_irq(&rq->lock);
4775 break;
4776#endif
4777 }
4778 return NOTIFY_OK;
4779}
4780
4781/* Register at highest priority so that task migration (migrate_all_tasks)
4782 * happens before everything else.
4783 */
4784static struct notifier_block __devinitdata migration_notifier = {
4785 .notifier_call = migration_call,
4786 .priority = 10
4787};
4788
4789int __init migration_init(void)
4790{
4791 void *cpu = (void *)(long)smp_processor_id();
4792 /* Start one for boot CPU. */
4793 migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
4794 migration_call(&migration_notifier, CPU_ONLINE, cpu);
4795 register_cpu_notifier(&migration_notifier);
4796 return 0;
4797}
4798#endif
4799
4800#ifdef CONFIG_SMP
1a20ff27 4801#undef SCHED_DOMAIN_DEBUG
1da177e4
LT
4802#ifdef SCHED_DOMAIN_DEBUG
4803static void sched_domain_debug(struct sched_domain *sd, int cpu)
4804{
4805 int level = 0;
4806
41c7ce9a
NP
4807 if (!sd) {
4808 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
4809 return;
4810 }
4811
1da177e4
LT
4812 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
4813
4814 do {
4815 int i;
4816 char str[NR_CPUS];
4817 struct sched_group *group = sd->groups;
4818 cpumask_t groupmask;
4819
4820 cpumask_scnprintf(str, NR_CPUS, sd->span);
4821 cpus_clear(groupmask);
4822
4823 printk(KERN_DEBUG);
4824 for (i = 0; i < level + 1; i++)
4825 printk(" ");
4826 printk("domain %d: ", level);
4827
4828 if (!(sd->flags & SD_LOAD_BALANCE)) {
4829 printk("does not load-balance\n");
4830 if (sd->parent)
4831 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain has parent");
4832 break;
4833 }
4834
4835 printk("span %s\n", str);
4836
4837 if (!cpu_isset(cpu, sd->span))
4838 printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
4839 if (!cpu_isset(cpu, group->cpumask))
4840 printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
4841
4842 printk(KERN_DEBUG);
4843 for (i = 0; i < level + 2; i++)
4844 printk(" ");
4845 printk("groups:");
4846 do {
4847 if (!group) {
4848 printk("\n");
4849 printk(KERN_ERR "ERROR: group is NULL\n");
4850 break;
4851 }
4852
4853 if (!group->cpu_power) {
4854 printk("\n");
4855 printk(KERN_ERR "ERROR: domain->cpu_power not set\n");
4856 }
4857
4858 if (!cpus_weight(group->cpumask)) {
4859 printk("\n");
4860 printk(KERN_ERR "ERROR: empty group\n");
4861 }
4862
4863 if (cpus_intersects(groupmask, group->cpumask)) {
4864 printk("\n");
4865 printk(KERN_ERR "ERROR: repeated CPUs\n");
4866 }
4867
4868 cpus_or(groupmask, groupmask, group->cpumask);
4869
4870 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
4871 printk(" %s", str);
4872
4873 group = group->next;
4874 } while (group != sd->groups);
4875 printk("\n");
4876
4877 if (!cpus_equal(sd->span, groupmask))
4878 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
4879
4880 level++;
4881 sd = sd->parent;
4882
4883 if (sd) {
4884 if (!cpus_subset(groupmask, sd->span))
4885 printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
4886 }
4887
4888 } while (sd);
4889}
4890#else
4891#define sched_domain_debug(sd, cpu) {}
4892#endif
4893
1a20ff27 4894static int sd_degenerate(struct sched_domain *sd)
245af2c7
SS
4895{
4896 if (cpus_weight(sd->span) == 1)
4897 return 1;
4898
4899 /* Following flags need at least 2 groups */
4900 if (sd->flags & (SD_LOAD_BALANCE |
4901 SD_BALANCE_NEWIDLE |
4902 SD_BALANCE_FORK |
4903 SD_BALANCE_EXEC)) {
4904 if (sd->groups != sd->groups->next)
4905 return 0;
4906 }
4907
4908 /* Following flags don't use groups */
4909 if (sd->flags & (SD_WAKE_IDLE |
4910 SD_WAKE_AFFINE |
4911 SD_WAKE_BALANCE))
4912 return 0;
4913
4914 return 1;
4915}
4916
1a20ff27 4917static int sd_parent_degenerate(struct sched_domain *sd,
245af2c7
SS
4918 struct sched_domain *parent)
4919{
4920 unsigned long cflags = sd->flags, pflags = parent->flags;
4921
4922 if (sd_degenerate(parent))
4923 return 1;
4924
4925 if (!cpus_equal(sd->span, parent->span))
4926 return 0;
4927
4928 /* Does parent contain flags not in child? */
4929 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
4930 if (cflags & SD_WAKE_AFFINE)
4931 pflags &= ~SD_WAKE_BALANCE;
4932 /* Flags needing groups don't count if only 1 group in parent */
4933 if (parent->groups == parent->groups->next) {
4934 pflags &= ~(SD_LOAD_BALANCE |
4935 SD_BALANCE_NEWIDLE |
4936 SD_BALANCE_FORK |
4937 SD_BALANCE_EXEC);
4938 }
4939 if (~cflags & pflags)
4940 return 0;
4941
4942 return 1;
4943}
4944
1da177e4
LT
4945/*
4946 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
4947 * hold the hotplug lock.
4948 */
9c1cfda2 4949static void cpu_attach_domain(struct sched_domain *sd, int cpu)
1da177e4 4950{
1da177e4 4951 runqueue_t *rq = cpu_rq(cpu);
245af2c7
SS
4952 struct sched_domain *tmp;
4953
4954 /* Remove the sched domains which do not contribute to scheduling. */
4955 for (tmp = sd; tmp; tmp = tmp->parent) {
4956 struct sched_domain *parent = tmp->parent;
4957 if (!parent)
4958 break;
4959 if (sd_parent_degenerate(tmp, parent))
4960 tmp->parent = parent->parent;
4961 }
4962
4963 if (sd && sd_degenerate(sd))
4964 sd = sd->parent;
1da177e4
LT
4965
4966 sched_domain_debug(sd, cpu);
4967
674311d5 4968 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
4969}
4970
4971/* cpus with isolated domains */
9c1cfda2 4972static cpumask_t __devinitdata cpu_isolated_map = CPU_MASK_NONE;
1da177e4
LT
4973
4974/* Setup the mask of cpus configured for isolated domains */
4975static int __init isolated_cpu_setup(char *str)
4976{
4977 int ints[NR_CPUS], i;
4978
4979 str = get_options(str, ARRAY_SIZE(ints), ints);
4980 cpus_clear(cpu_isolated_map);
4981 for (i = 1; i <= ints[0]; i++)
4982 if (ints[i] < NR_CPUS)
4983 cpu_set(ints[i], cpu_isolated_map);
4984 return 1;
4985}
4986
4987__setup ("isolcpus=", isolated_cpu_setup);
4988
4989/*
4990 * init_sched_build_groups takes an array of groups, the cpumask we wish
4991 * to span, and a pointer to a function which identifies what group a CPU
4992 * belongs to. The return value of group_fn must be a valid index into the
4993 * groups[] array, and must be >= 0 and < NR_CPUS (due to the fact that we
4994 * keep track of groups covered with a cpumask_t).
4995 *
4996 * init_sched_build_groups will build a circular linked list of the groups
4997 * covered by the given span, and will set each group's ->cpumask correctly,
4998 * and ->cpu_power to 0.
4999 */
9c1cfda2
JH
5000static void init_sched_build_groups(struct sched_group groups[], cpumask_t span,
5001 int (*group_fn)(int cpu))
1da177e4
LT
5002{
5003 struct sched_group *first = NULL, *last = NULL;
5004 cpumask_t covered = CPU_MASK_NONE;
5005 int i;
5006
5007 for_each_cpu_mask(i, span) {
5008 int group = group_fn(i);
5009 struct sched_group *sg = &groups[group];
5010 int j;
5011
5012 if (cpu_isset(i, covered))
5013 continue;
5014
5015 sg->cpumask = CPU_MASK_NONE;
5016 sg->cpu_power = 0;
5017
5018 for_each_cpu_mask(j, span) {
5019 if (group_fn(j) != group)
5020 continue;
5021
5022 cpu_set(j, covered);
5023 cpu_set(j, sg->cpumask);
5024 }
5025 if (!first)
5026 first = sg;
5027 if (last)
5028 last->next = sg;
5029 last = sg;
5030 }
5031 last->next = first;
5032}
5033
9c1cfda2 5034#define SD_NODES_PER_DOMAIN 16
1da177e4 5035
198e2f18
AM
5036/*
5037 * Self-tuning task migration cost measurement between source and target CPUs.
5038 *
5039 * This is done by measuring the cost of manipulating buffers of varying
5040 * sizes. For a given buffer-size here are the steps that are taken:
5041 *
5042 * 1) the source CPU reads+dirties a shared buffer
5043 * 2) the target CPU reads+dirties the same shared buffer
5044 *
5045 * We measure how long they take, in the following 4 scenarios:
5046 *
5047 * - source: CPU1, target: CPU2 | cost1
5048 * - source: CPU2, target: CPU1 | cost2
5049 * - source: CPU1, target: CPU1 | cost3
5050 * - source: CPU2, target: CPU2 | cost4
5051 *
5052 * We then calculate the cost3+cost4-cost1-cost2 difference - this is
5053 * the cost of migration.
5054 *
5055 * We then start off from a small buffer-size and iterate up to larger
5056 * buffer sizes, in 5% steps - measuring each buffer-size separately, and
5057 * doing a maximum search for the cost. (The maximum cost for a migration
5058 * normally occurs when the working set size is around the effective cache
5059 * size.)
5060 */
5061#define SEARCH_SCOPE 2
5062#define MIN_CACHE_SIZE (64*1024U)
5063#define DEFAULT_CACHE_SIZE (5*1024*1024U)
70b4d63e 5064#define ITERATIONS 1
198e2f18
AM
5065#define SIZE_THRESH 130
5066#define COST_THRESH 130
5067
5068/*
5069 * The migration cost is a function of 'domain distance'. Domain
5070 * distance is the number of steps a CPU has to iterate down its
5071 * domain tree to share a domain with the other CPU. The farther
5072 * two CPUs are from each other, the larger the distance gets.
5073 *
5074 * Note that we use the distance only to cache measurement results,
5075 * the distance value is not used numerically otherwise. When two
5076 * CPUs have the same distance it is assumed that the migration
5077 * cost is the same. (this is a simplification but quite practical)
5078 */
5079#define MAX_DOMAIN_DISTANCE 32
5080
5081static unsigned long long migration_cost[MAX_DOMAIN_DISTANCE] =
4bbf39c2
IM
5082 { [ 0 ... MAX_DOMAIN_DISTANCE-1 ] =
5083/*
5084 * Architectures may override the migration cost and thus avoid
5085 * boot-time calibration. Unit is nanoseconds. Mostly useful for
5086 * virtualized hardware:
5087 */
5088#ifdef CONFIG_DEFAULT_MIGRATION_COST
5089 CONFIG_DEFAULT_MIGRATION_COST
5090#else
5091 -1LL
5092#endif
5093};
198e2f18
AM
5094
5095/*
5096 * Allow override of migration cost - in units of microseconds.
5097 * E.g. migration_cost=1000,2000,3000 will set up a level-1 cost
5098 * of 1 msec, level-2 cost of 2 msecs and level3 cost of 3 msecs:
5099 */
5100static int __init migration_cost_setup(char *str)
5101{
5102 int ints[MAX_DOMAIN_DISTANCE+1], i;
5103
5104 str = get_options(str, ARRAY_SIZE(ints), ints);
5105
5106 printk("#ints: %d\n", ints[0]);
5107 for (i = 1; i <= ints[0]; i++) {
5108 migration_cost[i-1] = (unsigned long long)ints[i]*1000;
5109 printk("migration_cost[%d]: %Ld\n", i-1, migration_cost[i-1]);
5110 }
5111 return 1;
5112}
5113
5114__setup ("migration_cost=", migration_cost_setup);
5115
5116/*
5117 * Global multiplier (divisor) for migration-cutoff values,
5118 * in percentiles. E.g. use a value of 150 to get 1.5 times
5119 * longer cache-hot cutoff times.
5120 *
5121 * (We scale it from 100 to 128 to long long handling easier.)
5122 */
5123
5124#define MIGRATION_FACTOR_SCALE 128
5125
5126static unsigned int migration_factor = MIGRATION_FACTOR_SCALE;
5127
5128static int __init setup_migration_factor(char *str)
5129{
5130 get_option(&str, &migration_factor);
5131 migration_factor = migration_factor * MIGRATION_FACTOR_SCALE / 100;
5132 return 1;
5133}
5134
5135__setup("migration_factor=", setup_migration_factor);
5136
5137/*
5138 * Estimated distance of two CPUs, measured via the number of domains
5139 * we have to pass for the two CPUs to be in the same span:
5140 */
5141static unsigned long domain_distance(int cpu1, int cpu2)
5142{
5143 unsigned long distance = 0;
5144 struct sched_domain *sd;
5145
5146 for_each_domain(cpu1, sd) {
5147 WARN_ON(!cpu_isset(cpu1, sd->span));
5148 if (cpu_isset(cpu2, sd->span))
5149 return distance;
5150 distance++;
5151 }
5152 if (distance >= MAX_DOMAIN_DISTANCE) {
5153 WARN_ON(1);
5154 distance = MAX_DOMAIN_DISTANCE-1;
5155 }
5156
5157 return distance;
5158}
5159
5160static unsigned int migration_debug;
5161
5162static int __init setup_migration_debug(char *str)
5163{
5164 get_option(&str, &migration_debug);
5165 return 1;
5166}
5167
5168__setup("migration_debug=", setup_migration_debug);
5169
5170/*
5171 * Maximum cache-size that the scheduler should try to measure.
5172 * Architectures with larger caches should tune this up during
5173 * bootup. Gets used in the domain-setup code (i.e. during SMP
5174 * bootup).
5175 */
5176unsigned int max_cache_size;
5177
5178static int __init setup_max_cache_size(char *str)
5179{
5180 get_option(&str, &max_cache_size);
5181 return 1;
5182}
5183
5184__setup("max_cache_size=", setup_max_cache_size);
5185
5186/*
5187 * Dirty a big buffer in a hard-to-predict (for the L2 cache) way. This
5188 * is the operation that is timed, so we try to generate unpredictable
5189 * cachemisses that still end up filling the L2 cache:
5190 */
5191static void touch_cache(void *__cache, unsigned long __size)
5192{
5193 unsigned long size = __size/sizeof(long), chunk1 = size/3,
5194 chunk2 = 2*size/3;
5195 unsigned long *cache = __cache;
5196 int i;
5197
5198 for (i = 0; i < size/6; i += 8) {
5199 switch (i % 6) {
5200 case 0: cache[i]++;
5201 case 1: cache[size-1-i]++;
5202 case 2: cache[chunk1-i]++;
5203 case 3: cache[chunk1+i]++;
5204 case 4: cache[chunk2-i]++;
5205 case 5: cache[chunk2+i]++;
5206 }
5207 }
5208}
5209
5210/*
5211 * Measure the cache-cost of one task migration. Returns in units of nsec.
5212 */
5213static unsigned long long measure_one(void *cache, unsigned long size,
5214 int source, int target)
5215{
5216 cpumask_t mask, saved_mask;
5217 unsigned long long t0, t1, t2, t3, cost;
5218
5219 saved_mask = current->cpus_allowed;
5220
5221 /*
5222 * Flush source caches to RAM and invalidate them:
5223 */
5224 sched_cacheflush();
5225
5226 /*
5227 * Migrate to the source CPU:
5228 */
5229 mask = cpumask_of_cpu(source);
5230 set_cpus_allowed(current, mask);
5231 WARN_ON(smp_processor_id() != source);
5232
5233 /*
5234 * Dirty the working set:
5235 */
5236 t0 = sched_clock();
5237 touch_cache(cache, size);
5238 t1 = sched_clock();
5239
5240 /*
5241 * Migrate to the target CPU, dirty the L2 cache and access
5242 * the shared buffer. (which represents the working set
5243 * of a migrated task.)
5244 */
5245 mask = cpumask_of_cpu(target);
5246 set_cpus_allowed(current, mask);
5247 WARN_ON(smp_processor_id() != target);
5248
5249 t2 = sched_clock();
5250 touch_cache(cache, size);
5251 t3 = sched_clock();
5252
5253 cost = t1-t0 + t3-t2;
5254
5255 if (migration_debug >= 2)
5256 printk("[%d->%d]: %8Ld %8Ld %8Ld => %10Ld.\n",
5257 source, target, t1-t0, t1-t0, t3-t2, cost);
5258 /*
5259 * Flush target caches to RAM and invalidate them:
5260 */
5261 sched_cacheflush();
5262
5263 set_cpus_allowed(current, saved_mask);
5264
5265 return cost;
5266}
5267
5268/*
5269 * Measure a series of task migrations and return the average
5270 * result. Since this code runs early during bootup the system
5271 * is 'undisturbed' and the average latency makes sense.
5272 *
5273 * The algorithm in essence auto-detects the relevant cache-size,
5274 * so it will properly detect different cachesizes for different
5275 * cache-hierarchies, depending on how the CPUs are connected.
5276 *
5277 * Architectures can prime the upper limit of the search range via
5278 * max_cache_size, otherwise the search range defaults to 20MB...64K.
5279 */
5280static unsigned long long
5281measure_cost(int cpu1, int cpu2, void *cache, unsigned int size)
5282{
5283 unsigned long long cost1, cost2;
5284 int i;
5285
5286 /*
5287 * Measure the migration cost of 'size' bytes, over an
5288 * average of 10 runs:
5289 *
5290 * (We perturb the cache size by a small (0..4k)
5291 * value to compensate size/alignment related artifacts.
5292 * We also subtract the cost of the operation done on
5293 * the same CPU.)
5294 */
5295 cost1 = 0;
5296
5297 /*
5298 * dry run, to make sure we start off cache-cold on cpu1,
5299 * and to get any vmalloc pagefaults in advance:
5300 */
5301 measure_one(cache, size, cpu1, cpu2);
5302 for (i = 0; i < ITERATIONS; i++)
5303 cost1 += measure_one(cache, size - i*1024, cpu1, cpu2);
5304
5305 measure_one(cache, size, cpu2, cpu1);
5306 for (i = 0; i < ITERATIONS; i++)
5307 cost1 += measure_one(cache, size - i*1024, cpu2, cpu1);
5308
5309 /*
5310 * (We measure the non-migrating [cached] cost on both
5311 * cpu1 and cpu2, to handle CPUs with different speeds)
5312 */
5313 cost2 = 0;
5314
5315 measure_one(cache, size, cpu1, cpu1);
5316 for (i = 0; i < ITERATIONS; i++)
5317 cost2 += measure_one(cache, size - i*1024, cpu1, cpu1);
5318
5319 measure_one(cache, size, cpu2, cpu2);
5320 for (i = 0; i < ITERATIONS; i++)
5321 cost2 += measure_one(cache, size - i*1024, cpu2, cpu2);
5322
5323 /*
5324 * Get the per-iteration migration cost:
5325 */
5326 do_div(cost1, 2*ITERATIONS);
5327 do_div(cost2, 2*ITERATIONS);
5328
5329 return cost1 - cost2;
5330}
5331
5332static unsigned long long measure_migration_cost(int cpu1, int cpu2)
5333{
5334 unsigned long long max_cost = 0, fluct = 0, avg_fluct = 0;
5335 unsigned int max_size, size, size_found = 0;
5336 long long cost = 0, prev_cost;
5337 void *cache;
5338
5339 /*
5340 * Search from max_cache_size*5 down to 64K - the real relevant
5341 * cachesize has to lie somewhere inbetween.
5342 */
5343 if (max_cache_size) {
5344 max_size = max(max_cache_size * SEARCH_SCOPE, MIN_CACHE_SIZE);
5345 size = max(max_cache_size / SEARCH_SCOPE, MIN_CACHE_SIZE);
5346 } else {
5347 /*
5348 * Since we have no estimation about the relevant
5349 * search range
5350 */
5351 max_size = DEFAULT_CACHE_SIZE * SEARCH_SCOPE;
5352 size = MIN_CACHE_SIZE;
5353 }
5354
5355 if (!cpu_online(cpu1) || !cpu_online(cpu2)) {
5356 printk("cpu %d and %d not both online!\n", cpu1, cpu2);
5357 return 0;
5358 }
5359
5360 /*
5361 * Allocate the working set:
5362 */
5363 cache = vmalloc(max_size);
5364 if (!cache) {
5365 printk("could not vmalloc %d bytes for cache!\n", 2*max_size);
5366 return 1000000; // return 1 msec on very small boxen
5367 }
5368
5369 while (size <= max_size) {
5370 prev_cost = cost;
5371 cost = measure_cost(cpu1, cpu2, cache, size);
5372
5373 /*
5374 * Update the max:
5375 */
5376 if (cost > 0) {
5377 if (max_cost < cost) {
5378 max_cost = cost;
5379 size_found = size;
5380 }
5381 }
5382 /*
5383 * Calculate average fluctuation, we use this to prevent
5384 * noise from triggering an early break out of the loop:
5385 */
5386 fluct = abs(cost - prev_cost);
5387 avg_fluct = (avg_fluct + fluct)/2;
5388
5389 if (migration_debug)
5390 printk("-> [%d][%d][%7d] %3ld.%ld [%3ld.%ld] (%ld): (%8Ld %8Ld)\n",
5391 cpu1, cpu2, size,
5392 (long)cost / 1000000,
5393 ((long)cost / 100000) % 10,
5394 (long)max_cost / 1000000,
5395 ((long)max_cost / 100000) % 10,
5396 domain_distance(cpu1, cpu2),
5397 cost, avg_fluct);
5398
5399 /*
5400 * If we iterated at least 20% past the previous maximum,
5401 * and the cost has dropped by more than 20% already,
5402 * (taking fluctuations into account) then we assume to
5403 * have found the maximum and break out of the loop early:
5404 */
5405 if (size_found && (size*100 > size_found*SIZE_THRESH))
5406 if (cost+avg_fluct <= 0 ||
5407 max_cost*100 > (cost+avg_fluct)*COST_THRESH) {
5408
5409 if (migration_debug)
5410 printk("-> found max.\n");
5411 break;
5412 }
5413 /*
70b4d63e 5414 * Increase the cachesize in 10% steps:
198e2f18 5415 */
70b4d63e 5416 size = size * 10 / 9;
198e2f18
AM
5417 }
5418
5419 if (migration_debug)
5420 printk("[%d][%d] working set size found: %d, cost: %Ld\n",
5421 cpu1, cpu2, size_found, max_cost);
5422
5423 vfree(cache);
5424
5425 /*
5426 * A task is considered 'cache cold' if at least 2 times
5427 * the worst-case cost of migration has passed.
5428 *
5429 * (this limit is only listened to if the load-balancing
5430 * situation is 'nice' - if there is a large imbalance we
5431 * ignore it for the sake of CPU utilization and
5432 * processing fairness.)
5433 */
5434 return 2 * max_cost * migration_factor / MIGRATION_FACTOR_SCALE;
5435}
5436
5437static void calibrate_migration_costs(const cpumask_t *cpu_map)
5438{
5439 int cpu1 = -1, cpu2 = -1, cpu, orig_cpu = raw_smp_processor_id();
5440 unsigned long j0, j1, distance, max_distance = 0;
5441 struct sched_domain *sd;
5442
5443 j0 = jiffies;
5444
5445 /*
5446 * First pass - calculate the cacheflush times:
5447 */
5448 for_each_cpu_mask(cpu1, *cpu_map) {
5449 for_each_cpu_mask(cpu2, *cpu_map) {
5450 if (cpu1 == cpu2)
5451 continue;
5452 distance = domain_distance(cpu1, cpu2);
5453 max_distance = max(max_distance, distance);
5454 /*
5455 * No result cached yet?
5456 */
5457 if (migration_cost[distance] == -1LL)
5458 migration_cost[distance] =
5459 measure_migration_cost(cpu1, cpu2);
5460 }
5461 }
5462 /*
5463 * Second pass - update the sched domain hierarchy with
5464 * the new cache-hot-time estimations:
5465 */
5466 for_each_cpu_mask(cpu, *cpu_map) {
5467 distance = 0;
5468 for_each_domain(cpu, sd) {
5469 sd->cache_hot_time = migration_cost[distance];
5470 distance++;
5471 }
5472 }
5473 /*
5474 * Print the matrix:
5475 */
5476 if (migration_debug)
5477 printk("migration: max_cache_size: %d, cpu: %d MHz:\n",
5478 max_cache_size,
5479#ifdef CONFIG_X86
5480 cpu_khz/1000
5481#else
5482 -1
5483#endif
5484 );
bd576c95
CE
5485 if (system_state == SYSTEM_BOOTING) {
5486 printk("migration_cost=");
5487 for (distance = 0; distance <= max_distance; distance++) {
5488 if (distance)
5489 printk(",");
5490 printk("%ld", (long)migration_cost[distance] / 1000);
5491 }
5492 printk("\n");
198e2f18 5493 }
198e2f18
AM
5494 j1 = jiffies;
5495 if (migration_debug)
5496 printk("migration: %ld seconds\n", (j1-j0)/HZ);
5497
5498 /*
5499 * Move back to the original CPU. NUMA-Q gets confused
5500 * if we migrate to another quad during bootup.
5501 */
5502 if (raw_smp_processor_id() != orig_cpu) {
5503 cpumask_t mask = cpumask_of_cpu(orig_cpu),
5504 saved_mask = current->cpus_allowed;
5505
5506 set_cpus_allowed(current, mask);
5507 set_cpus_allowed(current, saved_mask);
5508 }
5509}
5510
9c1cfda2 5511#ifdef CONFIG_NUMA
198e2f18 5512
9c1cfda2
JH
5513/**
5514 * find_next_best_node - find the next node to include in a sched_domain
5515 * @node: node whose sched_domain we're building
5516 * @used_nodes: nodes already in the sched_domain
5517 *
5518 * Find the next node to include in a given scheduling domain. Simply
5519 * finds the closest node not already in the @used_nodes map.
5520 *
5521 * Should use nodemask_t.
5522 */
5523static int find_next_best_node(int node, unsigned long *used_nodes)
5524{
5525 int i, n, val, min_val, best_node = 0;
5526
5527 min_val = INT_MAX;
5528
5529 for (i = 0; i < MAX_NUMNODES; i++) {
5530 /* Start at @node */
5531 n = (node + i) % MAX_NUMNODES;
5532
5533 if (!nr_cpus_node(n))
5534 continue;
5535
5536 /* Skip already used nodes */
5537 if (test_bit(n, used_nodes))
5538 continue;
5539
5540 /* Simple min distance search */
5541 val = node_distance(node, n);
5542
5543 if (val < min_val) {
5544 min_val = val;
5545 best_node = n;
5546 }
5547 }
5548
5549 set_bit(best_node, used_nodes);
5550 return best_node;
5551}
5552
5553/**
5554 * sched_domain_node_span - get a cpumask for a node's sched_domain
5555 * @node: node whose cpumask we're constructing
5556 * @size: number of nodes to include in this span
5557 *
5558 * Given a node, construct a good cpumask for its sched_domain to span. It
5559 * should be one that prevents unnecessary balancing, but also spreads tasks
5560 * out optimally.
5561 */
5562static cpumask_t sched_domain_node_span(int node)
5563{
5564 int i;
5565 cpumask_t span, nodemask;
5566 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
5567
5568 cpus_clear(span);
5569 bitmap_zero(used_nodes, MAX_NUMNODES);
5570
5571 nodemask = node_to_cpumask(node);
5572 cpus_or(span, span, nodemask);
5573 set_bit(node, used_nodes);
5574
5575 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5576 int next_node = find_next_best_node(node, used_nodes);
5577 nodemask = node_to_cpumask(next_node);
5578 cpus_or(span, span, nodemask);
5579 }
5580
5581 return span;
5582}
5583#endif
5584
5585/*
5586 * At the moment, CONFIG_SCHED_SMT is never defined, but leave it in so we
5587 * can switch it on easily if needed.
5588 */
1da177e4
LT
5589#ifdef CONFIG_SCHED_SMT
5590static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
5591static struct sched_group sched_group_cpus[NR_CPUS];
1a20ff27 5592static int cpu_to_cpu_group(int cpu)
1da177e4
LT
5593{
5594 return cpu;
5595}
5596#endif
5597
1e9f28fa
SS
5598#ifdef CONFIG_SCHED_MC
5599static DEFINE_PER_CPU(struct sched_domain, core_domains);
5600static struct sched_group sched_group_core[NR_CPUS];
5601#endif
5602
5603#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
5604static int cpu_to_core_group(int cpu)
5605{
5606 return first_cpu(cpu_sibling_map[cpu]);
5607}
5608#elif defined(CONFIG_SCHED_MC)
5609static int cpu_to_core_group(int cpu)
5610{
5611 return cpu;
5612}
5613#endif
5614
1da177e4
LT
5615static DEFINE_PER_CPU(struct sched_domain, phys_domains);
5616static struct sched_group sched_group_phys[NR_CPUS];
1a20ff27 5617static int cpu_to_phys_group(int cpu)
1da177e4 5618{
1e9f28fa
SS
5619#if defined(CONFIG_SCHED_MC)
5620 cpumask_t mask = cpu_coregroup_map(cpu);
5621 return first_cpu(mask);
5622#elif defined(CONFIG_SCHED_SMT)
1da177e4
LT
5623 return first_cpu(cpu_sibling_map[cpu]);
5624#else
5625 return cpu;
5626#endif
5627}
5628
5629#ifdef CONFIG_NUMA
1da177e4 5630/*
9c1cfda2
JH
5631 * The init_sched_build_groups can't handle what we want to do with node
5632 * groups, so roll our own. Now each node has its own list of groups which
5633 * gets dynamically allocated.
1da177e4 5634 */
9c1cfda2 5635static DEFINE_PER_CPU(struct sched_domain, node_domains);
d1b55138 5636static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
1da177e4 5637
9c1cfda2 5638static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
d1b55138 5639static struct sched_group *sched_group_allnodes_bycpu[NR_CPUS];
9c1cfda2
JH
5640
5641static int cpu_to_allnodes_group(int cpu)
5642{
5643 return cpu_to_node(cpu);
1da177e4 5644}
08069033
SS
5645static void init_numa_sched_groups_power(struct sched_group *group_head)
5646{
5647 struct sched_group *sg = group_head;
5648 int j;
5649
5650 if (!sg)
5651 return;
5652next_sg:
5653 for_each_cpu_mask(j, sg->cpumask) {
5654 struct sched_domain *sd;
5655
5656 sd = &per_cpu(phys_domains, j);
5657 if (j != first_cpu(sd->groups->cpumask)) {
5658 /*
5659 * Only add "power" once for each
5660 * physical package.
5661 */
5662 continue;
5663 }
5664
5665 sg->cpu_power += sd->groups->cpu_power;
5666 }
5667 sg = sg->next;
5668 if (sg != group_head)
5669 goto next_sg;
5670}
1da177e4
LT
5671#endif
5672
5673/*
1a20ff27
DG
5674 * Build sched domains for a given set of cpus and attach the sched domains
5675 * to the individual cpus
1da177e4 5676 */
9c1cfda2 5677void build_sched_domains(const cpumask_t *cpu_map)
1da177e4
LT
5678{
5679 int i;
d1b55138
JH
5680#ifdef CONFIG_NUMA
5681 struct sched_group **sched_group_nodes = NULL;
5682 struct sched_group *sched_group_allnodes = NULL;
5683
5684 /*
5685 * Allocate the per-node list of sched groups
5686 */
5687 sched_group_nodes = kmalloc(sizeof(struct sched_group*)*MAX_NUMNODES,
5688 GFP_ATOMIC);
5689 if (!sched_group_nodes) {
5690 printk(KERN_WARNING "Can not alloc sched group node list\n");
5691 return;
5692 }
5693 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
5694#endif
1da177e4
LT
5695
5696 /*
1a20ff27 5697 * Set up domains for cpus specified by the cpu_map.
1da177e4 5698 */
1a20ff27 5699 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
5700 int group;
5701 struct sched_domain *sd = NULL, *p;
5702 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
5703
1a20ff27 5704 cpus_and(nodemask, nodemask, *cpu_map);
1da177e4
LT
5705
5706#ifdef CONFIG_NUMA
d1b55138 5707 if (cpus_weight(*cpu_map)
9c1cfda2 5708 > SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
d1b55138
JH
5709 if (!sched_group_allnodes) {
5710 sched_group_allnodes
5711 = kmalloc(sizeof(struct sched_group)
5712 * MAX_NUMNODES,
5713 GFP_KERNEL);
5714 if (!sched_group_allnodes) {
5715 printk(KERN_WARNING
5716 "Can not alloc allnodes sched group\n");
5717 break;
5718 }
5719 sched_group_allnodes_bycpu[i]
5720 = sched_group_allnodes;
5721 }
9c1cfda2
JH
5722 sd = &per_cpu(allnodes_domains, i);
5723 *sd = SD_ALLNODES_INIT;
5724 sd->span = *cpu_map;
5725 group = cpu_to_allnodes_group(i);
5726 sd->groups = &sched_group_allnodes[group];
5727 p = sd;
5728 } else
5729 p = NULL;
5730
1da177e4 5731 sd = &per_cpu(node_domains, i);
1da177e4 5732 *sd = SD_NODE_INIT;
9c1cfda2
JH
5733 sd->span = sched_domain_node_span(cpu_to_node(i));
5734 sd->parent = p;
5735 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4
LT
5736#endif
5737
5738 p = sd;
5739 sd = &per_cpu(phys_domains, i);
5740 group = cpu_to_phys_group(i);
5741 *sd = SD_CPU_INIT;
5742 sd->span = nodemask;
5743 sd->parent = p;
5744 sd->groups = &sched_group_phys[group];
5745
1e9f28fa
SS
5746#ifdef CONFIG_SCHED_MC
5747 p = sd;
5748 sd = &per_cpu(core_domains, i);
5749 group = cpu_to_core_group(i);
5750 *sd = SD_MC_INIT;
5751 sd->span = cpu_coregroup_map(i);
5752 cpus_and(sd->span, sd->span, *cpu_map);
5753 sd->parent = p;
5754 sd->groups = &sched_group_core[group];
5755#endif
5756
1da177e4
LT
5757#ifdef CONFIG_SCHED_SMT
5758 p = sd;
5759 sd = &per_cpu(cpu_domains, i);
5760 group = cpu_to_cpu_group(i);
5761 *sd = SD_SIBLING_INIT;
5762 sd->span = cpu_sibling_map[i];
1a20ff27 5763 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4
LT
5764 sd->parent = p;
5765 sd->groups = &sched_group_cpus[group];
5766#endif
5767 }
5768
5769#ifdef CONFIG_SCHED_SMT
5770 /* Set up CPU (sibling) groups */
9c1cfda2 5771 for_each_cpu_mask(i, *cpu_map) {
1da177e4 5772 cpumask_t this_sibling_map = cpu_sibling_map[i];
1a20ff27 5773 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
1da177e4
LT
5774 if (i != first_cpu(this_sibling_map))
5775 continue;
5776
5777 init_sched_build_groups(sched_group_cpus, this_sibling_map,
5778 &cpu_to_cpu_group);
5779 }
5780#endif
5781
1e9f28fa
SS
5782#ifdef CONFIG_SCHED_MC
5783 /* Set up multi-core groups */
5784 for_each_cpu_mask(i, *cpu_map) {
5785 cpumask_t this_core_map = cpu_coregroup_map(i);
5786 cpus_and(this_core_map, this_core_map, *cpu_map);
5787 if (i != first_cpu(this_core_map))
5788 continue;
5789 init_sched_build_groups(sched_group_core, this_core_map,
5790 &cpu_to_core_group);
5791 }
5792#endif
5793
5794
1da177e4
LT
5795 /* Set up physical groups */
5796 for (i = 0; i < MAX_NUMNODES; i++) {
5797 cpumask_t nodemask = node_to_cpumask(i);
5798
1a20ff27 5799 cpus_and(nodemask, nodemask, *cpu_map);
1da177e4
LT
5800 if (cpus_empty(nodemask))
5801 continue;
5802
5803 init_sched_build_groups(sched_group_phys, nodemask,
5804 &cpu_to_phys_group);
5805 }
5806
5807#ifdef CONFIG_NUMA
5808 /* Set up node groups */
d1b55138
JH
5809 if (sched_group_allnodes)
5810 init_sched_build_groups(sched_group_allnodes, *cpu_map,
5811 &cpu_to_allnodes_group);
9c1cfda2
JH
5812
5813 for (i = 0; i < MAX_NUMNODES; i++) {
5814 /* Set up node groups */
5815 struct sched_group *sg, *prev;
5816 cpumask_t nodemask = node_to_cpumask(i);
5817 cpumask_t domainspan;
5818 cpumask_t covered = CPU_MASK_NONE;
5819 int j;
5820
5821 cpus_and(nodemask, nodemask, *cpu_map);
d1b55138
JH
5822 if (cpus_empty(nodemask)) {
5823 sched_group_nodes[i] = NULL;
9c1cfda2 5824 continue;
d1b55138 5825 }
9c1cfda2
JH
5826
5827 domainspan = sched_domain_node_span(i);
5828 cpus_and(domainspan, domainspan, *cpu_map);
5829
5830 sg = kmalloc(sizeof(struct sched_group), GFP_KERNEL);
5831 sched_group_nodes[i] = sg;
5832 for_each_cpu_mask(j, nodemask) {
5833 struct sched_domain *sd;
5834 sd = &per_cpu(node_domains, j);
5835 sd->groups = sg;
5836 if (sd->groups == NULL) {
5837 /* Turn off balancing if we have no groups */
5838 sd->flags = 0;
5839 }
5840 }
5841 if (!sg) {
5842 printk(KERN_WARNING
5843 "Can not alloc domain group for node %d\n", i);
5844 continue;
5845 }
5846 sg->cpu_power = 0;
5847 sg->cpumask = nodemask;
5848 cpus_or(covered, covered, nodemask);
5849 prev = sg;
5850
5851 for (j = 0; j < MAX_NUMNODES; j++) {
5852 cpumask_t tmp, notcovered;
5853 int n = (i + j) % MAX_NUMNODES;
5854
5855 cpus_complement(notcovered, covered);
5856 cpus_and(tmp, notcovered, *cpu_map);
5857 cpus_and(tmp, tmp, domainspan);
5858 if (cpus_empty(tmp))
5859 break;
5860
5861 nodemask = node_to_cpumask(n);
5862 cpus_and(tmp, tmp, nodemask);
5863 if (cpus_empty(tmp))
5864 continue;
5865
5866 sg = kmalloc(sizeof(struct sched_group), GFP_KERNEL);
5867 if (!sg) {
5868 printk(KERN_WARNING
5869 "Can not alloc domain group for node %d\n", j);
5870 break;
5871 }
5872 sg->cpu_power = 0;
5873 sg->cpumask = tmp;
5874 cpus_or(covered, covered, tmp);
5875 prev->next = sg;
5876 prev = sg;
5877 }
5878 prev->next = sched_group_nodes[i];
5879 }
1da177e4
LT
5880#endif
5881
5882 /* Calculate CPU power for physical packages and nodes */
1a20ff27 5883 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
5884 int power;
5885 struct sched_domain *sd;
5886#ifdef CONFIG_SCHED_SMT
5887 sd = &per_cpu(cpu_domains, i);
5888 power = SCHED_LOAD_SCALE;
5889 sd->groups->cpu_power = power;
5890#endif
1e9f28fa
SS
5891#ifdef CONFIG_SCHED_MC
5892 sd = &per_cpu(core_domains, i);
5893 power = SCHED_LOAD_SCALE + (cpus_weight(sd->groups->cpumask)-1)
5894 * SCHED_LOAD_SCALE / 10;
5895 sd->groups->cpu_power = power;
5896
5897 sd = &per_cpu(phys_domains, i);
1da177e4 5898
1e9f28fa
SS
5899 /*
5900 * This has to be < 2 * SCHED_LOAD_SCALE
5901 * Lets keep it SCHED_LOAD_SCALE, so that
5902 * while calculating NUMA group's cpu_power
5903 * we can simply do
5904 * numa_group->cpu_power += phys_group->cpu_power;
5905 *
5906 * See "only add power once for each physical pkg"
5907 * comment below
5908 */
5909 sd->groups->cpu_power = SCHED_LOAD_SCALE;
5910#else
1da177e4
LT
5911 sd = &per_cpu(phys_domains, i);
5912 power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
5913 (cpus_weight(sd->groups->cpumask)-1) / 10;
5914 sd->groups->cpu_power = power;
1e9f28fa 5915#endif
1da177e4
LT
5916 }
5917
9c1cfda2 5918#ifdef CONFIG_NUMA
08069033
SS
5919 for (i = 0; i < MAX_NUMNODES; i++)
5920 init_numa_sched_groups_power(sched_group_nodes[i]);
9c1cfda2 5921
08069033 5922 init_numa_sched_groups_power(sched_group_allnodes);
9c1cfda2
JH
5923#endif
5924
1da177e4 5925 /* Attach the domains */
1a20ff27 5926 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
5927 struct sched_domain *sd;
5928#ifdef CONFIG_SCHED_SMT
5929 sd = &per_cpu(cpu_domains, i);
1e9f28fa
SS
5930#elif defined(CONFIG_SCHED_MC)
5931 sd = &per_cpu(core_domains, i);
1da177e4
LT
5932#else
5933 sd = &per_cpu(phys_domains, i);
5934#endif
5935 cpu_attach_domain(sd, i);
5936 }
198e2f18
AM
5937 /*
5938 * Tune cache-hot values:
5939 */
5940 calibrate_migration_costs(cpu_map);
1da177e4 5941}
1a20ff27
DG
5942/*
5943 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
5944 */
9c1cfda2 5945static void arch_init_sched_domains(const cpumask_t *cpu_map)
1a20ff27
DG
5946{
5947 cpumask_t cpu_default_map;
1da177e4 5948
1a20ff27
DG
5949 /*
5950 * Setup mask for cpus without special case scheduling requirements.
5951 * For now this just excludes isolated cpus, but could be used to
5952 * exclude other special cases in the future.
5953 */
5954 cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
5955
5956 build_sched_domains(&cpu_default_map);
5957}
5958
5959static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
1da177e4 5960{
9c1cfda2
JH
5961#ifdef CONFIG_NUMA
5962 int i;
d1b55138 5963 int cpu;
1da177e4 5964
d1b55138
JH
5965 for_each_cpu_mask(cpu, *cpu_map) {
5966 struct sched_group *sched_group_allnodes
5967 = sched_group_allnodes_bycpu[cpu];
5968 struct sched_group **sched_group_nodes
5969 = sched_group_nodes_bycpu[cpu];
9c1cfda2 5970
d1b55138
JH
5971 if (sched_group_allnodes) {
5972 kfree(sched_group_allnodes);
5973 sched_group_allnodes_bycpu[cpu] = NULL;
5974 }
5975
5976 if (!sched_group_nodes)
9c1cfda2 5977 continue;
d1b55138
JH
5978
5979 for (i = 0; i < MAX_NUMNODES; i++) {
5980 cpumask_t nodemask = node_to_cpumask(i);
5981 struct sched_group *oldsg, *sg = sched_group_nodes[i];
5982
5983 cpus_and(nodemask, nodemask, *cpu_map);
5984 if (cpus_empty(nodemask))
5985 continue;
5986
5987 if (sg == NULL)
5988 continue;
5989 sg = sg->next;
9c1cfda2 5990next_sg:
d1b55138
JH
5991 oldsg = sg;
5992 sg = sg->next;
5993 kfree(oldsg);
5994 if (oldsg != sched_group_nodes[i])
5995 goto next_sg;
5996 }
5997 kfree(sched_group_nodes);
5998 sched_group_nodes_bycpu[cpu] = NULL;
9c1cfda2
JH
5999 }
6000#endif
6001}
1da177e4 6002
1a20ff27
DG
6003/*
6004 * Detach sched domains from a group of cpus specified in cpu_map
6005 * These cpus will now be attached to the NULL domain
6006 */
858119e1 6007static void detach_destroy_domains(const cpumask_t *cpu_map)
1a20ff27
DG
6008{
6009 int i;
6010
6011 for_each_cpu_mask(i, *cpu_map)
6012 cpu_attach_domain(NULL, i);
6013 synchronize_sched();
6014 arch_destroy_sched_domains(cpu_map);
6015}
6016
6017/*
6018 * Partition sched domains as specified by the cpumasks below.
6019 * This attaches all cpus from the cpumasks to the NULL domain,
6020 * waits for a RCU quiescent period, recalculates sched
6021 * domain information and then attaches them back to the
6022 * correct sched domains
6023 * Call with hotplug lock held
6024 */
6025void partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
6026{
6027 cpumask_t change_map;
6028
6029 cpus_and(*partition1, *partition1, cpu_online_map);
6030 cpus_and(*partition2, *partition2, cpu_online_map);
6031 cpus_or(change_map, *partition1, *partition2);
6032
6033 /* Detach sched domains from all of the affected cpus */
6034 detach_destroy_domains(&change_map);
6035 if (!cpus_empty(*partition1))
6036 build_sched_domains(partition1);
6037 if (!cpus_empty(*partition2))
6038 build_sched_domains(partition2);
6039}
6040
1da177e4
LT
6041#ifdef CONFIG_HOTPLUG_CPU
6042/*
6043 * Force a reinitialization of the sched domains hierarchy. The domains
6044 * and groups cannot be updated in place without racing with the balancing
41c7ce9a 6045 * code, so we temporarily attach all running cpus to the NULL domain
1da177e4
LT
6046 * which will prevent rebalancing while the sched domains are recalculated.
6047 */
6048static int update_sched_domains(struct notifier_block *nfb,
6049 unsigned long action, void *hcpu)
6050{
1da177e4
LT
6051 switch (action) {
6052 case CPU_UP_PREPARE:
6053 case CPU_DOWN_PREPARE:
1a20ff27 6054 detach_destroy_domains(&cpu_online_map);
1da177e4
LT
6055 return NOTIFY_OK;
6056
6057 case CPU_UP_CANCELED:
6058 case CPU_DOWN_FAILED:
6059 case CPU_ONLINE:
6060 case CPU_DEAD:
6061 /*
6062 * Fall through and re-initialise the domains.
6063 */
6064 break;
6065 default:
6066 return NOTIFY_DONE;
6067 }
6068
6069 /* The hotplug lock is already held by cpu_up/cpu_down */
1a20ff27 6070 arch_init_sched_domains(&cpu_online_map);
1da177e4
LT
6071
6072 return NOTIFY_OK;
6073}
6074#endif
6075
6076void __init sched_init_smp(void)
6077{
6078 lock_cpu_hotplug();
1a20ff27 6079 arch_init_sched_domains(&cpu_online_map);
1da177e4
LT
6080 unlock_cpu_hotplug();
6081 /* XXX: Theoretical race here - CPU may be hotplugged now */
6082 hotcpu_notifier(update_sched_domains, 0);
6083}
6084#else
6085void __init sched_init_smp(void)
6086{
6087}
6088#endif /* CONFIG_SMP */
6089
6090int in_sched_functions(unsigned long addr)
6091{
6092 /* Linker adds these: start and end of __sched functions */
6093 extern char __sched_text_start[], __sched_text_end[];
6094 return in_lock_functions(addr) ||
6095 (addr >= (unsigned long)__sched_text_start
6096 && addr < (unsigned long)__sched_text_end);
6097}
6098
6099void __init sched_init(void)
6100{
6101 runqueue_t *rq;
6102 int i, j, k;
6103
0a945022 6104 for_each_possible_cpu(i) {
1da177e4
LT
6105 prio_array_t *array;
6106
6107 rq = cpu_rq(i);
6108 spin_lock_init(&rq->lock);
7897986b 6109 rq->nr_running = 0;
1da177e4
LT
6110 rq->active = rq->arrays;
6111 rq->expired = rq->arrays + 1;
6112 rq->best_expired_prio = MAX_PRIO;
6113
6114#ifdef CONFIG_SMP
41c7ce9a 6115 rq->sd = NULL;
7897986b
NP
6116 for (j = 1; j < 3; j++)
6117 rq->cpu_load[j] = 0;
1da177e4
LT
6118 rq->active_balance = 0;
6119 rq->push_cpu = 0;
6120 rq->migration_thread = NULL;
6121 INIT_LIST_HEAD(&rq->migration_queue);
e9028b0f 6122 rq->cpu = i;
1da177e4
LT
6123#endif
6124 atomic_set(&rq->nr_iowait, 0);
6125
6126 for (j = 0; j < 2; j++) {
6127 array = rq->arrays + j;
6128 for (k = 0; k < MAX_PRIO; k++) {
6129 INIT_LIST_HEAD(array->queue + k);
6130 __clear_bit(k, array->bitmap);
6131 }
6132 // delimiter for bitsearch
6133 __set_bit(MAX_PRIO, array->bitmap);
6134 }
6135 }
6136
6137 /*
6138 * The boot idle thread does lazy MMU switching as well:
6139 */
6140 atomic_inc(&init_mm.mm_count);
6141 enter_lazy_tlb(&init_mm, current);
6142
6143 /*
6144 * Make us the idle thread. Technically, schedule() should not be
6145 * called from this thread, however somewhere below it might be,
6146 * but because we are the idle thread, we just pick up running again
6147 * when this runqueue becomes "idle".
6148 */
6149 init_idle(current, smp_processor_id());
6150}
6151
6152#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6153void __might_sleep(char *file, int line)
6154{
6155#if defined(in_atomic)
6156 static unsigned long prev_jiffy; /* ratelimiting */
6157
6158 if ((in_atomic() || irqs_disabled()) &&
6159 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6160 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6161 return;
6162 prev_jiffy = jiffies;
91368d73 6163 printk(KERN_ERR "BUG: sleeping function called from invalid"
1da177e4
LT
6164 " context at %s:%d\n", file, line);
6165 printk("in_atomic():%d, irqs_disabled():%d\n",
6166 in_atomic(), irqs_disabled());
6167 dump_stack();
6168 }
6169#endif
6170}
6171EXPORT_SYMBOL(__might_sleep);
6172#endif
6173
6174#ifdef CONFIG_MAGIC_SYSRQ
6175void normalize_rt_tasks(void)
6176{
6177 struct task_struct *p;
6178 prio_array_t *array;
6179 unsigned long flags;
6180 runqueue_t *rq;
6181
6182 read_lock_irq(&tasklist_lock);
6183 for_each_process (p) {
6184 if (!rt_task(p))
6185 continue;
6186
6187 rq = task_rq_lock(p, &flags);
6188
6189 array = p->array;
6190 if (array)
6191 deactivate_task(p, task_rq(p));
6192 __setscheduler(p, SCHED_NORMAL, 0);
6193 if (array) {
6194 __activate_task(p, task_rq(p));
6195 resched_task(rq->curr);
6196 }
6197
6198 task_rq_unlock(rq, &flags);
6199 }
6200 read_unlock_irq(&tasklist_lock);
6201}
6202
6203#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
6204
6205#ifdef CONFIG_IA64
6206/*
6207 * These functions are only useful for the IA64 MCA handling.
6208 *
6209 * They can only be called when the whole system has been
6210 * stopped - every CPU needs to be quiescent, and no scheduling
6211 * activity can take place. Using them for anything else would
6212 * be a serious bug, and as a result, they aren't even visible
6213 * under any other configuration.
6214 */
6215
6216/**
6217 * curr_task - return the current task for a given cpu.
6218 * @cpu: the processor in question.
6219 *
6220 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6221 */
6222task_t *curr_task(int cpu)
6223{
6224 return cpu_curr(cpu);
6225}
6226
6227/**
6228 * set_curr_task - set the current task for a given cpu.
6229 * @cpu: the processor in question.
6230 * @p: the task pointer to set.
6231 *
6232 * Description: This function must only be used when non-maskable interrupts
6233 * are serviced on a separate stack. It allows the architecture to switch the
6234 * notion of the current task on a cpu in a non-blocking manner. This function
6235 * must be called with all CPU's synchronized, and interrupts disabled, the
6236 * and caller must save the original value of the current task (see
6237 * curr_task() above) and restore that value before reenabling interrupts and
6238 * re-starting the system.
6239 *
6240 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6241 */
6242void set_curr_task(int cpu, task_t *p)
6243{
6244 cpu_curr(cpu) = p;
6245}
6246
6247#endif