Btrfs: use helper to cleanup tree roots
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / btrfs / disk-io.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
e20d96d6 19#include <linux/fs.h>
d98237b3 20#include <linux/blkdev.h>
87cbda5c 21#include <linux/scatterlist.h>
22b0ebda 22#include <linux/swap.h>
0f7d52f4 23#include <linux/radix-tree.h>
35b7e476 24#include <linux/writeback.h>
d397712b 25#include <linux/buffer_head.h>
ce9adaa5 26#include <linux/workqueue.h>
a74a4b97 27#include <linux/kthread.h>
4b4e25f2 28#include <linux/freezer.h>
163e783e 29#include <linux/crc32c.h>
5a0e3ad6 30#include <linux/slab.h>
784b4e29 31#include <linux/migrate.h>
7a36ddec 32#include <linux/ratelimit.h>
7e75bf3f 33#include <asm/unaligned.h>
4b4e25f2 34#include "compat.h"
eb60ceac
CM
35#include "ctree.h"
36#include "disk-io.h"
e089f05c 37#include "transaction.h"
0f7d52f4 38#include "btrfs_inode.h"
0b86a832 39#include "volumes.h"
db94535d 40#include "print-tree.h"
8b712842 41#include "async-thread.h"
925baedd 42#include "locking.h"
e02119d5 43#include "tree-log.h"
fa9c0d79 44#include "free-space-cache.h"
581bb050 45#include "inode-map.h"
21adbd5c 46#include "check-integrity.h"
606686ee 47#include "rcu-string.h"
8dabb742 48#include "dev-replace.h"
53b381b3 49#include "raid56.h"
eb60ceac 50
de0022b9
JB
51#ifdef CONFIG_X86
52#include <asm/cpufeature.h>
53#endif
54
d1310b2e 55static struct extent_io_ops btree_extent_io_ops;
8b712842 56static void end_workqueue_fn(struct btrfs_work *work);
4df27c4d 57static void free_fs_root(struct btrfs_root *root);
fcd1f065 58static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
acce952b 59 int read_only);
569e0f35
JB
60static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
61 struct btrfs_root *root);
143bede5 62static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
acce952b 63static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
64 struct btrfs_root *root);
aec8030a 65static void btrfs_evict_pending_snapshots(struct btrfs_transaction *t);
143bede5 66static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
acce952b 67static int btrfs_destroy_marked_extents(struct btrfs_root *root,
68 struct extent_io_tree *dirty_pages,
69 int mark);
70static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
71 struct extent_io_tree *pinned_extents);
ce9adaa5 72
d352ac68
CM
73/*
74 * end_io_wq structs are used to do processing in task context when an IO is
75 * complete. This is used during reads to verify checksums, and it is used
76 * by writes to insert metadata for new file extents after IO is complete.
77 */
ce9adaa5
CM
78struct end_io_wq {
79 struct bio *bio;
80 bio_end_io_t *end_io;
81 void *private;
82 struct btrfs_fs_info *info;
83 int error;
22c59948 84 int metadata;
ce9adaa5 85 struct list_head list;
8b712842 86 struct btrfs_work work;
ce9adaa5 87};
0da5468f 88
d352ac68
CM
89/*
90 * async submit bios are used to offload expensive checksumming
91 * onto the worker threads. They checksum file and metadata bios
92 * just before they are sent down the IO stack.
93 */
44b8bd7e
CM
94struct async_submit_bio {
95 struct inode *inode;
96 struct bio *bio;
97 struct list_head list;
4a69a410
CM
98 extent_submit_bio_hook_t *submit_bio_start;
99 extent_submit_bio_hook_t *submit_bio_done;
44b8bd7e
CM
100 int rw;
101 int mirror_num;
c8b97818 102 unsigned long bio_flags;
eaf25d93
CM
103 /*
104 * bio_offset is optional, can be used if the pages in the bio
105 * can't tell us where in the file the bio should go
106 */
107 u64 bio_offset;
8b712842 108 struct btrfs_work work;
79787eaa 109 int error;
44b8bd7e
CM
110};
111
85d4e461
CM
112/*
113 * Lockdep class keys for extent_buffer->lock's in this root. For a given
114 * eb, the lockdep key is determined by the btrfs_root it belongs to and
115 * the level the eb occupies in the tree.
116 *
117 * Different roots are used for different purposes and may nest inside each
118 * other and they require separate keysets. As lockdep keys should be
119 * static, assign keysets according to the purpose of the root as indicated
120 * by btrfs_root->objectid. This ensures that all special purpose roots
121 * have separate keysets.
4008c04a 122 *
85d4e461
CM
123 * Lock-nesting across peer nodes is always done with the immediate parent
124 * node locked thus preventing deadlock. As lockdep doesn't know this, use
125 * subclass to avoid triggering lockdep warning in such cases.
4008c04a 126 *
85d4e461
CM
127 * The key is set by the readpage_end_io_hook after the buffer has passed
128 * csum validation but before the pages are unlocked. It is also set by
129 * btrfs_init_new_buffer on freshly allocated blocks.
4008c04a 130 *
85d4e461
CM
131 * We also add a check to make sure the highest level of the tree is the
132 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
133 * needs update as well.
4008c04a
CM
134 */
135#ifdef CONFIG_DEBUG_LOCK_ALLOC
136# if BTRFS_MAX_LEVEL != 8
137# error
138# endif
85d4e461
CM
139
140static struct btrfs_lockdep_keyset {
141 u64 id; /* root objectid */
142 const char *name_stem; /* lock name stem */
143 char names[BTRFS_MAX_LEVEL + 1][20];
144 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
145} btrfs_lockdep_keysets[] = {
146 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
147 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
148 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
149 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
150 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
151 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
152 { .id = BTRFS_ORPHAN_OBJECTID, .name_stem = "orphan" },
153 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
154 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
155 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
156 { .id = 0, .name_stem = "tree" },
4008c04a 157};
85d4e461
CM
158
159void __init btrfs_init_lockdep(void)
160{
161 int i, j;
162
163 /* initialize lockdep class names */
164 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
165 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
166
167 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
168 snprintf(ks->names[j], sizeof(ks->names[j]),
169 "btrfs-%s-%02d", ks->name_stem, j);
170 }
171}
172
173void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
174 int level)
175{
176 struct btrfs_lockdep_keyset *ks;
177
178 BUG_ON(level >= ARRAY_SIZE(ks->keys));
179
180 /* find the matching keyset, id 0 is the default entry */
181 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
182 if (ks->id == objectid)
183 break;
184
185 lockdep_set_class_and_name(&eb->lock,
186 &ks->keys[level], ks->names[level]);
187}
188
4008c04a
CM
189#endif
190
d352ac68
CM
191/*
192 * extents on the btree inode are pretty simple, there's one extent
193 * that covers the entire device
194 */
b2950863 195static struct extent_map *btree_get_extent(struct inode *inode,
306e16ce 196 struct page *page, size_t pg_offset, u64 start, u64 len,
b2950863 197 int create)
7eccb903 198{
5f39d397
CM
199 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
200 struct extent_map *em;
201 int ret;
202
890871be 203 read_lock(&em_tree->lock);
d1310b2e 204 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
205 if (em) {
206 em->bdev =
207 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
890871be 208 read_unlock(&em_tree->lock);
5f39d397 209 goto out;
a061fc8d 210 }
890871be 211 read_unlock(&em_tree->lock);
7b13b7b1 212
172ddd60 213 em = alloc_extent_map();
5f39d397
CM
214 if (!em) {
215 em = ERR_PTR(-ENOMEM);
216 goto out;
217 }
218 em->start = 0;
0afbaf8c 219 em->len = (u64)-1;
c8b97818 220 em->block_len = (u64)-1;
5f39d397 221 em->block_start = 0;
a061fc8d 222 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
d1310b2e 223
890871be 224 write_lock(&em_tree->lock);
5f39d397
CM
225 ret = add_extent_mapping(em_tree, em);
226 if (ret == -EEXIST) {
227 free_extent_map(em);
7b13b7b1 228 em = lookup_extent_mapping(em_tree, start, len);
b4f359ab 229 if (!em)
0433f20d 230 em = ERR_PTR(-EIO);
5f39d397 231 } else if (ret) {
7b13b7b1 232 free_extent_map(em);
0433f20d 233 em = ERR_PTR(ret);
5f39d397 234 }
890871be 235 write_unlock(&em_tree->lock);
7b13b7b1 236
5f39d397
CM
237out:
238 return em;
7eccb903
CM
239}
240
b0496686 241u32 btrfs_csum_data(char *data, u32 seed, size_t len)
19c00ddc 242{
163e783e 243 return crc32c(seed, data, len);
19c00ddc
CM
244}
245
246void btrfs_csum_final(u32 crc, char *result)
247{
7e75bf3f 248 put_unaligned_le32(~crc, result);
19c00ddc
CM
249}
250
d352ac68
CM
251/*
252 * compute the csum for a btree block, and either verify it or write it
253 * into the csum field of the block.
254 */
19c00ddc
CM
255static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
256 int verify)
257{
6c41761f 258 u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
607d432d 259 char *result = NULL;
19c00ddc
CM
260 unsigned long len;
261 unsigned long cur_len;
262 unsigned long offset = BTRFS_CSUM_SIZE;
19c00ddc
CM
263 char *kaddr;
264 unsigned long map_start;
265 unsigned long map_len;
266 int err;
267 u32 crc = ~(u32)0;
607d432d 268 unsigned long inline_result;
19c00ddc
CM
269
270 len = buf->len - offset;
d397712b 271 while (len > 0) {
19c00ddc 272 err = map_private_extent_buffer(buf, offset, 32,
a6591715 273 &kaddr, &map_start, &map_len);
d397712b 274 if (err)
19c00ddc 275 return 1;
19c00ddc 276 cur_len = min(len, map_len - (offset - map_start));
b0496686 277 crc = btrfs_csum_data(kaddr + offset - map_start,
19c00ddc
CM
278 crc, cur_len);
279 len -= cur_len;
280 offset += cur_len;
19c00ddc 281 }
607d432d
JB
282 if (csum_size > sizeof(inline_result)) {
283 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
284 if (!result)
285 return 1;
286 } else {
287 result = (char *)&inline_result;
288 }
289
19c00ddc
CM
290 btrfs_csum_final(crc, result);
291
292 if (verify) {
607d432d 293 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
e4204ded
CM
294 u32 val;
295 u32 found = 0;
607d432d 296 memcpy(&found, result, csum_size);
e4204ded 297
607d432d 298 read_extent_buffer(buf, &val, 0, csum_size);
7a36ddec 299 printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
193f284d
CM
300 "failed on %llu wanted %X found %X "
301 "level %d\n",
302 root->fs_info->sb->s_id,
303 (unsigned long long)buf->start, val, found,
304 btrfs_header_level(buf));
607d432d
JB
305 if (result != (char *)&inline_result)
306 kfree(result);
19c00ddc
CM
307 return 1;
308 }
309 } else {
607d432d 310 write_extent_buffer(buf, result, 0, csum_size);
19c00ddc 311 }
607d432d
JB
312 if (result != (char *)&inline_result)
313 kfree(result);
19c00ddc
CM
314 return 0;
315}
316
d352ac68
CM
317/*
318 * we can't consider a given block up to date unless the transid of the
319 * block matches the transid in the parent node's pointer. This is how we
320 * detect blocks that either didn't get written at all or got written
321 * in the wrong place.
322 */
1259ab75 323static int verify_parent_transid(struct extent_io_tree *io_tree,
b9fab919
CM
324 struct extent_buffer *eb, u64 parent_transid,
325 int atomic)
1259ab75 326{
2ac55d41 327 struct extent_state *cached_state = NULL;
1259ab75
CM
328 int ret;
329
330 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
331 return 0;
332
b9fab919
CM
333 if (atomic)
334 return -EAGAIN;
335
2ac55d41 336 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
d0082371 337 0, &cached_state);
0b32f4bb 338 if (extent_buffer_uptodate(eb) &&
1259ab75
CM
339 btrfs_header_generation(eb) == parent_transid) {
340 ret = 0;
341 goto out;
342 }
7a36ddec 343 printk_ratelimited("parent transid verify failed on %llu wanted %llu "
193f284d
CM
344 "found %llu\n",
345 (unsigned long long)eb->start,
346 (unsigned long long)parent_transid,
347 (unsigned long long)btrfs_header_generation(eb));
1259ab75 348 ret = 1;
0b32f4bb 349 clear_extent_buffer_uptodate(eb);
33958dc6 350out:
2ac55d41
JB
351 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
352 &cached_state, GFP_NOFS);
1259ab75 353 return ret;
1259ab75
CM
354}
355
d352ac68
CM
356/*
357 * helper to read a given tree block, doing retries as required when
358 * the checksums don't match and we have alternate mirrors to try.
359 */
f188591e
CM
360static int btree_read_extent_buffer_pages(struct btrfs_root *root,
361 struct extent_buffer *eb,
ca7a79ad 362 u64 start, u64 parent_transid)
f188591e
CM
363{
364 struct extent_io_tree *io_tree;
ea466794 365 int failed = 0;
f188591e
CM
366 int ret;
367 int num_copies = 0;
368 int mirror_num = 0;
ea466794 369 int failed_mirror = 0;
f188591e 370
a826d6dc 371 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
f188591e
CM
372 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
373 while (1) {
bb82ab88
AJ
374 ret = read_extent_buffer_pages(io_tree, eb, start,
375 WAIT_COMPLETE,
f188591e 376 btree_get_extent, mirror_num);
256dd1bb
SB
377 if (!ret) {
378 if (!verify_parent_transid(io_tree, eb,
b9fab919 379 parent_transid, 0))
256dd1bb
SB
380 break;
381 else
382 ret = -EIO;
383 }
d397712b 384
a826d6dc
JB
385 /*
386 * This buffer's crc is fine, but its contents are corrupted, so
387 * there is no reason to read the other copies, they won't be
388 * any less wrong.
389 */
390 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
ea466794
JB
391 break;
392
5d964051 393 num_copies = btrfs_num_copies(root->fs_info,
f188591e 394 eb->start, eb->len);
4235298e 395 if (num_copies == 1)
ea466794 396 break;
4235298e 397
5cf1ab56
JB
398 if (!failed_mirror) {
399 failed = 1;
400 failed_mirror = eb->read_mirror;
401 }
402
f188591e 403 mirror_num++;
ea466794
JB
404 if (mirror_num == failed_mirror)
405 mirror_num++;
406
4235298e 407 if (mirror_num > num_copies)
ea466794 408 break;
f188591e 409 }
ea466794 410
c0901581 411 if (failed && !ret && failed_mirror)
ea466794
JB
412 repair_eb_io_failure(root, eb, failed_mirror);
413
414 return ret;
f188591e 415}
19c00ddc 416
d352ac68 417/*
d397712b
CM
418 * checksum a dirty tree block before IO. This has extra checks to make sure
419 * we only fill in the checksum field in the first page of a multi-page block
d352ac68 420 */
d397712b 421
b2950863 422static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
19c00ddc 423{
d1310b2e 424 struct extent_io_tree *tree;
4eee4fa4 425 u64 start = page_offset(page);
19c00ddc 426 u64 found_start;
19c00ddc 427 struct extent_buffer *eb;
f188591e 428
d1310b2e 429 tree = &BTRFS_I(page->mapping->host)->io_tree;
19c00ddc 430
4f2de97a
JB
431 eb = (struct extent_buffer *)page->private;
432 if (page != eb->pages[0])
433 return 0;
19c00ddc
CM
434 found_start = btrfs_header_bytenr(eb);
435 if (found_start != start) {
55c69072 436 WARN_ON(1);
4f2de97a 437 return 0;
55c69072 438 }
55c69072 439 if (!PageUptodate(page)) {
55c69072 440 WARN_ON(1);
4f2de97a 441 return 0;
19c00ddc 442 }
19c00ddc 443 csum_tree_block(root, eb, 0);
19c00ddc
CM
444 return 0;
445}
446
2b82032c
YZ
447static int check_tree_block_fsid(struct btrfs_root *root,
448 struct extent_buffer *eb)
449{
450 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
451 u8 fsid[BTRFS_UUID_SIZE];
452 int ret = 1;
453
454 read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
455 BTRFS_FSID_SIZE);
456 while (fs_devices) {
457 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
458 ret = 0;
459 break;
460 }
461 fs_devices = fs_devices->seed;
462 }
463 return ret;
464}
465
a826d6dc
JB
466#define CORRUPT(reason, eb, root, slot) \
467 printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
468 "root=%llu, slot=%d\n", reason, \
469 (unsigned long long)btrfs_header_bytenr(eb), \
470 (unsigned long long)root->objectid, slot)
471
472static noinline int check_leaf(struct btrfs_root *root,
473 struct extent_buffer *leaf)
474{
475 struct btrfs_key key;
476 struct btrfs_key leaf_key;
477 u32 nritems = btrfs_header_nritems(leaf);
478 int slot;
479
480 if (nritems == 0)
481 return 0;
482
483 /* Check the 0 item */
484 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
485 BTRFS_LEAF_DATA_SIZE(root)) {
486 CORRUPT("invalid item offset size pair", leaf, root, 0);
487 return -EIO;
488 }
489
490 /*
491 * Check to make sure each items keys are in the correct order and their
492 * offsets make sense. We only have to loop through nritems-1 because
493 * we check the current slot against the next slot, which verifies the
494 * next slot's offset+size makes sense and that the current's slot
495 * offset is correct.
496 */
497 for (slot = 0; slot < nritems - 1; slot++) {
498 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
499 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
500
501 /* Make sure the keys are in the right order */
502 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
503 CORRUPT("bad key order", leaf, root, slot);
504 return -EIO;
505 }
506
507 /*
508 * Make sure the offset and ends are right, remember that the
509 * item data starts at the end of the leaf and grows towards the
510 * front.
511 */
512 if (btrfs_item_offset_nr(leaf, slot) !=
513 btrfs_item_end_nr(leaf, slot + 1)) {
514 CORRUPT("slot offset bad", leaf, root, slot);
515 return -EIO;
516 }
517
518 /*
519 * Check to make sure that we don't point outside of the leaf,
520 * just incase all the items are consistent to eachother, but
521 * all point outside of the leaf.
522 */
523 if (btrfs_item_end_nr(leaf, slot) >
524 BTRFS_LEAF_DATA_SIZE(root)) {
525 CORRUPT("slot end outside of leaf", leaf, root, slot);
526 return -EIO;
527 }
528 }
529
530 return 0;
531}
532
727011e0
CM
533struct extent_buffer *find_eb_for_page(struct extent_io_tree *tree,
534 struct page *page, int max_walk)
535{
536 struct extent_buffer *eb;
537 u64 start = page_offset(page);
538 u64 target = start;
539 u64 min_start;
540
541 if (start < max_walk)
542 min_start = 0;
543 else
544 min_start = start - max_walk;
545
546 while (start >= min_start) {
547 eb = find_extent_buffer(tree, start, 0);
548 if (eb) {
549 /*
550 * we found an extent buffer and it contains our page
551 * horray!
552 */
553 if (eb->start <= target &&
554 eb->start + eb->len > target)
555 return eb;
556
557 /* we found an extent buffer that wasn't for us */
558 free_extent_buffer(eb);
559 return NULL;
560 }
561 if (start == 0)
562 break;
563 start -= PAGE_CACHE_SIZE;
564 }
565 return NULL;
566}
567
b2950863 568static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
5cf1ab56 569 struct extent_state *state, int mirror)
ce9adaa5
CM
570{
571 struct extent_io_tree *tree;
572 u64 found_start;
573 int found_level;
ce9adaa5
CM
574 struct extent_buffer *eb;
575 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
f188591e 576 int ret = 0;
727011e0 577 int reads_done;
ce9adaa5 578
ce9adaa5
CM
579 if (!page->private)
580 goto out;
d397712b 581
727011e0 582 tree = &BTRFS_I(page->mapping->host)->io_tree;
4f2de97a 583 eb = (struct extent_buffer *)page->private;
d397712b 584
0b32f4bb
JB
585 /* the pending IO might have been the only thing that kept this buffer
586 * in memory. Make sure we have a ref for all this other checks
587 */
588 extent_buffer_get(eb);
589
590 reads_done = atomic_dec_and_test(&eb->io_pages);
727011e0
CM
591 if (!reads_done)
592 goto err;
f188591e 593
5cf1ab56 594 eb->read_mirror = mirror;
ea466794
JB
595 if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
596 ret = -EIO;
597 goto err;
598 }
599
ce9adaa5 600 found_start = btrfs_header_bytenr(eb);
727011e0 601 if (found_start != eb->start) {
7a36ddec 602 printk_ratelimited(KERN_INFO "btrfs bad tree block start "
193f284d
CM
603 "%llu %llu\n",
604 (unsigned long long)found_start,
605 (unsigned long long)eb->start);
f188591e 606 ret = -EIO;
ce9adaa5
CM
607 goto err;
608 }
2b82032c 609 if (check_tree_block_fsid(root, eb)) {
7a36ddec 610 printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
193f284d 611 (unsigned long long)eb->start);
1259ab75
CM
612 ret = -EIO;
613 goto err;
614 }
ce9adaa5
CM
615 found_level = btrfs_header_level(eb);
616
85d4e461
CM
617 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
618 eb, found_level);
4008c04a 619
ce9adaa5 620 ret = csum_tree_block(root, eb, 1);
a826d6dc 621 if (ret) {
f188591e 622 ret = -EIO;
a826d6dc
JB
623 goto err;
624 }
625
626 /*
627 * If this is a leaf block and it is corrupt, set the corrupt bit so
628 * that we don't try and read the other copies of this block, just
629 * return -EIO.
630 */
631 if (found_level == 0 && check_leaf(root, eb)) {
632 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
633 ret = -EIO;
634 }
ce9adaa5 635
0b32f4bb
JB
636 if (!ret)
637 set_extent_buffer_uptodate(eb);
ce9adaa5 638err:
4bb31e92
AJ
639 if (test_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) {
640 clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags);
641 btree_readahead_hook(root, eb, eb->start, ret);
642 }
643
53b381b3
DW
644 if (ret) {
645 /*
646 * our io error hook is going to dec the io pages
647 * again, we have to make sure it has something
648 * to decrement
649 */
650 atomic_inc(&eb->io_pages);
0b32f4bb 651 clear_extent_buffer_uptodate(eb);
53b381b3 652 }
0b32f4bb 653 free_extent_buffer(eb);
ce9adaa5 654out:
f188591e 655 return ret;
ce9adaa5
CM
656}
657
ea466794 658static int btree_io_failed_hook(struct page *page, int failed_mirror)
4bb31e92 659{
4bb31e92
AJ
660 struct extent_buffer *eb;
661 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
662
4f2de97a 663 eb = (struct extent_buffer *)page->private;
ea466794 664 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
5cf1ab56 665 eb->read_mirror = failed_mirror;
53b381b3 666 atomic_dec(&eb->io_pages);
ea466794 667 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
4bb31e92 668 btree_readahead_hook(root, eb, eb->start, -EIO);
4bb31e92
AJ
669 return -EIO; /* we fixed nothing */
670}
671
ce9adaa5 672static void end_workqueue_bio(struct bio *bio, int err)
ce9adaa5
CM
673{
674 struct end_io_wq *end_io_wq = bio->bi_private;
675 struct btrfs_fs_info *fs_info;
ce9adaa5 676
ce9adaa5 677 fs_info = end_io_wq->info;
ce9adaa5 678 end_io_wq->error = err;
8b712842
CM
679 end_io_wq->work.func = end_workqueue_fn;
680 end_io_wq->work.flags = 0;
d20f7043 681
7b6d91da 682 if (bio->bi_rw & REQ_WRITE) {
53b381b3 683 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
cad321ad
CM
684 btrfs_queue_worker(&fs_info->endio_meta_write_workers,
685 &end_io_wq->work);
53b381b3 686 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
0cb59c99
JB
687 btrfs_queue_worker(&fs_info->endio_freespace_worker,
688 &end_io_wq->work);
53b381b3
DW
689 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
690 btrfs_queue_worker(&fs_info->endio_raid56_workers,
691 &end_io_wq->work);
cad321ad
CM
692 else
693 btrfs_queue_worker(&fs_info->endio_write_workers,
694 &end_io_wq->work);
d20f7043 695 } else {
53b381b3
DW
696 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
697 btrfs_queue_worker(&fs_info->endio_raid56_workers,
698 &end_io_wq->work);
699 else if (end_io_wq->metadata)
d20f7043
CM
700 btrfs_queue_worker(&fs_info->endio_meta_workers,
701 &end_io_wq->work);
702 else
703 btrfs_queue_worker(&fs_info->endio_workers,
704 &end_io_wq->work);
705 }
ce9adaa5
CM
706}
707
0cb59c99
JB
708/*
709 * For the metadata arg you want
710 *
711 * 0 - if data
712 * 1 - if normal metadta
713 * 2 - if writing to the free space cache area
53b381b3 714 * 3 - raid parity work
0cb59c99 715 */
22c59948
CM
716int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
717 int metadata)
0b86a832 718{
ce9adaa5 719 struct end_io_wq *end_io_wq;
ce9adaa5
CM
720 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
721 if (!end_io_wq)
722 return -ENOMEM;
723
724 end_io_wq->private = bio->bi_private;
725 end_io_wq->end_io = bio->bi_end_io;
22c59948 726 end_io_wq->info = info;
ce9adaa5
CM
727 end_io_wq->error = 0;
728 end_io_wq->bio = bio;
22c59948 729 end_io_wq->metadata = metadata;
ce9adaa5
CM
730
731 bio->bi_private = end_io_wq;
732 bio->bi_end_io = end_workqueue_bio;
22c59948
CM
733 return 0;
734}
735
b64a2851 736unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
0986fe9e 737{
4854ddd0
CM
738 unsigned long limit = min_t(unsigned long,
739 info->workers.max_workers,
740 info->fs_devices->open_devices);
741 return 256 * limit;
742}
0986fe9e 743
4a69a410
CM
744static void run_one_async_start(struct btrfs_work *work)
745{
4a69a410 746 struct async_submit_bio *async;
79787eaa 747 int ret;
4a69a410
CM
748
749 async = container_of(work, struct async_submit_bio, work);
79787eaa
JM
750 ret = async->submit_bio_start(async->inode, async->rw, async->bio,
751 async->mirror_num, async->bio_flags,
752 async->bio_offset);
753 if (ret)
754 async->error = ret;
4a69a410
CM
755}
756
757static void run_one_async_done(struct btrfs_work *work)
8b712842
CM
758{
759 struct btrfs_fs_info *fs_info;
760 struct async_submit_bio *async;
4854ddd0 761 int limit;
8b712842
CM
762
763 async = container_of(work, struct async_submit_bio, work);
764 fs_info = BTRFS_I(async->inode)->root->fs_info;
4854ddd0 765
b64a2851 766 limit = btrfs_async_submit_limit(fs_info);
4854ddd0
CM
767 limit = limit * 2 / 3;
768
66657b31 769 if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
b64a2851 770 waitqueue_active(&fs_info->async_submit_wait))
4854ddd0
CM
771 wake_up(&fs_info->async_submit_wait);
772
79787eaa
JM
773 /* If an error occured we just want to clean up the bio and move on */
774 if (async->error) {
775 bio_endio(async->bio, async->error);
776 return;
777 }
778
4a69a410 779 async->submit_bio_done(async->inode, async->rw, async->bio,
eaf25d93
CM
780 async->mirror_num, async->bio_flags,
781 async->bio_offset);
4a69a410
CM
782}
783
784static void run_one_async_free(struct btrfs_work *work)
785{
786 struct async_submit_bio *async;
787
788 async = container_of(work, struct async_submit_bio, work);
8b712842
CM
789 kfree(async);
790}
791
44b8bd7e
CM
792int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
793 int rw, struct bio *bio, int mirror_num,
c8b97818 794 unsigned long bio_flags,
eaf25d93 795 u64 bio_offset,
4a69a410
CM
796 extent_submit_bio_hook_t *submit_bio_start,
797 extent_submit_bio_hook_t *submit_bio_done)
44b8bd7e
CM
798{
799 struct async_submit_bio *async;
800
801 async = kmalloc(sizeof(*async), GFP_NOFS);
802 if (!async)
803 return -ENOMEM;
804
805 async->inode = inode;
806 async->rw = rw;
807 async->bio = bio;
808 async->mirror_num = mirror_num;
4a69a410
CM
809 async->submit_bio_start = submit_bio_start;
810 async->submit_bio_done = submit_bio_done;
811
812 async->work.func = run_one_async_start;
813 async->work.ordered_func = run_one_async_done;
814 async->work.ordered_free = run_one_async_free;
815
8b712842 816 async->work.flags = 0;
c8b97818 817 async->bio_flags = bio_flags;
eaf25d93 818 async->bio_offset = bio_offset;
8c8bee1d 819
79787eaa
JM
820 async->error = 0;
821
cb03c743 822 atomic_inc(&fs_info->nr_async_submits);
d313d7a3 823
7b6d91da 824 if (rw & REQ_SYNC)
d313d7a3
CM
825 btrfs_set_work_high_prio(&async->work);
826
8b712842 827 btrfs_queue_worker(&fs_info->workers, &async->work);
9473f16c 828
d397712b 829 while (atomic_read(&fs_info->async_submit_draining) &&
771ed689
CM
830 atomic_read(&fs_info->nr_async_submits)) {
831 wait_event(fs_info->async_submit_wait,
832 (atomic_read(&fs_info->nr_async_submits) == 0));
833 }
834
44b8bd7e
CM
835 return 0;
836}
837
ce3ed71a
CM
838static int btree_csum_one_bio(struct bio *bio)
839{
840 struct bio_vec *bvec = bio->bi_io_vec;
841 int bio_index = 0;
842 struct btrfs_root *root;
79787eaa 843 int ret = 0;
ce3ed71a
CM
844
845 WARN_ON(bio->bi_vcnt <= 0);
d397712b 846 while (bio_index < bio->bi_vcnt) {
ce3ed71a 847 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
79787eaa
JM
848 ret = csum_dirty_buffer(root, bvec->bv_page);
849 if (ret)
850 break;
ce3ed71a
CM
851 bio_index++;
852 bvec++;
853 }
79787eaa 854 return ret;
ce3ed71a
CM
855}
856
4a69a410
CM
857static int __btree_submit_bio_start(struct inode *inode, int rw,
858 struct bio *bio, int mirror_num,
eaf25d93
CM
859 unsigned long bio_flags,
860 u64 bio_offset)
22c59948 861{
8b712842
CM
862 /*
863 * when we're called for a write, we're already in the async
5443be45 864 * submission context. Just jump into btrfs_map_bio
8b712842 865 */
79787eaa 866 return btree_csum_one_bio(bio);
4a69a410 867}
22c59948 868
4a69a410 869static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
870 int mirror_num, unsigned long bio_flags,
871 u64 bio_offset)
4a69a410 872{
61891923
SB
873 int ret;
874
8b712842 875 /*
4a69a410
CM
876 * when we're called for a write, we're already in the async
877 * submission context. Just jump into btrfs_map_bio
8b712842 878 */
61891923
SB
879 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
880 if (ret)
881 bio_endio(bio, ret);
882 return ret;
0b86a832
CM
883}
884
de0022b9
JB
885static int check_async_write(struct inode *inode, unsigned long bio_flags)
886{
887 if (bio_flags & EXTENT_BIO_TREE_LOG)
888 return 0;
889#ifdef CONFIG_X86
890 if (cpu_has_xmm4_2)
891 return 0;
892#endif
893 return 1;
894}
895
44b8bd7e 896static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
897 int mirror_num, unsigned long bio_flags,
898 u64 bio_offset)
44b8bd7e 899{
de0022b9 900 int async = check_async_write(inode, bio_flags);
cad321ad
CM
901 int ret;
902
7b6d91da 903 if (!(rw & REQ_WRITE)) {
4a69a410
CM
904 /*
905 * called for a read, do the setup so that checksum validation
906 * can happen in the async kernel threads
907 */
f3f266ab
CM
908 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
909 bio, 1);
1d4284bd 910 if (ret)
61891923
SB
911 goto out_w_error;
912 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
913 mirror_num, 0);
de0022b9
JB
914 } else if (!async) {
915 ret = btree_csum_one_bio(bio);
916 if (ret)
61891923
SB
917 goto out_w_error;
918 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
919 mirror_num, 0);
920 } else {
921 /*
922 * kthread helpers are used to submit writes so that
923 * checksumming can happen in parallel across all CPUs
924 */
925 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
926 inode, rw, bio, mirror_num, 0,
927 bio_offset,
928 __btree_submit_bio_start,
929 __btree_submit_bio_done);
44b8bd7e 930 }
d313d7a3 931
61891923
SB
932 if (ret) {
933out_w_error:
934 bio_endio(bio, ret);
935 }
936 return ret;
44b8bd7e
CM
937}
938
3dd1462e 939#ifdef CONFIG_MIGRATION
784b4e29 940static int btree_migratepage(struct address_space *mapping,
a6bc32b8
MG
941 struct page *newpage, struct page *page,
942 enum migrate_mode mode)
784b4e29
CM
943{
944 /*
945 * we can't safely write a btree page from here,
946 * we haven't done the locking hook
947 */
948 if (PageDirty(page))
949 return -EAGAIN;
950 /*
951 * Buffers may be managed in a filesystem specific way.
952 * We must have no buffers or drop them.
953 */
954 if (page_has_private(page) &&
955 !try_to_release_page(page, GFP_KERNEL))
956 return -EAGAIN;
a6bc32b8 957 return migrate_page(mapping, newpage, page, mode);
784b4e29 958}
3dd1462e 959#endif
784b4e29 960
0da5468f
CM
961
962static int btree_writepages(struct address_space *mapping,
963 struct writeback_control *wbc)
964{
d1310b2e 965 struct extent_io_tree *tree;
e2d84521
MX
966 struct btrfs_fs_info *fs_info;
967 int ret;
968
d1310b2e 969 tree = &BTRFS_I(mapping->host)->io_tree;
d8d5f3e1 970 if (wbc->sync_mode == WB_SYNC_NONE) {
448d640b
CM
971
972 if (wbc->for_kupdate)
973 return 0;
974
e2d84521 975 fs_info = BTRFS_I(mapping->host)->root->fs_info;
b9473439 976 /* this is a bit racy, but that's ok */
e2d84521
MX
977 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
978 BTRFS_DIRTY_METADATA_THRESH);
979 if (ret < 0)
793955bc 980 return 0;
793955bc 981 }
0b32f4bb 982 return btree_write_cache_pages(mapping, wbc);
0da5468f
CM
983}
984
b2950863 985static int btree_readpage(struct file *file, struct page *page)
5f39d397 986{
d1310b2e
CM
987 struct extent_io_tree *tree;
988 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 989 return extent_read_full_page(tree, page, btree_get_extent, 0);
5f39d397 990}
22b0ebda 991
70dec807 992static int btree_releasepage(struct page *page, gfp_t gfp_flags)
5f39d397 993{
98509cfc 994 if (PageWriteback(page) || PageDirty(page))
d397712b 995 return 0;
0c4e538b
DS
996 /*
997 * We need to mask out eg. __GFP_HIGHMEM and __GFP_DMA32 as we're doing
998 * slab allocation from alloc_extent_state down the callchain where
999 * it'd hit a BUG_ON as those flags are not allowed.
1000 */
1001 gfp_flags &= ~GFP_SLAB_BUG_MASK;
1002
3083ee2e 1003 return try_release_extent_buffer(page, gfp_flags);
d98237b3
CM
1004}
1005
5f39d397 1006static void btree_invalidatepage(struct page *page, unsigned long offset)
d98237b3 1007{
d1310b2e
CM
1008 struct extent_io_tree *tree;
1009 tree = &BTRFS_I(page->mapping->host)->io_tree;
5f39d397
CM
1010 extent_invalidatepage(tree, page, offset);
1011 btree_releasepage(page, GFP_NOFS);
9ad6b7bc 1012 if (PagePrivate(page)) {
d397712b
CM
1013 printk(KERN_WARNING "btrfs warning page private not zero "
1014 "on page %llu\n", (unsigned long long)page_offset(page));
9ad6b7bc
CM
1015 ClearPagePrivate(page);
1016 set_page_private(page, 0);
1017 page_cache_release(page);
1018 }
d98237b3
CM
1019}
1020
0b32f4bb
JB
1021static int btree_set_page_dirty(struct page *page)
1022{
bb146eb2 1023#ifdef DEBUG
0b32f4bb
JB
1024 struct extent_buffer *eb;
1025
1026 BUG_ON(!PagePrivate(page));
1027 eb = (struct extent_buffer *)page->private;
1028 BUG_ON(!eb);
1029 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1030 BUG_ON(!atomic_read(&eb->refs));
1031 btrfs_assert_tree_locked(eb);
bb146eb2 1032#endif
0b32f4bb
JB
1033 return __set_page_dirty_nobuffers(page);
1034}
1035
7f09410b 1036static const struct address_space_operations btree_aops = {
d98237b3 1037 .readpage = btree_readpage,
0da5468f 1038 .writepages = btree_writepages,
5f39d397
CM
1039 .releasepage = btree_releasepage,
1040 .invalidatepage = btree_invalidatepage,
5a92bc88 1041#ifdef CONFIG_MIGRATION
784b4e29 1042 .migratepage = btree_migratepage,
5a92bc88 1043#endif
0b32f4bb 1044 .set_page_dirty = btree_set_page_dirty,
d98237b3
CM
1045};
1046
ca7a79ad
CM
1047int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1048 u64 parent_transid)
090d1875 1049{
5f39d397
CM
1050 struct extent_buffer *buf = NULL;
1051 struct inode *btree_inode = root->fs_info->btree_inode;
de428b63 1052 int ret = 0;
090d1875 1053
db94535d 1054 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
5f39d397 1055 if (!buf)
090d1875 1056 return 0;
d1310b2e 1057 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
bb82ab88 1058 buf, 0, WAIT_NONE, btree_get_extent, 0);
5f39d397 1059 free_extent_buffer(buf);
de428b63 1060 return ret;
090d1875
CM
1061}
1062
ab0fff03
AJ
1063int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1064 int mirror_num, struct extent_buffer **eb)
1065{
1066 struct extent_buffer *buf = NULL;
1067 struct inode *btree_inode = root->fs_info->btree_inode;
1068 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1069 int ret;
1070
1071 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1072 if (!buf)
1073 return 0;
1074
1075 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1076
1077 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1078 btree_get_extent, mirror_num);
1079 if (ret) {
1080 free_extent_buffer(buf);
1081 return ret;
1082 }
1083
1084 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1085 free_extent_buffer(buf);
1086 return -EIO;
0b32f4bb 1087 } else if (extent_buffer_uptodate(buf)) {
ab0fff03
AJ
1088 *eb = buf;
1089 } else {
1090 free_extent_buffer(buf);
1091 }
1092 return 0;
1093}
1094
0999df54
CM
1095struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1096 u64 bytenr, u32 blocksize)
1097{
1098 struct inode *btree_inode = root->fs_info->btree_inode;
1099 struct extent_buffer *eb;
1100 eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
f09d1f60 1101 bytenr, blocksize);
0999df54
CM
1102 return eb;
1103}
1104
1105struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1106 u64 bytenr, u32 blocksize)
1107{
1108 struct inode *btree_inode = root->fs_info->btree_inode;
1109 struct extent_buffer *eb;
1110
1111 eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
727011e0 1112 bytenr, blocksize);
0999df54
CM
1113 return eb;
1114}
1115
1116
e02119d5
CM
1117int btrfs_write_tree_block(struct extent_buffer *buf)
1118{
727011e0 1119 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
8aa38c31 1120 buf->start + buf->len - 1);
e02119d5
CM
1121}
1122
1123int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1124{
727011e0 1125 return filemap_fdatawait_range(buf->pages[0]->mapping,
8aa38c31 1126 buf->start, buf->start + buf->len - 1);
e02119d5
CM
1127}
1128
0999df54 1129struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
ca7a79ad 1130 u32 blocksize, u64 parent_transid)
0999df54
CM
1131{
1132 struct extent_buffer *buf = NULL;
0999df54
CM
1133 int ret;
1134
0999df54
CM
1135 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1136 if (!buf)
1137 return NULL;
0999df54 1138
ca7a79ad 1139 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
5f39d397 1140 return buf;
ce9adaa5 1141
eb60ceac
CM
1142}
1143
d5c13f92
JM
1144void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1145 struct extent_buffer *buf)
ed2ff2cb 1146{
e2d84521
MX
1147 struct btrfs_fs_info *fs_info = root->fs_info;
1148
55c69072 1149 if (btrfs_header_generation(buf) ==
e2d84521 1150 fs_info->running_transaction->transid) {
b9447ef8 1151 btrfs_assert_tree_locked(buf);
b4ce94de 1152
b9473439 1153 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
e2d84521
MX
1154 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1155 -buf->len,
1156 fs_info->dirty_metadata_batch);
ed7b63eb
JB
1157 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1158 btrfs_set_lock_blocking(buf);
1159 clear_extent_buffer_dirty(buf);
1160 }
925baedd 1161 }
5f39d397
CM
1162}
1163
143bede5
JM
1164static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1165 u32 stripesize, struct btrfs_root *root,
1166 struct btrfs_fs_info *fs_info,
1167 u64 objectid)
d97e63b6 1168{
cfaa7295 1169 root->node = NULL;
a28ec197 1170 root->commit_root = NULL;
db94535d
CM
1171 root->sectorsize = sectorsize;
1172 root->nodesize = nodesize;
1173 root->leafsize = leafsize;
87ee04eb 1174 root->stripesize = stripesize;
123abc88 1175 root->ref_cows = 0;
0b86a832 1176 root->track_dirty = 0;
c71bf099 1177 root->in_radix = 0;
d68fc57b
YZ
1178 root->orphan_item_inserted = 0;
1179 root->orphan_cleanup_state = 0;
0b86a832 1180
0f7d52f4
CM
1181 root->objectid = objectid;
1182 root->last_trans = 0;
13a8a7c8 1183 root->highest_objectid = 0;
58176a96 1184 root->name = NULL;
6bef4d31 1185 root->inode_tree = RB_ROOT;
16cdcec7 1186 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
f0486c68 1187 root->block_rsv = NULL;
d68fc57b 1188 root->orphan_block_rsv = NULL;
0b86a832
CM
1189
1190 INIT_LIST_HEAD(&root->dirty_list);
5d4f98a2 1191 INIT_LIST_HEAD(&root->root_list);
2ab28f32
JB
1192 INIT_LIST_HEAD(&root->logged_list[0]);
1193 INIT_LIST_HEAD(&root->logged_list[1]);
d68fc57b 1194 spin_lock_init(&root->orphan_lock);
5d4f98a2 1195 spin_lock_init(&root->inode_lock);
f0486c68 1196 spin_lock_init(&root->accounting_lock);
2ab28f32
JB
1197 spin_lock_init(&root->log_extents_lock[0]);
1198 spin_lock_init(&root->log_extents_lock[1]);
a2135011 1199 mutex_init(&root->objectid_mutex);
e02119d5 1200 mutex_init(&root->log_mutex);
7237f183
YZ
1201 init_waitqueue_head(&root->log_writer_wait);
1202 init_waitqueue_head(&root->log_commit_wait[0]);
1203 init_waitqueue_head(&root->log_commit_wait[1]);
1204 atomic_set(&root->log_commit[0], 0);
1205 atomic_set(&root->log_commit[1], 0);
1206 atomic_set(&root->log_writers, 0);
2ecb7923 1207 atomic_set(&root->log_batch, 0);
8a35d95f 1208 atomic_set(&root->orphan_inodes, 0);
7237f183 1209 root->log_transid = 0;
257c62e1 1210 root->last_log_commit = 0;
d0c803c4 1211 extent_io_tree_init(&root->dirty_log_pages,
f993c883 1212 fs_info->btree_inode->i_mapping);
017e5369 1213
3768f368
CM
1214 memset(&root->root_key, 0, sizeof(root->root_key));
1215 memset(&root->root_item, 0, sizeof(root->root_item));
6702ed49 1216 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
58176a96 1217 memset(&root->root_kobj, 0, sizeof(root->root_kobj));
3f157a2f 1218 root->defrag_trans_start = fs_info->generation;
58176a96 1219 init_completion(&root->kobj_unregister);
6702ed49 1220 root->defrag_running = 0;
4d775673 1221 root->root_key.objectid = objectid;
0ee5dc67 1222 root->anon_dev = 0;
8ea05e3a 1223
5f3ab90a 1224 spin_lock_init(&root->root_item_lock);
3768f368
CM
1225}
1226
200a5c17
JM
1227static int __must_check find_and_setup_root(struct btrfs_root *tree_root,
1228 struct btrfs_fs_info *fs_info,
1229 u64 objectid,
1230 struct btrfs_root *root)
3768f368
CM
1231{
1232 int ret;
db94535d 1233 u32 blocksize;
84234f3a 1234 u64 generation;
3768f368 1235
db94535d 1236 __setup_root(tree_root->nodesize, tree_root->leafsize,
87ee04eb
CM
1237 tree_root->sectorsize, tree_root->stripesize,
1238 root, fs_info, objectid);
3768f368
CM
1239 ret = btrfs_find_last_root(tree_root, objectid,
1240 &root->root_item, &root->root_key);
4df27c4d
YZ
1241 if (ret > 0)
1242 return -ENOENT;
200a5c17
JM
1243 else if (ret < 0)
1244 return ret;
3768f368 1245
84234f3a 1246 generation = btrfs_root_generation(&root->root_item);
db94535d 1247 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
af31f5e5 1248 root->commit_root = NULL;
db94535d 1249 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
84234f3a 1250 blocksize, generation);
b9fab919 1251 if (!root->node || !btrfs_buffer_uptodate(root->node, generation, 0)) {
68433b73 1252 free_extent_buffer(root->node);
af31f5e5 1253 root->node = NULL;
68433b73
CM
1254 return -EIO;
1255 }
4df27c4d 1256 root->commit_root = btrfs_root_node(root);
d97e63b6
CM
1257 return 0;
1258}
1259
f84a8bd6 1260static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
6f07e42e
AV
1261{
1262 struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1263 if (root)
1264 root->fs_info = fs_info;
1265 return root;
1266}
1267
20897f5c
AJ
1268struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1269 struct btrfs_fs_info *fs_info,
1270 u64 objectid)
1271{
1272 struct extent_buffer *leaf;
1273 struct btrfs_root *tree_root = fs_info->tree_root;
1274 struct btrfs_root *root;
1275 struct btrfs_key key;
1276 int ret = 0;
1277 u64 bytenr;
1278
1279 root = btrfs_alloc_root(fs_info);
1280 if (!root)
1281 return ERR_PTR(-ENOMEM);
1282
1283 __setup_root(tree_root->nodesize, tree_root->leafsize,
1284 tree_root->sectorsize, tree_root->stripesize,
1285 root, fs_info, objectid);
1286 root->root_key.objectid = objectid;
1287 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1288 root->root_key.offset = 0;
1289
1290 leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
1291 0, objectid, NULL, 0, 0, 0);
1292 if (IS_ERR(leaf)) {
1293 ret = PTR_ERR(leaf);
1dd05682 1294 leaf = NULL;
20897f5c
AJ
1295 goto fail;
1296 }
1297
1298 bytenr = leaf->start;
1299 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1300 btrfs_set_header_bytenr(leaf, leaf->start);
1301 btrfs_set_header_generation(leaf, trans->transid);
1302 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1303 btrfs_set_header_owner(leaf, objectid);
1304 root->node = leaf;
1305
1306 write_extent_buffer(leaf, fs_info->fsid,
1307 (unsigned long)btrfs_header_fsid(leaf),
1308 BTRFS_FSID_SIZE);
1309 write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1310 (unsigned long)btrfs_header_chunk_tree_uuid(leaf),
1311 BTRFS_UUID_SIZE);
1312 btrfs_mark_buffer_dirty(leaf);
1313
1314 root->commit_root = btrfs_root_node(root);
1315 root->track_dirty = 1;
1316
1317
1318 root->root_item.flags = 0;
1319 root->root_item.byte_limit = 0;
1320 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1321 btrfs_set_root_generation(&root->root_item, trans->transid);
1322 btrfs_set_root_level(&root->root_item, 0);
1323 btrfs_set_root_refs(&root->root_item, 1);
1324 btrfs_set_root_used(&root->root_item, leaf->len);
1325 btrfs_set_root_last_snapshot(&root->root_item, 0);
1326 btrfs_set_root_dirid(&root->root_item, 0);
1327 root->root_item.drop_level = 0;
1328
1329 key.objectid = objectid;
1330 key.type = BTRFS_ROOT_ITEM_KEY;
1331 key.offset = 0;
1332 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1333 if (ret)
1334 goto fail;
1335
1336 btrfs_tree_unlock(leaf);
1337
1dd05682
TI
1338 return root;
1339
20897f5c 1340fail:
1dd05682
TI
1341 if (leaf) {
1342 btrfs_tree_unlock(leaf);
1343 free_extent_buffer(leaf);
1344 }
1345 kfree(root);
20897f5c 1346
1dd05682 1347 return ERR_PTR(ret);
20897f5c
AJ
1348}
1349
7237f183
YZ
1350static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1351 struct btrfs_fs_info *fs_info)
0f7d52f4
CM
1352{
1353 struct btrfs_root *root;
1354 struct btrfs_root *tree_root = fs_info->tree_root;
7237f183 1355 struct extent_buffer *leaf;
e02119d5 1356
6f07e42e 1357 root = btrfs_alloc_root(fs_info);
e02119d5 1358 if (!root)
7237f183 1359 return ERR_PTR(-ENOMEM);
e02119d5
CM
1360
1361 __setup_root(tree_root->nodesize, tree_root->leafsize,
1362 tree_root->sectorsize, tree_root->stripesize,
1363 root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1364
1365 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1366 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1367 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
7237f183
YZ
1368 /*
1369 * log trees do not get reference counted because they go away
1370 * before a real commit is actually done. They do store pointers
1371 * to file data extents, and those reference counts still get
1372 * updated (along with back refs to the log tree).
1373 */
e02119d5
CM
1374 root->ref_cows = 0;
1375
5d4f98a2 1376 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
66d7e7f0 1377 BTRFS_TREE_LOG_OBJECTID, NULL,
5581a51a 1378 0, 0, 0);
7237f183
YZ
1379 if (IS_ERR(leaf)) {
1380 kfree(root);
1381 return ERR_CAST(leaf);
1382 }
e02119d5 1383
5d4f98a2
YZ
1384 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1385 btrfs_set_header_bytenr(leaf, leaf->start);
1386 btrfs_set_header_generation(leaf, trans->transid);
1387 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1388 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
7237f183 1389 root->node = leaf;
e02119d5
CM
1390
1391 write_extent_buffer(root->node, root->fs_info->fsid,
1392 (unsigned long)btrfs_header_fsid(root->node),
1393 BTRFS_FSID_SIZE);
1394 btrfs_mark_buffer_dirty(root->node);
1395 btrfs_tree_unlock(root->node);
7237f183
YZ
1396 return root;
1397}
1398
1399int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1400 struct btrfs_fs_info *fs_info)
1401{
1402 struct btrfs_root *log_root;
1403
1404 log_root = alloc_log_tree(trans, fs_info);
1405 if (IS_ERR(log_root))
1406 return PTR_ERR(log_root);
1407 WARN_ON(fs_info->log_root_tree);
1408 fs_info->log_root_tree = log_root;
1409 return 0;
1410}
1411
1412int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1413 struct btrfs_root *root)
1414{
1415 struct btrfs_root *log_root;
1416 struct btrfs_inode_item *inode_item;
1417
1418 log_root = alloc_log_tree(trans, root->fs_info);
1419 if (IS_ERR(log_root))
1420 return PTR_ERR(log_root);
1421
1422 log_root->last_trans = trans->transid;
1423 log_root->root_key.offset = root->root_key.objectid;
1424
1425 inode_item = &log_root->root_item.inode;
1426 inode_item->generation = cpu_to_le64(1);
1427 inode_item->size = cpu_to_le64(3);
1428 inode_item->nlink = cpu_to_le32(1);
1429 inode_item->nbytes = cpu_to_le64(root->leafsize);
1430 inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
1431
5d4f98a2 1432 btrfs_set_root_node(&log_root->root_item, log_root->node);
7237f183
YZ
1433
1434 WARN_ON(root->log_root);
1435 root->log_root = log_root;
1436 root->log_transid = 0;
257c62e1 1437 root->last_log_commit = 0;
e02119d5
CM
1438 return 0;
1439}
1440
1441struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
1442 struct btrfs_key *location)
1443{
1444 struct btrfs_root *root;
1445 struct btrfs_fs_info *fs_info = tree_root->fs_info;
0f7d52f4 1446 struct btrfs_path *path;
5f39d397 1447 struct extent_buffer *l;
84234f3a 1448 u64 generation;
db94535d 1449 u32 blocksize;
0f7d52f4 1450 int ret = 0;
8ea05e3a 1451 int slot;
0f7d52f4 1452
6f07e42e 1453 root = btrfs_alloc_root(fs_info);
0cf6c620 1454 if (!root)
0f7d52f4 1455 return ERR_PTR(-ENOMEM);
0f7d52f4 1456 if (location->offset == (u64)-1) {
db94535d 1457 ret = find_and_setup_root(tree_root, fs_info,
0f7d52f4
CM
1458 location->objectid, root);
1459 if (ret) {
0f7d52f4
CM
1460 kfree(root);
1461 return ERR_PTR(ret);
1462 }
13a8a7c8 1463 goto out;
0f7d52f4
CM
1464 }
1465
db94535d 1466 __setup_root(tree_root->nodesize, tree_root->leafsize,
87ee04eb
CM
1467 tree_root->sectorsize, tree_root->stripesize,
1468 root, fs_info, location->objectid);
0f7d52f4
CM
1469
1470 path = btrfs_alloc_path();
db5b493a
TI
1471 if (!path) {
1472 kfree(root);
1473 return ERR_PTR(-ENOMEM);
1474 }
0f7d52f4 1475 ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
13a8a7c8
YZ
1476 if (ret == 0) {
1477 l = path->nodes[0];
8ea05e3a
AB
1478 slot = path->slots[0];
1479 btrfs_read_root_item(tree_root, l, slot, &root->root_item);
13a8a7c8 1480 memcpy(&root->root_key, location, sizeof(*location));
0f7d52f4 1481 }
0f7d52f4
CM
1482 btrfs_free_path(path);
1483 if (ret) {
5e540f77 1484 kfree(root);
13a8a7c8
YZ
1485 if (ret > 0)
1486 ret = -ENOENT;
0f7d52f4
CM
1487 return ERR_PTR(ret);
1488 }
13a8a7c8 1489
84234f3a 1490 generation = btrfs_root_generation(&root->root_item);
db94535d
CM
1491 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1492 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
84234f3a 1493 blocksize, generation);
5d4f98a2 1494 root->commit_root = btrfs_root_node(root);
79787eaa 1495 BUG_ON(!root->node); /* -ENOMEM */
13a8a7c8 1496out:
08fe4db1 1497 if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
e02119d5 1498 root->ref_cows = 1;
08fe4db1
LZ
1499 btrfs_check_and_init_root_item(&root->root_item);
1500 }
13a8a7c8 1501
5eda7b5e
CM
1502 return root;
1503}
1504
edbd8d4e
CM
1505struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1506 struct btrfs_key *location)
5eda7b5e
CM
1507{
1508 struct btrfs_root *root;
1509 int ret;
1510
edbd8d4e
CM
1511 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1512 return fs_info->tree_root;
1513 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1514 return fs_info->extent_root;
8f18cf13
CM
1515 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1516 return fs_info->chunk_root;
1517 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1518 return fs_info->dev_root;
0403e47e
YZ
1519 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1520 return fs_info->csum_root;
bcef60f2
AJ
1521 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1522 return fs_info->quota_root ? fs_info->quota_root :
1523 ERR_PTR(-ENOENT);
4df27c4d
YZ
1524again:
1525 spin_lock(&fs_info->fs_roots_radix_lock);
5eda7b5e
CM
1526 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1527 (unsigned long)location->objectid);
4df27c4d 1528 spin_unlock(&fs_info->fs_roots_radix_lock);
5eda7b5e
CM
1529 if (root)
1530 return root;
1531
e02119d5 1532 root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
5eda7b5e
CM
1533 if (IS_ERR(root))
1534 return root;
3394e160 1535
581bb050 1536 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
581bb050
LZ
1537 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1538 GFP_NOFS);
35a30d7c
DS
1539 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1540 ret = -ENOMEM;
581bb050 1541 goto fail;
35a30d7c 1542 }
581bb050
LZ
1543
1544 btrfs_init_free_ino_ctl(root);
1545 mutex_init(&root->fs_commit_mutex);
1546 spin_lock_init(&root->cache_lock);
1547 init_waitqueue_head(&root->cache_wait);
1548
0ee5dc67 1549 ret = get_anon_bdev(&root->anon_dev);
ac08aedf
CM
1550 if (ret)
1551 goto fail;
3394e160 1552
d68fc57b
YZ
1553 if (btrfs_root_refs(&root->root_item) == 0) {
1554 ret = -ENOENT;
1555 goto fail;
1556 }
1557
1558 ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
1559 if (ret < 0)
1560 goto fail;
1561 if (ret == 0)
1562 root->orphan_item_inserted = 1;
1563
4df27c4d
YZ
1564 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1565 if (ret)
1566 goto fail;
1567
1568 spin_lock(&fs_info->fs_roots_radix_lock);
2619ba1f
CM
1569 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1570 (unsigned long)root->root_key.objectid,
0f7d52f4 1571 root);
d68fc57b 1572 if (ret == 0)
4df27c4d 1573 root->in_radix = 1;
d68fc57b 1574
4df27c4d
YZ
1575 spin_unlock(&fs_info->fs_roots_radix_lock);
1576 radix_tree_preload_end();
0f7d52f4 1577 if (ret) {
4df27c4d
YZ
1578 if (ret == -EEXIST) {
1579 free_fs_root(root);
1580 goto again;
1581 }
1582 goto fail;
0f7d52f4 1583 }
4df27c4d
YZ
1584
1585 ret = btrfs_find_dead_roots(fs_info->tree_root,
1586 root->root_key.objectid);
1587 WARN_ON(ret);
edbd8d4e 1588 return root;
4df27c4d
YZ
1589fail:
1590 free_fs_root(root);
1591 return ERR_PTR(ret);
edbd8d4e
CM
1592}
1593
04160088
CM
1594static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1595{
1596 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1597 int ret = 0;
04160088
CM
1598 struct btrfs_device *device;
1599 struct backing_dev_info *bdi;
b7967db7 1600
1f78160c
XG
1601 rcu_read_lock();
1602 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
dfe25020
CM
1603 if (!device->bdev)
1604 continue;
04160088
CM
1605 bdi = blk_get_backing_dev_info(device->bdev);
1606 if (bdi && bdi_congested(bdi, bdi_bits)) {
1607 ret = 1;
1608 break;
1609 }
1610 }
1f78160c 1611 rcu_read_unlock();
04160088
CM
1612 return ret;
1613}
1614
ad081f14
JA
1615/*
1616 * If this fails, caller must call bdi_destroy() to get rid of the
1617 * bdi again.
1618 */
04160088
CM
1619static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1620{
ad081f14
JA
1621 int err;
1622
1623 bdi->capabilities = BDI_CAP_MAP_COPY;
e6d086d8 1624 err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
ad081f14
JA
1625 if (err)
1626 return err;
1627
4575c9cc 1628 bdi->ra_pages = default_backing_dev_info.ra_pages;
04160088
CM
1629 bdi->congested_fn = btrfs_congested_fn;
1630 bdi->congested_data = info;
1631 return 0;
1632}
1633
8b712842
CM
1634/*
1635 * called by the kthread helper functions to finally call the bio end_io
1636 * functions. This is where read checksum verification actually happens
1637 */
1638static void end_workqueue_fn(struct btrfs_work *work)
ce9adaa5 1639{
ce9adaa5 1640 struct bio *bio;
8b712842
CM
1641 struct end_io_wq *end_io_wq;
1642 struct btrfs_fs_info *fs_info;
ce9adaa5 1643 int error;
ce9adaa5 1644
8b712842
CM
1645 end_io_wq = container_of(work, struct end_io_wq, work);
1646 bio = end_io_wq->bio;
1647 fs_info = end_io_wq->info;
ce9adaa5 1648
8b712842
CM
1649 error = end_io_wq->error;
1650 bio->bi_private = end_io_wq->private;
1651 bio->bi_end_io = end_io_wq->end_io;
1652 kfree(end_io_wq);
8b712842 1653 bio_endio(bio, error);
44b8bd7e
CM
1654}
1655
a74a4b97
CM
1656static int cleaner_kthread(void *arg)
1657{
1658 struct btrfs_root *root = arg;
1659
1660 do {
76dda93c
YZ
1661 if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
1662 mutex_trylock(&root->fs_info->cleaner_mutex)) {
24bbcf04 1663 btrfs_run_delayed_iputs(root);
76dda93c
YZ
1664 btrfs_clean_old_snapshots(root);
1665 mutex_unlock(&root->fs_info->cleaner_mutex);
4cb5300b 1666 btrfs_run_defrag_inodes(root->fs_info);
76dda93c 1667 }
a74a4b97 1668
a0acae0e 1669 if (!try_to_freeze()) {
a74a4b97 1670 set_current_state(TASK_INTERRUPTIBLE);
8929ecfa
YZ
1671 if (!kthread_should_stop())
1672 schedule();
a74a4b97
CM
1673 __set_current_state(TASK_RUNNING);
1674 }
1675 } while (!kthread_should_stop());
1676 return 0;
1677}
1678
1679static int transaction_kthread(void *arg)
1680{
1681 struct btrfs_root *root = arg;
1682 struct btrfs_trans_handle *trans;
1683 struct btrfs_transaction *cur;
8929ecfa 1684 u64 transid;
a74a4b97
CM
1685 unsigned long now;
1686 unsigned long delay;
914b2007 1687 bool cannot_commit;
a74a4b97
CM
1688
1689 do {
914b2007 1690 cannot_commit = false;
a74a4b97 1691 delay = HZ * 30;
a74a4b97
CM
1692 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1693
a4abeea4 1694 spin_lock(&root->fs_info->trans_lock);
a74a4b97
CM
1695 cur = root->fs_info->running_transaction;
1696 if (!cur) {
a4abeea4 1697 spin_unlock(&root->fs_info->trans_lock);
a74a4b97
CM
1698 goto sleep;
1699 }
31153d81 1700
a74a4b97 1701 now = get_seconds();
8929ecfa
YZ
1702 if (!cur->blocked &&
1703 (now < cur->start_time || now - cur->start_time < 30)) {
a4abeea4 1704 spin_unlock(&root->fs_info->trans_lock);
a74a4b97
CM
1705 delay = HZ * 5;
1706 goto sleep;
1707 }
8929ecfa 1708 transid = cur->transid;
a4abeea4 1709 spin_unlock(&root->fs_info->trans_lock);
56bec294 1710
79787eaa 1711 /* If the file system is aborted, this will always fail. */
354aa0fb 1712 trans = btrfs_attach_transaction(root);
914b2007 1713 if (IS_ERR(trans)) {
354aa0fb
MX
1714 if (PTR_ERR(trans) != -ENOENT)
1715 cannot_commit = true;
79787eaa 1716 goto sleep;
914b2007 1717 }
8929ecfa 1718 if (transid == trans->transid) {
79787eaa 1719 btrfs_commit_transaction(trans, root);
8929ecfa
YZ
1720 } else {
1721 btrfs_end_transaction(trans, root);
1722 }
a74a4b97
CM
1723sleep:
1724 wake_up_process(root->fs_info->cleaner_kthread);
1725 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1726
a0acae0e 1727 if (!try_to_freeze()) {
a74a4b97 1728 set_current_state(TASK_INTERRUPTIBLE);
8929ecfa 1729 if (!kthread_should_stop() &&
914b2007
JK
1730 (!btrfs_transaction_blocked(root->fs_info) ||
1731 cannot_commit))
8929ecfa 1732 schedule_timeout(delay);
a74a4b97
CM
1733 __set_current_state(TASK_RUNNING);
1734 }
1735 } while (!kthread_should_stop());
1736 return 0;
1737}
1738
af31f5e5
CM
1739/*
1740 * this will find the highest generation in the array of
1741 * root backups. The index of the highest array is returned,
1742 * or -1 if we can't find anything.
1743 *
1744 * We check to make sure the array is valid by comparing the
1745 * generation of the latest root in the array with the generation
1746 * in the super block. If they don't match we pitch it.
1747 */
1748static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1749{
1750 u64 cur;
1751 int newest_index = -1;
1752 struct btrfs_root_backup *root_backup;
1753 int i;
1754
1755 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1756 root_backup = info->super_copy->super_roots + i;
1757 cur = btrfs_backup_tree_root_gen(root_backup);
1758 if (cur == newest_gen)
1759 newest_index = i;
1760 }
1761
1762 /* check to see if we actually wrapped around */
1763 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1764 root_backup = info->super_copy->super_roots;
1765 cur = btrfs_backup_tree_root_gen(root_backup);
1766 if (cur == newest_gen)
1767 newest_index = 0;
1768 }
1769 return newest_index;
1770}
1771
1772
1773/*
1774 * find the oldest backup so we know where to store new entries
1775 * in the backup array. This will set the backup_root_index
1776 * field in the fs_info struct
1777 */
1778static void find_oldest_super_backup(struct btrfs_fs_info *info,
1779 u64 newest_gen)
1780{
1781 int newest_index = -1;
1782
1783 newest_index = find_newest_super_backup(info, newest_gen);
1784 /* if there was garbage in there, just move along */
1785 if (newest_index == -1) {
1786 info->backup_root_index = 0;
1787 } else {
1788 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1789 }
1790}
1791
1792/*
1793 * copy all the root pointers into the super backup array.
1794 * this will bump the backup pointer by one when it is
1795 * done
1796 */
1797static void backup_super_roots(struct btrfs_fs_info *info)
1798{
1799 int next_backup;
1800 struct btrfs_root_backup *root_backup;
1801 int last_backup;
1802
1803 next_backup = info->backup_root_index;
1804 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1805 BTRFS_NUM_BACKUP_ROOTS;
1806
1807 /*
1808 * just overwrite the last backup if we're at the same generation
1809 * this happens only at umount
1810 */
1811 root_backup = info->super_for_commit->super_roots + last_backup;
1812 if (btrfs_backup_tree_root_gen(root_backup) ==
1813 btrfs_header_generation(info->tree_root->node))
1814 next_backup = last_backup;
1815
1816 root_backup = info->super_for_commit->super_roots + next_backup;
1817
1818 /*
1819 * make sure all of our padding and empty slots get zero filled
1820 * regardless of which ones we use today
1821 */
1822 memset(root_backup, 0, sizeof(*root_backup));
1823
1824 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1825
1826 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1827 btrfs_set_backup_tree_root_gen(root_backup,
1828 btrfs_header_generation(info->tree_root->node));
1829
1830 btrfs_set_backup_tree_root_level(root_backup,
1831 btrfs_header_level(info->tree_root->node));
1832
1833 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1834 btrfs_set_backup_chunk_root_gen(root_backup,
1835 btrfs_header_generation(info->chunk_root->node));
1836 btrfs_set_backup_chunk_root_level(root_backup,
1837 btrfs_header_level(info->chunk_root->node));
1838
1839 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1840 btrfs_set_backup_extent_root_gen(root_backup,
1841 btrfs_header_generation(info->extent_root->node));
1842 btrfs_set_backup_extent_root_level(root_backup,
1843 btrfs_header_level(info->extent_root->node));
1844
7c7e82a7
CM
1845 /*
1846 * we might commit during log recovery, which happens before we set
1847 * the fs_root. Make sure it is valid before we fill it in.
1848 */
1849 if (info->fs_root && info->fs_root->node) {
1850 btrfs_set_backup_fs_root(root_backup,
1851 info->fs_root->node->start);
1852 btrfs_set_backup_fs_root_gen(root_backup,
af31f5e5 1853 btrfs_header_generation(info->fs_root->node));
7c7e82a7 1854 btrfs_set_backup_fs_root_level(root_backup,
af31f5e5 1855 btrfs_header_level(info->fs_root->node));
7c7e82a7 1856 }
af31f5e5
CM
1857
1858 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1859 btrfs_set_backup_dev_root_gen(root_backup,
1860 btrfs_header_generation(info->dev_root->node));
1861 btrfs_set_backup_dev_root_level(root_backup,
1862 btrfs_header_level(info->dev_root->node));
1863
1864 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1865 btrfs_set_backup_csum_root_gen(root_backup,
1866 btrfs_header_generation(info->csum_root->node));
1867 btrfs_set_backup_csum_root_level(root_backup,
1868 btrfs_header_level(info->csum_root->node));
1869
1870 btrfs_set_backup_total_bytes(root_backup,
1871 btrfs_super_total_bytes(info->super_copy));
1872 btrfs_set_backup_bytes_used(root_backup,
1873 btrfs_super_bytes_used(info->super_copy));
1874 btrfs_set_backup_num_devices(root_backup,
1875 btrfs_super_num_devices(info->super_copy));
1876
1877 /*
1878 * if we don't copy this out to the super_copy, it won't get remembered
1879 * for the next commit
1880 */
1881 memcpy(&info->super_copy->super_roots,
1882 &info->super_for_commit->super_roots,
1883 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1884}
1885
1886/*
1887 * this copies info out of the root backup array and back into
1888 * the in-memory super block. It is meant to help iterate through
1889 * the array, so you send it the number of backups you've already
1890 * tried and the last backup index you used.
1891 *
1892 * this returns -1 when it has tried all the backups
1893 */
1894static noinline int next_root_backup(struct btrfs_fs_info *info,
1895 struct btrfs_super_block *super,
1896 int *num_backups_tried, int *backup_index)
1897{
1898 struct btrfs_root_backup *root_backup;
1899 int newest = *backup_index;
1900
1901 if (*num_backups_tried == 0) {
1902 u64 gen = btrfs_super_generation(super);
1903
1904 newest = find_newest_super_backup(info, gen);
1905 if (newest == -1)
1906 return -1;
1907
1908 *backup_index = newest;
1909 *num_backups_tried = 1;
1910 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1911 /* we've tried all the backups, all done */
1912 return -1;
1913 } else {
1914 /* jump to the next oldest backup */
1915 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1916 BTRFS_NUM_BACKUP_ROOTS;
1917 *backup_index = newest;
1918 *num_backups_tried += 1;
1919 }
1920 root_backup = super->super_roots + newest;
1921
1922 btrfs_set_super_generation(super,
1923 btrfs_backup_tree_root_gen(root_backup));
1924 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1925 btrfs_set_super_root_level(super,
1926 btrfs_backup_tree_root_level(root_backup));
1927 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1928
1929 /*
1930 * fixme: the total bytes and num_devices need to match or we should
1931 * need a fsck
1932 */
1933 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1934 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1935 return 0;
1936}
1937
1938/* helper to cleanup tree roots */
1939static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
1940{
1941 free_extent_buffer(info->tree_root->node);
1942 free_extent_buffer(info->tree_root->commit_root);
1943 free_extent_buffer(info->dev_root->node);
1944 free_extent_buffer(info->dev_root->commit_root);
1945 free_extent_buffer(info->extent_root->node);
1946 free_extent_buffer(info->extent_root->commit_root);
1947 free_extent_buffer(info->csum_root->node);
1948 free_extent_buffer(info->csum_root->commit_root);
bcef60f2
AJ
1949 if (info->quota_root) {
1950 free_extent_buffer(info->quota_root->node);
1951 free_extent_buffer(info->quota_root->commit_root);
1952 }
af31f5e5
CM
1953
1954 info->tree_root->node = NULL;
1955 info->tree_root->commit_root = NULL;
1956 info->dev_root->node = NULL;
1957 info->dev_root->commit_root = NULL;
1958 info->extent_root->node = NULL;
1959 info->extent_root->commit_root = NULL;
1960 info->csum_root->node = NULL;
1961 info->csum_root->commit_root = NULL;
bcef60f2
AJ
1962 if (info->quota_root) {
1963 info->quota_root->node = NULL;
1964 info->quota_root->commit_root = NULL;
1965 }
af31f5e5
CM
1966
1967 if (chunk_root) {
1968 free_extent_buffer(info->chunk_root->node);
1969 free_extent_buffer(info->chunk_root->commit_root);
1970 info->chunk_root->node = NULL;
1971 info->chunk_root->commit_root = NULL;
1972 }
1973}
1974
1975
ad2b2c80
AV
1976int open_ctree(struct super_block *sb,
1977 struct btrfs_fs_devices *fs_devices,
1978 char *options)
2e635a27 1979{
db94535d
CM
1980 u32 sectorsize;
1981 u32 nodesize;
1982 u32 leafsize;
1983 u32 blocksize;
87ee04eb 1984 u32 stripesize;
84234f3a 1985 u64 generation;
f2b636e8 1986 u64 features;
3de4586c 1987 struct btrfs_key location;
a061fc8d 1988 struct buffer_head *bh;
4d34b278 1989 struct btrfs_super_block *disk_super;
815745cf 1990 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
f84a8bd6 1991 struct btrfs_root *tree_root;
4d34b278
ID
1992 struct btrfs_root *extent_root;
1993 struct btrfs_root *csum_root;
1994 struct btrfs_root *chunk_root;
1995 struct btrfs_root *dev_root;
bcef60f2 1996 struct btrfs_root *quota_root;
e02119d5 1997 struct btrfs_root *log_tree_root;
eb60ceac 1998 int ret;
e58ca020 1999 int err = -EINVAL;
af31f5e5
CM
2000 int num_backups_tried = 0;
2001 int backup_index = 0;
4543df7e 2002
f84a8bd6 2003 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
6f07e42e
AV
2004 extent_root = fs_info->extent_root = btrfs_alloc_root(fs_info);
2005 csum_root = fs_info->csum_root = btrfs_alloc_root(fs_info);
2006 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
2007 dev_root = fs_info->dev_root = btrfs_alloc_root(fs_info);
bcef60f2 2008 quota_root = fs_info->quota_root = btrfs_alloc_root(fs_info);
8790d502 2009
f84a8bd6 2010 if (!tree_root || !extent_root || !csum_root ||
bcef60f2 2011 !chunk_root || !dev_root || !quota_root) {
39279cc3
CM
2012 err = -ENOMEM;
2013 goto fail;
2014 }
76dda93c
YZ
2015
2016 ret = init_srcu_struct(&fs_info->subvol_srcu);
2017 if (ret) {
2018 err = ret;
2019 goto fail;
2020 }
2021
2022 ret = setup_bdi(fs_info, &fs_info->bdi);
2023 if (ret) {
2024 err = ret;
2025 goto fail_srcu;
2026 }
2027
e2d84521
MX
2028 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0);
2029 if (ret) {
2030 err = ret;
2031 goto fail_bdi;
2032 }
2033 fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
2034 (1 + ilog2(nr_cpu_ids));
2035
963d678b
MX
2036 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0);
2037 if (ret) {
2038 err = ret;
2039 goto fail_dirty_metadata_bytes;
2040 }
2041
76dda93c
YZ
2042 fs_info->btree_inode = new_inode(sb);
2043 if (!fs_info->btree_inode) {
2044 err = -ENOMEM;
963d678b 2045 goto fail_delalloc_bytes;
76dda93c
YZ
2046 }
2047
a6591715 2048 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
1561deda 2049
76dda93c 2050 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
8fd17795 2051 INIT_LIST_HEAD(&fs_info->trans_list);
facda1e7 2052 INIT_LIST_HEAD(&fs_info->dead_roots);
24bbcf04 2053 INIT_LIST_HEAD(&fs_info->delayed_iputs);
ea8c2819 2054 INIT_LIST_HEAD(&fs_info->delalloc_inodes);
11833d66 2055 INIT_LIST_HEAD(&fs_info->caching_block_groups);
1832a6d5 2056 spin_lock_init(&fs_info->delalloc_lock);
a4abeea4 2057 spin_lock_init(&fs_info->trans_lock);
76dda93c 2058 spin_lock_init(&fs_info->fs_roots_radix_lock);
24bbcf04 2059 spin_lock_init(&fs_info->delayed_iput_lock);
4cb5300b 2060 spin_lock_init(&fs_info->defrag_inodes_lock);
2bf64758 2061 spin_lock_init(&fs_info->free_chunk_lock);
f29021b2
JS
2062 spin_lock_init(&fs_info->tree_mod_seq_lock);
2063 rwlock_init(&fs_info->tree_mod_log_lock);
7585717f 2064 mutex_init(&fs_info->reloc_mutex);
de98ced9 2065 seqlock_init(&fs_info->profiles_lock);
19c00ddc 2066
58176a96 2067 init_completion(&fs_info->kobj_unregister);
0b86a832 2068 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
6324fbf3 2069 INIT_LIST_HEAD(&fs_info->space_info);
f29021b2 2070 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
0b86a832 2071 btrfs_mapping_init(&fs_info->mapping_tree);
66d8f3dd
MX
2072 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2073 BTRFS_BLOCK_RSV_GLOBAL);
2074 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2075 BTRFS_BLOCK_RSV_DELALLOC);
2076 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2077 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2078 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2079 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2080 BTRFS_BLOCK_RSV_DELOPS);
cb03c743 2081 atomic_set(&fs_info->nr_async_submits, 0);
771ed689 2082 atomic_set(&fs_info->async_delalloc_pages, 0);
8c8bee1d 2083 atomic_set(&fs_info->async_submit_draining, 0);
0986fe9e 2084 atomic_set(&fs_info->nr_async_bios, 0);
4cb5300b 2085 atomic_set(&fs_info->defrag_running, 0);
f29021b2 2086 atomic_set(&fs_info->tree_mod_seq, 0);
e20d96d6 2087 fs_info->sb = sb;
6f568d35 2088 fs_info->max_inline = 8192 * 1024;
9ed74f2d 2089 fs_info->metadata_ratio = 0;
4cb5300b 2090 fs_info->defrag_inodes = RB_ROOT;
a4abeea4 2091 fs_info->trans_no_join = 0;
2bf64758 2092 fs_info->free_chunk_space = 0;
f29021b2 2093 fs_info->tree_mod_log = RB_ROOT;
c8b97818 2094
90519d66
AJ
2095 /* readahead state */
2096 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2097 spin_lock_init(&fs_info->reada_lock);
c8b97818 2098
b34b086c
CM
2099 fs_info->thread_pool_size = min_t(unsigned long,
2100 num_online_cpus() + 2, 8);
0afbaf8c 2101
3eaa2885
CM
2102 INIT_LIST_HEAD(&fs_info->ordered_extents);
2103 spin_lock_init(&fs_info->ordered_extent_lock);
16cdcec7
MX
2104 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2105 GFP_NOFS);
2106 if (!fs_info->delayed_root) {
2107 err = -ENOMEM;
2108 goto fail_iput;
2109 }
2110 btrfs_init_delayed_root(fs_info->delayed_root);
3eaa2885 2111
a2de733c
AJ
2112 mutex_init(&fs_info->scrub_lock);
2113 atomic_set(&fs_info->scrubs_running, 0);
2114 atomic_set(&fs_info->scrub_pause_req, 0);
2115 atomic_set(&fs_info->scrubs_paused, 0);
2116 atomic_set(&fs_info->scrub_cancel_req, 0);
2117 init_waitqueue_head(&fs_info->scrub_pause_wait);
2118 init_rwsem(&fs_info->scrub_super_lock);
2119 fs_info->scrub_workers_refcnt = 0;
21adbd5c
SB
2120#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2121 fs_info->check_integrity_print_mask = 0;
2122#endif
a2de733c 2123
c9e9f97b
ID
2124 spin_lock_init(&fs_info->balance_lock);
2125 mutex_init(&fs_info->balance_mutex);
837d5b6e
ID
2126 atomic_set(&fs_info->balance_running, 0);
2127 atomic_set(&fs_info->balance_pause_req, 0);
a7e99c69 2128 atomic_set(&fs_info->balance_cancel_req, 0);
c9e9f97b 2129 fs_info->balance_ctl = NULL;
837d5b6e 2130 init_waitqueue_head(&fs_info->balance_wait_q);
a2de733c 2131
a061fc8d
CM
2132 sb->s_blocksize = 4096;
2133 sb->s_blocksize_bits = blksize_bits(4096);
32a88aa1 2134 sb->s_bdi = &fs_info->bdi;
a061fc8d 2135
76dda93c 2136 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
bfe86848 2137 set_nlink(fs_info->btree_inode, 1);
0afbaf8c
CM
2138 /*
2139 * we set the i_size on the btree inode to the max possible int.
2140 * the real end of the address space is determined by all of
2141 * the devices in the system
2142 */
2143 fs_info->btree_inode->i_size = OFFSET_MAX;
d98237b3 2144 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
04160088
CM
2145 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
2146
5d4f98a2 2147 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
d1310b2e 2148 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
f993c883 2149 fs_info->btree_inode->i_mapping);
0b32f4bb 2150 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
a8067e02 2151 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
d1310b2e
CM
2152
2153 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
0da5468f 2154
76dda93c
YZ
2155 BTRFS_I(fs_info->btree_inode)->root = tree_root;
2156 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2157 sizeof(struct btrfs_key));
72ac3c0d
JB
2158 set_bit(BTRFS_INODE_DUMMY,
2159 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
c65ddb52 2160 insert_inode_hash(fs_info->btree_inode);
76dda93c 2161
0f9dd46c 2162 spin_lock_init(&fs_info->block_group_cache_lock);
6bef4d31 2163 fs_info->block_group_cache_tree = RB_ROOT;
a1897fdd 2164 fs_info->first_logical_byte = (u64)-1;
0f9dd46c 2165
11833d66 2166 extent_io_tree_init(&fs_info->freed_extents[0],
f993c883 2167 fs_info->btree_inode->i_mapping);
11833d66 2168 extent_io_tree_init(&fs_info->freed_extents[1],
f993c883 2169 fs_info->btree_inode->i_mapping);
11833d66 2170 fs_info->pinned_extents = &fs_info->freed_extents[0];
e66f709b 2171 fs_info->do_barriers = 1;
e18e4809 2172
39279cc3 2173
5a3f23d5 2174 mutex_init(&fs_info->ordered_operations_mutex);
e02119d5 2175 mutex_init(&fs_info->tree_log_mutex);
925baedd 2176 mutex_init(&fs_info->chunk_mutex);
a74a4b97
CM
2177 mutex_init(&fs_info->transaction_kthread_mutex);
2178 mutex_init(&fs_info->cleaner_mutex);
7d9eb12c 2179 mutex_init(&fs_info->volume_mutex);
276e680d 2180 init_rwsem(&fs_info->extent_commit_sem);
c71bf099 2181 init_rwsem(&fs_info->cleanup_work_sem);
76dda93c 2182 init_rwsem(&fs_info->subvol_sem);
e922e087
SB
2183 fs_info->dev_replace.lock_owner = 0;
2184 atomic_set(&fs_info->dev_replace.nesting_level, 0);
2185 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2186 mutex_init(&fs_info->dev_replace.lock_management_lock);
2187 mutex_init(&fs_info->dev_replace.lock);
fa9c0d79 2188
416ac51d
AJ
2189 spin_lock_init(&fs_info->qgroup_lock);
2190 fs_info->qgroup_tree = RB_ROOT;
2191 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2192 fs_info->qgroup_seq = 1;
2193 fs_info->quota_enabled = 0;
2194 fs_info->pending_quota_state = 0;
2195
fa9c0d79
CM
2196 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2197 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2198
e6dcd2dc 2199 init_waitqueue_head(&fs_info->transaction_throttle);
f9295749 2200 init_waitqueue_head(&fs_info->transaction_wait);
bb9c12c9 2201 init_waitqueue_head(&fs_info->transaction_blocked_wait);
4854ddd0 2202 init_waitqueue_head(&fs_info->async_submit_wait);
3768f368 2203
53b381b3
DW
2204 ret = btrfs_alloc_stripe_hash_table(fs_info);
2205 if (ret) {
83c8266a 2206 err = ret;
53b381b3
DW
2207 goto fail_alloc;
2208 }
2209
0b86a832 2210 __setup_root(4096, 4096, 4096, 4096, tree_root,
2c90e5d6 2211 fs_info, BTRFS_ROOT_TREE_OBJECTID);
7eccb903 2212
3c4bb26b 2213 invalidate_bdev(fs_devices->latest_bdev);
a512bbf8 2214 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
20b45077
DY
2215 if (!bh) {
2216 err = -EINVAL;
16cdcec7 2217 goto fail_alloc;
20b45077 2218 }
39279cc3 2219
6c41761f
DS
2220 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2221 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2222 sizeof(*fs_info->super_for_commit));
a061fc8d 2223 brelse(bh);
5f39d397 2224
6c41761f 2225 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
0b86a832 2226
6c41761f 2227 disk_super = fs_info->super_copy;
0f7d52f4 2228 if (!btrfs_super_root(disk_super))
16cdcec7 2229 goto fail_alloc;
0f7d52f4 2230
acce952b 2231 /* check FS state, whether FS is broken. */
87533c47
MX
2232 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2233 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
acce952b 2234
fcd1f065
DS
2235 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2236 if (ret) {
2237 printk(KERN_ERR "btrfs: superblock contains fatal errors\n");
2238 err = ret;
2239 goto fail_alloc;
2240 }
acce952b 2241
af31f5e5
CM
2242 /*
2243 * run through our array of backup supers and setup
2244 * our ring pointer to the oldest one
2245 */
2246 generation = btrfs_super_generation(disk_super);
2247 find_oldest_super_backup(fs_info, generation);
2248
75e7cb7f
LB
2249 /*
2250 * In the long term, we'll store the compression type in the super
2251 * block, and it'll be used for per file compression control.
2252 */
2253 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2254
2b82032c
YZ
2255 ret = btrfs_parse_options(tree_root, options);
2256 if (ret) {
2257 err = ret;
16cdcec7 2258 goto fail_alloc;
2b82032c 2259 }
dfe25020 2260
f2b636e8
JB
2261 features = btrfs_super_incompat_flags(disk_super) &
2262 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2263 if (features) {
2264 printk(KERN_ERR "BTRFS: couldn't mount because of "
2265 "unsupported optional features (%Lx).\n",
21380931 2266 (unsigned long long)features);
f2b636e8 2267 err = -EINVAL;
16cdcec7 2268 goto fail_alloc;
f2b636e8
JB
2269 }
2270
727011e0
CM
2271 if (btrfs_super_leafsize(disk_super) !=
2272 btrfs_super_nodesize(disk_super)) {
2273 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2274 "blocksizes don't match. node %d leaf %d\n",
2275 btrfs_super_nodesize(disk_super),
2276 btrfs_super_leafsize(disk_super));
2277 err = -EINVAL;
2278 goto fail_alloc;
2279 }
2280 if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2281 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2282 "blocksize (%d) was too large\n",
2283 btrfs_super_leafsize(disk_super));
2284 err = -EINVAL;
2285 goto fail_alloc;
2286 }
2287
5d4f98a2 2288 features = btrfs_super_incompat_flags(disk_super);
a6fa6fae 2289 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
69e380d1 2290 if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
a6fa6fae 2291 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
727011e0
CM
2292
2293 /*
2294 * flag our filesystem as having big metadata blocks if
2295 * they are bigger than the page size
2296 */
2297 if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
2298 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2299 printk(KERN_INFO "btrfs flagging fs with big metadata feature\n");
2300 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2301 }
2302
bc3f116f
CM
2303 nodesize = btrfs_super_nodesize(disk_super);
2304 leafsize = btrfs_super_leafsize(disk_super);
2305 sectorsize = btrfs_super_sectorsize(disk_super);
2306 stripesize = btrfs_super_stripesize(disk_super);
e2d84521 2307 fs_info->dirty_metadata_batch = leafsize * (1 + ilog2(nr_cpu_ids));
963d678b 2308 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
bc3f116f
CM
2309
2310 /*
2311 * mixed block groups end up with duplicate but slightly offset
2312 * extent buffers for the same range. It leads to corruptions
2313 */
2314 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2315 (sectorsize != leafsize)) {
2316 printk(KERN_WARNING "btrfs: unequal leaf/node/sector sizes "
2317 "are not allowed for mixed block groups on %s\n",
2318 sb->s_id);
2319 goto fail_alloc;
2320 }
2321
a6fa6fae 2322 btrfs_set_super_incompat_flags(disk_super, features);
5d4f98a2 2323
f2b636e8
JB
2324 features = btrfs_super_compat_ro_flags(disk_super) &
2325 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2326 if (!(sb->s_flags & MS_RDONLY) && features) {
2327 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2328 "unsupported option features (%Lx).\n",
21380931 2329 (unsigned long long)features);
f2b636e8 2330 err = -EINVAL;
16cdcec7 2331 goto fail_alloc;
f2b636e8 2332 }
61d92c32
CM
2333
2334 btrfs_init_workers(&fs_info->generic_worker,
2335 "genwork", 1, NULL);
2336
5443be45 2337 btrfs_init_workers(&fs_info->workers, "worker",
61d92c32
CM
2338 fs_info->thread_pool_size,
2339 &fs_info->generic_worker);
c8b97818 2340
771ed689 2341 btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
61d92c32
CM
2342 fs_info->thread_pool_size,
2343 &fs_info->generic_worker);
771ed689 2344
8ccf6f19
MX
2345 btrfs_init_workers(&fs_info->flush_workers, "flush_delalloc",
2346 fs_info->thread_pool_size,
2347 &fs_info->generic_worker);
2348
5443be45 2349 btrfs_init_workers(&fs_info->submit_workers, "submit",
b720d209 2350 min_t(u64, fs_devices->num_devices,
61d92c32
CM
2351 fs_info->thread_pool_size),
2352 &fs_info->generic_worker);
61b49440 2353
bab39bf9
JB
2354 btrfs_init_workers(&fs_info->caching_workers, "cache",
2355 2, &fs_info->generic_worker);
2356
61b49440
CM
2357 /* a higher idle thresh on the submit workers makes it much more
2358 * likely that bios will be send down in a sane order to the
2359 * devices
2360 */
2361 fs_info->submit_workers.idle_thresh = 64;
53863232 2362
771ed689 2363 fs_info->workers.idle_thresh = 16;
4a69a410 2364 fs_info->workers.ordered = 1;
61b49440 2365
771ed689
CM
2366 fs_info->delalloc_workers.idle_thresh = 2;
2367 fs_info->delalloc_workers.ordered = 1;
2368
61d92c32
CM
2369 btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
2370 &fs_info->generic_worker);
5443be45 2371 btrfs_init_workers(&fs_info->endio_workers, "endio",
61d92c32
CM
2372 fs_info->thread_pool_size,
2373 &fs_info->generic_worker);
d20f7043 2374 btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
61d92c32
CM
2375 fs_info->thread_pool_size,
2376 &fs_info->generic_worker);
cad321ad 2377 btrfs_init_workers(&fs_info->endio_meta_write_workers,
61d92c32
CM
2378 "endio-meta-write", fs_info->thread_pool_size,
2379 &fs_info->generic_worker);
53b381b3
DW
2380 btrfs_init_workers(&fs_info->endio_raid56_workers,
2381 "endio-raid56", fs_info->thread_pool_size,
2382 &fs_info->generic_worker);
2383 btrfs_init_workers(&fs_info->rmw_workers,
2384 "rmw", fs_info->thread_pool_size,
2385 &fs_info->generic_worker);
5443be45 2386 btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
61d92c32
CM
2387 fs_info->thread_pool_size,
2388 &fs_info->generic_worker);
0cb59c99
JB
2389 btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
2390 1, &fs_info->generic_worker);
16cdcec7
MX
2391 btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
2392 fs_info->thread_pool_size,
2393 &fs_info->generic_worker);
90519d66
AJ
2394 btrfs_init_workers(&fs_info->readahead_workers, "readahead",
2395 fs_info->thread_pool_size,
2396 &fs_info->generic_worker);
61b49440
CM
2397
2398 /*
2399 * endios are largely parallel and should have a very
2400 * low idle thresh
2401 */
2402 fs_info->endio_workers.idle_thresh = 4;
b51912c9 2403 fs_info->endio_meta_workers.idle_thresh = 4;
53b381b3
DW
2404 fs_info->endio_raid56_workers.idle_thresh = 4;
2405 fs_info->rmw_workers.idle_thresh = 2;
b51912c9 2406
9042846b
CM
2407 fs_info->endio_write_workers.idle_thresh = 2;
2408 fs_info->endio_meta_write_workers.idle_thresh = 2;
90519d66 2409 fs_info->readahead_workers.idle_thresh = 2;
9042846b 2410
0dc3b84a
JB
2411 /*
2412 * btrfs_start_workers can really only fail because of ENOMEM so just
2413 * return -ENOMEM if any of these fail.
2414 */
2415 ret = btrfs_start_workers(&fs_info->workers);
2416 ret |= btrfs_start_workers(&fs_info->generic_worker);
2417 ret |= btrfs_start_workers(&fs_info->submit_workers);
2418 ret |= btrfs_start_workers(&fs_info->delalloc_workers);
2419 ret |= btrfs_start_workers(&fs_info->fixup_workers);
2420 ret |= btrfs_start_workers(&fs_info->endio_workers);
2421 ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
53b381b3
DW
2422 ret |= btrfs_start_workers(&fs_info->rmw_workers);
2423 ret |= btrfs_start_workers(&fs_info->endio_raid56_workers);
0dc3b84a
JB
2424 ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
2425 ret |= btrfs_start_workers(&fs_info->endio_write_workers);
2426 ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
2427 ret |= btrfs_start_workers(&fs_info->delayed_workers);
2428 ret |= btrfs_start_workers(&fs_info->caching_workers);
2429 ret |= btrfs_start_workers(&fs_info->readahead_workers);
8ccf6f19 2430 ret |= btrfs_start_workers(&fs_info->flush_workers);
0dc3b84a 2431 if (ret) {
fed425c7 2432 err = -ENOMEM;
0dc3b84a
JB
2433 goto fail_sb_buffer;
2434 }
4543df7e 2435
4575c9cc 2436 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
c8b97818
CM
2437 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2438 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
4575c9cc 2439
db94535d
CM
2440 tree_root->nodesize = nodesize;
2441 tree_root->leafsize = leafsize;
2442 tree_root->sectorsize = sectorsize;
87ee04eb 2443 tree_root->stripesize = stripesize;
a061fc8d
CM
2444
2445 sb->s_blocksize = sectorsize;
2446 sb->s_blocksize_bits = blksize_bits(sectorsize);
db94535d 2447
cdb4c574 2448 if (disk_super->magic != cpu_to_le64(BTRFS_MAGIC)) {
d397712b 2449 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
39279cc3
CM
2450 goto fail_sb_buffer;
2451 }
19c00ddc 2452
8d082fb7
LB
2453 if (sectorsize != PAGE_SIZE) {
2454 printk(KERN_WARNING "btrfs: Incompatible sector size(%lu) "
2455 "found on %s\n", (unsigned long)sectorsize, sb->s_id);
941b2ddf
KM
2456 goto fail_sb_buffer;
2457 }
2458
925baedd 2459 mutex_lock(&fs_info->chunk_mutex);
e4404d6e 2460 ret = btrfs_read_sys_array(tree_root);
925baedd 2461 mutex_unlock(&fs_info->chunk_mutex);
84eed90f 2462 if (ret) {
d397712b
CM
2463 printk(KERN_WARNING "btrfs: failed to read the system "
2464 "array on %s\n", sb->s_id);
5d4f98a2 2465 goto fail_sb_buffer;
84eed90f 2466 }
0b86a832
CM
2467
2468 blocksize = btrfs_level_size(tree_root,
2469 btrfs_super_chunk_root_level(disk_super));
84234f3a 2470 generation = btrfs_super_chunk_root_generation(disk_super);
0b86a832
CM
2471
2472 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2473 chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2474
2475 chunk_root->node = read_tree_block(chunk_root,
2476 btrfs_super_chunk_root(disk_super),
84234f3a 2477 blocksize, generation);
79787eaa 2478 BUG_ON(!chunk_root->node); /* -ENOMEM */
83121942
DW
2479 if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2480 printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
2481 sb->s_id);
af31f5e5 2482 goto fail_tree_roots;
83121942 2483 }
5d4f98a2
YZ
2484 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2485 chunk_root->commit_root = btrfs_root_node(chunk_root);
0b86a832 2486
e17cade2 2487 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
d397712b
CM
2488 (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
2489 BTRFS_UUID_SIZE);
e17cade2 2490
0b86a832 2491 ret = btrfs_read_chunk_tree(chunk_root);
2b82032c 2492 if (ret) {
d397712b
CM
2493 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
2494 sb->s_id);
af31f5e5 2495 goto fail_tree_roots;
2b82032c 2496 }
0b86a832 2497
8dabb742
SB
2498 /*
2499 * keep the device that is marked to be the target device for the
2500 * dev_replace procedure
2501 */
2502 btrfs_close_extra_devices(fs_info, fs_devices, 0);
dfe25020 2503
a6b0d5c8
CM
2504 if (!fs_devices->latest_bdev) {
2505 printk(KERN_CRIT "btrfs: failed to read devices on %s\n",
2506 sb->s_id);
2507 goto fail_tree_roots;
2508 }
2509
af31f5e5 2510retry_root_backup:
db94535d
CM
2511 blocksize = btrfs_level_size(tree_root,
2512 btrfs_super_root_level(disk_super));
84234f3a 2513 generation = btrfs_super_generation(disk_super);
0b86a832 2514
e20d96d6 2515 tree_root->node = read_tree_block(tree_root,
db94535d 2516 btrfs_super_root(disk_super),
84234f3a 2517 blocksize, generation);
af31f5e5
CM
2518 if (!tree_root->node ||
2519 !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
83121942
DW
2520 printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
2521 sb->s_id);
af31f5e5
CM
2522
2523 goto recovery_tree_root;
83121942 2524 }
af31f5e5 2525
5d4f98a2
YZ
2526 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2527 tree_root->commit_root = btrfs_root_node(tree_root);
db94535d
CM
2528
2529 ret = find_and_setup_root(tree_root, fs_info,
e20d96d6 2530 BTRFS_EXTENT_TREE_OBJECTID, extent_root);
0b86a832 2531 if (ret)
af31f5e5 2532 goto recovery_tree_root;
0b86a832
CM
2533 extent_root->track_dirty = 1;
2534
2535 ret = find_and_setup_root(tree_root, fs_info,
2536 BTRFS_DEV_TREE_OBJECTID, dev_root);
0b86a832 2537 if (ret)
af31f5e5 2538 goto recovery_tree_root;
5d4f98a2 2539 dev_root->track_dirty = 1;
3768f368 2540
d20f7043
CM
2541 ret = find_and_setup_root(tree_root, fs_info,
2542 BTRFS_CSUM_TREE_OBJECTID, csum_root);
2543 if (ret)
af31f5e5 2544 goto recovery_tree_root;
d20f7043
CM
2545 csum_root->track_dirty = 1;
2546
bcef60f2
AJ
2547 ret = find_and_setup_root(tree_root, fs_info,
2548 BTRFS_QUOTA_TREE_OBJECTID, quota_root);
2549 if (ret) {
2550 kfree(quota_root);
2551 quota_root = fs_info->quota_root = NULL;
2552 } else {
2553 quota_root->track_dirty = 1;
2554 fs_info->quota_enabled = 1;
2555 fs_info->pending_quota_state = 1;
2556 }
2557
8929ecfa
YZ
2558 fs_info->generation = generation;
2559 fs_info->last_trans_committed = generation;
8929ecfa 2560
68310a5e
ID
2561 ret = btrfs_recover_balance(fs_info);
2562 if (ret) {
2563 printk(KERN_WARNING "btrfs: failed to recover balance\n");
2564 goto fail_block_groups;
2565 }
2566
733f4fbb
SB
2567 ret = btrfs_init_dev_stats(fs_info);
2568 if (ret) {
2569 printk(KERN_ERR "btrfs: failed to init dev_stats: %d\n",
2570 ret);
2571 goto fail_block_groups;
2572 }
2573
8dabb742
SB
2574 ret = btrfs_init_dev_replace(fs_info);
2575 if (ret) {
2576 pr_err("btrfs: failed to init dev_replace: %d\n", ret);
2577 goto fail_block_groups;
2578 }
2579
2580 btrfs_close_extra_devices(fs_info, fs_devices, 1);
2581
c59021f8 2582 ret = btrfs_init_space_info(fs_info);
2583 if (ret) {
2584 printk(KERN_ERR "Failed to initial space info: %d\n", ret);
2585 goto fail_block_groups;
2586 }
2587
1b1d1f66
JB
2588 ret = btrfs_read_block_groups(extent_root);
2589 if (ret) {
2590 printk(KERN_ERR "Failed to read block groups: %d\n", ret);
2591 goto fail_block_groups;
2592 }
5af3e8cc
SB
2593 fs_info->num_tolerated_disk_barrier_failures =
2594 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
292fd7fc
SB
2595 if (fs_info->fs_devices->missing_devices >
2596 fs_info->num_tolerated_disk_barrier_failures &&
2597 !(sb->s_flags & MS_RDONLY)) {
2598 printk(KERN_WARNING
2599 "Btrfs: too many missing devices, writeable mount is not allowed\n");
2600 goto fail_block_groups;
2601 }
9078a3e1 2602
a74a4b97
CM
2603 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2604 "btrfs-cleaner");
57506d50 2605 if (IS_ERR(fs_info->cleaner_kthread))
1b1d1f66 2606 goto fail_block_groups;
a74a4b97
CM
2607
2608 fs_info->transaction_kthread = kthread_run(transaction_kthread,
2609 tree_root,
2610 "btrfs-transaction");
57506d50 2611 if (IS_ERR(fs_info->transaction_kthread))
3f157a2f 2612 goto fail_cleaner;
a74a4b97 2613
c289811c
CM
2614 if (!btrfs_test_opt(tree_root, SSD) &&
2615 !btrfs_test_opt(tree_root, NOSSD) &&
2616 !fs_info->fs_devices->rotating) {
2617 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
2618 "mode\n");
2619 btrfs_set_opt(fs_info->mount_opt, SSD);
2620 }
2621
21adbd5c
SB
2622#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2623 if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2624 ret = btrfsic_mount(tree_root, fs_devices,
2625 btrfs_test_opt(tree_root,
2626 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2627 1 : 0,
2628 fs_info->check_integrity_print_mask);
2629 if (ret)
2630 printk(KERN_WARNING "btrfs: failed to initialize"
2631 " integrity check module %s\n", sb->s_id);
2632 }
2633#endif
bcef60f2
AJ
2634 ret = btrfs_read_qgroup_config(fs_info);
2635 if (ret)
2636 goto fail_trans_kthread;
21adbd5c 2637
acce952b 2638 /* do not make disk changes in broken FS */
68ce9682 2639 if (btrfs_super_log_root(disk_super) != 0) {
e02119d5
CM
2640 u64 bytenr = btrfs_super_log_root(disk_super);
2641
7c2ca468 2642 if (fs_devices->rw_devices == 0) {
d397712b
CM
2643 printk(KERN_WARNING "Btrfs log replay required "
2644 "on RO media\n");
7c2ca468 2645 err = -EIO;
bcef60f2 2646 goto fail_qgroup;
7c2ca468 2647 }
e02119d5
CM
2648 blocksize =
2649 btrfs_level_size(tree_root,
2650 btrfs_super_log_root_level(disk_super));
d18a2c44 2651
6f07e42e 2652 log_tree_root = btrfs_alloc_root(fs_info);
676e4c86
DC
2653 if (!log_tree_root) {
2654 err = -ENOMEM;
bcef60f2 2655 goto fail_qgroup;
676e4c86 2656 }
e02119d5
CM
2657
2658 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2659 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2660
2661 log_tree_root->node = read_tree_block(tree_root, bytenr,
84234f3a
YZ
2662 blocksize,
2663 generation + 1);
79787eaa 2664 /* returns with log_tree_root freed on success */
e02119d5 2665 ret = btrfs_recover_log_trees(log_tree_root);
79787eaa
JM
2666 if (ret) {
2667 btrfs_error(tree_root->fs_info, ret,
2668 "Failed to recover log tree");
2669 free_extent_buffer(log_tree_root->node);
2670 kfree(log_tree_root);
2671 goto fail_trans_kthread;
2672 }
e556ce2c
YZ
2673
2674 if (sb->s_flags & MS_RDONLY) {
79787eaa
JM
2675 ret = btrfs_commit_super(tree_root);
2676 if (ret)
2677 goto fail_trans_kthread;
e556ce2c 2678 }
e02119d5 2679 }
1a40e23b 2680
76dda93c 2681 ret = btrfs_find_orphan_roots(tree_root);
79787eaa
JM
2682 if (ret)
2683 goto fail_trans_kthread;
76dda93c 2684
7c2ca468 2685 if (!(sb->s_flags & MS_RDONLY)) {
d68fc57b 2686 ret = btrfs_cleanup_fs_roots(fs_info);
44c44af2
ID
2687 if (ret)
2688 goto fail_trans_kthread;
d68fc57b 2689
5d4f98a2 2690 ret = btrfs_recover_relocation(tree_root);
d7ce5843
MX
2691 if (ret < 0) {
2692 printk(KERN_WARNING
2693 "btrfs: failed to recover relocation\n");
2694 err = -EINVAL;
bcef60f2 2695 goto fail_qgroup;
d7ce5843 2696 }
7c2ca468 2697 }
1a40e23b 2698
3de4586c
CM
2699 location.objectid = BTRFS_FS_TREE_OBJECTID;
2700 location.type = BTRFS_ROOT_ITEM_KEY;
2701 location.offset = (u64)-1;
2702
3de4586c
CM
2703 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2704 if (!fs_info->fs_root)
bcef60f2 2705 goto fail_qgroup;
3140c9a3
DC
2706 if (IS_ERR(fs_info->fs_root)) {
2707 err = PTR_ERR(fs_info->fs_root);
bcef60f2 2708 goto fail_qgroup;
3140c9a3 2709 }
c289811c 2710
2b6ba629
ID
2711 if (sb->s_flags & MS_RDONLY)
2712 return 0;
59641015 2713
2b6ba629
ID
2714 down_read(&fs_info->cleanup_work_sem);
2715 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2716 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
e3acc2a6 2717 up_read(&fs_info->cleanup_work_sem);
2b6ba629
ID
2718 close_ctree(tree_root);
2719 return ret;
2720 }
2721 up_read(&fs_info->cleanup_work_sem);
59641015 2722
2b6ba629
ID
2723 ret = btrfs_resume_balance_async(fs_info);
2724 if (ret) {
2725 printk(KERN_WARNING "btrfs: failed to resume balance\n");
2726 close_ctree(tree_root);
2727 return ret;
e3acc2a6
JB
2728 }
2729
8dabb742
SB
2730 ret = btrfs_resume_dev_replace_async(fs_info);
2731 if (ret) {
2732 pr_warn("btrfs: failed to resume dev_replace\n");
2733 close_ctree(tree_root);
2734 return ret;
2735 }
2736
ad2b2c80 2737 return 0;
39279cc3 2738
bcef60f2
AJ
2739fail_qgroup:
2740 btrfs_free_qgroup_config(fs_info);
7c2ca468
CM
2741fail_trans_kthread:
2742 kthread_stop(fs_info->transaction_kthread);
3f157a2f 2743fail_cleaner:
a74a4b97 2744 kthread_stop(fs_info->cleaner_kthread);
7c2ca468
CM
2745
2746 /*
2747 * make sure we're done with the btree inode before we stop our
2748 * kthreads
2749 */
2750 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
7c2ca468 2751
1b1d1f66
JB
2752fail_block_groups:
2753 btrfs_free_block_groups(fs_info);
af31f5e5
CM
2754
2755fail_tree_roots:
2756 free_root_pointers(fs_info, 1);
2b8195bb 2757 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
af31f5e5 2758
39279cc3 2759fail_sb_buffer:
61d92c32 2760 btrfs_stop_workers(&fs_info->generic_worker);
306c8b68 2761 btrfs_stop_workers(&fs_info->readahead_workers);
247e743c 2762 btrfs_stop_workers(&fs_info->fixup_workers);
771ed689 2763 btrfs_stop_workers(&fs_info->delalloc_workers);
8b712842
CM
2764 btrfs_stop_workers(&fs_info->workers);
2765 btrfs_stop_workers(&fs_info->endio_workers);
d20f7043 2766 btrfs_stop_workers(&fs_info->endio_meta_workers);
53b381b3
DW
2767 btrfs_stop_workers(&fs_info->endio_raid56_workers);
2768 btrfs_stop_workers(&fs_info->rmw_workers);
cad321ad 2769 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
e6dcd2dc 2770 btrfs_stop_workers(&fs_info->endio_write_workers);
0cb59c99 2771 btrfs_stop_workers(&fs_info->endio_freespace_worker);
1cc127b5 2772 btrfs_stop_workers(&fs_info->submit_workers);
16cdcec7 2773 btrfs_stop_workers(&fs_info->delayed_workers);
bab39bf9 2774 btrfs_stop_workers(&fs_info->caching_workers);
8ccf6f19 2775 btrfs_stop_workers(&fs_info->flush_workers);
16cdcec7 2776fail_alloc:
4543df7e 2777fail_iput:
586e46e2
ID
2778 btrfs_mapping_tree_free(&fs_info->mapping_tree);
2779
4543df7e 2780 iput(fs_info->btree_inode);
963d678b
MX
2781fail_delalloc_bytes:
2782 percpu_counter_destroy(&fs_info->delalloc_bytes);
e2d84521
MX
2783fail_dirty_metadata_bytes:
2784 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
ad081f14 2785fail_bdi:
7e662854 2786 bdi_destroy(&fs_info->bdi);
76dda93c
YZ
2787fail_srcu:
2788 cleanup_srcu_struct(&fs_info->subvol_srcu);
7e662854 2789fail:
53b381b3 2790 btrfs_free_stripe_hash_table(fs_info);
586e46e2 2791 btrfs_close_devices(fs_info->fs_devices);
ad2b2c80 2792 return err;
af31f5e5
CM
2793
2794recovery_tree_root:
af31f5e5
CM
2795 if (!btrfs_test_opt(tree_root, RECOVERY))
2796 goto fail_tree_roots;
2797
2798 free_root_pointers(fs_info, 0);
2799
2800 /* don't use the log in recovery mode, it won't be valid */
2801 btrfs_set_super_log_root(disk_super, 0);
2802
2803 /* we can't trust the free space cache either */
2804 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2805
2806 ret = next_root_backup(fs_info, fs_info->super_copy,
2807 &num_backups_tried, &backup_index);
2808 if (ret == -1)
2809 goto fail_block_groups;
2810 goto retry_root_backup;
eb60ceac
CM
2811}
2812
f2984462
CM
2813static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
2814{
f2984462
CM
2815 if (uptodate) {
2816 set_buffer_uptodate(bh);
2817 } else {
442a4f63
SB
2818 struct btrfs_device *device = (struct btrfs_device *)
2819 bh->b_private;
2820
606686ee
JB
2821 printk_ratelimited_in_rcu(KERN_WARNING "lost page write due to "
2822 "I/O error on %s\n",
2823 rcu_str_deref(device->name));
1259ab75
CM
2824 /* note, we dont' set_buffer_write_io_error because we have
2825 * our own ways of dealing with the IO errors
2826 */
f2984462 2827 clear_buffer_uptodate(bh);
442a4f63 2828 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
f2984462
CM
2829 }
2830 unlock_buffer(bh);
2831 put_bh(bh);
2832}
2833
a512bbf8
YZ
2834struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
2835{
2836 struct buffer_head *bh;
2837 struct buffer_head *latest = NULL;
2838 struct btrfs_super_block *super;
2839 int i;
2840 u64 transid = 0;
2841 u64 bytenr;
2842
2843 /* we would like to check all the supers, but that would make
2844 * a btrfs mount succeed after a mkfs from a different FS.
2845 * So, we need to add a special mount option to scan for
2846 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2847 */
2848 for (i = 0; i < 1; i++) {
2849 bytenr = btrfs_sb_offset(i);
2850 if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
2851 break;
2852 bh = __bread(bdev, bytenr / 4096, 4096);
2853 if (!bh)
2854 continue;
2855
2856 super = (struct btrfs_super_block *)bh->b_data;
2857 if (btrfs_super_bytenr(super) != bytenr ||
cdb4c574 2858 super->magic != cpu_to_le64(BTRFS_MAGIC)) {
a512bbf8
YZ
2859 brelse(bh);
2860 continue;
2861 }
2862
2863 if (!latest || btrfs_super_generation(super) > transid) {
2864 brelse(latest);
2865 latest = bh;
2866 transid = btrfs_super_generation(super);
2867 } else {
2868 brelse(bh);
2869 }
2870 }
2871 return latest;
2872}
2873
4eedeb75
HH
2874/*
2875 * this should be called twice, once with wait == 0 and
2876 * once with wait == 1. When wait == 0 is done, all the buffer heads
2877 * we write are pinned.
2878 *
2879 * They are released when wait == 1 is done.
2880 * max_mirrors must be the same for both runs, and it indicates how
2881 * many supers on this one device should be written.
2882 *
2883 * max_mirrors == 0 means to write them all.
2884 */
a512bbf8
YZ
2885static int write_dev_supers(struct btrfs_device *device,
2886 struct btrfs_super_block *sb,
2887 int do_barriers, int wait, int max_mirrors)
2888{
2889 struct buffer_head *bh;
2890 int i;
2891 int ret;
2892 int errors = 0;
2893 u32 crc;
2894 u64 bytenr;
a512bbf8
YZ
2895
2896 if (max_mirrors == 0)
2897 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
2898
a512bbf8
YZ
2899 for (i = 0; i < max_mirrors; i++) {
2900 bytenr = btrfs_sb_offset(i);
2901 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
2902 break;
2903
2904 if (wait) {
2905 bh = __find_get_block(device->bdev, bytenr / 4096,
2906 BTRFS_SUPER_INFO_SIZE);
2907 BUG_ON(!bh);
a512bbf8 2908 wait_on_buffer(bh);
4eedeb75
HH
2909 if (!buffer_uptodate(bh))
2910 errors++;
2911
2912 /* drop our reference */
2913 brelse(bh);
2914
2915 /* drop the reference from the wait == 0 run */
2916 brelse(bh);
2917 continue;
a512bbf8
YZ
2918 } else {
2919 btrfs_set_super_bytenr(sb, bytenr);
2920
2921 crc = ~(u32)0;
b0496686 2922 crc = btrfs_csum_data((char *)sb +
a512bbf8
YZ
2923 BTRFS_CSUM_SIZE, crc,
2924 BTRFS_SUPER_INFO_SIZE -
2925 BTRFS_CSUM_SIZE);
2926 btrfs_csum_final(crc, sb->csum);
2927
4eedeb75
HH
2928 /*
2929 * one reference for us, and we leave it for the
2930 * caller
2931 */
a512bbf8
YZ
2932 bh = __getblk(device->bdev, bytenr / 4096,
2933 BTRFS_SUPER_INFO_SIZE);
2934 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
2935
4eedeb75 2936 /* one reference for submit_bh */
a512bbf8 2937 get_bh(bh);
4eedeb75
HH
2938
2939 set_buffer_uptodate(bh);
a512bbf8
YZ
2940 lock_buffer(bh);
2941 bh->b_end_io = btrfs_end_buffer_write_sync;
442a4f63 2942 bh->b_private = device;
a512bbf8
YZ
2943 }
2944
387125fc
CM
2945 /*
2946 * we fua the first super. The others we allow
2947 * to go down lazy.
2948 */
21adbd5c 2949 ret = btrfsic_submit_bh(WRITE_FUA, bh);
4eedeb75 2950 if (ret)
a512bbf8 2951 errors++;
a512bbf8
YZ
2952 }
2953 return errors < i ? 0 : -1;
2954}
2955
387125fc
CM
2956/*
2957 * endio for the write_dev_flush, this will wake anyone waiting
2958 * for the barrier when it is done
2959 */
2960static void btrfs_end_empty_barrier(struct bio *bio, int err)
2961{
2962 if (err) {
2963 if (err == -EOPNOTSUPP)
2964 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2965 clear_bit(BIO_UPTODATE, &bio->bi_flags);
2966 }
2967 if (bio->bi_private)
2968 complete(bio->bi_private);
2969 bio_put(bio);
2970}
2971
2972/*
2973 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
2974 * sent down. With wait == 1, it waits for the previous flush.
2975 *
2976 * any device where the flush fails with eopnotsupp are flagged as not-barrier
2977 * capable
2978 */
2979static int write_dev_flush(struct btrfs_device *device, int wait)
2980{
2981 struct bio *bio;
2982 int ret = 0;
2983
2984 if (device->nobarriers)
2985 return 0;
2986
2987 if (wait) {
2988 bio = device->flush_bio;
2989 if (!bio)
2990 return 0;
2991
2992 wait_for_completion(&device->flush_wait);
2993
2994 if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
606686ee
JB
2995 printk_in_rcu("btrfs: disabling barriers on dev %s\n",
2996 rcu_str_deref(device->name));
387125fc 2997 device->nobarriers = 1;
5af3e8cc 2998 } else if (!bio_flagged(bio, BIO_UPTODATE)) {
387125fc 2999 ret = -EIO;
5af3e8cc
SB
3000 btrfs_dev_stat_inc_and_print(device,
3001 BTRFS_DEV_STAT_FLUSH_ERRS);
387125fc
CM
3002 }
3003
3004 /* drop the reference from the wait == 0 run */
3005 bio_put(bio);
3006 device->flush_bio = NULL;
3007
3008 return ret;
3009 }
3010
3011 /*
3012 * one reference for us, and we leave it for the
3013 * caller
3014 */
9c017abc 3015 device->flush_bio = NULL;
387125fc
CM
3016 bio = bio_alloc(GFP_NOFS, 0);
3017 if (!bio)
3018 return -ENOMEM;
3019
3020 bio->bi_end_io = btrfs_end_empty_barrier;
3021 bio->bi_bdev = device->bdev;
3022 init_completion(&device->flush_wait);
3023 bio->bi_private = &device->flush_wait;
3024 device->flush_bio = bio;
3025
3026 bio_get(bio);
21adbd5c 3027 btrfsic_submit_bio(WRITE_FLUSH, bio);
387125fc
CM
3028
3029 return 0;
3030}
3031
3032/*
3033 * send an empty flush down to each device in parallel,
3034 * then wait for them
3035 */
3036static int barrier_all_devices(struct btrfs_fs_info *info)
3037{
3038 struct list_head *head;
3039 struct btrfs_device *dev;
5af3e8cc
SB
3040 int errors_send = 0;
3041 int errors_wait = 0;
387125fc
CM
3042 int ret;
3043
3044 /* send down all the barriers */
3045 head = &info->fs_devices->devices;
3046 list_for_each_entry_rcu(dev, head, dev_list) {
3047 if (!dev->bdev) {
5af3e8cc 3048 errors_send++;
387125fc
CM
3049 continue;
3050 }
3051 if (!dev->in_fs_metadata || !dev->writeable)
3052 continue;
3053
3054 ret = write_dev_flush(dev, 0);
3055 if (ret)
5af3e8cc 3056 errors_send++;
387125fc
CM
3057 }
3058
3059 /* wait for all the barriers */
3060 list_for_each_entry_rcu(dev, head, dev_list) {
3061 if (!dev->bdev) {
5af3e8cc 3062 errors_wait++;
387125fc
CM
3063 continue;
3064 }
3065 if (!dev->in_fs_metadata || !dev->writeable)
3066 continue;
3067
3068 ret = write_dev_flush(dev, 1);
3069 if (ret)
5af3e8cc 3070 errors_wait++;
387125fc 3071 }
5af3e8cc
SB
3072 if (errors_send > info->num_tolerated_disk_barrier_failures ||
3073 errors_wait > info->num_tolerated_disk_barrier_failures)
387125fc
CM
3074 return -EIO;
3075 return 0;
3076}
3077
5af3e8cc
SB
3078int btrfs_calc_num_tolerated_disk_barrier_failures(
3079 struct btrfs_fs_info *fs_info)
3080{
3081 struct btrfs_ioctl_space_info space;
3082 struct btrfs_space_info *sinfo;
3083 u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3084 BTRFS_BLOCK_GROUP_SYSTEM,
3085 BTRFS_BLOCK_GROUP_METADATA,
3086 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3087 int num_types = 4;
3088 int i;
3089 int c;
3090 int num_tolerated_disk_barrier_failures =
3091 (int)fs_info->fs_devices->num_devices;
3092
3093 for (i = 0; i < num_types; i++) {
3094 struct btrfs_space_info *tmp;
3095
3096 sinfo = NULL;
3097 rcu_read_lock();
3098 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3099 if (tmp->flags == types[i]) {
3100 sinfo = tmp;
3101 break;
3102 }
3103 }
3104 rcu_read_unlock();
3105
3106 if (!sinfo)
3107 continue;
3108
3109 down_read(&sinfo->groups_sem);
3110 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3111 if (!list_empty(&sinfo->block_groups[c])) {
3112 u64 flags;
3113
3114 btrfs_get_block_group_info(
3115 &sinfo->block_groups[c], &space);
3116 if (space.total_bytes == 0 ||
3117 space.used_bytes == 0)
3118 continue;
3119 flags = space.flags;
3120 /*
3121 * return
3122 * 0: if dup, single or RAID0 is configured for
3123 * any of metadata, system or data, else
3124 * 1: if RAID5 is configured, or if RAID1 or
3125 * RAID10 is configured and only two mirrors
3126 * are used, else
3127 * 2: if RAID6 is configured, else
3128 * num_mirrors - 1: if RAID1 or RAID10 is
3129 * configured and more than
3130 * 2 mirrors are used.
3131 */
3132 if (num_tolerated_disk_barrier_failures > 0 &&
3133 ((flags & (BTRFS_BLOCK_GROUP_DUP |
3134 BTRFS_BLOCK_GROUP_RAID0)) ||
3135 ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
3136 == 0)))
3137 num_tolerated_disk_barrier_failures = 0;
53b381b3
DW
3138 else if (num_tolerated_disk_barrier_failures > 1) {
3139 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3140 BTRFS_BLOCK_GROUP_RAID5 |
3141 BTRFS_BLOCK_GROUP_RAID10)) {
3142 num_tolerated_disk_barrier_failures = 1;
3143 } else if (flags &
3144 BTRFS_BLOCK_GROUP_RAID5) {
3145 num_tolerated_disk_barrier_failures = 2;
3146 }
3147 }
5af3e8cc
SB
3148 }
3149 }
3150 up_read(&sinfo->groups_sem);
3151 }
3152
3153 return num_tolerated_disk_barrier_failures;
3154}
3155
a512bbf8 3156int write_all_supers(struct btrfs_root *root, int max_mirrors)
f2984462 3157{
e5e9a520 3158 struct list_head *head;
f2984462 3159 struct btrfs_device *dev;
a061fc8d 3160 struct btrfs_super_block *sb;
f2984462 3161 struct btrfs_dev_item *dev_item;
f2984462
CM
3162 int ret;
3163 int do_barriers;
a236aed1
CM
3164 int max_errors;
3165 int total_errors = 0;
a061fc8d 3166 u64 flags;
f2984462 3167
6c41761f 3168 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
f2984462 3169 do_barriers = !btrfs_test_opt(root, NOBARRIER);
af31f5e5 3170 backup_super_roots(root->fs_info);
f2984462 3171
6c41761f 3172 sb = root->fs_info->super_for_commit;
a061fc8d 3173 dev_item = &sb->dev_item;
e5e9a520 3174
174ba509 3175 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
e5e9a520 3176 head = &root->fs_info->fs_devices->devices;
387125fc 3177
5af3e8cc
SB
3178 if (do_barriers) {
3179 ret = barrier_all_devices(root->fs_info);
3180 if (ret) {
3181 mutex_unlock(
3182 &root->fs_info->fs_devices->device_list_mutex);
3183 btrfs_error(root->fs_info, ret,
3184 "errors while submitting device barriers.");
3185 return ret;
3186 }
3187 }
387125fc 3188
1f78160c 3189 list_for_each_entry_rcu(dev, head, dev_list) {
dfe25020
CM
3190 if (!dev->bdev) {
3191 total_errors++;
3192 continue;
3193 }
2b82032c 3194 if (!dev->in_fs_metadata || !dev->writeable)
dfe25020
CM
3195 continue;
3196
2b82032c 3197 btrfs_set_stack_device_generation(dev_item, 0);
a061fc8d
CM
3198 btrfs_set_stack_device_type(dev_item, dev->type);
3199 btrfs_set_stack_device_id(dev_item, dev->devid);
3200 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
3201 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
3202 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3203 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3204 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3205 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
2b82032c 3206 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
a512bbf8 3207
a061fc8d
CM
3208 flags = btrfs_super_flags(sb);
3209 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3210
a512bbf8 3211 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
a236aed1
CM
3212 if (ret)
3213 total_errors++;
f2984462 3214 }
a236aed1 3215 if (total_errors > max_errors) {
d397712b
CM
3216 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
3217 total_errors);
79787eaa
JM
3218
3219 /* This shouldn't happen. FUA is masked off if unsupported */
a236aed1
CM
3220 BUG();
3221 }
f2984462 3222
a512bbf8 3223 total_errors = 0;
1f78160c 3224 list_for_each_entry_rcu(dev, head, dev_list) {
dfe25020
CM
3225 if (!dev->bdev)
3226 continue;
2b82032c 3227 if (!dev->in_fs_metadata || !dev->writeable)
dfe25020
CM
3228 continue;
3229
a512bbf8
YZ
3230 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3231 if (ret)
3232 total_errors++;
f2984462 3233 }
174ba509 3234 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
a236aed1 3235 if (total_errors > max_errors) {
79787eaa
JM
3236 btrfs_error(root->fs_info, -EIO,
3237 "%d errors while writing supers", total_errors);
3238 return -EIO;
a236aed1 3239 }
f2984462
CM
3240 return 0;
3241}
3242
a512bbf8
YZ
3243int write_ctree_super(struct btrfs_trans_handle *trans,
3244 struct btrfs_root *root, int max_mirrors)
eb60ceac 3245{
e66f709b 3246 int ret;
5f39d397 3247
a512bbf8 3248 ret = write_all_supers(root, max_mirrors);
5f39d397 3249 return ret;
cfaa7295
CM
3250}
3251
143bede5 3252void btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
2619ba1f 3253{
4df27c4d 3254 spin_lock(&fs_info->fs_roots_radix_lock);
2619ba1f
CM
3255 radix_tree_delete(&fs_info->fs_roots_radix,
3256 (unsigned long)root->root_key.objectid);
4df27c4d 3257 spin_unlock(&fs_info->fs_roots_radix_lock);
76dda93c
YZ
3258
3259 if (btrfs_root_refs(&root->root_item) == 0)
3260 synchronize_srcu(&fs_info->subvol_srcu);
3261
d7634482 3262 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3321719e
LB
3263 btrfs_free_log(NULL, root);
3264 btrfs_free_log_root_tree(NULL, fs_info);
3265 }
3266
581bb050
LZ
3267 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3268 __btrfs_remove_free_space_cache(root->free_ino_ctl);
4df27c4d 3269 free_fs_root(root);
4df27c4d
YZ
3270}
3271
3272static void free_fs_root(struct btrfs_root *root)
3273{
82d5902d 3274 iput(root->cache_inode);
4df27c4d 3275 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
0ee5dc67
AV
3276 if (root->anon_dev)
3277 free_anon_bdev(root->anon_dev);
4df27c4d
YZ
3278 free_extent_buffer(root->node);
3279 free_extent_buffer(root->commit_root);
581bb050
LZ
3280 kfree(root->free_ino_ctl);
3281 kfree(root->free_ino_pinned);
d397712b 3282 kfree(root->name);
2619ba1f 3283 kfree(root);
2619ba1f
CM
3284}
3285
143bede5 3286static void del_fs_roots(struct btrfs_fs_info *fs_info)
0f7d52f4
CM
3287{
3288 int ret;
3289 struct btrfs_root *gang[8];
3290 int i;
3291
76dda93c
YZ
3292 while (!list_empty(&fs_info->dead_roots)) {
3293 gang[0] = list_entry(fs_info->dead_roots.next,
3294 struct btrfs_root, root_list);
3295 list_del(&gang[0]->root_list);
3296
3297 if (gang[0]->in_radix) {
3298 btrfs_free_fs_root(fs_info, gang[0]);
3299 } else {
3300 free_extent_buffer(gang[0]->node);
3301 free_extent_buffer(gang[0]->commit_root);
3302 kfree(gang[0]);
3303 }
3304 }
3305
d397712b 3306 while (1) {
0f7d52f4
CM
3307 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3308 (void **)gang, 0,
3309 ARRAY_SIZE(gang));
3310 if (!ret)
3311 break;
2619ba1f 3312 for (i = 0; i < ret; i++)
5eda7b5e 3313 btrfs_free_fs_root(fs_info, gang[i]);
0f7d52f4 3314 }
0f7d52f4 3315}
b4100d64 3316
c146afad 3317int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
cfaa7295 3318{
c146afad
YZ
3319 u64 root_objectid = 0;
3320 struct btrfs_root *gang[8];
3321 int i;
3768f368 3322 int ret;
e089f05c 3323
c146afad
YZ
3324 while (1) {
3325 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3326 (void **)gang, root_objectid,
3327 ARRAY_SIZE(gang));
3328 if (!ret)
3329 break;
5d4f98a2
YZ
3330
3331 root_objectid = gang[ret - 1]->root_key.objectid + 1;
c146afad 3332 for (i = 0; i < ret; i++) {
66b4ffd1
JB
3333 int err;
3334
c146afad 3335 root_objectid = gang[i]->root_key.objectid;
66b4ffd1
JB
3336 err = btrfs_orphan_cleanup(gang[i]);
3337 if (err)
3338 return err;
c146afad
YZ
3339 }
3340 root_objectid++;
3341 }
3342 return 0;
3343}
a2135011 3344
c146afad
YZ
3345int btrfs_commit_super(struct btrfs_root *root)
3346{
3347 struct btrfs_trans_handle *trans;
3348 int ret;
a74a4b97 3349
c146afad 3350 mutex_lock(&root->fs_info->cleaner_mutex);
24bbcf04 3351 btrfs_run_delayed_iputs(root);
a74a4b97 3352 btrfs_clean_old_snapshots(root);
c146afad 3353 mutex_unlock(&root->fs_info->cleaner_mutex);
c71bf099
YZ
3354
3355 /* wait until ongoing cleanup work done */
3356 down_write(&root->fs_info->cleanup_work_sem);
3357 up_write(&root->fs_info->cleanup_work_sem);
3358
7a7eaa40 3359 trans = btrfs_join_transaction(root);
3612b495
TI
3360 if (IS_ERR(trans))
3361 return PTR_ERR(trans);
54aa1f4d 3362 ret = btrfs_commit_transaction(trans, root);
79787eaa
JM
3363 if (ret)
3364 return ret;
c146afad 3365 /* run commit again to drop the original snapshot */
7a7eaa40 3366 trans = btrfs_join_transaction(root);
3612b495
TI
3367 if (IS_ERR(trans))
3368 return PTR_ERR(trans);
79787eaa
JM
3369 ret = btrfs_commit_transaction(trans, root);
3370 if (ret)
3371 return ret;
79154b1b 3372 ret = btrfs_write_and_wait_transaction(NULL, root);
79787eaa
JM
3373 if (ret) {
3374 btrfs_error(root->fs_info, ret,
3375 "Failed to sync btree inode to disk.");
3376 return ret;
3377 }
d6bfde87 3378
a512bbf8 3379 ret = write_ctree_super(NULL, root, 0);
c146afad
YZ
3380 return ret;
3381}
3382
3383int close_ctree(struct btrfs_root *root)
3384{
3385 struct btrfs_fs_info *fs_info = root->fs_info;
3386 int ret;
3387
3388 fs_info->closing = 1;
3389 smp_mb();
3390
837d5b6e 3391 /* pause restriper - we want to resume on mount */
aa1b8cd4 3392 btrfs_pause_balance(fs_info);
837d5b6e 3393
8dabb742
SB
3394 btrfs_dev_replace_suspend_for_unmount(fs_info);
3395
aa1b8cd4 3396 btrfs_scrub_cancel(fs_info);
4cb5300b
CM
3397
3398 /* wait for any defraggers to finish */
3399 wait_event(fs_info->transaction_wait,
3400 (atomic_read(&fs_info->defrag_running) == 0));
3401
3402 /* clear out the rbtree of defraggable inodes */
26176e7c 3403 btrfs_cleanup_defrag_inodes(fs_info);
4cb5300b 3404
c146afad 3405 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
acce952b 3406 ret = btrfs_commit_super(root);
3407 if (ret)
3408 printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
3409 }
3410
87533c47 3411 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
68ce9682 3412 btrfs_error_commit_super(root);
0f7d52f4 3413
300e4f8a
JB
3414 btrfs_put_block_group_cache(fs_info);
3415
e3029d9f
AV
3416 kthread_stop(fs_info->transaction_kthread);
3417 kthread_stop(fs_info->cleaner_kthread);
8929ecfa 3418
f25784b3
YZ
3419 fs_info->closing = 2;
3420 smp_mb();
3421
bcef60f2
AJ
3422 btrfs_free_qgroup_config(root->fs_info);
3423
963d678b
MX
3424 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3425 printk(KERN_INFO "btrfs: at unmount delalloc count %lld\n",
3426 percpu_counter_sum(&fs_info->delalloc_bytes));
b0c68f8b 3427 }
bcc63abb 3428
be283b2e 3429 free_root_pointers(fs_info, 1);
d20f7043 3430
e3029d9f 3431 btrfs_free_block_groups(fs_info);
d10c5f31 3432
c146afad 3433 del_fs_roots(fs_info);
d10c5f31 3434
c146afad 3435 iput(fs_info->btree_inode);
9ad6b7bc 3436
61d92c32 3437 btrfs_stop_workers(&fs_info->generic_worker);
247e743c 3438 btrfs_stop_workers(&fs_info->fixup_workers);
771ed689 3439 btrfs_stop_workers(&fs_info->delalloc_workers);
8b712842
CM
3440 btrfs_stop_workers(&fs_info->workers);
3441 btrfs_stop_workers(&fs_info->endio_workers);
d20f7043 3442 btrfs_stop_workers(&fs_info->endio_meta_workers);
53b381b3
DW
3443 btrfs_stop_workers(&fs_info->endio_raid56_workers);
3444 btrfs_stop_workers(&fs_info->rmw_workers);
cad321ad 3445 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
e6dcd2dc 3446 btrfs_stop_workers(&fs_info->endio_write_workers);
0cb59c99 3447 btrfs_stop_workers(&fs_info->endio_freespace_worker);
1cc127b5 3448 btrfs_stop_workers(&fs_info->submit_workers);
16cdcec7 3449 btrfs_stop_workers(&fs_info->delayed_workers);
bab39bf9 3450 btrfs_stop_workers(&fs_info->caching_workers);
90519d66 3451 btrfs_stop_workers(&fs_info->readahead_workers);
8ccf6f19 3452 btrfs_stop_workers(&fs_info->flush_workers);
d6bfde87 3453
21adbd5c
SB
3454#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3455 if (btrfs_test_opt(root, CHECK_INTEGRITY))
3456 btrfsic_unmount(root, fs_info->fs_devices);
3457#endif
3458
dfe25020 3459 btrfs_close_devices(fs_info->fs_devices);
0b86a832 3460 btrfs_mapping_tree_free(&fs_info->mapping_tree);
b248a415 3461
e2d84521 3462 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
963d678b 3463 percpu_counter_destroy(&fs_info->delalloc_bytes);
04160088 3464 bdi_destroy(&fs_info->bdi);
76dda93c 3465 cleanup_srcu_struct(&fs_info->subvol_srcu);
0b86a832 3466
53b381b3
DW
3467 btrfs_free_stripe_hash_table(fs_info);
3468
eb60ceac
CM
3469 return 0;
3470}
3471
b9fab919
CM
3472int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3473 int atomic)
5f39d397 3474{
1259ab75 3475 int ret;
727011e0 3476 struct inode *btree_inode = buf->pages[0]->mapping->host;
1259ab75 3477
0b32f4bb 3478 ret = extent_buffer_uptodate(buf);
1259ab75
CM
3479 if (!ret)
3480 return ret;
3481
3482 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
b9fab919
CM
3483 parent_transid, atomic);
3484 if (ret == -EAGAIN)
3485 return ret;
1259ab75 3486 return !ret;
5f39d397
CM
3487}
3488
3489int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
ccd467d6 3490{
0b32f4bb 3491 return set_extent_buffer_uptodate(buf);
5f39d397 3492}
6702ed49 3493
5f39d397
CM
3494void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3495{
727011e0 3496 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
5f39d397 3497 u64 transid = btrfs_header_generation(buf);
b9473439 3498 int was_dirty;
b4ce94de 3499
b9447ef8 3500 btrfs_assert_tree_locked(buf);
31b1a2bd
JL
3501 if (transid != root->fs_info->generation)
3502 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
d397712b 3503 "found %llu running %llu\n",
db94535d 3504 (unsigned long long)buf->start,
d397712b
CM
3505 (unsigned long long)transid,
3506 (unsigned long long)root->fs_info->generation);
0b32f4bb 3507 was_dirty = set_extent_buffer_dirty(buf);
e2d84521
MX
3508 if (!was_dirty)
3509 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3510 buf->len,
3511 root->fs_info->dirty_metadata_batch);
eb60ceac
CM
3512}
3513
b53d3f5d
LB
3514static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
3515 int flush_delayed)
16cdcec7
MX
3516{
3517 /*
3518 * looks as though older kernels can get into trouble with
3519 * this code, they end up stuck in balance_dirty_pages forever
3520 */
e2d84521 3521 int ret;
16cdcec7
MX
3522
3523 if (current->flags & PF_MEMALLOC)
3524 return;
3525
b53d3f5d
LB
3526 if (flush_delayed)
3527 btrfs_balance_delayed_items(root);
16cdcec7 3528
e2d84521
MX
3529 ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
3530 BTRFS_DIRTY_METADATA_THRESH);
3531 if (ret > 0) {
d0e1d66b
NJ
3532 balance_dirty_pages_ratelimited(
3533 root->fs_info->btree_inode->i_mapping);
16cdcec7
MX
3534 }
3535 return;
3536}
3537
b53d3f5d 3538void btrfs_btree_balance_dirty(struct btrfs_root *root)
35b7e476 3539{
b53d3f5d
LB
3540 __btrfs_btree_balance_dirty(root, 1);
3541}
585ad2c3 3542
b53d3f5d
LB
3543void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
3544{
3545 __btrfs_btree_balance_dirty(root, 0);
35b7e476 3546}
6b80053d 3547
ca7a79ad 3548int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
6b80053d 3549{
727011e0 3550 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
0b32f4bb 3551 return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
6b80053d 3552}
0da5468f 3553
fcd1f065 3554static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
acce952b 3555 int read_only)
3556{
fcd1f065
DS
3557 if (btrfs_super_csum_type(fs_info->super_copy) >= ARRAY_SIZE(btrfs_csum_sizes)) {
3558 printk(KERN_ERR "btrfs: unsupported checksum algorithm\n");
3559 return -EINVAL;
3560 }
3561
acce952b 3562 if (read_only)
fcd1f065 3563 return 0;
acce952b 3564
fcd1f065 3565 return 0;
acce952b 3566}
3567
68ce9682 3568void btrfs_error_commit_super(struct btrfs_root *root)
acce952b 3569{
acce952b 3570 mutex_lock(&root->fs_info->cleaner_mutex);
3571 btrfs_run_delayed_iputs(root);
3572 mutex_unlock(&root->fs_info->cleaner_mutex);
3573
3574 down_write(&root->fs_info->cleanup_work_sem);
3575 up_write(&root->fs_info->cleanup_work_sem);
3576
3577 /* cleanup FS via transaction */
3578 btrfs_cleanup_transaction(root);
acce952b 3579}
3580
569e0f35
JB
3581static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
3582 struct btrfs_root *root)
acce952b 3583{
3584 struct btrfs_inode *btrfs_inode;
3585 struct list_head splice;
3586
3587 INIT_LIST_HEAD(&splice);
3588
3589 mutex_lock(&root->fs_info->ordered_operations_mutex);
3590 spin_lock(&root->fs_info->ordered_extent_lock);
3591
569e0f35 3592 list_splice_init(&t->ordered_operations, &splice);
acce952b 3593 while (!list_empty(&splice)) {
3594 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3595 ordered_operations);
3596
3597 list_del_init(&btrfs_inode->ordered_operations);
3598
3599 btrfs_invalidate_inodes(btrfs_inode->root);
3600 }
3601
3602 spin_unlock(&root->fs_info->ordered_extent_lock);
3603 mutex_unlock(&root->fs_info->ordered_operations_mutex);
acce952b 3604}
3605
143bede5 3606static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
acce952b 3607{
acce952b 3608 struct btrfs_ordered_extent *ordered;
acce952b 3609
3610 spin_lock(&root->fs_info->ordered_extent_lock);
779880ef
JB
3611 /*
3612 * This will just short circuit the ordered completion stuff which will
3613 * make sure the ordered extent gets properly cleaned up.
3614 */
3615 list_for_each_entry(ordered, &root->fs_info->ordered_extents,
3616 root_extent_list)
3617 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
acce952b 3618 spin_unlock(&root->fs_info->ordered_extent_lock);
acce952b 3619}
3620
79787eaa
JM
3621int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3622 struct btrfs_root *root)
acce952b 3623{
3624 struct rb_node *node;
3625 struct btrfs_delayed_ref_root *delayed_refs;
3626 struct btrfs_delayed_ref_node *ref;
3627 int ret = 0;
3628
3629 delayed_refs = &trans->delayed_refs;
3630
3631 spin_lock(&delayed_refs->lock);
3632 if (delayed_refs->num_entries == 0) {
cfece4db 3633 spin_unlock(&delayed_refs->lock);
acce952b 3634 printk(KERN_INFO "delayed_refs has NO entry\n");
3635 return ret;
3636 }
3637
b939d1ab 3638 while ((node = rb_first(&delayed_refs->root)) != NULL) {
eb12db69 3639 struct btrfs_delayed_ref_head *head = NULL;
acce952b 3640
eb12db69 3641 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
acce952b 3642 atomic_set(&ref->refs, 1);
3643 if (btrfs_delayed_ref_is_head(ref)) {
acce952b 3644
3645 head = btrfs_delayed_node_to_head(ref);
b939d1ab
JB
3646 if (!mutex_trylock(&head->mutex)) {
3647 atomic_inc(&ref->refs);
3648 spin_unlock(&delayed_refs->lock);
3649
3650 /* Need to wait for the delayed ref to run */
3651 mutex_lock(&head->mutex);
3652 mutex_unlock(&head->mutex);
3653 btrfs_put_delayed_ref(ref);
3654
e18fca73 3655 spin_lock(&delayed_refs->lock);
b939d1ab
JB
3656 continue;
3657 }
3658
78a6184a 3659 btrfs_free_delayed_extent_op(head->extent_op);
acce952b 3660 delayed_refs->num_heads--;
3661 if (list_empty(&head->cluster))
3662 delayed_refs->num_heads_ready--;
3663 list_del_init(&head->cluster);
acce952b 3664 }
eb12db69 3665
b939d1ab
JB
3666 ref->in_tree = 0;
3667 rb_erase(&ref->rb_node, &delayed_refs->root);
3668 delayed_refs->num_entries--;
eb12db69
JB
3669 if (head)
3670 mutex_unlock(&head->mutex);
acce952b 3671 spin_unlock(&delayed_refs->lock);
3672 btrfs_put_delayed_ref(ref);
3673
3674 cond_resched();
3675 spin_lock(&delayed_refs->lock);
3676 }
3677
3678 spin_unlock(&delayed_refs->lock);
3679
3680 return ret;
3681}
3682
aec8030a 3683static void btrfs_evict_pending_snapshots(struct btrfs_transaction *t)
acce952b 3684{
3685 struct btrfs_pending_snapshot *snapshot;
3686 struct list_head splice;
3687
3688 INIT_LIST_HEAD(&splice);
3689
3690 list_splice_init(&t->pending_snapshots, &splice);
3691
3692 while (!list_empty(&splice)) {
3693 snapshot = list_entry(splice.next,
3694 struct btrfs_pending_snapshot,
3695 list);
aec8030a 3696 snapshot->error = -ECANCELED;
acce952b 3697 list_del_init(&snapshot->list);
acce952b 3698 }
acce952b 3699}
3700
143bede5 3701static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
acce952b 3702{
3703 struct btrfs_inode *btrfs_inode;
3704 struct list_head splice;
3705
3706 INIT_LIST_HEAD(&splice);
3707
acce952b 3708 spin_lock(&root->fs_info->delalloc_lock);
5be76758 3709 list_splice_init(&root->fs_info->delalloc_inodes, &splice);
acce952b 3710
3711 while (!list_empty(&splice)) {
3712 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3713 delalloc_inodes);
3714
3715 list_del_init(&btrfs_inode->delalloc_inodes);
df0af1a5
MX
3716 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
3717 &btrfs_inode->runtime_flags);
acce952b 3718
3719 btrfs_invalidate_inodes(btrfs_inode->root);
3720 }
3721
3722 spin_unlock(&root->fs_info->delalloc_lock);
acce952b 3723}
3724
3725static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3726 struct extent_io_tree *dirty_pages,
3727 int mark)
3728{
3729 int ret;
3730 struct page *page;
3731 struct inode *btree_inode = root->fs_info->btree_inode;
3732 struct extent_buffer *eb;
3733 u64 start = 0;
3734 u64 end;
3735 u64 offset;
3736 unsigned long index;
3737
3738 while (1) {
3739 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
e6138876 3740 mark, NULL);
acce952b 3741 if (ret)
3742 break;
3743
3744 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
3745 while (start <= end) {
3746 index = start >> PAGE_CACHE_SHIFT;
3747 start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
3748 page = find_get_page(btree_inode->i_mapping, index);
3749 if (!page)
3750 continue;
3751 offset = page_offset(page);
3752
3753 spin_lock(&dirty_pages->buffer_lock);
3754 eb = radix_tree_lookup(
3755 &(&BTRFS_I(page->mapping->host)->io_tree)->buffer,
3756 offset >> PAGE_CACHE_SHIFT);
3757 spin_unlock(&dirty_pages->buffer_lock);
ee670f0a 3758 if (eb)
acce952b 3759 ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY,
3760 &eb->bflags);
acce952b 3761 if (PageWriteback(page))
3762 end_page_writeback(page);
3763
3764 lock_page(page);
3765 if (PageDirty(page)) {
3766 clear_page_dirty_for_io(page);
3767 spin_lock_irq(&page->mapping->tree_lock);
3768 radix_tree_tag_clear(&page->mapping->page_tree,
3769 page_index(page),
3770 PAGECACHE_TAG_DIRTY);
3771 spin_unlock_irq(&page->mapping->tree_lock);
3772 }
3773
acce952b 3774 unlock_page(page);
ee670f0a 3775 page_cache_release(page);
acce952b 3776 }
3777 }
3778
3779 return ret;
3780}
3781
3782static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
3783 struct extent_io_tree *pinned_extents)
3784{
3785 struct extent_io_tree *unpin;
3786 u64 start;
3787 u64 end;
3788 int ret;
ed0eaa14 3789 bool loop = true;
acce952b 3790
3791 unpin = pinned_extents;
ed0eaa14 3792again:
acce952b 3793 while (1) {
3794 ret = find_first_extent_bit(unpin, 0, &start, &end,
e6138876 3795 EXTENT_DIRTY, NULL);
acce952b 3796 if (ret)
3797 break;
3798
3799 /* opt_discard */
5378e607
LD
3800 if (btrfs_test_opt(root, DISCARD))
3801 ret = btrfs_error_discard_extent(root, start,
3802 end + 1 - start,
3803 NULL);
acce952b 3804
3805 clear_extent_dirty(unpin, start, end, GFP_NOFS);
3806 btrfs_error_unpin_extent_range(root, start, end);
3807 cond_resched();
3808 }
3809
ed0eaa14
LB
3810 if (loop) {
3811 if (unpin == &root->fs_info->freed_extents[0])
3812 unpin = &root->fs_info->freed_extents[1];
3813 else
3814 unpin = &root->fs_info->freed_extents[0];
3815 loop = false;
3816 goto again;
3817 }
3818
acce952b 3819 return 0;
3820}
3821
49b25e05
JM
3822void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
3823 struct btrfs_root *root)
3824{
3825 btrfs_destroy_delayed_refs(cur_trans, root);
3826 btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
3827 cur_trans->dirty_pages.dirty_bytes);
3828
3829 /* FIXME: cleanup wait for commit */
3830 cur_trans->in_commit = 1;
3831 cur_trans->blocked = 1;
d7096fc3 3832 wake_up(&root->fs_info->transaction_blocked_wait);
49b25e05 3833
aec8030a
MX
3834 btrfs_evict_pending_snapshots(cur_trans);
3835
49b25e05 3836 cur_trans->blocked = 0;
d7096fc3 3837 wake_up(&root->fs_info->transaction_wait);
49b25e05
JM
3838
3839 cur_trans->commit_done = 1;
d7096fc3 3840 wake_up(&cur_trans->commit_wait);
49b25e05 3841
67cde344
MX
3842 btrfs_destroy_delayed_inodes(root);
3843 btrfs_assert_delayed_root_empty(root);
49b25e05 3844
49b25e05
JM
3845 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
3846 EXTENT_DIRTY);
6e841e32
LB
3847 btrfs_destroy_pinned_extent(root,
3848 root->fs_info->pinned_extents);
49b25e05
JM
3849
3850 /*
3851 memset(cur_trans, 0, sizeof(*cur_trans));
3852 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
3853 */
3854}
3855
3856int btrfs_cleanup_transaction(struct btrfs_root *root)
acce952b 3857{
3858 struct btrfs_transaction *t;
3859 LIST_HEAD(list);
3860
acce952b 3861 mutex_lock(&root->fs_info->transaction_kthread_mutex);
3862
a4abeea4 3863 spin_lock(&root->fs_info->trans_lock);
acce952b 3864 list_splice_init(&root->fs_info->trans_list, &list);
a4abeea4
JB
3865 root->fs_info->trans_no_join = 1;
3866 spin_unlock(&root->fs_info->trans_lock);
3867
acce952b 3868 while (!list_empty(&list)) {
3869 t = list_entry(list.next, struct btrfs_transaction, list);
acce952b 3870
569e0f35 3871 btrfs_destroy_ordered_operations(t, root);
acce952b 3872
3873 btrfs_destroy_ordered_extents(root);
3874
3875 btrfs_destroy_delayed_refs(t, root);
3876
3877 btrfs_block_rsv_release(root,
3878 &root->fs_info->trans_block_rsv,
3879 t->dirty_pages.dirty_bytes);
3880
3881 /* FIXME: cleanup wait for commit */
3882 t->in_commit = 1;
3883 t->blocked = 1;
66657b31 3884 smp_mb();
acce952b 3885 if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
3886 wake_up(&root->fs_info->transaction_blocked_wait);
3887
aec8030a
MX
3888 btrfs_evict_pending_snapshots(t);
3889
acce952b 3890 t->blocked = 0;
66657b31 3891 smp_mb();
acce952b 3892 if (waitqueue_active(&root->fs_info->transaction_wait))
3893 wake_up(&root->fs_info->transaction_wait);
acce952b 3894
acce952b 3895 t->commit_done = 1;
66657b31 3896 smp_mb();
acce952b 3897 if (waitqueue_active(&t->commit_wait))
3898 wake_up(&t->commit_wait);
acce952b 3899
67cde344
MX
3900 btrfs_destroy_delayed_inodes(root);
3901 btrfs_assert_delayed_root_empty(root);
3902
acce952b 3903 btrfs_destroy_delalloc_inodes(root);
3904
a4abeea4 3905 spin_lock(&root->fs_info->trans_lock);
acce952b 3906 root->fs_info->running_transaction = NULL;
a4abeea4 3907 spin_unlock(&root->fs_info->trans_lock);
acce952b 3908
3909 btrfs_destroy_marked_extents(root, &t->dirty_pages,
3910 EXTENT_DIRTY);
3911
3912 btrfs_destroy_pinned_extent(root,
3913 root->fs_info->pinned_extents);
3914
13c5a93e 3915 atomic_set(&t->use_count, 0);
acce952b 3916 list_del_init(&t->list);
3917 memset(t, 0, sizeof(*t));
3918 kmem_cache_free(btrfs_transaction_cachep, t);
3919 }
3920
a4abeea4
JB
3921 spin_lock(&root->fs_info->trans_lock);
3922 root->fs_info->trans_no_join = 0;
3923 spin_unlock(&root->fs_info->trans_lock);
acce952b 3924 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
acce952b 3925
3926 return 0;
3927}
3928
d1310b2e 3929static struct extent_io_ops btree_extent_io_ops = {
ce9adaa5 3930 .readpage_end_io_hook = btree_readpage_end_io_hook,
4bb31e92 3931 .readpage_io_failed_hook = btree_io_failed_hook,
0b86a832 3932 .submit_bio_hook = btree_submit_bio_hook,
239b14b3
CM
3933 /* note we're sharing with inode.c for the merge bio hook */
3934 .merge_bio_hook = btrfs_merge_bio_hook,
0da5468f 3935};