btrfs: add varargs to btrfs_error
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / btrfs / disk-io.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
e20d96d6 19#include <linux/fs.h>
d98237b3 20#include <linux/blkdev.h>
87cbda5c 21#include <linux/scatterlist.h>
22b0ebda 22#include <linux/swap.h>
0f7d52f4 23#include <linux/radix-tree.h>
35b7e476 24#include <linux/writeback.h>
d397712b 25#include <linux/buffer_head.h>
ce9adaa5 26#include <linux/workqueue.h>
a74a4b97 27#include <linux/kthread.h>
4b4e25f2 28#include <linux/freezer.h>
163e783e 29#include <linux/crc32c.h>
5a0e3ad6 30#include <linux/slab.h>
784b4e29 31#include <linux/migrate.h>
7a36ddec 32#include <linux/ratelimit.h>
7e75bf3f 33#include <asm/unaligned.h>
4b4e25f2 34#include "compat.h"
eb60ceac
CM
35#include "ctree.h"
36#include "disk-io.h"
e089f05c 37#include "transaction.h"
0f7d52f4 38#include "btrfs_inode.h"
0b86a832 39#include "volumes.h"
db94535d 40#include "print-tree.h"
8b712842 41#include "async-thread.h"
925baedd 42#include "locking.h"
e02119d5 43#include "tree-log.h"
fa9c0d79 44#include "free-space-cache.h"
581bb050 45#include "inode-map.h"
21adbd5c 46#include "check-integrity.h"
eb60ceac 47
d1310b2e 48static struct extent_io_ops btree_extent_io_ops;
8b712842 49static void end_workqueue_fn(struct btrfs_work *work);
4df27c4d 50static void free_fs_root(struct btrfs_root *root);
acce952b 51static void btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
52 int read_only);
143bede5
JM
53static void btrfs_destroy_ordered_operations(struct btrfs_root *root);
54static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
acce952b 55static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
56 struct btrfs_root *root);
143bede5
JM
57static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t);
58static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
acce952b 59static int btrfs_destroy_marked_extents(struct btrfs_root *root,
60 struct extent_io_tree *dirty_pages,
61 int mark);
62static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
63 struct extent_io_tree *pinned_extents);
64static int btrfs_cleanup_transaction(struct btrfs_root *root);
ce9adaa5 65
d352ac68
CM
66/*
67 * end_io_wq structs are used to do processing in task context when an IO is
68 * complete. This is used during reads to verify checksums, and it is used
69 * by writes to insert metadata for new file extents after IO is complete.
70 */
ce9adaa5
CM
71struct end_io_wq {
72 struct bio *bio;
73 bio_end_io_t *end_io;
74 void *private;
75 struct btrfs_fs_info *info;
76 int error;
22c59948 77 int metadata;
ce9adaa5 78 struct list_head list;
8b712842 79 struct btrfs_work work;
ce9adaa5 80};
0da5468f 81
d352ac68
CM
82/*
83 * async submit bios are used to offload expensive checksumming
84 * onto the worker threads. They checksum file and metadata bios
85 * just before they are sent down the IO stack.
86 */
44b8bd7e
CM
87struct async_submit_bio {
88 struct inode *inode;
89 struct bio *bio;
90 struct list_head list;
4a69a410
CM
91 extent_submit_bio_hook_t *submit_bio_start;
92 extent_submit_bio_hook_t *submit_bio_done;
44b8bd7e
CM
93 int rw;
94 int mirror_num;
c8b97818 95 unsigned long bio_flags;
eaf25d93
CM
96 /*
97 * bio_offset is optional, can be used if the pages in the bio
98 * can't tell us where in the file the bio should go
99 */
100 u64 bio_offset;
8b712842 101 struct btrfs_work work;
44b8bd7e
CM
102};
103
85d4e461
CM
104/*
105 * Lockdep class keys for extent_buffer->lock's in this root. For a given
106 * eb, the lockdep key is determined by the btrfs_root it belongs to and
107 * the level the eb occupies in the tree.
108 *
109 * Different roots are used for different purposes and may nest inside each
110 * other and they require separate keysets. As lockdep keys should be
111 * static, assign keysets according to the purpose of the root as indicated
112 * by btrfs_root->objectid. This ensures that all special purpose roots
113 * have separate keysets.
4008c04a 114 *
85d4e461
CM
115 * Lock-nesting across peer nodes is always done with the immediate parent
116 * node locked thus preventing deadlock. As lockdep doesn't know this, use
117 * subclass to avoid triggering lockdep warning in such cases.
4008c04a 118 *
85d4e461
CM
119 * The key is set by the readpage_end_io_hook after the buffer has passed
120 * csum validation but before the pages are unlocked. It is also set by
121 * btrfs_init_new_buffer on freshly allocated blocks.
4008c04a 122 *
85d4e461
CM
123 * We also add a check to make sure the highest level of the tree is the
124 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
125 * needs update as well.
4008c04a
CM
126 */
127#ifdef CONFIG_DEBUG_LOCK_ALLOC
128# if BTRFS_MAX_LEVEL != 8
129# error
130# endif
85d4e461
CM
131
132static struct btrfs_lockdep_keyset {
133 u64 id; /* root objectid */
134 const char *name_stem; /* lock name stem */
135 char names[BTRFS_MAX_LEVEL + 1][20];
136 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
137} btrfs_lockdep_keysets[] = {
138 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
139 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
140 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
141 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
142 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
143 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
144 { .id = BTRFS_ORPHAN_OBJECTID, .name_stem = "orphan" },
145 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
146 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
147 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
148 { .id = 0, .name_stem = "tree" },
4008c04a 149};
85d4e461
CM
150
151void __init btrfs_init_lockdep(void)
152{
153 int i, j;
154
155 /* initialize lockdep class names */
156 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
157 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
158
159 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
160 snprintf(ks->names[j], sizeof(ks->names[j]),
161 "btrfs-%s-%02d", ks->name_stem, j);
162 }
163}
164
165void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
166 int level)
167{
168 struct btrfs_lockdep_keyset *ks;
169
170 BUG_ON(level >= ARRAY_SIZE(ks->keys));
171
172 /* find the matching keyset, id 0 is the default entry */
173 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
174 if (ks->id == objectid)
175 break;
176
177 lockdep_set_class_and_name(&eb->lock,
178 &ks->keys[level], ks->names[level]);
179}
180
4008c04a
CM
181#endif
182
d352ac68
CM
183/*
184 * extents on the btree inode are pretty simple, there's one extent
185 * that covers the entire device
186 */
b2950863 187static struct extent_map *btree_get_extent(struct inode *inode,
306e16ce 188 struct page *page, size_t pg_offset, u64 start, u64 len,
b2950863 189 int create)
7eccb903 190{
5f39d397
CM
191 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
192 struct extent_map *em;
193 int ret;
194
890871be 195 read_lock(&em_tree->lock);
d1310b2e 196 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
197 if (em) {
198 em->bdev =
199 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
890871be 200 read_unlock(&em_tree->lock);
5f39d397 201 goto out;
a061fc8d 202 }
890871be 203 read_unlock(&em_tree->lock);
7b13b7b1 204
172ddd60 205 em = alloc_extent_map();
5f39d397
CM
206 if (!em) {
207 em = ERR_PTR(-ENOMEM);
208 goto out;
209 }
210 em->start = 0;
0afbaf8c 211 em->len = (u64)-1;
c8b97818 212 em->block_len = (u64)-1;
5f39d397 213 em->block_start = 0;
a061fc8d 214 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
d1310b2e 215
890871be 216 write_lock(&em_tree->lock);
5f39d397
CM
217 ret = add_extent_mapping(em_tree, em);
218 if (ret == -EEXIST) {
0afbaf8c
CM
219 u64 failed_start = em->start;
220 u64 failed_len = em->len;
221
5f39d397 222 free_extent_map(em);
7b13b7b1 223 em = lookup_extent_mapping(em_tree, start, len);
0afbaf8c 224 if (em) {
7b13b7b1 225 ret = 0;
0afbaf8c
CM
226 } else {
227 em = lookup_extent_mapping(em_tree, failed_start,
228 failed_len);
7b13b7b1 229 ret = -EIO;
0afbaf8c 230 }
5f39d397 231 } else if (ret) {
7b13b7b1
CM
232 free_extent_map(em);
233 em = NULL;
5f39d397 234 }
890871be 235 write_unlock(&em_tree->lock);
7b13b7b1
CM
236
237 if (ret)
238 em = ERR_PTR(ret);
5f39d397
CM
239out:
240 return em;
7eccb903
CM
241}
242
19c00ddc
CM
243u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
244{
163e783e 245 return crc32c(seed, data, len);
19c00ddc
CM
246}
247
248void btrfs_csum_final(u32 crc, char *result)
249{
7e75bf3f 250 put_unaligned_le32(~crc, result);
19c00ddc
CM
251}
252
d352ac68
CM
253/*
254 * compute the csum for a btree block, and either verify it or write it
255 * into the csum field of the block.
256 */
19c00ddc
CM
257static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
258 int verify)
259{
6c41761f 260 u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
607d432d 261 char *result = NULL;
19c00ddc
CM
262 unsigned long len;
263 unsigned long cur_len;
264 unsigned long offset = BTRFS_CSUM_SIZE;
19c00ddc
CM
265 char *kaddr;
266 unsigned long map_start;
267 unsigned long map_len;
268 int err;
269 u32 crc = ~(u32)0;
607d432d 270 unsigned long inline_result;
19c00ddc
CM
271
272 len = buf->len - offset;
d397712b 273 while (len > 0) {
19c00ddc 274 err = map_private_extent_buffer(buf, offset, 32,
a6591715 275 &kaddr, &map_start, &map_len);
d397712b 276 if (err)
19c00ddc 277 return 1;
19c00ddc
CM
278 cur_len = min(len, map_len - (offset - map_start));
279 crc = btrfs_csum_data(root, kaddr + offset - map_start,
280 crc, cur_len);
281 len -= cur_len;
282 offset += cur_len;
19c00ddc 283 }
607d432d
JB
284 if (csum_size > sizeof(inline_result)) {
285 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
286 if (!result)
287 return 1;
288 } else {
289 result = (char *)&inline_result;
290 }
291
19c00ddc
CM
292 btrfs_csum_final(crc, result);
293
294 if (verify) {
607d432d 295 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
e4204ded
CM
296 u32 val;
297 u32 found = 0;
607d432d 298 memcpy(&found, result, csum_size);
e4204ded 299
607d432d 300 read_extent_buffer(buf, &val, 0, csum_size);
7a36ddec 301 printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
193f284d
CM
302 "failed on %llu wanted %X found %X "
303 "level %d\n",
304 root->fs_info->sb->s_id,
305 (unsigned long long)buf->start, val, found,
306 btrfs_header_level(buf));
607d432d
JB
307 if (result != (char *)&inline_result)
308 kfree(result);
19c00ddc
CM
309 return 1;
310 }
311 } else {
607d432d 312 write_extent_buffer(buf, result, 0, csum_size);
19c00ddc 313 }
607d432d
JB
314 if (result != (char *)&inline_result)
315 kfree(result);
19c00ddc
CM
316 return 0;
317}
318
d352ac68
CM
319/*
320 * we can't consider a given block up to date unless the transid of the
321 * block matches the transid in the parent node's pointer. This is how we
322 * detect blocks that either didn't get written at all or got written
323 * in the wrong place.
324 */
1259ab75
CM
325static int verify_parent_transid(struct extent_io_tree *io_tree,
326 struct extent_buffer *eb, u64 parent_transid)
327{
2ac55d41 328 struct extent_state *cached_state = NULL;
1259ab75
CM
329 int ret;
330
331 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
332 return 0;
333
2ac55d41 334 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
d0082371 335 0, &cached_state);
2ac55d41 336 if (extent_buffer_uptodate(io_tree, eb, cached_state) &&
1259ab75
CM
337 btrfs_header_generation(eb) == parent_transid) {
338 ret = 0;
339 goto out;
340 }
7a36ddec 341 printk_ratelimited("parent transid verify failed on %llu wanted %llu "
193f284d
CM
342 "found %llu\n",
343 (unsigned long long)eb->start,
344 (unsigned long long)parent_transid,
345 (unsigned long long)btrfs_header_generation(eb));
1259ab75 346 ret = 1;
2ac55d41 347 clear_extent_buffer_uptodate(io_tree, eb, &cached_state);
33958dc6 348out:
2ac55d41
JB
349 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
350 &cached_state, GFP_NOFS);
1259ab75 351 return ret;
1259ab75
CM
352}
353
d352ac68
CM
354/*
355 * helper to read a given tree block, doing retries as required when
356 * the checksums don't match and we have alternate mirrors to try.
357 */
f188591e
CM
358static int btree_read_extent_buffer_pages(struct btrfs_root *root,
359 struct extent_buffer *eb,
ca7a79ad 360 u64 start, u64 parent_transid)
f188591e
CM
361{
362 struct extent_io_tree *io_tree;
363 int ret;
364 int num_copies = 0;
365 int mirror_num = 0;
366
a826d6dc 367 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
f188591e
CM
368 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
369 while (1) {
bb82ab88
AJ
370 ret = read_extent_buffer_pages(io_tree, eb, start,
371 WAIT_COMPLETE,
f188591e 372 btree_get_extent, mirror_num);
1259ab75
CM
373 if (!ret &&
374 !verify_parent_transid(io_tree, eb, parent_transid))
f188591e 375 return ret;
d397712b 376
a826d6dc
JB
377 /*
378 * This buffer's crc is fine, but its contents are corrupted, so
379 * there is no reason to read the other copies, they won't be
380 * any less wrong.
381 */
382 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
383 return ret;
384
f188591e
CM
385 num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
386 eb->start, eb->len);
4235298e 387 if (num_copies == 1)
f188591e 388 return ret;
4235298e 389
f188591e 390 mirror_num++;
4235298e 391 if (mirror_num > num_copies)
f188591e 392 return ret;
f188591e 393 }
f188591e
CM
394 return -EIO;
395}
19c00ddc 396
d352ac68 397/*
d397712b
CM
398 * checksum a dirty tree block before IO. This has extra checks to make sure
399 * we only fill in the checksum field in the first page of a multi-page block
d352ac68 400 */
d397712b 401
b2950863 402static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
19c00ddc 403{
d1310b2e 404 struct extent_io_tree *tree;
35ebb934 405 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
19c00ddc 406 u64 found_start;
19c00ddc
CM
407 unsigned long len;
408 struct extent_buffer *eb;
f188591e
CM
409 int ret;
410
d1310b2e 411 tree = &BTRFS_I(page->mapping->host)->io_tree;
19c00ddc 412
eb14ab8e
CM
413 if (page->private == EXTENT_PAGE_PRIVATE) {
414 WARN_ON(1);
19c00ddc 415 goto out;
eb14ab8e
CM
416 }
417 if (!page->private) {
418 WARN_ON(1);
19c00ddc 419 goto out;
eb14ab8e 420 }
19c00ddc 421 len = page->private >> 2;
d397712b
CM
422 WARN_ON(len == 0);
423
ba144192 424 eb = alloc_extent_buffer(tree, start, len, page);
91ca338d
TI
425 if (eb == NULL) {
426 WARN_ON(1);
427 goto out;
428 }
ca7a79ad
CM
429 ret = btree_read_extent_buffer_pages(root, eb, start + PAGE_CACHE_SIZE,
430 btrfs_header_generation(eb));
f188591e 431 BUG_ON(ret);
784b4e29
CM
432 WARN_ON(!btrfs_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN));
433
19c00ddc
CM
434 found_start = btrfs_header_bytenr(eb);
435 if (found_start != start) {
55c69072
CM
436 WARN_ON(1);
437 goto err;
438 }
439 if (eb->first_page != page) {
55c69072
CM
440 WARN_ON(1);
441 goto err;
442 }
443 if (!PageUptodate(page)) {
55c69072
CM
444 WARN_ON(1);
445 goto err;
19c00ddc 446 }
19c00ddc 447 csum_tree_block(root, eb, 0);
55c69072 448err:
19c00ddc
CM
449 free_extent_buffer(eb);
450out:
451 return 0;
452}
453
2b82032c
YZ
454static int check_tree_block_fsid(struct btrfs_root *root,
455 struct extent_buffer *eb)
456{
457 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
458 u8 fsid[BTRFS_UUID_SIZE];
459 int ret = 1;
460
461 read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
462 BTRFS_FSID_SIZE);
463 while (fs_devices) {
464 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
465 ret = 0;
466 break;
467 }
468 fs_devices = fs_devices->seed;
469 }
470 return ret;
471}
472
a826d6dc
JB
473#define CORRUPT(reason, eb, root, slot) \
474 printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
475 "root=%llu, slot=%d\n", reason, \
476 (unsigned long long)btrfs_header_bytenr(eb), \
477 (unsigned long long)root->objectid, slot)
478
479static noinline int check_leaf(struct btrfs_root *root,
480 struct extent_buffer *leaf)
481{
482 struct btrfs_key key;
483 struct btrfs_key leaf_key;
484 u32 nritems = btrfs_header_nritems(leaf);
485 int slot;
486
487 if (nritems == 0)
488 return 0;
489
490 /* Check the 0 item */
491 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
492 BTRFS_LEAF_DATA_SIZE(root)) {
493 CORRUPT("invalid item offset size pair", leaf, root, 0);
494 return -EIO;
495 }
496
497 /*
498 * Check to make sure each items keys are in the correct order and their
499 * offsets make sense. We only have to loop through nritems-1 because
500 * we check the current slot against the next slot, which verifies the
501 * next slot's offset+size makes sense and that the current's slot
502 * offset is correct.
503 */
504 for (slot = 0; slot < nritems - 1; slot++) {
505 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
506 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
507
508 /* Make sure the keys are in the right order */
509 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
510 CORRUPT("bad key order", leaf, root, slot);
511 return -EIO;
512 }
513
514 /*
515 * Make sure the offset and ends are right, remember that the
516 * item data starts at the end of the leaf and grows towards the
517 * front.
518 */
519 if (btrfs_item_offset_nr(leaf, slot) !=
520 btrfs_item_end_nr(leaf, slot + 1)) {
521 CORRUPT("slot offset bad", leaf, root, slot);
522 return -EIO;
523 }
524
525 /*
526 * Check to make sure that we don't point outside of the leaf,
527 * just incase all the items are consistent to eachother, but
528 * all point outside of the leaf.
529 */
530 if (btrfs_item_end_nr(leaf, slot) >
531 BTRFS_LEAF_DATA_SIZE(root)) {
532 CORRUPT("slot end outside of leaf", leaf, root, slot);
533 return -EIO;
534 }
535 }
536
537 return 0;
538}
539
b2950863 540static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
ce9adaa5
CM
541 struct extent_state *state)
542{
543 struct extent_io_tree *tree;
544 u64 found_start;
545 int found_level;
546 unsigned long len;
547 struct extent_buffer *eb;
548 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
f188591e 549 int ret = 0;
ce9adaa5
CM
550
551 tree = &BTRFS_I(page->mapping->host)->io_tree;
552 if (page->private == EXTENT_PAGE_PRIVATE)
553 goto out;
554 if (!page->private)
555 goto out;
d397712b 556
ce9adaa5 557 len = page->private >> 2;
d397712b
CM
558 WARN_ON(len == 0);
559
ba144192 560 eb = alloc_extent_buffer(tree, start, len, page);
91ca338d
TI
561 if (eb == NULL) {
562 ret = -EIO;
563 goto out;
564 }
f188591e 565
ce9adaa5 566 found_start = btrfs_header_bytenr(eb);
23a07867 567 if (found_start != start) {
7a36ddec 568 printk_ratelimited(KERN_INFO "btrfs bad tree block start "
193f284d
CM
569 "%llu %llu\n",
570 (unsigned long long)found_start,
571 (unsigned long long)eb->start);
f188591e 572 ret = -EIO;
ce9adaa5
CM
573 goto err;
574 }
575 if (eb->first_page != page) {
d397712b
CM
576 printk(KERN_INFO "btrfs bad first page %lu %lu\n",
577 eb->first_page->index, page->index);
ce9adaa5 578 WARN_ON(1);
f188591e 579 ret = -EIO;
ce9adaa5
CM
580 goto err;
581 }
2b82032c 582 if (check_tree_block_fsid(root, eb)) {
7a36ddec 583 printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
193f284d 584 (unsigned long long)eb->start);
1259ab75
CM
585 ret = -EIO;
586 goto err;
587 }
ce9adaa5
CM
588 found_level = btrfs_header_level(eb);
589
85d4e461
CM
590 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
591 eb, found_level);
4008c04a 592
ce9adaa5 593 ret = csum_tree_block(root, eb, 1);
a826d6dc 594 if (ret) {
f188591e 595 ret = -EIO;
a826d6dc
JB
596 goto err;
597 }
598
599 /*
600 * If this is a leaf block and it is corrupt, set the corrupt bit so
601 * that we don't try and read the other copies of this block, just
602 * return -EIO.
603 */
604 if (found_level == 0 && check_leaf(root, eb)) {
605 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
606 ret = -EIO;
607 }
ce9adaa5
CM
608
609 end = min_t(u64, eb->len, PAGE_CACHE_SIZE);
610 end = eb->start + end - 1;
ce9adaa5 611err:
4bb31e92
AJ
612 if (test_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) {
613 clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags);
614 btree_readahead_hook(root, eb, eb->start, ret);
615 }
616
ce9adaa5
CM
617 free_extent_buffer(eb);
618out:
f188591e 619 return ret;
ce9adaa5
CM
620}
621
4bb31e92
AJ
622static int btree_io_failed_hook(struct bio *failed_bio,
623 struct page *page, u64 start, u64 end,
32240a91 624 int mirror_num, struct extent_state *state)
4bb31e92
AJ
625{
626 struct extent_io_tree *tree;
627 unsigned long len;
628 struct extent_buffer *eb;
629 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
630
631 tree = &BTRFS_I(page->mapping->host)->io_tree;
632 if (page->private == EXTENT_PAGE_PRIVATE)
633 goto out;
634 if (!page->private)
635 goto out;
636
637 len = page->private >> 2;
638 WARN_ON(len == 0);
639
640 eb = alloc_extent_buffer(tree, start, len, page);
641 if (eb == NULL)
642 goto out;
643
644 if (test_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) {
645 clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags);
646 btree_readahead_hook(root, eb, eb->start, -EIO);
647 }
c674e04e 648 free_extent_buffer(eb);
4bb31e92
AJ
649
650out:
651 return -EIO; /* we fixed nothing */
652}
653
ce9adaa5 654static void end_workqueue_bio(struct bio *bio, int err)
ce9adaa5
CM
655{
656 struct end_io_wq *end_io_wq = bio->bi_private;
657 struct btrfs_fs_info *fs_info;
ce9adaa5 658
ce9adaa5 659 fs_info = end_io_wq->info;
ce9adaa5 660 end_io_wq->error = err;
8b712842
CM
661 end_io_wq->work.func = end_workqueue_fn;
662 end_io_wq->work.flags = 0;
d20f7043 663
7b6d91da 664 if (bio->bi_rw & REQ_WRITE) {
0cb59c99 665 if (end_io_wq->metadata == 1)
cad321ad
CM
666 btrfs_queue_worker(&fs_info->endio_meta_write_workers,
667 &end_io_wq->work);
0cb59c99
JB
668 else if (end_io_wq->metadata == 2)
669 btrfs_queue_worker(&fs_info->endio_freespace_worker,
670 &end_io_wq->work);
cad321ad
CM
671 else
672 btrfs_queue_worker(&fs_info->endio_write_workers,
673 &end_io_wq->work);
d20f7043
CM
674 } else {
675 if (end_io_wq->metadata)
676 btrfs_queue_worker(&fs_info->endio_meta_workers,
677 &end_io_wq->work);
678 else
679 btrfs_queue_worker(&fs_info->endio_workers,
680 &end_io_wq->work);
681 }
ce9adaa5
CM
682}
683
0cb59c99
JB
684/*
685 * For the metadata arg you want
686 *
687 * 0 - if data
688 * 1 - if normal metadta
689 * 2 - if writing to the free space cache area
690 */
22c59948
CM
691int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
692 int metadata)
0b86a832 693{
ce9adaa5 694 struct end_io_wq *end_io_wq;
ce9adaa5
CM
695 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
696 if (!end_io_wq)
697 return -ENOMEM;
698
699 end_io_wq->private = bio->bi_private;
700 end_io_wq->end_io = bio->bi_end_io;
22c59948 701 end_io_wq->info = info;
ce9adaa5
CM
702 end_io_wq->error = 0;
703 end_io_wq->bio = bio;
22c59948 704 end_io_wq->metadata = metadata;
ce9adaa5
CM
705
706 bio->bi_private = end_io_wq;
707 bio->bi_end_io = end_workqueue_bio;
22c59948
CM
708 return 0;
709}
710
b64a2851 711unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
0986fe9e 712{
4854ddd0
CM
713 unsigned long limit = min_t(unsigned long,
714 info->workers.max_workers,
715 info->fs_devices->open_devices);
716 return 256 * limit;
717}
0986fe9e 718
4a69a410
CM
719static void run_one_async_start(struct btrfs_work *work)
720{
4a69a410
CM
721 struct async_submit_bio *async;
722
723 async = container_of(work, struct async_submit_bio, work);
4a69a410 724 async->submit_bio_start(async->inode, async->rw, async->bio,
eaf25d93
CM
725 async->mirror_num, async->bio_flags,
726 async->bio_offset);
4a69a410
CM
727}
728
729static void run_one_async_done(struct btrfs_work *work)
8b712842
CM
730{
731 struct btrfs_fs_info *fs_info;
732 struct async_submit_bio *async;
4854ddd0 733 int limit;
8b712842
CM
734
735 async = container_of(work, struct async_submit_bio, work);
736 fs_info = BTRFS_I(async->inode)->root->fs_info;
4854ddd0 737
b64a2851 738 limit = btrfs_async_submit_limit(fs_info);
4854ddd0
CM
739 limit = limit * 2 / 3;
740
8b712842 741 atomic_dec(&fs_info->nr_async_submits);
0986fe9e 742
b64a2851
CM
743 if (atomic_read(&fs_info->nr_async_submits) < limit &&
744 waitqueue_active(&fs_info->async_submit_wait))
4854ddd0
CM
745 wake_up(&fs_info->async_submit_wait);
746
4a69a410 747 async->submit_bio_done(async->inode, async->rw, async->bio,
eaf25d93
CM
748 async->mirror_num, async->bio_flags,
749 async->bio_offset);
4a69a410
CM
750}
751
752static void run_one_async_free(struct btrfs_work *work)
753{
754 struct async_submit_bio *async;
755
756 async = container_of(work, struct async_submit_bio, work);
8b712842
CM
757 kfree(async);
758}
759
44b8bd7e
CM
760int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
761 int rw, struct bio *bio, int mirror_num,
c8b97818 762 unsigned long bio_flags,
eaf25d93 763 u64 bio_offset,
4a69a410
CM
764 extent_submit_bio_hook_t *submit_bio_start,
765 extent_submit_bio_hook_t *submit_bio_done)
44b8bd7e
CM
766{
767 struct async_submit_bio *async;
768
769 async = kmalloc(sizeof(*async), GFP_NOFS);
770 if (!async)
771 return -ENOMEM;
772
773 async->inode = inode;
774 async->rw = rw;
775 async->bio = bio;
776 async->mirror_num = mirror_num;
4a69a410
CM
777 async->submit_bio_start = submit_bio_start;
778 async->submit_bio_done = submit_bio_done;
779
780 async->work.func = run_one_async_start;
781 async->work.ordered_func = run_one_async_done;
782 async->work.ordered_free = run_one_async_free;
783
8b712842 784 async->work.flags = 0;
c8b97818 785 async->bio_flags = bio_flags;
eaf25d93 786 async->bio_offset = bio_offset;
8c8bee1d 787
cb03c743 788 atomic_inc(&fs_info->nr_async_submits);
d313d7a3 789
7b6d91da 790 if (rw & REQ_SYNC)
d313d7a3
CM
791 btrfs_set_work_high_prio(&async->work);
792
8b712842 793 btrfs_queue_worker(&fs_info->workers, &async->work);
9473f16c 794
d397712b 795 while (atomic_read(&fs_info->async_submit_draining) &&
771ed689
CM
796 atomic_read(&fs_info->nr_async_submits)) {
797 wait_event(fs_info->async_submit_wait,
798 (atomic_read(&fs_info->nr_async_submits) == 0));
799 }
800
44b8bd7e
CM
801 return 0;
802}
803
ce3ed71a
CM
804static int btree_csum_one_bio(struct bio *bio)
805{
806 struct bio_vec *bvec = bio->bi_io_vec;
807 int bio_index = 0;
808 struct btrfs_root *root;
809
810 WARN_ON(bio->bi_vcnt <= 0);
d397712b 811 while (bio_index < bio->bi_vcnt) {
ce3ed71a
CM
812 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
813 csum_dirty_buffer(root, bvec->bv_page);
814 bio_index++;
815 bvec++;
816 }
817 return 0;
818}
819
4a69a410
CM
820static int __btree_submit_bio_start(struct inode *inode, int rw,
821 struct bio *bio, int mirror_num,
eaf25d93
CM
822 unsigned long bio_flags,
823 u64 bio_offset)
22c59948 824{
8b712842
CM
825 /*
826 * when we're called for a write, we're already in the async
5443be45 827 * submission context. Just jump into btrfs_map_bio
8b712842 828 */
4a69a410
CM
829 btree_csum_one_bio(bio);
830 return 0;
831}
22c59948 832
4a69a410 833static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
834 int mirror_num, unsigned long bio_flags,
835 u64 bio_offset)
4a69a410 836{
8b712842 837 /*
4a69a410
CM
838 * when we're called for a write, we're already in the async
839 * submission context. Just jump into btrfs_map_bio
8b712842 840 */
8b712842 841 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
0b86a832
CM
842}
843
44b8bd7e 844static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
845 int mirror_num, unsigned long bio_flags,
846 u64 bio_offset)
44b8bd7e 847{
cad321ad
CM
848 int ret;
849
355808c2
JM
850 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info, bio, 1);
851 if (ret)
852 return ret;
cad321ad 853
7b6d91da 854 if (!(rw & REQ_WRITE)) {
4a69a410
CM
855 /*
856 * called for a read, do the setup so that checksum validation
857 * can happen in the async kernel threads
858 */
4a69a410 859 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
6f3577bd 860 mirror_num, 0);
44b8bd7e 861 }
d313d7a3 862
cad321ad
CM
863 /*
864 * kthread helpers are used to submit writes so that checksumming
865 * can happen in parallel across all CPUs
866 */
44b8bd7e 867 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
c8b97818 868 inode, rw, bio, mirror_num, 0,
eaf25d93 869 bio_offset,
4a69a410
CM
870 __btree_submit_bio_start,
871 __btree_submit_bio_done);
44b8bd7e
CM
872}
873
3dd1462e 874#ifdef CONFIG_MIGRATION
784b4e29 875static int btree_migratepage(struct address_space *mapping,
a6bc32b8
MG
876 struct page *newpage, struct page *page,
877 enum migrate_mode mode)
784b4e29
CM
878{
879 /*
880 * we can't safely write a btree page from here,
881 * we haven't done the locking hook
882 */
883 if (PageDirty(page))
884 return -EAGAIN;
885 /*
886 * Buffers may be managed in a filesystem specific way.
887 * We must have no buffers or drop them.
888 */
889 if (page_has_private(page) &&
890 !try_to_release_page(page, GFP_KERNEL))
891 return -EAGAIN;
a6bc32b8 892 return migrate_page(mapping, newpage, page, mode);
784b4e29 893}
3dd1462e 894#endif
784b4e29 895
0da5468f
CM
896static int btree_writepage(struct page *page, struct writeback_control *wbc)
897{
d1310b2e 898 struct extent_io_tree *tree;
b9473439
CM
899 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
900 struct extent_buffer *eb;
901 int was_dirty;
902
d1310b2e 903 tree = &BTRFS_I(page->mapping->host)->io_tree;
b9473439
CM
904 if (!(current->flags & PF_MEMALLOC)) {
905 return extent_write_full_page(tree, page,
906 btree_get_extent, wbc);
907 }
5443be45 908
b9473439 909 redirty_page_for_writepage(wbc, page);
784b4e29 910 eb = btrfs_find_tree_block(root, page_offset(page), PAGE_CACHE_SIZE);
b9473439
CM
911 WARN_ON(!eb);
912
913 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
914 if (!was_dirty) {
915 spin_lock(&root->fs_info->delalloc_lock);
916 root->fs_info->dirty_metadata_bytes += PAGE_CACHE_SIZE;
917 spin_unlock(&root->fs_info->delalloc_lock);
5443be45 918 }
b9473439
CM
919 free_extent_buffer(eb);
920
921 unlock_page(page);
922 return 0;
5f39d397 923}
0da5468f
CM
924
925static int btree_writepages(struct address_space *mapping,
926 struct writeback_control *wbc)
927{
d1310b2e
CM
928 struct extent_io_tree *tree;
929 tree = &BTRFS_I(mapping->host)->io_tree;
d8d5f3e1 930 if (wbc->sync_mode == WB_SYNC_NONE) {
b9473439 931 struct btrfs_root *root = BTRFS_I(mapping->host)->root;
793955bc 932 u64 num_dirty;
24ab9cd8 933 unsigned long thresh = 32 * 1024 * 1024;
448d640b
CM
934
935 if (wbc->for_kupdate)
936 return 0;
937
b9473439
CM
938 /* this is a bit racy, but that's ok */
939 num_dirty = root->fs_info->dirty_metadata_bytes;
d397712b 940 if (num_dirty < thresh)
793955bc 941 return 0;
793955bc 942 }
0da5468f
CM
943 return extent_writepages(tree, mapping, btree_get_extent, wbc);
944}
945
b2950863 946static int btree_readpage(struct file *file, struct page *page)
5f39d397 947{
d1310b2e
CM
948 struct extent_io_tree *tree;
949 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 950 return extent_read_full_page(tree, page, btree_get_extent, 0);
5f39d397 951}
22b0ebda 952
70dec807 953static int btree_releasepage(struct page *page, gfp_t gfp_flags)
5f39d397 954{
d1310b2e
CM
955 struct extent_io_tree *tree;
956 struct extent_map_tree *map;
5f39d397 957 int ret;
d98237b3 958
98509cfc 959 if (PageWriteback(page) || PageDirty(page))
d397712b 960 return 0;
98509cfc 961
d1310b2e
CM
962 tree = &BTRFS_I(page->mapping->host)->io_tree;
963 map = &BTRFS_I(page->mapping->host)->extent_tree;
6af118ce 964
0c4e538b
DS
965 /*
966 * We need to mask out eg. __GFP_HIGHMEM and __GFP_DMA32 as we're doing
967 * slab allocation from alloc_extent_state down the callchain where
968 * it'd hit a BUG_ON as those flags are not allowed.
969 */
970 gfp_flags &= ~GFP_SLAB_BUG_MASK;
971
7b13b7b1 972 ret = try_release_extent_state(map, tree, page, gfp_flags);
d397712b 973 if (!ret)
6af118ce 974 return 0;
6af118ce
CM
975
976 ret = try_release_extent_buffer(tree, page);
5f39d397
CM
977 if (ret == 1) {
978 ClearPagePrivate(page);
979 set_page_private(page, 0);
980 page_cache_release(page);
981 }
6af118ce 982
d98237b3
CM
983 return ret;
984}
985
5f39d397 986static void btree_invalidatepage(struct page *page, unsigned long offset)
d98237b3 987{
d1310b2e
CM
988 struct extent_io_tree *tree;
989 tree = &BTRFS_I(page->mapping->host)->io_tree;
5f39d397
CM
990 extent_invalidatepage(tree, page, offset);
991 btree_releasepage(page, GFP_NOFS);
9ad6b7bc 992 if (PagePrivate(page)) {
d397712b
CM
993 printk(KERN_WARNING "btrfs warning page private not zero "
994 "on page %llu\n", (unsigned long long)page_offset(page));
9ad6b7bc
CM
995 ClearPagePrivate(page);
996 set_page_private(page, 0);
997 page_cache_release(page);
998 }
d98237b3
CM
999}
1000
7f09410b 1001static const struct address_space_operations btree_aops = {
d98237b3
CM
1002 .readpage = btree_readpage,
1003 .writepage = btree_writepage,
0da5468f 1004 .writepages = btree_writepages,
5f39d397
CM
1005 .releasepage = btree_releasepage,
1006 .invalidatepage = btree_invalidatepage,
5a92bc88 1007#ifdef CONFIG_MIGRATION
784b4e29 1008 .migratepage = btree_migratepage,
5a92bc88 1009#endif
d98237b3
CM
1010};
1011
ca7a79ad
CM
1012int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1013 u64 parent_transid)
090d1875 1014{
5f39d397
CM
1015 struct extent_buffer *buf = NULL;
1016 struct inode *btree_inode = root->fs_info->btree_inode;
de428b63 1017 int ret = 0;
090d1875 1018
db94535d 1019 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
5f39d397 1020 if (!buf)
090d1875 1021 return 0;
d1310b2e 1022 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
bb82ab88 1023 buf, 0, WAIT_NONE, btree_get_extent, 0);
5f39d397 1024 free_extent_buffer(buf);
de428b63 1025 return ret;
090d1875
CM
1026}
1027
ab0fff03
AJ
1028int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1029 int mirror_num, struct extent_buffer **eb)
1030{
1031 struct extent_buffer *buf = NULL;
1032 struct inode *btree_inode = root->fs_info->btree_inode;
1033 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1034 int ret;
1035
1036 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1037 if (!buf)
1038 return 0;
1039
1040 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1041
1042 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1043 btree_get_extent, mirror_num);
1044 if (ret) {
1045 free_extent_buffer(buf);
1046 return ret;
1047 }
1048
1049 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1050 free_extent_buffer(buf);
1051 return -EIO;
1052 } else if (extent_buffer_uptodate(io_tree, buf, NULL)) {
1053 *eb = buf;
1054 } else {
1055 free_extent_buffer(buf);
1056 }
1057 return 0;
1058}
1059
0999df54
CM
1060struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1061 u64 bytenr, u32 blocksize)
1062{
1063 struct inode *btree_inode = root->fs_info->btree_inode;
1064 struct extent_buffer *eb;
1065 eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
f09d1f60 1066 bytenr, blocksize);
0999df54
CM
1067 return eb;
1068}
1069
1070struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1071 u64 bytenr, u32 blocksize)
1072{
1073 struct inode *btree_inode = root->fs_info->btree_inode;
1074 struct extent_buffer *eb;
1075
1076 eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
ba144192 1077 bytenr, blocksize, NULL);
0999df54
CM
1078 return eb;
1079}
1080
1081
e02119d5
CM
1082int btrfs_write_tree_block(struct extent_buffer *buf)
1083{
8aa38c31
CH
1084 return filemap_fdatawrite_range(buf->first_page->mapping, buf->start,
1085 buf->start + buf->len - 1);
e02119d5
CM
1086}
1087
1088int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1089{
8aa38c31
CH
1090 return filemap_fdatawait_range(buf->first_page->mapping,
1091 buf->start, buf->start + buf->len - 1);
e02119d5
CM
1092}
1093
0999df54 1094struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
ca7a79ad 1095 u32 blocksize, u64 parent_transid)
0999df54
CM
1096{
1097 struct extent_buffer *buf = NULL;
0999df54
CM
1098 int ret;
1099
0999df54
CM
1100 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1101 if (!buf)
1102 return NULL;
0999df54 1103
ca7a79ad 1104 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
ce9adaa5 1105
d397712b 1106 if (ret == 0)
b4ce94de 1107 set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
5f39d397 1108 return buf;
ce9adaa5 1109
eb60ceac
CM
1110}
1111
d5c13f92
JM
1112void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1113 struct extent_buffer *buf)
ed2ff2cb 1114{
5f39d397 1115 struct inode *btree_inode = root->fs_info->btree_inode;
55c69072 1116 if (btrfs_header_generation(buf) ==
925baedd 1117 root->fs_info->running_transaction->transid) {
b9447ef8 1118 btrfs_assert_tree_locked(buf);
b4ce94de 1119
b9473439
CM
1120 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1121 spin_lock(&root->fs_info->delalloc_lock);
1122 if (root->fs_info->dirty_metadata_bytes >= buf->len)
1123 root->fs_info->dirty_metadata_bytes -= buf->len;
d5c13f92
JM
1124 else {
1125 spin_unlock(&root->fs_info->delalloc_lock);
1126 btrfs_panic(root->fs_info, -EOVERFLOW,
1127 "Can't clear %lu bytes from "
1128 " dirty_mdatadata_bytes (%lu)",
1129 buf->len,
1130 root->fs_info->dirty_metadata_bytes);
1131 }
b9473439
CM
1132 spin_unlock(&root->fs_info->delalloc_lock);
1133 }
b4ce94de 1134
b9473439
CM
1135 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1136 btrfs_set_lock_blocking(buf);
d1310b2e 1137 clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
55c69072 1138 buf);
925baedd 1139 }
5f39d397
CM
1140}
1141
143bede5
JM
1142static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1143 u32 stripesize, struct btrfs_root *root,
1144 struct btrfs_fs_info *fs_info,
1145 u64 objectid)
d97e63b6 1146{
cfaa7295 1147 root->node = NULL;
a28ec197 1148 root->commit_root = NULL;
db94535d
CM
1149 root->sectorsize = sectorsize;
1150 root->nodesize = nodesize;
1151 root->leafsize = leafsize;
87ee04eb 1152 root->stripesize = stripesize;
123abc88 1153 root->ref_cows = 0;
0b86a832 1154 root->track_dirty = 0;
c71bf099 1155 root->in_radix = 0;
d68fc57b
YZ
1156 root->orphan_item_inserted = 0;
1157 root->orphan_cleanup_state = 0;
0b86a832 1158
0f7d52f4
CM
1159 root->objectid = objectid;
1160 root->last_trans = 0;
13a8a7c8 1161 root->highest_objectid = 0;
58176a96 1162 root->name = NULL;
6bef4d31 1163 root->inode_tree = RB_ROOT;
16cdcec7 1164 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
f0486c68 1165 root->block_rsv = NULL;
d68fc57b 1166 root->orphan_block_rsv = NULL;
0b86a832
CM
1167
1168 INIT_LIST_HEAD(&root->dirty_list);
7b128766 1169 INIT_LIST_HEAD(&root->orphan_list);
5d4f98a2 1170 INIT_LIST_HEAD(&root->root_list);
d68fc57b 1171 spin_lock_init(&root->orphan_lock);
5d4f98a2 1172 spin_lock_init(&root->inode_lock);
f0486c68 1173 spin_lock_init(&root->accounting_lock);
a2135011 1174 mutex_init(&root->objectid_mutex);
e02119d5 1175 mutex_init(&root->log_mutex);
7237f183
YZ
1176 init_waitqueue_head(&root->log_writer_wait);
1177 init_waitqueue_head(&root->log_commit_wait[0]);
1178 init_waitqueue_head(&root->log_commit_wait[1]);
1179 atomic_set(&root->log_commit[0], 0);
1180 atomic_set(&root->log_commit[1], 0);
1181 atomic_set(&root->log_writers, 0);
1182 root->log_batch = 0;
1183 root->log_transid = 0;
257c62e1 1184 root->last_log_commit = 0;
d0c803c4 1185 extent_io_tree_init(&root->dirty_log_pages,
f993c883 1186 fs_info->btree_inode->i_mapping);
017e5369 1187
3768f368
CM
1188 memset(&root->root_key, 0, sizeof(root->root_key));
1189 memset(&root->root_item, 0, sizeof(root->root_item));
6702ed49 1190 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
58176a96 1191 memset(&root->root_kobj, 0, sizeof(root->root_kobj));
3f157a2f 1192 root->defrag_trans_start = fs_info->generation;
58176a96 1193 init_completion(&root->kobj_unregister);
6702ed49 1194 root->defrag_running = 0;
4d775673 1195 root->root_key.objectid = objectid;
0ee5dc67 1196 root->anon_dev = 0;
3768f368
CM
1197}
1198
200a5c17
JM
1199static int __must_check find_and_setup_root(struct btrfs_root *tree_root,
1200 struct btrfs_fs_info *fs_info,
1201 u64 objectid,
1202 struct btrfs_root *root)
3768f368
CM
1203{
1204 int ret;
db94535d 1205 u32 blocksize;
84234f3a 1206 u64 generation;
3768f368 1207
db94535d 1208 __setup_root(tree_root->nodesize, tree_root->leafsize,
87ee04eb
CM
1209 tree_root->sectorsize, tree_root->stripesize,
1210 root, fs_info, objectid);
3768f368
CM
1211 ret = btrfs_find_last_root(tree_root, objectid,
1212 &root->root_item, &root->root_key);
4df27c4d
YZ
1213 if (ret > 0)
1214 return -ENOENT;
200a5c17
JM
1215 else if (ret < 0)
1216 return ret;
3768f368 1217
84234f3a 1218 generation = btrfs_root_generation(&root->root_item);
db94535d 1219 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
af31f5e5 1220 root->commit_root = NULL;
db94535d 1221 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
84234f3a 1222 blocksize, generation);
68433b73
CM
1223 if (!root->node || !btrfs_buffer_uptodate(root->node, generation)) {
1224 free_extent_buffer(root->node);
af31f5e5 1225 root->node = NULL;
68433b73
CM
1226 return -EIO;
1227 }
4df27c4d 1228 root->commit_root = btrfs_root_node(root);
d97e63b6
CM
1229 return 0;
1230}
1231
f84a8bd6 1232static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
6f07e42e
AV
1233{
1234 struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1235 if (root)
1236 root->fs_info = fs_info;
1237 return root;
1238}
1239
7237f183
YZ
1240static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1241 struct btrfs_fs_info *fs_info)
0f7d52f4
CM
1242{
1243 struct btrfs_root *root;
1244 struct btrfs_root *tree_root = fs_info->tree_root;
7237f183 1245 struct extent_buffer *leaf;
e02119d5 1246
6f07e42e 1247 root = btrfs_alloc_root(fs_info);
e02119d5 1248 if (!root)
7237f183 1249 return ERR_PTR(-ENOMEM);
e02119d5
CM
1250
1251 __setup_root(tree_root->nodesize, tree_root->leafsize,
1252 tree_root->sectorsize, tree_root->stripesize,
1253 root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1254
1255 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1256 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1257 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
7237f183
YZ
1258 /*
1259 * log trees do not get reference counted because they go away
1260 * before a real commit is actually done. They do store pointers
1261 * to file data extents, and those reference counts still get
1262 * updated (along with back refs to the log tree).
1263 */
e02119d5
CM
1264 root->ref_cows = 0;
1265
5d4f98a2 1266 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
66d7e7f0
AJ
1267 BTRFS_TREE_LOG_OBJECTID, NULL,
1268 0, 0, 0, 0);
7237f183
YZ
1269 if (IS_ERR(leaf)) {
1270 kfree(root);
1271 return ERR_CAST(leaf);
1272 }
e02119d5 1273
5d4f98a2
YZ
1274 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1275 btrfs_set_header_bytenr(leaf, leaf->start);
1276 btrfs_set_header_generation(leaf, trans->transid);
1277 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1278 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
7237f183 1279 root->node = leaf;
e02119d5
CM
1280
1281 write_extent_buffer(root->node, root->fs_info->fsid,
1282 (unsigned long)btrfs_header_fsid(root->node),
1283 BTRFS_FSID_SIZE);
1284 btrfs_mark_buffer_dirty(root->node);
1285 btrfs_tree_unlock(root->node);
7237f183
YZ
1286 return root;
1287}
1288
1289int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1290 struct btrfs_fs_info *fs_info)
1291{
1292 struct btrfs_root *log_root;
1293
1294 log_root = alloc_log_tree(trans, fs_info);
1295 if (IS_ERR(log_root))
1296 return PTR_ERR(log_root);
1297 WARN_ON(fs_info->log_root_tree);
1298 fs_info->log_root_tree = log_root;
1299 return 0;
1300}
1301
1302int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1303 struct btrfs_root *root)
1304{
1305 struct btrfs_root *log_root;
1306 struct btrfs_inode_item *inode_item;
1307
1308 log_root = alloc_log_tree(trans, root->fs_info);
1309 if (IS_ERR(log_root))
1310 return PTR_ERR(log_root);
1311
1312 log_root->last_trans = trans->transid;
1313 log_root->root_key.offset = root->root_key.objectid;
1314
1315 inode_item = &log_root->root_item.inode;
1316 inode_item->generation = cpu_to_le64(1);
1317 inode_item->size = cpu_to_le64(3);
1318 inode_item->nlink = cpu_to_le32(1);
1319 inode_item->nbytes = cpu_to_le64(root->leafsize);
1320 inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
1321
5d4f98a2 1322 btrfs_set_root_node(&log_root->root_item, log_root->node);
7237f183
YZ
1323
1324 WARN_ON(root->log_root);
1325 root->log_root = log_root;
1326 root->log_transid = 0;
257c62e1 1327 root->last_log_commit = 0;
e02119d5
CM
1328 return 0;
1329}
1330
1331struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
1332 struct btrfs_key *location)
1333{
1334 struct btrfs_root *root;
1335 struct btrfs_fs_info *fs_info = tree_root->fs_info;
0f7d52f4 1336 struct btrfs_path *path;
5f39d397 1337 struct extent_buffer *l;
84234f3a 1338 u64 generation;
db94535d 1339 u32 blocksize;
0f7d52f4
CM
1340 int ret = 0;
1341
6f07e42e 1342 root = btrfs_alloc_root(fs_info);
0cf6c620 1343 if (!root)
0f7d52f4 1344 return ERR_PTR(-ENOMEM);
0f7d52f4 1345 if (location->offset == (u64)-1) {
db94535d 1346 ret = find_and_setup_root(tree_root, fs_info,
0f7d52f4
CM
1347 location->objectid, root);
1348 if (ret) {
0f7d52f4
CM
1349 kfree(root);
1350 return ERR_PTR(ret);
1351 }
13a8a7c8 1352 goto out;
0f7d52f4
CM
1353 }
1354
db94535d 1355 __setup_root(tree_root->nodesize, tree_root->leafsize,
87ee04eb
CM
1356 tree_root->sectorsize, tree_root->stripesize,
1357 root, fs_info, location->objectid);
0f7d52f4
CM
1358
1359 path = btrfs_alloc_path();
db5b493a
TI
1360 if (!path) {
1361 kfree(root);
1362 return ERR_PTR(-ENOMEM);
1363 }
0f7d52f4 1364 ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
13a8a7c8
YZ
1365 if (ret == 0) {
1366 l = path->nodes[0];
1367 read_extent_buffer(l, &root->root_item,
1368 btrfs_item_ptr_offset(l, path->slots[0]),
1369 sizeof(root->root_item));
1370 memcpy(&root->root_key, location, sizeof(*location));
0f7d52f4 1371 }
0f7d52f4
CM
1372 btrfs_free_path(path);
1373 if (ret) {
5e540f77 1374 kfree(root);
13a8a7c8
YZ
1375 if (ret > 0)
1376 ret = -ENOENT;
0f7d52f4
CM
1377 return ERR_PTR(ret);
1378 }
13a8a7c8 1379
84234f3a 1380 generation = btrfs_root_generation(&root->root_item);
db94535d
CM
1381 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1382 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
84234f3a 1383 blocksize, generation);
5d4f98a2 1384 root->commit_root = btrfs_root_node(root);
0f7d52f4 1385 BUG_ON(!root->node);
13a8a7c8 1386out:
08fe4db1 1387 if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
e02119d5 1388 root->ref_cows = 1;
08fe4db1
LZ
1389 btrfs_check_and_init_root_item(&root->root_item);
1390 }
13a8a7c8 1391
5eda7b5e
CM
1392 return root;
1393}
1394
edbd8d4e
CM
1395struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1396 struct btrfs_key *location)
5eda7b5e
CM
1397{
1398 struct btrfs_root *root;
1399 int ret;
1400
edbd8d4e
CM
1401 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1402 return fs_info->tree_root;
1403 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1404 return fs_info->extent_root;
8f18cf13
CM
1405 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1406 return fs_info->chunk_root;
1407 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1408 return fs_info->dev_root;
0403e47e
YZ
1409 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1410 return fs_info->csum_root;
4df27c4d
YZ
1411again:
1412 spin_lock(&fs_info->fs_roots_radix_lock);
5eda7b5e
CM
1413 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1414 (unsigned long)location->objectid);
4df27c4d 1415 spin_unlock(&fs_info->fs_roots_radix_lock);
5eda7b5e
CM
1416 if (root)
1417 return root;
1418
e02119d5 1419 root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
5eda7b5e
CM
1420 if (IS_ERR(root))
1421 return root;
3394e160 1422
581bb050 1423 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
581bb050
LZ
1424 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1425 GFP_NOFS);
35a30d7c
DS
1426 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1427 ret = -ENOMEM;
581bb050 1428 goto fail;
35a30d7c 1429 }
581bb050
LZ
1430
1431 btrfs_init_free_ino_ctl(root);
1432 mutex_init(&root->fs_commit_mutex);
1433 spin_lock_init(&root->cache_lock);
1434 init_waitqueue_head(&root->cache_wait);
1435
0ee5dc67 1436 ret = get_anon_bdev(&root->anon_dev);
ac08aedf
CM
1437 if (ret)
1438 goto fail;
3394e160 1439
d68fc57b
YZ
1440 if (btrfs_root_refs(&root->root_item) == 0) {
1441 ret = -ENOENT;
1442 goto fail;
1443 }
1444
1445 ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
1446 if (ret < 0)
1447 goto fail;
1448 if (ret == 0)
1449 root->orphan_item_inserted = 1;
1450
4df27c4d
YZ
1451 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1452 if (ret)
1453 goto fail;
1454
1455 spin_lock(&fs_info->fs_roots_radix_lock);
2619ba1f
CM
1456 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1457 (unsigned long)root->root_key.objectid,
0f7d52f4 1458 root);
d68fc57b 1459 if (ret == 0)
4df27c4d 1460 root->in_radix = 1;
d68fc57b 1461
4df27c4d
YZ
1462 spin_unlock(&fs_info->fs_roots_radix_lock);
1463 radix_tree_preload_end();
0f7d52f4 1464 if (ret) {
4df27c4d
YZ
1465 if (ret == -EEXIST) {
1466 free_fs_root(root);
1467 goto again;
1468 }
1469 goto fail;
0f7d52f4 1470 }
4df27c4d
YZ
1471
1472 ret = btrfs_find_dead_roots(fs_info->tree_root,
1473 root->root_key.objectid);
1474 WARN_ON(ret);
edbd8d4e 1475 return root;
4df27c4d
YZ
1476fail:
1477 free_fs_root(root);
1478 return ERR_PTR(ret);
edbd8d4e
CM
1479}
1480
04160088
CM
1481static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1482{
1483 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1484 int ret = 0;
04160088
CM
1485 struct btrfs_device *device;
1486 struct backing_dev_info *bdi;
b7967db7 1487
1f78160c
XG
1488 rcu_read_lock();
1489 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
dfe25020
CM
1490 if (!device->bdev)
1491 continue;
04160088
CM
1492 bdi = blk_get_backing_dev_info(device->bdev);
1493 if (bdi && bdi_congested(bdi, bdi_bits)) {
1494 ret = 1;
1495 break;
1496 }
1497 }
1f78160c 1498 rcu_read_unlock();
04160088
CM
1499 return ret;
1500}
1501
ad081f14
JA
1502/*
1503 * If this fails, caller must call bdi_destroy() to get rid of the
1504 * bdi again.
1505 */
04160088
CM
1506static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1507{
ad081f14
JA
1508 int err;
1509
1510 bdi->capabilities = BDI_CAP_MAP_COPY;
e6d086d8 1511 err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
ad081f14
JA
1512 if (err)
1513 return err;
1514
4575c9cc 1515 bdi->ra_pages = default_backing_dev_info.ra_pages;
04160088
CM
1516 bdi->congested_fn = btrfs_congested_fn;
1517 bdi->congested_data = info;
1518 return 0;
1519}
1520
ce9adaa5
CM
1521static int bio_ready_for_csum(struct bio *bio)
1522{
1523 u64 length = 0;
1524 u64 buf_len = 0;
1525 u64 start = 0;
1526 struct page *page;
1527 struct extent_io_tree *io_tree = NULL;
ce9adaa5
CM
1528 struct bio_vec *bvec;
1529 int i;
1530 int ret;
1531
1532 bio_for_each_segment(bvec, bio, i) {
1533 page = bvec->bv_page;
1534 if (page->private == EXTENT_PAGE_PRIVATE) {
1535 length += bvec->bv_len;
1536 continue;
1537 }
1538 if (!page->private) {
1539 length += bvec->bv_len;
1540 continue;
1541 }
1542 length = bvec->bv_len;
1543 buf_len = page->private >> 2;
1544 start = page_offset(page) + bvec->bv_offset;
1545 io_tree = &BTRFS_I(page->mapping->host)->io_tree;
ce9adaa5
CM
1546 }
1547 /* are we fully contained in this bio? */
1548 if (buf_len <= length)
1549 return 1;
1550
1551 ret = extent_range_uptodate(io_tree, start + length,
1552 start + buf_len - 1);
ce9adaa5
CM
1553 return ret;
1554}
1555
8b712842
CM
1556/*
1557 * called by the kthread helper functions to finally call the bio end_io
1558 * functions. This is where read checksum verification actually happens
1559 */
1560static void end_workqueue_fn(struct btrfs_work *work)
ce9adaa5 1561{
ce9adaa5 1562 struct bio *bio;
8b712842
CM
1563 struct end_io_wq *end_io_wq;
1564 struct btrfs_fs_info *fs_info;
ce9adaa5 1565 int error;
ce9adaa5 1566
8b712842
CM
1567 end_io_wq = container_of(work, struct end_io_wq, work);
1568 bio = end_io_wq->bio;
1569 fs_info = end_io_wq->info;
ce9adaa5 1570
cad321ad 1571 /* metadata bio reads are special because the whole tree block must
8b712842
CM
1572 * be checksummed at once. This makes sure the entire block is in
1573 * ram and up to date before trying to verify things. For
1574 * blocksize <= pagesize, it is basically a noop
1575 */
7b6d91da 1576 if (!(bio->bi_rw & REQ_WRITE) && end_io_wq->metadata &&
cad321ad 1577 !bio_ready_for_csum(bio)) {
d20f7043 1578 btrfs_queue_worker(&fs_info->endio_meta_workers,
8b712842
CM
1579 &end_io_wq->work);
1580 return;
1581 }
1582 error = end_io_wq->error;
1583 bio->bi_private = end_io_wq->private;
1584 bio->bi_end_io = end_io_wq->end_io;
1585 kfree(end_io_wq);
8b712842 1586 bio_endio(bio, error);
44b8bd7e
CM
1587}
1588
a74a4b97
CM
1589static int cleaner_kthread(void *arg)
1590{
1591 struct btrfs_root *root = arg;
1592
1593 do {
a74a4b97 1594 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
76dda93c
YZ
1595
1596 if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
1597 mutex_trylock(&root->fs_info->cleaner_mutex)) {
24bbcf04 1598 btrfs_run_delayed_iputs(root);
76dda93c
YZ
1599 btrfs_clean_old_snapshots(root);
1600 mutex_unlock(&root->fs_info->cleaner_mutex);
4cb5300b 1601 btrfs_run_defrag_inodes(root->fs_info);
76dda93c 1602 }
a74a4b97 1603
a0acae0e 1604 if (!try_to_freeze()) {
a74a4b97 1605 set_current_state(TASK_INTERRUPTIBLE);
8929ecfa
YZ
1606 if (!kthread_should_stop())
1607 schedule();
a74a4b97
CM
1608 __set_current_state(TASK_RUNNING);
1609 }
1610 } while (!kthread_should_stop());
1611 return 0;
1612}
1613
1614static int transaction_kthread(void *arg)
1615{
1616 struct btrfs_root *root = arg;
1617 struct btrfs_trans_handle *trans;
1618 struct btrfs_transaction *cur;
8929ecfa 1619 u64 transid;
a74a4b97
CM
1620 unsigned long now;
1621 unsigned long delay;
1622 int ret;
1623
1624 do {
a74a4b97
CM
1625 delay = HZ * 30;
1626 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1627 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1628
a4abeea4 1629 spin_lock(&root->fs_info->trans_lock);
a74a4b97
CM
1630 cur = root->fs_info->running_transaction;
1631 if (!cur) {
a4abeea4 1632 spin_unlock(&root->fs_info->trans_lock);
a74a4b97
CM
1633 goto sleep;
1634 }
31153d81 1635
a74a4b97 1636 now = get_seconds();
8929ecfa
YZ
1637 if (!cur->blocked &&
1638 (now < cur->start_time || now - cur->start_time < 30)) {
a4abeea4 1639 spin_unlock(&root->fs_info->trans_lock);
a74a4b97
CM
1640 delay = HZ * 5;
1641 goto sleep;
1642 }
8929ecfa 1643 transid = cur->transid;
a4abeea4 1644 spin_unlock(&root->fs_info->trans_lock);
56bec294 1645
7a7eaa40 1646 trans = btrfs_join_transaction(root);
3612b495 1647 BUG_ON(IS_ERR(trans));
8929ecfa
YZ
1648 if (transid == trans->transid) {
1649 ret = btrfs_commit_transaction(trans, root);
1650 BUG_ON(ret);
1651 } else {
1652 btrfs_end_transaction(trans, root);
1653 }
a74a4b97
CM
1654sleep:
1655 wake_up_process(root->fs_info->cleaner_kthread);
1656 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1657
a0acae0e 1658 if (!try_to_freeze()) {
a74a4b97 1659 set_current_state(TASK_INTERRUPTIBLE);
8929ecfa
YZ
1660 if (!kthread_should_stop() &&
1661 !btrfs_transaction_blocked(root->fs_info))
1662 schedule_timeout(delay);
a74a4b97
CM
1663 __set_current_state(TASK_RUNNING);
1664 }
1665 } while (!kthread_should_stop());
1666 return 0;
1667}
1668
af31f5e5
CM
1669/*
1670 * this will find the highest generation in the array of
1671 * root backups. The index of the highest array is returned,
1672 * or -1 if we can't find anything.
1673 *
1674 * We check to make sure the array is valid by comparing the
1675 * generation of the latest root in the array with the generation
1676 * in the super block. If they don't match we pitch it.
1677 */
1678static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1679{
1680 u64 cur;
1681 int newest_index = -1;
1682 struct btrfs_root_backup *root_backup;
1683 int i;
1684
1685 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1686 root_backup = info->super_copy->super_roots + i;
1687 cur = btrfs_backup_tree_root_gen(root_backup);
1688 if (cur == newest_gen)
1689 newest_index = i;
1690 }
1691
1692 /* check to see if we actually wrapped around */
1693 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1694 root_backup = info->super_copy->super_roots;
1695 cur = btrfs_backup_tree_root_gen(root_backup);
1696 if (cur == newest_gen)
1697 newest_index = 0;
1698 }
1699 return newest_index;
1700}
1701
1702
1703/*
1704 * find the oldest backup so we know where to store new entries
1705 * in the backup array. This will set the backup_root_index
1706 * field in the fs_info struct
1707 */
1708static void find_oldest_super_backup(struct btrfs_fs_info *info,
1709 u64 newest_gen)
1710{
1711 int newest_index = -1;
1712
1713 newest_index = find_newest_super_backup(info, newest_gen);
1714 /* if there was garbage in there, just move along */
1715 if (newest_index == -1) {
1716 info->backup_root_index = 0;
1717 } else {
1718 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1719 }
1720}
1721
1722/*
1723 * copy all the root pointers into the super backup array.
1724 * this will bump the backup pointer by one when it is
1725 * done
1726 */
1727static void backup_super_roots(struct btrfs_fs_info *info)
1728{
1729 int next_backup;
1730 struct btrfs_root_backup *root_backup;
1731 int last_backup;
1732
1733 next_backup = info->backup_root_index;
1734 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1735 BTRFS_NUM_BACKUP_ROOTS;
1736
1737 /*
1738 * just overwrite the last backup if we're at the same generation
1739 * this happens only at umount
1740 */
1741 root_backup = info->super_for_commit->super_roots + last_backup;
1742 if (btrfs_backup_tree_root_gen(root_backup) ==
1743 btrfs_header_generation(info->tree_root->node))
1744 next_backup = last_backup;
1745
1746 root_backup = info->super_for_commit->super_roots + next_backup;
1747
1748 /*
1749 * make sure all of our padding and empty slots get zero filled
1750 * regardless of which ones we use today
1751 */
1752 memset(root_backup, 0, sizeof(*root_backup));
1753
1754 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1755
1756 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1757 btrfs_set_backup_tree_root_gen(root_backup,
1758 btrfs_header_generation(info->tree_root->node));
1759
1760 btrfs_set_backup_tree_root_level(root_backup,
1761 btrfs_header_level(info->tree_root->node));
1762
1763 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1764 btrfs_set_backup_chunk_root_gen(root_backup,
1765 btrfs_header_generation(info->chunk_root->node));
1766 btrfs_set_backup_chunk_root_level(root_backup,
1767 btrfs_header_level(info->chunk_root->node));
1768
1769 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1770 btrfs_set_backup_extent_root_gen(root_backup,
1771 btrfs_header_generation(info->extent_root->node));
1772 btrfs_set_backup_extent_root_level(root_backup,
1773 btrfs_header_level(info->extent_root->node));
1774
7c7e82a7
CM
1775 /*
1776 * we might commit during log recovery, which happens before we set
1777 * the fs_root. Make sure it is valid before we fill it in.
1778 */
1779 if (info->fs_root && info->fs_root->node) {
1780 btrfs_set_backup_fs_root(root_backup,
1781 info->fs_root->node->start);
1782 btrfs_set_backup_fs_root_gen(root_backup,
af31f5e5 1783 btrfs_header_generation(info->fs_root->node));
7c7e82a7 1784 btrfs_set_backup_fs_root_level(root_backup,
af31f5e5 1785 btrfs_header_level(info->fs_root->node));
7c7e82a7 1786 }
af31f5e5
CM
1787
1788 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1789 btrfs_set_backup_dev_root_gen(root_backup,
1790 btrfs_header_generation(info->dev_root->node));
1791 btrfs_set_backup_dev_root_level(root_backup,
1792 btrfs_header_level(info->dev_root->node));
1793
1794 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1795 btrfs_set_backup_csum_root_gen(root_backup,
1796 btrfs_header_generation(info->csum_root->node));
1797 btrfs_set_backup_csum_root_level(root_backup,
1798 btrfs_header_level(info->csum_root->node));
1799
1800 btrfs_set_backup_total_bytes(root_backup,
1801 btrfs_super_total_bytes(info->super_copy));
1802 btrfs_set_backup_bytes_used(root_backup,
1803 btrfs_super_bytes_used(info->super_copy));
1804 btrfs_set_backup_num_devices(root_backup,
1805 btrfs_super_num_devices(info->super_copy));
1806
1807 /*
1808 * if we don't copy this out to the super_copy, it won't get remembered
1809 * for the next commit
1810 */
1811 memcpy(&info->super_copy->super_roots,
1812 &info->super_for_commit->super_roots,
1813 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1814}
1815
1816/*
1817 * this copies info out of the root backup array and back into
1818 * the in-memory super block. It is meant to help iterate through
1819 * the array, so you send it the number of backups you've already
1820 * tried and the last backup index you used.
1821 *
1822 * this returns -1 when it has tried all the backups
1823 */
1824static noinline int next_root_backup(struct btrfs_fs_info *info,
1825 struct btrfs_super_block *super,
1826 int *num_backups_tried, int *backup_index)
1827{
1828 struct btrfs_root_backup *root_backup;
1829 int newest = *backup_index;
1830
1831 if (*num_backups_tried == 0) {
1832 u64 gen = btrfs_super_generation(super);
1833
1834 newest = find_newest_super_backup(info, gen);
1835 if (newest == -1)
1836 return -1;
1837
1838 *backup_index = newest;
1839 *num_backups_tried = 1;
1840 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1841 /* we've tried all the backups, all done */
1842 return -1;
1843 } else {
1844 /* jump to the next oldest backup */
1845 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1846 BTRFS_NUM_BACKUP_ROOTS;
1847 *backup_index = newest;
1848 *num_backups_tried += 1;
1849 }
1850 root_backup = super->super_roots + newest;
1851
1852 btrfs_set_super_generation(super,
1853 btrfs_backup_tree_root_gen(root_backup));
1854 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1855 btrfs_set_super_root_level(super,
1856 btrfs_backup_tree_root_level(root_backup));
1857 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1858
1859 /*
1860 * fixme: the total bytes and num_devices need to match or we should
1861 * need a fsck
1862 */
1863 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1864 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1865 return 0;
1866}
1867
1868/* helper to cleanup tree roots */
1869static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
1870{
1871 free_extent_buffer(info->tree_root->node);
1872 free_extent_buffer(info->tree_root->commit_root);
1873 free_extent_buffer(info->dev_root->node);
1874 free_extent_buffer(info->dev_root->commit_root);
1875 free_extent_buffer(info->extent_root->node);
1876 free_extent_buffer(info->extent_root->commit_root);
1877 free_extent_buffer(info->csum_root->node);
1878 free_extent_buffer(info->csum_root->commit_root);
1879
1880 info->tree_root->node = NULL;
1881 info->tree_root->commit_root = NULL;
1882 info->dev_root->node = NULL;
1883 info->dev_root->commit_root = NULL;
1884 info->extent_root->node = NULL;
1885 info->extent_root->commit_root = NULL;
1886 info->csum_root->node = NULL;
1887 info->csum_root->commit_root = NULL;
1888
1889 if (chunk_root) {
1890 free_extent_buffer(info->chunk_root->node);
1891 free_extent_buffer(info->chunk_root->commit_root);
1892 info->chunk_root->node = NULL;
1893 info->chunk_root->commit_root = NULL;
1894 }
1895}
1896
1897
ad2b2c80
AV
1898int open_ctree(struct super_block *sb,
1899 struct btrfs_fs_devices *fs_devices,
1900 char *options)
2e635a27 1901{
db94535d
CM
1902 u32 sectorsize;
1903 u32 nodesize;
1904 u32 leafsize;
1905 u32 blocksize;
87ee04eb 1906 u32 stripesize;
84234f3a 1907 u64 generation;
f2b636e8 1908 u64 features;
3de4586c 1909 struct btrfs_key location;
a061fc8d 1910 struct buffer_head *bh;
4d34b278 1911 struct btrfs_super_block *disk_super;
815745cf 1912 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
f84a8bd6 1913 struct btrfs_root *tree_root;
4d34b278
ID
1914 struct btrfs_root *extent_root;
1915 struct btrfs_root *csum_root;
1916 struct btrfs_root *chunk_root;
1917 struct btrfs_root *dev_root;
e02119d5 1918 struct btrfs_root *log_tree_root;
eb60ceac 1919 int ret;
e58ca020 1920 int err = -EINVAL;
af31f5e5
CM
1921 int num_backups_tried = 0;
1922 int backup_index = 0;
4543df7e 1923
f84a8bd6 1924 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
6f07e42e
AV
1925 extent_root = fs_info->extent_root = btrfs_alloc_root(fs_info);
1926 csum_root = fs_info->csum_root = btrfs_alloc_root(fs_info);
1927 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
1928 dev_root = fs_info->dev_root = btrfs_alloc_root(fs_info);
8790d502 1929
f84a8bd6
AV
1930 if (!tree_root || !extent_root || !csum_root ||
1931 !chunk_root || !dev_root) {
39279cc3
CM
1932 err = -ENOMEM;
1933 goto fail;
1934 }
76dda93c
YZ
1935
1936 ret = init_srcu_struct(&fs_info->subvol_srcu);
1937 if (ret) {
1938 err = ret;
1939 goto fail;
1940 }
1941
1942 ret = setup_bdi(fs_info, &fs_info->bdi);
1943 if (ret) {
1944 err = ret;
1945 goto fail_srcu;
1946 }
1947
1948 fs_info->btree_inode = new_inode(sb);
1949 if (!fs_info->btree_inode) {
1950 err = -ENOMEM;
1951 goto fail_bdi;
1952 }
1953
a6591715 1954 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
1561deda 1955
76dda93c 1956 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
8fd17795 1957 INIT_LIST_HEAD(&fs_info->trans_list);
facda1e7 1958 INIT_LIST_HEAD(&fs_info->dead_roots);
24bbcf04 1959 INIT_LIST_HEAD(&fs_info->delayed_iputs);
19c00ddc 1960 INIT_LIST_HEAD(&fs_info->hashers);
ea8c2819 1961 INIT_LIST_HEAD(&fs_info->delalloc_inodes);
5a3f23d5 1962 INIT_LIST_HEAD(&fs_info->ordered_operations);
11833d66 1963 INIT_LIST_HEAD(&fs_info->caching_block_groups);
1832a6d5 1964 spin_lock_init(&fs_info->delalloc_lock);
a4abeea4 1965 spin_lock_init(&fs_info->trans_lock);
31153d81 1966 spin_lock_init(&fs_info->ref_cache_lock);
76dda93c 1967 spin_lock_init(&fs_info->fs_roots_radix_lock);
24bbcf04 1968 spin_lock_init(&fs_info->delayed_iput_lock);
4cb5300b 1969 spin_lock_init(&fs_info->defrag_inodes_lock);
2bf64758 1970 spin_lock_init(&fs_info->free_chunk_lock);
7585717f 1971 mutex_init(&fs_info->reloc_mutex);
19c00ddc 1972
58176a96 1973 init_completion(&fs_info->kobj_unregister);
0b86a832 1974 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
6324fbf3 1975 INIT_LIST_HEAD(&fs_info->space_info);
0b86a832 1976 btrfs_mapping_init(&fs_info->mapping_tree);
f0486c68
YZ
1977 btrfs_init_block_rsv(&fs_info->global_block_rsv);
1978 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv);
1979 btrfs_init_block_rsv(&fs_info->trans_block_rsv);
1980 btrfs_init_block_rsv(&fs_info->chunk_block_rsv);
1981 btrfs_init_block_rsv(&fs_info->empty_block_rsv);
6d668dda 1982 btrfs_init_block_rsv(&fs_info->delayed_block_rsv);
cb03c743 1983 atomic_set(&fs_info->nr_async_submits, 0);
771ed689 1984 atomic_set(&fs_info->async_delalloc_pages, 0);
8c8bee1d 1985 atomic_set(&fs_info->async_submit_draining, 0);
0986fe9e 1986 atomic_set(&fs_info->nr_async_bios, 0);
4cb5300b 1987 atomic_set(&fs_info->defrag_running, 0);
e20d96d6 1988 fs_info->sb = sb;
6f568d35 1989 fs_info->max_inline = 8192 * 1024;
9ed74f2d 1990 fs_info->metadata_ratio = 0;
4cb5300b 1991 fs_info->defrag_inodes = RB_ROOT;
a4abeea4 1992 fs_info->trans_no_join = 0;
2bf64758 1993 fs_info->free_chunk_space = 0;
c8b97818 1994
90519d66
AJ
1995 /* readahead state */
1996 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
1997 spin_lock_init(&fs_info->reada_lock);
c8b97818 1998
b34b086c
CM
1999 fs_info->thread_pool_size = min_t(unsigned long,
2000 num_online_cpus() + 2, 8);
0afbaf8c 2001
3eaa2885
CM
2002 INIT_LIST_HEAD(&fs_info->ordered_extents);
2003 spin_lock_init(&fs_info->ordered_extent_lock);
16cdcec7
MX
2004 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2005 GFP_NOFS);
2006 if (!fs_info->delayed_root) {
2007 err = -ENOMEM;
2008 goto fail_iput;
2009 }
2010 btrfs_init_delayed_root(fs_info->delayed_root);
3eaa2885 2011
a2de733c
AJ
2012 mutex_init(&fs_info->scrub_lock);
2013 atomic_set(&fs_info->scrubs_running, 0);
2014 atomic_set(&fs_info->scrub_pause_req, 0);
2015 atomic_set(&fs_info->scrubs_paused, 0);
2016 atomic_set(&fs_info->scrub_cancel_req, 0);
2017 init_waitqueue_head(&fs_info->scrub_pause_wait);
2018 init_rwsem(&fs_info->scrub_super_lock);
2019 fs_info->scrub_workers_refcnt = 0;
21adbd5c
SB
2020#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2021 fs_info->check_integrity_print_mask = 0;
2022#endif
a2de733c 2023
c9e9f97b
ID
2024 spin_lock_init(&fs_info->balance_lock);
2025 mutex_init(&fs_info->balance_mutex);
837d5b6e
ID
2026 atomic_set(&fs_info->balance_running, 0);
2027 atomic_set(&fs_info->balance_pause_req, 0);
a7e99c69 2028 atomic_set(&fs_info->balance_cancel_req, 0);
c9e9f97b 2029 fs_info->balance_ctl = NULL;
837d5b6e 2030 init_waitqueue_head(&fs_info->balance_wait_q);
a2de733c 2031
a061fc8d
CM
2032 sb->s_blocksize = 4096;
2033 sb->s_blocksize_bits = blksize_bits(4096);
32a88aa1 2034 sb->s_bdi = &fs_info->bdi;
a061fc8d 2035
76dda93c 2036 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
bfe86848 2037 set_nlink(fs_info->btree_inode, 1);
0afbaf8c
CM
2038 /*
2039 * we set the i_size on the btree inode to the max possible int.
2040 * the real end of the address space is determined by all of
2041 * the devices in the system
2042 */
2043 fs_info->btree_inode->i_size = OFFSET_MAX;
d98237b3 2044 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
04160088
CM
2045 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
2046
5d4f98a2 2047 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
d1310b2e 2048 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
f993c883 2049 fs_info->btree_inode->i_mapping);
a8067e02 2050 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
d1310b2e
CM
2051
2052 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
0da5468f 2053
76dda93c
YZ
2054 BTRFS_I(fs_info->btree_inode)->root = tree_root;
2055 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2056 sizeof(struct btrfs_key));
2057 BTRFS_I(fs_info->btree_inode)->dummy_inode = 1;
c65ddb52 2058 insert_inode_hash(fs_info->btree_inode);
76dda93c 2059
0f9dd46c 2060 spin_lock_init(&fs_info->block_group_cache_lock);
6bef4d31 2061 fs_info->block_group_cache_tree = RB_ROOT;
0f9dd46c 2062
11833d66 2063 extent_io_tree_init(&fs_info->freed_extents[0],
f993c883 2064 fs_info->btree_inode->i_mapping);
11833d66 2065 extent_io_tree_init(&fs_info->freed_extents[1],
f993c883 2066 fs_info->btree_inode->i_mapping);
11833d66 2067 fs_info->pinned_extents = &fs_info->freed_extents[0];
e66f709b 2068 fs_info->do_barriers = 1;
e18e4809 2069
39279cc3 2070
5a3f23d5 2071 mutex_init(&fs_info->ordered_operations_mutex);
e02119d5 2072 mutex_init(&fs_info->tree_log_mutex);
925baedd 2073 mutex_init(&fs_info->chunk_mutex);
a74a4b97
CM
2074 mutex_init(&fs_info->transaction_kthread_mutex);
2075 mutex_init(&fs_info->cleaner_mutex);
7d9eb12c 2076 mutex_init(&fs_info->volume_mutex);
276e680d 2077 init_rwsem(&fs_info->extent_commit_sem);
c71bf099 2078 init_rwsem(&fs_info->cleanup_work_sem);
76dda93c 2079 init_rwsem(&fs_info->subvol_sem);
fa9c0d79
CM
2080
2081 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2082 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2083
e6dcd2dc 2084 init_waitqueue_head(&fs_info->transaction_throttle);
f9295749 2085 init_waitqueue_head(&fs_info->transaction_wait);
bb9c12c9 2086 init_waitqueue_head(&fs_info->transaction_blocked_wait);
4854ddd0 2087 init_waitqueue_head(&fs_info->async_submit_wait);
3768f368 2088
0b86a832 2089 __setup_root(4096, 4096, 4096, 4096, tree_root,
2c90e5d6 2090 fs_info, BTRFS_ROOT_TREE_OBJECTID);
7eccb903 2091
a512bbf8 2092 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
20b45077
DY
2093 if (!bh) {
2094 err = -EINVAL;
16cdcec7 2095 goto fail_alloc;
20b45077 2096 }
39279cc3 2097
6c41761f
DS
2098 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2099 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2100 sizeof(*fs_info->super_for_commit));
a061fc8d 2101 brelse(bh);
5f39d397 2102
6c41761f 2103 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
0b86a832 2104
6c41761f 2105 disk_super = fs_info->super_copy;
0f7d52f4 2106 if (!btrfs_super_root(disk_super))
16cdcec7 2107 goto fail_alloc;
0f7d52f4 2108
acce952b 2109 /* check FS state, whether FS is broken. */
2110 fs_info->fs_state |= btrfs_super_flags(disk_super);
2111
2112 btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2113
af31f5e5
CM
2114 /*
2115 * run through our array of backup supers and setup
2116 * our ring pointer to the oldest one
2117 */
2118 generation = btrfs_super_generation(disk_super);
2119 find_oldest_super_backup(fs_info, generation);
2120
75e7cb7f
LB
2121 /*
2122 * In the long term, we'll store the compression type in the super
2123 * block, and it'll be used for per file compression control.
2124 */
2125 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2126
2b82032c
YZ
2127 ret = btrfs_parse_options(tree_root, options);
2128 if (ret) {
2129 err = ret;
16cdcec7 2130 goto fail_alloc;
2b82032c 2131 }
dfe25020 2132
f2b636e8
JB
2133 features = btrfs_super_incompat_flags(disk_super) &
2134 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2135 if (features) {
2136 printk(KERN_ERR "BTRFS: couldn't mount because of "
2137 "unsupported optional features (%Lx).\n",
21380931 2138 (unsigned long long)features);
f2b636e8 2139 err = -EINVAL;
16cdcec7 2140 goto fail_alloc;
f2b636e8
JB
2141 }
2142
5d4f98a2 2143 features = btrfs_super_incompat_flags(disk_super);
a6fa6fae
LZ
2144 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2145 if (tree_root->fs_info->compress_type & BTRFS_COMPRESS_LZO)
2146 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2147 btrfs_set_super_incompat_flags(disk_super, features);
5d4f98a2 2148
f2b636e8
JB
2149 features = btrfs_super_compat_ro_flags(disk_super) &
2150 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2151 if (!(sb->s_flags & MS_RDONLY) && features) {
2152 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2153 "unsupported option features (%Lx).\n",
21380931 2154 (unsigned long long)features);
f2b636e8 2155 err = -EINVAL;
16cdcec7 2156 goto fail_alloc;
f2b636e8 2157 }
61d92c32
CM
2158
2159 btrfs_init_workers(&fs_info->generic_worker,
2160 "genwork", 1, NULL);
2161
5443be45 2162 btrfs_init_workers(&fs_info->workers, "worker",
61d92c32
CM
2163 fs_info->thread_pool_size,
2164 &fs_info->generic_worker);
c8b97818 2165
771ed689 2166 btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
61d92c32
CM
2167 fs_info->thread_pool_size,
2168 &fs_info->generic_worker);
771ed689 2169
5443be45 2170 btrfs_init_workers(&fs_info->submit_workers, "submit",
b720d209 2171 min_t(u64, fs_devices->num_devices,
61d92c32
CM
2172 fs_info->thread_pool_size),
2173 &fs_info->generic_worker);
61b49440 2174
bab39bf9
JB
2175 btrfs_init_workers(&fs_info->caching_workers, "cache",
2176 2, &fs_info->generic_worker);
2177
61b49440
CM
2178 /* a higher idle thresh on the submit workers makes it much more
2179 * likely that bios will be send down in a sane order to the
2180 * devices
2181 */
2182 fs_info->submit_workers.idle_thresh = 64;
53863232 2183
771ed689 2184 fs_info->workers.idle_thresh = 16;
4a69a410 2185 fs_info->workers.ordered = 1;
61b49440 2186
771ed689
CM
2187 fs_info->delalloc_workers.idle_thresh = 2;
2188 fs_info->delalloc_workers.ordered = 1;
2189
61d92c32
CM
2190 btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
2191 &fs_info->generic_worker);
5443be45 2192 btrfs_init_workers(&fs_info->endio_workers, "endio",
61d92c32
CM
2193 fs_info->thread_pool_size,
2194 &fs_info->generic_worker);
d20f7043 2195 btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
61d92c32
CM
2196 fs_info->thread_pool_size,
2197 &fs_info->generic_worker);
cad321ad 2198 btrfs_init_workers(&fs_info->endio_meta_write_workers,
61d92c32
CM
2199 "endio-meta-write", fs_info->thread_pool_size,
2200 &fs_info->generic_worker);
5443be45 2201 btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
61d92c32
CM
2202 fs_info->thread_pool_size,
2203 &fs_info->generic_worker);
0cb59c99
JB
2204 btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
2205 1, &fs_info->generic_worker);
16cdcec7
MX
2206 btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
2207 fs_info->thread_pool_size,
2208 &fs_info->generic_worker);
90519d66
AJ
2209 btrfs_init_workers(&fs_info->readahead_workers, "readahead",
2210 fs_info->thread_pool_size,
2211 &fs_info->generic_worker);
61b49440
CM
2212
2213 /*
2214 * endios are largely parallel and should have a very
2215 * low idle thresh
2216 */
2217 fs_info->endio_workers.idle_thresh = 4;
b51912c9
CM
2218 fs_info->endio_meta_workers.idle_thresh = 4;
2219
9042846b
CM
2220 fs_info->endio_write_workers.idle_thresh = 2;
2221 fs_info->endio_meta_write_workers.idle_thresh = 2;
90519d66 2222 fs_info->readahead_workers.idle_thresh = 2;
9042846b 2223
0dc3b84a
JB
2224 /*
2225 * btrfs_start_workers can really only fail because of ENOMEM so just
2226 * return -ENOMEM if any of these fail.
2227 */
2228 ret = btrfs_start_workers(&fs_info->workers);
2229 ret |= btrfs_start_workers(&fs_info->generic_worker);
2230 ret |= btrfs_start_workers(&fs_info->submit_workers);
2231 ret |= btrfs_start_workers(&fs_info->delalloc_workers);
2232 ret |= btrfs_start_workers(&fs_info->fixup_workers);
2233 ret |= btrfs_start_workers(&fs_info->endio_workers);
2234 ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
2235 ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
2236 ret |= btrfs_start_workers(&fs_info->endio_write_workers);
2237 ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
2238 ret |= btrfs_start_workers(&fs_info->delayed_workers);
2239 ret |= btrfs_start_workers(&fs_info->caching_workers);
2240 ret |= btrfs_start_workers(&fs_info->readahead_workers);
2241 if (ret) {
2242 ret = -ENOMEM;
2243 goto fail_sb_buffer;
2244 }
4543df7e 2245
4575c9cc 2246 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
c8b97818
CM
2247 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2248 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
4575c9cc 2249
db94535d
CM
2250 nodesize = btrfs_super_nodesize(disk_super);
2251 leafsize = btrfs_super_leafsize(disk_super);
2252 sectorsize = btrfs_super_sectorsize(disk_super);
87ee04eb 2253 stripesize = btrfs_super_stripesize(disk_super);
db94535d
CM
2254 tree_root->nodesize = nodesize;
2255 tree_root->leafsize = leafsize;
2256 tree_root->sectorsize = sectorsize;
87ee04eb 2257 tree_root->stripesize = stripesize;
a061fc8d
CM
2258
2259 sb->s_blocksize = sectorsize;
2260 sb->s_blocksize_bits = blksize_bits(sectorsize);
db94535d 2261
39279cc3
CM
2262 if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
2263 sizeof(disk_super->magic))) {
d397712b 2264 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
39279cc3
CM
2265 goto fail_sb_buffer;
2266 }
19c00ddc 2267
941b2ddf
KM
2268 if (sectorsize < PAGE_SIZE) {
2269 printk(KERN_WARNING "btrfs: Incompatible sector size "
2270 "found on %s\n", sb->s_id);
2271 goto fail_sb_buffer;
2272 }
2273
925baedd 2274 mutex_lock(&fs_info->chunk_mutex);
e4404d6e 2275 ret = btrfs_read_sys_array(tree_root);
925baedd 2276 mutex_unlock(&fs_info->chunk_mutex);
84eed90f 2277 if (ret) {
d397712b
CM
2278 printk(KERN_WARNING "btrfs: failed to read the system "
2279 "array on %s\n", sb->s_id);
5d4f98a2 2280 goto fail_sb_buffer;
84eed90f 2281 }
0b86a832
CM
2282
2283 blocksize = btrfs_level_size(tree_root,
2284 btrfs_super_chunk_root_level(disk_super));
84234f3a 2285 generation = btrfs_super_chunk_root_generation(disk_super);
0b86a832
CM
2286
2287 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2288 chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2289
2290 chunk_root->node = read_tree_block(chunk_root,
2291 btrfs_super_chunk_root(disk_super),
84234f3a 2292 blocksize, generation);
0b86a832 2293 BUG_ON(!chunk_root->node);
83121942
DW
2294 if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2295 printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
2296 sb->s_id);
af31f5e5 2297 goto fail_tree_roots;
83121942 2298 }
5d4f98a2
YZ
2299 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2300 chunk_root->commit_root = btrfs_root_node(chunk_root);
0b86a832 2301
e17cade2 2302 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
d397712b
CM
2303 (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
2304 BTRFS_UUID_SIZE);
e17cade2 2305
0b86a832 2306 ret = btrfs_read_chunk_tree(chunk_root);
2b82032c 2307 if (ret) {
d397712b
CM
2308 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
2309 sb->s_id);
af31f5e5 2310 goto fail_tree_roots;
2b82032c 2311 }
0b86a832 2312
dfe25020
CM
2313 btrfs_close_extra_devices(fs_devices);
2314
a6b0d5c8
CM
2315 if (!fs_devices->latest_bdev) {
2316 printk(KERN_CRIT "btrfs: failed to read devices on %s\n",
2317 sb->s_id);
2318 goto fail_tree_roots;
2319 }
2320
af31f5e5 2321retry_root_backup:
db94535d
CM
2322 blocksize = btrfs_level_size(tree_root,
2323 btrfs_super_root_level(disk_super));
84234f3a 2324 generation = btrfs_super_generation(disk_super);
0b86a832 2325
e20d96d6 2326 tree_root->node = read_tree_block(tree_root,
db94535d 2327 btrfs_super_root(disk_super),
84234f3a 2328 blocksize, generation);
af31f5e5
CM
2329 if (!tree_root->node ||
2330 !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
83121942
DW
2331 printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
2332 sb->s_id);
af31f5e5
CM
2333
2334 goto recovery_tree_root;
83121942 2335 }
af31f5e5 2336
5d4f98a2
YZ
2337 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2338 tree_root->commit_root = btrfs_root_node(tree_root);
db94535d
CM
2339
2340 ret = find_and_setup_root(tree_root, fs_info,
e20d96d6 2341 BTRFS_EXTENT_TREE_OBJECTID, extent_root);
0b86a832 2342 if (ret)
af31f5e5 2343 goto recovery_tree_root;
0b86a832
CM
2344 extent_root->track_dirty = 1;
2345
2346 ret = find_and_setup_root(tree_root, fs_info,
2347 BTRFS_DEV_TREE_OBJECTID, dev_root);
0b86a832 2348 if (ret)
af31f5e5 2349 goto recovery_tree_root;
5d4f98a2 2350 dev_root->track_dirty = 1;
3768f368 2351
d20f7043
CM
2352 ret = find_and_setup_root(tree_root, fs_info,
2353 BTRFS_CSUM_TREE_OBJECTID, csum_root);
2354 if (ret)
af31f5e5 2355 goto recovery_tree_root;
d20f7043
CM
2356
2357 csum_root->track_dirty = 1;
2358
8929ecfa
YZ
2359 fs_info->generation = generation;
2360 fs_info->last_trans_committed = generation;
8929ecfa 2361
c59021f8 2362 ret = btrfs_init_space_info(fs_info);
2363 if (ret) {
2364 printk(KERN_ERR "Failed to initial space info: %d\n", ret);
2365 goto fail_block_groups;
2366 }
2367
1b1d1f66
JB
2368 ret = btrfs_read_block_groups(extent_root);
2369 if (ret) {
2370 printk(KERN_ERR "Failed to read block groups: %d\n", ret);
2371 goto fail_block_groups;
2372 }
9078a3e1 2373
a74a4b97
CM
2374 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2375 "btrfs-cleaner");
57506d50 2376 if (IS_ERR(fs_info->cleaner_kthread))
1b1d1f66 2377 goto fail_block_groups;
a74a4b97
CM
2378
2379 fs_info->transaction_kthread = kthread_run(transaction_kthread,
2380 tree_root,
2381 "btrfs-transaction");
57506d50 2382 if (IS_ERR(fs_info->transaction_kthread))
3f157a2f 2383 goto fail_cleaner;
a74a4b97 2384
c289811c
CM
2385 if (!btrfs_test_opt(tree_root, SSD) &&
2386 !btrfs_test_opt(tree_root, NOSSD) &&
2387 !fs_info->fs_devices->rotating) {
2388 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
2389 "mode\n");
2390 btrfs_set_opt(fs_info->mount_opt, SSD);
2391 }
2392
21adbd5c
SB
2393#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2394 if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2395 ret = btrfsic_mount(tree_root, fs_devices,
2396 btrfs_test_opt(tree_root,
2397 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2398 1 : 0,
2399 fs_info->check_integrity_print_mask);
2400 if (ret)
2401 printk(KERN_WARNING "btrfs: failed to initialize"
2402 " integrity check module %s\n", sb->s_id);
2403 }
2404#endif
2405
acce952b 2406 /* do not make disk changes in broken FS */
2407 if (btrfs_super_log_root(disk_super) != 0 &&
2408 !(fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)) {
e02119d5
CM
2409 u64 bytenr = btrfs_super_log_root(disk_super);
2410
7c2ca468 2411 if (fs_devices->rw_devices == 0) {
d397712b
CM
2412 printk(KERN_WARNING "Btrfs log replay required "
2413 "on RO media\n");
7c2ca468
CM
2414 err = -EIO;
2415 goto fail_trans_kthread;
2416 }
e02119d5
CM
2417 blocksize =
2418 btrfs_level_size(tree_root,
2419 btrfs_super_log_root_level(disk_super));
d18a2c44 2420
6f07e42e 2421 log_tree_root = btrfs_alloc_root(fs_info);
676e4c86
DC
2422 if (!log_tree_root) {
2423 err = -ENOMEM;
2424 goto fail_trans_kthread;
2425 }
e02119d5
CM
2426
2427 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2428 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2429
2430 log_tree_root->node = read_tree_block(tree_root, bytenr,
84234f3a
YZ
2431 blocksize,
2432 generation + 1);
e02119d5
CM
2433 ret = btrfs_recover_log_trees(log_tree_root);
2434 BUG_ON(ret);
e556ce2c
YZ
2435
2436 if (sb->s_flags & MS_RDONLY) {
2437 ret = btrfs_commit_super(tree_root);
2438 BUG_ON(ret);
2439 }
e02119d5 2440 }
1a40e23b 2441
76dda93c
YZ
2442 ret = btrfs_find_orphan_roots(tree_root);
2443 BUG_ON(ret);
2444
7c2ca468 2445 if (!(sb->s_flags & MS_RDONLY)) {
d68fc57b
YZ
2446 ret = btrfs_cleanup_fs_roots(fs_info);
2447 BUG_ON(ret);
2448
5d4f98a2 2449 ret = btrfs_recover_relocation(tree_root);
d7ce5843
MX
2450 if (ret < 0) {
2451 printk(KERN_WARNING
2452 "btrfs: failed to recover relocation\n");
2453 err = -EINVAL;
2454 goto fail_trans_kthread;
2455 }
7c2ca468 2456 }
1a40e23b 2457
3de4586c
CM
2458 location.objectid = BTRFS_FS_TREE_OBJECTID;
2459 location.type = BTRFS_ROOT_ITEM_KEY;
2460 location.offset = (u64)-1;
2461
3de4586c
CM
2462 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2463 if (!fs_info->fs_root)
7c2ca468 2464 goto fail_trans_kthread;
3140c9a3
DC
2465 if (IS_ERR(fs_info->fs_root)) {
2466 err = PTR_ERR(fs_info->fs_root);
2467 goto fail_trans_kthread;
2468 }
c289811c 2469
e3acc2a6
JB
2470 if (!(sb->s_flags & MS_RDONLY)) {
2471 down_read(&fs_info->cleanup_work_sem);
66b4ffd1
JB
2472 err = btrfs_orphan_cleanup(fs_info->fs_root);
2473 if (!err)
2474 err = btrfs_orphan_cleanup(fs_info->tree_root);
e3acc2a6 2475 up_read(&fs_info->cleanup_work_sem);
59641015
ID
2476
2477 if (!err)
2478 err = btrfs_recover_balance(fs_info->tree_root);
2479
66b4ffd1
JB
2480 if (err) {
2481 close_ctree(tree_root);
ad2b2c80 2482 return err;
66b4ffd1 2483 }
e3acc2a6
JB
2484 }
2485
ad2b2c80 2486 return 0;
39279cc3 2487
7c2ca468
CM
2488fail_trans_kthread:
2489 kthread_stop(fs_info->transaction_kthread);
3f157a2f 2490fail_cleaner:
a74a4b97 2491 kthread_stop(fs_info->cleaner_kthread);
7c2ca468
CM
2492
2493 /*
2494 * make sure we're done with the btree inode before we stop our
2495 * kthreads
2496 */
2497 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2498 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2499
1b1d1f66
JB
2500fail_block_groups:
2501 btrfs_free_block_groups(fs_info);
af31f5e5
CM
2502
2503fail_tree_roots:
2504 free_root_pointers(fs_info, 1);
2505
39279cc3 2506fail_sb_buffer:
61d92c32 2507 btrfs_stop_workers(&fs_info->generic_worker);
306c8b68 2508 btrfs_stop_workers(&fs_info->readahead_workers);
247e743c 2509 btrfs_stop_workers(&fs_info->fixup_workers);
771ed689 2510 btrfs_stop_workers(&fs_info->delalloc_workers);
8b712842
CM
2511 btrfs_stop_workers(&fs_info->workers);
2512 btrfs_stop_workers(&fs_info->endio_workers);
d20f7043 2513 btrfs_stop_workers(&fs_info->endio_meta_workers);
cad321ad 2514 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
e6dcd2dc 2515 btrfs_stop_workers(&fs_info->endio_write_workers);
0cb59c99 2516 btrfs_stop_workers(&fs_info->endio_freespace_worker);
1cc127b5 2517 btrfs_stop_workers(&fs_info->submit_workers);
16cdcec7 2518 btrfs_stop_workers(&fs_info->delayed_workers);
bab39bf9 2519 btrfs_stop_workers(&fs_info->caching_workers);
16cdcec7 2520fail_alloc:
4543df7e 2521fail_iput:
586e46e2
ID
2522 btrfs_mapping_tree_free(&fs_info->mapping_tree);
2523
7c2ca468 2524 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4543df7e 2525 iput(fs_info->btree_inode);
ad081f14 2526fail_bdi:
7e662854 2527 bdi_destroy(&fs_info->bdi);
76dda93c
YZ
2528fail_srcu:
2529 cleanup_srcu_struct(&fs_info->subvol_srcu);
7e662854 2530fail:
586e46e2 2531 btrfs_close_devices(fs_info->fs_devices);
ad2b2c80 2532 return err;
af31f5e5
CM
2533
2534recovery_tree_root:
af31f5e5
CM
2535 if (!btrfs_test_opt(tree_root, RECOVERY))
2536 goto fail_tree_roots;
2537
2538 free_root_pointers(fs_info, 0);
2539
2540 /* don't use the log in recovery mode, it won't be valid */
2541 btrfs_set_super_log_root(disk_super, 0);
2542
2543 /* we can't trust the free space cache either */
2544 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2545
2546 ret = next_root_backup(fs_info, fs_info->super_copy,
2547 &num_backups_tried, &backup_index);
2548 if (ret == -1)
2549 goto fail_block_groups;
2550 goto retry_root_backup;
eb60ceac
CM
2551}
2552
f2984462
CM
2553static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
2554{
2555 char b[BDEVNAME_SIZE];
2556
2557 if (uptodate) {
2558 set_buffer_uptodate(bh);
2559 } else {
7a36ddec 2560 printk_ratelimited(KERN_WARNING "lost page write due to "
f2984462
CM
2561 "I/O error on %s\n",
2562 bdevname(bh->b_bdev, b));
1259ab75
CM
2563 /* note, we dont' set_buffer_write_io_error because we have
2564 * our own ways of dealing with the IO errors
2565 */
f2984462
CM
2566 clear_buffer_uptodate(bh);
2567 }
2568 unlock_buffer(bh);
2569 put_bh(bh);
2570}
2571
a512bbf8
YZ
2572struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
2573{
2574 struct buffer_head *bh;
2575 struct buffer_head *latest = NULL;
2576 struct btrfs_super_block *super;
2577 int i;
2578 u64 transid = 0;
2579 u64 bytenr;
2580
2581 /* we would like to check all the supers, but that would make
2582 * a btrfs mount succeed after a mkfs from a different FS.
2583 * So, we need to add a special mount option to scan for
2584 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2585 */
2586 for (i = 0; i < 1; i++) {
2587 bytenr = btrfs_sb_offset(i);
2588 if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
2589 break;
2590 bh = __bread(bdev, bytenr / 4096, 4096);
2591 if (!bh)
2592 continue;
2593
2594 super = (struct btrfs_super_block *)bh->b_data;
2595 if (btrfs_super_bytenr(super) != bytenr ||
2596 strncmp((char *)(&super->magic), BTRFS_MAGIC,
2597 sizeof(super->magic))) {
2598 brelse(bh);
2599 continue;
2600 }
2601
2602 if (!latest || btrfs_super_generation(super) > transid) {
2603 brelse(latest);
2604 latest = bh;
2605 transid = btrfs_super_generation(super);
2606 } else {
2607 brelse(bh);
2608 }
2609 }
2610 return latest;
2611}
2612
4eedeb75
HH
2613/*
2614 * this should be called twice, once with wait == 0 and
2615 * once with wait == 1. When wait == 0 is done, all the buffer heads
2616 * we write are pinned.
2617 *
2618 * They are released when wait == 1 is done.
2619 * max_mirrors must be the same for both runs, and it indicates how
2620 * many supers on this one device should be written.
2621 *
2622 * max_mirrors == 0 means to write them all.
2623 */
a512bbf8
YZ
2624static int write_dev_supers(struct btrfs_device *device,
2625 struct btrfs_super_block *sb,
2626 int do_barriers, int wait, int max_mirrors)
2627{
2628 struct buffer_head *bh;
2629 int i;
2630 int ret;
2631 int errors = 0;
2632 u32 crc;
2633 u64 bytenr;
a512bbf8
YZ
2634
2635 if (max_mirrors == 0)
2636 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
2637
a512bbf8
YZ
2638 for (i = 0; i < max_mirrors; i++) {
2639 bytenr = btrfs_sb_offset(i);
2640 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
2641 break;
2642
2643 if (wait) {
2644 bh = __find_get_block(device->bdev, bytenr / 4096,
2645 BTRFS_SUPER_INFO_SIZE);
2646 BUG_ON(!bh);
a512bbf8 2647 wait_on_buffer(bh);
4eedeb75
HH
2648 if (!buffer_uptodate(bh))
2649 errors++;
2650
2651 /* drop our reference */
2652 brelse(bh);
2653
2654 /* drop the reference from the wait == 0 run */
2655 brelse(bh);
2656 continue;
a512bbf8
YZ
2657 } else {
2658 btrfs_set_super_bytenr(sb, bytenr);
2659
2660 crc = ~(u32)0;
2661 crc = btrfs_csum_data(NULL, (char *)sb +
2662 BTRFS_CSUM_SIZE, crc,
2663 BTRFS_SUPER_INFO_SIZE -
2664 BTRFS_CSUM_SIZE);
2665 btrfs_csum_final(crc, sb->csum);
2666
4eedeb75
HH
2667 /*
2668 * one reference for us, and we leave it for the
2669 * caller
2670 */
a512bbf8
YZ
2671 bh = __getblk(device->bdev, bytenr / 4096,
2672 BTRFS_SUPER_INFO_SIZE);
2673 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
2674
4eedeb75 2675 /* one reference for submit_bh */
a512bbf8 2676 get_bh(bh);
4eedeb75
HH
2677
2678 set_buffer_uptodate(bh);
a512bbf8
YZ
2679 lock_buffer(bh);
2680 bh->b_end_io = btrfs_end_buffer_write_sync;
2681 }
2682
387125fc
CM
2683 /*
2684 * we fua the first super. The others we allow
2685 * to go down lazy.
2686 */
21adbd5c 2687 ret = btrfsic_submit_bh(WRITE_FUA, bh);
4eedeb75 2688 if (ret)
a512bbf8 2689 errors++;
a512bbf8
YZ
2690 }
2691 return errors < i ? 0 : -1;
2692}
2693
387125fc
CM
2694/*
2695 * endio for the write_dev_flush, this will wake anyone waiting
2696 * for the barrier when it is done
2697 */
2698static void btrfs_end_empty_barrier(struct bio *bio, int err)
2699{
2700 if (err) {
2701 if (err == -EOPNOTSUPP)
2702 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2703 clear_bit(BIO_UPTODATE, &bio->bi_flags);
2704 }
2705 if (bio->bi_private)
2706 complete(bio->bi_private);
2707 bio_put(bio);
2708}
2709
2710/*
2711 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
2712 * sent down. With wait == 1, it waits for the previous flush.
2713 *
2714 * any device where the flush fails with eopnotsupp are flagged as not-barrier
2715 * capable
2716 */
2717static int write_dev_flush(struct btrfs_device *device, int wait)
2718{
2719 struct bio *bio;
2720 int ret = 0;
2721
2722 if (device->nobarriers)
2723 return 0;
2724
2725 if (wait) {
2726 bio = device->flush_bio;
2727 if (!bio)
2728 return 0;
2729
2730 wait_for_completion(&device->flush_wait);
2731
2732 if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
2733 printk("btrfs: disabling barriers on dev %s\n",
2734 device->name);
2735 device->nobarriers = 1;
2736 }
2737 if (!bio_flagged(bio, BIO_UPTODATE)) {
2738 ret = -EIO;
2739 }
2740
2741 /* drop the reference from the wait == 0 run */
2742 bio_put(bio);
2743 device->flush_bio = NULL;
2744
2745 return ret;
2746 }
2747
2748 /*
2749 * one reference for us, and we leave it for the
2750 * caller
2751 */
2752 device->flush_bio = NULL;;
2753 bio = bio_alloc(GFP_NOFS, 0);
2754 if (!bio)
2755 return -ENOMEM;
2756
2757 bio->bi_end_io = btrfs_end_empty_barrier;
2758 bio->bi_bdev = device->bdev;
2759 init_completion(&device->flush_wait);
2760 bio->bi_private = &device->flush_wait;
2761 device->flush_bio = bio;
2762
2763 bio_get(bio);
21adbd5c 2764 btrfsic_submit_bio(WRITE_FLUSH, bio);
387125fc
CM
2765
2766 return 0;
2767}
2768
2769/*
2770 * send an empty flush down to each device in parallel,
2771 * then wait for them
2772 */
2773static int barrier_all_devices(struct btrfs_fs_info *info)
2774{
2775 struct list_head *head;
2776 struct btrfs_device *dev;
2777 int errors = 0;
2778 int ret;
2779
2780 /* send down all the barriers */
2781 head = &info->fs_devices->devices;
2782 list_for_each_entry_rcu(dev, head, dev_list) {
2783 if (!dev->bdev) {
2784 errors++;
2785 continue;
2786 }
2787 if (!dev->in_fs_metadata || !dev->writeable)
2788 continue;
2789
2790 ret = write_dev_flush(dev, 0);
2791 if (ret)
2792 errors++;
2793 }
2794
2795 /* wait for all the barriers */
2796 list_for_each_entry_rcu(dev, head, dev_list) {
2797 if (!dev->bdev) {
2798 errors++;
2799 continue;
2800 }
2801 if (!dev->in_fs_metadata || !dev->writeable)
2802 continue;
2803
2804 ret = write_dev_flush(dev, 1);
2805 if (ret)
2806 errors++;
2807 }
2808 if (errors)
2809 return -EIO;
2810 return 0;
2811}
2812
a512bbf8 2813int write_all_supers(struct btrfs_root *root, int max_mirrors)
f2984462 2814{
e5e9a520 2815 struct list_head *head;
f2984462 2816 struct btrfs_device *dev;
a061fc8d 2817 struct btrfs_super_block *sb;
f2984462 2818 struct btrfs_dev_item *dev_item;
f2984462
CM
2819 int ret;
2820 int do_barriers;
a236aed1
CM
2821 int max_errors;
2822 int total_errors = 0;
a061fc8d 2823 u64 flags;
f2984462 2824
6c41761f 2825 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
f2984462 2826 do_barriers = !btrfs_test_opt(root, NOBARRIER);
af31f5e5 2827 backup_super_roots(root->fs_info);
f2984462 2828
6c41761f 2829 sb = root->fs_info->super_for_commit;
a061fc8d 2830 dev_item = &sb->dev_item;
e5e9a520 2831
174ba509 2832 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
e5e9a520 2833 head = &root->fs_info->fs_devices->devices;
387125fc
CM
2834
2835 if (do_barriers)
2836 barrier_all_devices(root->fs_info);
2837
1f78160c 2838 list_for_each_entry_rcu(dev, head, dev_list) {
dfe25020
CM
2839 if (!dev->bdev) {
2840 total_errors++;
2841 continue;
2842 }
2b82032c 2843 if (!dev->in_fs_metadata || !dev->writeable)
dfe25020
CM
2844 continue;
2845
2b82032c 2846 btrfs_set_stack_device_generation(dev_item, 0);
a061fc8d
CM
2847 btrfs_set_stack_device_type(dev_item, dev->type);
2848 btrfs_set_stack_device_id(dev_item, dev->devid);
2849 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
2850 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
2851 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
2852 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
2853 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
2854 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
2b82032c 2855 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
a512bbf8 2856
a061fc8d
CM
2857 flags = btrfs_super_flags(sb);
2858 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
2859
a512bbf8 2860 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
a236aed1
CM
2861 if (ret)
2862 total_errors++;
f2984462 2863 }
a236aed1 2864 if (total_errors > max_errors) {
d397712b
CM
2865 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
2866 total_errors);
a236aed1
CM
2867 BUG();
2868 }
f2984462 2869
a512bbf8 2870 total_errors = 0;
1f78160c 2871 list_for_each_entry_rcu(dev, head, dev_list) {
dfe25020
CM
2872 if (!dev->bdev)
2873 continue;
2b82032c 2874 if (!dev->in_fs_metadata || !dev->writeable)
dfe25020
CM
2875 continue;
2876
a512bbf8
YZ
2877 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
2878 if (ret)
2879 total_errors++;
f2984462 2880 }
174ba509 2881 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
a236aed1 2882 if (total_errors > max_errors) {
d397712b
CM
2883 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
2884 total_errors);
a236aed1
CM
2885 BUG();
2886 }
f2984462
CM
2887 return 0;
2888}
2889
a512bbf8
YZ
2890int write_ctree_super(struct btrfs_trans_handle *trans,
2891 struct btrfs_root *root, int max_mirrors)
eb60ceac 2892{
e66f709b 2893 int ret;
5f39d397 2894
a512bbf8 2895 ret = write_all_supers(root, max_mirrors);
5f39d397 2896 return ret;
cfaa7295
CM
2897}
2898
143bede5 2899void btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
2619ba1f 2900{
4df27c4d 2901 spin_lock(&fs_info->fs_roots_radix_lock);
2619ba1f
CM
2902 radix_tree_delete(&fs_info->fs_roots_radix,
2903 (unsigned long)root->root_key.objectid);
4df27c4d 2904 spin_unlock(&fs_info->fs_roots_radix_lock);
76dda93c
YZ
2905
2906 if (btrfs_root_refs(&root->root_item) == 0)
2907 synchronize_srcu(&fs_info->subvol_srcu);
2908
581bb050
LZ
2909 __btrfs_remove_free_space_cache(root->free_ino_pinned);
2910 __btrfs_remove_free_space_cache(root->free_ino_ctl);
4df27c4d 2911 free_fs_root(root);
4df27c4d
YZ
2912}
2913
2914static void free_fs_root(struct btrfs_root *root)
2915{
82d5902d 2916 iput(root->cache_inode);
4df27c4d 2917 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
0ee5dc67
AV
2918 if (root->anon_dev)
2919 free_anon_bdev(root->anon_dev);
4df27c4d
YZ
2920 free_extent_buffer(root->node);
2921 free_extent_buffer(root->commit_root);
581bb050
LZ
2922 kfree(root->free_ino_ctl);
2923 kfree(root->free_ino_pinned);
d397712b 2924 kfree(root->name);
2619ba1f 2925 kfree(root);
2619ba1f
CM
2926}
2927
143bede5 2928static void del_fs_roots(struct btrfs_fs_info *fs_info)
0f7d52f4
CM
2929{
2930 int ret;
2931 struct btrfs_root *gang[8];
2932 int i;
2933
76dda93c
YZ
2934 while (!list_empty(&fs_info->dead_roots)) {
2935 gang[0] = list_entry(fs_info->dead_roots.next,
2936 struct btrfs_root, root_list);
2937 list_del(&gang[0]->root_list);
2938
2939 if (gang[0]->in_radix) {
2940 btrfs_free_fs_root(fs_info, gang[0]);
2941 } else {
2942 free_extent_buffer(gang[0]->node);
2943 free_extent_buffer(gang[0]->commit_root);
2944 kfree(gang[0]);
2945 }
2946 }
2947
d397712b 2948 while (1) {
0f7d52f4
CM
2949 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2950 (void **)gang, 0,
2951 ARRAY_SIZE(gang));
2952 if (!ret)
2953 break;
2619ba1f 2954 for (i = 0; i < ret; i++)
5eda7b5e 2955 btrfs_free_fs_root(fs_info, gang[i]);
0f7d52f4 2956 }
0f7d52f4 2957}
b4100d64 2958
c146afad 2959int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
cfaa7295 2960{
c146afad
YZ
2961 u64 root_objectid = 0;
2962 struct btrfs_root *gang[8];
2963 int i;
3768f368 2964 int ret;
e089f05c 2965
c146afad
YZ
2966 while (1) {
2967 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2968 (void **)gang, root_objectid,
2969 ARRAY_SIZE(gang));
2970 if (!ret)
2971 break;
5d4f98a2
YZ
2972
2973 root_objectid = gang[ret - 1]->root_key.objectid + 1;
c146afad 2974 for (i = 0; i < ret; i++) {
66b4ffd1
JB
2975 int err;
2976
c146afad 2977 root_objectid = gang[i]->root_key.objectid;
66b4ffd1
JB
2978 err = btrfs_orphan_cleanup(gang[i]);
2979 if (err)
2980 return err;
c146afad
YZ
2981 }
2982 root_objectid++;
2983 }
2984 return 0;
2985}
a2135011 2986
c146afad
YZ
2987int btrfs_commit_super(struct btrfs_root *root)
2988{
2989 struct btrfs_trans_handle *trans;
2990 int ret;
a74a4b97 2991
c146afad 2992 mutex_lock(&root->fs_info->cleaner_mutex);
24bbcf04 2993 btrfs_run_delayed_iputs(root);
a74a4b97 2994 btrfs_clean_old_snapshots(root);
c146afad 2995 mutex_unlock(&root->fs_info->cleaner_mutex);
c71bf099
YZ
2996
2997 /* wait until ongoing cleanup work done */
2998 down_write(&root->fs_info->cleanup_work_sem);
2999 up_write(&root->fs_info->cleanup_work_sem);
3000
7a7eaa40 3001 trans = btrfs_join_transaction(root);
3612b495
TI
3002 if (IS_ERR(trans))
3003 return PTR_ERR(trans);
54aa1f4d 3004 ret = btrfs_commit_transaction(trans, root);
c146afad
YZ
3005 BUG_ON(ret);
3006 /* run commit again to drop the original snapshot */
7a7eaa40 3007 trans = btrfs_join_transaction(root);
3612b495
TI
3008 if (IS_ERR(trans))
3009 return PTR_ERR(trans);
79154b1b
CM
3010 btrfs_commit_transaction(trans, root);
3011 ret = btrfs_write_and_wait_transaction(NULL, root);
3768f368 3012 BUG_ON(ret);
d6bfde87 3013
a512bbf8 3014 ret = write_ctree_super(NULL, root, 0);
c146afad
YZ
3015 return ret;
3016}
3017
3018int close_ctree(struct btrfs_root *root)
3019{
3020 struct btrfs_fs_info *fs_info = root->fs_info;
3021 int ret;
3022
3023 fs_info->closing = 1;
3024 smp_mb();
3025
837d5b6e
ID
3026 /* pause restriper - we want to resume on mount */
3027 btrfs_pause_balance(root->fs_info);
3028
a2de733c 3029 btrfs_scrub_cancel(root);
4cb5300b
CM
3030
3031 /* wait for any defraggers to finish */
3032 wait_event(fs_info->transaction_wait,
3033 (atomic_read(&fs_info->defrag_running) == 0));
3034
3035 /* clear out the rbtree of defraggable inodes */
e3029d9f 3036 btrfs_run_defrag_inodes(fs_info);
4cb5300b 3037
acce952b 3038 /*
3039 * Here come 2 situations when btrfs is broken to flip readonly:
3040 *
3041 * 1. when btrfs flips readonly somewhere else before
3042 * btrfs_commit_super, sb->s_flags has MS_RDONLY flag,
3043 * and btrfs will skip to write sb directly to keep
3044 * ERROR state on disk.
3045 *
3046 * 2. when btrfs flips readonly just in btrfs_commit_super,
ae0e47f0 3047 * and in such case, btrfs cannot write sb via btrfs_commit_super,
acce952b 3048 * and since fs_state has been set BTRFS_SUPER_FLAG_ERROR flag,
3049 * btrfs will cleanup all FS resources first and write sb then.
3050 */
c146afad 3051 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
acce952b 3052 ret = btrfs_commit_super(root);
3053 if (ret)
3054 printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
3055 }
3056
3057 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
3058 ret = btrfs_error_commit_super(root);
d397712b
CM
3059 if (ret)
3060 printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
c146afad 3061 }
0f7d52f4 3062
300e4f8a
JB
3063 btrfs_put_block_group_cache(fs_info);
3064
e3029d9f
AV
3065 kthread_stop(fs_info->transaction_kthread);
3066 kthread_stop(fs_info->cleaner_kthread);
8929ecfa 3067
f25784b3
YZ
3068 fs_info->closing = 2;
3069 smp_mb();
3070
b0c68f8b 3071 if (fs_info->delalloc_bytes) {
d397712b 3072 printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
21380931 3073 (unsigned long long)fs_info->delalloc_bytes);
b0c68f8b 3074 }
31153d81 3075 if (fs_info->total_ref_cache_size) {
d397712b
CM
3076 printk(KERN_INFO "btrfs: at umount reference cache size %llu\n",
3077 (unsigned long long)fs_info->total_ref_cache_size);
31153d81 3078 }
bcc63abb 3079
5d4f98a2
YZ
3080 free_extent_buffer(fs_info->extent_root->node);
3081 free_extent_buffer(fs_info->extent_root->commit_root);
3082 free_extent_buffer(fs_info->tree_root->node);
3083 free_extent_buffer(fs_info->tree_root->commit_root);
e3029d9f
AV
3084 free_extent_buffer(fs_info->chunk_root->node);
3085 free_extent_buffer(fs_info->chunk_root->commit_root);
3086 free_extent_buffer(fs_info->dev_root->node);
3087 free_extent_buffer(fs_info->dev_root->commit_root);
3088 free_extent_buffer(fs_info->csum_root->node);
3089 free_extent_buffer(fs_info->csum_root->commit_root);
d20f7043 3090
e3029d9f 3091 btrfs_free_block_groups(fs_info);
d10c5f31 3092
c146afad 3093 del_fs_roots(fs_info);
d10c5f31 3094
c146afad 3095 iput(fs_info->btree_inode);
9ad6b7bc 3096
61d92c32 3097 btrfs_stop_workers(&fs_info->generic_worker);
247e743c 3098 btrfs_stop_workers(&fs_info->fixup_workers);
771ed689 3099 btrfs_stop_workers(&fs_info->delalloc_workers);
8b712842
CM
3100 btrfs_stop_workers(&fs_info->workers);
3101 btrfs_stop_workers(&fs_info->endio_workers);
d20f7043 3102 btrfs_stop_workers(&fs_info->endio_meta_workers);
cad321ad 3103 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
e6dcd2dc 3104 btrfs_stop_workers(&fs_info->endio_write_workers);
0cb59c99 3105 btrfs_stop_workers(&fs_info->endio_freespace_worker);
1cc127b5 3106 btrfs_stop_workers(&fs_info->submit_workers);
16cdcec7 3107 btrfs_stop_workers(&fs_info->delayed_workers);
bab39bf9 3108 btrfs_stop_workers(&fs_info->caching_workers);
90519d66 3109 btrfs_stop_workers(&fs_info->readahead_workers);
d6bfde87 3110
21adbd5c
SB
3111#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3112 if (btrfs_test_opt(root, CHECK_INTEGRITY))
3113 btrfsic_unmount(root, fs_info->fs_devices);
3114#endif
3115
dfe25020 3116 btrfs_close_devices(fs_info->fs_devices);
0b86a832 3117 btrfs_mapping_tree_free(&fs_info->mapping_tree);
b248a415 3118
04160088 3119 bdi_destroy(&fs_info->bdi);
76dda93c 3120 cleanup_srcu_struct(&fs_info->subvol_srcu);
0b86a832 3121
eb60ceac
CM
3122 return 0;
3123}
3124
1259ab75 3125int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid)
5f39d397 3126{
1259ab75 3127 int ret;
810191ff 3128 struct inode *btree_inode = buf->first_page->mapping->host;
1259ab75 3129
2ac55d41
JB
3130 ret = extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf,
3131 NULL);
1259ab75
CM
3132 if (!ret)
3133 return ret;
3134
3135 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3136 parent_transid);
3137 return !ret;
5f39d397
CM
3138}
3139
3140int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
ccd467d6 3141{
810191ff 3142 struct inode *btree_inode = buf->first_page->mapping->host;
d1310b2e 3143 return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree,
5f39d397
CM
3144 buf);
3145}
6702ed49 3146
5f39d397
CM
3147void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3148{
810191ff 3149 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
5f39d397
CM
3150 u64 transid = btrfs_header_generation(buf);
3151 struct inode *btree_inode = root->fs_info->btree_inode;
b9473439 3152 int was_dirty;
b4ce94de 3153
b9447ef8 3154 btrfs_assert_tree_locked(buf);
ccd467d6 3155 if (transid != root->fs_info->generation) {
d397712b
CM
3156 printk(KERN_CRIT "btrfs transid mismatch buffer %llu, "
3157 "found %llu running %llu\n",
db94535d 3158 (unsigned long long)buf->start,
d397712b
CM
3159 (unsigned long long)transid,
3160 (unsigned long long)root->fs_info->generation);
ccd467d6
CM
3161 WARN_ON(1);
3162 }
b9473439
CM
3163 was_dirty = set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
3164 buf);
3165 if (!was_dirty) {
3166 spin_lock(&root->fs_info->delalloc_lock);
3167 root->fs_info->dirty_metadata_bytes += buf->len;
3168 spin_unlock(&root->fs_info->delalloc_lock);
3169 }
eb60ceac
CM
3170}
3171
d3c2fdcf 3172void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
16cdcec7
MX
3173{
3174 /*
3175 * looks as though older kernels can get into trouble with
3176 * this code, they end up stuck in balance_dirty_pages forever
3177 */
3178 u64 num_dirty;
3179 unsigned long thresh = 32 * 1024 * 1024;
3180
3181 if (current->flags & PF_MEMALLOC)
3182 return;
3183
3184 btrfs_balance_delayed_items(root);
3185
3186 num_dirty = root->fs_info->dirty_metadata_bytes;
3187
3188 if (num_dirty > thresh) {
3189 balance_dirty_pages_ratelimited_nr(
3190 root->fs_info->btree_inode->i_mapping, 1);
3191 }
3192 return;
3193}
3194
3195void __btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
35b7e476 3196{
188de649
CM
3197 /*
3198 * looks as though older kernels can get into trouble with
3199 * this code, they end up stuck in balance_dirty_pages forever
3200 */
d6bfde87 3201 u64 num_dirty;
771ed689 3202 unsigned long thresh = 32 * 1024 * 1024;
d6bfde87 3203
6933c02e 3204 if (current->flags & PF_MEMALLOC)
d6bfde87
CM
3205 return;
3206
585ad2c3
CM
3207 num_dirty = root->fs_info->dirty_metadata_bytes;
3208
d6bfde87
CM
3209 if (num_dirty > thresh) {
3210 balance_dirty_pages_ratelimited_nr(
d7fc640e 3211 root->fs_info->btree_inode->i_mapping, 1);
d6bfde87 3212 }
188de649 3213 return;
35b7e476 3214}
6b80053d 3215
ca7a79ad 3216int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
6b80053d 3217{
810191ff 3218 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
ce9adaa5 3219 int ret;
ca7a79ad 3220 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
d397712b 3221 if (ret == 0)
b4ce94de 3222 set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
ce9adaa5 3223 return ret;
6b80053d 3224}
0da5468f 3225
01d658f2
CM
3226static int btree_lock_page_hook(struct page *page, void *data,
3227 void (*flush_fn)(void *))
4bef0848
CM
3228{
3229 struct inode *inode = page->mapping->host;
b9473439 3230 struct btrfs_root *root = BTRFS_I(inode)->root;
4bef0848
CM
3231 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3232 struct extent_buffer *eb;
3233 unsigned long len;
3234 u64 bytenr = page_offset(page);
3235
3236 if (page->private == EXTENT_PAGE_PRIVATE)
3237 goto out;
3238
3239 len = page->private >> 2;
f09d1f60 3240 eb = find_extent_buffer(io_tree, bytenr, len);
4bef0848
CM
3241 if (!eb)
3242 goto out;
3243
01d658f2
CM
3244 if (!btrfs_try_tree_write_lock(eb)) {
3245 flush_fn(data);
3246 btrfs_tree_lock(eb);
3247 }
4bef0848 3248 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
b9473439
CM
3249
3250 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3251 spin_lock(&root->fs_info->delalloc_lock);
3252 if (root->fs_info->dirty_metadata_bytes >= eb->len)
3253 root->fs_info->dirty_metadata_bytes -= eb->len;
3254 else
3255 WARN_ON(1);
3256 spin_unlock(&root->fs_info->delalloc_lock);
3257 }
3258
4bef0848
CM
3259 btrfs_tree_unlock(eb);
3260 free_extent_buffer(eb);
3261out:
01d658f2
CM
3262 if (!trylock_page(page)) {
3263 flush_fn(data);
3264 lock_page(page);
3265 }
4bef0848
CM
3266 return 0;
3267}
3268
acce952b 3269static void btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3270 int read_only)
3271{
3272 if (read_only)
3273 return;
3274
3275 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
3276 printk(KERN_WARNING "warning: mount fs with errors, "
3277 "running btrfsck is recommended\n");
3278}
3279
3280int btrfs_error_commit_super(struct btrfs_root *root)
3281{
3282 int ret;
3283
3284 mutex_lock(&root->fs_info->cleaner_mutex);
3285 btrfs_run_delayed_iputs(root);
3286 mutex_unlock(&root->fs_info->cleaner_mutex);
3287
3288 down_write(&root->fs_info->cleanup_work_sem);
3289 up_write(&root->fs_info->cleanup_work_sem);
3290
3291 /* cleanup FS via transaction */
3292 btrfs_cleanup_transaction(root);
3293
3294 ret = write_ctree_super(NULL, root, 0);
3295
3296 return ret;
3297}
3298
143bede5 3299static void btrfs_destroy_ordered_operations(struct btrfs_root *root)
acce952b 3300{
3301 struct btrfs_inode *btrfs_inode;
3302 struct list_head splice;
3303
3304 INIT_LIST_HEAD(&splice);
3305
3306 mutex_lock(&root->fs_info->ordered_operations_mutex);
3307 spin_lock(&root->fs_info->ordered_extent_lock);
3308
3309 list_splice_init(&root->fs_info->ordered_operations, &splice);
3310 while (!list_empty(&splice)) {
3311 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3312 ordered_operations);
3313
3314 list_del_init(&btrfs_inode->ordered_operations);
3315
3316 btrfs_invalidate_inodes(btrfs_inode->root);
3317 }
3318
3319 spin_unlock(&root->fs_info->ordered_extent_lock);
3320 mutex_unlock(&root->fs_info->ordered_operations_mutex);
acce952b 3321}
3322
143bede5 3323static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
acce952b 3324{
3325 struct list_head splice;
3326 struct btrfs_ordered_extent *ordered;
3327 struct inode *inode;
3328
3329 INIT_LIST_HEAD(&splice);
3330
3331 spin_lock(&root->fs_info->ordered_extent_lock);
3332
3333 list_splice_init(&root->fs_info->ordered_extents, &splice);
3334 while (!list_empty(&splice)) {
3335 ordered = list_entry(splice.next, struct btrfs_ordered_extent,
3336 root_extent_list);
3337
3338 list_del_init(&ordered->root_extent_list);
3339 atomic_inc(&ordered->refs);
3340
3341 /* the inode may be getting freed (in sys_unlink path). */
3342 inode = igrab(ordered->inode);
3343
3344 spin_unlock(&root->fs_info->ordered_extent_lock);
3345 if (inode)
3346 iput(inode);
3347
3348 atomic_set(&ordered->refs, 1);
3349 btrfs_put_ordered_extent(ordered);
3350
3351 spin_lock(&root->fs_info->ordered_extent_lock);
3352 }
3353
3354 spin_unlock(&root->fs_info->ordered_extent_lock);
acce952b 3355}
3356
3357static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3358 struct btrfs_root *root)
3359{
3360 struct rb_node *node;
3361 struct btrfs_delayed_ref_root *delayed_refs;
3362 struct btrfs_delayed_ref_node *ref;
3363 int ret = 0;
3364
3365 delayed_refs = &trans->delayed_refs;
3366
3367 spin_lock(&delayed_refs->lock);
3368 if (delayed_refs->num_entries == 0) {
cfece4db 3369 spin_unlock(&delayed_refs->lock);
acce952b 3370 printk(KERN_INFO "delayed_refs has NO entry\n");
3371 return ret;
3372 }
3373
3374 node = rb_first(&delayed_refs->root);
3375 while (node) {
3376 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
3377 node = rb_next(node);
3378
3379 ref->in_tree = 0;
3380 rb_erase(&ref->rb_node, &delayed_refs->root);
3381 delayed_refs->num_entries--;
3382
3383 atomic_set(&ref->refs, 1);
3384 if (btrfs_delayed_ref_is_head(ref)) {
3385 struct btrfs_delayed_ref_head *head;
3386
3387 head = btrfs_delayed_node_to_head(ref);
3388 mutex_lock(&head->mutex);
3389 kfree(head->extent_op);
3390 delayed_refs->num_heads--;
3391 if (list_empty(&head->cluster))
3392 delayed_refs->num_heads_ready--;
3393 list_del_init(&head->cluster);
3394 mutex_unlock(&head->mutex);
3395 }
3396
3397 spin_unlock(&delayed_refs->lock);
3398 btrfs_put_delayed_ref(ref);
3399
3400 cond_resched();
3401 spin_lock(&delayed_refs->lock);
3402 }
3403
3404 spin_unlock(&delayed_refs->lock);
3405
3406 return ret;
3407}
3408
143bede5 3409static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t)
acce952b 3410{
3411 struct btrfs_pending_snapshot *snapshot;
3412 struct list_head splice;
3413
3414 INIT_LIST_HEAD(&splice);
3415
3416 list_splice_init(&t->pending_snapshots, &splice);
3417
3418 while (!list_empty(&splice)) {
3419 snapshot = list_entry(splice.next,
3420 struct btrfs_pending_snapshot,
3421 list);
3422
3423 list_del_init(&snapshot->list);
3424
3425 kfree(snapshot);
3426 }
acce952b 3427}
3428
143bede5 3429static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
acce952b 3430{
3431 struct btrfs_inode *btrfs_inode;
3432 struct list_head splice;
3433
3434 INIT_LIST_HEAD(&splice);
3435
acce952b 3436 spin_lock(&root->fs_info->delalloc_lock);
5be76758 3437 list_splice_init(&root->fs_info->delalloc_inodes, &splice);
acce952b 3438
3439 while (!list_empty(&splice)) {
3440 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3441 delalloc_inodes);
3442
3443 list_del_init(&btrfs_inode->delalloc_inodes);
3444
3445 btrfs_invalidate_inodes(btrfs_inode->root);
3446 }
3447
3448 spin_unlock(&root->fs_info->delalloc_lock);
acce952b 3449}
3450
3451static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3452 struct extent_io_tree *dirty_pages,
3453 int mark)
3454{
3455 int ret;
3456 struct page *page;
3457 struct inode *btree_inode = root->fs_info->btree_inode;
3458 struct extent_buffer *eb;
3459 u64 start = 0;
3460 u64 end;
3461 u64 offset;
3462 unsigned long index;
3463
3464 while (1) {
3465 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
3466 mark);
3467 if (ret)
3468 break;
3469
3470 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
3471 while (start <= end) {
3472 index = start >> PAGE_CACHE_SHIFT;
3473 start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
3474 page = find_get_page(btree_inode->i_mapping, index);
3475 if (!page)
3476 continue;
3477 offset = page_offset(page);
3478
3479 spin_lock(&dirty_pages->buffer_lock);
3480 eb = radix_tree_lookup(
3481 &(&BTRFS_I(page->mapping->host)->io_tree)->buffer,
3482 offset >> PAGE_CACHE_SHIFT);
3483 spin_unlock(&dirty_pages->buffer_lock);
3484 if (eb) {
3485 ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY,
3486 &eb->bflags);
3487 atomic_set(&eb->refs, 1);
3488 }
3489 if (PageWriteback(page))
3490 end_page_writeback(page);
3491
3492 lock_page(page);
3493 if (PageDirty(page)) {
3494 clear_page_dirty_for_io(page);
3495 spin_lock_irq(&page->mapping->tree_lock);
3496 radix_tree_tag_clear(&page->mapping->page_tree,
3497 page_index(page),
3498 PAGECACHE_TAG_DIRTY);
3499 spin_unlock_irq(&page->mapping->tree_lock);
3500 }
3501
3502 page->mapping->a_ops->invalidatepage(page, 0);
3503 unlock_page(page);
3504 }
3505 }
3506
3507 return ret;
3508}
3509
3510static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
3511 struct extent_io_tree *pinned_extents)
3512{
3513 struct extent_io_tree *unpin;
3514 u64 start;
3515 u64 end;
3516 int ret;
3517
3518 unpin = pinned_extents;
3519 while (1) {
3520 ret = find_first_extent_bit(unpin, 0, &start, &end,
3521 EXTENT_DIRTY);
3522 if (ret)
3523 break;
3524
3525 /* opt_discard */
5378e607
LD
3526 if (btrfs_test_opt(root, DISCARD))
3527 ret = btrfs_error_discard_extent(root, start,
3528 end + 1 - start,
3529 NULL);
acce952b 3530
3531 clear_extent_dirty(unpin, start, end, GFP_NOFS);
3532 btrfs_error_unpin_extent_range(root, start, end);
3533 cond_resched();
3534 }
3535
3536 return 0;
3537}
3538
3539static int btrfs_cleanup_transaction(struct btrfs_root *root)
3540{
3541 struct btrfs_transaction *t;
3542 LIST_HEAD(list);
3543
3544 WARN_ON(1);
3545
acce952b 3546 mutex_lock(&root->fs_info->transaction_kthread_mutex);
3547
a4abeea4 3548 spin_lock(&root->fs_info->trans_lock);
acce952b 3549 list_splice_init(&root->fs_info->trans_list, &list);
a4abeea4
JB
3550 root->fs_info->trans_no_join = 1;
3551 spin_unlock(&root->fs_info->trans_lock);
3552
acce952b 3553 while (!list_empty(&list)) {
3554 t = list_entry(list.next, struct btrfs_transaction, list);
3555 if (!t)
3556 break;
3557
3558 btrfs_destroy_ordered_operations(root);
3559
3560 btrfs_destroy_ordered_extents(root);
3561
3562 btrfs_destroy_delayed_refs(t, root);
3563
3564 btrfs_block_rsv_release(root,
3565 &root->fs_info->trans_block_rsv,
3566 t->dirty_pages.dirty_bytes);
3567
3568 /* FIXME: cleanup wait for commit */
3569 t->in_commit = 1;
3570 t->blocked = 1;
3571 if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
3572 wake_up(&root->fs_info->transaction_blocked_wait);
3573
3574 t->blocked = 0;
3575 if (waitqueue_active(&root->fs_info->transaction_wait))
3576 wake_up(&root->fs_info->transaction_wait);
acce952b 3577
acce952b 3578 t->commit_done = 1;
3579 if (waitqueue_active(&t->commit_wait))
3580 wake_up(&t->commit_wait);
acce952b 3581
3582 btrfs_destroy_pending_snapshots(t);
3583
3584 btrfs_destroy_delalloc_inodes(root);
3585
a4abeea4 3586 spin_lock(&root->fs_info->trans_lock);
acce952b 3587 root->fs_info->running_transaction = NULL;
a4abeea4 3588 spin_unlock(&root->fs_info->trans_lock);
acce952b 3589
3590 btrfs_destroy_marked_extents(root, &t->dirty_pages,
3591 EXTENT_DIRTY);
3592
3593 btrfs_destroy_pinned_extent(root,
3594 root->fs_info->pinned_extents);
3595
13c5a93e 3596 atomic_set(&t->use_count, 0);
acce952b 3597 list_del_init(&t->list);
3598 memset(t, 0, sizeof(*t));
3599 kmem_cache_free(btrfs_transaction_cachep, t);
3600 }
3601
a4abeea4
JB
3602 spin_lock(&root->fs_info->trans_lock);
3603 root->fs_info->trans_no_join = 0;
3604 spin_unlock(&root->fs_info->trans_lock);
acce952b 3605 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
acce952b 3606
3607 return 0;
3608}
3609
d1310b2e 3610static struct extent_io_ops btree_extent_io_ops = {
4bef0848 3611 .write_cache_pages_lock_hook = btree_lock_page_hook,
ce9adaa5 3612 .readpage_end_io_hook = btree_readpage_end_io_hook,
4bb31e92 3613 .readpage_io_failed_hook = btree_io_failed_hook,
0b86a832 3614 .submit_bio_hook = btree_submit_bio_hook,
239b14b3
CM
3615 /* note we're sharing with inode.c for the merge bio hook */
3616 .merge_bio_hook = btrfs_merge_bio_hook,
0da5468f 3617};