Btrfs: rework shrink_delalloc
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / btrfs / disk-io.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
e20d96d6 19#include <linux/fs.h>
d98237b3 20#include <linux/blkdev.h>
87cbda5c 21#include <linux/scatterlist.h>
22b0ebda 22#include <linux/swap.h>
0f7d52f4 23#include <linux/radix-tree.h>
35b7e476 24#include <linux/writeback.h>
d397712b 25#include <linux/buffer_head.h>
ce9adaa5 26#include <linux/workqueue.h>
a74a4b97 27#include <linux/kthread.h>
4b4e25f2 28#include <linux/freezer.h>
163e783e 29#include <linux/crc32c.h>
5a0e3ad6 30#include <linux/slab.h>
784b4e29 31#include <linux/migrate.h>
7a36ddec 32#include <linux/ratelimit.h>
7e75bf3f 33#include <asm/unaligned.h>
4b4e25f2 34#include "compat.h"
eb60ceac
CM
35#include "ctree.h"
36#include "disk-io.h"
e089f05c 37#include "transaction.h"
0f7d52f4 38#include "btrfs_inode.h"
0b86a832 39#include "volumes.h"
db94535d 40#include "print-tree.h"
8b712842 41#include "async-thread.h"
925baedd 42#include "locking.h"
e02119d5 43#include "tree-log.h"
fa9c0d79 44#include "free-space-cache.h"
581bb050 45#include "inode-map.h"
21adbd5c 46#include "check-integrity.h"
606686ee 47#include "rcu-string.h"
eb60ceac 48
d1310b2e 49static struct extent_io_ops btree_extent_io_ops;
8b712842 50static void end_workqueue_fn(struct btrfs_work *work);
4df27c4d 51static void free_fs_root(struct btrfs_root *root);
fcd1f065 52static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
acce952b 53 int read_only);
143bede5
JM
54static void btrfs_destroy_ordered_operations(struct btrfs_root *root);
55static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
acce952b 56static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
57 struct btrfs_root *root);
143bede5
JM
58static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t);
59static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
acce952b 60static int btrfs_destroy_marked_extents(struct btrfs_root *root,
61 struct extent_io_tree *dirty_pages,
62 int mark);
63static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
64 struct extent_io_tree *pinned_extents);
ce9adaa5 65
d352ac68
CM
66/*
67 * end_io_wq structs are used to do processing in task context when an IO is
68 * complete. This is used during reads to verify checksums, and it is used
69 * by writes to insert metadata for new file extents after IO is complete.
70 */
ce9adaa5
CM
71struct end_io_wq {
72 struct bio *bio;
73 bio_end_io_t *end_io;
74 void *private;
75 struct btrfs_fs_info *info;
76 int error;
22c59948 77 int metadata;
ce9adaa5 78 struct list_head list;
8b712842 79 struct btrfs_work work;
ce9adaa5 80};
0da5468f 81
d352ac68
CM
82/*
83 * async submit bios are used to offload expensive checksumming
84 * onto the worker threads. They checksum file and metadata bios
85 * just before they are sent down the IO stack.
86 */
44b8bd7e
CM
87struct async_submit_bio {
88 struct inode *inode;
89 struct bio *bio;
90 struct list_head list;
4a69a410
CM
91 extent_submit_bio_hook_t *submit_bio_start;
92 extent_submit_bio_hook_t *submit_bio_done;
44b8bd7e
CM
93 int rw;
94 int mirror_num;
c8b97818 95 unsigned long bio_flags;
eaf25d93
CM
96 /*
97 * bio_offset is optional, can be used if the pages in the bio
98 * can't tell us where in the file the bio should go
99 */
100 u64 bio_offset;
8b712842 101 struct btrfs_work work;
79787eaa 102 int error;
44b8bd7e
CM
103};
104
85d4e461
CM
105/*
106 * Lockdep class keys for extent_buffer->lock's in this root. For a given
107 * eb, the lockdep key is determined by the btrfs_root it belongs to and
108 * the level the eb occupies in the tree.
109 *
110 * Different roots are used for different purposes and may nest inside each
111 * other and they require separate keysets. As lockdep keys should be
112 * static, assign keysets according to the purpose of the root as indicated
113 * by btrfs_root->objectid. This ensures that all special purpose roots
114 * have separate keysets.
4008c04a 115 *
85d4e461
CM
116 * Lock-nesting across peer nodes is always done with the immediate parent
117 * node locked thus preventing deadlock. As lockdep doesn't know this, use
118 * subclass to avoid triggering lockdep warning in such cases.
4008c04a 119 *
85d4e461
CM
120 * The key is set by the readpage_end_io_hook after the buffer has passed
121 * csum validation but before the pages are unlocked. It is also set by
122 * btrfs_init_new_buffer on freshly allocated blocks.
4008c04a 123 *
85d4e461
CM
124 * We also add a check to make sure the highest level of the tree is the
125 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
126 * needs update as well.
4008c04a
CM
127 */
128#ifdef CONFIG_DEBUG_LOCK_ALLOC
129# if BTRFS_MAX_LEVEL != 8
130# error
131# endif
85d4e461
CM
132
133static struct btrfs_lockdep_keyset {
134 u64 id; /* root objectid */
135 const char *name_stem; /* lock name stem */
136 char names[BTRFS_MAX_LEVEL + 1][20];
137 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
138} btrfs_lockdep_keysets[] = {
139 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
140 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
141 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
142 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
143 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
144 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
145 { .id = BTRFS_ORPHAN_OBJECTID, .name_stem = "orphan" },
146 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
147 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
148 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
149 { .id = 0, .name_stem = "tree" },
4008c04a 150};
85d4e461
CM
151
152void __init btrfs_init_lockdep(void)
153{
154 int i, j;
155
156 /* initialize lockdep class names */
157 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
158 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
159
160 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
161 snprintf(ks->names[j], sizeof(ks->names[j]),
162 "btrfs-%s-%02d", ks->name_stem, j);
163 }
164}
165
166void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
167 int level)
168{
169 struct btrfs_lockdep_keyset *ks;
170
171 BUG_ON(level >= ARRAY_SIZE(ks->keys));
172
173 /* find the matching keyset, id 0 is the default entry */
174 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
175 if (ks->id == objectid)
176 break;
177
178 lockdep_set_class_and_name(&eb->lock,
179 &ks->keys[level], ks->names[level]);
180}
181
4008c04a
CM
182#endif
183
d352ac68
CM
184/*
185 * extents on the btree inode are pretty simple, there's one extent
186 * that covers the entire device
187 */
b2950863 188static struct extent_map *btree_get_extent(struct inode *inode,
306e16ce 189 struct page *page, size_t pg_offset, u64 start, u64 len,
b2950863 190 int create)
7eccb903 191{
5f39d397
CM
192 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
193 struct extent_map *em;
194 int ret;
195
890871be 196 read_lock(&em_tree->lock);
d1310b2e 197 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
198 if (em) {
199 em->bdev =
200 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
890871be 201 read_unlock(&em_tree->lock);
5f39d397 202 goto out;
a061fc8d 203 }
890871be 204 read_unlock(&em_tree->lock);
7b13b7b1 205
172ddd60 206 em = alloc_extent_map();
5f39d397
CM
207 if (!em) {
208 em = ERR_PTR(-ENOMEM);
209 goto out;
210 }
211 em->start = 0;
0afbaf8c 212 em->len = (u64)-1;
c8b97818 213 em->block_len = (u64)-1;
5f39d397 214 em->block_start = 0;
a061fc8d 215 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
d1310b2e 216
890871be 217 write_lock(&em_tree->lock);
5f39d397
CM
218 ret = add_extent_mapping(em_tree, em);
219 if (ret == -EEXIST) {
0afbaf8c
CM
220 u64 failed_start = em->start;
221 u64 failed_len = em->len;
222
5f39d397 223 free_extent_map(em);
7b13b7b1 224 em = lookup_extent_mapping(em_tree, start, len);
0afbaf8c 225 if (em) {
7b13b7b1 226 ret = 0;
0afbaf8c
CM
227 } else {
228 em = lookup_extent_mapping(em_tree, failed_start,
229 failed_len);
7b13b7b1 230 ret = -EIO;
0afbaf8c 231 }
5f39d397 232 } else if (ret) {
7b13b7b1
CM
233 free_extent_map(em);
234 em = NULL;
5f39d397 235 }
890871be 236 write_unlock(&em_tree->lock);
7b13b7b1
CM
237
238 if (ret)
239 em = ERR_PTR(ret);
5f39d397
CM
240out:
241 return em;
7eccb903
CM
242}
243
19c00ddc
CM
244u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
245{
163e783e 246 return crc32c(seed, data, len);
19c00ddc
CM
247}
248
249void btrfs_csum_final(u32 crc, char *result)
250{
7e75bf3f 251 put_unaligned_le32(~crc, result);
19c00ddc
CM
252}
253
d352ac68
CM
254/*
255 * compute the csum for a btree block, and either verify it or write it
256 * into the csum field of the block.
257 */
19c00ddc
CM
258static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
259 int verify)
260{
6c41761f 261 u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
607d432d 262 char *result = NULL;
19c00ddc
CM
263 unsigned long len;
264 unsigned long cur_len;
265 unsigned long offset = BTRFS_CSUM_SIZE;
19c00ddc
CM
266 char *kaddr;
267 unsigned long map_start;
268 unsigned long map_len;
269 int err;
270 u32 crc = ~(u32)0;
607d432d 271 unsigned long inline_result;
19c00ddc
CM
272
273 len = buf->len - offset;
d397712b 274 while (len > 0) {
19c00ddc 275 err = map_private_extent_buffer(buf, offset, 32,
a6591715 276 &kaddr, &map_start, &map_len);
d397712b 277 if (err)
19c00ddc 278 return 1;
19c00ddc
CM
279 cur_len = min(len, map_len - (offset - map_start));
280 crc = btrfs_csum_data(root, kaddr + offset - map_start,
281 crc, cur_len);
282 len -= cur_len;
283 offset += cur_len;
19c00ddc 284 }
607d432d
JB
285 if (csum_size > sizeof(inline_result)) {
286 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
287 if (!result)
288 return 1;
289 } else {
290 result = (char *)&inline_result;
291 }
292
19c00ddc
CM
293 btrfs_csum_final(crc, result);
294
295 if (verify) {
607d432d 296 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
e4204ded
CM
297 u32 val;
298 u32 found = 0;
607d432d 299 memcpy(&found, result, csum_size);
e4204ded 300
607d432d 301 read_extent_buffer(buf, &val, 0, csum_size);
7a36ddec 302 printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
193f284d
CM
303 "failed on %llu wanted %X found %X "
304 "level %d\n",
305 root->fs_info->sb->s_id,
306 (unsigned long long)buf->start, val, found,
307 btrfs_header_level(buf));
607d432d
JB
308 if (result != (char *)&inline_result)
309 kfree(result);
19c00ddc
CM
310 return 1;
311 }
312 } else {
607d432d 313 write_extent_buffer(buf, result, 0, csum_size);
19c00ddc 314 }
607d432d
JB
315 if (result != (char *)&inline_result)
316 kfree(result);
19c00ddc
CM
317 return 0;
318}
319
d352ac68
CM
320/*
321 * we can't consider a given block up to date unless the transid of the
322 * block matches the transid in the parent node's pointer. This is how we
323 * detect blocks that either didn't get written at all or got written
324 * in the wrong place.
325 */
1259ab75 326static int verify_parent_transid(struct extent_io_tree *io_tree,
b9fab919
CM
327 struct extent_buffer *eb, u64 parent_transid,
328 int atomic)
1259ab75 329{
2ac55d41 330 struct extent_state *cached_state = NULL;
1259ab75
CM
331 int ret;
332
333 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
334 return 0;
335
b9fab919
CM
336 if (atomic)
337 return -EAGAIN;
338
2ac55d41 339 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
d0082371 340 0, &cached_state);
0b32f4bb 341 if (extent_buffer_uptodate(eb) &&
1259ab75
CM
342 btrfs_header_generation(eb) == parent_transid) {
343 ret = 0;
344 goto out;
345 }
7a36ddec 346 printk_ratelimited("parent transid verify failed on %llu wanted %llu "
193f284d
CM
347 "found %llu\n",
348 (unsigned long long)eb->start,
349 (unsigned long long)parent_transid,
350 (unsigned long long)btrfs_header_generation(eb));
1259ab75 351 ret = 1;
0b32f4bb 352 clear_extent_buffer_uptodate(eb);
33958dc6 353out:
2ac55d41
JB
354 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
355 &cached_state, GFP_NOFS);
1259ab75 356 return ret;
1259ab75
CM
357}
358
d352ac68
CM
359/*
360 * helper to read a given tree block, doing retries as required when
361 * the checksums don't match and we have alternate mirrors to try.
362 */
f188591e
CM
363static int btree_read_extent_buffer_pages(struct btrfs_root *root,
364 struct extent_buffer *eb,
ca7a79ad 365 u64 start, u64 parent_transid)
f188591e
CM
366{
367 struct extent_io_tree *io_tree;
ea466794 368 int failed = 0;
f188591e
CM
369 int ret;
370 int num_copies = 0;
371 int mirror_num = 0;
ea466794 372 int failed_mirror = 0;
f188591e 373
a826d6dc 374 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
f188591e
CM
375 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
376 while (1) {
bb82ab88
AJ
377 ret = read_extent_buffer_pages(io_tree, eb, start,
378 WAIT_COMPLETE,
f188591e 379 btree_get_extent, mirror_num);
b9fab919
CM
380 if (!ret && !verify_parent_transid(io_tree, eb,
381 parent_transid, 0))
ea466794 382 break;
d397712b 383
a826d6dc
JB
384 /*
385 * This buffer's crc is fine, but its contents are corrupted, so
386 * there is no reason to read the other copies, they won't be
387 * any less wrong.
388 */
389 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
ea466794
JB
390 break;
391
f188591e
CM
392 num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
393 eb->start, eb->len);
4235298e 394 if (num_copies == 1)
ea466794 395 break;
4235298e 396
5cf1ab56
JB
397 if (!failed_mirror) {
398 failed = 1;
399 failed_mirror = eb->read_mirror;
400 }
401
f188591e 402 mirror_num++;
ea466794
JB
403 if (mirror_num == failed_mirror)
404 mirror_num++;
405
4235298e 406 if (mirror_num > num_copies)
ea466794 407 break;
f188591e 408 }
ea466794
JB
409
410 if (failed && !ret)
411 repair_eb_io_failure(root, eb, failed_mirror);
412
413 return ret;
f188591e 414}
19c00ddc 415
d352ac68 416/*
d397712b
CM
417 * checksum a dirty tree block before IO. This has extra checks to make sure
418 * we only fill in the checksum field in the first page of a multi-page block
d352ac68 419 */
d397712b 420
b2950863 421static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
19c00ddc 422{
d1310b2e 423 struct extent_io_tree *tree;
35ebb934 424 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
19c00ddc 425 u64 found_start;
19c00ddc 426 struct extent_buffer *eb;
f188591e 427
d1310b2e 428 tree = &BTRFS_I(page->mapping->host)->io_tree;
19c00ddc 429
4f2de97a
JB
430 eb = (struct extent_buffer *)page->private;
431 if (page != eb->pages[0])
432 return 0;
19c00ddc
CM
433 found_start = btrfs_header_bytenr(eb);
434 if (found_start != start) {
55c69072 435 WARN_ON(1);
4f2de97a 436 return 0;
55c69072 437 }
727011e0 438 if (eb->pages[0] != page) {
55c69072 439 WARN_ON(1);
4f2de97a 440 return 0;
55c69072
CM
441 }
442 if (!PageUptodate(page)) {
55c69072 443 WARN_ON(1);
4f2de97a 444 return 0;
19c00ddc 445 }
19c00ddc 446 csum_tree_block(root, eb, 0);
19c00ddc
CM
447 return 0;
448}
449
2b82032c
YZ
450static int check_tree_block_fsid(struct btrfs_root *root,
451 struct extent_buffer *eb)
452{
453 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
454 u8 fsid[BTRFS_UUID_SIZE];
455 int ret = 1;
456
457 read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
458 BTRFS_FSID_SIZE);
459 while (fs_devices) {
460 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
461 ret = 0;
462 break;
463 }
464 fs_devices = fs_devices->seed;
465 }
466 return ret;
467}
468
a826d6dc
JB
469#define CORRUPT(reason, eb, root, slot) \
470 printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
471 "root=%llu, slot=%d\n", reason, \
472 (unsigned long long)btrfs_header_bytenr(eb), \
473 (unsigned long long)root->objectid, slot)
474
475static noinline int check_leaf(struct btrfs_root *root,
476 struct extent_buffer *leaf)
477{
478 struct btrfs_key key;
479 struct btrfs_key leaf_key;
480 u32 nritems = btrfs_header_nritems(leaf);
481 int slot;
482
483 if (nritems == 0)
484 return 0;
485
486 /* Check the 0 item */
487 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
488 BTRFS_LEAF_DATA_SIZE(root)) {
489 CORRUPT("invalid item offset size pair", leaf, root, 0);
490 return -EIO;
491 }
492
493 /*
494 * Check to make sure each items keys are in the correct order and their
495 * offsets make sense. We only have to loop through nritems-1 because
496 * we check the current slot against the next slot, which verifies the
497 * next slot's offset+size makes sense and that the current's slot
498 * offset is correct.
499 */
500 for (slot = 0; slot < nritems - 1; slot++) {
501 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
502 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
503
504 /* Make sure the keys are in the right order */
505 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
506 CORRUPT("bad key order", leaf, root, slot);
507 return -EIO;
508 }
509
510 /*
511 * Make sure the offset and ends are right, remember that the
512 * item data starts at the end of the leaf and grows towards the
513 * front.
514 */
515 if (btrfs_item_offset_nr(leaf, slot) !=
516 btrfs_item_end_nr(leaf, slot + 1)) {
517 CORRUPT("slot offset bad", leaf, root, slot);
518 return -EIO;
519 }
520
521 /*
522 * Check to make sure that we don't point outside of the leaf,
523 * just incase all the items are consistent to eachother, but
524 * all point outside of the leaf.
525 */
526 if (btrfs_item_end_nr(leaf, slot) >
527 BTRFS_LEAF_DATA_SIZE(root)) {
528 CORRUPT("slot end outside of leaf", leaf, root, slot);
529 return -EIO;
530 }
531 }
532
533 return 0;
534}
535
727011e0
CM
536struct extent_buffer *find_eb_for_page(struct extent_io_tree *tree,
537 struct page *page, int max_walk)
538{
539 struct extent_buffer *eb;
540 u64 start = page_offset(page);
541 u64 target = start;
542 u64 min_start;
543
544 if (start < max_walk)
545 min_start = 0;
546 else
547 min_start = start - max_walk;
548
549 while (start >= min_start) {
550 eb = find_extent_buffer(tree, start, 0);
551 if (eb) {
552 /*
553 * we found an extent buffer and it contains our page
554 * horray!
555 */
556 if (eb->start <= target &&
557 eb->start + eb->len > target)
558 return eb;
559
560 /* we found an extent buffer that wasn't for us */
561 free_extent_buffer(eb);
562 return NULL;
563 }
564 if (start == 0)
565 break;
566 start -= PAGE_CACHE_SIZE;
567 }
568 return NULL;
569}
570
b2950863 571static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
5cf1ab56 572 struct extent_state *state, int mirror)
ce9adaa5
CM
573{
574 struct extent_io_tree *tree;
575 u64 found_start;
576 int found_level;
ce9adaa5
CM
577 struct extent_buffer *eb;
578 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
f188591e 579 int ret = 0;
727011e0 580 int reads_done;
ce9adaa5 581
ce9adaa5
CM
582 if (!page->private)
583 goto out;
d397712b 584
727011e0 585 tree = &BTRFS_I(page->mapping->host)->io_tree;
4f2de97a 586 eb = (struct extent_buffer *)page->private;
d397712b 587
0b32f4bb
JB
588 /* the pending IO might have been the only thing that kept this buffer
589 * in memory. Make sure we have a ref for all this other checks
590 */
591 extent_buffer_get(eb);
592
593 reads_done = atomic_dec_and_test(&eb->io_pages);
727011e0
CM
594 if (!reads_done)
595 goto err;
f188591e 596
5cf1ab56 597 eb->read_mirror = mirror;
ea466794
JB
598 if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
599 ret = -EIO;
600 goto err;
601 }
602
ce9adaa5 603 found_start = btrfs_header_bytenr(eb);
727011e0 604 if (found_start != eb->start) {
7a36ddec 605 printk_ratelimited(KERN_INFO "btrfs bad tree block start "
193f284d
CM
606 "%llu %llu\n",
607 (unsigned long long)found_start,
608 (unsigned long long)eb->start);
f188591e 609 ret = -EIO;
ce9adaa5
CM
610 goto err;
611 }
2b82032c 612 if (check_tree_block_fsid(root, eb)) {
7a36ddec 613 printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
193f284d 614 (unsigned long long)eb->start);
1259ab75
CM
615 ret = -EIO;
616 goto err;
617 }
ce9adaa5
CM
618 found_level = btrfs_header_level(eb);
619
85d4e461
CM
620 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
621 eb, found_level);
4008c04a 622
ce9adaa5 623 ret = csum_tree_block(root, eb, 1);
a826d6dc 624 if (ret) {
f188591e 625 ret = -EIO;
a826d6dc
JB
626 goto err;
627 }
628
629 /*
630 * If this is a leaf block and it is corrupt, set the corrupt bit so
631 * that we don't try and read the other copies of this block, just
632 * return -EIO.
633 */
634 if (found_level == 0 && check_leaf(root, eb)) {
635 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
636 ret = -EIO;
637 }
ce9adaa5 638
0b32f4bb
JB
639 if (!ret)
640 set_extent_buffer_uptodate(eb);
ce9adaa5 641err:
4bb31e92
AJ
642 if (test_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) {
643 clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags);
644 btree_readahead_hook(root, eb, eb->start, ret);
645 }
646
0b32f4bb
JB
647 if (ret)
648 clear_extent_buffer_uptodate(eb);
649 free_extent_buffer(eb);
ce9adaa5 650out:
f188591e 651 return ret;
ce9adaa5
CM
652}
653
ea466794 654static int btree_io_failed_hook(struct page *page, int failed_mirror)
4bb31e92 655{
4bb31e92
AJ
656 struct extent_buffer *eb;
657 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
658
4f2de97a 659 eb = (struct extent_buffer *)page->private;
ea466794 660 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
5cf1ab56 661 eb->read_mirror = failed_mirror;
ea466794 662 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
4bb31e92 663 btree_readahead_hook(root, eb, eb->start, -EIO);
4bb31e92
AJ
664 return -EIO; /* we fixed nothing */
665}
666
ce9adaa5 667static void end_workqueue_bio(struct bio *bio, int err)
ce9adaa5
CM
668{
669 struct end_io_wq *end_io_wq = bio->bi_private;
670 struct btrfs_fs_info *fs_info;
ce9adaa5 671
ce9adaa5 672 fs_info = end_io_wq->info;
ce9adaa5 673 end_io_wq->error = err;
8b712842
CM
674 end_io_wq->work.func = end_workqueue_fn;
675 end_io_wq->work.flags = 0;
d20f7043 676
7b6d91da 677 if (bio->bi_rw & REQ_WRITE) {
0cb59c99 678 if (end_io_wq->metadata == 1)
cad321ad
CM
679 btrfs_queue_worker(&fs_info->endio_meta_write_workers,
680 &end_io_wq->work);
0cb59c99
JB
681 else if (end_io_wq->metadata == 2)
682 btrfs_queue_worker(&fs_info->endio_freespace_worker,
683 &end_io_wq->work);
cad321ad
CM
684 else
685 btrfs_queue_worker(&fs_info->endio_write_workers,
686 &end_io_wq->work);
d20f7043
CM
687 } else {
688 if (end_io_wq->metadata)
689 btrfs_queue_worker(&fs_info->endio_meta_workers,
690 &end_io_wq->work);
691 else
692 btrfs_queue_worker(&fs_info->endio_workers,
693 &end_io_wq->work);
694 }
ce9adaa5
CM
695}
696
0cb59c99
JB
697/*
698 * For the metadata arg you want
699 *
700 * 0 - if data
701 * 1 - if normal metadta
702 * 2 - if writing to the free space cache area
703 */
22c59948
CM
704int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
705 int metadata)
0b86a832 706{
ce9adaa5 707 struct end_io_wq *end_io_wq;
ce9adaa5
CM
708 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
709 if (!end_io_wq)
710 return -ENOMEM;
711
712 end_io_wq->private = bio->bi_private;
713 end_io_wq->end_io = bio->bi_end_io;
22c59948 714 end_io_wq->info = info;
ce9adaa5
CM
715 end_io_wq->error = 0;
716 end_io_wq->bio = bio;
22c59948 717 end_io_wq->metadata = metadata;
ce9adaa5
CM
718
719 bio->bi_private = end_io_wq;
720 bio->bi_end_io = end_workqueue_bio;
22c59948
CM
721 return 0;
722}
723
b64a2851 724unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
0986fe9e 725{
4854ddd0
CM
726 unsigned long limit = min_t(unsigned long,
727 info->workers.max_workers,
728 info->fs_devices->open_devices);
729 return 256 * limit;
730}
0986fe9e 731
4a69a410
CM
732static void run_one_async_start(struct btrfs_work *work)
733{
4a69a410 734 struct async_submit_bio *async;
79787eaa 735 int ret;
4a69a410
CM
736
737 async = container_of(work, struct async_submit_bio, work);
79787eaa
JM
738 ret = async->submit_bio_start(async->inode, async->rw, async->bio,
739 async->mirror_num, async->bio_flags,
740 async->bio_offset);
741 if (ret)
742 async->error = ret;
4a69a410
CM
743}
744
745static void run_one_async_done(struct btrfs_work *work)
8b712842
CM
746{
747 struct btrfs_fs_info *fs_info;
748 struct async_submit_bio *async;
4854ddd0 749 int limit;
8b712842
CM
750
751 async = container_of(work, struct async_submit_bio, work);
752 fs_info = BTRFS_I(async->inode)->root->fs_info;
4854ddd0 753
b64a2851 754 limit = btrfs_async_submit_limit(fs_info);
4854ddd0
CM
755 limit = limit * 2 / 3;
756
8b712842 757 atomic_dec(&fs_info->nr_async_submits);
0986fe9e 758
b64a2851
CM
759 if (atomic_read(&fs_info->nr_async_submits) < limit &&
760 waitqueue_active(&fs_info->async_submit_wait))
4854ddd0
CM
761 wake_up(&fs_info->async_submit_wait);
762
79787eaa
JM
763 /* If an error occured we just want to clean up the bio and move on */
764 if (async->error) {
765 bio_endio(async->bio, async->error);
766 return;
767 }
768
4a69a410 769 async->submit_bio_done(async->inode, async->rw, async->bio,
eaf25d93
CM
770 async->mirror_num, async->bio_flags,
771 async->bio_offset);
4a69a410
CM
772}
773
774static void run_one_async_free(struct btrfs_work *work)
775{
776 struct async_submit_bio *async;
777
778 async = container_of(work, struct async_submit_bio, work);
8b712842
CM
779 kfree(async);
780}
781
44b8bd7e
CM
782int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
783 int rw, struct bio *bio, int mirror_num,
c8b97818 784 unsigned long bio_flags,
eaf25d93 785 u64 bio_offset,
4a69a410
CM
786 extent_submit_bio_hook_t *submit_bio_start,
787 extent_submit_bio_hook_t *submit_bio_done)
44b8bd7e
CM
788{
789 struct async_submit_bio *async;
790
791 async = kmalloc(sizeof(*async), GFP_NOFS);
792 if (!async)
793 return -ENOMEM;
794
795 async->inode = inode;
796 async->rw = rw;
797 async->bio = bio;
798 async->mirror_num = mirror_num;
4a69a410
CM
799 async->submit_bio_start = submit_bio_start;
800 async->submit_bio_done = submit_bio_done;
801
802 async->work.func = run_one_async_start;
803 async->work.ordered_func = run_one_async_done;
804 async->work.ordered_free = run_one_async_free;
805
8b712842 806 async->work.flags = 0;
c8b97818 807 async->bio_flags = bio_flags;
eaf25d93 808 async->bio_offset = bio_offset;
8c8bee1d 809
79787eaa
JM
810 async->error = 0;
811
cb03c743 812 atomic_inc(&fs_info->nr_async_submits);
d313d7a3 813
7b6d91da 814 if (rw & REQ_SYNC)
d313d7a3
CM
815 btrfs_set_work_high_prio(&async->work);
816
8b712842 817 btrfs_queue_worker(&fs_info->workers, &async->work);
9473f16c 818
d397712b 819 while (atomic_read(&fs_info->async_submit_draining) &&
771ed689
CM
820 atomic_read(&fs_info->nr_async_submits)) {
821 wait_event(fs_info->async_submit_wait,
822 (atomic_read(&fs_info->nr_async_submits) == 0));
823 }
824
44b8bd7e
CM
825 return 0;
826}
827
ce3ed71a
CM
828static int btree_csum_one_bio(struct bio *bio)
829{
830 struct bio_vec *bvec = bio->bi_io_vec;
831 int bio_index = 0;
832 struct btrfs_root *root;
79787eaa 833 int ret = 0;
ce3ed71a
CM
834
835 WARN_ON(bio->bi_vcnt <= 0);
d397712b 836 while (bio_index < bio->bi_vcnt) {
ce3ed71a 837 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
79787eaa
JM
838 ret = csum_dirty_buffer(root, bvec->bv_page);
839 if (ret)
840 break;
ce3ed71a
CM
841 bio_index++;
842 bvec++;
843 }
79787eaa 844 return ret;
ce3ed71a
CM
845}
846
4a69a410
CM
847static int __btree_submit_bio_start(struct inode *inode, int rw,
848 struct bio *bio, int mirror_num,
eaf25d93
CM
849 unsigned long bio_flags,
850 u64 bio_offset)
22c59948 851{
8b712842
CM
852 /*
853 * when we're called for a write, we're already in the async
5443be45 854 * submission context. Just jump into btrfs_map_bio
8b712842 855 */
79787eaa 856 return btree_csum_one_bio(bio);
4a69a410 857}
22c59948 858
4a69a410 859static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
860 int mirror_num, unsigned long bio_flags,
861 u64 bio_offset)
4a69a410 862{
8b712842 863 /*
4a69a410
CM
864 * when we're called for a write, we're already in the async
865 * submission context. Just jump into btrfs_map_bio
8b712842 866 */
8b712842 867 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
0b86a832
CM
868}
869
44b8bd7e 870static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
871 int mirror_num, unsigned long bio_flags,
872 u64 bio_offset)
44b8bd7e 873{
cad321ad
CM
874 int ret;
875
7b6d91da 876 if (!(rw & REQ_WRITE)) {
f3f266ab 877
4a69a410
CM
878 /*
879 * called for a read, do the setup so that checksum validation
880 * can happen in the async kernel threads
881 */
f3f266ab
CM
882 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
883 bio, 1);
1d4284bd
CM
884 if (ret)
885 return ret;
4a69a410 886 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
6f3577bd 887 mirror_num, 0);
44b8bd7e 888 }
d313d7a3 889
cad321ad
CM
890 /*
891 * kthread helpers are used to submit writes so that checksumming
892 * can happen in parallel across all CPUs
893 */
44b8bd7e 894 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
c8b97818 895 inode, rw, bio, mirror_num, 0,
eaf25d93 896 bio_offset,
4a69a410
CM
897 __btree_submit_bio_start,
898 __btree_submit_bio_done);
44b8bd7e
CM
899}
900
3dd1462e 901#ifdef CONFIG_MIGRATION
784b4e29 902static int btree_migratepage(struct address_space *mapping,
a6bc32b8
MG
903 struct page *newpage, struct page *page,
904 enum migrate_mode mode)
784b4e29
CM
905{
906 /*
907 * we can't safely write a btree page from here,
908 * we haven't done the locking hook
909 */
910 if (PageDirty(page))
911 return -EAGAIN;
912 /*
913 * Buffers may be managed in a filesystem specific way.
914 * We must have no buffers or drop them.
915 */
916 if (page_has_private(page) &&
917 !try_to_release_page(page, GFP_KERNEL))
918 return -EAGAIN;
a6bc32b8 919 return migrate_page(mapping, newpage, page, mode);
784b4e29 920}
3dd1462e 921#endif
784b4e29 922
0da5468f
CM
923
924static int btree_writepages(struct address_space *mapping,
925 struct writeback_control *wbc)
926{
d1310b2e
CM
927 struct extent_io_tree *tree;
928 tree = &BTRFS_I(mapping->host)->io_tree;
d8d5f3e1 929 if (wbc->sync_mode == WB_SYNC_NONE) {
b9473439 930 struct btrfs_root *root = BTRFS_I(mapping->host)->root;
793955bc 931 u64 num_dirty;
24ab9cd8 932 unsigned long thresh = 32 * 1024 * 1024;
448d640b
CM
933
934 if (wbc->for_kupdate)
935 return 0;
936
b9473439
CM
937 /* this is a bit racy, but that's ok */
938 num_dirty = root->fs_info->dirty_metadata_bytes;
d397712b 939 if (num_dirty < thresh)
793955bc 940 return 0;
793955bc 941 }
0b32f4bb 942 return btree_write_cache_pages(mapping, wbc);
0da5468f
CM
943}
944
b2950863 945static int btree_readpage(struct file *file, struct page *page)
5f39d397 946{
d1310b2e
CM
947 struct extent_io_tree *tree;
948 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 949 return extent_read_full_page(tree, page, btree_get_extent, 0);
5f39d397 950}
22b0ebda 951
70dec807 952static int btree_releasepage(struct page *page, gfp_t gfp_flags)
5f39d397 953{
98509cfc 954 if (PageWriteback(page) || PageDirty(page))
d397712b 955 return 0;
0c4e538b
DS
956 /*
957 * We need to mask out eg. __GFP_HIGHMEM and __GFP_DMA32 as we're doing
958 * slab allocation from alloc_extent_state down the callchain where
959 * it'd hit a BUG_ON as those flags are not allowed.
960 */
961 gfp_flags &= ~GFP_SLAB_BUG_MASK;
962
3083ee2e 963 return try_release_extent_buffer(page, gfp_flags);
d98237b3
CM
964}
965
5f39d397 966static void btree_invalidatepage(struct page *page, unsigned long offset)
d98237b3 967{
d1310b2e
CM
968 struct extent_io_tree *tree;
969 tree = &BTRFS_I(page->mapping->host)->io_tree;
5f39d397
CM
970 extent_invalidatepage(tree, page, offset);
971 btree_releasepage(page, GFP_NOFS);
9ad6b7bc 972 if (PagePrivate(page)) {
d397712b
CM
973 printk(KERN_WARNING "btrfs warning page private not zero "
974 "on page %llu\n", (unsigned long long)page_offset(page));
9ad6b7bc
CM
975 ClearPagePrivate(page);
976 set_page_private(page, 0);
977 page_cache_release(page);
978 }
d98237b3
CM
979}
980
0b32f4bb
JB
981static int btree_set_page_dirty(struct page *page)
982{
983 struct extent_buffer *eb;
984
985 BUG_ON(!PagePrivate(page));
986 eb = (struct extent_buffer *)page->private;
987 BUG_ON(!eb);
988 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
989 BUG_ON(!atomic_read(&eb->refs));
990 btrfs_assert_tree_locked(eb);
991 return __set_page_dirty_nobuffers(page);
992}
993
7f09410b 994static const struct address_space_operations btree_aops = {
d98237b3 995 .readpage = btree_readpage,
0da5468f 996 .writepages = btree_writepages,
5f39d397
CM
997 .releasepage = btree_releasepage,
998 .invalidatepage = btree_invalidatepage,
5a92bc88 999#ifdef CONFIG_MIGRATION
784b4e29 1000 .migratepage = btree_migratepage,
5a92bc88 1001#endif
0b32f4bb 1002 .set_page_dirty = btree_set_page_dirty,
d98237b3
CM
1003};
1004
ca7a79ad
CM
1005int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1006 u64 parent_transid)
090d1875 1007{
5f39d397
CM
1008 struct extent_buffer *buf = NULL;
1009 struct inode *btree_inode = root->fs_info->btree_inode;
de428b63 1010 int ret = 0;
090d1875 1011
db94535d 1012 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
5f39d397 1013 if (!buf)
090d1875 1014 return 0;
d1310b2e 1015 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
bb82ab88 1016 buf, 0, WAIT_NONE, btree_get_extent, 0);
5f39d397 1017 free_extent_buffer(buf);
de428b63 1018 return ret;
090d1875
CM
1019}
1020
ab0fff03
AJ
1021int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1022 int mirror_num, struct extent_buffer **eb)
1023{
1024 struct extent_buffer *buf = NULL;
1025 struct inode *btree_inode = root->fs_info->btree_inode;
1026 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1027 int ret;
1028
1029 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1030 if (!buf)
1031 return 0;
1032
1033 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1034
1035 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1036 btree_get_extent, mirror_num);
1037 if (ret) {
1038 free_extent_buffer(buf);
1039 return ret;
1040 }
1041
1042 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1043 free_extent_buffer(buf);
1044 return -EIO;
0b32f4bb 1045 } else if (extent_buffer_uptodate(buf)) {
ab0fff03
AJ
1046 *eb = buf;
1047 } else {
1048 free_extent_buffer(buf);
1049 }
1050 return 0;
1051}
1052
0999df54
CM
1053struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1054 u64 bytenr, u32 blocksize)
1055{
1056 struct inode *btree_inode = root->fs_info->btree_inode;
1057 struct extent_buffer *eb;
1058 eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
f09d1f60 1059 bytenr, blocksize);
0999df54
CM
1060 return eb;
1061}
1062
1063struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1064 u64 bytenr, u32 blocksize)
1065{
1066 struct inode *btree_inode = root->fs_info->btree_inode;
1067 struct extent_buffer *eb;
1068
1069 eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
727011e0 1070 bytenr, blocksize);
0999df54
CM
1071 return eb;
1072}
1073
1074
e02119d5
CM
1075int btrfs_write_tree_block(struct extent_buffer *buf)
1076{
727011e0 1077 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
8aa38c31 1078 buf->start + buf->len - 1);
e02119d5
CM
1079}
1080
1081int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1082{
727011e0 1083 return filemap_fdatawait_range(buf->pages[0]->mapping,
8aa38c31 1084 buf->start, buf->start + buf->len - 1);
e02119d5
CM
1085}
1086
0999df54 1087struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
ca7a79ad 1088 u32 blocksize, u64 parent_transid)
0999df54
CM
1089{
1090 struct extent_buffer *buf = NULL;
0999df54
CM
1091 int ret;
1092
0999df54
CM
1093 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1094 if (!buf)
1095 return NULL;
0999df54 1096
ca7a79ad 1097 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
5f39d397 1098 return buf;
ce9adaa5 1099
eb60ceac
CM
1100}
1101
d5c13f92
JM
1102void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1103 struct extent_buffer *buf)
ed2ff2cb 1104{
55c69072 1105 if (btrfs_header_generation(buf) ==
925baedd 1106 root->fs_info->running_transaction->transid) {
b9447ef8 1107 btrfs_assert_tree_locked(buf);
b4ce94de 1108
b9473439
CM
1109 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1110 spin_lock(&root->fs_info->delalloc_lock);
1111 if (root->fs_info->dirty_metadata_bytes >= buf->len)
1112 root->fs_info->dirty_metadata_bytes -= buf->len;
d5c13f92
JM
1113 else {
1114 spin_unlock(&root->fs_info->delalloc_lock);
1115 btrfs_panic(root->fs_info, -EOVERFLOW,
1116 "Can't clear %lu bytes from "
1117 " dirty_mdatadata_bytes (%lu)",
1118 buf->len,
1119 root->fs_info->dirty_metadata_bytes);
1120 }
b9473439
CM
1121 spin_unlock(&root->fs_info->delalloc_lock);
1122 }
b4ce94de 1123
b9473439
CM
1124 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1125 btrfs_set_lock_blocking(buf);
0b32f4bb 1126 clear_extent_buffer_dirty(buf);
925baedd 1127 }
5f39d397
CM
1128}
1129
143bede5
JM
1130static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1131 u32 stripesize, struct btrfs_root *root,
1132 struct btrfs_fs_info *fs_info,
1133 u64 objectid)
d97e63b6 1134{
cfaa7295 1135 root->node = NULL;
a28ec197 1136 root->commit_root = NULL;
db94535d
CM
1137 root->sectorsize = sectorsize;
1138 root->nodesize = nodesize;
1139 root->leafsize = leafsize;
87ee04eb 1140 root->stripesize = stripesize;
123abc88 1141 root->ref_cows = 0;
0b86a832 1142 root->track_dirty = 0;
c71bf099 1143 root->in_radix = 0;
d68fc57b
YZ
1144 root->orphan_item_inserted = 0;
1145 root->orphan_cleanup_state = 0;
0b86a832 1146
0f7d52f4
CM
1147 root->objectid = objectid;
1148 root->last_trans = 0;
13a8a7c8 1149 root->highest_objectid = 0;
58176a96 1150 root->name = NULL;
6bef4d31 1151 root->inode_tree = RB_ROOT;
16cdcec7 1152 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
f0486c68 1153 root->block_rsv = NULL;
d68fc57b 1154 root->orphan_block_rsv = NULL;
0b86a832
CM
1155
1156 INIT_LIST_HEAD(&root->dirty_list);
5d4f98a2 1157 INIT_LIST_HEAD(&root->root_list);
d68fc57b 1158 spin_lock_init(&root->orphan_lock);
5d4f98a2 1159 spin_lock_init(&root->inode_lock);
f0486c68 1160 spin_lock_init(&root->accounting_lock);
a2135011 1161 mutex_init(&root->objectid_mutex);
e02119d5 1162 mutex_init(&root->log_mutex);
7237f183
YZ
1163 init_waitqueue_head(&root->log_writer_wait);
1164 init_waitqueue_head(&root->log_commit_wait[0]);
1165 init_waitqueue_head(&root->log_commit_wait[1]);
1166 atomic_set(&root->log_commit[0], 0);
1167 atomic_set(&root->log_commit[1], 0);
1168 atomic_set(&root->log_writers, 0);
8a35d95f 1169 atomic_set(&root->orphan_inodes, 0);
7237f183
YZ
1170 root->log_batch = 0;
1171 root->log_transid = 0;
257c62e1 1172 root->last_log_commit = 0;
d0c803c4 1173 extent_io_tree_init(&root->dirty_log_pages,
f993c883 1174 fs_info->btree_inode->i_mapping);
017e5369 1175
3768f368
CM
1176 memset(&root->root_key, 0, sizeof(root->root_key));
1177 memset(&root->root_item, 0, sizeof(root->root_item));
6702ed49 1178 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
58176a96 1179 memset(&root->root_kobj, 0, sizeof(root->root_kobj));
3f157a2f 1180 root->defrag_trans_start = fs_info->generation;
58176a96 1181 init_completion(&root->kobj_unregister);
6702ed49 1182 root->defrag_running = 0;
4d775673 1183 root->root_key.objectid = objectid;
0ee5dc67 1184 root->anon_dev = 0;
3768f368
CM
1185}
1186
200a5c17
JM
1187static int __must_check find_and_setup_root(struct btrfs_root *tree_root,
1188 struct btrfs_fs_info *fs_info,
1189 u64 objectid,
1190 struct btrfs_root *root)
3768f368
CM
1191{
1192 int ret;
db94535d 1193 u32 blocksize;
84234f3a 1194 u64 generation;
3768f368 1195
db94535d 1196 __setup_root(tree_root->nodesize, tree_root->leafsize,
87ee04eb
CM
1197 tree_root->sectorsize, tree_root->stripesize,
1198 root, fs_info, objectid);
3768f368
CM
1199 ret = btrfs_find_last_root(tree_root, objectid,
1200 &root->root_item, &root->root_key);
4df27c4d
YZ
1201 if (ret > 0)
1202 return -ENOENT;
200a5c17
JM
1203 else if (ret < 0)
1204 return ret;
3768f368 1205
84234f3a 1206 generation = btrfs_root_generation(&root->root_item);
db94535d 1207 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
af31f5e5 1208 root->commit_root = NULL;
db94535d 1209 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
84234f3a 1210 blocksize, generation);
b9fab919 1211 if (!root->node || !btrfs_buffer_uptodate(root->node, generation, 0)) {
68433b73 1212 free_extent_buffer(root->node);
af31f5e5 1213 root->node = NULL;
68433b73
CM
1214 return -EIO;
1215 }
4df27c4d 1216 root->commit_root = btrfs_root_node(root);
d97e63b6
CM
1217 return 0;
1218}
1219
f84a8bd6 1220static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
6f07e42e
AV
1221{
1222 struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1223 if (root)
1224 root->fs_info = fs_info;
1225 return root;
1226}
1227
7237f183
YZ
1228static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1229 struct btrfs_fs_info *fs_info)
0f7d52f4
CM
1230{
1231 struct btrfs_root *root;
1232 struct btrfs_root *tree_root = fs_info->tree_root;
7237f183 1233 struct extent_buffer *leaf;
e02119d5 1234
6f07e42e 1235 root = btrfs_alloc_root(fs_info);
e02119d5 1236 if (!root)
7237f183 1237 return ERR_PTR(-ENOMEM);
e02119d5
CM
1238
1239 __setup_root(tree_root->nodesize, tree_root->leafsize,
1240 tree_root->sectorsize, tree_root->stripesize,
1241 root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1242
1243 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1244 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1245 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
7237f183
YZ
1246 /*
1247 * log trees do not get reference counted because they go away
1248 * before a real commit is actually done. They do store pointers
1249 * to file data extents, and those reference counts still get
1250 * updated (along with back refs to the log tree).
1251 */
e02119d5
CM
1252 root->ref_cows = 0;
1253
5d4f98a2 1254 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
66d7e7f0 1255 BTRFS_TREE_LOG_OBJECTID, NULL,
5581a51a 1256 0, 0, 0);
7237f183
YZ
1257 if (IS_ERR(leaf)) {
1258 kfree(root);
1259 return ERR_CAST(leaf);
1260 }
e02119d5 1261
5d4f98a2
YZ
1262 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1263 btrfs_set_header_bytenr(leaf, leaf->start);
1264 btrfs_set_header_generation(leaf, trans->transid);
1265 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1266 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
7237f183 1267 root->node = leaf;
e02119d5
CM
1268
1269 write_extent_buffer(root->node, root->fs_info->fsid,
1270 (unsigned long)btrfs_header_fsid(root->node),
1271 BTRFS_FSID_SIZE);
1272 btrfs_mark_buffer_dirty(root->node);
1273 btrfs_tree_unlock(root->node);
7237f183
YZ
1274 return root;
1275}
1276
1277int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1278 struct btrfs_fs_info *fs_info)
1279{
1280 struct btrfs_root *log_root;
1281
1282 log_root = alloc_log_tree(trans, fs_info);
1283 if (IS_ERR(log_root))
1284 return PTR_ERR(log_root);
1285 WARN_ON(fs_info->log_root_tree);
1286 fs_info->log_root_tree = log_root;
1287 return 0;
1288}
1289
1290int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1291 struct btrfs_root *root)
1292{
1293 struct btrfs_root *log_root;
1294 struct btrfs_inode_item *inode_item;
1295
1296 log_root = alloc_log_tree(trans, root->fs_info);
1297 if (IS_ERR(log_root))
1298 return PTR_ERR(log_root);
1299
1300 log_root->last_trans = trans->transid;
1301 log_root->root_key.offset = root->root_key.objectid;
1302
1303 inode_item = &log_root->root_item.inode;
1304 inode_item->generation = cpu_to_le64(1);
1305 inode_item->size = cpu_to_le64(3);
1306 inode_item->nlink = cpu_to_le32(1);
1307 inode_item->nbytes = cpu_to_le64(root->leafsize);
1308 inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
1309
5d4f98a2 1310 btrfs_set_root_node(&log_root->root_item, log_root->node);
7237f183
YZ
1311
1312 WARN_ON(root->log_root);
1313 root->log_root = log_root;
1314 root->log_transid = 0;
257c62e1 1315 root->last_log_commit = 0;
e02119d5
CM
1316 return 0;
1317}
1318
1319struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
1320 struct btrfs_key *location)
1321{
1322 struct btrfs_root *root;
1323 struct btrfs_fs_info *fs_info = tree_root->fs_info;
0f7d52f4 1324 struct btrfs_path *path;
5f39d397 1325 struct extent_buffer *l;
84234f3a 1326 u64 generation;
db94535d 1327 u32 blocksize;
0f7d52f4
CM
1328 int ret = 0;
1329
6f07e42e 1330 root = btrfs_alloc_root(fs_info);
0cf6c620 1331 if (!root)
0f7d52f4 1332 return ERR_PTR(-ENOMEM);
0f7d52f4 1333 if (location->offset == (u64)-1) {
db94535d 1334 ret = find_and_setup_root(tree_root, fs_info,
0f7d52f4
CM
1335 location->objectid, root);
1336 if (ret) {
0f7d52f4
CM
1337 kfree(root);
1338 return ERR_PTR(ret);
1339 }
13a8a7c8 1340 goto out;
0f7d52f4
CM
1341 }
1342
db94535d 1343 __setup_root(tree_root->nodesize, tree_root->leafsize,
87ee04eb
CM
1344 tree_root->sectorsize, tree_root->stripesize,
1345 root, fs_info, location->objectid);
0f7d52f4
CM
1346
1347 path = btrfs_alloc_path();
db5b493a
TI
1348 if (!path) {
1349 kfree(root);
1350 return ERR_PTR(-ENOMEM);
1351 }
0f7d52f4 1352 ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
13a8a7c8
YZ
1353 if (ret == 0) {
1354 l = path->nodes[0];
1355 read_extent_buffer(l, &root->root_item,
1356 btrfs_item_ptr_offset(l, path->slots[0]),
1357 sizeof(root->root_item));
1358 memcpy(&root->root_key, location, sizeof(*location));
0f7d52f4 1359 }
0f7d52f4
CM
1360 btrfs_free_path(path);
1361 if (ret) {
5e540f77 1362 kfree(root);
13a8a7c8
YZ
1363 if (ret > 0)
1364 ret = -ENOENT;
0f7d52f4
CM
1365 return ERR_PTR(ret);
1366 }
13a8a7c8 1367
84234f3a 1368 generation = btrfs_root_generation(&root->root_item);
db94535d
CM
1369 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1370 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
84234f3a 1371 blocksize, generation);
5d4f98a2 1372 root->commit_root = btrfs_root_node(root);
79787eaa 1373 BUG_ON(!root->node); /* -ENOMEM */
13a8a7c8 1374out:
08fe4db1 1375 if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
e02119d5 1376 root->ref_cows = 1;
08fe4db1
LZ
1377 btrfs_check_and_init_root_item(&root->root_item);
1378 }
13a8a7c8 1379
5eda7b5e
CM
1380 return root;
1381}
1382
edbd8d4e
CM
1383struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1384 struct btrfs_key *location)
5eda7b5e
CM
1385{
1386 struct btrfs_root *root;
1387 int ret;
1388
edbd8d4e
CM
1389 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1390 return fs_info->tree_root;
1391 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1392 return fs_info->extent_root;
8f18cf13
CM
1393 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1394 return fs_info->chunk_root;
1395 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1396 return fs_info->dev_root;
0403e47e
YZ
1397 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1398 return fs_info->csum_root;
4df27c4d
YZ
1399again:
1400 spin_lock(&fs_info->fs_roots_radix_lock);
5eda7b5e
CM
1401 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1402 (unsigned long)location->objectid);
4df27c4d 1403 spin_unlock(&fs_info->fs_roots_radix_lock);
5eda7b5e
CM
1404 if (root)
1405 return root;
1406
e02119d5 1407 root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
5eda7b5e
CM
1408 if (IS_ERR(root))
1409 return root;
3394e160 1410
581bb050 1411 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
581bb050
LZ
1412 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1413 GFP_NOFS);
35a30d7c
DS
1414 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1415 ret = -ENOMEM;
581bb050 1416 goto fail;
35a30d7c 1417 }
581bb050
LZ
1418
1419 btrfs_init_free_ino_ctl(root);
1420 mutex_init(&root->fs_commit_mutex);
1421 spin_lock_init(&root->cache_lock);
1422 init_waitqueue_head(&root->cache_wait);
1423
0ee5dc67 1424 ret = get_anon_bdev(&root->anon_dev);
ac08aedf
CM
1425 if (ret)
1426 goto fail;
3394e160 1427
d68fc57b
YZ
1428 if (btrfs_root_refs(&root->root_item) == 0) {
1429 ret = -ENOENT;
1430 goto fail;
1431 }
1432
1433 ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
1434 if (ret < 0)
1435 goto fail;
1436 if (ret == 0)
1437 root->orphan_item_inserted = 1;
1438
4df27c4d
YZ
1439 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1440 if (ret)
1441 goto fail;
1442
1443 spin_lock(&fs_info->fs_roots_radix_lock);
2619ba1f
CM
1444 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1445 (unsigned long)root->root_key.objectid,
0f7d52f4 1446 root);
d68fc57b 1447 if (ret == 0)
4df27c4d 1448 root->in_radix = 1;
d68fc57b 1449
4df27c4d
YZ
1450 spin_unlock(&fs_info->fs_roots_radix_lock);
1451 radix_tree_preload_end();
0f7d52f4 1452 if (ret) {
4df27c4d
YZ
1453 if (ret == -EEXIST) {
1454 free_fs_root(root);
1455 goto again;
1456 }
1457 goto fail;
0f7d52f4 1458 }
4df27c4d
YZ
1459
1460 ret = btrfs_find_dead_roots(fs_info->tree_root,
1461 root->root_key.objectid);
1462 WARN_ON(ret);
edbd8d4e 1463 return root;
4df27c4d
YZ
1464fail:
1465 free_fs_root(root);
1466 return ERR_PTR(ret);
edbd8d4e
CM
1467}
1468
04160088
CM
1469static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1470{
1471 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1472 int ret = 0;
04160088
CM
1473 struct btrfs_device *device;
1474 struct backing_dev_info *bdi;
b7967db7 1475
1f78160c
XG
1476 rcu_read_lock();
1477 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
dfe25020
CM
1478 if (!device->bdev)
1479 continue;
04160088
CM
1480 bdi = blk_get_backing_dev_info(device->bdev);
1481 if (bdi && bdi_congested(bdi, bdi_bits)) {
1482 ret = 1;
1483 break;
1484 }
1485 }
1f78160c 1486 rcu_read_unlock();
04160088
CM
1487 return ret;
1488}
1489
ad081f14
JA
1490/*
1491 * If this fails, caller must call bdi_destroy() to get rid of the
1492 * bdi again.
1493 */
04160088
CM
1494static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1495{
ad081f14
JA
1496 int err;
1497
1498 bdi->capabilities = BDI_CAP_MAP_COPY;
e6d086d8 1499 err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
ad081f14
JA
1500 if (err)
1501 return err;
1502
4575c9cc 1503 bdi->ra_pages = default_backing_dev_info.ra_pages;
04160088
CM
1504 bdi->congested_fn = btrfs_congested_fn;
1505 bdi->congested_data = info;
1506 return 0;
1507}
1508
8b712842
CM
1509/*
1510 * called by the kthread helper functions to finally call the bio end_io
1511 * functions. This is where read checksum verification actually happens
1512 */
1513static void end_workqueue_fn(struct btrfs_work *work)
ce9adaa5 1514{
ce9adaa5 1515 struct bio *bio;
8b712842
CM
1516 struct end_io_wq *end_io_wq;
1517 struct btrfs_fs_info *fs_info;
ce9adaa5 1518 int error;
ce9adaa5 1519
8b712842
CM
1520 end_io_wq = container_of(work, struct end_io_wq, work);
1521 bio = end_io_wq->bio;
1522 fs_info = end_io_wq->info;
ce9adaa5 1523
8b712842
CM
1524 error = end_io_wq->error;
1525 bio->bi_private = end_io_wq->private;
1526 bio->bi_end_io = end_io_wq->end_io;
1527 kfree(end_io_wq);
8b712842 1528 bio_endio(bio, error);
44b8bd7e
CM
1529}
1530
a74a4b97
CM
1531static int cleaner_kthread(void *arg)
1532{
1533 struct btrfs_root *root = arg;
1534
1535 do {
a74a4b97 1536 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
76dda93c
YZ
1537
1538 if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
1539 mutex_trylock(&root->fs_info->cleaner_mutex)) {
24bbcf04 1540 btrfs_run_delayed_iputs(root);
76dda93c
YZ
1541 btrfs_clean_old_snapshots(root);
1542 mutex_unlock(&root->fs_info->cleaner_mutex);
4cb5300b 1543 btrfs_run_defrag_inodes(root->fs_info);
76dda93c 1544 }
a74a4b97 1545
a0acae0e 1546 if (!try_to_freeze()) {
a74a4b97 1547 set_current_state(TASK_INTERRUPTIBLE);
8929ecfa
YZ
1548 if (!kthread_should_stop())
1549 schedule();
a74a4b97
CM
1550 __set_current_state(TASK_RUNNING);
1551 }
1552 } while (!kthread_should_stop());
1553 return 0;
1554}
1555
1556static int transaction_kthread(void *arg)
1557{
1558 struct btrfs_root *root = arg;
1559 struct btrfs_trans_handle *trans;
1560 struct btrfs_transaction *cur;
8929ecfa 1561 u64 transid;
a74a4b97
CM
1562 unsigned long now;
1563 unsigned long delay;
914b2007 1564 bool cannot_commit;
a74a4b97
CM
1565
1566 do {
914b2007 1567 cannot_commit = false;
a74a4b97
CM
1568 delay = HZ * 30;
1569 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1570 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1571
a4abeea4 1572 spin_lock(&root->fs_info->trans_lock);
a74a4b97
CM
1573 cur = root->fs_info->running_transaction;
1574 if (!cur) {
a4abeea4 1575 spin_unlock(&root->fs_info->trans_lock);
a74a4b97
CM
1576 goto sleep;
1577 }
31153d81 1578
a74a4b97 1579 now = get_seconds();
8929ecfa
YZ
1580 if (!cur->blocked &&
1581 (now < cur->start_time || now - cur->start_time < 30)) {
a4abeea4 1582 spin_unlock(&root->fs_info->trans_lock);
a74a4b97
CM
1583 delay = HZ * 5;
1584 goto sleep;
1585 }
8929ecfa 1586 transid = cur->transid;
a4abeea4 1587 spin_unlock(&root->fs_info->trans_lock);
56bec294 1588
79787eaa 1589 /* If the file system is aborted, this will always fail. */
7a7eaa40 1590 trans = btrfs_join_transaction(root);
914b2007
JK
1591 if (IS_ERR(trans)) {
1592 cannot_commit = true;
79787eaa 1593 goto sleep;
914b2007 1594 }
8929ecfa 1595 if (transid == trans->transid) {
79787eaa 1596 btrfs_commit_transaction(trans, root);
8929ecfa
YZ
1597 } else {
1598 btrfs_end_transaction(trans, root);
1599 }
a74a4b97
CM
1600sleep:
1601 wake_up_process(root->fs_info->cleaner_kthread);
1602 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1603
a0acae0e 1604 if (!try_to_freeze()) {
a74a4b97 1605 set_current_state(TASK_INTERRUPTIBLE);
8929ecfa 1606 if (!kthread_should_stop() &&
914b2007
JK
1607 (!btrfs_transaction_blocked(root->fs_info) ||
1608 cannot_commit))
8929ecfa 1609 schedule_timeout(delay);
a74a4b97
CM
1610 __set_current_state(TASK_RUNNING);
1611 }
1612 } while (!kthread_should_stop());
1613 return 0;
1614}
1615
af31f5e5
CM
1616/*
1617 * this will find the highest generation in the array of
1618 * root backups. The index of the highest array is returned,
1619 * or -1 if we can't find anything.
1620 *
1621 * We check to make sure the array is valid by comparing the
1622 * generation of the latest root in the array with the generation
1623 * in the super block. If they don't match we pitch it.
1624 */
1625static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1626{
1627 u64 cur;
1628 int newest_index = -1;
1629 struct btrfs_root_backup *root_backup;
1630 int i;
1631
1632 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1633 root_backup = info->super_copy->super_roots + i;
1634 cur = btrfs_backup_tree_root_gen(root_backup);
1635 if (cur == newest_gen)
1636 newest_index = i;
1637 }
1638
1639 /* check to see if we actually wrapped around */
1640 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1641 root_backup = info->super_copy->super_roots;
1642 cur = btrfs_backup_tree_root_gen(root_backup);
1643 if (cur == newest_gen)
1644 newest_index = 0;
1645 }
1646 return newest_index;
1647}
1648
1649
1650/*
1651 * find the oldest backup so we know where to store new entries
1652 * in the backup array. This will set the backup_root_index
1653 * field in the fs_info struct
1654 */
1655static void find_oldest_super_backup(struct btrfs_fs_info *info,
1656 u64 newest_gen)
1657{
1658 int newest_index = -1;
1659
1660 newest_index = find_newest_super_backup(info, newest_gen);
1661 /* if there was garbage in there, just move along */
1662 if (newest_index == -1) {
1663 info->backup_root_index = 0;
1664 } else {
1665 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1666 }
1667}
1668
1669/*
1670 * copy all the root pointers into the super backup array.
1671 * this will bump the backup pointer by one when it is
1672 * done
1673 */
1674static void backup_super_roots(struct btrfs_fs_info *info)
1675{
1676 int next_backup;
1677 struct btrfs_root_backup *root_backup;
1678 int last_backup;
1679
1680 next_backup = info->backup_root_index;
1681 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1682 BTRFS_NUM_BACKUP_ROOTS;
1683
1684 /*
1685 * just overwrite the last backup if we're at the same generation
1686 * this happens only at umount
1687 */
1688 root_backup = info->super_for_commit->super_roots + last_backup;
1689 if (btrfs_backup_tree_root_gen(root_backup) ==
1690 btrfs_header_generation(info->tree_root->node))
1691 next_backup = last_backup;
1692
1693 root_backup = info->super_for_commit->super_roots + next_backup;
1694
1695 /*
1696 * make sure all of our padding and empty slots get zero filled
1697 * regardless of which ones we use today
1698 */
1699 memset(root_backup, 0, sizeof(*root_backup));
1700
1701 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1702
1703 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1704 btrfs_set_backup_tree_root_gen(root_backup,
1705 btrfs_header_generation(info->tree_root->node));
1706
1707 btrfs_set_backup_tree_root_level(root_backup,
1708 btrfs_header_level(info->tree_root->node));
1709
1710 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1711 btrfs_set_backup_chunk_root_gen(root_backup,
1712 btrfs_header_generation(info->chunk_root->node));
1713 btrfs_set_backup_chunk_root_level(root_backup,
1714 btrfs_header_level(info->chunk_root->node));
1715
1716 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1717 btrfs_set_backup_extent_root_gen(root_backup,
1718 btrfs_header_generation(info->extent_root->node));
1719 btrfs_set_backup_extent_root_level(root_backup,
1720 btrfs_header_level(info->extent_root->node));
1721
7c7e82a7
CM
1722 /*
1723 * we might commit during log recovery, which happens before we set
1724 * the fs_root. Make sure it is valid before we fill it in.
1725 */
1726 if (info->fs_root && info->fs_root->node) {
1727 btrfs_set_backup_fs_root(root_backup,
1728 info->fs_root->node->start);
1729 btrfs_set_backup_fs_root_gen(root_backup,
af31f5e5 1730 btrfs_header_generation(info->fs_root->node));
7c7e82a7 1731 btrfs_set_backup_fs_root_level(root_backup,
af31f5e5 1732 btrfs_header_level(info->fs_root->node));
7c7e82a7 1733 }
af31f5e5
CM
1734
1735 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1736 btrfs_set_backup_dev_root_gen(root_backup,
1737 btrfs_header_generation(info->dev_root->node));
1738 btrfs_set_backup_dev_root_level(root_backup,
1739 btrfs_header_level(info->dev_root->node));
1740
1741 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1742 btrfs_set_backup_csum_root_gen(root_backup,
1743 btrfs_header_generation(info->csum_root->node));
1744 btrfs_set_backup_csum_root_level(root_backup,
1745 btrfs_header_level(info->csum_root->node));
1746
1747 btrfs_set_backup_total_bytes(root_backup,
1748 btrfs_super_total_bytes(info->super_copy));
1749 btrfs_set_backup_bytes_used(root_backup,
1750 btrfs_super_bytes_used(info->super_copy));
1751 btrfs_set_backup_num_devices(root_backup,
1752 btrfs_super_num_devices(info->super_copy));
1753
1754 /*
1755 * if we don't copy this out to the super_copy, it won't get remembered
1756 * for the next commit
1757 */
1758 memcpy(&info->super_copy->super_roots,
1759 &info->super_for_commit->super_roots,
1760 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1761}
1762
1763/*
1764 * this copies info out of the root backup array and back into
1765 * the in-memory super block. It is meant to help iterate through
1766 * the array, so you send it the number of backups you've already
1767 * tried and the last backup index you used.
1768 *
1769 * this returns -1 when it has tried all the backups
1770 */
1771static noinline int next_root_backup(struct btrfs_fs_info *info,
1772 struct btrfs_super_block *super,
1773 int *num_backups_tried, int *backup_index)
1774{
1775 struct btrfs_root_backup *root_backup;
1776 int newest = *backup_index;
1777
1778 if (*num_backups_tried == 0) {
1779 u64 gen = btrfs_super_generation(super);
1780
1781 newest = find_newest_super_backup(info, gen);
1782 if (newest == -1)
1783 return -1;
1784
1785 *backup_index = newest;
1786 *num_backups_tried = 1;
1787 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1788 /* we've tried all the backups, all done */
1789 return -1;
1790 } else {
1791 /* jump to the next oldest backup */
1792 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1793 BTRFS_NUM_BACKUP_ROOTS;
1794 *backup_index = newest;
1795 *num_backups_tried += 1;
1796 }
1797 root_backup = super->super_roots + newest;
1798
1799 btrfs_set_super_generation(super,
1800 btrfs_backup_tree_root_gen(root_backup));
1801 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1802 btrfs_set_super_root_level(super,
1803 btrfs_backup_tree_root_level(root_backup));
1804 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1805
1806 /*
1807 * fixme: the total bytes and num_devices need to match or we should
1808 * need a fsck
1809 */
1810 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1811 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1812 return 0;
1813}
1814
1815/* helper to cleanup tree roots */
1816static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
1817{
1818 free_extent_buffer(info->tree_root->node);
1819 free_extent_buffer(info->tree_root->commit_root);
1820 free_extent_buffer(info->dev_root->node);
1821 free_extent_buffer(info->dev_root->commit_root);
1822 free_extent_buffer(info->extent_root->node);
1823 free_extent_buffer(info->extent_root->commit_root);
1824 free_extent_buffer(info->csum_root->node);
1825 free_extent_buffer(info->csum_root->commit_root);
1826
1827 info->tree_root->node = NULL;
1828 info->tree_root->commit_root = NULL;
1829 info->dev_root->node = NULL;
1830 info->dev_root->commit_root = NULL;
1831 info->extent_root->node = NULL;
1832 info->extent_root->commit_root = NULL;
1833 info->csum_root->node = NULL;
1834 info->csum_root->commit_root = NULL;
1835
1836 if (chunk_root) {
1837 free_extent_buffer(info->chunk_root->node);
1838 free_extent_buffer(info->chunk_root->commit_root);
1839 info->chunk_root->node = NULL;
1840 info->chunk_root->commit_root = NULL;
1841 }
1842}
1843
1844
ad2b2c80
AV
1845int open_ctree(struct super_block *sb,
1846 struct btrfs_fs_devices *fs_devices,
1847 char *options)
2e635a27 1848{
db94535d
CM
1849 u32 sectorsize;
1850 u32 nodesize;
1851 u32 leafsize;
1852 u32 blocksize;
87ee04eb 1853 u32 stripesize;
84234f3a 1854 u64 generation;
f2b636e8 1855 u64 features;
3de4586c 1856 struct btrfs_key location;
a061fc8d 1857 struct buffer_head *bh;
4d34b278 1858 struct btrfs_super_block *disk_super;
815745cf 1859 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
f84a8bd6 1860 struct btrfs_root *tree_root;
4d34b278
ID
1861 struct btrfs_root *extent_root;
1862 struct btrfs_root *csum_root;
1863 struct btrfs_root *chunk_root;
1864 struct btrfs_root *dev_root;
e02119d5 1865 struct btrfs_root *log_tree_root;
eb60ceac 1866 int ret;
e58ca020 1867 int err = -EINVAL;
af31f5e5
CM
1868 int num_backups_tried = 0;
1869 int backup_index = 0;
4543df7e 1870
f84a8bd6 1871 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
6f07e42e
AV
1872 extent_root = fs_info->extent_root = btrfs_alloc_root(fs_info);
1873 csum_root = fs_info->csum_root = btrfs_alloc_root(fs_info);
1874 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
1875 dev_root = fs_info->dev_root = btrfs_alloc_root(fs_info);
8790d502 1876
f84a8bd6
AV
1877 if (!tree_root || !extent_root || !csum_root ||
1878 !chunk_root || !dev_root) {
39279cc3
CM
1879 err = -ENOMEM;
1880 goto fail;
1881 }
76dda93c
YZ
1882
1883 ret = init_srcu_struct(&fs_info->subvol_srcu);
1884 if (ret) {
1885 err = ret;
1886 goto fail;
1887 }
1888
1889 ret = setup_bdi(fs_info, &fs_info->bdi);
1890 if (ret) {
1891 err = ret;
1892 goto fail_srcu;
1893 }
1894
1895 fs_info->btree_inode = new_inode(sb);
1896 if (!fs_info->btree_inode) {
1897 err = -ENOMEM;
1898 goto fail_bdi;
1899 }
1900
a6591715 1901 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
1561deda 1902
76dda93c 1903 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
8fd17795 1904 INIT_LIST_HEAD(&fs_info->trans_list);
facda1e7 1905 INIT_LIST_HEAD(&fs_info->dead_roots);
24bbcf04 1906 INIT_LIST_HEAD(&fs_info->delayed_iputs);
19c00ddc 1907 INIT_LIST_HEAD(&fs_info->hashers);
ea8c2819 1908 INIT_LIST_HEAD(&fs_info->delalloc_inodes);
5a3f23d5 1909 INIT_LIST_HEAD(&fs_info->ordered_operations);
11833d66 1910 INIT_LIST_HEAD(&fs_info->caching_block_groups);
1832a6d5 1911 spin_lock_init(&fs_info->delalloc_lock);
a4abeea4 1912 spin_lock_init(&fs_info->trans_lock);
31153d81 1913 spin_lock_init(&fs_info->ref_cache_lock);
76dda93c 1914 spin_lock_init(&fs_info->fs_roots_radix_lock);
24bbcf04 1915 spin_lock_init(&fs_info->delayed_iput_lock);
4cb5300b 1916 spin_lock_init(&fs_info->defrag_inodes_lock);
2bf64758 1917 spin_lock_init(&fs_info->free_chunk_lock);
f29021b2
JS
1918 spin_lock_init(&fs_info->tree_mod_seq_lock);
1919 rwlock_init(&fs_info->tree_mod_log_lock);
7585717f 1920 mutex_init(&fs_info->reloc_mutex);
19c00ddc 1921
58176a96 1922 init_completion(&fs_info->kobj_unregister);
0b86a832 1923 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
6324fbf3 1924 INIT_LIST_HEAD(&fs_info->space_info);
f29021b2 1925 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
0b86a832 1926 btrfs_mapping_init(&fs_info->mapping_tree);
f0486c68
YZ
1927 btrfs_init_block_rsv(&fs_info->global_block_rsv);
1928 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv);
1929 btrfs_init_block_rsv(&fs_info->trans_block_rsv);
1930 btrfs_init_block_rsv(&fs_info->chunk_block_rsv);
1931 btrfs_init_block_rsv(&fs_info->empty_block_rsv);
6d668dda 1932 btrfs_init_block_rsv(&fs_info->delayed_block_rsv);
cb03c743 1933 atomic_set(&fs_info->nr_async_submits, 0);
771ed689 1934 atomic_set(&fs_info->async_delalloc_pages, 0);
8c8bee1d 1935 atomic_set(&fs_info->async_submit_draining, 0);
0986fe9e 1936 atomic_set(&fs_info->nr_async_bios, 0);
4cb5300b 1937 atomic_set(&fs_info->defrag_running, 0);
f29021b2 1938 atomic_set(&fs_info->tree_mod_seq, 0);
e20d96d6 1939 fs_info->sb = sb;
6f568d35 1940 fs_info->max_inline = 8192 * 1024;
9ed74f2d 1941 fs_info->metadata_ratio = 0;
4cb5300b 1942 fs_info->defrag_inodes = RB_ROOT;
a4abeea4 1943 fs_info->trans_no_join = 0;
2bf64758 1944 fs_info->free_chunk_space = 0;
f29021b2 1945 fs_info->tree_mod_log = RB_ROOT;
c8b97818 1946
90519d66
AJ
1947 /* readahead state */
1948 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
1949 spin_lock_init(&fs_info->reada_lock);
c8b97818 1950
b34b086c
CM
1951 fs_info->thread_pool_size = min_t(unsigned long,
1952 num_online_cpus() + 2, 8);
0afbaf8c 1953
3eaa2885
CM
1954 INIT_LIST_HEAD(&fs_info->ordered_extents);
1955 spin_lock_init(&fs_info->ordered_extent_lock);
16cdcec7
MX
1956 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
1957 GFP_NOFS);
1958 if (!fs_info->delayed_root) {
1959 err = -ENOMEM;
1960 goto fail_iput;
1961 }
1962 btrfs_init_delayed_root(fs_info->delayed_root);
3eaa2885 1963
a2de733c
AJ
1964 mutex_init(&fs_info->scrub_lock);
1965 atomic_set(&fs_info->scrubs_running, 0);
1966 atomic_set(&fs_info->scrub_pause_req, 0);
1967 atomic_set(&fs_info->scrubs_paused, 0);
1968 atomic_set(&fs_info->scrub_cancel_req, 0);
1969 init_waitqueue_head(&fs_info->scrub_pause_wait);
1970 init_rwsem(&fs_info->scrub_super_lock);
1971 fs_info->scrub_workers_refcnt = 0;
21adbd5c
SB
1972#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1973 fs_info->check_integrity_print_mask = 0;
1974#endif
a2de733c 1975
c9e9f97b
ID
1976 spin_lock_init(&fs_info->balance_lock);
1977 mutex_init(&fs_info->balance_mutex);
837d5b6e
ID
1978 atomic_set(&fs_info->balance_running, 0);
1979 atomic_set(&fs_info->balance_pause_req, 0);
a7e99c69 1980 atomic_set(&fs_info->balance_cancel_req, 0);
c9e9f97b 1981 fs_info->balance_ctl = NULL;
837d5b6e 1982 init_waitqueue_head(&fs_info->balance_wait_q);
a2de733c 1983
a061fc8d
CM
1984 sb->s_blocksize = 4096;
1985 sb->s_blocksize_bits = blksize_bits(4096);
32a88aa1 1986 sb->s_bdi = &fs_info->bdi;
a061fc8d 1987
76dda93c 1988 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
bfe86848 1989 set_nlink(fs_info->btree_inode, 1);
0afbaf8c
CM
1990 /*
1991 * we set the i_size on the btree inode to the max possible int.
1992 * the real end of the address space is determined by all of
1993 * the devices in the system
1994 */
1995 fs_info->btree_inode->i_size = OFFSET_MAX;
d98237b3 1996 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
04160088
CM
1997 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
1998
5d4f98a2 1999 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
d1310b2e 2000 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
f993c883 2001 fs_info->btree_inode->i_mapping);
0b32f4bb 2002 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
a8067e02 2003 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
d1310b2e
CM
2004
2005 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
0da5468f 2006
76dda93c
YZ
2007 BTRFS_I(fs_info->btree_inode)->root = tree_root;
2008 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2009 sizeof(struct btrfs_key));
72ac3c0d
JB
2010 set_bit(BTRFS_INODE_DUMMY,
2011 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
c65ddb52 2012 insert_inode_hash(fs_info->btree_inode);
76dda93c 2013
0f9dd46c 2014 spin_lock_init(&fs_info->block_group_cache_lock);
6bef4d31 2015 fs_info->block_group_cache_tree = RB_ROOT;
0f9dd46c 2016
11833d66 2017 extent_io_tree_init(&fs_info->freed_extents[0],
f993c883 2018 fs_info->btree_inode->i_mapping);
11833d66 2019 extent_io_tree_init(&fs_info->freed_extents[1],
f993c883 2020 fs_info->btree_inode->i_mapping);
11833d66 2021 fs_info->pinned_extents = &fs_info->freed_extents[0];
e66f709b 2022 fs_info->do_barriers = 1;
e18e4809 2023
39279cc3 2024
5a3f23d5 2025 mutex_init(&fs_info->ordered_operations_mutex);
e02119d5 2026 mutex_init(&fs_info->tree_log_mutex);
925baedd 2027 mutex_init(&fs_info->chunk_mutex);
a74a4b97
CM
2028 mutex_init(&fs_info->transaction_kthread_mutex);
2029 mutex_init(&fs_info->cleaner_mutex);
7d9eb12c 2030 mutex_init(&fs_info->volume_mutex);
276e680d 2031 init_rwsem(&fs_info->extent_commit_sem);
c71bf099 2032 init_rwsem(&fs_info->cleanup_work_sem);
76dda93c 2033 init_rwsem(&fs_info->subvol_sem);
fa9c0d79
CM
2034
2035 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2036 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2037
e6dcd2dc 2038 init_waitqueue_head(&fs_info->transaction_throttle);
f9295749 2039 init_waitqueue_head(&fs_info->transaction_wait);
bb9c12c9 2040 init_waitqueue_head(&fs_info->transaction_blocked_wait);
4854ddd0 2041 init_waitqueue_head(&fs_info->async_submit_wait);
3768f368 2042
0b86a832 2043 __setup_root(4096, 4096, 4096, 4096, tree_root,
2c90e5d6 2044 fs_info, BTRFS_ROOT_TREE_OBJECTID);
7eccb903 2045
3c4bb26b 2046 invalidate_bdev(fs_devices->latest_bdev);
a512bbf8 2047 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
20b45077
DY
2048 if (!bh) {
2049 err = -EINVAL;
16cdcec7 2050 goto fail_alloc;
20b45077 2051 }
39279cc3 2052
6c41761f
DS
2053 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2054 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2055 sizeof(*fs_info->super_for_commit));
a061fc8d 2056 brelse(bh);
5f39d397 2057
6c41761f 2058 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
0b86a832 2059
6c41761f 2060 disk_super = fs_info->super_copy;
0f7d52f4 2061 if (!btrfs_super_root(disk_super))
16cdcec7 2062 goto fail_alloc;
0f7d52f4 2063
acce952b 2064 /* check FS state, whether FS is broken. */
2065 fs_info->fs_state |= btrfs_super_flags(disk_super);
2066
fcd1f065
DS
2067 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2068 if (ret) {
2069 printk(KERN_ERR "btrfs: superblock contains fatal errors\n");
2070 err = ret;
2071 goto fail_alloc;
2072 }
acce952b 2073
af31f5e5
CM
2074 /*
2075 * run through our array of backup supers and setup
2076 * our ring pointer to the oldest one
2077 */
2078 generation = btrfs_super_generation(disk_super);
2079 find_oldest_super_backup(fs_info, generation);
2080
75e7cb7f
LB
2081 /*
2082 * In the long term, we'll store the compression type in the super
2083 * block, and it'll be used for per file compression control.
2084 */
2085 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2086
2b82032c
YZ
2087 ret = btrfs_parse_options(tree_root, options);
2088 if (ret) {
2089 err = ret;
16cdcec7 2090 goto fail_alloc;
2b82032c 2091 }
dfe25020 2092
f2b636e8
JB
2093 features = btrfs_super_incompat_flags(disk_super) &
2094 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2095 if (features) {
2096 printk(KERN_ERR "BTRFS: couldn't mount because of "
2097 "unsupported optional features (%Lx).\n",
21380931 2098 (unsigned long long)features);
f2b636e8 2099 err = -EINVAL;
16cdcec7 2100 goto fail_alloc;
f2b636e8
JB
2101 }
2102
727011e0
CM
2103 if (btrfs_super_leafsize(disk_super) !=
2104 btrfs_super_nodesize(disk_super)) {
2105 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2106 "blocksizes don't match. node %d leaf %d\n",
2107 btrfs_super_nodesize(disk_super),
2108 btrfs_super_leafsize(disk_super));
2109 err = -EINVAL;
2110 goto fail_alloc;
2111 }
2112 if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2113 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2114 "blocksize (%d) was too large\n",
2115 btrfs_super_leafsize(disk_super));
2116 err = -EINVAL;
2117 goto fail_alloc;
2118 }
2119
5d4f98a2 2120 features = btrfs_super_incompat_flags(disk_super);
a6fa6fae 2121 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
69e380d1 2122 if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
a6fa6fae 2123 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
727011e0
CM
2124
2125 /*
2126 * flag our filesystem as having big metadata blocks if
2127 * they are bigger than the page size
2128 */
2129 if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
2130 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2131 printk(KERN_INFO "btrfs flagging fs with big metadata feature\n");
2132 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2133 }
2134
bc3f116f
CM
2135 nodesize = btrfs_super_nodesize(disk_super);
2136 leafsize = btrfs_super_leafsize(disk_super);
2137 sectorsize = btrfs_super_sectorsize(disk_super);
2138 stripesize = btrfs_super_stripesize(disk_super);
2139
2140 /*
2141 * mixed block groups end up with duplicate but slightly offset
2142 * extent buffers for the same range. It leads to corruptions
2143 */
2144 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2145 (sectorsize != leafsize)) {
2146 printk(KERN_WARNING "btrfs: unequal leaf/node/sector sizes "
2147 "are not allowed for mixed block groups on %s\n",
2148 sb->s_id);
2149 goto fail_alloc;
2150 }
2151
a6fa6fae 2152 btrfs_set_super_incompat_flags(disk_super, features);
5d4f98a2 2153
f2b636e8
JB
2154 features = btrfs_super_compat_ro_flags(disk_super) &
2155 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2156 if (!(sb->s_flags & MS_RDONLY) && features) {
2157 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2158 "unsupported option features (%Lx).\n",
21380931 2159 (unsigned long long)features);
f2b636e8 2160 err = -EINVAL;
16cdcec7 2161 goto fail_alloc;
f2b636e8 2162 }
61d92c32
CM
2163
2164 btrfs_init_workers(&fs_info->generic_worker,
2165 "genwork", 1, NULL);
2166
5443be45 2167 btrfs_init_workers(&fs_info->workers, "worker",
61d92c32
CM
2168 fs_info->thread_pool_size,
2169 &fs_info->generic_worker);
c8b97818 2170
771ed689 2171 btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
61d92c32
CM
2172 fs_info->thread_pool_size,
2173 &fs_info->generic_worker);
771ed689 2174
5443be45 2175 btrfs_init_workers(&fs_info->submit_workers, "submit",
b720d209 2176 min_t(u64, fs_devices->num_devices,
61d92c32
CM
2177 fs_info->thread_pool_size),
2178 &fs_info->generic_worker);
61b49440 2179
bab39bf9
JB
2180 btrfs_init_workers(&fs_info->caching_workers, "cache",
2181 2, &fs_info->generic_worker);
2182
61b49440
CM
2183 /* a higher idle thresh on the submit workers makes it much more
2184 * likely that bios will be send down in a sane order to the
2185 * devices
2186 */
2187 fs_info->submit_workers.idle_thresh = 64;
53863232 2188
771ed689 2189 fs_info->workers.idle_thresh = 16;
4a69a410 2190 fs_info->workers.ordered = 1;
61b49440 2191
771ed689
CM
2192 fs_info->delalloc_workers.idle_thresh = 2;
2193 fs_info->delalloc_workers.ordered = 1;
2194
61d92c32
CM
2195 btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
2196 &fs_info->generic_worker);
5443be45 2197 btrfs_init_workers(&fs_info->endio_workers, "endio",
61d92c32
CM
2198 fs_info->thread_pool_size,
2199 &fs_info->generic_worker);
d20f7043 2200 btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
61d92c32
CM
2201 fs_info->thread_pool_size,
2202 &fs_info->generic_worker);
cad321ad 2203 btrfs_init_workers(&fs_info->endio_meta_write_workers,
61d92c32
CM
2204 "endio-meta-write", fs_info->thread_pool_size,
2205 &fs_info->generic_worker);
5443be45 2206 btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
61d92c32
CM
2207 fs_info->thread_pool_size,
2208 &fs_info->generic_worker);
0cb59c99
JB
2209 btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
2210 1, &fs_info->generic_worker);
16cdcec7
MX
2211 btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
2212 fs_info->thread_pool_size,
2213 &fs_info->generic_worker);
90519d66
AJ
2214 btrfs_init_workers(&fs_info->readahead_workers, "readahead",
2215 fs_info->thread_pool_size,
2216 &fs_info->generic_worker);
61b49440
CM
2217
2218 /*
2219 * endios are largely parallel and should have a very
2220 * low idle thresh
2221 */
2222 fs_info->endio_workers.idle_thresh = 4;
b51912c9
CM
2223 fs_info->endio_meta_workers.idle_thresh = 4;
2224
9042846b
CM
2225 fs_info->endio_write_workers.idle_thresh = 2;
2226 fs_info->endio_meta_write_workers.idle_thresh = 2;
90519d66 2227 fs_info->readahead_workers.idle_thresh = 2;
9042846b 2228
0dc3b84a
JB
2229 /*
2230 * btrfs_start_workers can really only fail because of ENOMEM so just
2231 * return -ENOMEM if any of these fail.
2232 */
2233 ret = btrfs_start_workers(&fs_info->workers);
2234 ret |= btrfs_start_workers(&fs_info->generic_worker);
2235 ret |= btrfs_start_workers(&fs_info->submit_workers);
2236 ret |= btrfs_start_workers(&fs_info->delalloc_workers);
2237 ret |= btrfs_start_workers(&fs_info->fixup_workers);
2238 ret |= btrfs_start_workers(&fs_info->endio_workers);
2239 ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
2240 ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
2241 ret |= btrfs_start_workers(&fs_info->endio_write_workers);
2242 ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
2243 ret |= btrfs_start_workers(&fs_info->delayed_workers);
2244 ret |= btrfs_start_workers(&fs_info->caching_workers);
2245 ret |= btrfs_start_workers(&fs_info->readahead_workers);
2246 if (ret) {
fed425c7 2247 err = -ENOMEM;
0dc3b84a
JB
2248 goto fail_sb_buffer;
2249 }
4543df7e 2250
4575c9cc 2251 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
c8b97818
CM
2252 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2253 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
4575c9cc 2254
db94535d
CM
2255 tree_root->nodesize = nodesize;
2256 tree_root->leafsize = leafsize;
2257 tree_root->sectorsize = sectorsize;
87ee04eb 2258 tree_root->stripesize = stripesize;
a061fc8d
CM
2259
2260 sb->s_blocksize = sectorsize;
2261 sb->s_blocksize_bits = blksize_bits(sectorsize);
db94535d 2262
39279cc3
CM
2263 if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
2264 sizeof(disk_super->magic))) {
d397712b 2265 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
39279cc3
CM
2266 goto fail_sb_buffer;
2267 }
19c00ddc 2268
8d082fb7
LB
2269 if (sectorsize != PAGE_SIZE) {
2270 printk(KERN_WARNING "btrfs: Incompatible sector size(%lu) "
2271 "found on %s\n", (unsigned long)sectorsize, sb->s_id);
941b2ddf
KM
2272 goto fail_sb_buffer;
2273 }
2274
925baedd 2275 mutex_lock(&fs_info->chunk_mutex);
e4404d6e 2276 ret = btrfs_read_sys_array(tree_root);
925baedd 2277 mutex_unlock(&fs_info->chunk_mutex);
84eed90f 2278 if (ret) {
d397712b
CM
2279 printk(KERN_WARNING "btrfs: failed to read the system "
2280 "array on %s\n", sb->s_id);
5d4f98a2 2281 goto fail_sb_buffer;
84eed90f 2282 }
0b86a832
CM
2283
2284 blocksize = btrfs_level_size(tree_root,
2285 btrfs_super_chunk_root_level(disk_super));
84234f3a 2286 generation = btrfs_super_chunk_root_generation(disk_super);
0b86a832
CM
2287
2288 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2289 chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2290
2291 chunk_root->node = read_tree_block(chunk_root,
2292 btrfs_super_chunk_root(disk_super),
84234f3a 2293 blocksize, generation);
79787eaa 2294 BUG_ON(!chunk_root->node); /* -ENOMEM */
83121942
DW
2295 if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2296 printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
2297 sb->s_id);
af31f5e5 2298 goto fail_tree_roots;
83121942 2299 }
5d4f98a2
YZ
2300 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2301 chunk_root->commit_root = btrfs_root_node(chunk_root);
0b86a832 2302
e17cade2 2303 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
d397712b
CM
2304 (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
2305 BTRFS_UUID_SIZE);
e17cade2 2306
0b86a832 2307 ret = btrfs_read_chunk_tree(chunk_root);
2b82032c 2308 if (ret) {
d397712b
CM
2309 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
2310 sb->s_id);
af31f5e5 2311 goto fail_tree_roots;
2b82032c 2312 }
0b86a832 2313
dfe25020
CM
2314 btrfs_close_extra_devices(fs_devices);
2315
a6b0d5c8
CM
2316 if (!fs_devices->latest_bdev) {
2317 printk(KERN_CRIT "btrfs: failed to read devices on %s\n",
2318 sb->s_id);
2319 goto fail_tree_roots;
2320 }
2321
af31f5e5 2322retry_root_backup:
db94535d
CM
2323 blocksize = btrfs_level_size(tree_root,
2324 btrfs_super_root_level(disk_super));
84234f3a 2325 generation = btrfs_super_generation(disk_super);
0b86a832 2326
e20d96d6 2327 tree_root->node = read_tree_block(tree_root,
db94535d 2328 btrfs_super_root(disk_super),
84234f3a 2329 blocksize, generation);
af31f5e5
CM
2330 if (!tree_root->node ||
2331 !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
83121942
DW
2332 printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
2333 sb->s_id);
af31f5e5
CM
2334
2335 goto recovery_tree_root;
83121942 2336 }
af31f5e5 2337
5d4f98a2
YZ
2338 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2339 tree_root->commit_root = btrfs_root_node(tree_root);
db94535d
CM
2340
2341 ret = find_and_setup_root(tree_root, fs_info,
e20d96d6 2342 BTRFS_EXTENT_TREE_OBJECTID, extent_root);
0b86a832 2343 if (ret)
af31f5e5 2344 goto recovery_tree_root;
0b86a832
CM
2345 extent_root->track_dirty = 1;
2346
2347 ret = find_and_setup_root(tree_root, fs_info,
2348 BTRFS_DEV_TREE_OBJECTID, dev_root);
0b86a832 2349 if (ret)
af31f5e5 2350 goto recovery_tree_root;
5d4f98a2 2351 dev_root->track_dirty = 1;
3768f368 2352
d20f7043
CM
2353 ret = find_and_setup_root(tree_root, fs_info,
2354 BTRFS_CSUM_TREE_OBJECTID, csum_root);
2355 if (ret)
af31f5e5 2356 goto recovery_tree_root;
d20f7043
CM
2357 csum_root->track_dirty = 1;
2358
8929ecfa
YZ
2359 fs_info->generation = generation;
2360 fs_info->last_trans_committed = generation;
8929ecfa 2361
68310a5e
ID
2362 ret = btrfs_recover_balance(fs_info);
2363 if (ret) {
2364 printk(KERN_WARNING "btrfs: failed to recover balance\n");
2365 goto fail_block_groups;
2366 }
2367
733f4fbb
SB
2368 ret = btrfs_init_dev_stats(fs_info);
2369 if (ret) {
2370 printk(KERN_ERR "btrfs: failed to init dev_stats: %d\n",
2371 ret);
2372 goto fail_block_groups;
2373 }
2374
c59021f8 2375 ret = btrfs_init_space_info(fs_info);
2376 if (ret) {
2377 printk(KERN_ERR "Failed to initial space info: %d\n", ret);
2378 goto fail_block_groups;
2379 }
2380
1b1d1f66
JB
2381 ret = btrfs_read_block_groups(extent_root);
2382 if (ret) {
2383 printk(KERN_ERR "Failed to read block groups: %d\n", ret);
2384 goto fail_block_groups;
2385 }
9078a3e1 2386
a74a4b97
CM
2387 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2388 "btrfs-cleaner");
57506d50 2389 if (IS_ERR(fs_info->cleaner_kthread))
1b1d1f66 2390 goto fail_block_groups;
a74a4b97
CM
2391
2392 fs_info->transaction_kthread = kthread_run(transaction_kthread,
2393 tree_root,
2394 "btrfs-transaction");
57506d50 2395 if (IS_ERR(fs_info->transaction_kthread))
3f157a2f 2396 goto fail_cleaner;
a74a4b97 2397
c289811c
CM
2398 if (!btrfs_test_opt(tree_root, SSD) &&
2399 !btrfs_test_opt(tree_root, NOSSD) &&
2400 !fs_info->fs_devices->rotating) {
2401 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
2402 "mode\n");
2403 btrfs_set_opt(fs_info->mount_opt, SSD);
2404 }
2405
21adbd5c
SB
2406#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2407 if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2408 ret = btrfsic_mount(tree_root, fs_devices,
2409 btrfs_test_opt(tree_root,
2410 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2411 1 : 0,
2412 fs_info->check_integrity_print_mask);
2413 if (ret)
2414 printk(KERN_WARNING "btrfs: failed to initialize"
2415 " integrity check module %s\n", sb->s_id);
2416 }
2417#endif
2418
acce952b 2419 /* do not make disk changes in broken FS */
2420 if (btrfs_super_log_root(disk_super) != 0 &&
2421 !(fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)) {
e02119d5
CM
2422 u64 bytenr = btrfs_super_log_root(disk_super);
2423
7c2ca468 2424 if (fs_devices->rw_devices == 0) {
d397712b
CM
2425 printk(KERN_WARNING "Btrfs log replay required "
2426 "on RO media\n");
7c2ca468
CM
2427 err = -EIO;
2428 goto fail_trans_kthread;
2429 }
e02119d5
CM
2430 blocksize =
2431 btrfs_level_size(tree_root,
2432 btrfs_super_log_root_level(disk_super));
d18a2c44 2433
6f07e42e 2434 log_tree_root = btrfs_alloc_root(fs_info);
676e4c86
DC
2435 if (!log_tree_root) {
2436 err = -ENOMEM;
2437 goto fail_trans_kthread;
2438 }
e02119d5
CM
2439
2440 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2441 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2442
2443 log_tree_root->node = read_tree_block(tree_root, bytenr,
84234f3a
YZ
2444 blocksize,
2445 generation + 1);
79787eaa 2446 /* returns with log_tree_root freed on success */
e02119d5 2447 ret = btrfs_recover_log_trees(log_tree_root);
79787eaa
JM
2448 if (ret) {
2449 btrfs_error(tree_root->fs_info, ret,
2450 "Failed to recover log tree");
2451 free_extent_buffer(log_tree_root->node);
2452 kfree(log_tree_root);
2453 goto fail_trans_kthread;
2454 }
e556ce2c
YZ
2455
2456 if (sb->s_flags & MS_RDONLY) {
79787eaa
JM
2457 ret = btrfs_commit_super(tree_root);
2458 if (ret)
2459 goto fail_trans_kthread;
e556ce2c 2460 }
e02119d5 2461 }
1a40e23b 2462
76dda93c 2463 ret = btrfs_find_orphan_roots(tree_root);
79787eaa
JM
2464 if (ret)
2465 goto fail_trans_kthread;
76dda93c 2466
7c2ca468 2467 if (!(sb->s_flags & MS_RDONLY)) {
d68fc57b 2468 ret = btrfs_cleanup_fs_roots(fs_info);
44c44af2
ID
2469 if (ret)
2470 goto fail_trans_kthread;
d68fc57b 2471
5d4f98a2 2472 ret = btrfs_recover_relocation(tree_root);
d7ce5843
MX
2473 if (ret < 0) {
2474 printk(KERN_WARNING
2475 "btrfs: failed to recover relocation\n");
2476 err = -EINVAL;
2477 goto fail_trans_kthread;
2478 }
7c2ca468 2479 }
1a40e23b 2480
3de4586c
CM
2481 location.objectid = BTRFS_FS_TREE_OBJECTID;
2482 location.type = BTRFS_ROOT_ITEM_KEY;
2483 location.offset = (u64)-1;
2484
3de4586c
CM
2485 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2486 if (!fs_info->fs_root)
7c2ca468 2487 goto fail_trans_kthread;
3140c9a3
DC
2488 if (IS_ERR(fs_info->fs_root)) {
2489 err = PTR_ERR(fs_info->fs_root);
2490 goto fail_trans_kthread;
2491 }
c289811c 2492
2b6ba629
ID
2493 if (sb->s_flags & MS_RDONLY)
2494 return 0;
59641015 2495
2b6ba629
ID
2496 down_read(&fs_info->cleanup_work_sem);
2497 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2498 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
e3acc2a6 2499 up_read(&fs_info->cleanup_work_sem);
2b6ba629
ID
2500 close_ctree(tree_root);
2501 return ret;
2502 }
2503 up_read(&fs_info->cleanup_work_sem);
59641015 2504
2b6ba629
ID
2505 ret = btrfs_resume_balance_async(fs_info);
2506 if (ret) {
2507 printk(KERN_WARNING "btrfs: failed to resume balance\n");
2508 close_ctree(tree_root);
2509 return ret;
e3acc2a6
JB
2510 }
2511
ad2b2c80 2512 return 0;
39279cc3 2513
7c2ca468
CM
2514fail_trans_kthread:
2515 kthread_stop(fs_info->transaction_kthread);
3f157a2f 2516fail_cleaner:
a74a4b97 2517 kthread_stop(fs_info->cleaner_kthread);
7c2ca468
CM
2518
2519 /*
2520 * make sure we're done with the btree inode before we stop our
2521 * kthreads
2522 */
2523 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2524 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2525
1b1d1f66
JB
2526fail_block_groups:
2527 btrfs_free_block_groups(fs_info);
af31f5e5
CM
2528
2529fail_tree_roots:
2530 free_root_pointers(fs_info, 1);
2531
39279cc3 2532fail_sb_buffer:
61d92c32 2533 btrfs_stop_workers(&fs_info->generic_worker);
306c8b68 2534 btrfs_stop_workers(&fs_info->readahead_workers);
247e743c 2535 btrfs_stop_workers(&fs_info->fixup_workers);
771ed689 2536 btrfs_stop_workers(&fs_info->delalloc_workers);
8b712842
CM
2537 btrfs_stop_workers(&fs_info->workers);
2538 btrfs_stop_workers(&fs_info->endio_workers);
d20f7043 2539 btrfs_stop_workers(&fs_info->endio_meta_workers);
cad321ad 2540 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
e6dcd2dc 2541 btrfs_stop_workers(&fs_info->endio_write_workers);
0cb59c99 2542 btrfs_stop_workers(&fs_info->endio_freespace_worker);
1cc127b5 2543 btrfs_stop_workers(&fs_info->submit_workers);
16cdcec7 2544 btrfs_stop_workers(&fs_info->delayed_workers);
bab39bf9 2545 btrfs_stop_workers(&fs_info->caching_workers);
16cdcec7 2546fail_alloc:
4543df7e 2547fail_iput:
586e46e2
ID
2548 btrfs_mapping_tree_free(&fs_info->mapping_tree);
2549
7c2ca468 2550 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4543df7e 2551 iput(fs_info->btree_inode);
ad081f14 2552fail_bdi:
7e662854 2553 bdi_destroy(&fs_info->bdi);
76dda93c
YZ
2554fail_srcu:
2555 cleanup_srcu_struct(&fs_info->subvol_srcu);
7e662854 2556fail:
586e46e2 2557 btrfs_close_devices(fs_info->fs_devices);
ad2b2c80 2558 return err;
af31f5e5
CM
2559
2560recovery_tree_root:
af31f5e5
CM
2561 if (!btrfs_test_opt(tree_root, RECOVERY))
2562 goto fail_tree_roots;
2563
2564 free_root_pointers(fs_info, 0);
2565
2566 /* don't use the log in recovery mode, it won't be valid */
2567 btrfs_set_super_log_root(disk_super, 0);
2568
2569 /* we can't trust the free space cache either */
2570 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2571
2572 ret = next_root_backup(fs_info, fs_info->super_copy,
2573 &num_backups_tried, &backup_index);
2574 if (ret == -1)
2575 goto fail_block_groups;
2576 goto retry_root_backup;
eb60ceac
CM
2577}
2578
f2984462
CM
2579static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
2580{
f2984462
CM
2581 if (uptodate) {
2582 set_buffer_uptodate(bh);
2583 } else {
442a4f63
SB
2584 struct btrfs_device *device = (struct btrfs_device *)
2585 bh->b_private;
2586
606686ee
JB
2587 printk_ratelimited_in_rcu(KERN_WARNING "lost page write due to "
2588 "I/O error on %s\n",
2589 rcu_str_deref(device->name));
1259ab75
CM
2590 /* note, we dont' set_buffer_write_io_error because we have
2591 * our own ways of dealing with the IO errors
2592 */
f2984462 2593 clear_buffer_uptodate(bh);
442a4f63 2594 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
f2984462
CM
2595 }
2596 unlock_buffer(bh);
2597 put_bh(bh);
2598}
2599
a512bbf8
YZ
2600struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
2601{
2602 struct buffer_head *bh;
2603 struct buffer_head *latest = NULL;
2604 struct btrfs_super_block *super;
2605 int i;
2606 u64 transid = 0;
2607 u64 bytenr;
2608
2609 /* we would like to check all the supers, but that would make
2610 * a btrfs mount succeed after a mkfs from a different FS.
2611 * So, we need to add a special mount option to scan for
2612 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2613 */
2614 for (i = 0; i < 1; i++) {
2615 bytenr = btrfs_sb_offset(i);
2616 if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
2617 break;
2618 bh = __bread(bdev, bytenr / 4096, 4096);
2619 if (!bh)
2620 continue;
2621
2622 super = (struct btrfs_super_block *)bh->b_data;
2623 if (btrfs_super_bytenr(super) != bytenr ||
2624 strncmp((char *)(&super->magic), BTRFS_MAGIC,
2625 sizeof(super->magic))) {
2626 brelse(bh);
2627 continue;
2628 }
2629
2630 if (!latest || btrfs_super_generation(super) > transid) {
2631 brelse(latest);
2632 latest = bh;
2633 transid = btrfs_super_generation(super);
2634 } else {
2635 brelse(bh);
2636 }
2637 }
2638 return latest;
2639}
2640
4eedeb75
HH
2641/*
2642 * this should be called twice, once with wait == 0 and
2643 * once with wait == 1. When wait == 0 is done, all the buffer heads
2644 * we write are pinned.
2645 *
2646 * They are released when wait == 1 is done.
2647 * max_mirrors must be the same for both runs, and it indicates how
2648 * many supers on this one device should be written.
2649 *
2650 * max_mirrors == 0 means to write them all.
2651 */
a512bbf8
YZ
2652static int write_dev_supers(struct btrfs_device *device,
2653 struct btrfs_super_block *sb,
2654 int do_barriers, int wait, int max_mirrors)
2655{
2656 struct buffer_head *bh;
2657 int i;
2658 int ret;
2659 int errors = 0;
2660 u32 crc;
2661 u64 bytenr;
a512bbf8
YZ
2662
2663 if (max_mirrors == 0)
2664 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
2665
a512bbf8
YZ
2666 for (i = 0; i < max_mirrors; i++) {
2667 bytenr = btrfs_sb_offset(i);
2668 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
2669 break;
2670
2671 if (wait) {
2672 bh = __find_get_block(device->bdev, bytenr / 4096,
2673 BTRFS_SUPER_INFO_SIZE);
2674 BUG_ON(!bh);
a512bbf8 2675 wait_on_buffer(bh);
4eedeb75
HH
2676 if (!buffer_uptodate(bh))
2677 errors++;
2678
2679 /* drop our reference */
2680 brelse(bh);
2681
2682 /* drop the reference from the wait == 0 run */
2683 brelse(bh);
2684 continue;
a512bbf8
YZ
2685 } else {
2686 btrfs_set_super_bytenr(sb, bytenr);
2687
2688 crc = ~(u32)0;
2689 crc = btrfs_csum_data(NULL, (char *)sb +
2690 BTRFS_CSUM_SIZE, crc,
2691 BTRFS_SUPER_INFO_SIZE -
2692 BTRFS_CSUM_SIZE);
2693 btrfs_csum_final(crc, sb->csum);
2694
4eedeb75
HH
2695 /*
2696 * one reference for us, and we leave it for the
2697 * caller
2698 */
a512bbf8
YZ
2699 bh = __getblk(device->bdev, bytenr / 4096,
2700 BTRFS_SUPER_INFO_SIZE);
2701 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
2702
4eedeb75 2703 /* one reference for submit_bh */
a512bbf8 2704 get_bh(bh);
4eedeb75
HH
2705
2706 set_buffer_uptodate(bh);
a512bbf8
YZ
2707 lock_buffer(bh);
2708 bh->b_end_io = btrfs_end_buffer_write_sync;
442a4f63 2709 bh->b_private = device;
a512bbf8
YZ
2710 }
2711
387125fc
CM
2712 /*
2713 * we fua the first super. The others we allow
2714 * to go down lazy.
2715 */
21adbd5c 2716 ret = btrfsic_submit_bh(WRITE_FUA, bh);
4eedeb75 2717 if (ret)
a512bbf8 2718 errors++;
a512bbf8
YZ
2719 }
2720 return errors < i ? 0 : -1;
2721}
2722
387125fc
CM
2723/*
2724 * endio for the write_dev_flush, this will wake anyone waiting
2725 * for the barrier when it is done
2726 */
2727static void btrfs_end_empty_barrier(struct bio *bio, int err)
2728{
2729 if (err) {
2730 if (err == -EOPNOTSUPP)
2731 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2732 clear_bit(BIO_UPTODATE, &bio->bi_flags);
2733 }
2734 if (bio->bi_private)
2735 complete(bio->bi_private);
2736 bio_put(bio);
2737}
2738
2739/*
2740 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
2741 * sent down. With wait == 1, it waits for the previous flush.
2742 *
2743 * any device where the flush fails with eopnotsupp are flagged as not-barrier
2744 * capable
2745 */
2746static int write_dev_flush(struct btrfs_device *device, int wait)
2747{
2748 struct bio *bio;
2749 int ret = 0;
2750
2751 if (device->nobarriers)
2752 return 0;
2753
2754 if (wait) {
2755 bio = device->flush_bio;
2756 if (!bio)
2757 return 0;
2758
2759 wait_for_completion(&device->flush_wait);
2760
2761 if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
606686ee
JB
2762 printk_in_rcu("btrfs: disabling barriers on dev %s\n",
2763 rcu_str_deref(device->name));
387125fc
CM
2764 device->nobarriers = 1;
2765 }
2766 if (!bio_flagged(bio, BIO_UPTODATE)) {
2767 ret = -EIO;
442a4f63
SB
2768 if (!bio_flagged(bio, BIO_EOPNOTSUPP))
2769 btrfs_dev_stat_inc_and_print(device,
2770 BTRFS_DEV_STAT_FLUSH_ERRS);
387125fc
CM
2771 }
2772
2773 /* drop the reference from the wait == 0 run */
2774 bio_put(bio);
2775 device->flush_bio = NULL;
2776
2777 return ret;
2778 }
2779
2780 /*
2781 * one reference for us, and we leave it for the
2782 * caller
2783 */
9c017abc 2784 device->flush_bio = NULL;
387125fc
CM
2785 bio = bio_alloc(GFP_NOFS, 0);
2786 if (!bio)
2787 return -ENOMEM;
2788
2789 bio->bi_end_io = btrfs_end_empty_barrier;
2790 bio->bi_bdev = device->bdev;
2791 init_completion(&device->flush_wait);
2792 bio->bi_private = &device->flush_wait;
2793 device->flush_bio = bio;
2794
2795 bio_get(bio);
21adbd5c 2796 btrfsic_submit_bio(WRITE_FLUSH, bio);
387125fc
CM
2797
2798 return 0;
2799}
2800
2801/*
2802 * send an empty flush down to each device in parallel,
2803 * then wait for them
2804 */
2805static int barrier_all_devices(struct btrfs_fs_info *info)
2806{
2807 struct list_head *head;
2808 struct btrfs_device *dev;
2809 int errors = 0;
2810 int ret;
2811
2812 /* send down all the barriers */
2813 head = &info->fs_devices->devices;
2814 list_for_each_entry_rcu(dev, head, dev_list) {
2815 if (!dev->bdev) {
2816 errors++;
2817 continue;
2818 }
2819 if (!dev->in_fs_metadata || !dev->writeable)
2820 continue;
2821
2822 ret = write_dev_flush(dev, 0);
2823 if (ret)
2824 errors++;
2825 }
2826
2827 /* wait for all the barriers */
2828 list_for_each_entry_rcu(dev, head, dev_list) {
2829 if (!dev->bdev) {
2830 errors++;
2831 continue;
2832 }
2833 if (!dev->in_fs_metadata || !dev->writeable)
2834 continue;
2835
2836 ret = write_dev_flush(dev, 1);
2837 if (ret)
2838 errors++;
2839 }
2840 if (errors)
2841 return -EIO;
2842 return 0;
2843}
2844
a512bbf8 2845int write_all_supers(struct btrfs_root *root, int max_mirrors)
f2984462 2846{
e5e9a520 2847 struct list_head *head;
f2984462 2848 struct btrfs_device *dev;
a061fc8d 2849 struct btrfs_super_block *sb;
f2984462 2850 struct btrfs_dev_item *dev_item;
f2984462
CM
2851 int ret;
2852 int do_barriers;
a236aed1
CM
2853 int max_errors;
2854 int total_errors = 0;
a061fc8d 2855 u64 flags;
f2984462 2856
6c41761f 2857 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
f2984462 2858 do_barriers = !btrfs_test_opt(root, NOBARRIER);
af31f5e5 2859 backup_super_roots(root->fs_info);
f2984462 2860
6c41761f 2861 sb = root->fs_info->super_for_commit;
a061fc8d 2862 dev_item = &sb->dev_item;
e5e9a520 2863
174ba509 2864 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
e5e9a520 2865 head = &root->fs_info->fs_devices->devices;
387125fc
CM
2866
2867 if (do_barriers)
2868 barrier_all_devices(root->fs_info);
2869
1f78160c 2870 list_for_each_entry_rcu(dev, head, dev_list) {
dfe25020
CM
2871 if (!dev->bdev) {
2872 total_errors++;
2873 continue;
2874 }
2b82032c 2875 if (!dev->in_fs_metadata || !dev->writeable)
dfe25020
CM
2876 continue;
2877
2b82032c 2878 btrfs_set_stack_device_generation(dev_item, 0);
a061fc8d
CM
2879 btrfs_set_stack_device_type(dev_item, dev->type);
2880 btrfs_set_stack_device_id(dev_item, dev->devid);
2881 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
2882 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
2883 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
2884 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
2885 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
2886 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
2b82032c 2887 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
a512bbf8 2888
a061fc8d
CM
2889 flags = btrfs_super_flags(sb);
2890 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
2891
a512bbf8 2892 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
a236aed1
CM
2893 if (ret)
2894 total_errors++;
f2984462 2895 }
a236aed1 2896 if (total_errors > max_errors) {
d397712b
CM
2897 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
2898 total_errors);
79787eaa
JM
2899
2900 /* This shouldn't happen. FUA is masked off if unsupported */
a236aed1
CM
2901 BUG();
2902 }
f2984462 2903
a512bbf8 2904 total_errors = 0;
1f78160c 2905 list_for_each_entry_rcu(dev, head, dev_list) {
dfe25020
CM
2906 if (!dev->bdev)
2907 continue;
2b82032c 2908 if (!dev->in_fs_metadata || !dev->writeable)
dfe25020
CM
2909 continue;
2910
a512bbf8
YZ
2911 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
2912 if (ret)
2913 total_errors++;
f2984462 2914 }
174ba509 2915 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
a236aed1 2916 if (total_errors > max_errors) {
79787eaa
JM
2917 btrfs_error(root->fs_info, -EIO,
2918 "%d errors while writing supers", total_errors);
2919 return -EIO;
a236aed1 2920 }
f2984462
CM
2921 return 0;
2922}
2923
a512bbf8
YZ
2924int write_ctree_super(struct btrfs_trans_handle *trans,
2925 struct btrfs_root *root, int max_mirrors)
eb60ceac 2926{
e66f709b 2927 int ret;
5f39d397 2928
a512bbf8 2929 ret = write_all_supers(root, max_mirrors);
5f39d397 2930 return ret;
cfaa7295
CM
2931}
2932
143bede5 2933void btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
2619ba1f 2934{
4df27c4d 2935 spin_lock(&fs_info->fs_roots_radix_lock);
2619ba1f
CM
2936 radix_tree_delete(&fs_info->fs_roots_radix,
2937 (unsigned long)root->root_key.objectid);
4df27c4d 2938 spin_unlock(&fs_info->fs_roots_radix_lock);
76dda93c
YZ
2939
2940 if (btrfs_root_refs(&root->root_item) == 0)
2941 synchronize_srcu(&fs_info->subvol_srcu);
2942
581bb050
LZ
2943 __btrfs_remove_free_space_cache(root->free_ino_pinned);
2944 __btrfs_remove_free_space_cache(root->free_ino_ctl);
4df27c4d 2945 free_fs_root(root);
4df27c4d
YZ
2946}
2947
2948static void free_fs_root(struct btrfs_root *root)
2949{
82d5902d 2950 iput(root->cache_inode);
4df27c4d 2951 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
0ee5dc67
AV
2952 if (root->anon_dev)
2953 free_anon_bdev(root->anon_dev);
4df27c4d
YZ
2954 free_extent_buffer(root->node);
2955 free_extent_buffer(root->commit_root);
581bb050
LZ
2956 kfree(root->free_ino_ctl);
2957 kfree(root->free_ino_pinned);
d397712b 2958 kfree(root->name);
2619ba1f 2959 kfree(root);
2619ba1f
CM
2960}
2961
143bede5 2962static void del_fs_roots(struct btrfs_fs_info *fs_info)
0f7d52f4
CM
2963{
2964 int ret;
2965 struct btrfs_root *gang[8];
2966 int i;
2967
76dda93c
YZ
2968 while (!list_empty(&fs_info->dead_roots)) {
2969 gang[0] = list_entry(fs_info->dead_roots.next,
2970 struct btrfs_root, root_list);
2971 list_del(&gang[0]->root_list);
2972
2973 if (gang[0]->in_radix) {
2974 btrfs_free_fs_root(fs_info, gang[0]);
2975 } else {
2976 free_extent_buffer(gang[0]->node);
2977 free_extent_buffer(gang[0]->commit_root);
2978 kfree(gang[0]);
2979 }
2980 }
2981
d397712b 2982 while (1) {
0f7d52f4
CM
2983 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2984 (void **)gang, 0,
2985 ARRAY_SIZE(gang));
2986 if (!ret)
2987 break;
2619ba1f 2988 for (i = 0; i < ret; i++)
5eda7b5e 2989 btrfs_free_fs_root(fs_info, gang[i]);
0f7d52f4 2990 }
0f7d52f4 2991}
b4100d64 2992
c146afad 2993int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
cfaa7295 2994{
c146afad
YZ
2995 u64 root_objectid = 0;
2996 struct btrfs_root *gang[8];
2997 int i;
3768f368 2998 int ret;
e089f05c 2999
c146afad
YZ
3000 while (1) {
3001 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3002 (void **)gang, root_objectid,
3003 ARRAY_SIZE(gang));
3004 if (!ret)
3005 break;
5d4f98a2
YZ
3006
3007 root_objectid = gang[ret - 1]->root_key.objectid + 1;
c146afad 3008 for (i = 0; i < ret; i++) {
66b4ffd1
JB
3009 int err;
3010
c146afad 3011 root_objectid = gang[i]->root_key.objectid;
66b4ffd1
JB
3012 err = btrfs_orphan_cleanup(gang[i]);
3013 if (err)
3014 return err;
c146afad
YZ
3015 }
3016 root_objectid++;
3017 }
3018 return 0;
3019}
a2135011 3020
c146afad
YZ
3021int btrfs_commit_super(struct btrfs_root *root)
3022{
3023 struct btrfs_trans_handle *trans;
3024 int ret;
a74a4b97 3025
c146afad 3026 mutex_lock(&root->fs_info->cleaner_mutex);
24bbcf04 3027 btrfs_run_delayed_iputs(root);
a74a4b97 3028 btrfs_clean_old_snapshots(root);
c146afad 3029 mutex_unlock(&root->fs_info->cleaner_mutex);
c71bf099
YZ
3030
3031 /* wait until ongoing cleanup work done */
3032 down_write(&root->fs_info->cleanup_work_sem);
3033 up_write(&root->fs_info->cleanup_work_sem);
3034
7a7eaa40 3035 trans = btrfs_join_transaction(root);
3612b495
TI
3036 if (IS_ERR(trans))
3037 return PTR_ERR(trans);
54aa1f4d 3038 ret = btrfs_commit_transaction(trans, root);
79787eaa
JM
3039 if (ret)
3040 return ret;
c146afad 3041 /* run commit again to drop the original snapshot */
7a7eaa40 3042 trans = btrfs_join_transaction(root);
3612b495
TI
3043 if (IS_ERR(trans))
3044 return PTR_ERR(trans);
79787eaa
JM
3045 ret = btrfs_commit_transaction(trans, root);
3046 if (ret)
3047 return ret;
79154b1b 3048 ret = btrfs_write_and_wait_transaction(NULL, root);
79787eaa
JM
3049 if (ret) {
3050 btrfs_error(root->fs_info, ret,
3051 "Failed to sync btree inode to disk.");
3052 return ret;
3053 }
d6bfde87 3054
a512bbf8 3055 ret = write_ctree_super(NULL, root, 0);
c146afad
YZ
3056 return ret;
3057}
3058
3059int close_ctree(struct btrfs_root *root)
3060{
3061 struct btrfs_fs_info *fs_info = root->fs_info;
3062 int ret;
3063
3064 fs_info->closing = 1;
3065 smp_mb();
3066
837d5b6e
ID
3067 /* pause restriper - we want to resume on mount */
3068 btrfs_pause_balance(root->fs_info);
3069
a2de733c 3070 btrfs_scrub_cancel(root);
4cb5300b
CM
3071
3072 /* wait for any defraggers to finish */
3073 wait_event(fs_info->transaction_wait,
3074 (atomic_read(&fs_info->defrag_running) == 0));
3075
3076 /* clear out the rbtree of defraggable inodes */
e3029d9f 3077 btrfs_run_defrag_inodes(fs_info);
4cb5300b 3078
acce952b 3079 /*
3080 * Here come 2 situations when btrfs is broken to flip readonly:
3081 *
3082 * 1. when btrfs flips readonly somewhere else before
3083 * btrfs_commit_super, sb->s_flags has MS_RDONLY flag,
3084 * and btrfs will skip to write sb directly to keep
3085 * ERROR state on disk.
3086 *
3087 * 2. when btrfs flips readonly just in btrfs_commit_super,
ae0e47f0 3088 * and in such case, btrfs cannot write sb via btrfs_commit_super,
acce952b 3089 * and since fs_state has been set BTRFS_SUPER_FLAG_ERROR flag,
3090 * btrfs will cleanup all FS resources first and write sb then.
3091 */
c146afad 3092 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
acce952b 3093 ret = btrfs_commit_super(root);
3094 if (ret)
3095 printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
3096 }
3097
3098 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
3099 ret = btrfs_error_commit_super(root);
d397712b
CM
3100 if (ret)
3101 printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
c146afad 3102 }
0f7d52f4 3103
300e4f8a
JB
3104 btrfs_put_block_group_cache(fs_info);
3105
e3029d9f
AV
3106 kthread_stop(fs_info->transaction_kthread);
3107 kthread_stop(fs_info->cleaner_kthread);
8929ecfa 3108
f25784b3
YZ
3109 fs_info->closing = 2;
3110 smp_mb();
3111
b0c68f8b 3112 if (fs_info->delalloc_bytes) {
d397712b 3113 printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
21380931 3114 (unsigned long long)fs_info->delalloc_bytes);
b0c68f8b 3115 }
31153d81 3116 if (fs_info->total_ref_cache_size) {
d397712b
CM
3117 printk(KERN_INFO "btrfs: at umount reference cache size %llu\n",
3118 (unsigned long long)fs_info->total_ref_cache_size);
31153d81 3119 }
bcc63abb 3120
5d4f98a2
YZ
3121 free_extent_buffer(fs_info->extent_root->node);
3122 free_extent_buffer(fs_info->extent_root->commit_root);
3123 free_extent_buffer(fs_info->tree_root->node);
3124 free_extent_buffer(fs_info->tree_root->commit_root);
e3029d9f
AV
3125 free_extent_buffer(fs_info->chunk_root->node);
3126 free_extent_buffer(fs_info->chunk_root->commit_root);
3127 free_extent_buffer(fs_info->dev_root->node);
3128 free_extent_buffer(fs_info->dev_root->commit_root);
3129 free_extent_buffer(fs_info->csum_root->node);
3130 free_extent_buffer(fs_info->csum_root->commit_root);
d20f7043 3131
e3029d9f 3132 btrfs_free_block_groups(fs_info);
d10c5f31 3133
c146afad 3134 del_fs_roots(fs_info);
d10c5f31 3135
c146afad 3136 iput(fs_info->btree_inode);
9ad6b7bc 3137
61d92c32 3138 btrfs_stop_workers(&fs_info->generic_worker);
247e743c 3139 btrfs_stop_workers(&fs_info->fixup_workers);
771ed689 3140 btrfs_stop_workers(&fs_info->delalloc_workers);
8b712842
CM
3141 btrfs_stop_workers(&fs_info->workers);
3142 btrfs_stop_workers(&fs_info->endio_workers);
d20f7043 3143 btrfs_stop_workers(&fs_info->endio_meta_workers);
cad321ad 3144 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
e6dcd2dc 3145 btrfs_stop_workers(&fs_info->endio_write_workers);
0cb59c99 3146 btrfs_stop_workers(&fs_info->endio_freespace_worker);
1cc127b5 3147 btrfs_stop_workers(&fs_info->submit_workers);
16cdcec7 3148 btrfs_stop_workers(&fs_info->delayed_workers);
bab39bf9 3149 btrfs_stop_workers(&fs_info->caching_workers);
90519d66 3150 btrfs_stop_workers(&fs_info->readahead_workers);
d6bfde87 3151
21adbd5c
SB
3152#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3153 if (btrfs_test_opt(root, CHECK_INTEGRITY))
3154 btrfsic_unmount(root, fs_info->fs_devices);
3155#endif
3156
dfe25020 3157 btrfs_close_devices(fs_info->fs_devices);
0b86a832 3158 btrfs_mapping_tree_free(&fs_info->mapping_tree);
b248a415 3159
04160088 3160 bdi_destroy(&fs_info->bdi);
76dda93c 3161 cleanup_srcu_struct(&fs_info->subvol_srcu);
0b86a832 3162
eb60ceac
CM
3163 return 0;
3164}
3165
b9fab919
CM
3166int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3167 int atomic)
5f39d397 3168{
1259ab75 3169 int ret;
727011e0 3170 struct inode *btree_inode = buf->pages[0]->mapping->host;
1259ab75 3171
0b32f4bb 3172 ret = extent_buffer_uptodate(buf);
1259ab75
CM
3173 if (!ret)
3174 return ret;
3175
3176 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
b9fab919
CM
3177 parent_transid, atomic);
3178 if (ret == -EAGAIN)
3179 return ret;
1259ab75 3180 return !ret;
5f39d397
CM
3181}
3182
3183int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
ccd467d6 3184{
0b32f4bb 3185 return set_extent_buffer_uptodate(buf);
5f39d397 3186}
6702ed49 3187
5f39d397
CM
3188void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3189{
727011e0 3190 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
5f39d397 3191 u64 transid = btrfs_header_generation(buf);
b9473439 3192 int was_dirty;
b4ce94de 3193
b9447ef8 3194 btrfs_assert_tree_locked(buf);
ccd467d6 3195 if (transid != root->fs_info->generation) {
d397712b
CM
3196 printk(KERN_CRIT "btrfs transid mismatch buffer %llu, "
3197 "found %llu running %llu\n",
db94535d 3198 (unsigned long long)buf->start,
d397712b
CM
3199 (unsigned long long)transid,
3200 (unsigned long long)root->fs_info->generation);
ccd467d6
CM
3201 WARN_ON(1);
3202 }
0b32f4bb 3203 was_dirty = set_extent_buffer_dirty(buf);
b9473439
CM
3204 if (!was_dirty) {
3205 spin_lock(&root->fs_info->delalloc_lock);
3206 root->fs_info->dirty_metadata_bytes += buf->len;
3207 spin_unlock(&root->fs_info->delalloc_lock);
3208 }
eb60ceac
CM
3209}
3210
d3c2fdcf 3211void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
16cdcec7
MX
3212{
3213 /*
3214 * looks as though older kernels can get into trouble with
3215 * this code, they end up stuck in balance_dirty_pages forever
3216 */
3217 u64 num_dirty;
3218 unsigned long thresh = 32 * 1024 * 1024;
3219
3220 if (current->flags & PF_MEMALLOC)
3221 return;
3222
3223 btrfs_balance_delayed_items(root);
3224
3225 num_dirty = root->fs_info->dirty_metadata_bytes;
3226
3227 if (num_dirty > thresh) {
3228 balance_dirty_pages_ratelimited_nr(
3229 root->fs_info->btree_inode->i_mapping, 1);
3230 }
3231 return;
3232}
3233
3234void __btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
35b7e476 3235{
188de649
CM
3236 /*
3237 * looks as though older kernels can get into trouble with
3238 * this code, they end up stuck in balance_dirty_pages forever
3239 */
d6bfde87 3240 u64 num_dirty;
771ed689 3241 unsigned long thresh = 32 * 1024 * 1024;
d6bfde87 3242
6933c02e 3243 if (current->flags & PF_MEMALLOC)
d6bfde87
CM
3244 return;
3245
585ad2c3
CM
3246 num_dirty = root->fs_info->dirty_metadata_bytes;
3247
d6bfde87
CM
3248 if (num_dirty > thresh) {
3249 balance_dirty_pages_ratelimited_nr(
d7fc640e 3250 root->fs_info->btree_inode->i_mapping, 1);
d6bfde87 3251 }
188de649 3252 return;
35b7e476 3253}
6b80053d 3254
ca7a79ad 3255int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
6b80053d 3256{
727011e0 3257 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
0b32f4bb 3258 return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
6b80053d 3259}
0da5468f 3260
01d658f2
CM
3261static int btree_lock_page_hook(struct page *page, void *data,
3262 void (*flush_fn)(void *))
4bef0848
CM
3263{
3264 struct inode *inode = page->mapping->host;
b9473439 3265 struct btrfs_root *root = BTRFS_I(inode)->root;
4bef0848 3266 struct extent_buffer *eb;
4bef0848 3267
4f2de97a
JB
3268 /*
3269 * We culled this eb but the page is still hanging out on the mapping,
3270 * carry on.
3271 */
3272 if (!PagePrivate(page))
4bef0848
CM
3273 goto out;
3274
4f2de97a
JB
3275 eb = (struct extent_buffer *)page->private;
3276 if (!eb) {
3277 WARN_ON(1);
3278 goto out;
3279 }
3280 if (page != eb->pages[0])
4bef0848
CM
3281 goto out;
3282
01d658f2
CM
3283 if (!btrfs_try_tree_write_lock(eb)) {
3284 flush_fn(data);
3285 btrfs_tree_lock(eb);
3286 }
4bef0848 3287 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
b9473439
CM
3288
3289 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3290 spin_lock(&root->fs_info->delalloc_lock);
3291 if (root->fs_info->dirty_metadata_bytes >= eb->len)
3292 root->fs_info->dirty_metadata_bytes -= eb->len;
3293 else
3294 WARN_ON(1);
3295 spin_unlock(&root->fs_info->delalloc_lock);
3296 }
3297
4bef0848 3298 btrfs_tree_unlock(eb);
4bef0848 3299out:
01d658f2
CM
3300 if (!trylock_page(page)) {
3301 flush_fn(data);
3302 lock_page(page);
3303 }
4bef0848
CM
3304 return 0;
3305}
3306
fcd1f065 3307static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
acce952b 3308 int read_only)
3309{
fcd1f065
DS
3310 if (btrfs_super_csum_type(fs_info->super_copy) >= ARRAY_SIZE(btrfs_csum_sizes)) {
3311 printk(KERN_ERR "btrfs: unsupported checksum algorithm\n");
3312 return -EINVAL;
3313 }
3314
acce952b 3315 if (read_only)
fcd1f065 3316 return 0;
acce952b 3317
fcd1f065 3318 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
acce952b 3319 printk(KERN_WARNING "warning: mount fs with errors, "
3320 "running btrfsck is recommended\n");
fcd1f065
DS
3321 }
3322
3323 return 0;
acce952b 3324}
3325
3326int btrfs_error_commit_super(struct btrfs_root *root)
3327{
3328 int ret;
3329
3330 mutex_lock(&root->fs_info->cleaner_mutex);
3331 btrfs_run_delayed_iputs(root);
3332 mutex_unlock(&root->fs_info->cleaner_mutex);
3333
3334 down_write(&root->fs_info->cleanup_work_sem);
3335 up_write(&root->fs_info->cleanup_work_sem);
3336
3337 /* cleanup FS via transaction */
3338 btrfs_cleanup_transaction(root);
3339
3340 ret = write_ctree_super(NULL, root, 0);
3341
3342 return ret;
3343}
3344
143bede5 3345static void btrfs_destroy_ordered_operations(struct btrfs_root *root)
acce952b 3346{
3347 struct btrfs_inode *btrfs_inode;
3348 struct list_head splice;
3349
3350 INIT_LIST_HEAD(&splice);
3351
3352 mutex_lock(&root->fs_info->ordered_operations_mutex);
3353 spin_lock(&root->fs_info->ordered_extent_lock);
3354
3355 list_splice_init(&root->fs_info->ordered_operations, &splice);
3356 while (!list_empty(&splice)) {
3357 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3358 ordered_operations);
3359
3360 list_del_init(&btrfs_inode->ordered_operations);
3361
3362 btrfs_invalidate_inodes(btrfs_inode->root);
3363 }
3364
3365 spin_unlock(&root->fs_info->ordered_extent_lock);
3366 mutex_unlock(&root->fs_info->ordered_operations_mutex);
acce952b 3367}
3368
143bede5 3369static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
acce952b 3370{
3371 struct list_head splice;
3372 struct btrfs_ordered_extent *ordered;
3373 struct inode *inode;
3374
3375 INIT_LIST_HEAD(&splice);
3376
3377 spin_lock(&root->fs_info->ordered_extent_lock);
3378
3379 list_splice_init(&root->fs_info->ordered_extents, &splice);
3380 while (!list_empty(&splice)) {
3381 ordered = list_entry(splice.next, struct btrfs_ordered_extent,
3382 root_extent_list);
3383
3384 list_del_init(&ordered->root_extent_list);
3385 atomic_inc(&ordered->refs);
3386
3387 /* the inode may be getting freed (in sys_unlink path). */
3388 inode = igrab(ordered->inode);
3389
3390 spin_unlock(&root->fs_info->ordered_extent_lock);
3391 if (inode)
3392 iput(inode);
3393
3394 atomic_set(&ordered->refs, 1);
3395 btrfs_put_ordered_extent(ordered);
3396
3397 spin_lock(&root->fs_info->ordered_extent_lock);
3398 }
3399
3400 spin_unlock(&root->fs_info->ordered_extent_lock);
acce952b 3401}
3402
79787eaa
JM
3403int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3404 struct btrfs_root *root)
acce952b 3405{
3406 struct rb_node *node;
3407 struct btrfs_delayed_ref_root *delayed_refs;
3408 struct btrfs_delayed_ref_node *ref;
3409 int ret = 0;
3410
3411 delayed_refs = &trans->delayed_refs;
3412
3413 spin_lock(&delayed_refs->lock);
3414 if (delayed_refs->num_entries == 0) {
cfece4db 3415 spin_unlock(&delayed_refs->lock);
acce952b 3416 printk(KERN_INFO "delayed_refs has NO entry\n");
3417 return ret;
3418 }
3419
b939d1ab 3420 while ((node = rb_first(&delayed_refs->root)) != NULL) {
acce952b 3421 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
acce952b 3422
3423 atomic_set(&ref->refs, 1);
3424 if (btrfs_delayed_ref_is_head(ref)) {
3425 struct btrfs_delayed_ref_head *head;
3426
3427 head = btrfs_delayed_node_to_head(ref);
b939d1ab
JB
3428 if (!mutex_trylock(&head->mutex)) {
3429 atomic_inc(&ref->refs);
3430 spin_unlock(&delayed_refs->lock);
3431
3432 /* Need to wait for the delayed ref to run */
3433 mutex_lock(&head->mutex);
3434 mutex_unlock(&head->mutex);
3435 btrfs_put_delayed_ref(ref);
3436
e18fca73 3437 spin_lock(&delayed_refs->lock);
b939d1ab
JB
3438 continue;
3439 }
3440
acce952b 3441 kfree(head->extent_op);
3442 delayed_refs->num_heads--;
3443 if (list_empty(&head->cluster))
3444 delayed_refs->num_heads_ready--;
3445 list_del_init(&head->cluster);
acce952b 3446 }
b939d1ab
JB
3447 ref->in_tree = 0;
3448 rb_erase(&ref->rb_node, &delayed_refs->root);
3449 delayed_refs->num_entries--;
3450
acce952b 3451 spin_unlock(&delayed_refs->lock);
3452 btrfs_put_delayed_ref(ref);
3453
3454 cond_resched();
3455 spin_lock(&delayed_refs->lock);
3456 }
3457
3458 spin_unlock(&delayed_refs->lock);
3459
3460 return ret;
3461}
3462
143bede5 3463static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t)
acce952b 3464{
3465 struct btrfs_pending_snapshot *snapshot;
3466 struct list_head splice;
3467
3468 INIT_LIST_HEAD(&splice);
3469
3470 list_splice_init(&t->pending_snapshots, &splice);
3471
3472 while (!list_empty(&splice)) {
3473 snapshot = list_entry(splice.next,
3474 struct btrfs_pending_snapshot,
3475 list);
3476
3477 list_del_init(&snapshot->list);
3478
3479 kfree(snapshot);
3480 }
acce952b 3481}
3482
143bede5 3483static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
acce952b 3484{
3485 struct btrfs_inode *btrfs_inode;
3486 struct list_head splice;
3487
3488 INIT_LIST_HEAD(&splice);
3489
acce952b 3490 spin_lock(&root->fs_info->delalloc_lock);
5be76758 3491 list_splice_init(&root->fs_info->delalloc_inodes, &splice);
acce952b 3492
3493 while (!list_empty(&splice)) {
3494 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3495 delalloc_inodes);
3496
3497 list_del_init(&btrfs_inode->delalloc_inodes);
3498
3499 btrfs_invalidate_inodes(btrfs_inode->root);
3500 }
3501
3502 spin_unlock(&root->fs_info->delalloc_lock);
acce952b 3503}
3504
3505static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3506 struct extent_io_tree *dirty_pages,
3507 int mark)
3508{
3509 int ret;
3510 struct page *page;
3511 struct inode *btree_inode = root->fs_info->btree_inode;
3512 struct extent_buffer *eb;
3513 u64 start = 0;
3514 u64 end;
3515 u64 offset;
3516 unsigned long index;
3517
3518 while (1) {
3519 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
3520 mark);
3521 if (ret)
3522 break;
3523
3524 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
3525 while (start <= end) {
3526 index = start >> PAGE_CACHE_SHIFT;
3527 start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
3528 page = find_get_page(btree_inode->i_mapping, index);
3529 if (!page)
3530 continue;
3531 offset = page_offset(page);
3532
3533 spin_lock(&dirty_pages->buffer_lock);
3534 eb = radix_tree_lookup(
3535 &(&BTRFS_I(page->mapping->host)->io_tree)->buffer,
3536 offset >> PAGE_CACHE_SHIFT);
3537 spin_unlock(&dirty_pages->buffer_lock);
ee670f0a 3538 if (eb)
acce952b 3539 ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY,
3540 &eb->bflags);
acce952b 3541 if (PageWriteback(page))
3542 end_page_writeback(page);
3543
3544 lock_page(page);
3545 if (PageDirty(page)) {
3546 clear_page_dirty_for_io(page);
3547 spin_lock_irq(&page->mapping->tree_lock);
3548 radix_tree_tag_clear(&page->mapping->page_tree,
3549 page_index(page),
3550 PAGECACHE_TAG_DIRTY);
3551 spin_unlock_irq(&page->mapping->tree_lock);
3552 }
3553
acce952b 3554 unlock_page(page);
ee670f0a 3555 page_cache_release(page);
acce952b 3556 }
3557 }
3558
3559 return ret;
3560}
3561
3562static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
3563 struct extent_io_tree *pinned_extents)
3564{
3565 struct extent_io_tree *unpin;
3566 u64 start;
3567 u64 end;
3568 int ret;
ed0eaa14 3569 bool loop = true;
acce952b 3570
3571 unpin = pinned_extents;
ed0eaa14 3572again:
acce952b 3573 while (1) {
3574 ret = find_first_extent_bit(unpin, 0, &start, &end,
3575 EXTENT_DIRTY);
3576 if (ret)
3577 break;
3578
3579 /* opt_discard */
5378e607
LD
3580 if (btrfs_test_opt(root, DISCARD))
3581 ret = btrfs_error_discard_extent(root, start,
3582 end + 1 - start,
3583 NULL);
acce952b 3584
3585 clear_extent_dirty(unpin, start, end, GFP_NOFS);
3586 btrfs_error_unpin_extent_range(root, start, end);
3587 cond_resched();
3588 }
3589
ed0eaa14
LB
3590 if (loop) {
3591 if (unpin == &root->fs_info->freed_extents[0])
3592 unpin = &root->fs_info->freed_extents[1];
3593 else
3594 unpin = &root->fs_info->freed_extents[0];
3595 loop = false;
3596 goto again;
3597 }
3598
acce952b 3599 return 0;
3600}
3601
49b25e05
JM
3602void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
3603 struct btrfs_root *root)
3604{
3605 btrfs_destroy_delayed_refs(cur_trans, root);
3606 btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
3607 cur_trans->dirty_pages.dirty_bytes);
3608
3609 /* FIXME: cleanup wait for commit */
3610 cur_trans->in_commit = 1;
3611 cur_trans->blocked = 1;
d7096fc3 3612 wake_up(&root->fs_info->transaction_blocked_wait);
49b25e05
JM
3613
3614 cur_trans->blocked = 0;
d7096fc3 3615 wake_up(&root->fs_info->transaction_wait);
49b25e05
JM
3616
3617 cur_trans->commit_done = 1;
d7096fc3 3618 wake_up(&cur_trans->commit_wait);
49b25e05 3619
67cde344
MX
3620 btrfs_destroy_delayed_inodes(root);
3621 btrfs_assert_delayed_root_empty(root);
49b25e05
JM
3622
3623 btrfs_destroy_pending_snapshots(cur_trans);
3624
3625 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
3626 EXTENT_DIRTY);
6e841e32
LB
3627 btrfs_destroy_pinned_extent(root,
3628 root->fs_info->pinned_extents);
49b25e05
JM
3629
3630 /*
3631 memset(cur_trans, 0, sizeof(*cur_trans));
3632 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
3633 */
3634}
3635
3636int btrfs_cleanup_transaction(struct btrfs_root *root)
acce952b 3637{
3638 struct btrfs_transaction *t;
3639 LIST_HEAD(list);
3640
acce952b 3641 mutex_lock(&root->fs_info->transaction_kthread_mutex);
3642
a4abeea4 3643 spin_lock(&root->fs_info->trans_lock);
acce952b 3644 list_splice_init(&root->fs_info->trans_list, &list);
a4abeea4
JB
3645 root->fs_info->trans_no_join = 1;
3646 spin_unlock(&root->fs_info->trans_lock);
3647
acce952b 3648 while (!list_empty(&list)) {
3649 t = list_entry(list.next, struct btrfs_transaction, list);
3650 if (!t)
3651 break;
3652
3653 btrfs_destroy_ordered_operations(root);
3654
3655 btrfs_destroy_ordered_extents(root);
3656
3657 btrfs_destroy_delayed_refs(t, root);
3658
3659 btrfs_block_rsv_release(root,
3660 &root->fs_info->trans_block_rsv,
3661 t->dirty_pages.dirty_bytes);
3662
3663 /* FIXME: cleanup wait for commit */
3664 t->in_commit = 1;
3665 t->blocked = 1;
3666 if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
3667 wake_up(&root->fs_info->transaction_blocked_wait);
3668
3669 t->blocked = 0;
3670 if (waitqueue_active(&root->fs_info->transaction_wait))
3671 wake_up(&root->fs_info->transaction_wait);
acce952b 3672
acce952b 3673 t->commit_done = 1;
3674 if (waitqueue_active(&t->commit_wait))
3675 wake_up(&t->commit_wait);
acce952b 3676
67cde344
MX
3677 btrfs_destroy_delayed_inodes(root);
3678 btrfs_assert_delayed_root_empty(root);
3679
acce952b 3680 btrfs_destroy_pending_snapshots(t);
3681
3682 btrfs_destroy_delalloc_inodes(root);
3683
a4abeea4 3684 spin_lock(&root->fs_info->trans_lock);
acce952b 3685 root->fs_info->running_transaction = NULL;
a4abeea4 3686 spin_unlock(&root->fs_info->trans_lock);
acce952b 3687
3688 btrfs_destroy_marked_extents(root, &t->dirty_pages,
3689 EXTENT_DIRTY);
3690
3691 btrfs_destroy_pinned_extent(root,
3692 root->fs_info->pinned_extents);
3693
13c5a93e 3694 atomic_set(&t->use_count, 0);
acce952b 3695 list_del_init(&t->list);
3696 memset(t, 0, sizeof(*t));
3697 kmem_cache_free(btrfs_transaction_cachep, t);
3698 }
3699
a4abeea4
JB
3700 spin_lock(&root->fs_info->trans_lock);
3701 root->fs_info->trans_no_join = 0;
3702 spin_unlock(&root->fs_info->trans_lock);
acce952b 3703 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
acce952b 3704
3705 return 0;
3706}
3707
d1310b2e 3708static struct extent_io_ops btree_extent_io_ops = {
4bef0848 3709 .write_cache_pages_lock_hook = btree_lock_page_hook,
ce9adaa5 3710 .readpage_end_io_hook = btree_readpage_end_io_hook,
4bb31e92 3711 .readpage_io_failed_hook = btree_io_failed_hook,
0b86a832 3712 .submit_bio_hook = btree_submit_bio_hook,
239b14b3
CM
3713 /* note we're sharing with inode.c for the merge bio hook */
3714 .merge_bio_hook = btrfs_merge_bio_hook,
0da5468f 3715};