btrfs: let ->s_fs_info point to fs_info, not root...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / btrfs / disk-io.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
e20d96d6 19#include <linux/fs.h>
d98237b3 20#include <linux/blkdev.h>
87cbda5c 21#include <linux/scatterlist.h>
22b0ebda 22#include <linux/swap.h>
0f7d52f4 23#include <linux/radix-tree.h>
35b7e476 24#include <linux/writeback.h>
d397712b 25#include <linux/buffer_head.h>
ce9adaa5 26#include <linux/workqueue.h>
a74a4b97 27#include <linux/kthread.h>
4b4e25f2 28#include <linux/freezer.h>
163e783e 29#include <linux/crc32c.h>
5a0e3ad6 30#include <linux/slab.h>
784b4e29 31#include <linux/migrate.h>
7a36ddec 32#include <linux/ratelimit.h>
7e75bf3f 33#include <asm/unaligned.h>
4b4e25f2 34#include "compat.h"
eb60ceac
CM
35#include "ctree.h"
36#include "disk-io.h"
e089f05c 37#include "transaction.h"
0f7d52f4 38#include "btrfs_inode.h"
0b86a832 39#include "volumes.h"
db94535d 40#include "print-tree.h"
8b712842 41#include "async-thread.h"
925baedd 42#include "locking.h"
e02119d5 43#include "tree-log.h"
fa9c0d79 44#include "free-space-cache.h"
581bb050 45#include "inode-map.h"
eb60ceac 46
d1310b2e 47static struct extent_io_ops btree_extent_io_ops;
8b712842 48static void end_workqueue_fn(struct btrfs_work *work);
4df27c4d 49static void free_fs_root(struct btrfs_root *root);
acce952b 50static void btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
51 int read_only);
52static int btrfs_destroy_ordered_operations(struct btrfs_root *root);
53static int btrfs_destroy_ordered_extents(struct btrfs_root *root);
54static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
55 struct btrfs_root *root);
56static int btrfs_destroy_pending_snapshots(struct btrfs_transaction *t);
57static int btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
58static int btrfs_destroy_marked_extents(struct btrfs_root *root,
59 struct extent_io_tree *dirty_pages,
60 int mark);
61static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
62 struct extent_io_tree *pinned_extents);
63static int btrfs_cleanup_transaction(struct btrfs_root *root);
ce9adaa5 64
d352ac68
CM
65/*
66 * end_io_wq structs are used to do processing in task context when an IO is
67 * complete. This is used during reads to verify checksums, and it is used
68 * by writes to insert metadata for new file extents after IO is complete.
69 */
ce9adaa5
CM
70struct end_io_wq {
71 struct bio *bio;
72 bio_end_io_t *end_io;
73 void *private;
74 struct btrfs_fs_info *info;
75 int error;
22c59948 76 int metadata;
ce9adaa5 77 struct list_head list;
8b712842 78 struct btrfs_work work;
ce9adaa5 79};
0da5468f 80
d352ac68
CM
81/*
82 * async submit bios are used to offload expensive checksumming
83 * onto the worker threads. They checksum file and metadata bios
84 * just before they are sent down the IO stack.
85 */
44b8bd7e
CM
86struct async_submit_bio {
87 struct inode *inode;
88 struct bio *bio;
89 struct list_head list;
4a69a410
CM
90 extent_submit_bio_hook_t *submit_bio_start;
91 extent_submit_bio_hook_t *submit_bio_done;
44b8bd7e
CM
92 int rw;
93 int mirror_num;
c8b97818 94 unsigned long bio_flags;
eaf25d93
CM
95 /*
96 * bio_offset is optional, can be used if the pages in the bio
97 * can't tell us where in the file the bio should go
98 */
99 u64 bio_offset;
8b712842 100 struct btrfs_work work;
44b8bd7e
CM
101};
102
85d4e461
CM
103/*
104 * Lockdep class keys for extent_buffer->lock's in this root. For a given
105 * eb, the lockdep key is determined by the btrfs_root it belongs to and
106 * the level the eb occupies in the tree.
107 *
108 * Different roots are used for different purposes and may nest inside each
109 * other and they require separate keysets. As lockdep keys should be
110 * static, assign keysets according to the purpose of the root as indicated
111 * by btrfs_root->objectid. This ensures that all special purpose roots
112 * have separate keysets.
4008c04a 113 *
85d4e461
CM
114 * Lock-nesting across peer nodes is always done with the immediate parent
115 * node locked thus preventing deadlock. As lockdep doesn't know this, use
116 * subclass to avoid triggering lockdep warning in such cases.
4008c04a 117 *
85d4e461
CM
118 * The key is set by the readpage_end_io_hook after the buffer has passed
119 * csum validation but before the pages are unlocked. It is also set by
120 * btrfs_init_new_buffer on freshly allocated blocks.
4008c04a 121 *
85d4e461
CM
122 * We also add a check to make sure the highest level of the tree is the
123 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
124 * needs update as well.
4008c04a
CM
125 */
126#ifdef CONFIG_DEBUG_LOCK_ALLOC
127# if BTRFS_MAX_LEVEL != 8
128# error
129# endif
85d4e461
CM
130
131static struct btrfs_lockdep_keyset {
132 u64 id; /* root objectid */
133 const char *name_stem; /* lock name stem */
134 char names[BTRFS_MAX_LEVEL + 1][20];
135 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
136} btrfs_lockdep_keysets[] = {
137 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
138 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
139 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
140 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
141 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
142 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
143 { .id = BTRFS_ORPHAN_OBJECTID, .name_stem = "orphan" },
144 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
145 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
146 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
147 { .id = 0, .name_stem = "tree" },
4008c04a 148};
85d4e461
CM
149
150void __init btrfs_init_lockdep(void)
151{
152 int i, j;
153
154 /* initialize lockdep class names */
155 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
156 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
157
158 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
159 snprintf(ks->names[j], sizeof(ks->names[j]),
160 "btrfs-%s-%02d", ks->name_stem, j);
161 }
162}
163
164void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
165 int level)
166{
167 struct btrfs_lockdep_keyset *ks;
168
169 BUG_ON(level >= ARRAY_SIZE(ks->keys));
170
171 /* find the matching keyset, id 0 is the default entry */
172 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
173 if (ks->id == objectid)
174 break;
175
176 lockdep_set_class_and_name(&eb->lock,
177 &ks->keys[level], ks->names[level]);
178}
179
4008c04a
CM
180#endif
181
d352ac68
CM
182/*
183 * extents on the btree inode are pretty simple, there's one extent
184 * that covers the entire device
185 */
b2950863 186static struct extent_map *btree_get_extent(struct inode *inode,
306e16ce 187 struct page *page, size_t pg_offset, u64 start, u64 len,
b2950863 188 int create)
7eccb903 189{
5f39d397
CM
190 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
191 struct extent_map *em;
192 int ret;
193
890871be 194 read_lock(&em_tree->lock);
d1310b2e 195 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
196 if (em) {
197 em->bdev =
198 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
890871be 199 read_unlock(&em_tree->lock);
5f39d397 200 goto out;
a061fc8d 201 }
890871be 202 read_unlock(&em_tree->lock);
7b13b7b1 203
172ddd60 204 em = alloc_extent_map();
5f39d397
CM
205 if (!em) {
206 em = ERR_PTR(-ENOMEM);
207 goto out;
208 }
209 em->start = 0;
0afbaf8c 210 em->len = (u64)-1;
c8b97818 211 em->block_len = (u64)-1;
5f39d397 212 em->block_start = 0;
a061fc8d 213 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
d1310b2e 214
890871be 215 write_lock(&em_tree->lock);
5f39d397
CM
216 ret = add_extent_mapping(em_tree, em);
217 if (ret == -EEXIST) {
0afbaf8c
CM
218 u64 failed_start = em->start;
219 u64 failed_len = em->len;
220
5f39d397 221 free_extent_map(em);
7b13b7b1 222 em = lookup_extent_mapping(em_tree, start, len);
0afbaf8c 223 if (em) {
7b13b7b1 224 ret = 0;
0afbaf8c
CM
225 } else {
226 em = lookup_extent_mapping(em_tree, failed_start,
227 failed_len);
7b13b7b1 228 ret = -EIO;
0afbaf8c 229 }
5f39d397 230 } else if (ret) {
7b13b7b1
CM
231 free_extent_map(em);
232 em = NULL;
5f39d397 233 }
890871be 234 write_unlock(&em_tree->lock);
7b13b7b1
CM
235
236 if (ret)
237 em = ERR_PTR(ret);
5f39d397
CM
238out:
239 return em;
7eccb903
CM
240}
241
19c00ddc
CM
242u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
243{
163e783e 244 return crc32c(seed, data, len);
19c00ddc
CM
245}
246
247void btrfs_csum_final(u32 crc, char *result)
248{
7e75bf3f 249 put_unaligned_le32(~crc, result);
19c00ddc
CM
250}
251
d352ac68
CM
252/*
253 * compute the csum for a btree block, and either verify it or write it
254 * into the csum field of the block.
255 */
19c00ddc
CM
256static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
257 int verify)
258{
6c41761f 259 u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
607d432d 260 char *result = NULL;
19c00ddc
CM
261 unsigned long len;
262 unsigned long cur_len;
263 unsigned long offset = BTRFS_CSUM_SIZE;
19c00ddc
CM
264 char *kaddr;
265 unsigned long map_start;
266 unsigned long map_len;
267 int err;
268 u32 crc = ~(u32)0;
607d432d 269 unsigned long inline_result;
19c00ddc
CM
270
271 len = buf->len - offset;
d397712b 272 while (len > 0) {
19c00ddc 273 err = map_private_extent_buffer(buf, offset, 32,
a6591715 274 &kaddr, &map_start, &map_len);
d397712b 275 if (err)
19c00ddc 276 return 1;
19c00ddc
CM
277 cur_len = min(len, map_len - (offset - map_start));
278 crc = btrfs_csum_data(root, kaddr + offset - map_start,
279 crc, cur_len);
280 len -= cur_len;
281 offset += cur_len;
19c00ddc 282 }
607d432d
JB
283 if (csum_size > sizeof(inline_result)) {
284 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
285 if (!result)
286 return 1;
287 } else {
288 result = (char *)&inline_result;
289 }
290
19c00ddc
CM
291 btrfs_csum_final(crc, result);
292
293 if (verify) {
607d432d 294 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
e4204ded
CM
295 u32 val;
296 u32 found = 0;
607d432d 297 memcpy(&found, result, csum_size);
e4204ded 298
607d432d 299 read_extent_buffer(buf, &val, 0, csum_size);
7a36ddec 300 printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
193f284d
CM
301 "failed on %llu wanted %X found %X "
302 "level %d\n",
303 root->fs_info->sb->s_id,
304 (unsigned long long)buf->start, val, found,
305 btrfs_header_level(buf));
607d432d
JB
306 if (result != (char *)&inline_result)
307 kfree(result);
19c00ddc
CM
308 return 1;
309 }
310 } else {
607d432d 311 write_extent_buffer(buf, result, 0, csum_size);
19c00ddc 312 }
607d432d
JB
313 if (result != (char *)&inline_result)
314 kfree(result);
19c00ddc
CM
315 return 0;
316}
317
d352ac68
CM
318/*
319 * we can't consider a given block up to date unless the transid of the
320 * block matches the transid in the parent node's pointer. This is how we
321 * detect blocks that either didn't get written at all or got written
322 * in the wrong place.
323 */
1259ab75
CM
324static int verify_parent_transid(struct extent_io_tree *io_tree,
325 struct extent_buffer *eb, u64 parent_transid)
326{
2ac55d41 327 struct extent_state *cached_state = NULL;
1259ab75
CM
328 int ret;
329
330 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
331 return 0;
332
2ac55d41
JB
333 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
334 0, &cached_state, GFP_NOFS);
335 if (extent_buffer_uptodate(io_tree, eb, cached_state) &&
1259ab75
CM
336 btrfs_header_generation(eb) == parent_transid) {
337 ret = 0;
338 goto out;
339 }
7a36ddec 340 printk_ratelimited("parent transid verify failed on %llu wanted %llu "
193f284d
CM
341 "found %llu\n",
342 (unsigned long long)eb->start,
343 (unsigned long long)parent_transid,
344 (unsigned long long)btrfs_header_generation(eb));
1259ab75 345 ret = 1;
2ac55d41 346 clear_extent_buffer_uptodate(io_tree, eb, &cached_state);
33958dc6 347out:
2ac55d41
JB
348 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
349 &cached_state, GFP_NOFS);
1259ab75 350 return ret;
1259ab75
CM
351}
352
d352ac68
CM
353/*
354 * helper to read a given tree block, doing retries as required when
355 * the checksums don't match and we have alternate mirrors to try.
356 */
f188591e
CM
357static int btree_read_extent_buffer_pages(struct btrfs_root *root,
358 struct extent_buffer *eb,
ca7a79ad 359 u64 start, u64 parent_transid)
f188591e
CM
360{
361 struct extent_io_tree *io_tree;
362 int ret;
363 int num_copies = 0;
364 int mirror_num = 0;
365
a826d6dc 366 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
f188591e
CM
367 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
368 while (1) {
bb82ab88
AJ
369 ret = read_extent_buffer_pages(io_tree, eb, start,
370 WAIT_COMPLETE,
f188591e 371 btree_get_extent, mirror_num);
1259ab75
CM
372 if (!ret &&
373 !verify_parent_transid(io_tree, eb, parent_transid))
f188591e 374 return ret;
d397712b 375
a826d6dc
JB
376 /*
377 * This buffer's crc is fine, but its contents are corrupted, so
378 * there is no reason to read the other copies, they won't be
379 * any less wrong.
380 */
381 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
382 return ret;
383
f188591e
CM
384 num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
385 eb->start, eb->len);
4235298e 386 if (num_copies == 1)
f188591e 387 return ret;
4235298e 388
f188591e 389 mirror_num++;
4235298e 390 if (mirror_num > num_copies)
f188591e 391 return ret;
f188591e 392 }
f188591e
CM
393 return -EIO;
394}
19c00ddc 395
d352ac68 396/*
d397712b
CM
397 * checksum a dirty tree block before IO. This has extra checks to make sure
398 * we only fill in the checksum field in the first page of a multi-page block
d352ac68 399 */
d397712b 400
b2950863 401static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
19c00ddc 402{
d1310b2e 403 struct extent_io_tree *tree;
35ebb934 404 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
19c00ddc 405 u64 found_start;
19c00ddc
CM
406 unsigned long len;
407 struct extent_buffer *eb;
f188591e
CM
408 int ret;
409
d1310b2e 410 tree = &BTRFS_I(page->mapping->host)->io_tree;
19c00ddc 411
eb14ab8e
CM
412 if (page->private == EXTENT_PAGE_PRIVATE) {
413 WARN_ON(1);
19c00ddc 414 goto out;
eb14ab8e
CM
415 }
416 if (!page->private) {
417 WARN_ON(1);
19c00ddc 418 goto out;
eb14ab8e 419 }
19c00ddc 420 len = page->private >> 2;
d397712b
CM
421 WARN_ON(len == 0);
422
ba144192 423 eb = alloc_extent_buffer(tree, start, len, page);
91ca338d
TI
424 if (eb == NULL) {
425 WARN_ON(1);
426 goto out;
427 }
ca7a79ad
CM
428 ret = btree_read_extent_buffer_pages(root, eb, start + PAGE_CACHE_SIZE,
429 btrfs_header_generation(eb));
f188591e 430 BUG_ON(ret);
784b4e29
CM
431 WARN_ON(!btrfs_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN));
432
19c00ddc
CM
433 found_start = btrfs_header_bytenr(eb);
434 if (found_start != start) {
55c69072
CM
435 WARN_ON(1);
436 goto err;
437 }
438 if (eb->first_page != page) {
55c69072
CM
439 WARN_ON(1);
440 goto err;
441 }
442 if (!PageUptodate(page)) {
55c69072
CM
443 WARN_ON(1);
444 goto err;
19c00ddc 445 }
19c00ddc 446 csum_tree_block(root, eb, 0);
55c69072 447err:
19c00ddc
CM
448 free_extent_buffer(eb);
449out:
450 return 0;
451}
452
2b82032c
YZ
453static int check_tree_block_fsid(struct btrfs_root *root,
454 struct extent_buffer *eb)
455{
456 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
457 u8 fsid[BTRFS_UUID_SIZE];
458 int ret = 1;
459
460 read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
461 BTRFS_FSID_SIZE);
462 while (fs_devices) {
463 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
464 ret = 0;
465 break;
466 }
467 fs_devices = fs_devices->seed;
468 }
469 return ret;
470}
471
a826d6dc
JB
472#define CORRUPT(reason, eb, root, slot) \
473 printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
474 "root=%llu, slot=%d\n", reason, \
475 (unsigned long long)btrfs_header_bytenr(eb), \
476 (unsigned long long)root->objectid, slot)
477
478static noinline int check_leaf(struct btrfs_root *root,
479 struct extent_buffer *leaf)
480{
481 struct btrfs_key key;
482 struct btrfs_key leaf_key;
483 u32 nritems = btrfs_header_nritems(leaf);
484 int slot;
485
486 if (nritems == 0)
487 return 0;
488
489 /* Check the 0 item */
490 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
491 BTRFS_LEAF_DATA_SIZE(root)) {
492 CORRUPT("invalid item offset size pair", leaf, root, 0);
493 return -EIO;
494 }
495
496 /*
497 * Check to make sure each items keys are in the correct order and their
498 * offsets make sense. We only have to loop through nritems-1 because
499 * we check the current slot against the next slot, which verifies the
500 * next slot's offset+size makes sense and that the current's slot
501 * offset is correct.
502 */
503 for (slot = 0; slot < nritems - 1; slot++) {
504 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
505 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
506
507 /* Make sure the keys are in the right order */
508 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
509 CORRUPT("bad key order", leaf, root, slot);
510 return -EIO;
511 }
512
513 /*
514 * Make sure the offset and ends are right, remember that the
515 * item data starts at the end of the leaf and grows towards the
516 * front.
517 */
518 if (btrfs_item_offset_nr(leaf, slot) !=
519 btrfs_item_end_nr(leaf, slot + 1)) {
520 CORRUPT("slot offset bad", leaf, root, slot);
521 return -EIO;
522 }
523
524 /*
525 * Check to make sure that we don't point outside of the leaf,
526 * just incase all the items are consistent to eachother, but
527 * all point outside of the leaf.
528 */
529 if (btrfs_item_end_nr(leaf, slot) >
530 BTRFS_LEAF_DATA_SIZE(root)) {
531 CORRUPT("slot end outside of leaf", leaf, root, slot);
532 return -EIO;
533 }
534 }
535
536 return 0;
537}
538
b2950863 539static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
ce9adaa5
CM
540 struct extent_state *state)
541{
542 struct extent_io_tree *tree;
543 u64 found_start;
544 int found_level;
545 unsigned long len;
546 struct extent_buffer *eb;
547 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
f188591e 548 int ret = 0;
ce9adaa5
CM
549
550 tree = &BTRFS_I(page->mapping->host)->io_tree;
551 if (page->private == EXTENT_PAGE_PRIVATE)
552 goto out;
553 if (!page->private)
554 goto out;
d397712b 555
ce9adaa5 556 len = page->private >> 2;
d397712b
CM
557 WARN_ON(len == 0);
558
ba144192 559 eb = alloc_extent_buffer(tree, start, len, page);
91ca338d
TI
560 if (eb == NULL) {
561 ret = -EIO;
562 goto out;
563 }
f188591e 564
ce9adaa5 565 found_start = btrfs_header_bytenr(eb);
23a07867 566 if (found_start != start) {
7a36ddec 567 printk_ratelimited(KERN_INFO "btrfs bad tree block start "
193f284d
CM
568 "%llu %llu\n",
569 (unsigned long long)found_start,
570 (unsigned long long)eb->start);
f188591e 571 ret = -EIO;
ce9adaa5
CM
572 goto err;
573 }
574 if (eb->first_page != page) {
d397712b
CM
575 printk(KERN_INFO "btrfs bad first page %lu %lu\n",
576 eb->first_page->index, page->index);
ce9adaa5 577 WARN_ON(1);
f188591e 578 ret = -EIO;
ce9adaa5
CM
579 goto err;
580 }
2b82032c 581 if (check_tree_block_fsid(root, eb)) {
7a36ddec 582 printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
193f284d 583 (unsigned long long)eb->start);
1259ab75
CM
584 ret = -EIO;
585 goto err;
586 }
ce9adaa5
CM
587 found_level = btrfs_header_level(eb);
588
85d4e461
CM
589 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
590 eb, found_level);
4008c04a 591
ce9adaa5 592 ret = csum_tree_block(root, eb, 1);
a826d6dc 593 if (ret) {
f188591e 594 ret = -EIO;
a826d6dc
JB
595 goto err;
596 }
597
598 /*
599 * If this is a leaf block and it is corrupt, set the corrupt bit so
600 * that we don't try and read the other copies of this block, just
601 * return -EIO.
602 */
603 if (found_level == 0 && check_leaf(root, eb)) {
604 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
605 ret = -EIO;
606 }
ce9adaa5
CM
607
608 end = min_t(u64, eb->len, PAGE_CACHE_SIZE);
609 end = eb->start + end - 1;
ce9adaa5 610err:
4bb31e92
AJ
611 if (test_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) {
612 clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags);
613 btree_readahead_hook(root, eb, eb->start, ret);
614 }
615
ce9adaa5
CM
616 free_extent_buffer(eb);
617out:
f188591e 618 return ret;
ce9adaa5
CM
619}
620
4bb31e92
AJ
621static int btree_io_failed_hook(struct bio *failed_bio,
622 struct page *page, u64 start, u64 end,
32240a91 623 int mirror_num, struct extent_state *state)
4bb31e92
AJ
624{
625 struct extent_io_tree *tree;
626 unsigned long len;
627 struct extent_buffer *eb;
628 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
629
630 tree = &BTRFS_I(page->mapping->host)->io_tree;
631 if (page->private == EXTENT_PAGE_PRIVATE)
632 goto out;
633 if (!page->private)
634 goto out;
635
636 len = page->private >> 2;
637 WARN_ON(len == 0);
638
639 eb = alloc_extent_buffer(tree, start, len, page);
640 if (eb == NULL)
641 goto out;
642
643 if (test_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) {
644 clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags);
645 btree_readahead_hook(root, eb, eb->start, -EIO);
646 }
c674e04e 647 free_extent_buffer(eb);
4bb31e92
AJ
648
649out:
650 return -EIO; /* we fixed nothing */
651}
652
ce9adaa5 653static void end_workqueue_bio(struct bio *bio, int err)
ce9adaa5
CM
654{
655 struct end_io_wq *end_io_wq = bio->bi_private;
656 struct btrfs_fs_info *fs_info;
ce9adaa5 657
ce9adaa5 658 fs_info = end_io_wq->info;
ce9adaa5 659 end_io_wq->error = err;
8b712842
CM
660 end_io_wq->work.func = end_workqueue_fn;
661 end_io_wq->work.flags = 0;
d20f7043 662
7b6d91da 663 if (bio->bi_rw & REQ_WRITE) {
0cb59c99 664 if (end_io_wq->metadata == 1)
cad321ad
CM
665 btrfs_queue_worker(&fs_info->endio_meta_write_workers,
666 &end_io_wq->work);
0cb59c99
JB
667 else if (end_io_wq->metadata == 2)
668 btrfs_queue_worker(&fs_info->endio_freespace_worker,
669 &end_io_wq->work);
cad321ad
CM
670 else
671 btrfs_queue_worker(&fs_info->endio_write_workers,
672 &end_io_wq->work);
d20f7043
CM
673 } else {
674 if (end_io_wq->metadata)
675 btrfs_queue_worker(&fs_info->endio_meta_workers,
676 &end_io_wq->work);
677 else
678 btrfs_queue_worker(&fs_info->endio_workers,
679 &end_io_wq->work);
680 }
ce9adaa5
CM
681}
682
0cb59c99
JB
683/*
684 * For the metadata arg you want
685 *
686 * 0 - if data
687 * 1 - if normal metadta
688 * 2 - if writing to the free space cache area
689 */
22c59948
CM
690int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
691 int metadata)
0b86a832 692{
ce9adaa5 693 struct end_io_wq *end_io_wq;
ce9adaa5
CM
694 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
695 if (!end_io_wq)
696 return -ENOMEM;
697
698 end_io_wq->private = bio->bi_private;
699 end_io_wq->end_io = bio->bi_end_io;
22c59948 700 end_io_wq->info = info;
ce9adaa5
CM
701 end_io_wq->error = 0;
702 end_io_wq->bio = bio;
22c59948 703 end_io_wq->metadata = metadata;
ce9adaa5
CM
704
705 bio->bi_private = end_io_wq;
706 bio->bi_end_io = end_workqueue_bio;
22c59948
CM
707 return 0;
708}
709
b64a2851 710unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
0986fe9e 711{
4854ddd0
CM
712 unsigned long limit = min_t(unsigned long,
713 info->workers.max_workers,
714 info->fs_devices->open_devices);
715 return 256 * limit;
716}
0986fe9e 717
4a69a410
CM
718static void run_one_async_start(struct btrfs_work *work)
719{
4a69a410
CM
720 struct async_submit_bio *async;
721
722 async = container_of(work, struct async_submit_bio, work);
4a69a410 723 async->submit_bio_start(async->inode, async->rw, async->bio,
eaf25d93
CM
724 async->mirror_num, async->bio_flags,
725 async->bio_offset);
4a69a410
CM
726}
727
728static void run_one_async_done(struct btrfs_work *work)
8b712842
CM
729{
730 struct btrfs_fs_info *fs_info;
731 struct async_submit_bio *async;
4854ddd0 732 int limit;
8b712842
CM
733
734 async = container_of(work, struct async_submit_bio, work);
735 fs_info = BTRFS_I(async->inode)->root->fs_info;
4854ddd0 736
b64a2851 737 limit = btrfs_async_submit_limit(fs_info);
4854ddd0
CM
738 limit = limit * 2 / 3;
739
8b712842 740 atomic_dec(&fs_info->nr_async_submits);
0986fe9e 741
b64a2851
CM
742 if (atomic_read(&fs_info->nr_async_submits) < limit &&
743 waitqueue_active(&fs_info->async_submit_wait))
4854ddd0
CM
744 wake_up(&fs_info->async_submit_wait);
745
4a69a410 746 async->submit_bio_done(async->inode, async->rw, async->bio,
eaf25d93
CM
747 async->mirror_num, async->bio_flags,
748 async->bio_offset);
4a69a410
CM
749}
750
751static void run_one_async_free(struct btrfs_work *work)
752{
753 struct async_submit_bio *async;
754
755 async = container_of(work, struct async_submit_bio, work);
8b712842
CM
756 kfree(async);
757}
758
44b8bd7e
CM
759int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
760 int rw, struct bio *bio, int mirror_num,
c8b97818 761 unsigned long bio_flags,
eaf25d93 762 u64 bio_offset,
4a69a410
CM
763 extent_submit_bio_hook_t *submit_bio_start,
764 extent_submit_bio_hook_t *submit_bio_done)
44b8bd7e
CM
765{
766 struct async_submit_bio *async;
767
768 async = kmalloc(sizeof(*async), GFP_NOFS);
769 if (!async)
770 return -ENOMEM;
771
772 async->inode = inode;
773 async->rw = rw;
774 async->bio = bio;
775 async->mirror_num = mirror_num;
4a69a410
CM
776 async->submit_bio_start = submit_bio_start;
777 async->submit_bio_done = submit_bio_done;
778
779 async->work.func = run_one_async_start;
780 async->work.ordered_func = run_one_async_done;
781 async->work.ordered_free = run_one_async_free;
782
8b712842 783 async->work.flags = 0;
c8b97818 784 async->bio_flags = bio_flags;
eaf25d93 785 async->bio_offset = bio_offset;
8c8bee1d 786
cb03c743 787 atomic_inc(&fs_info->nr_async_submits);
d313d7a3 788
7b6d91da 789 if (rw & REQ_SYNC)
d313d7a3
CM
790 btrfs_set_work_high_prio(&async->work);
791
8b712842 792 btrfs_queue_worker(&fs_info->workers, &async->work);
9473f16c 793
d397712b 794 while (atomic_read(&fs_info->async_submit_draining) &&
771ed689
CM
795 atomic_read(&fs_info->nr_async_submits)) {
796 wait_event(fs_info->async_submit_wait,
797 (atomic_read(&fs_info->nr_async_submits) == 0));
798 }
799
44b8bd7e
CM
800 return 0;
801}
802
ce3ed71a
CM
803static int btree_csum_one_bio(struct bio *bio)
804{
805 struct bio_vec *bvec = bio->bi_io_vec;
806 int bio_index = 0;
807 struct btrfs_root *root;
808
809 WARN_ON(bio->bi_vcnt <= 0);
d397712b 810 while (bio_index < bio->bi_vcnt) {
ce3ed71a
CM
811 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
812 csum_dirty_buffer(root, bvec->bv_page);
813 bio_index++;
814 bvec++;
815 }
816 return 0;
817}
818
4a69a410
CM
819static int __btree_submit_bio_start(struct inode *inode, int rw,
820 struct bio *bio, int mirror_num,
eaf25d93
CM
821 unsigned long bio_flags,
822 u64 bio_offset)
22c59948 823{
8b712842
CM
824 /*
825 * when we're called for a write, we're already in the async
5443be45 826 * submission context. Just jump into btrfs_map_bio
8b712842 827 */
4a69a410
CM
828 btree_csum_one_bio(bio);
829 return 0;
830}
22c59948 831
4a69a410 832static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
833 int mirror_num, unsigned long bio_flags,
834 u64 bio_offset)
4a69a410 835{
8b712842 836 /*
4a69a410
CM
837 * when we're called for a write, we're already in the async
838 * submission context. Just jump into btrfs_map_bio
8b712842 839 */
8b712842 840 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
0b86a832
CM
841}
842
44b8bd7e 843static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
844 int mirror_num, unsigned long bio_flags,
845 u64 bio_offset)
44b8bd7e 846{
cad321ad
CM
847 int ret;
848
849 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
850 bio, 1);
851 BUG_ON(ret);
852
7b6d91da 853 if (!(rw & REQ_WRITE)) {
4a69a410
CM
854 /*
855 * called for a read, do the setup so that checksum validation
856 * can happen in the async kernel threads
857 */
4a69a410 858 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
6f3577bd 859 mirror_num, 0);
44b8bd7e 860 }
d313d7a3 861
cad321ad
CM
862 /*
863 * kthread helpers are used to submit writes so that checksumming
864 * can happen in parallel across all CPUs
865 */
44b8bd7e 866 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
c8b97818 867 inode, rw, bio, mirror_num, 0,
eaf25d93 868 bio_offset,
4a69a410
CM
869 __btree_submit_bio_start,
870 __btree_submit_bio_done);
44b8bd7e
CM
871}
872
3dd1462e 873#ifdef CONFIG_MIGRATION
784b4e29
CM
874static int btree_migratepage(struct address_space *mapping,
875 struct page *newpage, struct page *page)
876{
877 /*
878 * we can't safely write a btree page from here,
879 * we haven't done the locking hook
880 */
881 if (PageDirty(page))
882 return -EAGAIN;
883 /*
884 * Buffers may be managed in a filesystem specific way.
885 * We must have no buffers or drop them.
886 */
887 if (page_has_private(page) &&
888 !try_to_release_page(page, GFP_KERNEL))
889 return -EAGAIN;
784b4e29
CM
890 return migrate_page(mapping, newpage, page);
891}
3dd1462e 892#endif
784b4e29 893
0da5468f
CM
894static int btree_writepage(struct page *page, struct writeback_control *wbc)
895{
d1310b2e 896 struct extent_io_tree *tree;
b9473439
CM
897 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
898 struct extent_buffer *eb;
899 int was_dirty;
900
d1310b2e 901 tree = &BTRFS_I(page->mapping->host)->io_tree;
b9473439
CM
902 if (!(current->flags & PF_MEMALLOC)) {
903 return extent_write_full_page(tree, page,
904 btree_get_extent, wbc);
905 }
5443be45 906
b9473439 907 redirty_page_for_writepage(wbc, page);
784b4e29 908 eb = btrfs_find_tree_block(root, page_offset(page), PAGE_CACHE_SIZE);
b9473439
CM
909 WARN_ON(!eb);
910
911 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
912 if (!was_dirty) {
913 spin_lock(&root->fs_info->delalloc_lock);
914 root->fs_info->dirty_metadata_bytes += PAGE_CACHE_SIZE;
915 spin_unlock(&root->fs_info->delalloc_lock);
5443be45 916 }
b9473439
CM
917 free_extent_buffer(eb);
918
919 unlock_page(page);
920 return 0;
5f39d397 921}
0da5468f
CM
922
923static int btree_writepages(struct address_space *mapping,
924 struct writeback_control *wbc)
925{
d1310b2e
CM
926 struct extent_io_tree *tree;
927 tree = &BTRFS_I(mapping->host)->io_tree;
d8d5f3e1 928 if (wbc->sync_mode == WB_SYNC_NONE) {
b9473439 929 struct btrfs_root *root = BTRFS_I(mapping->host)->root;
793955bc 930 u64 num_dirty;
24ab9cd8 931 unsigned long thresh = 32 * 1024 * 1024;
448d640b
CM
932
933 if (wbc->for_kupdate)
934 return 0;
935
b9473439
CM
936 /* this is a bit racy, but that's ok */
937 num_dirty = root->fs_info->dirty_metadata_bytes;
d397712b 938 if (num_dirty < thresh)
793955bc 939 return 0;
793955bc 940 }
0da5468f
CM
941 return extent_writepages(tree, mapping, btree_get_extent, wbc);
942}
943
b2950863 944static int btree_readpage(struct file *file, struct page *page)
5f39d397 945{
d1310b2e
CM
946 struct extent_io_tree *tree;
947 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 948 return extent_read_full_page(tree, page, btree_get_extent, 0);
5f39d397 949}
22b0ebda 950
70dec807 951static int btree_releasepage(struct page *page, gfp_t gfp_flags)
5f39d397 952{
d1310b2e
CM
953 struct extent_io_tree *tree;
954 struct extent_map_tree *map;
5f39d397 955 int ret;
d98237b3 956
98509cfc 957 if (PageWriteback(page) || PageDirty(page))
d397712b 958 return 0;
98509cfc 959
d1310b2e
CM
960 tree = &BTRFS_I(page->mapping->host)->io_tree;
961 map = &BTRFS_I(page->mapping->host)->extent_tree;
6af118ce 962
7b13b7b1 963 ret = try_release_extent_state(map, tree, page, gfp_flags);
d397712b 964 if (!ret)
6af118ce 965 return 0;
6af118ce
CM
966
967 ret = try_release_extent_buffer(tree, page);
5f39d397
CM
968 if (ret == 1) {
969 ClearPagePrivate(page);
970 set_page_private(page, 0);
971 page_cache_release(page);
972 }
6af118ce 973
d98237b3
CM
974 return ret;
975}
976
5f39d397 977static void btree_invalidatepage(struct page *page, unsigned long offset)
d98237b3 978{
d1310b2e
CM
979 struct extent_io_tree *tree;
980 tree = &BTRFS_I(page->mapping->host)->io_tree;
5f39d397
CM
981 extent_invalidatepage(tree, page, offset);
982 btree_releasepage(page, GFP_NOFS);
9ad6b7bc 983 if (PagePrivate(page)) {
d397712b
CM
984 printk(KERN_WARNING "btrfs warning page private not zero "
985 "on page %llu\n", (unsigned long long)page_offset(page));
9ad6b7bc
CM
986 ClearPagePrivate(page);
987 set_page_private(page, 0);
988 page_cache_release(page);
989 }
d98237b3
CM
990}
991
7f09410b 992static const struct address_space_operations btree_aops = {
d98237b3
CM
993 .readpage = btree_readpage,
994 .writepage = btree_writepage,
0da5468f 995 .writepages = btree_writepages,
5f39d397
CM
996 .releasepage = btree_releasepage,
997 .invalidatepage = btree_invalidatepage,
5a92bc88 998#ifdef CONFIG_MIGRATION
784b4e29 999 .migratepage = btree_migratepage,
5a92bc88 1000#endif
d98237b3
CM
1001};
1002
ca7a79ad
CM
1003int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1004 u64 parent_transid)
090d1875 1005{
5f39d397
CM
1006 struct extent_buffer *buf = NULL;
1007 struct inode *btree_inode = root->fs_info->btree_inode;
de428b63 1008 int ret = 0;
090d1875 1009
db94535d 1010 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
5f39d397 1011 if (!buf)
090d1875 1012 return 0;
d1310b2e 1013 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
bb82ab88 1014 buf, 0, WAIT_NONE, btree_get_extent, 0);
5f39d397 1015 free_extent_buffer(buf);
de428b63 1016 return ret;
090d1875
CM
1017}
1018
ab0fff03
AJ
1019int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1020 int mirror_num, struct extent_buffer **eb)
1021{
1022 struct extent_buffer *buf = NULL;
1023 struct inode *btree_inode = root->fs_info->btree_inode;
1024 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1025 int ret;
1026
1027 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1028 if (!buf)
1029 return 0;
1030
1031 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1032
1033 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1034 btree_get_extent, mirror_num);
1035 if (ret) {
1036 free_extent_buffer(buf);
1037 return ret;
1038 }
1039
1040 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1041 free_extent_buffer(buf);
1042 return -EIO;
1043 } else if (extent_buffer_uptodate(io_tree, buf, NULL)) {
1044 *eb = buf;
1045 } else {
1046 free_extent_buffer(buf);
1047 }
1048 return 0;
1049}
1050
0999df54
CM
1051struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1052 u64 bytenr, u32 blocksize)
1053{
1054 struct inode *btree_inode = root->fs_info->btree_inode;
1055 struct extent_buffer *eb;
1056 eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
f09d1f60 1057 bytenr, blocksize);
0999df54
CM
1058 return eb;
1059}
1060
1061struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1062 u64 bytenr, u32 blocksize)
1063{
1064 struct inode *btree_inode = root->fs_info->btree_inode;
1065 struct extent_buffer *eb;
1066
1067 eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
ba144192 1068 bytenr, blocksize, NULL);
0999df54
CM
1069 return eb;
1070}
1071
1072
e02119d5
CM
1073int btrfs_write_tree_block(struct extent_buffer *buf)
1074{
8aa38c31
CH
1075 return filemap_fdatawrite_range(buf->first_page->mapping, buf->start,
1076 buf->start + buf->len - 1);
e02119d5
CM
1077}
1078
1079int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1080{
8aa38c31
CH
1081 return filemap_fdatawait_range(buf->first_page->mapping,
1082 buf->start, buf->start + buf->len - 1);
e02119d5
CM
1083}
1084
0999df54 1085struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
ca7a79ad 1086 u32 blocksize, u64 parent_transid)
0999df54
CM
1087{
1088 struct extent_buffer *buf = NULL;
0999df54
CM
1089 int ret;
1090
0999df54
CM
1091 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1092 if (!buf)
1093 return NULL;
0999df54 1094
ca7a79ad 1095 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
ce9adaa5 1096
d397712b 1097 if (ret == 0)
b4ce94de 1098 set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
5f39d397 1099 return buf;
ce9adaa5 1100
eb60ceac
CM
1101}
1102
e089f05c 1103int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
5f39d397 1104 struct extent_buffer *buf)
ed2ff2cb 1105{
5f39d397 1106 struct inode *btree_inode = root->fs_info->btree_inode;
55c69072 1107 if (btrfs_header_generation(buf) ==
925baedd 1108 root->fs_info->running_transaction->transid) {
b9447ef8 1109 btrfs_assert_tree_locked(buf);
b4ce94de 1110
b9473439
CM
1111 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1112 spin_lock(&root->fs_info->delalloc_lock);
1113 if (root->fs_info->dirty_metadata_bytes >= buf->len)
1114 root->fs_info->dirty_metadata_bytes -= buf->len;
1115 else
1116 WARN_ON(1);
1117 spin_unlock(&root->fs_info->delalloc_lock);
1118 }
b4ce94de 1119
b9473439
CM
1120 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1121 btrfs_set_lock_blocking(buf);
d1310b2e 1122 clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
55c69072 1123 buf);
925baedd 1124 }
5f39d397
CM
1125 return 0;
1126}
1127
db94535d 1128static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
87ee04eb 1129 u32 stripesize, struct btrfs_root *root,
9f5fae2f 1130 struct btrfs_fs_info *fs_info,
e20d96d6 1131 u64 objectid)
d97e63b6 1132{
cfaa7295 1133 root->node = NULL;
a28ec197 1134 root->commit_root = NULL;
db94535d
CM
1135 root->sectorsize = sectorsize;
1136 root->nodesize = nodesize;
1137 root->leafsize = leafsize;
87ee04eb 1138 root->stripesize = stripesize;
123abc88 1139 root->ref_cows = 0;
0b86a832 1140 root->track_dirty = 0;
c71bf099 1141 root->in_radix = 0;
d68fc57b
YZ
1142 root->orphan_item_inserted = 0;
1143 root->orphan_cleanup_state = 0;
0b86a832 1144
0f7d52f4
CM
1145 root->objectid = objectid;
1146 root->last_trans = 0;
13a8a7c8 1147 root->highest_objectid = 0;
58176a96 1148 root->name = NULL;
6bef4d31 1149 root->inode_tree = RB_ROOT;
16cdcec7 1150 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
f0486c68 1151 root->block_rsv = NULL;
d68fc57b 1152 root->orphan_block_rsv = NULL;
0b86a832
CM
1153
1154 INIT_LIST_HEAD(&root->dirty_list);
7b128766 1155 INIT_LIST_HEAD(&root->orphan_list);
5d4f98a2 1156 INIT_LIST_HEAD(&root->root_list);
d68fc57b 1157 spin_lock_init(&root->orphan_lock);
5d4f98a2 1158 spin_lock_init(&root->inode_lock);
f0486c68 1159 spin_lock_init(&root->accounting_lock);
a2135011 1160 mutex_init(&root->objectid_mutex);
e02119d5 1161 mutex_init(&root->log_mutex);
7237f183
YZ
1162 init_waitqueue_head(&root->log_writer_wait);
1163 init_waitqueue_head(&root->log_commit_wait[0]);
1164 init_waitqueue_head(&root->log_commit_wait[1]);
1165 atomic_set(&root->log_commit[0], 0);
1166 atomic_set(&root->log_commit[1], 0);
1167 atomic_set(&root->log_writers, 0);
1168 root->log_batch = 0;
1169 root->log_transid = 0;
257c62e1 1170 root->last_log_commit = 0;
d0c803c4 1171 extent_io_tree_init(&root->dirty_log_pages,
f993c883 1172 fs_info->btree_inode->i_mapping);
017e5369 1173
3768f368
CM
1174 memset(&root->root_key, 0, sizeof(root->root_key));
1175 memset(&root->root_item, 0, sizeof(root->root_item));
6702ed49 1176 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
58176a96 1177 memset(&root->root_kobj, 0, sizeof(root->root_kobj));
3f157a2f 1178 root->defrag_trans_start = fs_info->generation;
58176a96 1179 init_completion(&root->kobj_unregister);
6702ed49 1180 root->defrag_running = 0;
4d775673 1181 root->root_key.objectid = objectid;
0ee5dc67 1182 root->anon_dev = 0;
3768f368
CM
1183 return 0;
1184}
1185
db94535d 1186static int find_and_setup_root(struct btrfs_root *tree_root,
9f5fae2f
CM
1187 struct btrfs_fs_info *fs_info,
1188 u64 objectid,
e20d96d6 1189 struct btrfs_root *root)
3768f368
CM
1190{
1191 int ret;
db94535d 1192 u32 blocksize;
84234f3a 1193 u64 generation;
3768f368 1194
db94535d 1195 __setup_root(tree_root->nodesize, tree_root->leafsize,
87ee04eb
CM
1196 tree_root->sectorsize, tree_root->stripesize,
1197 root, fs_info, objectid);
3768f368
CM
1198 ret = btrfs_find_last_root(tree_root, objectid,
1199 &root->root_item, &root->root_key);
4df27c4d
YZ
1200 if (ret > 0)
1201 return -ENOENT;
3768f368
CM
1202 BUG_ON(ret);
1203
84234f3a 1204 generation = btrfs_root_generation(&root->root_item);
db94535d 1205 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
af31f5e5 1206 root->commit_root = NULL;
db94535d 1207 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
84234f3a 1208 blocksize, generation);
68433b73
CM
1209 if (!root->node || !btrfs_buffer_uptodate(root->node, generation)) {
1210 free_extent_buffer(root->node);
af31f5e5 1211 root->node = NULL;
68433b73
CM
1212 return -EIO;
1213 }
4df27c4d 1214 root->commit_root = btrfs_root_node(root);
d97e63b6
CM
1215 return 0;
1216}
1217
6f07e42e
AV
1218struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
1219{
1220 struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1221 if (root)
1222 root->fs_info = fs_info;
1223 return root;
1224}
1225
7237f183
YZ
1226static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1227 struct btrfs_fs_info *fs_info)
0f7d52f4
CM
1228{
1229 struct btrfs_root *root;
1230 struct btrfs_root *tree_root = fs_info->tree_root;
7237f183 1231 struct extent_buffer *leaf;
e02119d5 1232
6f07e42e 1233 root = btrfs_alloc_root(fs_info);
e02119d5 1234 if (!root)
7237f183 1235 return ERR_PTR(-ENOMEM);
e02119d5
CM
1236
1237 __setup_root(tree_root->nodesize, tree_root->leafsize,
1238 tree_root->sectorsize, tree_root->stripesize,
1239 root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1240
1241 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1242 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1243 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
7237f183
YZ
1244 /*
1245 * log trees do not get reference counted because they go away
1246 * before a real commit is actually done. They do store pointers
1247 * to file data extents, and those reference counts still get
1248 * updated (along with back refs to the log tree).
1249 */
e02119d5
CM
1250 root->ref_cows = 0;
1251
5d4f98a2
YZ
1252 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1253 BTRFS_TREE_LOG_OBJECTID, NULL, 0, 0, 0);
7237f183
YZ
1254 if (IS_ERR(leaf)) {
1255 kfree(root);
1256 return ERR_CAST(leaf);
1257 }
e02119d5 1258
5d4f98a2
YZ
1259 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1260 btrfs_set_header_bytenr(leaf, leaf->start);
1261 btrfs_set_header_generation(leaf, trans->transid);
1262 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1263 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
7237f183 1264 root->node = leaf;
e02119d5
CM
1265
1266 write_extent_buffer(root->node, root->fs_info->fsid,
1267 (unsigned long)btrfs_header_fsid(root->node),
1268 BTRFS_FSID_SIZE);
1269 btrfs_mark_buffer_dirty(root->node);
1270 btrfs_tree_unlock(root->node);
7237f183
YZ
1271 return root;
1272}
1273
1274int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1275 struct btrfs_fs_info *fs_info)
1276{
1277 struct btrfs_root *log_root;
1278
1279 log_root = alloc_log_tree(trans, fs_info);
1280 if (IS_ERR(log_root))
1281 return PTR_ERR(log_root);
1282 WARN_ON(fs_info->log_root_tree);
1283 fs_info->log_root_tree = log_root;
1284 return 0;
1285}
1286
1287int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1288 struct btrfs_root *root)
1289{
1290 struct btrfs_root *log_root;
1291 struct btrfs_inode_item *inode_item;
1292
1293 log_root = alloc_log_tree(trans, root->fs_info);
1294 if (IS_ERR(log_root))
1295 return PTR_ERR(log_root);
1296
1297 log_root->last_trans = trans->transid;
1298 log_root->root_key.offset = root->root_key.objectid;
1299
1300 inode_item = &log_root->root_item.inode;
1301 inode_item->generation = cpu_to_le64(1);
1302 inode_item->size = cpu_to_le64(3);
1303 inode_item->nlink = cpu_to_le32(1);
1304 inode_item->nbytes = cpu_to_le64(root->leafsize);
1305 inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
1306
5d4f98a2 1307 btrfs_set_root_node(&log_root->root_item, log_root->node);
7237f183
YZ
1308
1309 WARN_ON(root->log_root);
1310 root->log_root = log_root;
1311 root->log_transid = 0;
257c62e1 1312 root->last_log_commit = 0;
e02119d5
CM
1313 return 0;
1314}
1315
1316struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
1317 struct btrfs_key *location)
1318{
1319 struct btrfs_root *root;
1320 struct btrfs_fs_info *fs_info = tree_root->fs_info;
0f7d52f4 1321 struct btrfs_path *path;
5f39d397 1322 struct extent_buffer *l;
84234f3a 1323 u64 generation;
db94535d 1324 u32 blocksize;
0f7d52f4
CM
1325 int ret = 0;
1326
6f07e42e 1327 root = btrfs_alloc_root(fs_info);
0cf6c620 1328 if (!root)
0f7d52f4 1329 return ERR_PTR(-ENOMEM);
0f7d52f4 1330 if (location->offset == (u64)-1) {
db94535d 1331 ret = find_and_setup_root(tree_root, fs_info,
0f7d52f4
CM
1332 location->objectid, root);
1333 if (ret) {
0f7d52f4
CM
1334 kfree(root);
1335 return ERR_PTR(ret);
1336 }
13a8a7c8 1337 goto out;
0f7d52f4
CM
1338 }
1339
db94535d 1340 __setup_root(tree_root->nodesize, tree_root->leafsize,
87ee04eb
CM
1341 tree_root->sectorsize, tree_root->stripesize,
1342 root, fs_info, location->objectid);
0f7d52f4
CM
1343
1344 path = btrfs_alloc_path();
db5b493a
TI
1345 if (!path) {
1346 kfree(root);
1347 return ERR_PTR(-ENOMEM);
1348 }
0f7d52f4 1349 ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
13a8a7c8
YZ
1350 if (ret == 0) {
1351 l = path->nodes[0];
1352 read_extent_buffer(l, &root->root_item,
1353 btrfs_item_ptr_offset(l, path->slots[0]),
1354 sizeof(root->root_item));
1355 memcpy(&root->root_key, location, sizeof(*location));
0f7d52f4 1356 }
0f7d52f4
CM
1357 btrfs_free_path(path);
1358 if (ret) {
5e540f77 1359 kfree(root);
13a8a7c8
YZ
1360 if (ret > 0)
1361 ret = -ENOENT;
0f7d52f4
CM
1362 return ERR_PTR(ret);
1363 }
13a8a7c8 1364
84234f3a 1365 generation = btrfs_root_generation(&root->root_item);
db94535d
CM
1366 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1367 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
84234f3a 1368 blocksize, generation);
5d4f98a2 1369 root->commit_root = btrfs_root_node(root);
0f7d52f4 1370 BUG_ON(!root->node);
13a8a7c8 1371out:
08fe4db1 1372 if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
e02119d5 1373 root->ref_cows = 1;
08fe4db1
LZ
1374 btrfs_check_and_init_root_item(&root->root_item);
1375 }
13a8a7c8 1376
5eda7b5e
CM
1377 return root;
1378}
1379
edbd8d4e
CM
1380struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1381 struct btrfs_key *location)
5eda7b5e
CM
1382{
1383 struct btrfs_root *root;
1384 int ret;
1385
edbd8d4e
CM
1386 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1387 return fs_info->tree_root;
1388 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1389 return fs_info->extent_root;
8f18cf13
CM
1390 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1391 return fs_info->chunk_root;
1392 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1393 return fs_info->dev_root;
0403e47e
YZ
1394 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1395 return fs_info->csum_root;
4df27c4d
YZ
1396again:
1397 spin_lock(&fs_info->fs_roots_radix_lock);
5eda7b5e
CM
1398 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1399 (unsigned long)location->objectid);
4df27c4d 1400 spin_unlock(&fs_info->fs_roots_radix_lock);
5eda7b5e
CM
1401 if (root)
1402 return root;
1403
e02119d5 1404 root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
5eda7b5e
CM
1405 if (IS_ERR(root))
1406 return root;
3394e160 1407
581bb050 1408 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
581bb050
LZ
1409 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1410 GFP_NOFS);
35a30d7c
DS
1411 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1412 ret = -ENOMEM;
581bb050 1413 goto fail;
35a30d7c 1414 }
581bb050
LZ
1415
1416 btrfs_init_free_ino_ctl(root);
1417 mutex_init(&root->fs_commit_mutex);
1418 spin_lock_init(&root->cache_lock);
1419 init_waitqueue_head(&root->cache_wait);
1420
0ee5dc67 1421 ret = get_anon_bdev(&root->anon_dev);
ac08aedf
CM
1422 if (ret)
1423 goto fail;
3394e160 1424
d68fc57b
YZ
1425 if (btrfs_root_refs(&root->root_item) == 0) {
1426 ret = -ENOENT;
1427 goto fail;
1428 }
1429
1430 ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
1431 if (ret < 0)
1432 goto fail;
1433 if (ret == 0)
1434 root->orphan_item_inserted = 1;
1435
4df27c4d
YZ
1436 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1437 if (ret)
1438 goto fail;
1439
1440 spin_lock(&fs_info->fs_roots_radix_lock);
2619ba1f
CM
1441 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1442 (unsigned long)root->root_key.objectid,
0f7d52f4 1443 root);
d68fc57b 1444 if (ret == 0)
4df27c4d 1445 root->in_radix = 1;
d68fc57b 1446
4df27c4d
YZ
1447 spin_unlock(&fs_info->fs_roots_radix_lock);
1448 radix_tree_preload_end();
0f7d52f4 1449 if (ret) {
4df27c4d
YZ
1450 if (ret == -EEXIST) {
1451 free_fs_root(root);
1452 goto again;
1453 }
1454 goto fail;
0f7d52f4 1455 }
4df27c4d
YZ
1456
1457 ret = btrfs_find_dead_roots(fs_info->tree_root,
1458 root->root_key.objectid);
1459 WARN_ON(ret);
edbd8d4e 1460 return root;
4df27c4d
YZ
1461fail:
1462 free_fs_root(root);
1463 return ERR_PTR(ret);
edbd8d4e
CM
1464}
1465
04160088
CM
1466static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1467{
1468 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1469 int ret = 0;
04160088
CM
1470 struct btrfs_device *device;
1471 struct backing_dev_info *bdi;
b7967db7 1472
1f78160c
XG
1473 rcu_read_lock();
1474 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
dfe25020
CM
1475 if (!device->bdev)
1476 continue;
04160088
CM
1477 bdi = blk_get_backing_dev_info(device->bdev);
1478 if (bdi && bdi_congested(bdi, bdi_bits)) {
1479 ret = 1;
1480 break;
1481 }
1482 }
1f78160c 1483 rcu_read_unlock();
04160088
CM
1484 return ret;
1485}
1486
ad081f14
JA
1487/*
1488 * If this fails, caller must call bdi_destroy() to get rid of the
1489 * bdi again.
1490 */
04160088
CM
1491static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1492{
ad081f14
JA
1493 int err;
1494
1495 bdi->capabilities = BDI_CAP_MAP_COPY;
e6d086d8 1496 err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
ad081f14
JA
1497 if (err)
1498 return err;
1499
4575c9cc 1500 bdi->ra_pages = default_backing_dev_info.ra_pages;
04160088
CM
1501 bdi->congested_fn = btrfs_congested_fn;
1502 bdi->congested_data = info;
1503 return 0;
1504}
1505
ce9adaa5
CM
1506static int bio_ready_for_csum(struct bio *bio)
1507{
1508 u64 length = 0;
1509 u64 buf_len = 0;
1510 u64 start = 0;
1511 struct page *page;
1512 struct extent_io_tree *io_tree = NULL;
ce9adaa5
CM
1513 struct bio_vec *bvec;
1514 int i;
1515 int ret;
1516
1517 bio_for_each_segment(bvec, bio, i) {
1518 page = bvec->bv_page;
1519 if (page->private == EXTENT_PAGE_PRIVATE) {
1520 length += bvec->bv_len;
1521 continue;
1522 }
1523 if (!page->private) {
1524 length += bvec->bv_len;
1525 continue;
1526 }
1527 length = bvec->bv_len;
1528 buf_len = page->private >> 2;
1529 start = page_offset(page) + bvec->bv_offset;
1530 io_tree = &BTRFS_I(page->mapping->host)->io_tree;
ce9adaa5
CM
1531 }
1532 /* are we fully contained in this bio? */
1533 if (buf_len <= length)
1534 return 1;
1535
1536 ret = extent_range_uptodate(io_tree, start + length,
1537 start + buf_len - 1);
ce9adaa5
CM
1538 return ret;
1539}
1540
8b712842
CM
1541/*
1542 * called by the kthread helper functions to finally call the bio end_io
1543 * functions. This is where read checksum verification actually happens
1544 */
1545static void end_workqueue_fn(struct btrfs_work *work)
ce9adaa5 1546{
ce9adaa5 1547 struct bio *bio;
8b712842
CM
1548 struct end_io_wq *end_io_wq;
1549 struct btrfs_fs_info *fs_info;
ce9adaa5 1550 int error;
ce9adaa5 1551
8b712842
CM
1552 end_io_wq = container_of(work, struct end_io_wq, work);
1553 bio = end_io_wq->bio;
1554 fs_info = end_io_wq->info;
ce9adaa5 1555
cad321ad 1556 /* metadata bio reads are special because the whole tree block must
8b712842
CM
1557 * be checksummed at once. This makes sure the entire block is in
1558 * ram and up to date before trying to verify things. For
1559 * blocksize <= pagesize, it is basically a noop
1560 */
7b6d91da 1561 if (!(bio->bi_rw & REQ_WRITE) && end_io_wq->metadata &&
cad321ad 1562 !bio_ready_for_csum(bio)) {
d20f7043 1563 btrfs_queue_worker(&fs_info->endio_meta_workers,
8b712842
CM
1564 &end_io_wq->work);
1565 return;
1566 }
1567 error = end_io_wq->error;
1568 bio->bi_private = end_io_wq->private;
1569 bio->bi_end_io = end_io_wq->end_io;
1570 kfree(end_io_wq);
8b712842 1571 bio_endio(bio, error);
44b8bd7e
CM
1572}
1573
a74a4b97
CM
1574static int cleaner_kthread(void *arg)
1575{
1576 struct btrfs_root *root = arg;
1577
1578 do {
a74a4b97 1579 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
76dda93c
YZ
1580
1581 if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
1582 mutex_trylock(&root->fs_info->cleaner_mutex)) {
24bbcf04 1583 btrfs_run_delayed_iputs(root);
76dda93c
YZ
1584 btrfs_clean_old_snapshots(root);
1585 mutex_unlock(&root->fs_info->cleaner_mutex);
4cb5300b 1586 btrfs_run_defrag_inodes(root->fs_info);
76dda93c 1587 }
a74a4b97 1588
a0acae0e 1589 if (!try_to_freeze()) {
a74a4b97 1590 set_current_state(TASK_INTERRUPTIBLE);
8929ecfa
YZ
1591 if (!kthread_should_stop())
1592 schedule();
a74a4b97
CM
1593 __set_current_state(TASK_RUNNING);
1594 }
1595 } while (!kthread_should_stop());
1596 return 0;
1597}
1598
1599static int transaction_kthread(void *arg)
1600{
1601 struct btrfs_root *root = arg;
1602 struct btrfs_trans_handle *trans;
1603 struct btrfs_transaction *cur;
8929ecfa 1604 u64 transid;
a74a4b97
CM
1605 unsigned long now;
1606 unsigned long delay;
1607 int ret;
1608
1609 do {
a74a4b97
CM
1610 delay = HZ * 30;
1611 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1612 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1613
a4abeea4 1614 spin_lock(&root->fs_info->trans_lock);
a74a4b97
CM
1615 cur = root->fs_info->running_transaction;
1616 if (!cur) {
a4abeea4 1617 spin_unlock(&root->fs_info->trans_lock);
a74a4b97
CM
1618 goto sleep;
1619 }
31153d81 1620
a74a4b97 1621 now = get_seconds();
8929ecfa
YZ
1622 if (!cur->blocked &&
1623 (now < cur->start_time || now - cur->start_time < 30)) {
a4abeea4 1624 spin_unlock(&root->fs_info->trans_lock);
a74a4b97
CM
1625 delay = HZ * 5;
1626 goto sleep;
1627 }
8929ecfa 1628 transid = cur->transid;
a4abeea4 1629 spin_unlock(&root->fs_info->trans_lock);
56bec294 1630
7a7eaa40 1631 trans = btrfs_join_transaction(root);
3612b495 1632 BUG_ON(IS_ERR(trans));
8929ecfa
YZ
1633 if (transid == trans->transid) {
1634 ret = btrfs_commit_transaction(trans, root);
1635 BUG_ON(ret);
1636 } else {
1637 btrfs_end_transaction(trans, root);
1638 }
a74a4b97
CM
1639sleep:
1640 wake_up_process(root->fs_info->cleaner_kthread);
1641 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1642
a0acae0e 1643 if (!try_to_freeze()) {
a74a4b97 1644 set_current_state(TASK_INTERRUPTIBLE);
8929ecfa
YZ
1645 if (!kthread_should_stop() &&
1646 !btrfs_transaction_blocked(root->fs_info))
1647 schedule_timeout(delay);
a74a4b97
CM
1648 __set_current_state(TASK_RUNNING);
1649 }
1650 } while (!kthread_should_stop());
1651 return 0;
1652}
1653
af31f5e5
CM
1654/*
1655 * this will find the highest generation in the array of
1656 * root backups. The index of the highest array is returned,
1657 * or -1 if we can't find anything.
1658 *
1659 * We check to make sure the array is valid by comparing the
1660 * generation of the latest root in the array with the generation
1661 * in the super block. If they don't match we pitch it.
1662 */
1663static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1664{
1665 u64 cur;
1666 int newest_index = -1;
1667 struct btrfs_root_backup *root_backup;
1668 int i;
1669
1670 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1671 root_backup = info->super_copy->super_roots + i;
1672 cur = btrfs_backup_tree_root_gen(root_backup);
1673 if (cur == newest_gen)
1674 newest_index = i;
1675 }
1676
1677 /* check to see if we actually wrapped around */
1678 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1679 root_backup = info->super_copy->super_roots;
1680 cur = btrfs_backup_tree_root_gen(root_backup);
1681 if (cur == newest_gen)
1682 newest_index = 0;
1683 }
1684 return newest_index;
1685}
1686
1687
1688/*
1689 * find the oldest backup so we know where to store new entries
1690 * in the backup array. This will set the backup_root_index
1691 * field in the fs_info struct
1692 */
1693static void find_oldest_super_backup(struct btrfs_fs_info *info,
1694 u64 newest_gen)
1695{
1696 int newest_index = -1;
1697
1698 newest_index = find_newest_super_backup(info, newest_gen);
1699 /* if there was garbage in there, just move along */
1700 if (newest_index == -1) {
1701 info->backup_root_index = 0;
1702 } else {
1703 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1704 }
1705}
1706
1707/*
1708 * copy all the root pointers into the super backup array.
1709 * this will bump the backup pointer by one when it is
1710 * done
1711 */
1712static void backup_super_roots(struct btrfs_fs_info *info)
1713{
1714 int next_backup;
1715 struct btrfs_root_backup *root_backup;
1716 int last_backup;
1717
1718 next_backup = info->backup_root_index;
1719 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1720 BTRFS_NUM_BACKUP_ROOTS;
1721
1722 /*
1723 * just overwrite the last backup if we're at the same generation
1724 * this happens only at umount
1725 */
1726 root_backup = info->super_for_commit->super_roots + last_backup;
1727 if (btrfs_backup_tree_root_gen(root_backup) ==
1728 btrfs_header_generation(info->tree_root->node))
1729 next_backup = last_backup;
1730
1731 root_backup = info->super_for_commit->super_roots + next_backup;
1732
1733 /*
1734 * make sure all of our padding and empty slots get zero filled
1735 * regardless of which ones we use today
1736 */
1737 memset(root_backup, 0, sizeof(*root_backup));
1738
1739 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1740
1741 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1742 btrfs_set_backup_tree_root_gen(root_backup,
1743 btrfs_header_generation(info->tree_root->node));
1744
1745 btrfs_set_backup_tree_root_level(root_backup,
1746 btrfs_header_level(info->tree_root->node));
1747
1748 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1749 btrfs_set_backup_chunk_root_gen(root_backup,
1750 btrfs_header_generation(info->chunk_root->node));
1751 btrfs_set_backup_chunk_root_level(root_backup,
1752 btrfs_header_level(info->chunk_root->node));
1753
1754 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1755 btrfs_set_backup_extent_root_gen(root_backup,
1756 btrfs_header_generation(info->extent_root->node));
1757 btrfs_set_backup_extent_root_level(root_backup,
1758 btrfs_header_level(info->extent_root->node));
1759
7c7e82a7
CM
1760 /*
1761 * we might commit during log recovery, which happens before we set
1762 * the fs_root. Make sure it is valid before we fill it in.
1763 */
1764 if (info->fs_root && info->fs_root->node) {
1765 btrfs_set_backup_fs_root(root_backup,
1766 info->fs_root->node->start);
1767 btrfs_set_backup_fs_root_gen(root_backup,
af31f5e5 1768 btrfs_header_generation(info->fs_root->node));
7c7e82a7 1769 btrfs_set_backup_fs_root_level(root_backup,
af31f5e5 1770 btrfs_header_level(info->fs_root->node));
7c7e82a7 1771 }
af31f5e5
CM
1772
1773 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1774 btrfs_set_backup_dev_root_gen(root_backup,
1775 btrfs_header_generation(info->dev_root->node));
1776 btrfs_set_backup_dev_root_level(root_backup,
1777 btrfs_header_level(info->dev_root->node));
1778
1779 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1780 btrfs_set_backup_csum_root_gen(root_backup,
1781 btrfs_header_generation(info->csum_root->node));
1782 btrfs_set_backup_csum_root_level(root_backup,
1783 btrfs_header_level(info->csum_root->node));
1784
1785 btrfs_set_backup_total_bytes(root_backup,
1786 btrfs_super_total_bytes(info->super_copy));
1787 btrfs_set_backup_bytes_used(root_backup,
1788 btrfs_super_bytes_used(info->super_copy));
1789 btrfs_set_backup_num_devices(root_backup,
1790 btrfs_super_num_devices(info->super_copy));
1791
1792 /*
1793 * if we don't copy this out to the super_copy, it won't get remembered
1794 * for the next commit
1795 */
1796 memcpy(&info->super_copy->super_roots,
1797 &info->super_for_commit->super_roots,
1798 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1799}
1800
1801/*
1802 * this copies info out of the root backup array and back into
1803 * the in-memory super block. It is meant to help iterate through
1804 * the array, so you send it the number of backups you've already
1805 * tried and the last backup index you used.
1806 *
1807 * this returns -1 when it has tried all the backups
1808 */
1809static noinline int next_root_backup(struct btrfs_fs_info *info,
1810 struct btrfs_super_block *super,
1811 int *num_backups_tried, int *backup_index)
1812{
1813 struct btrfs_root_backup *root_backup;
1814 int newest = *backup_index;
1815
1816 if (*num_backups_tried == 0) {
1817 u64 gen = btrfs_super_generation(super);
1818
1819 newest = find_newest_super_backup(info, gen);
1820 if (newest == -1)
1821 return -1;
1822
1823 *backup_index = newest;
1824 *num_backups_tried = 1;
1825 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1826 /* we've tried all the backups, all done */
1827 return -1;
1828 } else {
1829 /* jump to the next oldest backup */
1830 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1831 BTRFS_NUM_BACKUP_ROOTS;
1832 *backup_index = newest;
1833 *num_backups_tried += 1;
1834 }
1835 root_backup = super->super_roots + newest;
1836
1837 btrfs_set_super_generation(super,
1838 btrfs_backup_tree_root_gen(root_backup));
1839 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1840 btrfs_set_super_root_level(super,
1841 btrfs_backup_tree_root_level(root_backup));
1842 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1843
1844 /*
1845 * fixme: the total bytes and num_devices need to match or we should
1846 * need a fsck
1847 */
1848 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1849 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1850 return 0;
1851}
1852
1853/* helper to cleanup tree roots */
1854static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
1855{
1856 free_extent_buffer(info->tree_root->node);
1857 free_extent_buffer(info->tree_root->commit_root);
1858 free_extent_buffer(info->dev_root->node);
1859 free_extent_buffer(info->dev_root->commit_root);
1860 free_extent_buffer(info->extent_root->node);
1861 free_extent_buffer(info->extent_root->commit_root);
1862 free_extent_buffer(info->csum_root->node);
1863 free_extent_buffer(info->csum_root->commit_root);
1864
1865 info->tree_root->node = NULL;
1866 info->tree_root->commit_root = NULL;
1867 info->dev_root->node = NULL;
1868 info->dev_root->commit_root = NULL;
1869 info->extent_root->node = NULL;
1870 info->extent_root->commit_root = NULL;
1871 info->csum_root->node = NULL;
1872 info->csum_root->commit_root = NULL;
1873
1874 if (chunk_root) {
1875 free_extent_buffer(info->chunk_root->node);
1876 free_extent_buffer(info->chunk_root->commit_root);
1877 info->chunk_root->node = NULL;
1878 info->chunk_root->commit_root = NULL;
1879 }
1880}
1881
1882
ad2b2c80
AV
1883int open_ctree(struct super_block *sb,
1884 struct btrfs_fs_devices *fs_devices,
1885 char *options)
2e635a27 1886{
db94535d
CM
1887 u32 sectorsize;
1888 u32 nodesize;
1889 u32 leafsize;
1890 u32 blocksize;
87ee04eb 1891 u32 stripesize;
84234f3a 1892 u64 generation;
f2b636e8 1893 u64 features;
3de4586c 1894 struct btrfs_key location;
a061fc8d 1895 struct buffer_head *bh;
4d34b278 1896 struct btrfs_super_block *disk_super;
815745cf
AV
1897 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1898 struct btrfs_root *tree_root = fs_info->tree_root;
4d34b278
ID
1899 struct btrfs_root *extent_root;
1900 struct btrfs_root *csum_root;
1901 struct btrfs_root *chunk_root;
1902 struct btrfs_root *dev_root;
e02119d5 1903 struct btrfs_root *log_tree_root;
eb60ceac 1904 int ret;
e58ca020 1905 int err = -EINVAL;
af31f5e5
CM
1906 int num_backups_tried = 0;
1907 int backup_index = 0;
4543df7e 1908
6f07e42e
AV
1909 extent_root = fs_info->extent_root = btrfs_alloc_root(fs_info);
1910 csum_root = fs_info->csum_root = btrfs_alloc_root(fs_info);
1911 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
1912 dev_root = fs_info->dev_root = btrfs_alloc_root(fs_info);
8790d502 1913
4d34b278 1914 if (!extent_root || !csum_root || !chunk_root || !dev_root) {
39279cc3
CM
1915 err = -ENOMEM;
1916 goto fail;
1917 }
76dda93c
YZ
1918
1919 ret = init_srcu_struct(&fs_info->subvol_srcu);
1920 if (ret) {
1921 err = ret;
1922 goto fail;
1923 }
1924
1925 ret = setup_bdi(fs_info, &fs_info->bdi);
1926 if (ret) {
1927 err = ret;
1928 goto fail_srcu;
1929 }
1930
1931 fs_info->btree_inode = new_inode(sb);
1932 if (!fs_info->btree_inode) {
1933 err = -ENOMEM;
1934 goto fail_bdi;
1935 }
1936
a6591715 1937 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
1561deda 1938
76dda93c 1939 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
8fd17795 1940 INIT_LIST_HEAD(&fs_info->trans_list);
facda1e7 1941 INIT_LIST_HEAD(&fs_info->dead_roots);
24bbcf04 1942 INIT_LIST_HEAD(&fs_info->delayed_iputs);
19c00ddc 1943 INIT_LIST_HEAD(&fs_info->hashers);
ea8c2819 1944 INIT_LIST_HEAD(&fs_info->delalloc_inodes);
5a3f23d5 1945 INIT_LIST_HEAD(&fs_info->ordered_operations);
11833d66 1946 INIT_LIST_HEAD(&fs_info->caching_block_groups);
1832a6d5 1947 spin_lock_init(&fs_info->delalloc_lock);
a4abeea4 1948 spin_lock_init(&fs_info->trans_lock);
31153d81 1949 spin_lock_init(&fs_info->ref_cache_lock);
76dda93c 1950 spin_lock_init(&fs_info->fs_roots_radix_lock);
24bbcf04 1951 spin_lock_init(&fs_info->delayed_iput_lock);
4cb5300b 1952 spin_lock_init(&fs_info->defrag_inodes_lock);
2bf64758 1953 spin_lock_init(&fs_info->free_chunk_lock);
7585717f 1954 mutex_init(&fs_info->reloc_mutex);
19c00ddc 1955
58176a96 1956 init_completion(&fs_info->kobj_unregister);
0b86a832 1957 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
6324fbf3 1958 INIT_LIST_HEAD(&fs_info->space_info);
0b86a832 1959 btrfs_mapping_init(&fs_info->mapping_tree);
f0486c68
YZ
1960 btrfs_init_block_rsv(&fs_info->global_block_rsv);
1961 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv);
1962 btrfs_init_block_rsv(&fs_info->trans_block_rsv);
1963 btrfs_init_block_rsv(&fs_info->chunk_block_rsv);
1964 btrfs_init_block_rsv(&fs_info->empty_block_rsv);
6d668dda 1965 btrfs_init_block_rsv(&fs_info->delayed_block_rsv);
cb03c743 1966 atomic_set(&fs_info->nr_async_submits, 0);
771ed689 1967 atomic_set(&fs_info->async_delalloc_pages, 0);
8c8bee1d 1968 atomic_set(&fs_info->async_submit_draining, 0);
0986fe9e 1969 atomic_set(&fs_info->nr_async_bios, 0);
4cb5300b 1970 atomic_set(&fs_info->defrag_running, 0);
e20d96d6 1971 fs_info->sb = sb;
6f568d35 1972 fs_info->max_inline = 8192 * 1024;
9ed74f2d 1973 fs_info->metadata_ratio = 0;
4cb5300b 1974 fs_info->defrag_inodes = RB_ROOT;
a4abeea4 1975 fs_info->trans_no_join = 0;
2bf64758 1976 fs_info->free_chunk_space = 0;
c8b97818 1977
90519d66
AJ
1978 /* readahead state */
1979 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
1980 spin_lock_init(&fs_info->reada_lock);
c8b97818 1981
b34b086c
CM
1982 fs_info->thread_pool_size = min_t(unsigned long,
1983 num_online_cpus() + 2, 8);
0afbaf8c 1984
3eaa2885
CM
1985 INIT_LIST_HEAD(&fs_info->ordered_extents);
1986 spin_lock_init(&fs_info->ordered_extent_lock);
16cdcec7
MX
1987 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
1988 GFP_NOFS);
1989 if (!fs_info->delayed_root) {
1990 err = -ENOMEM;
1991 goto fail_iput;
1992 }
1993 btrfs_init_delayed_root(fs_info->delayed_root);
3eaa2885 1994
a2de733c
AJ
1995 mutex_init(&fs_info->scrub_lock);
1996 atomic_set(&fs_info->scrubs_running, 0);
1997 atomic_set(&fs_info->scrub_pause_req, 0);
1998 atomic_set(&fs_info->scrubs_paused, 0);
1999 atomic_set(&fs_info->scrub_cancel_req, 0);
2000 init_waitqueue_head(&fs_info->scrub_pause_wait);
2001 init_rwsem(&fs_info->scrub_super_lock);
2002 fs_info->scrub_workers_refcnt = 0;
a2de733c 2003
a061fc8d
CM
2004 sb->s_blocksize = 4096;
2005 sb->s_blocksize_bits = blksize_bits(4096);
32a88aa1 2006 sb->s_bdi = &fs_info->bdi;
a061fc8d 2007
76dda93c 2008 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
bfe86848 2009 set_nlink(fs_info->btree_inode, 1);
0afbaf8c
CM
2010 /*
2011 * we set the i_size on the btree inode to the max possible int.
2012 * the real end of the address space is determined by all of
2013 * the devices in the system
2014 */
2015 fs_info->btree_inode->i_size = OFFSET_MAX;
d98237b3 2016 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
04160088
CM
2017 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
2018
5d4f98a2 2019 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
d1310b2e 2020 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
f993c883 2021 fs_info->btree_inode->i_mapping);
a8067e02 2022 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
d1310b2e
CM
2023
2024 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
0da5468f 2025
76dda93c
YZ
2026 BTRFS_I(fs_info->btree_inode)->root = tree_root;
2027 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2028 sizeof(struct btrfs_key));
2029 BTRFS_I(fs_info->btree_inode)->dummy_inode = 1;
c65ddb52 2030 insert_inode_hash(fs_info->btree_inode);
76dda93c 2031
0f9dd46c 2032 spin_lock_init(&fs_info->block_group_cache_lock);
6bef4d31 2033 fs_info->block_group_cache_tree = RB_ROOT;
0f9dd46c 2034
11833d66 2035 extent_io_tree_init(&fs_info->freed_extents[0],
f993c883 2036 fs_info->btree_inode->i_mapping);
11833d66 2037 extent_io_tree_init(&fs_info->freed_extents[1],
f993c883 2038 fs_info->btree_inode->i_mapping);
11833d66 2039 fs_info->pinned_extents = &fs_info->freed_extents[0];
e66f709b 2040 fs_info->do_barriers = 1;
e18e4809 2041
39279cc3 2042
5a3f23d5 2043 mutex_init(&fs_info->ordered_operations_mutex);
e02119d5 2044 mutex_init(&fs_info->tree_log_mutex);
925baedd 2045 mutex_init(&fs_info->chunk_mutex);
a74a4b97
CM
2046 mutex_init(&fs_info->transaction_kthread_mutex);
2047 mutex_init(&fs_info->cleaner_mutex);
7d9eb12c 2048 mutex_init(&fs_info->volume_mutex);
276e680d 2049 init_rwsem(&fs_info->extent_commit_sem);
c71bf099 2050 init_rwsem(&fs_info->cleanup_work_sem);
76dda93c 2051 init_rwsem(&fs_info->subvol_sem);
fa9c0d79
CM
2052
2053 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2054 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2055
e6dcd2dc 2056 init_waitqueue_head(&fs_info->transaction_throttle);
f9295749 2057 init_waitqueue_head(&fs_info->transaction_wait);
bb9c12c9 2058 init_waitqueue_head(&fs_info->transaction_blocked_wait);
4854ddd0 2059 init_waitqueue_head(&fs_info->async_submit_wait);
3768f368 2060
0b86a832 2061 __setup_root(4096, 4096, 4096, 4096, tree_root,
2c90e5d6 2062 fs_info, BTRFS_ROOT_TREE_OBJECTID);
7eccb903 2063
a512bbf8 2064 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
20b45077
DY
2065 if (!bh) {
2066 err = -EINVAL;
16cdcec7 2067 goto fail_alloc;
20b45077 2068 }
39279cc3 2069
6c41761f
DS
2070 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2071 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2072 sizeof(*fs_info->super_for_commit));
a061fc8d 2073 brelse(bh);
5f39d397 2074
6c41761f 2075 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
0b86a832 2076
6c41761f 2077 disk_super = fs_info->super_copy;
0f7d52f4 2078 if (!btrfs_super_root(disk_super))
16cdcec7 2079 goto fail_alloc;
0f7d52f4 2080
acce952b 2081 /* check FS state, whether FS is broken. */
2082 fs_info->fs_state |= btrfs_super_flags(disk_super);
2083
2084 btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2085
af31f5e5
CM
2086 /*
2087 * run through our array of backup supers and setup
2088 * our ring pointer to the oldest one
2089 */
2090 generation = btrfs_super_generation(disk_super);
2091 find_oldest_super_backup(fs_info, generation);
2092
75e7cb7f
LB
2093 /*
2094 * In the long term, we'll store the compression type in the super
2095 * block, and it'll be used for per file compression control.
2096 */
2097 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2098
2b82032c
YZ
2099 ret = btrfs_parse_options(tree_root, options);
2100 if (ret) {
2101 err = ret;
16cdcec7 2102 goto fail_alloc;
2b82032c 2103 }
dfe25020 2104
f2b636e8
JB
2105 features = btrfs_super_incompat_flags(disk_super) &
2106 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2107 if (features) {
2108 printk(KERN_ERR "BTRFS: couldn't mount because of "
2109 "unsupported optional features (%Lx).\n",
21380931 2110 (unsigned long long)features);
f2b636e8 2111 err = -EINVAL;
16cdcec7 2112 goto fail_alloc;
f2b636e8
JB
2113 }
2114
5d4f98a2 2115 features = btrfs_super_incompat_flags(disk_super);
a6fa6fae
LZ
2116 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2117 if (tree_root->fs_info->compress_type & BTRFS_COMPRESS_LZO)
2118 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2119 btrfs_set_super_incompat_flags(disk_super, features);
5d4f98a2 2120
f2b636e8
JB
2121 features = btrfs_super_compat_ro_flags(disk_super) &
2122 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2123 if (!(sb->s_flags & MS_RDONLY) && features) {
2124 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2125 "unsupported option features (%Lx).\n",
21380931 2126 (unsigned long long)features);
f2b636e8 2127 err = -EINVAL;
16cdcec7 2128 goto fail_alloc;
f2b636e8 2129 }
61d92c32
CM
2130
2131 btrfs_init_workers(&fs_info->generic_worker,
2132 "genwork", 1, NULL);
2133
5443be45 2134 btrfs_init_workers(&fs_info->workers, "worker",
61d92c32
CM
2135 fs_info->thread_pool_size,
2136 &fs_info->generic_worker);
c8b97818 2137
771ed689 2138 btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
61d92c32
CM
2139 fs_info->thread_pool_size,
2140 &fs_info->generic_worker);
771ed689 2141
5443be45 2142 btrfs_init_workers(&fs_info->submit_workers, "submit",
b720d209 2143 min_t(u64, fs_devices->num_devices,
61d92c32
CM
2144 fs_info->thread_pool_size),
2145 &fs_info->generic_worker);
61b49440 2146
bab39bf9
JB
2147 btrfs_init_workers(&fs_info->caching_workers, "cache",
2148 2, &fs_info->generic_worker);
2149
61b49440
CM
2150 /* a higher idle thresh on the submit workers makes it much more
2151 * likely that bios will be send down in a sane order to the
2152 * devices
2153 */
2154 fs_info->submit_workers.idle_thresh = 64;
53863232 2155
771ed689 2156 fs_info->workers.idle_thresh = 16;
4a69a410 2157 fs_info->workers.ordered = 1;
61b49440 2158
771ed689
CM
2159 fs_info->delalloc_workers.idle_thresh = 2;
2160 fs_info->delalloc_workers.ordered = 1;
2161
61d92c32
CM
2162 btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
2163 &fs_info->generic_worker);
5443be45 2164 btrfs_init_workers(&fs_info->endio_workers, "endio",
61d92c32
CM
2165 fs_info->thread_pool_size,
2166 &fs_info->generic_worker);
d20f7043 2167 btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
61d92c32
CM
2168 fs_info->thread_pool_size,
2169 &fs_info->generic_worker);
cad321ad 2170 btrfs_init_workers(&fs_info->endio_meta_write_workers,
61d92c32
CM
2171 "endio-meta-write", fs_info->thread_pool_size,
2172 &fs_info->generic_worker);
5443be45 2173 btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
61d92c32
CM
2174 fs_info->thread_pool_size,
2175 &fs_info->generic_worker);
0cb59c99
JB
2176 btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
2177 1, &fs_info->generic_worker);
16cdcec7
MX
2178 btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
2179 fs_info->thread_pool_size,
2180 &fs_info->generic_worker);
90519d66
AJ
2181 btrfs_init_workers(&fs_info->readahead_workers, "readahead",
2182 fs_info->thread_pool_size,
2183 &fs_info->generic_worker);
61b49440
CM
2184
2185 /*
2186 * endios are largely parallel and should have a very
2187 * low idle thresh
2188 */
2189 fs_info->endio_workers.idle_thresh = 4;
b51912c9
CM
2190 fs_info->endio_meta_workers.idle_thresh = 4;
2191
9042846b
CM
2192 fs_info->endio_write_workers.idle_thresh = 2;
2193 fs_info->endio_meta_write_workers.idle_thresh = 2;
90519d66 2194 fs_info->readahead_workers.idle_thresh = 2;
9042846b 2195
0dc3b84a
JB
2196 /*
2197 * btrfs_start_workers can really only fail because of ENOMEM so just
2198 * return -ENOMEM if any of these fail.
2199 */
2200 ret = btrfs_start_workers(&fs_info->workers);
2201 ret |= btrfs_start_workers(&fs_info->generic_worker);
2202 ret |= btrfs_start_workers(&fs_info->submit_workers);
2203 ret |= btrfs_start_workers(&fs_info->delalloc_workers);
2204 ret |= btrfs_start_workers(&fs_info->fixup_workers);
2205 ret |= btrfs_start_workers(&fs_info->endio_workers);
2206 ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
2207 ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
2208 ret |= btrfs_start_workers(&fs_info->endio_write_workers);
2209 ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
2210 ret |= btrfs_start_workers(&fs_info->delayed_workers);
2211 ret |= btrfs_start_workers(&fs_info->caching_workers);
2212 ret |= btrfs_start_workers(&fs_info->readahead_workers);
2213 if (ret) {
2214 ret = -ENOMEM;
2215 goto fail_sb_buffer;
2216 }
4543df7e 2217
4575c9cc 2218 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
c8b97818
CM
2219 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2220 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
4575c9cc 2221
db94535d
CM
2222 nodesize = btrfs_super_nodesize(disk_super);
2223 leafsize = btrfs_super_leafsize(disk_super);
2224 sectorsize = btrfs_super_sectorsize(disk_super);
87ee04eb 2225 stripesize = btrfs_super_stripesize(disk_super);
db94535d
CM
2226 tree_root->nodesize = nodesize;
2227 tree_root->leafsize = leafsize;
2228 tree_root->sectorsize = sectorsize;
87ee04eb 2229 tree_root->stripesize = stripesize;
a061fc8d
CM
2230
2231 sb->s_blocksize = sectorsize;
2232 sb->s_blocksize_bits = blksize_bits(sectorsize);
db94535d 2233
39279cc3
CM
2234 if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
2235 sizeof(disk_super->magic))) {
d397712b 2236 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
39279cc3
CM
2237 goto fail_sb_buffer;
2238 }
19c00ddc 2239
925baedd 2240 mutex_lock(&fs_info->chunk_mutex);
e4404d6e 2241 ret = btrfs_read_sys_array(tree_root);
925baedd 2242 mutex_unlock(&fs_info->chunk_mutex);
84eed90f 2243 if (ret) {
d397712b
CM
2244 printk(KERN_WARNING "btrfs: failed to read the system "
2245 "array on %s\n", sb->s_id);
5d4f98a2 2246 goto fail_sb_buffer;
84eed90f 2247 }
0b86a832
CM
2248
2249 blocksize = btrfs_level_size(tree_root,
2250 btrfs_super_chunk_root_level(disk_super));
84234f3a 2251 generation = btrfs_super_chunk_root_generation(disk_super);
0b86a832
CM
2252
2253 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2254 chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2255
2256 chunk_root->node = read_tree_block(chunk_root,
2257 btrfs_super_chunk_root(disk_super),
84234f3a 2258 blocksize, generation);
0b86a832 2259 BUG_ON(!chunk_root->node);
83121942
DW
2260 if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2261 printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
2262 sb->s_id);
af31f5e5 2263 goto fail_tree_roots;
83121942 2264 }
5d4f98a2
YZ
2265 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2266 chunk_root->commit_root = btrfs_root_node(chunk_root);
0b86a832 2267
e17cade2 2268 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
d397712b
CM
2269 (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
2270 BTRFS_UUID_SIZE);
e17cade2 2271
925baedd 2272 mutex_lock(&fs_info->chunk_mutex);
0b86a832 2273 ret = btrfs_read_chunk_tree(chunk_root);
925baedd 2274 mutex_unlock(&fs_info->chunk_mutex);
2b82032c 2275 if (ret) {
d397712b
CM
2276 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
2277 sb->s_id);
af31f5e5 2278 goto fail_tree_roots;
2b82032c 2279 }
0b86a832 2280
dfe25020
CM
2281 btrfs_close_extra_devices(fs_devices);
2282
af31f5e5 2283retry_root_backup:
db94535d
CM
2284 blocksize = btrfs_level_size(tree_root,
2285 btrfs_super_root_level(disk_super));
84234f3a 2286 generation = btrfs_super_generation(disk_super);
0b86a832 2287
e20d96d6 2288 tree_root->node = read_tree_block(tree_root,
db94535d 2289 btrfs_super_root(disk_super),
84234f3a 2290 blocksize, generation);
af31f5e5
CM
2291 if (!tree_root->node ||
2292 !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
83121942
DW
2293 printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
2294 sb->s_id);
af31f5e5
CM
2295
2296 goto recovery_tree_root;
83121942 2297 }
af31f5e5 2298
5d4f98a2
YZ
2299 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2300 tree_root->commit_root = btrfs_root_node(tree_root);
db94535d
CM
2301
2302 ret = find_and_setup_root(tree_root, fs_info,
e20d96d6 2303 BTRFS_EXTENT_TREE_OBJECTID, extent_root);
0b86a832 2304 if (ret)
af31f5e5 2305 goto recovery_tree_root;
0b86a832
CM
2306 extent_root->track_dirty = 1;
2307
2308 ret = find_and_setup_root(tree_root, fs_info,
2309 BTRFS_DEV_TREE_OBJECTID, dev_root);
0b86a832 2310 if (ret)
af31f5e5 2311 goto recovery_tree_root;
5d4f98a2 2312 dev_root->track_dirty = 1;
3768f368 2313
d20f7043
CM
2314 ret = find_and_setup_root(tree_root, fs_info,
2315 BTRFS_CSUM_TREE_OBJECTID, csum_root);
2316 if (ret)
af31f5e5 2317 goto recovery_tree_root;
d20f7043
CM
2318
2319 csum_root->track_dirty = 1;
2320
8929ecfa
YZ
2321 fs_info->generation = generation;
2322 fs_info->last_trans_committed = generation;
2323 fs_info->data_alloc_profile = (u64)-1;
2324 fs_info->metadata_alloc_profile = (u64)-1;
2325 fs_info->system_alloc_profile = fs_info->metadata_alloc_profile;
2326
c59021f8 2327 ret = btrfs_init_space_info(fs_info);
2328 if (ret) {
2329 printk(KERN_ERR "Failed to initial space info: %d\n", ret);
2330 goto fail_block_groups;
2331 }
2332
1b1d1f66
JB
2333 ret = btrfs_read_block_groups(extent_root);
2334 if (ret) {
2335 printk(KERN_ERR "Failed to read block groups: %d\n", ret);
2336 goto fail_block_groups;
2337 }
9078a3e1 2338
a74a4b97
CM
2339 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2340 "btrfs-cleaner");
57506d50 2341 if (IS_ERR(fs_info->cleaner_kthread))
1b1d1f66 2342 goto fail_block_groups;
a74a4b97
CM
2343
2344 fs_info->transaction_kthread = kthread_run(transaction_kthread,
2345 tree_root,
2346 "btrfs-transaction");
57506d50 2347 if (IS_ERR(fs_info->transaction_kthread))
3f157a2f 2348 goto fail_cleaner;
a74a4b97 2349
c289811c
CM
2350 if (!btrfs_test_opt(tree_root, SSD) &&
2351 !btrfs_test_opt(tree_root, NOSSD) &&
2352 !fs_info->fs_devices->rotating) {
2353 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
2354 "mode\n");
2355 btrfs_set_opt(fs_info->mount_opt, SSD);
2356 }
2357
acce952b 2358 /* do not make disk changes in broken FS */
2359 if (btrfs_super_log_root(disk_super) != 0 &&
2360 !(fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)) {
e02119d5
CM
2361 u64 bytenr = btrfs_super_log_root(disk_super);
2362
7c2ca468 2363 if (fs_devices->rw_devices == 0) {
d397712b
CM
2364 printk(KERN_WARNING "Btrfs log replay required "
2365 "on RO media\n");
7c2ca468
CM
2366 err = -EIO;
2367 goto fail_trans_kthread;
2368 }
e02119d5
CM
2369 blocksize =
2370 btrfs_level_size(tree_root,
2371 btrfs_super_log_root_level(disk_super));
d18a2c44 2372
6f07e42e 2373 log_tree_root = btrfs_alloc_root(fs_info);
676e4c86
DC
2374 if (!log_tree_root) {
2375 err = -ENOMEM;
2376 goto fail_trans_kthread;
2377 }
e02119d5
CM
2378
2379 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2380 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2381
2382 log_tree_root->node = read_tree_block(tree_root, bytenr,
84234f3a
YZ
2383 blocksize,
2384 generation + 1);
e02119d5
CM
2385 ret = btrfs_recover_log_trees(log_tree_root);
2386 BUG_ON(ret);
e556ce2c
YZ
2387
2388 if (sb->s_flags & MS_RDONLY) {
2389 ret = btrfs_commit_super(tree_root);
2390 BUG_ON(ret);
2391 }
e02119d5 2392 }
1a40e23b 2393
76dda93c
YZ
2394 ret = btrfs_find_orphan_roots(tree_root);
2395 BUG_ON(ret);
2396
7c2ca468 2397 if (!(sb->s_flags & MS_RDONLY)) {
d68fc57b
YZ
2398 ret = btrfs_cleanup_fs_roots(fs_info);
2399 BUG_ON(ret);
2400
5d4f98a2 2401 ret = btrfs_recover_relocation(tree_root);
d7ce5843
MX
2402 if (ret < 0) {
2403 printk(KERN_WARNING
2404 "btrfs: failed to recover relocation\n");
2405 err = -EINVAL;
2406 goto fail_trans_kthread;
2407 }
7c2ca468 2408 }
1a40e23b 2409
3de4586c
CM
2410 location.objectid = BTRFS_FS_TREE_OBJECTID;
2411 location.type = BTRFS_ROOT_ITEM_KEY;
2412 location.offset = (u64)-1;
2413
3de4586c
CM
2414 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2415 if (!fs_info->fs_root)
7c2ca468 2416 goto fail_trans_kthread;
3140c9a3
DC
2417 if (IS_ERR(fs_info->fs_root)) {
2418 err = PTR_ERR(fs_info->fs_root);
2419 goto fail_trans_kthread;
2420 }
c289811c 2421
e3acc2a6
JB
2422 if (!(sb->s_flags & MS_RDONLY)) {
2423 down_read(&fs_info->cleanup_work_sem);
66b4ffd1
JB
2424 err = btrfs_orphan_cleanup(fs_info->fs_root);
2425 if (!err)
2426 err = btrfs_orphan_cleanup(fs_info->tree_root);
e3acc2a6 2427 up_read(&fs_info->cleanup_work_sem);
66b4ffd1
JB
2428 if (err) {
2429 close_ctree(tree_root);
ad2b2c80 2430 return err;
66b4ffd1 2431 }
e3acc2a6
JB
2432 }
2433
ad2b2c80 2434 return 0;
39279cc3 2435
7c2ca468
CM
2436fail_trans_kthread:
2437 kthread_stop(fs_info->transaction_kthread);
3f157a2f 2438fail_cleaner:
a74a4b97 2439 kthread_stop(fs_info->cleaner_kthread);
7c2ca468
CM
2440
2441 /*
2442 * make sure we're done with the btree inode before we stop our
2443 * kthreads
2444 */
2445 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2446 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2447
1b1d1f66
JB
2448fail_block_groups:
2449 btrfs_free_block_groups(fs_info);
af31f5e5
CM
2450
2451fail_tree_roots:
2452 free_root_pointers(fs_info, 1);
2453
39279cc3 2454fail_sb_buffer:
61d92c32 2455 btrfs_stop_workers(&fs_info->generic_worker);
306c8b68 2456 btrfs_stop_workers(&fs_info->readahead_workers);
247e743c 2457 btrfs_stop_workers(&fs_info->fixup_workers);
771ed689 2458 btrfs_stop_workers(&fs_info->delalloc_workers);
8b712842
CM
2459 btrfs_stop_workers(&fs_info->workers);
2460 btrfs_stop_workers(&fs_info->endio_workers);
d20f7043 2461 btrfs_stop_workers(&fs_info->endio_meta_workers);
cad321ad 2462 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
e6dcd2dc 2463 btrfs_stop_workers(&fs_info->endio_write_workers);
0cb59c99 2464 btrfs_stop_workers(&fs_info->endio_freespace_worker);
1cc127b5 2465 btrfs_stop_workers(&fs_info->submit_workers);
16cdcec7 2466 btrfs_stop_workers(&fs_info->delayed_workers);
bab39bf9 2467 btrfs_stop_workers(&fs_info->caching_workers);
16cdcec7 2468fail_alloc:
4543df7e 2469fail_iput:
586e46e2
ID
2470 btrfs_mapping_tree_free(&fs_info->mapping_tree);
2471
7c2ca468 2472 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4543df7e 2473 iput(fs_info->btree_inode);
ad081f14 2474fail_bdi:
7e662854 2475 bdi_destroy(&fs_info->bdi);
76dda93c
YZ
2476fail_srcu:
2477 cleanup_srcu_struct(&fs_info->subvol_srcu);
7e662854 2478fail:
586e46e2 2479 btrfs_close_devices(fs_info->fs_devices);
ad2b2c80 2480 return err;
af31f5e5
CM
2481
2482recovery_tree_root:
af31f5e5
CM
2483 if (!btrfs_test_opt(tree_root, RECOVERY))
2484 goto fail_tree_roots;
2485
2486 free_root_pointers(fs_info, 0);
2487
2488 /* don't use the log in recovery mode, it won't be valid */
2489 btrfs_set_super_log_root(disk_super, 0);
2490
2491 /* we can't trust the free space cache either */
2492 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2493
2494 ret = next_root_backup(fs_info, fs_info->super_copy,
2495 &num_backups_tried, &backup_index);
2496 if (ret == -1)
2497 goto fail_block_groups;
2498 goto retry_root_backup;
eb60ceac
CM
2499}
2500
f2984462
CM
2501static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
2502{
2503 char b[BDEVNAME_SIZE];
2504
2505 if (uptodate) {
2506 set_buffer_uptodate(bh);
2507 } else {
7a36ddec 2508 printk_ratelimited(KERN_WARNING "lost page write due to "
f2984462
CM
2509 "I/O error on %s\n",
2510 bdevname(bh->b_bdev, b));
1259ab75
CM
2511 /* note, we dont' set_buffer_write_io_error because we have
2512 * our own ways of dealing with the IO errors
2513 */
f2984462
CM
2514 clear_buffer_uptodate(bh);
2515 }
2516 unlock_buffer(bh);
2517 put_bh(bh);
2518}
2519
a512bbf8
YZ
2520struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
2521{
2522 struct buffer_head *bh;
2523 struct buffer_head *latest = NULL;
2524 struct btrfs_super_block *super;
2525 int i;
2526 u64 transid = 0;
2527 u64 bytenr;
2528
2529 /* we would like to check all the supers, but that would make
2530 * a btrfs mount succeed after a mkfs from a different FS.
2531 * So, we need to add a special mount option to scan for
2532 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2533 */
2534 for (i = 0; i < 1; i++) {
2535 bytenr = btrfs_sb_offset(i);
2536 if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
2537 break;
2538 bh = __bread(bdev, bytenr / 4096, 4096);
2539 if (!bh)
2540 continue;
2541
2542 super = (struct btrfs_super_block *)bh->b_data;
2543 if (btrfs_super_bytenr(super) != bytenr ||
2544 strncmp((char *)(&super->magic), BTRFS_MAGIC,
2545 sizeof(super->magic))) {
2546 brelse(bh);
2547 continue;
2548 }
2549
2550 if (!latest || btrfs_super_generation(super) > transid) {
2551 brelse(latest);
2552 latest = bh;
2553 transid = btrfs_super_generation(super);
2554 } else {
2555 brelse(bh);
2556 }
2557 }
2558 return latest;
2559}
2560
4eedeb75
HH
2561/*
2562 * this should be called twice, once with wait == 0 and
2563 * once with wait == 1. When wait == 0 is done, all the buffer heads
2564 * we write are pinned.
2565 *
2566 * They are released when wait == 1 is done.
2567 * max_mirrors must be the same for both runs, and it indicates how
2568 * many supers on this one device should be written.
2569 *
2570 * max_mirrors == 0 means to write them all.
2571 */
a512bbf8
YZ
2572static int write_dev_supers(struct btrfs_device *device,
2573 struct btrfs_super_block *sb,
2574 int do_barriers, int wait, int max_mirrors)
2575{
2576 struct buffer_head *bh;
2577 int i;
2578 int ret;
2579 int errors = 0;
2580 u32 crc;
2581 u64 bytenr;
a512bbf8
YZ
2582
2583 if (max_mirrors == 0)
2584 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
2585
a512bbf8
YZ
2586 for (i = 0; i < max_mirrors; i++) {
2587 bytenr = btrfs_sb_offset(i);
2588 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
2589 break;
2590
2591 if (wait) {
2592 bh = __find_get_block(device->bdev, bytenr / 4096,
2593 BTRFS_SUPER_INFO_SIZE);
2594 BUG_ON(!bh);
a512bbf8 2595 wait_on_buffer(bh);
4eedeb75
HH
2596 if (!buffer_uptodate(bh))
2597 errors++;
2598
2599 /* drop our reference */
2600 brelse(bh);
2601
2602 /* drop the reference from the wait == 0 run */
2603 brelse(bh);
2604 continue;
a512bbf8
YZ
2605 } else {
2606 btrfs_set_super_bytenr(sb, bytenr);
2607
2608 crc = ~(u32)0;
2609 crc = btrfs_csum_data(NULL, (char *)sb +
2610 BTRFS_CSUM_SIZE, crc,
2611 BTRFS_SUPER_INFO_SIZE -
2612 BTRFS_CSUM_SIZE);
2613 btrfs_csum_final(crc, sb->csum);
2614
4eedeb75
HH
2615 /*
2616 * one reference for us, and we leave it for the
2617 * caller
2618 */
a512bbf8
YZ
2619 bh = __getblk(device->bdev, bytenr / 4096,
2620 BTRFS_SUPER_INFO_SIZE);
2621 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
2622
4eedeb75 2623 /* one reference for submit_bh */
a512bbf8 2624 get_bh(bh);
4eedeb75
HH
2625
2626 set_buffer_uptodate(bh);
a512bbf8
YZ
2627 lock_buffer(bh);
2628 bh->b_end_io = btrfs_end_buffer_write_sync;
2629 }
2630
387125fc
CM
2631 /*
2632 * we fua the first super. The others we allow
2633 * to go down lazy.
2634 */
2635 ret = submit_bh(WRITE_FUA, bh);
4eedeb75 2636 if (ret)
a512bbf8 2637 errors++;
a512bbf8
YZ
2638 }
2639 return errors < i ? 0 : -1;
2640}
2641
387125fc
CM
2642/*
2643 * endio for the write_dev_flush, this will wake anyone waiting
2644 * for the barrier when it is done
2645 */
2646static void btrfs_end_empty_barrier(struct bio *bio, int err)
2647{
2648 if (err) {
2649 if (err == -EOPNOTSUPP)
2650 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2651 clear_bit(BIO_UPTODATE, &bio->bi_flags);
2652 }
2653 if (bio->bi_private)
2654 complete(bio->bi_private);
2655 bio_put(bio);
2656}
2657
2658/*
2659 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
2660 * sent down. With wait == 1, it waits for the previous flush.
2661 *
2662 * any device where the flush fails with eopnotsupp are flagged as not-barrier
2663 * capable
2664 */
2665static int write_dev_flush(struct btrfs_device *device, int wait)
2666{
2667 struct bio *bio;
2668 int ret = 0;
2669
2670 if (device->nobarriers)
2671 return 0;
2672
2673 if (wait) {
2674 bio = device->flush_bio;
2675 if (!bio)
2676 return 0;
2677
2678 wait_for_completion(&device->flush_wait);
2679
2680 if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
2681 printk("btrfs: disabling barriers on dev %s\n",
2682 device->name);
2683 device->nobarriers = 1;
2684 }
2685 if (!bio_flagged(bio, BIO_UPTODATE)) {
2686 ret = -EIO;
2687 }
2688
2689 /* drop the reference from the wait == 0 run */
2690 bio_put(bio);
2691 device->flush_bio = NULL;
2692
2693 return ret;
2694 }
2695
2696 /*
2697 * one reference for us, and we leave it for the
2698 * caller
2699 */
2700 device->flush_bio = NULL;;
2701 bio = bio_alloc(GFP_NOFS, 0);
2702 if (!bio)
2703 return -ENOMEM;
2704
2705 bio->bi_end_io = btrfs_end_empty_barrier;
2706 bio->bi_bdev = device->bdev;
2707 init_completion(&device->flush_wait);
2708 bio->bi_private = &device->flush_wait;
2709 device->flush_bio = bio;
2710
2711 bio_get(bio);
2712 submit_bio(WRITE_FLUSH, bio);
2713
2714 return 0;
2715}
2716
2717/*
2718 * send an empty flush down to each device in parallel,
2719 * then wait for them
2720 */
2721static int barrier_all_devices(struct btrfs_fs_info *info)
2722{
2723 struct list_head *head;
2724 struct btrfs_device *dev;
2725 int errors = 0;
2726 int ret;
2727
2728 /* send down all the barriers */
2729 head = &info->fs_devices->devices;
2730 list_for_each_entry_rcu(dev, head, dev_list) {
2731 if (!dev->bdev) {
2732 errors++;
2733 continue;
2734 }
2735 if (!dev->in_fs_metadata || !dev->writeable)
2736 continue;
2737
2738 ret = write_dev_flush(dev, 0);
2739 if (ret)
2740 errors++;
2741 }
2742
2743 /* wait for all the barriers */
2744 list_for_each_entry_rcu(dev, head, dev_list) {
2745 if (!dev->bdev) {
2746 errors++;
2747 continue;
2748 }
2749 if (!dev->in_fs_metadata || !dev->writeable)
2750 continue;
2751
2752 ret = write_dev_flush(dev, 1);
2753 if (ret)
2754 errors++;
2755 }
2756 if (errors)
2757 return -EIO;
2758 return 0;
2759}
2760
a512bbf8 2761int write_all_supers(struct btrfs_root *root, int max_mirrors)
f2984462 2762{
e5e9a520 2763 struct list_head *head;
f2984462 2764 struct btrfs_device *dev;
a061fc8d 2765 struct btrfs_super_block *sb;
f2984462 2766 struct btrfs_dev_item *dev_item;
f2984462
CM
2767 int ret;
2768 int do_barriers;
a236aed1
CM
2769 int max_errors;
2770 int total_errors = 0;
a061fc8d 2771 u64 flags;
f2984462 2772
6c41761f 2773 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
f2984462 2774 do_barriers = !btrfs_test_opt(root, NOBARRIER);
af31f5e5 2775 backup_super_roots(root->fs_info);
f2984462 2776
6c41761f 2777 sb = root->fs_info->super_for_commit;
a061fc8d 2778 dev_item = &sb->dev_item;
e5e9a520 2779
174ba509 2780 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
e5e9a520 2781 head = &root->fs_info->fs_devices->devices;
387125fc
CM
2782
2783 if (do_barriers)
2784 barrier_all_devices(root->fs_info);
2785
1f78160c 2786 list_for_each_entry_rcu(dev, head, dev_list) {
dfe25020
CM
2787 if (!dev->bdev) {
2788 total_errors++;
2789 continue;
2790 }
2b82032c 2791 if (!dev->in_fs_metadata || !dev->writeable)
dfe25020
CM
2792 continue;
2793
2b82032c 2794 btrfs_set_stack_device_generation(dev_item, 0);
a061fc8d
CM
2795 btrfs_set_stack_device_type(dev_item, dev->type);
2796 btrfs_set_stack_device_id(dev_item, dev->devid);
2797 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
2798 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
2799 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
2800 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
2801 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
2802 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
2b82032c 2803 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
a512bbf8 2804
a061fc8d
CM
2805 flags = btrfs_super_flags(sb);
2806 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
2807
a512bbf8 2808 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
a236aed1
CM
2809 if (ret)
2810 total_errors++;
f2984462 2811 }
a236aed1 2812 if (total_errors > max_errors) {
d397712b
CM
2813 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
2814 total_errors);
a236aed1
CM
2815 BUG();
2816 }
f2984462 2817
a512bbf8 2818 total_errors = 0;
1f78160c 2819 list_for_each_entry_rcu(dev, head, dev_list) {
dfe25020
CM
2820 if (!dev->bdev)
2821 continue;
2b82032c 2822 if (!dev->in_fs_metadata || !dev->writeable)
dfe25020
CM
2823 continue;
2824
a512bbf8
YZ
2825 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
2826 if (ret)
2827 total_errors++;
f2984462 2828 }
174ba509 2829 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
a236aed1 2830 if (total_errors > max_errors) {
d397712b
CM
2831 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
2832 total_errors);
a236aed1
CM
2833 BUG();
2834 }
f2984462
CM
2835 return 0;
2836}
2837
a512bbf8
YZ
2838int write_ctree_super(struct btrfs_trans_handle *trans,
2839 struct btrfs_root *root, int max_mirrors)
eb60ceac 2840{
e66f709b 2841 int ret;
5f39d397 2842
a512bbf8 2843 ret = write_all_supers(root, max_mirrors);
5f39d397 2844 return ret;
cfaa7295
CM
2845}
2846
5eda7b5e 2847int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
2619ba1f 2848{
4df27c4d 2849 spin_lock(&fs_info->fs_roots_radix_lock);
2619ba1f
CM
2850 radix_tree_delete(&fs_info->fs_roots_radix,
2851 (unsigned long)root->root_key.objectid);
4df27c4d 2852 spin_unlock(&fs_info->fs_roots_radix_lock);
76dda93c
YZ
2853
2854 if (btrfs_root_refs(&root->root_item) == 0)
2855 synchronize_srcu(&fs_info->subvol_srcu);
2856
581bb050
LZ
2857 __btrfs_remove_free_space_cache(root->free_ino_pinned);
2858 __btrfs_remove_free_space_cache(root->free_ino_ctl);
4df27c4d
YZ
2859 free_fs_root(root);
2860 return 0;
2861}
2862
2863static void free_fs_root(struct btrfs_root *root)
2864{
82d5902d 2865 iput(root->cache_inode);
4df27c4d 2866 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
0ee5dc67
AV
2867 if (root->anon_dev)
2868 free_anon_bdev(root->anon_dev);
4df27c4d
YZ
2869 free_extent_buffer(root->node);
2870 free_extent_buffer(root->commit_root);
581bb050
LZ
2871 kfree(root->free_ino_ctl);
2872 kfree(root->free_ino_pinned);
d397712b 2873 kfree(root->name);
2619ba1f 2874 kfree(root);
2619ba1f
CM
2875}
2876
35b7e476 2877static int del_fs_roots(struct btrfs_fs_info *fs_info)
0f7d52f4
CM
2878{
2879 int ret;
2880 struct btrfs_root *gang[8];
2881 int i;
2882
76dda93c
YZ
2883 while (!list_empty(&fs_info->dead_roots)) {
2884 gang[0] = list_entry(fs_info->dead_roots.next,
2885 struct btrfs_root, root_list);
2886 list_del(&gang[0]->root_list);
2887
2888 if (gang[0]->in_radix) {
2889 btrfs_free_fs_root(fs_info, gang[0]);
2890 } else {
2891 free_extent_buffer(gang[0]->node);
2892 free_extent_buffer(gang[0]->commit_root);
2893 kfree(gang[0]);
2894 }
2895 }
2896
d397712b 2897 while (1) {
0f7d52f4
CM
2898 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2899 (void **)gang, 0,
2900 ARRAY_SIZE(gang));
2901 if (!ret)
2902 break;
2619ba1f 2903 for (i = 0; i < ret; i++)
5eda7b5e 2904 btrfs_free_fs_root(fs_info, gang[i]);
0f7d52f4
CM
2905 }
2906 return 0;
2907}
b4100d64 2908
c146afad 2909int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
cfaa7295 2910{
c146afad
YZ
2911 u64 root_objectid = 0;
2912 struct btrfs_root *gang[8];
2913 int i;
3768f368 2914 int ret;
e089f05c 2915
c146afad
YZ
2916 while (1) {
2917 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2918 (void **)gang, root_objectid,
2919 ARRAY_SIZE(gang));
2920 if (!ret)
2921 break;
5d4f98a2
YZ
2922
2923 root_objectid = gang[ret - 1]->root_key.objectid + 1;
c146afad 2924 for (i = 0; i < ret; i++) {
66b4ffd1
JB
2925 int err;
2926
c146afad 2927 root_objectid = gang[i]->root_key.objectid;
66b4ffd1
JB
2928 err = btrfs_orphan_cleanup(gang[i]);
2929 if (err)
2930 return err;
c146afad
YZ
2931 }
2932 root_objectid++;
2933 }
2934 return 0;
2935}
a2135011 2936
c146afad
YZ
2937int btrfs_commit_super(struct btrfs_root *root)
2938{
2939 struct btrfs_trans_handle *trans;
2940 int ret;
a74a4b97 2941
c146afad 2942 mutex_lock(&root->fs_info->cleaner_mutex);
24bbcf04 2943 btrfs_run_delayed_iputs(root);
a74a4b97 2944 btrfs_clean_old_snapshots(root);
c146afad 2945 mutex_unlock(&root->fs_info->cleaner_mutex);
c71bf099
YZ
2946
2947 /* wait until ongoing cleanup work done */
2948 down_write(&root->fs_info->cleanup_work_sem);
2949 up_write(&root->fs_info->cleanup_work_sem);
2950
7a7eaa40 2951 trans = btrfs_join_transaction(root);
3612b495
TI
2952 if (IS_ERR(trans))
2953 return PTR_ERR(trans);
54aa1f4d 2954 ret = btrfs_commit_transaction(trans, root);
c146afad
YZ
2955 BUG_ON(ret);
2956 /* run commit again to drop the original snapshot */
7a7eaa40 2957 trans = btrfs_join_transaction(root);
3612b495
TI
2958 if (IS_ERR(trans))
2959 return PTR_ERR(trans);
79154b1b
CM
2960 btrfs_commit_transaction(trans, root);
2961 ret = btrfs_write_and_wait_transaction(NULL, root);
3768f368 2962 BUG_ON(ret);
d6bfde87 2963
a512bbf8 2964 ret = write_ctree_super(NULL, root, 0);
c146afad
YZ
2965 return ret;
2966}
2967
2968int close_ctree(struct btrfs_root *root)
2969{
2970 struct btrfs_fs_info *fs_info = root->fs_info;
2971 int ret;
2972
2973 fs_info->closing = 1;
2974 smp_mb();
2975
a2de733c 2976 btrfs_scrub_cancel(root);
4cb5300b
CM
2977
2978 /* wait for any defraggers to finish */
2979 wait_event(fs_info->transaction_wait,
2980 (atomic_read(&fs_info->defrag_running) == 0));
2981
2982 /* clear out the rbtree of defraggable inodes */
e3029d9f 2983 btrfs_run_defrag_inodes(fs_info);
4cb5300b 2984
acce952b 2985 /*
2986 * Here come 2 situations when btrfs is broken to flip readonly:
2987 *
2988 * 1. when btrfs flips readonly somewhere else before
2989 * btrfs_commit_super, sb->s_flags has MS_RDONLY flag,
2990 * and btrfs will skip to write sb directly to keep
2991 * ERROR state on disk.
2992 *
2993 * 2. when btrfs flips readonly just in btrfs_commit_super,
ae0e47f0 2994 * and in such case, btrfs cannot write sb via btrfs_commit_super,
acce952b 2995 * and since fs_state has been set BTRFS_SUPER_FLAG_ERROR flag,
2996 * btrfs will cleanup all FS resources first and write sb then.
2997 */
c146afad 2998 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
acce952b 2999 ret = btrfs_commit_super(root);
3000 if (ret)
3001 printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
3002 }
3003
3004 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
3005 ret = btrfs_error_commit_super(root);
d397712b
CM
3006 if (ret)
3007 printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
c146afad 3008 }
0f7d52f4 3009
300e4f8a
JB
3010 btrfs_put_block_group_cache(fs_info);
3011
e3029d9f
AV
3012 kthread_stop(fs_info->transaction_kthread);
3013 kthread_stop(fs_info->cleaner_kthread);
8929ecfa 3014
f25784b3
YZ
3015 fs_info->closing = 2;
3016 smp_mb();
3017
b0c68f8b 3018 if (fs_info->delalloc_bytes) {
d397712b 3019 printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
21380931 3020 (unsigned long long)fs_info->delalloc_bytes);
b0c68f8b 3021 }
31153d81 3022 if (fs_info->total_ref_cache_size) {
d397712b
CM
3023 printk(KERN_INFO "btrfs: at umount reference cache size %llu\n",
3024 (unsigned long long)fs_info->total_ref_cache_size);
31153d81 3025 }
bcc63abb 3026
5d4f98a2
YZ
3027 free_extent_buffer(fs_info->extent_root->node);
3028 free_extent_buffer(fs_info->extent_root->commit_root);
3029 free_extent_buffer(fs_info->tree_root->node);
3030 free_extent_buffer(fs_info->tree_root->commit_root);
e3029d9f
AV
3031 free_extent_buffer(fs_info->chunk_root->node);
3032 free_extent_buffer(fs_info->chunk_root->commit_root);
3033 free_extent_buffer(fs_info->dev_root->node);
3034 free_extent_buffer(fs_info->dev_root->commit_root);
3035 free_extent_buffer(fs_info->csum_root->node);
3036 free_extent_buffer(fs_info->csum_root->commit_root);
3037
3038 btrfs_free_block_groups(fs_info);
d10c5f31 3039
c146afad 3040 del_fs_roots(fs_info);
d10c5f31 3041
c146afad 3042 iput(fs_info->btree_inode);
9ad6b7bc 3043
61d92c32 3044 btrfs_stop_workers(&fs_info->generic_worker);
247e743c 3045 btrfs_stop_workers(&fs_info->fixup_workers);
771ed689 3046 btrfs_stop_workers(&fs_info->delalloc_workers);
8b712842
CM
3047 btrfs_stop_workers(&fs_info->workers);
3048 btrfs_stop_workers(&fs_info->endio_workers);
d20f7043 3049 btrfs_stop_workers(&fs_info->endio_meta_workers);
cad321ad 3050 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
e6dcd2dc 3051 btrfs_stop_workers(&fs_info->endio_write_workers);
0cb59c99 3052 btrfs_stop_workers(&fs_info->endio_freespace_worker);
1cc127b5 3053 btrfs_stop_workers(&fs_info->submit_workers);
16cdcec7 3054 btrfs_stop_workers(&fs_info->delayed_workers);
bab39bf9 3055 btrfs_stop_workers(&fs_info->caching_workers);
90519d66 3056 btrfs_stop_workers(&fs_info->readahead_workers);
d6bfde87 3057
dfe25020 3058 btrfs_close_devices(fs_info->fs_devices);
0b86a832 3059 btrfs_mapping_tree_free(&fs_info->mapping_tree);
b248a415 3060
04160088 3061 bdi_destroy(&fs_info->bdi);
76dda93c 3062 cleanup_srcu_struct(&fs_info->subvol_srcu);
0b86a832 3063
eb60ceac
CM
3064 return 0;
3065}
3066
1259ab75 3067int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid)
5f39d397 3068{
1259ab75 3069 int ret;
810191ff 3070 struct inode *btree_inode = buf->first_page->mapping->host;
1259ab75 3071
2ac55d41
JB
3072 ret = extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf,
3073 NULL);
1259ab75
CM
3074 if (!ret)
3075 return ret;
3076
3077 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3078 parent_transid);
3079 return !ret;
5f39d397
CM
3080}
3081
3082int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
ccd467d6 3083{
810191ff 3084 struct inode *btree_inode = buf->first_page->mapping->host;
d1310b2e 3085 return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree,
5f39d397
CM
3086 buf);
3087}
6702ed49 3088
5f39d397
CM
3089void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3090{
810191ff 3091 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
5f39d397
CM
3092 u64 transid = btrfs_header_generation(buf);
3093 struct inode *btree_inode = root->fs_info->btree_inode;
b9473439 3094 int was_dirty;
b4ce94de 3095
b9447ef8 3096 btrfs_assert_tree_locked(buf);
ccd467d6 3097 if (transid != root->fs_info->generation) {
d397712b
CM
3098 printk(KERN_CRIT "btrfs transid mismatch buffer %llu, "
3099 "found %llu running %llu\n",
db94535d 3100 (unsigned long long)buf->start,
d397712b
CM
3101 (unsigned long long)transid,
3102 (unsigned long long)root->fs_info->generation);
ccd467d6
CM
3103 WARN_ON(1);
3104 }
b9473439
CM
3105 was_dirty = set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
3106 buf);
3107 if (!was_dirty) {
3108 spin_lock(&root->fs_info->delalloc_lock);
3109 root->fs_info->dirty_metadata_bytes += buf->len;
3110 spin_unlock(&root->fs_info->delalloc_lock);
3111 }
eb60ceac
CM
3112}
3113
d3c2fdcf 3114void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
16cdcec7
MX
3115{
3116 /*
3117 * looks as though older kernels can get into trouble with
3118 * this code, they end up stuck in balance_dirty_pages forever
3119 */
3120 u64 num_dirty;
3121 unsigned long thresh = 32 * 1024 * 1024;
3122
3123 if (current->flags & PF_MEMALLOC)
3124 return;
3125
3126 btrfs_balance_delayed_items(root);
3127
3128 num_dirty = root->fs_info->dirty_metadata_bytes;
3129
3130 if (num_dirty > thresh) {
3131 balance_dirty_pages_ratelimited_nr(
3132 root->fs_info->btree_inode->i_mapping, 1);
3133 }
3134 return;
3135}
3136
3137void __btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
35b7e476 3138{
188de649
CM
3139 /*
3140 * looks as though older kernels can get into trouble with
3141 * this code, they end up stuck in balance_dirty_pages forever
3142 */
d6bfde87 3143 u64 num_dirty;
771ed689 3144 unsigned long thresh = 32 * 1024 * 1024;
d6bfde87 3145
6933c02e 3146 if (current->flags & PF_MEMALLOC)
d6bfde87
CM
3147 return;
3148
585ad2c3
CM
3149 num_dirty = root->fs_info->dirty_metadata_bytes;
3150
d6bfde87
CM
3151 if (num_dirty > thresh) {
3152 balance_dirty_pages_ratelimited_nr(
d7fc640e 3153 root->fs_info->btree_inode->i_mapping, 1);
d6bfde87 3154 }
188de649 3155 return;
35b7e476 3156}
6b80053d 3157
ca7a79ad 3158int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
6b80053d 3159{
810191ff 3160 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
ce9adaa5 3161 int ret;
ca7a79ad 3162 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
d397712b 3163 if (ret == 0)
b4ce94de 3164 set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
ce9adaa5 3165 return ret;
6b80053d 3166}
0da5468f 3167
01d658f2
CM
3168static int btree_lock_page_hook(struct page *page, void *data,
3169 void (*flush_fn)(void *))
4bef0848
CM
3170{
3171 struct inode *inode = page->mapping->host;
b9473439 3172 struct btrfs_root *root = BTRFS_I(inode)->root;
4bef0848
CM
3173 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3174 struct extent_buffer *eb;
3175 unsigned long len;
3176 u64 bytenr = page_offset(page);
3177
3178 if (page->private == EXTENT_PAGE_PRIVATE)
3179 goto out;
3180
3181 len = page->private >> 2;
f09d1f60 3182 eb = find_extent_buffer(io_tree, bytenr, len);
4bef0848
CM
3183 if (!eb)
3184 goto out;
3185
01d658f2
CM
3186 if (!btrfs_try_tree_write_lock(eb)) {
3187 flush_fn(data);
3188 btrfs_tree_lock(eb);
3189 }
4bef0848 3190 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
b9473439
CM
3191
3192 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3193 spin_lock(&root->fs_info->delalloc_lock);
3194 if (root->fs_info->dirty_metadata_bytes >= eb->len)
3195 root->fs_info->dirty_metadata_bytes -= eb->len;
3196 else
3197 WARN_ON(1);
3198 spin_unlock(&root->fs_info->delalloc_lock);
3199 }
3200
4bef0848
CM
3201 btrfs_tree_unlock(eb);
3202 free_extent_buffer(eb);
3203out:
01d658f2
CM
3204 if (!trylock_page(page)) {
3205 flush_fn(data);
3206 lock_page(page);
3207 }
4bef0848
CM
3208 return 0;
3209}
3210
acce952b 3211static void btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3212 int read_only)
3213{
3214 if (read_only)
3215 return;
3216
3217 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
3218 printk(KERN_WARNING "warning: mount fs with errors, "
3219 "running btrfsck is recommended\n");
3220}
3221
3222int btrfs_error_commit_super(struct btrfs_root *root)
3223{
3224 int ret;
3225
3226 mutex_lock(&root->fs_info->cleaner_mutex);
3227 btrfs_run_delayed_iputs(root);
3228 mutex_unlock(&root->fs_info->cleaner_mutex);
3229
3230 down_write(&root->fs_info->cleanup_work_sem);
3231 up_write(&root->fs_info->cleanup_work_sem);
3232
3233 /* cleanup FS via transaction */
3234 btrfs_cleanup_transaction(root);
3235
3236 ret = write_ctree_super(NULL, root, 0);
3237
3238 return ret;
3239}
3240
3241static int btrfs_destroy_ordered_operations(struct btrfs_root *root)
3242{
3243 struct btrfs_inode *btrfs_inode;
3244 struct list_head splice;
3245
3246 INIT_LIST_HEAD(&splice);
3247
3248 mutex_lock(&root->fs_info->ordered_operations_mutex);
3249 spin_lock(&root->fs_info->ordered_extent_lock);
3250
3251 list_splice_init(&root->fs_info->ordered_operations, &splice);
3252 while (!list_empty(&splice)) {
3253 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3254 ordered_operations);
3255
3256 list_del_init(&btrfs_inode->ordered_operations);
3257
3258 btrfs_invalidate_inodes(btrfs_inode->root);
3259 }
3260
3261 spin_unlock(&root->fs_info->ordered_extent_lock);
3262 mutex_unlock(&root->fs_info->ordered_operations_mutex);
3263
3264 return 0;
3265}
3266
3267static int btrfs_destroy_ordered_extents(struct btrfs_root *root)
3268{
3269 struct list_head splice;
3270 struct btrfs_ordered_extent *ordered;
3271 struct inode *inode;
3272
3273 INIT_LIST_HEAD(&splice);
3274
3275 spin_lock(&root->fs_info->ordered_extent_lock);
3276
3277 list_splice_init(&root->fs_info->ordered_extents, &splice);
3278 while (!list_empty(&splice)) {
3279 ordered = list_entry(splice.next, struct btrfs_ordered_extent,
3280 root_extent_list);
3281
3282 list_del_init(&ordered->root_extent_list);
3283 atomic_inc(&ordered->refs);
3284
3285 /* the inode may be getting freed (in sys_unlink path). */
3286 inode = igrab(ordered->inode);
3287
3288 spin_unlock(&root->fs_info->ordered_extent_lock);
3289 if (inode)
3290 iput(inode);
3291
3292 atomic_set(&ordered->refs, 1);
3293 btrfs_put_ordered_extent(ordered);
3294
3295 spin_lock(&root->fs_info->ordered_extent_lock);
3296 }
3297
3298 spin_unlock(&root->fs_info->ordered_extent_lock);
3299
3300 return 0;
3301}
3302
3303static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3304 struct btrfs_root *root)
3305{
3306 struct rb_node *node;
3307 struct btrfs_delayed_ref_root *delayed_refs;
3308 struct btrfs_delayed_ref_node *ref;
3309 int ret = 0;
3310
3311 delayed_refs = &trans->delayed_refs;
3312
3313 spin_lock(&delayed_refs->lock);
3314 if (delayed_refs->num_entries == 0) {
cfece4db 3315 spin_unlock(&delayed_refs->lock);
acce952b 3316 printk(KERN_INFO "delayed_refs has NO entry\n");
3317 return ret;
3318 }
3319
3320 node = rb_first(&delayed_refs->root);
3321 while (node) {
3322 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
3323 node = rb_next(node);
3324
3325 ref->in_tree = 0;
3326 rb_erase(&ref->rb_node, &delayed_refs->root);
3327 delayed_refs->num_entries--;
3328
3329 atomic_set(&ref->refs, 1);
3330 if (btrfs_delayed_ref_is_head(ref)) {
3331 struct btrfs_delayed_ref_head *head;
3332
3333 head = btrfs_delayed_node_to_head(ref);
3334 mutex_lock(&head->mutex);
3335 kfree(head->extent_op);
3336 delayed_refs->num_heads--;
3337 if (list_empty(&head->cluster))
3338 delayed_refs->num_heads_ready--;
3339 list_del_init(&head->cluster);
3340 mutex_unlock(&head->mutex);
3341 }
3342
3343 spin_unlock(&delayed_refs->lock);
3344 btrfs_put_delayed_ref(ref);
3345
3346 cond_resched();
3347 spin_lock(&delayed_refs->lock);
3348 }
3349
3350 spin_unlock(&delayed_refs->lock);
3351
3352 return ret;
3353}
3354
3355static int btrfs_destroy_pending_snapshots(struct btrfs_transaction *t)
3356{
3357 struct btrfs_pending_snapshot *snapshot;
3358 struct list_head splice;
3359
3360 INIT_LIST_HEAD(&splice);
3361
3362 list_splice_init(&t->pending_snapshots, &splice);
3363
3364 while (!list_empty(&splice)) {
3365 snapshot = list_entry(splice.next,
3366 struct btrfs_pending_snapshot,
3367 list);
3368
3369 list_del_init(&snapshot->list);
3370
3371 kfree(snapshot);
3372 }
3373
3374 return 0;
3375}
3376
3377static int btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
3378{
3379 struct btrfs_inode *btrfs_inode;
3380 struct list_head splice;
3381
3382 INIT_LIST_HEAD(&splice);
3383
acce952b 3384 spin_lock(&root->fs_info->delalloc_lock);
5be76758 3385 list_splice_init(&root->fs_info->delalloc_inodes, &splice);
acce952b 3386
3387 while (!list_empty(&splice)) {
3388 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3389 delalloc_inodes);
3390
3391 list_del_init(&btrfs_inode->delalloc_inodes);
3392
3393 btrfs_invalidate_inodes(btrfs_inode->root);
3394 }
3395
3396 spin_unlock(&root->fs_info->delalloc_lock);
3397
3398 return 0;
3399}
3400
3401static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3402 struct extent_io_tree *dirty_pages,
3403 int mark)
3404{
3405 int ret;
3406 struct page *page;
3407 struct inode *btree_inode = root->fs_info->btree_inode;
3408 struct extent_buffer *eb;
3409 u64 start = 0;
3410 u64 end;
3411 u64 offset;
3412 unsigned long index;
3413
3414 while (1) {
3415 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
3416 mark);
3417 if (ret)
3418 break;
3419
3420 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
3421 while (start <= end) {
3422 index = start >> PAGE_CACHE_SHIFT;
3423 start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
3424 page = find_get_page(btree_inode->i_mapping, index);
3425 if (!page)
3426 continue;
3427 offset = page_offset(page);
3428
3429 spin_lock(&dirty_pages->buffer_lock);
3430 eb = radix_tree_lookup(
3431 &(&BTRFS_I(page->mapping->host)->io_tree)->buffer,
3432 offset >> PAGE_CACHE_SHIFT);
3433 spin_unlock(&dirty_pages->buffer_lock);
3434 if (eb) {
3435 ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY,
3436 &eb->bflags);
3437 atomic_set(&eb->refs, 1);
3438 }
3439 if (PageWriteback(page))
3440 end_page_writeback(page);
3441
3442 lock_page(page);
3443 if (PageDirty(page)) {
3444 clear_page_dirty_for_io(page);
3445 spin_lock_irq(&page->mapping->tree_lock);
3446 radix_tree_tag_clear(&page->mapping->page_tree,
3447 page_index(page),
3448 PAGECACHE_TAG_DIRTY);
3449 spin_unlock_irq(&page->mapping->tree_lock);
3450 }
3451
3452 page->mapping->a_ops->invalidatepage(page, 0);
3453 unlock_page(page);
3454 }
3455 }
3456
3457 return ret;
3458}
3459
3460static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
3461 struct extent_io_tree *pinned_extents)
3462{
3463 struct extent_io_tree *unpin;
3464 u64 start;
3465 u64 end;
3466 int ret;
3467
3468 unpin = pinned_extents;
3469 while (1) {
3470 ret = find_first_extent_bit(unpin, 0, &start, &end,
3471 EXTENT_DIRTY);
3472 if (ret)
3473 break;
3474
3475 /* opt_discard */
5378e607
LD
3476 if (btrfs_test_opt(root, DISCARD))
3477 ret = btrfs_error_discard_extent(root, start,
3478 end + 1 - start,
3479 NULL);
acce952b 3480
3481 clear_extent_dirty(unpin, start, end, GFP_NOFS);
3482 btrfs_error_unpin_extent_range(root, start, end);
3483 cond_resched();
3484 }
3485
3486 return 0;
3487}
3488
3489static int btrfs_cleanup_transaction(struct btrfs_root *root)
3490{
3491 struct btrfs_transaction *t;
3492 LIST_HEAD(list);
3493
3494 WARN_ON(1);
3495
acce952b 3496 mutex_lock(&root->fs_info->transaction_kthread_mutex);
3497
a4abeea4 3498 spin_lock(&root->fs_info->trans_lock);
acce952b 3499 list_splice_init(&root->fs_info->trans_list, &list);
a4abeea4
JB
3500 root->fs_info->trans_no_join = 1;
3501 spin_unlock(&root->fs_info->trans_lock);
3502
acce952b 3503 while (!list_empty(&list)) {
3504 t = list_entry(list.next, struct btrfs_transaction, list);
3505 if (!t)
3506 break;
3507
3508 btrfs_destroy_ordered_operations(root);
3509
3510 btrfs_destroy_ordered_extents(root);
3511
3512 btrfs_destroy_delayed_refs(t, root);
3513
3514 btrfs_block_rsv_release(root,
3515 &root->fs_info->trans_block_rsv,
3516 t->dirty_pages.dirty_bytes);
3517
3518 /* FIXME: cleanup wait for commit */
3519 t->in_commit = 1;
3520 t->blocked = 1;
3521 if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
3522 wake_up(&root->fs_info->transaction_blocked_wait);
3523
3524 t->blocked = 0;
3525 if (waitqueue_active(&root->fs_info->transaction_wait))
3526 wake_up(&root->fs_info->transaction_wait);
acce952b 3527
acce952b 3528 t->commit_done = 1;
3529 if (waitqueue_active(&t->commit_wait))
3530 wake_up(&t->commit_wait);
acce952b 3531
3532 btrfs_destroy_pending_snapshots(t);
3533
3534 btrfs_destroy_delalloc_inodes(root);
3535
a4abeea4 3536 spin_lock(&root->fs_info->trans_lock);
acce952b 3537 root->fs_info->running_transaction = NULL;
a4abeea4 3538 spin_unlock(&root->fs_info->trans_lock);
acce952b 3539
3540 btrfs_destroy_marked_extents(root, &t->dirty_pages,
3541 EXTENT_DIRTY);
3542
3543 btrfs_destroy_pinned_extent(root,
3544 root->fs_info->pinned_extents);
3545
13c5a93e 3546 atomic_set(&t->use_count, 0);
acce952b 3547 list_del_init(&t->list);
3548 memset(t, 0, sizeof(*t));
3549 kmem_cache_free(btrfs_transaction_cachep, t);
3550 }
3551
a4abeea4
JB
3552 spin_lock(&root->fs_info->trans_lock);
3553 root->fs_info->trans_no_join = 0;
3554 spin_unlock(&root->fs_info->trans_lock);
acce952b 3555 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
acce952b 3556
3557 return 0;
3558}
3559
d1310b2e 3560static struct extent_io_ops btree_extent_io_ops = {
4bef0848 3561 .write_cache_pages_lock_hook = btree_lock_page_hook,
ce9adaa5 3562 .readpage_end_io_hook = btree_readpage_end_io_hook,
4bb31e92 3563 .readpage_io_failed_hook = btree_io_failed_hook,
0b86a832 3564 .submit_bio_hook = btree_submit_bio_hook,
239b14b3
CM
3565 /* note we're sharing with inode.c for the merge bio hook */
3566 .merge_bio_hook = btrfs_merge_bio_hook,
0da5468f 3567};