Btrfs: use a slab for ordered extents allocation
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / btrfs / disk-io.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
e20d96d6 19#include <linux/fs.h>
d98237b3 20#include <linux/blkdev.h>
87cbda5c 21#include <linux/scatterlist.h>
22b0ebda 22#include <linux/swap.h>
0f7d52f4 23#include <linux/radix-tree.h>
35b7e476 24#include <linux/writeback.h>
d397712b 25#include <linux/buffer_head.h>
ce9adaa5 26#include <linux/workqueue.h>
a74a4b97 27#include <linux/kthread.h>
4b4e25f2 28#include <linux/freezer.h>
163e783e 29#include <linux/crc32c.h>
5a0e3ad6 30#include <linux/slab.h>
784b4e29 31#include <linux/migrate.h>
7a36ddec 32#include <linux/ratelimit.h>
7e75bf3f 33#include <asm/unaligned.h>
4b4e25f2 34#include "compat.h"
eb60ceac
CM
35#include "ctree.h"
36#include "disk-io.h"
e089f05c 37#include "transaction.h"
0f7d52f4 38#include "btrfs_inode.h"
0b86a832 39#include "volumes.h"
db94535d 40#include "print-tree.h"
8b712842 41#include "async-thread.h"
925baedd 42#include "locking.h"
e02119d5 43#include "tree-log.h"
fa9c0d79 44#include "free-space-cache.h"
581bb050 45#include "inode-map.h"
21adbd5c 46#include "check-integrity.h"
606686ee 47#include "rcu-string.h"
eb60ceac 48
d1310b2e 49static struct extent_io_ops btree_extent_io_ops;
8b712842 50static void end_workqueue_fn(struct btrfs_work *work);
4df27c4d 51static void free_fs_root(struct btrfs_root *root);
fcd1f065 52static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
acce952b 53 int read_only);
143bede5
JM
54static void btrfs_destroy_ordered_operations(struct btrfs_root *root);
55static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
acce952b 56static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
57 struct btrfs_root *root);
143bede5
JM
58static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t);
59static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
acce952b 60static int btrfs_destroy_marked_extents(struct btrfs_root *root,
61 struct extent_io_tree *dirty_pages,
62 int mark);
63static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
64 struct extent_io_tree *pinned_extents);
ce9adaa5 65
d352ac68
CM
66/*
67 * end_io_wq structs are used to do processing in task context when an IO is
68 * complete. This is used during reads to verify checksums, and it is used
69 * by writes to insert metadata for new file extents after IO is complete.
70 */
ce9adaa5
CM
71struct end_io_wq {
72 struct bio *bio;
73 bio_end_io_t *end_io;
74 void *private;
75 struct btrfs_fs_info *info;
76 int error;
22c59948 77 int metadata;
ce9adaa5 78 struct list_head list;
8b712842 79 struct btrfs_work work;
ce9adaa5 80};
0da5468f 81
d352ac68
CM
82/*
83 * async submit bios are used to offload expensive checksumming
84 * onto the worker threads. They checksum file and metadata bios
85 * just before they are sent down the IO stack.
86 */
44b8bd7e
CM
87struct async_submit_bio {
88 struct inode *inode;
89 struct bio *bio;
90 struct list_head list;
4a69a410
CM
91 extent_submit_bio_hook_t *submit_bio_start;
92 extent_submit_bio_hook_t *submit_bio_done;
44b8bd7e
CM
93 int rw;
94 int mirror_num;
c8b97818 95 unsigned long bio_flags;
eaf25d93
CM
96 /*
97 * bio_offset is optional, can be used if the pages in the bio
98 * can't tell us where in the file the bio should go
99 */
100 u64 bio_offset;
8b712842 101 struct btrfs_work work;
79787eaa 102 int error;
44b8bd7e
CM
103};
104
85d4e461
CM
105/*
106 * Lockdep class keys for extent_buffer->lock's in this root. For a given
107 * eb, the lockdep key is determined by the btrfs_root it belongs to and
108 * the level the eb occupies in the tree.
109 *
110 * Different roots are used for different purposes and may nest inside each
111 * other and they require separate keysets. As lockdep keys should be
112 * static, assign keysets according to the purpose of the root as indicated
113 * by btrfs_root->objectid. This ensures that all special purpose roots
114 * have separate keysets.
4008c04a 115 *
85d4e461
CM
116 * Lock-nesting across peer nodes is always done with the immediate parent
117 * node locked thus preventing deadlock. As lockdep doesn't know this, use
118 * subclass to avoid triggering lockdep warning in such cases.
4008c04a 119 *
85d4e461
CM
120 * The key is set by the readpage_end_io_hook after the buffer has passed
121 * csum validation but before the pages are unlocked. It is also set by
122 * btrfs_init_new_buffer on freshly allocated blocks.
4008c04a 123 *
85d4e461
CM
124 * We also add a check to make sure the highest level of the tree is the
125 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
126 * needs update as well.
4008c04a
CM
127 */
128#ifdef CONFIG_DEBUG_LOCK_ALLOC
129# if BTRFS_MAX_LEVEL != 8
130# error
131# endif
85d4e461
CM
132
133static struct btrfs_lockdep_keyset {
134 u64 id; /* root objectid */
135 const char *name_stem; /* lock name stem */
136 char names[BTRFS_MAX_LEVEL + 1][20];
137 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
138} btrfs_lockdep_keysets[] = {
139 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
140 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
141 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
142 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
143 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
144 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
145 { .id = BTRFS_ORPHAN_OBJECTID, .name_stem = "orphan" },
146 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
147 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
148 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
149 { .id = 0, .name_stem = "tree" },
4008c04a 150};
85d4e461
CM
151
152void __init btrfs_init_lockdep(void)
153{
154 int i, j;
155
156 /* initialize lockdep class names */
157 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
158 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
159
160 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
161 snprintf(ks->names[j], sizeof(ks->names[j]),
162 "btrfs-%s-%02d", ks->name_stem, j);
163 }
164}
165
166void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
167 int level)
168{
169 struct btrfs_lockdep_keyset *ks;
170
171 BUG_ON(level >= ARRAY_SIZE(ks->keys));
172
173 /* find the matching keyset, id 0 is the default entry */
174 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
175 if (ks->id == objectid)
176 break;
177
178 lockdep_set_class_and_name(&eb->lock,
179 &ks->keys[level], ks->names[level]);
180}
181
4008c04a
CM
182#endif
183
d352ac68
CM
184/*
185 * extents on the btree inode are pretty simple, there's one extent
186 * that covers the entire device
187 */
b2950863 188static struct extent_map *btree_get_extent(struct inode *inode,
306e16ce 189 struct page *page, size_t pg_offset, u64 start, u64 len,
b2950863 190 int create)
7eccb903 191{
5f39d397
CM
192 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
193 struct extent_map *em;
194 int ret;
195
890871be 196 read_lock(&em_tree->lock);
d1310b2e 197 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
198 if (em) {
199 em->bdev =
200 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
890871be 201 read_unlock(&em_tree->lock);
5f39d397 202 goto out;
a061fc8d 203 }
890871be 204 read_unlock(&em_tree->lock);
7b13b7b1 205
172ddd60 206 em = alloc_extent_map();
5f39d397
CM
207 if (!em) {
208 em = ERR_PTR(-ENOMEM);
209 goto out;
210 }
211 em->start = 0;
0afbaf8c 212 em->len = (u64)-1;
c8b97818 213 em->block_len = (u64)-1;
5f39d397 214 em->block_start = 0;
a061fc8d 215 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
d1310b2e 216
890871be 217 write_lock(&em_tree->lock);
5f39d397
CM
218 ret = add_extent_mapping(em_tree, em);
219 if (ret == -EEXIST) {
0afbaf8c
CM
220 u64 failed_start = em->start;
221 u64 failed_len = em->len;
222
5f39d397 223 free_extent_map(em);
7b13b7b1 224 em = lookup_extent_mapping(em_tree, start, len);
0afbaf8c 225 if (em) {
7b13b7b1 226 ret = 0;
0afbaf8c
CM
227 } else {
228 em = lookup_extent_mapping(em_tree, failed_start,
229 failed_len);
7b13b7b1 230 ret = -EIO;
0afbaf8c 231 }
5f39d397 232 } else if (ret) {
7b13b7b1
CM
233 free_extent_map(em);
234 em = NULL;
5f39d397 235 }
890871be 236 write_unlock(&em_tree->lock);
7b13b7b1
CM
237
238 if (ret)
239 em = ERR_PTR(ret);
5f39d397
CM
240out:
241 return em;
7eccb903
CM
242}
243
19c00ddc
CM
244u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
245{
163e783e 246 return crc32c(seed, data, len);
19c00ddc
CM
247}
248
249void btrfs_csum_final(u32 crc, char *result)
250{
7e75bf3f 251 put_unaligned_le32(~crc, result);
19c00ddc
CM
252}
253
d352ac68
CM
254/*
255 * compute the csum for a btree block, and either verify it or write it
256 * into the csum field of the block.
257 */
19c00ddc
CM
258static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
259 int verify)
260{
6c41761f 261 u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
607d432d 262 char *result = NULL;
19c00ddc
CM
263 unsigned long len;
264 unsigned long cur_len;
265 unsigned long offset = BTRFS_CSUM_SIZE;
19c00ddc
CM
266 char *kaddr;
267 unsigned long map_start;
268 unsigned long map_len;
269 int err;
270 u32 crc = ~(u32)0;
607d432d 271 unsigned long inline_result;
19c00ddc
CM
272
273 len = buf->len - offset;
d397712b 274 while (len > 0) {
19c00ddc 275 err = map_private_extent_buffer(buf, offset, 32,
a6591715 276 &kaddr, &map_start, &map_len);
d397712b 277 if (err)
19c00ddc 278 return 1;
19c00ddc
CM
279 cur_len = min(len, map_len - (offset - map_start));
280 crc = btrfs_csum_data(root, kaddr + offset - map_start,
281 crc, cur_len);
282 len -= cur_len;
283 offset += cur_len;
19c00ddc 284 }
607d432d
JB
285 if (csum_size > sizeof(inline_result)) {
286 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
287 if (!result)
288 return 1;
289 } else {
290 result = (char *)&inline_result;
291 }
292
19c00ddc
CM
293 btrfs_csum_final(crc, result);
294
295 if (verify) {
607d432d 296 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
e4204ded
CM
297 u32 val;
298 u32 found = 0;
607d432d 299 memcpy(&found, result, csum_size);
e4204ded 300
607d432d 301 read_extent_buffer(buf, &val, 0, csum_size);
7a36ddec 302 printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
193f284d
CM
303 "failed on %llu wanted %X found %X "
304 "level %d\n",
305 root->fs_info->sb->s_id,
306 (unsigned long long)buf->start, val, found,
307 btrfs_header_level(buf));
607d432d
JB
308 if (result != (char *)&inline_result)
309 kfree(result);
19c00ddc
CM
310 return 1;
311 }
312 } else {
607d432d 313 write_extent_buffer(buf, result, 0, csum_size);
19c00ddc 314 }
607d432d
JB
315 if (result != (char *)&inline_result)
316 kfree(result);
19c00ddc
CM
317 return 0;
318}
319
d352ac68
CM
320/*
321 * we can't consider a given block up to date unless the transid of the
322 * block matches the transid in the parent node's pointer. This is how we
323 * detect blocks that either didn't get written at all or got written
324 * in the wrong place.
325 */
1259ab75 326static int verify_parent_transid(struct extent_io_tree *io_tree,
b9fab919
CM
327 struct extent_buffer *eb, u64 parent_transid,
328 int atomic)
1259ab75 329{
2ac55d41 330 struct extent_state *cached_state = NULL;
1259ab75
CM
331 int ret;
332
333 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
334 return 0;
335
b9fab919
CM
336 if (atomic)
337 return -EAGAIN;
338
2ac55d41 339 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
d0082371 340 0, &cached_state);
0b32f4bb 341 if (extent_buffer_uptodate(eb) &&
1259ab75
CM
342 btrfs_header_generation(eb) == parent_transid) {
343 ret = 0;
344 goto out;
345 }
7a36ddec 346 printk_ratelimited("parent transid verify failed on %llu wanted %llu "
193f284d
CM
347 "found %llu\n",
348 (unsigned long long)eb->start,
349 (unsigned long long)parent_transid,
350 (unsigned long long)btrfs_header_generation(eb));
1259ab75 351 ret = 1;
0b32f4bb 352 clear_extent_buffer_uptodate(eb);
33958dc6 353out:
2ac55d41
JB
354 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
355 &cached_state, GFP_NOFS);
1259ab75 356 return ret;
1259ab75
CM
357}
358
d352ac68
CM
359/*
360 * helper to read a given tree block, doing retries as required when
361 * the checksums don't match and we have alternate mirrors to try.
362 */
f188591e
CM
363static int btree_read_extent_buffer_pages(struct btrfs_root *root,
364 struct extent_buffer *eb,
ca7a79ad 365 u64 start, u64 parent_transid)
f188591e
CM
366{
367 struct extent_io_tree *io_tree;
ea466794 368 int failed = 0;
f188591e
CM
369 int ret;
370 int num_copies = 0;
371 int mirror_num = 0;
ea466794 372 int failed_mirror = 0;
f188591e 373
a826d6dc 374 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
f188591e
CM
375 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
376 while (1) {
bb82ab88
AJ
377 ret = read_extent_buffer_pages(io_tree, eb, start,
378 WAIT_COMPLETE,
f188591e 379 btree_get_extent, mirror_num);
256dd1bb
SB
380 if (!ret) {
381 if (!verify_parent_transid(io_tree, eb,
b9fab919 382 parent_transid, 0))
256dd1bb
SB
383 break;
384 else
385 ret = -EIO;
386 }
d397712b 387
a826d6dc
JB
388 /*
389 * This buffer's crc is fine, but its contents are corrupted, so
390 * there is no reason to read the other copies, they won't be
391 * any less wrong.
392 */
393 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
ea466794
JB
394 break;
395
f188591e
CM
396 num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
397 eb->start, eb->len);
4235298e 398 if (num_copies == 1)
ea466794 399 break;
4235298e 400
5cf1ab56
JB
401 if (!failed_mirror) {
402 failed = 1;
403 failed_mirror = eb->read_mirror;
404 }
405
f188591e 406 mirror_num++;
ea466794
JB
407 if (mirror_num == failed_mirror)
408 mirror_num++;
409
4235298e 410 if (mirror_num > num_copies)
ea466794 411 break;
f188591e 412 }
ea466794 413
c0901581 414 if (failed && !ret && failed_mirror)
ea466794
JB
415 repair_eb_io_failure(root, eb, failed_mirror);
416
417 return ret;
f188591e 418}
19c00ddc 419
d352ac68 420/*
d397712b
CM
421 * checksum a dirty tree block before IO. This has extra checks to make sure
422 * we only fill in the checksum field in the first page of a multi-page block
d352ac68 423 */
d397712b 424
b2950863 425static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
19c00ddc 426{
d1310b2e 427 struct extent_io_tree *tree;
35ebb934 428 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
19c00ddc 429 u64 found_start;
19c00ddc 430 struct extent_buffer *eb;
f188591e 431
d1310b2e 432 tree = &BTRFS_I(page->mapping->host)->io_tree;
19c00ddc 433
4f2de97a
JB
434 eb = (struct extent_buffer *)page->private;
435 if (page != eb->pages[0])
436 return 0;
19c00ddc
CM
437 found_start = btrfs_header_bytenr(eb);
438 if (found_start != start) {
55c69072 439 WARN_ON(1);
4f2de97a 440 return 0;
55c69072 441 }
727011e0 442 if (eb->pages[0] != page) {
55c69072 443 WARN_ON(1);
4f2de97a 444 return 0;
55c69072
CM
445 }
446 if (!PageUptodate(page)) {
55c69072 447 WARN_ON(1);
4f2de97a 448 return 0;
19c00ddc 449 }
19c00ddc 450 csum_tree_block(root, eb, 0);
19c00ddc
CM
451 return 0;
452}
453
2b82032c
YZ
454static int check_tree_block_fsid(struct btrfs_root *root,
455 struct extent_buffer *eb)
456{
457 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
458 u8 fsid[BTRFS_UUID_SIZE];
459 int ret = 1;
460
461 read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
462 BTRFS_FSID_SIZE);
463 while (fs_devices) {
464 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
465 ret = 0;
466 break;
467 }
468 fs_devices = fs_devices->seed;
469 }
470 return ret;
471}
472
a826d6dc
JB
473#define CORRUPT(reason, eb, root, slot) \
474 printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
475 "root=%llu, slot=%d\n", reason, \
476 (unsigned long long)btrfs_header_bytenr(eb), \
477 (unsigned long long)root->objectid, slot)
478
479static noinline int check_leaf(struct btrfs_root *root,
480 struct extent_buffer *leaf)
481{
482 struct btrfs_key key;
483 struct btrfs_key leaf_key;
484 u32 nritems = btrfs_header_nritems(leaf);
485 int slot;
486
487 if (nritems == 0)
488 return 0;
489
490 /* Check the 0 item */
491 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
492 BTRFS_LEAF_DATA_SIZE(root)) {
493 CORRUPT("invalid item offset size pair", leaf, root, 0);
494 return -EIO;
495 }
496
497 /*
498 * Check to make sure each items keys are in the correct order and their
499 * offsets make sense. We only have to loop through nritems-1 because
500 * we check the current slot against the next slot, which verifies the
501 * next slot's offset+size makes sense and that the current's slot
502 * offset is correct.
503 */
504 for (slot = 0; slot < nritems - 1; slot++) {
505 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
506 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
507
508 /* Make sure the keys are in the right order */
509 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
510 CORRUPT("bad key order", leaf, root, slot);
511 return -EIO;
512 }
513
514 /*
515 * Make sure the offset and ends are right, remember that the
516 * item data starts at the end of the leaf and grows towards the
517 * front.
518 */
519 if (btrfs_item_offset_nr(leaf, slot) !=
520 btrfs_item_end_nr(leaf, slot + 1)) {
521 CORRUPT("slot offset bad", leaf, root, slot);
522 return -EIO;
523 }
524
525 /*
526 * Check to make sure that we don't point outside of the leaf,
527 * just incase all the items are consistent to eachother, but
528 * all point outside of the leaf.
529 */
530 if (btrfs_item_end_nr(leaf, slot) >
531 BTRFS_LEAF_DATA_SIZE(root)) {
532 CORRUPT("slot end outside of leaf", leaf, root, slot);
533 return -EIO;
534 }
535 }
536
537 return 0;
538}
539
727011e0
CM
540struct extent_buffer *find_eb_for_page(struct extent_io_tree *tree,
541 struct page *page, int max_walk)
542{
543 struct extent_buffer *eb;
544 u64 start = page_offset(page);
545 u64 target = start;
546 u64 min_start;
547
548 if (start < max_walk)
549 min_start = 0;
550 else
551 min_start = start - max_walk;
552
553 while (start >= min_start) {
554 eb = find_extent_buffer(tree, start, 0);
555 if (eb) {
556 /*
557 * we found an extent buffer and it contains our page
558 * horray!
559 */
560 if (eb->start <= target &&
561 eb->start + eb->len > target)
562 return eb;
563
564 /* we found an extent buffer that wasn't for us */
565 free_extent_buffer(eb);
566 return NULL;
567 }
568 if (start == 0)
569 break;
570 start -= PAGE_CACHE_SIZE;
571 }
572 return NULL;
573}
574
b2950863 575static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
5cf1ab56 576 struct extent_state *state, int mirror)
ce9adaa5
CM
577{
578 struct extent_io_tree *tree;
579 u64 found_start;
580 int found_level;
ce9adaa5
CM
581 struct extent_buffer *eb;
582 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
f188591e 583 int ret = 0;
727011e0 584 int reads_done;
ce9adaa5 585
ce9adaa5
CM
586 if (!page->private)
587 goto out;
d397712b 588
727011e0 589 tree = &BTRFS_I(page->mapping->host)->io_tree;
4f2de97a 590 eb = (struct extent_buffer *)page->private;
d397712b 591
0b32f4bb
JB
592 /* the pending IO might have been the only thing that kept this buffer
593 * in memory. Make sure we have a ref for all this other checks
594 */
595 extent_buffer_get(eb);
596
597 reads_done = atomic_dec_and_test(&eb->io_pages);
727011e0
CM
598 if (!reads_done)
599 goto err;
f188591e 600
5cf1ab56 601 eb->read_mirror = mirror;
ea466794
JB
602 if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
603 ret = -EIO;
604 goto err;
605 }
606
ce9adaa5 607 found_start = btrfs_header_bytenr(eb);
727011e0 608 if (found_start != eb->start) {
7a36ddec 609 printk_ratelimited(KERN_INFO "btrfs bad tree block start "
193f284d
CM
610 "%llu %llu\n",
611 (unsigned long long)found_start,
612 (unsigned long long)eb->start);
f188591e 613 ret = -EIO;
ce9adaa5
CM
614 goto err;
615 }
2b82032c 616 if (check_tree_block_fsid(root, eb)) {
7a36ddec 617 printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
193f284d 618 (unsigned long long)eb->start);
1259ab75
CM
619 ret = -EIO;
620 goto err;
621 }
ce9adaa5
CM
622 found_level = btrfs_header_level(eb);
623
85d4e461
CM
624 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
625 eb, found_level);
4008c04a 626
ce9adaa5 627 ret = csum_tree_block(root, eb, 1);
a826d6dc 628 if (ret) {
f188591e 629 ret = -EIO;
a826d6dc
JB
630 goto err;
631 }
632
633 /*
634 * If this is a leaf block and it is corrupt, set the corrupt bit so
635 * that we don't try and read the other copies of this block, just
636 * return -EIO.
637 */
638 if (found_level == 0 && check_leaf(root, eb)) {
639 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
640 ret = -EIO;
641 }
ce9adaa5 642
0b32f4bb
JB
643 if (!ret)
644 set_extent_buffer_uptodate(eb);
ce9adaa5 645err:
4bb31e92
AJ
646 if (test_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) {
647 clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags);
648 btree_readahead_hook(root, eb, eb->start, ret);
649 }
650
0b32f4bb
JB
651 if (ret)
652 clear_extent_buffer_uptodate(eb);
653 free_extent_buffer(eb);
ce9adaa5 654out:
f188591e 655 return ret;
ce9adaa5
CM
656}
657
ea466794 658static int btree_io_failed_hook(struct page *page, int failed_mirror)
4bb31e92 659{
4bb31e92
AJ
660 struct extent_buffer *eb;
661 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
662
4f2de97a 663 eb = (struct extent_buffer *)page->private;
ea466794 664 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
5cf1ab56 665 eb->read_mirror = failed_mirror;
ea466794 666 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
4bb31e92 667 btree_readahead_hook(root, eb, eb->start, -EIO);
4bb31e92
AJ
668 return -EIO; /* we fixed nothing */
669}
670
ce9adaa5 671static void end_workqueue_bio(struct bio *bio, int err)
ce9adaa5
CM
672{
673 struct end_io_wq *end_io_wq = bio->bi_private;
674 struct btrfs_fs_info *fs_info;
ce9adaa5 675
ce9adaa5 676 fs_info = end_io_wq->info;
ce9adaa5 677 end_io_wq->error = err;
8b712842
CM
678 end_io_wq->work.func = end_workqueue_fn;
679 end_io_wq->work.flags = 0;
d20f7043 680
7b6d91da 681 if (bio->bi_rw & REQ_WRITE) {
0cb59c99 682 if (end_io_wq->metadata == 1)
cad321ad
CM
683 btrfs_queue_worker(&fs_info->endio_meta_write_workers,
684 &end_io_wq->work);
0cb59c99
JB
685 else if (end_io_wq->metadata == 2)
686 btrfs_queue_worker(&fs_info->endio_freespace_worker,
687 &end_io_wq->work);
cad321ad
CM
688 else
689 btrfs_queue_worker(&fs_info->endio_write_workers,
690 &end_io_wq->work);
d20f7043
CM
691 } else {
692 if (end_io_wq->metadata)
693 btrfs_queue_worker(&fs_info->endio_meta_workers,
694 &end_io_wq->work);
695 else
696 btrfs_queue_worker(&fs_info->endio_workers,
697 &end_io_wq->work);
698 }
ce9adaa5
CM
699}
700
0cb59c99
JB
701/*
702 * For the metadata arg you want
703 *
704 * 0 - if data
705 * 1 - if normal metadta
706 * 2 - if writing to the free space cache area
707 */
22c59948
CM
708int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
709 int metadata)
0b86a832 710{
ce9adaa5 711 struct end_io_wq *end_io_wq;
ce9adaa5
CM
712 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
713 if (!end_io_wq)
714 return -ENOMEM;
715
716 end_io_wq->private = bio->bi_private;
717 end_io_wq->end_io = bio->bi_end_io;
22c59948 718 end_io_wq->info = info;
ce9adaa5
CM
719 end_io_wq->error = 0;
720 end_io_wq->bio = bio;
22c59948 721 end_io_wq->metadata = metadata;
ce9adaa5
CM
722
723 bio->bi_private = end_io_wq;
724 bio->bi_end_io = end_workqueue_bio;
22c59948
CM
725 return 0;
726}
727
b64a2851 728unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
0986fe9e 729{
4854ddd0
CM
730 unsigned long limit = min_t(unsigned long,
731 info->workers.max_workers,
732 info->fs_devices->open_devices);
733 return 256 * limit;
734}
0986fe9e 735
4a69a410
CM
736static void run_one_async_start(struct btrfs_work *work)
737{
4a69a410 738 struct async_submit_bio *async;
79787eaa 739 int ret;
4a69a410
CM
740
741 async = container_of(work, struct async_submit_bio, work);
79787eaa
JM
742 ret = async->submit_bio_start(async->inode, async->rw, async->bio,
743 async->mirror_num, async->bio_flags,
744 async->bio_offset);
745 if (ret)
746 async->error = ret;
4a69a410
CM
747}
748
749static void run_one_async_done(struct btrfs_work *work)
8b712842
CM
750{
751 struct btrfs_fs_info *fs_info;
752 struct async_submit_bio *async;
4854ddd0 753 int limit;
8b712842
CM
754
755 async = container_of(work, struct async_submit_bio, work);
756 fs_info = BTRFS_I(async->inode)->root->fs_info;
4854ddd0 757
b64a2851 758 limit = btrfs_async_submit_limit(fs_info);
4854ddd0
CM
759 limit = limit * 2 / 3;
760
66657b31 761 if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
b64a2851 762 waitqueue_active(&fs_info->async_submit_wait))
4854ddd0
CM
763 wake_up(&fs_info->async_submit_wait);
764
79787eaa
JM
765 /* If an error occured we just want to clean up the bio and move on */
766 if (async->error) {
767 bio_endio(async->bio, async->error);
768 return;
769 }
770
4a69a410 771 async->submit_bio_done(async->inode, async->rw, async->bio,
eaf25d93
CM
772 async->mirror_num, async->bio_flags,
773 async->bio_offset);
4a69a410
CM
774}
775
776static void run_one_async_free(struct btrfs_work *work)
777{
778 struct async_submit_bio *async;
779
780 async = container_of(work, struct async_submit_bio, work);
8b712842
CM
781 kfree(async);
782}
783
44b8bd7e
CM
784int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
785 int rw, struct bio *bio, int mirror_num,
c8b97818 786 unsigned long bio_flags,
eaf25d93 787 u64 bio_offset,
4a69a410
CM
788 extent_submit_bio_hook_t *submit_bio_start,
789 extent_submit_bio_hook_t *submit_bio_done)
44b8bd7e
CM
790{
791 struct async_submit_bio *async;
792
793 async = kmalloc(sizeof(*async), GFP_NOFS);
794 if (!async)
795 return -ENOMEM;
796
797 async->inode = inode;
798 async->rw = rw;
799 async->bio = bio;
800 async->mirror_num = mirror_num;
4a69a410
CM
801 async->submit_bio_start = submit_bio_start;
802 async->submit_bio_done = submit_bio_done;
803
804 async->work.func = run_one_async_start;
805 async->work.ordered_func = run_one_async_done;
806 async->work.ordered_free = run_one_async_free;
807
8b712842 808 async->work.flags = 0;
c8b97818 809 async->bio_flags = bio_flags;
eaf25d93 810 async->bio_offset = bio_offset;
8c8bee1d 811
79787eaa
JM
812 async->error = 0;
813
cb03c743 814 atomic_inc(&fs_info->nr_async_submits);
d313d7a3 815
7b6d91da 816 if (rw & REQ_SYNC)
d313d7a3
CM
817 btrfs_set_work_high_prio(&async->work);
818
8b712842 819 btrfs_queue_worker(&fs_info->workers, &async->work);
9473f16c 820
d397712b 821 while (atomic_read(&fs_info->async_submit_draining) &&
771ed689
CM
822 atomic_read(&fs_info->nr_async_submits)) {
823 wait_event(fs_info->async_submit_wait,
824 (atomic_read(&fs_info->nr_async_submits) == 0));
825 }
826
44b8bd7e
CM
827 return 0;
828}
829
ce3ed71a
CM
830static int btree_csum_one_bio(struct bio *bio)
831{
832 struct bio_vec *bvec = bio->bi_io_vec;
833 int bio_index = 0;
834 struct btrfs_root *root;
79787eaa 835 int ret = 0;
ce3ed71a
CM
836
837 WARN_ON(bio->bi_vcnt <= 0);
d397712b 838 while (bio_index < bio->bi_vcnt) {
ce3ed71a 839 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
79787eaa
JM
840 ret = csum_dirty_buffer(root, bvec->bv_page);
841 if (ret)
842 break;
ce3ed71a
CM
843 bio_index++;
844 bvec++;
845 }
79787eaa 846 return ret;
ce3ed71a
CM
847}
848
4a69a410
CM
849static int __btree_submit_bio_start(struct inode *inode, int rw,
850 struct bio *bio, int mirror_num,
eaf25d93
CM
851 unsigned long bio_flags,
852 u64 bio_offset)
22c59948 853{
8b712842
CM
854 /*
855 * when we're called for a write, we're already in the async
5443be45 856 * submission context. Just jump into btrfs_map_bio
8b712842 857 */
79787eaa 858 return btree_csum_one_bio(bio);
4a69a410 859}
22c59948 860
4a69a410 861static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
862 int mirror_num, unsigned long bio_flags,
863 u64 bio_offset)
4a69a410 864{
8b712842 865 /*
4a69a410
CM
866 * when we're called for a write, we're already in the async
867 * submission context. Just jump into btrfs_map_bio
8b712842 868 */
8b712842 869 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
0b86a832
CM
870}
871
44b8bd7e 872static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
873 int mirror_num, unsigned long bio_flags,
874 u64 bio_offset)
44b8bd7e 875{
cad321ad
CM
876 int ret;
877
7b6d91da 878 if (!(rw & REQ_WRITE)) {
f3f266ab 879
4a69a410
CM
880 /*
881 * called for a read, do the setup so that checksum validation
882 * can happen in the async kernel threads
883 */
f3f266ab
CM
884 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
885 bio, 1);
1d4284bd
CM
886 if (ret)
887 return ret;
4a69a410 888 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
6f3577bd 889 mirror_num, 0);
44b8bd7e 890 }
d313d7a3 891
cad321ad
CM
892 /*
893 * kthread helpers are used to submit writes so that checksumming
894 * can happen in parallel across all CPUs
895 */
44b8bd7e 896 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
c8b97818 897 inode, rw, bio, mirror_num, 0,
eaf25d93 898 bio_offset,
4a69a410
CM
899 __btree_submit_bio_start,
900 __btree_submit_bio_done);
44b8bd7e
CM
901}
902
3dd1462e 903#ifdef CONFIG_MIGRATION
784b4e29 904static int btree_migratepage(struct address_space *mapping,
a6bc32b8
MG
905 struct page *newpage, struct page *page,
906 enum migrate_mode mode)
784b4e29
CM
907{
908 /*
909 * we can't safely write a btree page from here,
910 * we haven't done the locking hook
911 */
912 if (PageDirty(page))
913 return -EAGAIN;
914 /*
915 * Buffers may be managed in a filesystem specific way.
916 * We must have no buffers or drop them.
917 */
918 if (page_has_private(page) &&
919 !try_to_release_page(page, GFP_KERNEL))
920 return -EAGAIN;
a6bc32b8 921 return migrate_page(mapping, newpage, page, mode);
784b4e29 922}
3dd1462e 923#endif
784b4e29 924
0da5468f
CM
925
926static int btree_writepages(struct address_space *mapping,
927 struct writeback_control *wbc)
928{
d1310b2e
CM
929 struct extent_io_tree *tree;
930 tree = &BTRFS_I(mapping->host)->io_tree;
d8d5f3e1 931 if (wbc->sync_mode == WB_SYNC_NONE) {
b9473439 932 struct btrfs_root *root = BTRFS_I(mapping->host)->root;
793955bc 933 u64 num_dirty;
24ab9cd8 934 unsigned long thresh = 32 * 1024 * 1024;
448d640b
CM
935
936 if (wbc->for_kupdate)
937 return 0;
938
b9473439
CM
939 /* this is a bit racy, but that's ok */
940 num_dirty = root->fs_info->dirty_metadata_bytes;
d397712b 941 if (num_dirty < thresh)
793955bc 942 return 0;
793955bc 943 }
0b32f4bb 944 return btree_write_cache_pages(mapping, wbc);
0da5468f
CM
945}
946
b2950863 947static int btree_readpage(struct file *file, struct page *page)
5f39d397 948{
d1310b2e
CM
949 struct extent_io_tree *tree;
950 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 951 return extent_read_full_page(tree, page, btree_get_extent, 0);
5f39d397 952}
22b0ebda 953
70dec807 954static int btree_releasepage(struct page *page, gfp_t gfp_flags)
5f39d397 955{
98509cfc 956 if (PageWriteback(page) || PageDirty(page))
d397712b 957 return 0;
0c4e538b
DS
958 /*
959 * We need to mask out eg. __GFP_HIGHMEM and __GFP_DMA32 as we're doing
960 * slab allocation from alloc_extent_state down the callchain where
961 * it'd hit a BUG_ON as those flags are not allowed.
962 */
963 gfp_flags &= ~GFP_SLAB_BUG_MASK;
964
3083ee2e 965 return try_release_extent_buffer(page, gfp_flags);
d98237b3
CM
966}
967
5f39d397 968static void btree_invalidatepage(struct page *page, unsigned long offset)
d98237b3 969{
d1310b2e
CM
970 struct extent_io_tree *tree;
971 tree = &BTRFS_I(page->mapping->host)->io_tree;
5f39d397
CM
972 extent_invalidatepage(tree, page, offset);
973 btree_releasepage(page, GFP_NOFS);
9ad6b7bc 974 if (PagePrivate(page)) {
d397712b
CM
975 printk(KERN_WARNING "btrfs warning page private not zero "
976 "on page %llu\n", (unsigned long long)page_offset(page));
9ad6b7bc
CM
977 ClearPagePrivate(page);
978 set_page_private(page, 0);
979 page_cache_release(page);
980 }
d98237b3
CM
981}
982
0b32f4bb
JB
983static int btree_set_page_dirty(struct page *page)
984{
985 struct extent_buffer *eb;
986
987 BUG_ON(!PagePrivate(page));
988 eb = (struct extent_buffer *)page->private;
989 BUG_ON(!eb);
990 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
991 BUG_ON(!atomic_read(&eb->refs));
992 btrfs_assert_tree_locked(eb);
993 return __set_page_dirty_nobuffers(page);
994}
995
7f09410b 996static const struct address_space_operations btree_aops = {
d98237b3 997 .readpage = btree_readpage,
0da5468f 998 .writepages = btree_writepages,
5f39d397
CM
999 .releasepage = btree_releasepage,
1000 .invalidatepage = btree_invalidatepage,
5a92bc88 1001#ifdef CONFIG_MIGRATION
784b4e29 1002 .migratepage = btree_migratepage,
5a92bc88 1003#endif
0b32f4bb 1004 .set_page_dirty = btree_set_page_dirty,
d98237b3
CM
1005};
1006
ca7a79ad
CM
1007int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1008 u64 parent_transid)
090d1875 1009{
5f39d397
CM
1010 struct extent_buffer *buf = NULL;
1011 struct inode *btree_inode = root->fs_info->btree_inode;
de428b63 1012 int ret = 0;
090d1875 1013
db94535d 1014 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
5f39d397 1015 if (!buf)
090d1875 1016 return 0;
d1310b2e 1017 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
bb82ab88 1018 buf, 0, WAIT_NONE, btree_get_extent, 0);
5f39d397 1019 free_extent_buffer(buf);
de428b63 1020 return ret;
090d1875
CM
1021}
1022
ab0fff03
AJ
1023int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1024 int mirror_num, struct extent_buffer **eb)
1025{
1026 struct extent_buffer *buf = NULL;
1027 struct inode *btree_inode = root->fs_info->btree_inode;
1028 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1029 int ret;
1030
1031 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1032 if (!buf)
1033 return 0;
1034
1035 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1036
1037 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1038 btree_get_extent, mirror_num);
1039 if (ret) {
1040 free_extent_buffer(buf);
1041 return ret;
1042 }
1043
1044 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1045 free_extent_buffer(buf);
1046 return -EIO;
0b32f4bb 1047 } else if (extent_buffer_uptodate(buf)) {
ab0fff03
AJ
1048 *eb = buf;
1049 } else {
1050 free_extent_buffer(buf);
1051 }
1052 return 0;
1053}
1054
0999df54
CM
1055struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1056 u64 bytenr, u32 blocksize)
1057{
1058 struct inode *btree_inode = root->fs_info->btree_inode;
1059 struct extent_buffer *eb;
1060 eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
f09d1f60 1061 bytenr, blocksize);
0999df54
CM
1062 return eb;
1063}
1064
1065struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1066 u64 bytenr, u32 blocksize)
1067{
1068 struct inode *btree_inode = root->fs_info->btree_inode;
1069 struct extent_buffer *eb;
1070
1071 eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
727011e0 1072 bytenr, blocksize);
0999df54
CM
1073 return eb;
1074}
1075
1076
e02119d5
CM
1077int btrfs_write_tree_block(struct extent_buffer *buf)
1078{
727011e0 1079 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
8aa38c31 1080 buf->start + buf->len - 1);
e02119d5
CM
1081}
1082
1083int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1084{
727011e0 1085 return filemap_fdatawait_range(buf->pages[0]->mapping,
8aa38c31 1086 buf->start, buf->start + buf->len - 1);
e02119d5
CM
1087}
1088
0999df54 1089struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
ca7a79ad 1090 u32 blocksize, u64 parent_transid)
0999df54
CM
1091{
1092 struct extent_buffer *buf = NULL;
0999df54
CM
1093 int ret;
1094
0999df54
CM
1095 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1096 if (!buf)
1097 return NULL;
0999df54 1098
ca7a79ad 1099 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
5f39d397 1100 return buf;
ce9adaa5 1101
eb60ceac
CM
1102}
1103
d5c13f92
JM
1104void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1105 struct extent_buffer *buf)
ed2ff2cb 1106{
55c69072 1107 if (btrfs_header_generation(buf) ==
925baedd 1108 root->fs_info->running_transaction->transid) {
b9447ef8 1109 btrfs_assert_tree_locked(buf);
b4ce94de 1110
b9473439
CM
1111 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1112 spin_lock(&root->fs_info->delalloc_lock);
1113 if (root->fs_info->dirty_metadata_bytes >= buf->len)
1114 root->fs_info->dirty_metadata_bytes -= buf->len;
d5c13f92
JM
1115 else {
1116 spin_unlock(&root->fs_info->delalloc_lock);
1117 btrfs_panic(root->fs_info, -EOVERFLOW,
1118 "Can't clear %lu bytes from "
533574c6 1119 " dirty_mdatadata_bytes (%llu)",
d5c13f92
JM
1120 buf->len,
1121 root->fs_info->dirty_metadata_bytes);
1122 }
b9473439
CM
1123 spin_unlock(&root->fs_info->delalloc_lock);
1124 }
b4ce94de 1125
b9473439
CM
1126 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1127 btrfs_set_lock_blocking(buf);
0b32f4bb 1128 clear_extent_buffer_dirty(buf);
925baedd 1129 }
5f39d397
CM
1130}
1131
143bede5
JM
1132static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1133 u32 stripesize, struct btrfs_root *root,
1134 struct btrfs_fs_info *fs_info,
1135 u64 objectid)
d97e63b6 1136{
cfaa7295 1137 root->node = NULL;
a28ec197 1138 root->commit_root = NULL;
db94535d
CM
1139 root->sectorsize = sectorsize;
1140 root->nodesize = nodesize;
1141 root->leafsize = leafsize;
87ee04eb 1142 root->stripesize = stripesize;
123abc88 1143 root->ref_cows = 0;
0b86a832 1144 root->track_dirty = 0;
c71bf099 1145 root->in_radix = 0;
d68fc57b
YZ
1146 root->orphan_item_inserted = 0;
1147 root->orphan_cleanup_state = 0;
0b86a832 1148
0f7d52f4
CM
1149 root->objectid = objectid;
1150 root->last_trans = 0;
13a8a7c8 1151 root->highest_objectid = 0;
58176a96 1152 root->name = NULL;
6bef4d31 1153 root->inode_tree = RB_ROOT;
16cdcec7 1154 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
f0486c68 1155 root->block_rsv = NULL;
d68fc57b 1156 root->orphan_block_rsv = NULL;
0b86a832
CM
1157
1158 INIT_LIST_HEAD(&root->dirty_list);
5d4f98a2 1159 INIT_LIST_HEAD(&root->root_list);
d68fc57b 1160 spin_lock_init(&root->orphan_lock);
5d4f98a2 1161 spin_lock_init(&root->inode_lock);
f0486c68 1162 spin_lock_init(&root->accounting_lock);
a2135011 1163 mutex_init(&root->objectid_mutex);
e02119d5 1164 mutex_init(&root->log_mutex);
7237f183
YZ
1165 init_waitqueue_head(&root->log_writer_wait);
1166 init_waitqueue_head(&root->log_commit_wait[0]);
1167 init_waitqueue_head(&root->log_commit_wait[1]);
1168 atomic_set(&root->log_commit[0], 0);
1169 atomic_set(&root->log_commit[1], 0);
1170 atomic_set(&root->log_writers, 0);
8a35d95f 1171 atomic_set(&root->orphan_inodes, 0);
7237f183
YZ
1172 root->log_batch = 0;
1173 root->log_transid = 0;
257c62e1 1174 root->last_log_commit = 0;
d0c803c4 1175 extent_io_tree_init(&root->dirty_log_pages,
f993c883 1176 fs_info->btree_inode->i_mapping);
017e5369 1177
3768f368
CM
1178 memset(&root->root_key, 0, sizeof(root->root_key));
1179 memset(&root->root_item, 0, sizeof(root->root_item));
6702ed49 1180 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
58176a96 1181 memset(&root->root_kobj, 0, sizeof(root->root_kobj));
3f157a2f 1182 root->defrag_trans_start = fs_info->generation;
58176a96 1183 init_completion(&root->kobj_unregister);
6702ed49 1184 root->defrag_running = 0;
4d775673 1185 root->root_key.objectid = objectid;
0ee5dc67 1186 root->anon_dev = 0;
8ea05e3a
AB
1187
1188 spin_lock_init(&root->root_times_lock);
3768f368
CM
1189}
1190
200a5c17
JM
1191static int __must_check find_and_setup_root(struct btrfs_root *tree_root,
1192 struct btrfs_fs_info *fs_info,
1193 u64 objectid,
1194 struct btrfs_root *root)
3768f368
CM
1195{
1196 int ret;
db94535d 1197 u32 blocksize;
84234f3a 1198 u64 generation;
3768f368 1199
db94535d 1200 __setup_root(tree_root->nodesize, tree_root->leafsize,
87ee04eb
CM
1201 tree_root->sectorsize, tree_root->stripesize,
1202 root, fs_info, objectid);
3768f368
CM
1203 ret = btrfs_find_last_root(tree_root, objectid,
1204 &root->root_item, &root->root_key);
4df27c4d
YZ
1205 if (ret > 0)
1206 return -ENOENT;
200a5c17
JM
1207 else if (ret < 0)
1208 return ret;
3768f368 1209
84234f3a 1210 generation = btrfs_root_generation(&root->root_item);
db94535d 1211 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
af31f5e5 1212 root->commit_root = NULL;
db94535d 1213 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
84234f3a 1214 blocksize, generation);
b9fab919 1215 if (!root->node || !btrfs_buffer_uptodate(root->node, generation, 0)) {
68433b73 1216 free_extent_buffer(root->node);
af31f5e5 1217 root->node = NULL;
68433b73
CM
1218 return -EIO;
1219 }
4df27c4d 1220 root->commit_root = btrfs_root_node(root);
d97e63b6
CM
1221 return 0;
1222}
1223
f84a8bd6 1224static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
6f07e42e
AV
1225{
1226 struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1227 if (root)
1228 root->fs_info = fs_info;
1229 return root;
1230}
1231
20897f5c
AJ
1232struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1233 struct btrfs_fs_info *fs_info,
1234 u64 objectid)
1235{
1236 struct extent_buffer *leaf;
1237 struct btrfs_root *tree_root = fs_info->tree_root;
1238 struct btrfs_root *root;
1239 struct btrfs_key key;
1240 int ret = 0;
1241 u64 bytenr;
1242
1243 root = btrfs_alloc_root(fs_info);
1244 if (!root)
1245 return ERR_PTR(-ENOMEM);
1246
1247 __setup_root(tree_root->nodesize, tree_root->leafsize,
1248 tree_root->sectorsize, tree_root->stripesize,
1249 root, fs_info, objectid);
1250 root->root_key.objectid = objectid;
1251 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1252 root->root_key.offset = 0;
1253
1254 leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
1255 0, objectid, NULL, 0, 0, 0);
1256 if (IS_ERR(leaf)) {
1257 ret = PTR_ERR(leaf);
1258 goto fail;
1259 }
1260
1261 bytenr = leaf->start;
1262 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1263 btrfs_set_header_bytenr(leaf, leaf->start);
1264 btrfs_set_header_generation(leaf, trans->transid);
1265 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1266 btrfs_set_header_owner(leaf, objectid);
1267 root->node = leaf;
1268
1269 write_extent_buffer(leaf, fs_info->fsid,
1270 (unsigned long)btrfs_header_fsid(leaf),
1271 BTRFS_FSID_SIZE);
1272 write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1273 (unsigned long)btrfs_header_chunk_tree_uuid(leaf),
1274 BTRFS_UUID_SIZE);
1275 btrfs_mark_buffer_dirty(leaf);
1276
1277 root->commit_root = btrfs_root_node(root);
1278 root->track_dirty = 1;
1279
1280
1281 root->root_item.flags = 0;
1282 root->root_item.byte_limit = 0;
1283 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1284 btrfs_set_root_generation(&root->root_item, trans->transid);
1285 btrfs_set_root_level(&root->root_item, 0);
1286 btrfs_set_root_refs(&root->root_item, 1);
1287 btrfs_set_root_used(&root->root_item, leaf->len);
1288 btrfs_set_root_last_snapshot(&root->root_item, 0);
1289 btrfs_set_root_dirid(&root->root_item, 0);
1290 root->root_item.drop_level = 0;
1291
1292 key.objectid = objectid;
1293 key.type = BTRFS_ROOT_ITEM_KEY;
1294 key.offset = 0;
1295 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1296 if (ret)
1297 goto fail;
1298
1299 btrfs_tree_unlock(leaf);
1300
1301fail:
1302 if (ret)
1303 return ERR_PTR(ret);
1304
1305 return root;
1306}
1307
7237f183
YZ
1308static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1309 struct btrfs_fs_info *fs_info)
0f7d52f4
CM
1310{
1311 struct btrfs_root *root;
1312 struct btrfs_root *tree_root = fs_info->tree_root;
7237f183 1313 struct extent_buffer *leaf;
e02119d5 1314
6f07e42e 1315 root = btrfs_alloc_root(fs_info);
e02119d5 1316 if (!root)
7237f183 1317 return ERR_PTR(-ENOMEM);
e02119d5
CM
1318
1319 __setup_root(tree_root->nodesize, tree_root->leafsize,
1320 tree_root->sectorsize, tree_root->stripesize,
1321 root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1322
1323 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1324 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1325 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
7237f183
YZ
1326 /*
1327 * log trees do not get reference counted because they go away
1328 * before a real commit is actually done. They do store pointers
1329 * to file data extents, and those reference counts still get
1330 * updated (along with back refs to the log tree).
1331 */
e02119d5
CM
1332 root->ref_cows = 0;
1333
5d4f98a2 1334 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
66d7e7f0 1335 BTRFS_TREE_LOG_OBJECTID, NULL,
5581a51a 1336 0, 0, 0);
7237f183
YZ
1337 if (IS_ERR(leaf)) {
1338 kfree(root);
1339 return ERR_CAST(leaf);
1340 }
e02119d5 1341
5d4f98a2
YZ
1342 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1343 btrfs_set_header_bytenr(leaf, leaf->start);
1344 btrfs_set_header_generation(leaf, trans->transid);
1345 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1346 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
7237f183 1347 root->node = leaf;
e02119d5
CM
1348
1349 write_extent_buffer(root->node, root->fs_info->fsid,
1350 (unsigned long)btrfs_header_fsid(root->node),
1351 BTRFS_FSID_SIZE);
1352 btrfs_mark_buffer_dirty(root->node);
1353 btrfs_tree_unlock(root->node);
7237f183
YZ
1354 return root;
1355}
1356
1357int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1358 struct btrfs_fs_info *fs_info)
1359{
1360 struct btrfs_root *log_root;
1361
1362 log_root = alloc_log_tree(trans, fs_info);
1363 if (IS_ERR(log_root))
1364 return PTR_ERR(log_root);
1365 WARN_ON(fs_info->log_root_tree);
1366 fs_info->log_root_tree = log_root;
1367 return 0;
1368}
1369
1370int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1371 struct btrfs_root *root)
1372{
1373 struct btrfs_root *log_root;
1374 struct btrfs_inode_item *inode_item;
1375
1376 log_root = alloc_log_tree(trans, root->fs_info);
1377 if (IS_ERR(log_root))
1378 return PTR_ERR(log_root);
1379
1380 log_root->last_trans = trans->transid;
1381 log_root->root_key.offset = root->root_key.objectid;
1382
1383 inode_item = &log_root->root_item.inode;
1384 inode_item->generation = cpu_to_le64(1);
1385 inode_item->size = cpu_to_le64(3);
1386 inode_item->nlink = cpu_to_le32(1);
1387 inode_item->nbytes = cpu_to_le64(root->leafsize);
1388 inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
1389
5d4f98a2 1390 btrfs_set_root_node(&log_root->root_item, log_root->node);
7237f183
YZ
1391
1392 WARN_ON(root->log_root);
1393 root->log_root = log_root;
1394 root->log_transid = 0;
257c62e1 1395 root->last_log_commit = 0;
e02119d5
CM
1396 return 0;
1397}
1398
1399struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
1400 struct btrfs_key *location)
1401{
1402 struct btrfs_root *root;
1403 struct btrfs_fs_info *fs_info = tree_root->fs_info;
0f7d52f4 1404 struct btrfs_path *path;
5f39d397 1405 struct extent_buffer *l;
84234f3a 1406 u64 generation;
db94535d 1407 u32 blocksize;
0f7d52f4 1408 int ret = 0;
8ea05e3a 1409 int slot;
0f7d52f4 1410
6f07e42e 1411 root = btrfs_alloc_root(fs_info);
0cf6c620 1412 if (!root)
0f7d52f4 1413 return ERR_PTR(-ENOMEM);
0f7d52f4 1414 if (location->offset == (u64)-1) {
db94535d 1415 ret = find_and_setup_root(tree_root, fs_info,
0f7d52f4
CM
1416 location->objectid, root);
1417 if (ret) {
0f7d52f4
CM
1418 kfree(root);
1419 return ERR_PTR(ret);
1420 }
13a8a7c8 1421 goto out;
0f7d52f4
CM
1422 }
1423
db94535d 1424 __setup_root(tree_root->nodesize, tree_root->leafsize,
87ee04eb
CM
1425 tree_root->sectorsize, tree_root->stripesize,
1426 root, fs_info, location->objectid);
0f7d52f4
CM
1427
1428 path = btrfs_alloc_path();
db5b493a
TI
1429 if (!path) {
1430 kfree(root);
1431 return ERR_PTR(-ENOMEM);
1432 }
0f7d52f4 1433 ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
13a8a7c8
YZ
1434 if (ret == 0) {
1435 l = path->nodes[0];
8ea05e3a
AB
1436 slot = path->slots[0];
1437 btrfs_read_root_item(tree_root, l, slot, &root->root_item);
13a8a7c8 1438 memcpy(&root->root_key, location, sizeof(*location));
0f7d52f4 1439 }
0f7d52f4
CM
1440 btrfs_free_path(path);
1441 if (ret) {
5e540f77 1442 kfree(root);
13a8a7c8
YZ
1443 if (ret > 0)
1444 ret = -ENOENT;
0f7d52f4
CM
1445 return ERR_PTR(ret);
1446 }
13a8a7c8 1447
84234f3a 1448 generation = btrfs_root_generation(&root->root_item);
db94535d
CM
1449 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1450 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
84234f3a 1451 blocksize, generation);
5d4f98a2 1452 root->commit_root = btrfs_root_node(root);
79787eaa 1453 BUG_ON(!root->node); /* -ENOMEM */
13a8a7c8 1454out:
08fe4db1 1455 if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
e02119d5 1456 root->ref_cows = 1;
08fe4db1
LZ
1457 btrfs_check_and_init_root_item(&root->root_item);
1458 }
13a8a7c8 1459
5eda7b5e
CM
1460 return root;
1461}
1462
edbd8d4e
CM
1463struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1464 struct btrfs_key *location)
5eda7b5e
CM
1465{
1466 struct btrfs_root *root;
1467 int ret;
1468
edbd8d4e
CM
1469 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1470 return fs_info->tree_root;
1471 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1472 return fs_info->extent_root;
8f18cf13
CM
1473 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1474 return fs_info->chunk_root;
1475 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1476 return fs_info->dev_root;
0403e47e
YZ
1477 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1478 return fs_info->csum_root;
bcef60f2
AJ
1479 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1480 return fs_info->quota_root ? fs_info->quota_root :
1481 ERR_PTR(-ENOENT);
4df27c4d
YZ
1482again:
1483 spin_lock(&fs_info->fs_roots_radix_lock);
5eda7b5e
CM
1484 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1485 (unsigned long)location->objectid);
4df27c4d 1486 spin_unlock(&fs_info->fs_roots_radix_lock);
5eda7b5e
CM
1487 if (root)
1488 return root;
1489
e02119d5 1490 root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
5eda7b5e
CM
1491 if (IS_ERR(root))
1492 return root;
3394e160 1493
581bb050 1494 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
581bb050
LZ
1495 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1496 GFP_NOFS);
35a30d7c
DS
1497 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1498 ret = -ENOMEM;
581bb050 1499 goto fail;
35a30d7c 1500 }
581bb050
LZ
1501
1502 btrfs_init_free_ino_ctl(root);
1503 mutex_init(&root->fs_commit_mutex);
1504 spin_lock_init(&root->cache_lock);
1505 init_waitqueue_head(&root->cache_wait);
1506
0ee5dc67 1507 ret = get_anon_bdev(&root->anon_dev);
ac08aedf
CM
1508 if (ret)
1509 goto fail;
3394e160 1510
d68fc57b
YZ
1511 if (btrfs_root_refs(&root->root_item) == 0) {
1512 ret = -ENOENT;
1513 goto fail;
1514 }
1515
1516 ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
1517 if (ret < 0)
1518 goto fail;
1519 if (ret == 0)
1520 root->orphan_item_inserted = 1;
1521
4df27c4d
YZ
1522 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1523 if (ret)
1524 goto fail;
1525
1526 spin_lock(&fs_info->fs_roots_radix_lock);
2619ba1f
CM
1527 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1528 (unsigned long)root->root_key.objectid,
0f7d52f4 1529 root);
d68fc57b 1530 if (ret == 0)
4df27c4d 1531 root->in_radix = 1;
d68fc57b 1532
4df27c4d
YZ
1533 spin_unlock(&fs_info->fs_roots_radix_lock);
1534 radix_tree_preload_end();
0f7d52f4 1535 if (ret) {
4df27c4d
YZ
1536 if (ret == -EEXIST) {
1537 free_fs_root(root);
1538 goto again;
1539 }
1540 goto fail;
0f7d52f4 1541 }
4df27c4d
YZ
1542
1543 ret = btrfs_find_dead_roots(fs_info->tree_root,
1544 root->root_key.objectid);
1545 WARN_ON(ret);
edbd8d4e 1546 return root;
4df27c4d
YZ
1547fail:
1548 free_fs_root(root);
1549 return ERR_PTR(ret);
edbd8d4e
CM
1550}
1551
04160088
CM
1552static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1553{
1554 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1555 int ret = 0;
04160088
CM
1556 struct btrfs_device *device;
1557 struct backing_dev_info *bdi;
b7967db7 1558
1f78160c
XG
1559 rcu_read_lock();
1560 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
dfe25020
CM
1561 if (!device->bdev)
1562 continue;
04160088
CM
1563 bdi = blk_get_backing_dev_info(device->bdev);
1564 if (bdi && bdi_congested(bdi, bdi_bits)) {
1565 ret = 1;
1566 break;
1567 }
1568 }
1f78160c 1569 rcu_read_unlock();
04160088
CM
1570 return ret;
1571}
1572
ad081f14
JA
1573/*
1574 * If this fails, caller must call bdi_destroy() to get rid of the
1575 * bdi again.
1576 */
04160088
CM
1577static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1578{
ad081f14
JA
1579 int err;
1580
1581 bdi->capabilities = BDI_CAP_MAP_COPY;
e6d086d8 1582 err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
ad081f14
JA
1583 if (err)
1584 return err;
1585
4575c9cc 1586 bdi->ra_pages = default_backing_dev_info.ra_pages;
04160088
CM
1587 bdi->congested_fn = btrfs_congested_fn;
1588 bdi->congested_data = info;
1589 return 0;
1590}
1591
8b712842
CM
1592/*
1593 * called by the kthread helper functions to finally call the bio end_io
1594 * functions. This is where read checksum verification actually happens
1595 */
1596static void end_workqueue_fn(struct btrfs_work *work)
ce9adaa5 1597{
ce9adaa5 1598 struct bio *bio;
8b712842
CM
1599 struct end_io_wq *end_io_wq;
1600 struct btrfs_fs_info *fs_info;
ce9adaa5 1601 int error;
ce9adaa5 1602
8b712842
CM
1603 end_io_wq = container_of(work, struct end_io_wq, work);
1604 bio = end_io_wq->bio;
1605 fs_info = end_io_wq->info;
ce9adaa5 1606
8b712842
CM
1607 error = end_io_wq->error;
1608 bio->bi_private = end_io_wq->private;
1609 bio->bi_end_io = end_io_wq->end_io;
1610 kfree(end_io_wq);
8b712842 1611 bio_endio(bio, error);
44b8bd7e
CM
1612}
1613
a74a4b97
CM
1614static int cleaner_kthread(void *arg)
1615{
1616 struct btrfs_root *root = arg;
1617
1618 do {
76dda93c
YZ
1619 if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
1620 mutex_trylock(&root->fs_info->cleaner_mutex)) {
24bbcf04 1621 btrfs_run_delayed_iputs(root);
76dda93c
YZ
1622 btrfs_clean_old_snapshots(root);
1623 mutex_unlock(&root->fs_info->cleaner_mutex);
4cb5300b 1624 btrfs_run_defrag_inodes(root->fs_info);
76dda93c 1625 }
a74a4b97 1626
a0acae0e 1627 if (!try_to_freeze()) {
a74a4b97 1628 set_current_state(TASK_INTERRUPTIBLE);
8929ecfa
YZ
1629 if (!kthread_should_stop())
1630 schedule();
a74a4b97
CM
1631 __set_current_state(TASK_RUNNING);
1632 }
1633 } while (!kthread_should_stop());
1634 return 0;
1635}
1636
1637static int transaction_kthread(void *arg)
1638{
1639 struct btrfs_root *root = arg;
1640 struct btrfs_trans_handle *trans;
1641 struct btrfs_transaction *cur;
8929ecfa 1642 u64 transid;
a74a4b97
CM
1643 unsigned long now;
1644 unsigned long delay;
914b2007 1645 bool cannot_commit;
a74a4b97
CM
1646
1647 do {
914b2007 1648 cannot_commit = false;
a74a4b97 1649 delay = HZ * 30;
a74a4b97
CM
1650 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1651
a4abeea4 1652 spin_lock(&root->fs_info->trans_lock);
a74a4b97
CM
1653 cur = root->fs_info->running_transaction;
1654 if (!cur) {
a4abeea4 1655 spin_unlock(&root->fs_info->trans_lock);
a74a4b97
CM
1656 goto sleep;
1657 }
31153d81 1658
a74a4b97 1659 now = get_seconds();
8929ecfa
YZ
1660 if (!cur->blocked &&
1661 (now < cur->start_time || now - cur->start_time < 30)) {
a4abeea4 1662 spin_unlock(&root->fs_info->trans_lock);
a74a4b97
CM
1663 delay = HZ * 5;
1664 goto sleep;
1665 }
8929ecfa 1666 transid = cur->transid;
a4abeea4 1667 spin_unlock(&root->fs_info->trans_lock);
56bec294 1668
79787eaa 1669 /* If the file system is aborted, this will always fail. */
7a7eaa40 1670 trans = btrfs_join_transaction(root);
914b2007
JK
1671 if (IS_ERR(trans)) {
1672 cannot_commit = true;
79787eaa 1673 goto sleep;
914b2007 1674 }
8929ecfa 1675 if (transid == trans->transid) {
79787eaa 1676 btrfs_commit_transaction(trans, root);
8929ecfa
YZ
1677 } else {
1678 btrfs_end_transaction(trans, root);
1679 }
a74a4b97
CM
1680sleep:
1681 wake_up_process(root->fs_info->cleaner_kthread);
1682 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1683
a0acae0e 1684 if (!try_to_freeze()) {
a74a4b97 1685 set_current_state(TASK_INTERRUPTIBLE);
8929ecfa 1686 if (!kthread_should_stop() &&
914b2007
JK
1687 (!btrfs_transaction_blocked(root->fs_info) ||
1688 cannot_commit))
8929ecfa 1689 schedule_timeout(delay);
a74a4b97
CM
1690 __set_current_state(TASK_RUNNING);
1691 }
1692 } while (!kthread_should_stop());
1693 return 0;
1694}
1695
af31f5e5
CM
1696/*
1697 * this will find the highest generation in the array of
1698 * root backups. The index of the highest array is returned,
1699 * or -1 if we can't find anything.
1700 *
1701 * We check to make sure the array is valid by comparing the
1702 * generation of the latest root in the array with the generation
1703 * in the super block. If they don't match we pitch it.
1704 */
1705static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1706{
1707 u64 cur;
1708 int newest_index = -1;
1709 struct btrfs_root_backup *root_backup;
1710 int i;
1711
1712 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1713 root_backup = info->super_copy->super_roots + i;
1714 cur = btrfs_backup_tree_root_gen(root_backup);
1715 if (cur == newest_gen)
1716 newest_index = i;
1717 }
1718
1719 /* check to see if we actually wrapped around */
1720 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1721 root_backup = info->super_copy->super_roots;
1722 cur = btrfs_backup_tree_root_gen(root_backup);
1723 if (cur == newest_gen)
1724 newest_index = 0;
1725 }
1726 return newest_index;
1727}
1728
1729
1730/*
1731 * find the oldest backup so we know where to store new entries
1732 * in the backup array. This will set the backup_root_index
1733 * field in the fs_info struct
1734 */
1735static void find_oldest_super_backup(struct btrfs_fs_info *info,
1736 u64 newest_gen)
1737{
1738 int newest_index = -1;
1739
1740 newest_index = find_newest_super_backup(info, newest_gen);
1741 /* if there was garbage in there, just move along */
1742 if (newest_index == -1) {
1743 info->backup_root_index = 0;
1744 } else {
1745 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1746 }
1747}
1748
1749/*
1750 * copy all the root pointers into the super backup array.
1751 * this will bump the backup pointer by one when it is
1752 * done
1753 */
1754static void backup_super_roots(struct btrfs_fs_info *info)
1755{
1756 int next_backup;
1757 struct btrfs_root_backup *root_backup;
1758 int last_backup;
1759
1760 next_backup = info->backup_root_index;
1761 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1762 BTRFS_NUM_BACKUP_ROOTS;
1763
1764 /*
1765 * just overwrite the last backup if we're at the same generation
1766 * this happens only at umount
1767 */
1768 root_backup = info->super_for_commit->super_roots + last_backup;
1769 if (btrfs_backup_tree_root_gen(root_backup) ==
1770 btrfs_header_generation(info->tree_root->node))
1771 next_backup = last_backup;
1772
1773 root_backup = info->super_for_commit->super_roots + next_backup;
1774
1775 /*
1776 * make sure all of our padding and empty slots get zero filled
1777 * regardless of which ones we use today
1778 */
1779 memset(root_backup, 0, sizeof(*root_backup));
1780
1781 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1782
1783 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1784 btrfs_set_backup_tree_root_gen(root_backup,
1785 btrfs_header_generation(info->tree_root->node));
1786
1787 btrfs_set_backup_tree_root_level(root_backup,
1788 btrfs_header_level(info->tree_root->node));
1789
1790 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1791 btrfs_set_backup_chunk_root_gen(root_backup,
1792 btrfs_header_generation(info->chunk_root->node));
1793 btrfs_set_backup_chunk_root_level(root_backup,
1794 btrfs_header_level(info->chunk_root->node));
1795
1796 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1797 btrfs_set_backup_extent_root_gen(root_backup,
1798 btrfs_header_generation(info->extent_root->node));
1799 btrfs_set_backup_extent_root_level(root_backup,
1800 btrfs_header_level(info->extent_root->node));
1801
7c7e82a7
CM
1802 /*
1803 * we might commit during log recovery, which happens before we set
1804 * the fs_root. Make sure it is valid before we fill it in.
1805 */
1806 if (info->fs_root && info->fs_root->node) {
1807 btrfs_set_backup_fs_root(root_backup,
1808 info->fs_root->node->start);
1809 btrfs_set_backup_fs_root_gen(root_backup,
af31f5e5 1810 btrfs_header_generation(info->fs_root->node));
7c7e82a7 1811 btrfs_set_backup_fs_root_level(root_backup,
af31f5e5 1812 btrfs_header_level(info->fs_root->node));
7c7e82a7 1813 }
af31f5e5
CM
1814
1815 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1816 btrfs_set_backup_dev_root_gen(root_backup,
1817 btrfs_header_generation(info->dev_root->node));
1818 btrfs_set_backup_dev_root_level(root_backup,
1819 btrfs_header_level(info->dev_root->node));
1820
1821 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1822 btrfs_set_backup_csum_root_gen(root_backup,
1823 btrfs_header_generation(info->csum_root->node));
1824 btrfs_set_backup_csum_root_level(root_backup,
1825 btrfs_header_level(info->csum_root->node));
1826
1827 btrfs_set_backup_total_bytes(root_backup,
1828 btrfs_super_total_bytes(info->super_copy));
1829 btrfs_set_backup_bytes_used(root_backup,
1830 btrfs_super_bytes_used(info->super_copy));
1831 btrfs_set_backup_num_devices(root_backup,
1832 btrfs_super_num_devices(info->super_copy));
1833
1834 /*
1835 * if we don't copy this out to the super_copy, it won't get remembered
1836 * for the next commit
1837 */
1838 memcpy(&info->super_copy->super_roots,
1839 &info->super_for_commit->super_roots,
1840 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1841}
1842
1843/*
1844 * this copies info out of the root backup array and back into
1845 * the in-memory super block. It is meant to help iterate through
1846 * the array, so you send it the number of backups you've already
1847 * tried and the last backup index you used.
1848 *
1849 * this returns -1 when it has tried all the backups
1850 */
1851static noinline int next_root_backup(struct btrfs_fs_info *info,
1852 struct btrfs_super_block *super,
1853 int *num_backups_tried, int *backup_index)
1854{
1855 struct btrfs_root_backup *root_backup;
1856 int newest = *backup_index;
1857
1858 if (*num_backups_tried == 0) {
1859 u64 gen = btrfs_super_generation(super);
1860
1861 newest = find_newest_super_backup(info, gen);
1862 if (newest == -1)
1863 return -1;
1864
1865 *backup_index = newest;
1866 *num_backups_tried = 1;
1867 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1868 /* we've tried all the backups, all done */
1869 return -1;
1870 } else {
1871 /* jump to the next oldest backup */
1872 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1873 BTRFS_NUM_BACKUP_ROOTS;
1874 *backup_index = newest;
1875 *num_backups_tried += 1;
1876 }
1877 root_backup = super->super_roots + newest;
1878
1879 btrfs_set_super_generation(super,
1880 btrfs_backup_tree_root_gen(root_backup));
1881 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1882 btrfs_set_super_root_level(super,
1883 btrfs_backup_tree_root_level(root_backup));
1884 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1885
1886 /*
1887 * fixme: the total bytes and num_devices need to match or we should
1888 * need a fsck
1889 */
1890 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1891 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1892 return 0;
1893}
1894
1895/* helper to cleanup tree roots */
1896static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
1897{
1898 free_extent_buffer(info->tree_root->node);
1899 free_extent_buffer(info->tree_root->commit_root);
1900 free_extent_buffer(info->dev_root->node);
1901 free_extent_buffer(info->dev_root->commit_root);
1902 free_extent_buffer(info->extent_root->node);
1903 free_extent_buffer(info->extent_root->commit_root);
1904 free_extent_buffer(info->csum_root->node);
1905 free_extent_buffer(info->csum_root->commit_root);
bcef60f2
AJ
1906 if (info->quota_root) {
1907 free_extent_buffer(info->quota_root->node);
1908 free_extent_buffer(info->quota_root->commit_root);
1909 }
af31f5e5
CM
1910
1911 info->tree_root->node = NULL;
1912 info->tree_root->commit_root = NULL;
1913 info->dev_root->node = NULL;
1914 info->dev_root->commit_root = NULL;
1915 info->extent_root->node = NULL;
1916 info->extent_root->commit_root = NULL;
1917 info->csum_root->node = NULL;
1918 info->csum_root->commit_root = NULL;
bcef60f2
AJ
1919 if (info->quota_root) {
1920 info->quota_root->node = NULL;
1921 info->quota_root->commit_root = NULL;
1922 }
af31f5e5
CM
1923
1924 if (chunk_root) {
1925 free_extent_buffer(info->chunk_root->node);
1926 free_extent_buffer(info->chunk_root->commit_root);
1927 info->chunk_root->node = NULL;
1928 info->chunk_root->commit_root = NULL;
1929 }
1930}
1931
1932
ad2b2c80
AV
1933int open_ctree(struct super_block *sb,
1934 struct btrfs_fs_devices *fs_devices,
1935 char *options)
2e635a27 1936{
db94535d
CM
1937 u32 sectorsize;
1938 u32 nodesize;
1939 u32 leafsize;
1940 u32 blocksize;
87ee04eb 1941 u32 stripesize;
84234f3a 1942 u64 generation;
f2b636e8 1943 u64 features;
3de4586c 1944 struct btrfs_key location;
a061fc8d 1945 struct buffer_head *bh;
4d34b278 1946 struct btrfs_super_block *disk_super;
815745cf 1947 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
f84a8bd6 1948 struct btrfs_root *tree_root;
4d34b278
ID
1949 struct btrfs_root *extent_root;
1950 struct btrfs_root *csum_root;
1951 struct btrfs_root *chunk_root;
1952 struct btrfs_root *dev_root;
bcef60f2 1953 struct btrfs_root *quota_root;
e02119d5 1954 struct btrfs_root *log_tree_root;
eb60ceac 1955 int ret;
e58ca020 1956 int err = -EINVAL;
af31f5e5
CM
1957 int num_backups_tried = 0;
1958 int backup_index = 0;
4543df7e 1959
f84a8bd6 1960 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
6f07e42e
AV
1961 extent_root = fs_info->extent_root = btrfs_alloc_root(fs_info);
1962 csum_root = fs_info->csum_root = btrfs_alloc_root(fs_info);
1963 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
1964 dev_root = fs_info->dev_root = btrfs_alloc_root(fs_info);
bcef60f2 1965 quota_root = fs_info->quota_root = btrfs_alloc_root(fs_info);
8790d502 1966
f84a8bd6 1967 if (!tree_root || !extent_root || !csum_root ||
bcef60f2 1968 !chunk_root || !dev_root || !quota_root) {
39279cc3
CM
1969 err = -ENOMEM;
1970 goto fail;
1971 }
76dda93c
YZ
1972
1973 ret = init_srcu_struct(&fs_info->subvol_srcu);
1974 if (ret) {
1975 err = ret;
1976 goto fail;
1977 }
1978
1979 ret = setup_bdi(fs_info, &fs_info->bdi);
1980 if (ret) {
1981 err = ret;
1982 goto fail_srcu;
1983 }
1984
1985 fs_info->btree_inode = new_inode(sb);
1986 if (!fs_info->btree_inode) {
1987 err = -ENOMEM;
1988 goto fail_bdi;
1989 }
1990
a6591715 1991 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
1561deda 1992
76dda93c 1993 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
8fd17795 1994 INIT_LIST_HEAD(&fs_info->trans_list);
facda1e7 1995 INIT_LIST_HEAD(&fs_info->dead_roots);
24bbcf04 1996 INIT_LIST_HEAD(&fs_info->delayed_iputs);
19c00ddc 1997 INIT_LIST_HEAD(&fs_info->hashers);
ea8c2819 1998 INIT_LIST_HEAD(&fs_info->delalloc_inodes);
5a3f23d5 1999 INIT_LIST_HEAD(&fs_info->ordered_operations);
11833d66 2000 INIT_LIST_HEAD(&fs_info->caching_block_groups);
1832a6d5 2001 spin_lock_init(&fs_info->delalloc_lock);
a4abeea4 2002 spin_lock_init(&fs_info->trans_lock);
31153d81 2003 spin_lock_init(&fs_info->ref_cache_lock);
76dda93c 2004 spin_lock_init(&fs_info->fs_roots_radix_lock);
24bbcf04 2005 spin_lock_init(&fs_info->delayed_iput_lock);
4cb5300b 2006 spin_lock_init(&fs_info->defrag_inodes_lock);
2bf64758 2007 spin_lock_init(&fs_info->free_chunk_lock);
f29021b2
JS
2008 spin_lock_init(&fs_info->tree_mod_seq_lock);
2009 rwlock_init(&fs_info->tree_mod_log_lock);
7585717f 2010 mutex_init(&fs_info->reloc_mutex);
19c00ddc 2011
58176a96 2012 init_completion(&fs_info->kobj_unregister);
0b86a832 2013 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
6324fbf3 2014 INIT_LIST_HEAD(&fs_info->space_info);
f29021b2 2015 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
0b86a832 2016 btrfs_mapping_init(&fs_info->mapping_tree);
f0486c68
YZ
2017 btrfs_init_block_rsv(&fs_info->global_block_rsv);
2018 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv);
2019 btrfs_init_block_rsv(&fs_info->trans_block_rsv);
2020 btrfs_init_block_rsv(&fs_info->chunk_block_rsv);
2021 btrfs_init_block_rsv(&fs_info->empty_block_rsv);
6d668dda 2022 btrfs_init_block_rsv(&fs_info->delayed_block_rsv);
cb03c743 2023 atomic_set(&fs_info->nr_async_submits, 0);
771ed689 2024 atomic_set(&fs_info->async_delalloc_pages, 0);
8c8bee1d 2025 atomic_set(&fs_info->async_submit_draining, 0);
0986fe9e 2026 atomic_set(&fs_info->nr_async_bios, 0);
4cb5300b 2027 atomic_set(&fs_info->defrag_running, 0);
f29021b2 2028 atomic_set(&fs_info->tree_mod_seq, 0);
e20d96d6 2029 fs_info->sb = sb;
6f568d35 2030 fs_info->max_inline = 8192 * 1024;
9ed74f2d 2031 fs_info->metadata_ratio = 0;
4cb5300b 2032 fs_info->defrag_inodes = RB_ROOT;
a4abeea4 2033 fs_info->trans_no_join = 0;
2bf64758 2034 fs_info->free_chunk_space = 0;
f29021b2 2035 fs_info->tree_mod_log = RB_ROOT;
c8b97818 2036
90519d66
AJ
2037 /* readahead state */
2038 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2039 spin_lock_init(&fs_info->reada_lock);
c8b97818 2040
b34b086c
CM
2041 fs_info->thread_pool_size = min_t(unsigned long,
2042 num_online_cpus() + 2, 8);
0afbaf8c 2043
3eaa2885
CM
2044 INIT_LIST_HEAD(&fs_info->ordered_extents);
2045 spin_lock_init(&fs_info->ordered_extent_lock);
16cdcec7
MX
2046 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2047 GFP_NOFS);
2048 if (!fs_info->delayed_root) {
2049 err = -ENOMEM;
2050 goto fail_iput;
2051 }
2052 btrfs_init_delayed_root(fs_info->delayed_root);
3eaa2885 2053
a2de733c
AJ
2054 mutex_init(&fs_info->scrub_lock);
2055 atomic_set(&fs_info->scrubs_running, 0);
2056 atomic_set(&fs_info->scrub_pause_req, 0);
2057 atomic_set(&fs_info->scrubs_paused, 0);
2058 atomic_set(&fs_info->scrub_cancel_req, 0);
2059 init_waitqueue_head(&fs_info->scrub_pause_wait);
2060 init_rwsem(&fs_info->scrub_super_lock);
2061 fs_info->scrub_workers_refcnt = 0;
21adbd5c
SB
2062#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2063 fs_info->check_integrity_print_mask = 0;
2064#endif
a2de733c 2065
c9e9f97b
ID
2066 spin_lock_init(&fs_info->balance_lock);
2067 mutex_init(&fs_info->balance_mutex);
837d5b6e
ID
2068 atomic_set(&fs_info->balance_running, 0);
2069 atomic_set(&fs_info->balance_pause_req, 0);
a7e99c69 2070 atomic_set(&fs_info->balance_cancel_req, 0);
c9e9f97b 2071 fs_info->balance_ctl = NULL;
837d5b6e 2072 init_waitqueue_head(&fs_info->balance_wait_q);
a2de733c 2073
a061fc8d
CM
2074 sb->s_blocksize = 4096;
2075 sb->s_blocksize_bits = blksize_bits(4096);
32a88aa1 2076 sb->s_bdi = &fs_info->bdi;
a061fc8d 2077
76dda93c 2078 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
bfe86848 2079 set_nlink(fs_info->btree_inode, 1);
0afbaf8c
CM
2080 /*
2081 * we set the i_size on the btree inode to the max possible int.
2082 * the real end of the address space is determined by all of
2083 * the devices in the system
2084 */
2085 fs_info->btree_inode->i_size = OFFSET_MAX;
d98237b3 2086 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
04160088
CM
2087 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
2088
5d4f98a2 2089 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
d1310b2e 2090 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
f993c883 2091 fs_info->btree_inode->i_mapping);
0b32f4bb 2092 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
a8067e02 2093 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
d1310b2e
CM
2094
2095 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
0da5468f 2096
76dda93c
YZ
2097 BTRFS_I(fs_info->btree_inode)->root = tree_root;
2098 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2099 sizeof(struct btrfs_key));
72ac3c0d
JB
2100 set_bit(BTRFS_INODE_DUMMY,
2101 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
c65ddb52 2102 insert_inode_hash(fs_info->btree_inode);
76dda93c 2103
0f9dd46c 2104 spin_lock_init(&fs_info->block_group_cache_lock);
6bef4d31 2105 fs_info->block_group_cache_tree = RB_ROOT;
0f9dd46c 2106
11833d66 2107 extent_io_tree_init(&fs_info->freed_extents[0],
f993c883 2108 fs_info->btree_inode->i_mapping);
11833d66 2109 extent_io_tree_init(&fs_info->freed_extents[1],
f993c883 2110 fs_info->btree_inode->i_mapping);
11833d66 2111 fs_info->pinned_extents = &fs_info->freed_extents[0];
e66f709b 2112 fs_info->do_barriers = 1;
e18e4809 2113
39279cc3 2114
5a3f23d5 2115 mutex_init(&fs_info->ordered_operations_mutex);
e02119d5 2116 mutex_init(&fs_info->tree_log_mutex);
925baedd 2117 mutex_init(&fs_info->chunk_mutex);
a74a4b97
CM
2118 mutex_init(&fs_info->transaction_kthread_mutex);
2119 mutex_init(&fs_info->cleaner_mutex);
7d9eb12c 2120 mutex_init(&fs_info->volume_mutex);
276e680d 2121 init_rwsem(&fs_info->extent_commit_sem);
c71bf099 2122 init_rwsem(&fs_info->cleanup_work_sem);
76dda93c 2123 init_rwsem(&fs_info->subvol_sem);
fa9c0d79 2124
416ac51d
AJ
2125 spin_lock_init(&fs_info->qgroup_lock);
2126 fs_info->qgroup_tree = RB_ROOT;
2127 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2128 fs_info->qgroup_seq = 1;
2129 fs_info->quota_enabled = 0;
2130 fs_info->pending_quota_state = 0;
2131
fa9c0d79
CM
2132 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2133 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2134
e6dcd2dc 2135 init_waitqueue_head(&fs_info->transaction_throttle);
f9295749 2136 init_waitqueue_head(&fs_info->transaction_wait);
bb9c12c9 2137 init_waitqueue_head(&fs_info->transaction_blocked_wait);
4854ddd0 2138 init_waitqueue_head(&fs_info->async_submit_wait);
3768f368 2139
0b86a832 2140 __setup_root(4096, 4096, 4096, 4096, tree_root,
2c90e5d6 2141 fs_info, BTRFS_ROOT_TREE_OBJECTID);
7eccb903 2142
3c4bb26b 2143 invalidate_bdev(fs_devices->latest_bdev);
a512bbf8 2144 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
20b45077
DY
2145 if (!bh) {
2146 err = -EINVAL;
16cdcec7 2147 goto fail_alloc;
20b45077 2148 }
39279cc3 2149
6c41761f
DS
2150 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2151 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2152 sizeof(*fs_info->super_for_commit));
a061fc8d 2153 brelse(bh);
5f39d397 2154
6c41761f 2155 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
0b86a832 2156
6c41761f 2157 disk_super = fs_info->super_copy;
0f7d52f4 2158 if (!btrfs_super_root(disk_super))
16cdcec7 2159 goto fail_alloc;
0f7d52f4 2160
acce952b 2161 /* check FS state, whether FS is broken. */
2162 fs_info->fs_state |= btrfs_super_flags(disk_super);
2163
fcd1f065
DS
2164 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2165 if (ret) {
2166 printk(KERN_ERR "btrfs: superblock contains fatal errors\n");
2167 err = ret;
2168 goto fail_alloc;
2169 }
acce952b 2170
af31f5e5
CM
2171 /*
2172 * run through our array of backup supers and setup
2173 * our ring pointer to the oldest one
2174 */
2175 generation = btrfs_super_generation(disk_super);
2176 find_oldest_super_backup(fs_info, generation);
2177
75e7cb7f
LB
2178 /*
2179 * In the long term, we'll store the compression type in the super
2180 * block, and it'll be used for per file compression control.
2181 */
2182 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2183
2b82032c
YZ
2184 ret = btrfs_parse_options(tree_root, options);
2185 if (ret) {
2186 err = ret;
16cdcec7 2187 goto fail_alloc;
2b82032c 2188 }
dfe25020 2189
f2b636e8
JB
2190 features = btrfs_super_incompat_flags(disk_super) &
2191 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2192 if (features) {
2193 printk(KERN_ERR "BTRFS: couldn't mount because of "
2194 "unsupported optional features (%Lx).\n",
21380931 2195 (unsigned long long)features);
f2b636e8 2196 err = -EINVAL;
16cdcec7 2197 goto fail_alloc;
f2b636e8
JB
2198 }
2199
727011e0
CM
2200 if (btrfs_super_leafsize(disk_super) !=
2201 btrfs_super_nodesize(disk_super)) {
2202 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2203 "blocksizes don't match. node %d leaf %d\n",
2204 btrfs_super_nodesize(disk_super),
2205 btrfs_super_leafsize(disk_super));
2206 err = -EINVAL;
2207 goto fail_alloc;
2208 }
2209 if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2210 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2211 "blocksize (%d) was too large\n",
2212 btrfs_super_leafsize(disk_super));
2213 err = -EINVAL;
2214 goto fail_alloc;
2215 }
2216
5d4f98a2 2217 features = btrfs_super_incompat_flags(disk_super);
a6fa6fae 2218 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
69e380d1 2219 if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
a6fa6fae 2220 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
727011e0
CM
2221
2222 /*
2223 * flag our filesystem as having big metadata blocks if
2224 * they are bigger than the page size
2225 */
2226 if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
2227 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2228 printk(KERN_INFO "btrfs flagging fs with big metadata feature\n");
2229 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2230 }
2231
bc3f116f
CM
2232 nodesize = btrfs_super_nodesize(disk_super);
2233 leafsize = btrfs_super_leafsize(disk_super);
2234 sectorsize = btrfs_super_sectorsize(disk_super);
2235 stripesize = btrfs_super_stripesize(disk_super);
2236
2237 /*
2238 * mixed block groups end up with duplicate but slightly offset
2239 * extent buffers for the same range. It leads to corruptions
2240 */
2241 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2242 (sectorsize != leafsize)) {
2243 printk(KERN_WARNING "btrfs: unequal leaf/node/sector sizes "
2244 "are not allowed for mixed block groups on %s\n",
2245 sb->s_id);
2246 goto fail_alloc;
2247 }
2248
a6fa6fae 2249 btrfs_set_super_incompat_flags(disk_super, features);
5d4f98a2 2250
f2b636e8
JB
2251 features = btrfs_super_compat_ro_flags(disk_super) &
2252 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2253 if (!(sb->s_flags & MS_RDONLY) && features) {
2254 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2255 "unsupported option features (%Lx).\n",
21380931 2256 (unsigned long long)features);
f2b636e8 2257 err = -EINVAL;
16cdcec7 2258 goto fail_alloc;
f2b636e8 2259 }
61d92c32
CM
2260
2261 btrfs_init_workers(&fs_info->generic_worker,
2262 "genwork", 1, NULL);
2263
5443be45 2264 btrfs_init_workers(&fs_info->workers, "worker",
61d92c32
CM
2265 fs_info->thread_pool_size,
2266 &fs_info->generic_worker);
c8b97818 2267
771ed689 2268 btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
61d92c32
CM
2269 fs_info->thread_pool_size,
2270 &fs_info->generic_worker);
771ed689 2271
5443be45 2272 btrfs_init_workers(&fs_info->submit_workers, "submit",
b720d209 2273 min_t(u64, fs_devices->num_devices,
61d92c32
CM
2274 fs_info->thread_pool_size),
2275 &fs_info->generic_worker);
61b49440 2276
bab39bf9
JB
2277 btrfs_init_workers(&fs_info->caching_workers, "cache",
2278 2, &fs_info->generic_worker);
2279
61b49440
CM
2280 /* a higher idle thresh on the submit workers makes it much more
2281 * likely that bios will be send down in a sane order to the
2282 * devices
2283 */
2284 fs_info->submit_workers.idle_thresh = 64;
53863232 2285
771ed689 2286 fs_info->workers.idle_thresh = 16;
4a69a410 2287 fs_info->workers.ordered = 1;
61b49440 2288
771ed689
CM
2289 fs_info->delalloc_workers.idle_thresh = 2;
2290 fs_info->delalloc_workers.ordered = 1;
2291
61d92c32
CM
2292 btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
2293 &fs_info->generic_worker);
5443be45 2294 btrfs_init_workers(&fs_info->endio_workers, "endio",
61d92c32
CM
2295 fs_info->thread_pool_size,
2296 &fs_info->generic_worker);
d20f7043 2297 btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
61d92c32
CM
2298 fs_info->thread_pool_size,
2299 &fs_info->generic_worker);
cad321ad 2300 btrfs_init_workers(&fs_info->endio_meta_write_workers,
61d92c32
CM
2301 "endio-meta-write", fs_info->thread_pool_size,
2302 &fs_info->generic_worker);
5443be45 2303 btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
61d92c32
CM
2304 fs_info->thread_pool_size,
2305 &fs_info->generic_worker);
0cb59c99
JB
2306 btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
2307 1, &fs_info->generic_worker);
16cdcec7
MX
2308 btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
2309 fs_info->thread_pool_size,
2310 &fs_info->generic_worker);
90519d66
AJ
2311 btrfs_init_workers(&fs_info->readahead_workers, "readahead",
2312 fs_info->thread_pool_size,
2313 &fs_info->generic_worker);
61b49440
CM
2314
2315 /*
2316 * endios are largely parallel and should have a very
2317 * low idle thresh
2318 */
2319 fs_info->endio_workers.idle_thresh = 4;
b51912c9
CM
2320 fs_info->endio_meta_workers.idle_thresh = 4;
2321
9042846b
CM
2322 fs_info->endio_write_workers.idle_thresh = 2;
2323 fs_info->endio_meta_write_workers.idle_thresh = 2;
90519d66 2324 fs_info->readahead_workers.idle_thresh = 2;
9042846b 2325
0dc3b84a
JB
2326 /*
2327 * btrfs_start_workers can really only fail because of ENOMEM so just
2328 * return -ENOMEM if any of these fail.
2329 */
2330 ret = btrfs_start_workers(&fs_info->workers);
2331 ret |= btrfs_start_workers(&fs_info->generic_worker);
2332 ret |= btrfs_start_workers(&fs_info->submit_workers);
2333 ret |= btrfs_start_workers(&fs_info->delalloc_workers);
2334 ret |= btrfs_start_workers(&fs_info->fixup_workers);
2335 ret |= btrfs_start_workers(&fs_info->endio_workers);
2336 ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
2337 ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
2338 ret |= btrfs_start_workers(&fs_info->endio_write_workers);
2339 ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
2340 ret |= btrfs_start_workers(&fs_info->delayed_workers);
2341 ret |= btrfs_start_workers(&fs_info->caching_workers);
2342 ret |= btrfs_start_workers(&fs_info->readahead_workers);
2343 if (ret) {
fed425c7 2344 err = -ENOMEM;
0dc3b84a
JB
2345 goto fail_sb_buffer;
2346 }
4543df7e 2347
4575c9cc 2348 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
c8b97818
CM
2349 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2350 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
4575c9cc 2351
db94535d
CM
2352 tree_root->nodesize = nodesize;
2353 tree_root->leafsize = leafsize;
2354 tree_root->sectorsize = sectorsize;
87ee04eb 2355 tree_root->stripesize = stripesize;
a061fc8d
CM
2356
2357 sb->s_blocksize = sectorsize;
2358 sb->s_blocksize_bits = blksize_bits(sectorsize);
db94535d 2359
39279cc3
CM
2360 if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
2361 sizeof(disk_super->magic))) {
d397712b 2362 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
39279cc3
CM
2363 goto fail_sb_buffer;
2364 }
19c00ddc 2365
8d082fb7
LB
2366 if (sectorsize != PAGE_SIZE) {
2367 printk(KERN_WARNING "btrfs: Incompatible sector size(%lu) "
2368 "found on %s\n", (unsigned long)sectorsize, sb->s_id);
941b2ddf
KM
2369 goto fail_sb_buffer;
2370 }
2371
925baedd 2372 mutex_lock(&fs_info->chunk_mutex);
e4404d6e 2373 ret = btrfs_read_sys_array(tree_root);
925baedd 2374 mutex_unlock(&fs_info->chunk_mutex);
84eed90f 2375 if (ret) {
d397712b
CM
2376 printk(KERN_WARNING "btrfs: failed to read the system "
2377 "array on %s\n", sb->s_id);
5d4f98a2 2378 goto fail_sb_buffer;
84eed90f 2379 }
0b86a832
CM
2380
2381 blocksize = btrfs_level_size(tree_root,
2382 btrfs_super_chunk_root_level(disk_super));
84234f3a 2383 generation = btrfs_super_chunk_root_generation(disk_super);
0b86a832
CM
2384
2385 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2386 chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2387
2388 chunk_root->node = read_tree_block(chunk_root,
2389 btrfs_super_chunk_root(disk_super),
84234f3a 2390 blocksize, generation);
79787eaa 2391 BUG_ON(!chunk_root->node); /* -ENOMEM */
83121942
DW
2392 if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2393 printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
2394 sb->s_id);
af31f5e5 2395 goto fail_tree_roots;
83121942 2396 }
5d4f98a2
YZ
2397 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2398 chunk_root->commit_root = btrfs_root_node(chunk_root);
0b86a832 2399
e17cade2 2400 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
d397712b
CM
2401 (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
2402 BTRFS_UUID_SIZE);
e17cade2 2403
0b86a832 2404 ret = btrfs_read_chunk_tree(chunk_root);
2b82032c 2405 if (ret) {
d397712b
CM
2406 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
2407 sb->s_id);
af31f5e5 2408 goto fail_tree_roots;
2b82032c 2409 }
0b86a832 2410
dfe25020
CM
2411 btrfs_close_extra_devices(fs_devices);
2412
a6b0d5c8
CM
2413 if (!fs_devices->latest_bdev) {
2414 printk(KERN_CRIT "btrfs: failed to read devices on %s\n",
2415 sb->s_id);
2416 goto fail_tree_roots;
2417 }
2418
af31f5e5 2419retry_root_backup:
db94535d
CM
2420 blocksize = btrfs_level_size(tree_root,
2421 btrfs_super_root_level(disk_super));
84234f3a 2422 generation = btrfs_super_generation(disk_super);
0b86a832 2423
e20d96d6 2424 tree_root->node = read_tree_block(tree_root,
db94535d 2425 btrfs_super_root(disk_super),
84234f3a 2426 blocksize, generation);
af31f5e5
CM
2427 if (!tree_root->node ||
2428 !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
83121942
DW
2429 printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
2430 sb->s_id);
af31f5e5
CM
2431
2432 goto recovery_tree_root;
83121942 2433 }
af31f5e5 2434
5d4f98a2
YZ
2435 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2436 tree_root->commit_root = btrfs_root_node(tree_root);
db94535d
CM
2437
2438 ret = find_and_setup_root(tree_root, fs_info,
e20d96d6 2439 BTRFS_EXTENT_TREE_OBJECTID, extent_root);
0b86a832 2440 if (ret)
af31f5e5 2441 goto recovery_tree_root;
0b86a832
CM
2442 extent_root->track_dirty = 1;
2443
2444 ret = find_and_setup_root(tree_root, fs_info,
2445 BTRFS_DEV_TREE_OBJECTID, dev_root);
0b86a832 2446 if (ret)
af31f5e5 2447 goto recovery_tree_root;
5d4f98a2 2448 dev_root->track_dirty = 1;
3768f368 2449
d20f7043
CM
2450 ret = find_and_setup_root(tree_root, fs_info,
2451 BTRFS_CSUM_TREE_OBJECTID, csum_root);
2452 if (ret)
af31f5e5 2453 goto recovery_tree_root;
d20f7043
CM
2454 csum_root->track_dirty = 1;
2455
bcef60f2
AJ
2456 ret = find_and_setup_root(tree_root, fs_info,
2457 BTRFS_QUOTA_TREE_OBJECTID, quota_root);
2458 if (ret) {
2459 kfree(quota_root);
2460 quota_root = fs_info->quota_root = NULL;
2461 } else {
2462 quota_root->track_dirty = 1;
2463 fs_info->quota_enabled = 1;
2464 fs_info->pending_quota_state = 1;
2465 }
2466
8929ecfa
YZ
2467 fs_info->generation = generation;
2468 fs_info->last_trans_committed = generation;
8929ecfa 2469
68310a5e
ID
2470 ret = btrfs_recover_balance(fs_info);
2471 if (ret) {
2472 printk(KERN_WARNING "btrfs: failed to recover balance\n");
2473 goto fail_block_groups;
2474 }
2475
733f4fbb
SB
2476 ret = btrfs_init_dev_stats(fs_info);
2477 if (ret) {
2478 printk(KERN_ERR "btrfs: failed to init dev_stats: %d\n",
2479 ret);
2480 goto fail_block_groups;
2481 }
2482
c59021f8 2483 ret = btrfs_init_space_info(fs_info);
2484 if (ret) {
2485 printk(KERN_ERR "Failed to initial space info: %d\n", ret);
2486 goto fail_block_groups;
2487 }
2488
1b1d1f66
JB
2489 ret = btrfs_read_block_groups(extent_root);
2490 if (ret) {
2491 printk(KERN_ERR "Failed to read block groups: %d\n", ret);
2492 goto fail_block_groups;
2493 }
9078a3e1 2494
a74a4b97
CM
2495 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2496 "btrfs-cleaner");
57506d50 2497 if (IS_ERR(fs_info->cleaner_kthread))
1b1d1f66 2498 goto fail_block_groups;
a74a4b97
CM
2499
2500 fs_info->transaction_kthread = kthread_run(transaction_kthread,
2501 tree_root,
2502 "btrfs-transaction");
57506d50 2503 if (IS_ERR(fs_info->transaction_kthread))
3f157a2f 2504 goto fail_cleaner;
a74a4b97 2505
c289811c
CM
2506 if (!btrfs_test_opt(tree_root, SSD) &&
2507 !btrfs_test_opt(tree_root, NOSSD) &&
2508 !fs_info->fs_devices->rotating) {
2509 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
2510 "mode\n");
2511 btrfs_set_opt(fs_info->mount_opt, SSD);
2512 }
2513
21adbd5c
SB
2514#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2515 if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2516 ret = btrfsic_mount(tree_root, fs_devices,
2517 btrfs_test_opt(tree_root,
2518 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2519 1 : 0,
2520 fs_info->check_integrity_print_mask);
2521 if (ret)
2522 printk(KERN_WARNING "btrfs: failed to initialize"
2523 " integrity check module %s\n", sb->s_id);
2524 }
2525#endif
bcef60f2
AJ
2526 ret = btrfs_read_qgroup_config(fs_info);
2527 if (ret)
2528 goto fail_trans_kthread;
21adbd5c 2529
acce952b 2530 /* do not make disk changes in broken FS */
68ce9682 2531 if (btrfs_super_log_root(disk_super) != 0) {
e02119d5
CM
2532 u64 bytenr = btrfs_super_log_root(disk_super);
2533
7c2ca468 2534 if (fs_devices->rw_devices == 0) {
d397712b
CM
2535 printk(KERN_WARNING "Btrfs log replay required "
2536 "on RO media\n");
7c2ca468 2537 err = -EIO;
bcef60f2 2538 goto fail_qgroup;
7c2ca468 2539 }
e02119d5
CM
2540 blocksize =
2541 btrfs_level_size(tree_root,
2542 btrfs_super_log_root_level(disk_super));
d18a2c44 2543
6f07e42e 2544 log_tree_root = btrfs_alloc_root(fs_info);
676e4c86
DC
2545 if (!log_tree_root) {
2546 err = -ENOMEM;
bcef60f2 2547 goto fail_qgroup;
676e4c86 2548 }
e02119d5
CM
2549
2550 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2551 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2552
2553 log_tree_root->node = read_tree_block(tree_root, bytenr,
84234f3a
YZ
2554 blocksize,
2555 generation + 1);
79787eaa 2556 /* returns with log_tree_root freed on success */
e02119d5 2557 ret = btrfs_recover_log_trees(log_tree_root);
79787eaa
JM
2558 if (ret) {
2559 btrfs_error(tree_root->fs_info, ret,
2560 "Failed to recover log tree");
2561 free_extent_buffer(log_tree_root->node);
2562 kfree(log_tree_root);
2563 goto fail_trans_kthread;
2564 }
e556ce2c
YZ
2565
2566 if (sb->s_flags & MS_RDONLY) {
79787eaa
JM
2567 ret = btrfs_commit_super(tree_root);
2568 if (ret)
2569 goto fail_trans_kthread;
e556ce2c 2570 }
e02119d5 2571 }
1a40e23b 2572
76dda93c 2573 ret = btrfs_find_orphan_roots(tree_root);
79787eaa
JM
2574 if (ret)
2575 goto fail_trans_kthread;
76dda93c 2576
7c2ca468 2577 if (!(sb->s_flags & MS_RDONLY)) {
d68fc57b 2578 ret = btrfs_cleanup_fs_roots(fs_info);
44c44af2
ID
2579 if (ret)
2580 goto fail_trans_kthread;
d68fc57b 2581
5d4f98a2 2582 ret = btrfs_recover_relocation(tree_root);
d7ce5843
MX
2583 if (ret < 0) {
2584 printk(KERN_WARNING
2585 "btrfs: failed to recover relocation\n");
2586 err = -EINVAL;
bcef60f2 2587 goto fail_qgroup;
d7ce5843 2588 }
7c2ca468 2589 }
1a40e23b 2590
3de4586c
CM
2591 location.objectid = BTRFS_FS_TREE_OBJECTID;
2592 location.type = BTRFS_ROOT_ITEM_KEY;
2593 location.offset = (u64)-1;
2594
3de4586c
CM
2595 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2596 if (!fs_info->fs_root)
bcef60f2 2597 goto fail_qgroup;
3140c9a3
DC
2598 if (IS_ERR(fs_info->fs_root)) {
2599 err = PTR_ERR(fs_info->fs_root);
bcef60f2 2600 goto fail_qgroup;
3140c9a3 2601 }
c289811c 2602
2b6ba629
ID
2603 if (sb->s_flags & MS_RDONLY)
2604 return 0;
59641015 2605
2b6ba629
ID
2606 down_read(&fs_info->cleanup_work_sem);
2607 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2608 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
e3acc2a6 2609 up_read(&fs_info->cleanup_work_sem);
2b6ba629
ID
2610 close_ctree(tree_root);
2611 return ret;
2612 }
2613 up_read(&fs_info->cleanup_work_sem);
59641015 2614
2b6ba629
ID
2615 ret = btrfs_resume_balance_async(fs_info);
2616 if (ret) {
2617 printk(KERN_WARNING "btrfs: failed to resume balance\n");
2618 close_ctree(tree_root);
2619 return ret;
e3acc2a6
JB
2620 }
2621
ad2b2c80 2622 return 0;
39279cc3 2623
bcef60f2
AJ
2624fail_qgroup:
2625 btrfs_free_qgroup_config(fs_info);
7c2ca468
CM
2626fail_trans_kthread:
2627 kthread_stop(fs_info->transaction_kthread);
3f157a2f 2628fail_cleaner:
a74a4b97 2629 kthread_stop(fs_info->cleaner_kthread);
7c2ca468
CM
2630
2631 /*
2632 * make sure we're done with the btree inode before we stop our
2633 * kthreads
2634 */
2635 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2636 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2637
1b1d1f66
JB
2638fail_block_groups:
2639 btrfs_free_block_groups(fs_info);
af31f5e5
CM
2640
2641fail_tree_roots:
2642 free_root_pointers(fs_info, 1);
2643
39279cc3 2644fail_sb_buffer:
61d92c32 2645 btrfs_stop_workers(&fs_info->generic_worker);
306c8b68 2646 btrfs_stop_workers(&fs_info->readahead_workers);
247e743c 2647 btrfs_stop_workers(&fs_info->fixup_workers);
771ed689 2648 btrfs_stop_workers(&fs_info->delalloc_workers);
8b712842
CM
2649 btrfs_stop_workers(&fs_info->workers);
2650 btrfs_stop_workers(&fs_info->endio_workers);
d20f7043 2651 btrfs_stop_workers(&fs_info->endio_meta_workers);
cad321ad 2652 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
e6dcd2dc 2653 btrfs_stop_workers(&fs_info->endio_write_workers);
0cb59c99 2654 btrfs_stop_workers(&fs_info->endio_freespace_worker);
1cc127b5 2655 btrfs_stop_workers(&fs_info->submit_workers);
16cdcec7 2656 btrfs_stop_workers(&fs_info->delayed_workers);
bab39bf9 2657 btrfs_stop_workers(&fs_info->caching_workers);
16cdcec7 2658fail_alloc:
4543df7e 2659fail_iput:
586e46e2
ID
2660 btrfs_mapping_tree_free(&fs_info->mapping_tree);
2661
7c2ca468 2662 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4543df7e 2663 iput(fs_info->btree_inode);
ad081f14 2664fail_bdi:
7e662854 2665 bdi_destroy(&fs_info->bdi);
76dda93c
YZ
2666fail_srcu:
2667 cleanup_srcu_struct(&fs_info->subvol_srcu);
7e662854 2668fail:
586e46e2 2669 btrfs_close_devices(fs_info->fs_devices);
ad2b2c80 2670 return err;
af31f5e5
CM
2671
2672recovery_tree_root:
af31f5e5
CM
2673 if (!btrfs_test_opt(tree_root, RECOVERY))
2674 goto fail_tree_roots;
2675
2676 free_root_pointers(fs_info, 0);
2677
2678 /* don't use the log in recovery mode, it won't be valid */
2679 btrfs_set_super_log_root(disk_super, 0);
2680
2681 /* we can't trust the free space cache either */
2682 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2683
2684 ret = next_root_backup(fs_info, fs_info->super_copy,
2685 &num_backups_tried, &backup_index);
2686 if (ret == -1)
2687 goto fail_block_groups;
2688 goto retry_root_backup;
eb60ceac
CM
2689}
2690
f2984462
CM
2691static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
2692{
f2984462
CM
2693 if (uptodate) {
2694 set_buffer_uptodate(bh);
2695 } else {
442a4f63
SB
2696 struct btrfs_device *device = (struct btrfs_device *)
2697 bh->b_private;
2698
606686ee
JB
2699 printk_ratelimited_in_rcu(KERN_WARNING "lost page write due to "
2700 "I/O error on %s\n",
2701 rcu_str_deref(device->name));
1259ab75
CM
2702 /* note, we dont' set_buffer_write_io_error because we have
2703 * our own ways of dealing with the IO errors
2704 */
f2984462 2705 clear_buffer_uptodate(bh);
442a4f63 2706 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
f2984462
CM
2707 }
2708 unlock_buffer(bh);
2709 put_bh(bh);
2710}
2711
a512bbf8
YZ
2712struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
2713{
2714 struct buffer_head *bh;
2715 struct buffer_head *latest = NULL;
2716 struct btrfs_super_block *super;
2717 int i;
2718 u64 transid = 0;
2719 u64 bytenr;
2720
2721 /* we would like to check all the supers, but that would make
2722 * a btrfs mount succeed after a mkfs from a different FS.
2723 * So, we need to add a special mount option to scan for
2724 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2725 */
2726 for (i = 0; i < 1; i++) {
2727 bytenr = btrfs_sb_offset(i);
2728 if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
2729 break;
2730 bh = __bread(bdev, bytenr / 4096, 4096);
2731 if (!bh)
2732 continue;
2733
2734 super = (struct btrfs_super_block *)bh->b_data;
2735 if (btrfs_super_bytenr(super) != bytenr ||
2736 strncmp((char *)(&super->magic), BTRFS_MAGIC,
2737 sizeof(super->magic))) {
2738 brelse(bh);
2739 continue;
2740 }
2741
2742 if (!latest || btrfs_super_generation(super) > transid) {
2743 brelse(latest);
2744 latest = bh;
2745 transid = btrfs_super_generation(super);
2746 } else {
2747 brelse(bh);
2748 }
2749 }
2750 return latest;
2751}
2752
4eedeb75
HH
2753/*
2754 * this should be called twice, once with wait == 0 and
2755 * once with wait == 1. When wait == 0 is done, all the buffer heads
2756 * we write are pinned.
2757 *
2758 * They are released when wait == 1 is done.
2759 * max_mirrors must be the same for both runs, and it indicates how
2760 * many supers on this one device should be written.
2761 *
2762 * max_mirrors == 0 means to write them all.
2763 */
a512bbf8
YZ
2764static int write_dev_supers(struct btrfs_device *device,
2765 struct btrfs_super_block *sb,
2766 int do_barriers, int wait, int max_mirrors)
2767{
2768 struct buffer_head *bh;
2769 int i;
2770 int ret;
2771 int errors = 0;
2772 u32 crc;
2773 u64 bytenr;
a512bbf8
YZ
2774
2775 if (max_mirrors == 0)
2776 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
2777
a512bbf8
YZ
2778 for (i = 0; i < max_mirrors; i++) {
2779 bytenr = btrfs_sb_offset(i);
2780 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
2781 break;
2782
2783 if (wait) {
2784 bh = __find_get_block(device->bdev, bytenr / 4096,
2785 BTRFS_SUPER_INFO_SIZE);
2786 BUG_ON(!bh);
a512bbf8 2787 wait_on_buffer(bh);
4eedeb75
HH
2788 if (!buffer_uptodate(bh))
2789 errors++;
2790
2791 /* drop our reference */
2792 brelse(bh);
2793
2794 /* drop the reference from the wait == 0 run */
2795 brelse(bh);
2796 continue;
a512bbf8
YZ
2797 } else {
2798 btrfs_set_super_bytenr(sb, bytenr);
2799
2800 crc = ~(u32)0;
2801 crc = btrfs_csum_data(NULL, (char *)sb +
2802 BTRFS_CSUM_SIZE, crc,
2803 BTRFS_SUPER_INFO_SIZE -
2804 BTRFS_CSUM_SIZE);
2805 btrfs_csum_final(crc, sb->csum);
2806
4eedeb75
HH
2807 /*
2808 * one reference for us, and we leave it for the
2809 * caller
2810 */
a512bbf8
YZ
2811 bh = __getblk(device->bdev, bytenr / 4096,
2812 BTRFS_SUPER_INFO_SIZE);
2813 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
2814
4eedeb75 2815 /* one reference for submit_bh */
a512bbf8 2816 get_bh(bh);
4eedeb75
HH
2817
2818 set_buffer_uptodate(bh);
a512bbf8
YZ
2819 lock_buffer(bh);
2820 bh->b_end_io = btrfs_end_buffer_write_sync;
442a4f63 2821 bh->b_private = device;
a512bbf8
YZ
2822 }
2823
387125fc
CM
2824 /*
2825 * we fua the first super. The others we allow
2826 * to go down lazy.
2827 */
21adbd5c 2828 ret = btrfsic_submit_bh(WRITE_FUA, bh);
4eedeb75 2829 if (ret)
a512bbf8 2830 errors++;
a512bbf8
YZ
2831 }
2832 return errors < i ? 0 : -1;
2833}
2834
387125fc
CM
2835/*
2836 * endio for the write_dev_flush, this will wake anyone waiting
2837 * for the barrier when it is done
2838 */
2839static void btrfs_end_empty_barrier(struct bio *bio, int err)
2840{
2841 if (err) {
2842 if (err == -EOPNOTSUPP)
2843 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2844 clear_bit(BIO_UPTODATE, &bio->bi_flags);
2845 }
2846 if (bio->bi_private)
2847 complete(bio->bi_private);
2848 bio_put(bio);
2849}
2850
2851/*
2852 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
2853 * sent down. With wait == 1, it waits for the previous flush.
2854 *
2855 * any device where the flush fails with eopnotsupp are flagged as not-barrier
2856 * capable
2857 */
2858static int write_dev_flush(struct btrfs_device *device, int wait)
2859{
2860 struct bio *bio;
2861 int ret = 0;
2862
2863 if (device->nobarriers)
2864 return 0;
2865
2866 if (wait) {
2867 bio = device->flush_bio;
2868 if (!bio)
2869 return 0;
2870
2871 wait_for_completion(&device->flush_wait);
2872
2873 if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
606686ee
JB
2874 printk_in_rcu("btrfs: disabling barriers on dev %s\n",
2875 rcu_str_deref(device->name));
387125fc
CM
2876 device->nobarriers = 1;
2877 }
2878 if (!bio_flagged(bio, BIO_UPTODATE)) {
2879 ret = -EIO;
442a4f63
SB
2880 if (!bio_flagged(bio, BIO_EOPNOTSUPP))
2881 btrfs_dev_stat_inc_and_print(device,
2882 BTRFS_DEV_STAT_FLUSH_ERRS);
387125fc
CM
2883 }
2884
2885 /* drop the reference from the wait == 0 run */
2886 bio_put(bio);
2887 device->flush_bio = NULL;
2888
2889 return ret;
2890 }
2891
2892 /*
2893 * one reference for us, and we leave it for the
2894 * caller
2895 */
9c017abc 2896 device->flush_bio = NULL;
387125fc
CM
2897 bio = bio_alloc(GFP_NOFS, 0);
2898 if (!bio)
2899 return -ENOMEM;
2900
2901 bio->bi_end_io = btrfs_end_empty_barrier;
2902 bio->bi_bdev = device->bdev;
2903 init_completion(&device->flush_wait);
2904 bio->bi_private = &device->flush_wait;
2905 device->flush_bio = bio;
2906
2907 bio_get(bio);
21adbd5c 2908 btrfsic_submit_bio(WRITE_FLUSH, bio);
387125fc
CM
2909
2910 return 0;
2911}
2912
2913/*
2914 * send an empty flush down to each device in parallel,
2915 * then wait for them
2916 */
2917static int barrier_all_devices(struct btrfs_fs_info *info)
2918{
2919 struct list_head *head;
2920 struct btrfs_device *dev;
2921 int errors = 0;
2922 int ret;
2923
2924 /* send down all the barriers */
2925 head = &info->fs_devices->devices;
2926 list_for_each_entry_rcu(dev, head, dev_list) {
2927 if (!dev->bdev) {
2928 errors++;
2929 continue;
2930 }
2931 if (!dev->in_fs_metadata || !dev->writeable)
2932 continue;
2933
2934 ret = write_dev_flush(dev, 0);
2935 if (ret)
2936 errors++;
2937 }
2938
2939 /* wait for all the barriers */
2940 list_for_each_entry_rcu(dev, head, dev_list) {
2941 if (!dev->bdev) {
2942 errors++;
2943 continue;
2944 }
2945 if (!dev->in_fs_metadata || !dev->writeable)
2946 continue;
2947
2948 ret = write_dev_flush(dev, 1);
2949 if (ret)
2950 errors++;
2951 }
2952 if (errors)
2953 return -EIO;
2954 return 0;
2955}
2956
a512bbf8 2957int write_all_supers(struct btrfs_root *root, int max_mirrors)
f2984462 2958{
e5e9a520 2959 struct list_head *head;
f2984462 2960 struct btrfs_device *dev;
a061fc8d 2961 struct btrfs_super_block *sb;
f2984462 2962 struct btrfs_dev_item *dev_item;
f2984462
CM
2963 int ret;
2964 int do_barriers;
a236aed1
CM
2965 int max_errors;
2966 int total_errors = 0;
a061fc8d 2967 u64 flags;
f2984462 2968
6c41761f 2969 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
f2984462 2970 do_barriers = !btrfs_test_opt(root, NOBARRIER);
af31f5e5 2971 backup_super_roots(root->fs_info);
f2984462 2972
6c41761f 2973 sb = root->fs_info->super_for_commit;
a061fc8d 2974 dev_item = &sb->dev_item;
e5e9a520 2975
174ba509 2976 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
e5e9a520 2977 head = &root->fs_info->fs_devices->devices;
387125fc
CM
2978
2979 if (do_barriers)
2980 barrier_all_devices(root->fs_info);
2981
1f78160c 2982 list_for_each_entry_rcu(dev, head, dev_list) {
dfe25020
CM
2983 if (!dev->bdev) {
2984 total_errors++;
2985 continue;
2986 }
2b82032c 2987 if (!dev->in_fs_metadata || !dev->writeable)
dfe25020
CM
2988 continue;
2989
2b82032c 2990 btrfs_set_stack_device_generation(dev_item, 0);
a061fc8d
CM
2991 btrfs_set_stack_device_type(dev_item, dev->type);
2992 btrfs_set_stack_device_id(dev_item, dev->devid);
2993 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
2994 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
2995 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
2996 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
2997 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
2998 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
2b82032c 2999 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
a512bbf8 3000
a061fc8d
CM
3001 flags = btrfs_super_flags(sb);
3002 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3003
a512bbf8 3004 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
a236aed1
CM
3005 if (ret)
3006 total_errors++;
f2984462 3007 }
a236aed1 3008 if (total_errors > max_errors) {
d397712b
CM
3009 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
3010 total_errors);
79787eaa
JM
3011
3012 /* This shouldn't happen. FUA is masked off if unsupported */
a236aed1
CM
3013 BUG();
3014 }
f2984462 3015
a512bbf8 3016 total_errors = 0;
1f78160c 3017 list_for_each_entry_rcu(dev, head, dev_list) {
dfe25020
CM
3018 if (!dev->bdev)
3019 continue;
2b82032c 3020 if (!dev->in_fs_metadata || !dev->writeable)
dfe25020
CM
3021 continue;
3022
a512bbf8
YZ
3023 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3024 if (ret)
3025 total_errors++;
f2984462 3026 }
174ba509 3027 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
a236aed1 3028 if (total_errors > max_errors) {
79787eaa
JM
3029 btrfs_error(root->fs_info, -EIO,
3030 "%d errors while writing supers", total_errors);
3031 return -EIO;
a236aed1 3032 }
f2984462
CM
3033 return 0;
3034}
3035
a512bbf8
YZ
3036int write_ctree_super(struct btrfs_trans_handle *trans,
3037 struct btrfs_root *root, int max_mirrors)
eb60ceac 3038{
e66f709b 3039 int ret;
5f39d397 3040
a512bbf8 3041 ret = write_all_supers(root, max_mirrors);
5f39d397 3042 return ret;
cfaa7295
CM
3043}
3044
143bede5 3045void btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
2619ba1f 3046{
4df27c4d 3047 spin_lock(&fs_info->fs_roots_radix_lock);
2619ba1f
CM
3048 radix_tree_delete(&fs_info->fs_roots_radix,
3049 (unsigned long)root->root_key.objectid);
4df27c4d 3050 spin_unlock(&fs_info->fs_roots_radix_lock);
76dda93c
YZ
3051
3052 if (btrfs_root_refs(&root->root_item) == 0)
3053 synchronize_srcu(&fs_info->subvol_srcu);
3054
581bb050
LZ
3055 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3056 __btrfs_remove_free_space_cache(root->free_ino_ctl);
4df27c4d 3057 free_fs_root(root);
4df27c4d
YZ
3058}
3059
3060static void free_fs_root(struct btrfs_root *root)
3061{
82d5902d 3062 iput(root->cache_inode);
4df27c4d 3063 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
0ee5dc67
AV
3064 if (root->anon_dev)
3065 free_anon_bdev(root->anon_dev);
4df27c4d
YZ
3066 free_extent_buffer(root->node);
3067 free_extent_buffer(root->commit_root);
581bb050
LZ
3068 kfree(root->free_ino_ctl);
3069 kfree(root->free_ino_pinned);
d397712b 3070 kfree(root->name);
2619ba1f 3071 kfree(root);
2619ba1f
CM
3072}
3073
143bede5 3074static void del_fs_roots(struct btrfs_fs_info *fs_info)
0f7d52f4
CM
3075{
3076 int ret;
3077 struct btrfs_root *gang[8];
3078 int i;
3079
76dda93c
YZ
3080 while (!list_empty(&fs_info->dead_roots)) {
3081 gang[0] = list_entry(fs_info->dead_roots.next,
3082 struct btrfs_root, root_list);
3083 list_del(&gang[0]->root_list);
3084
3085 if (gang[0]->in_radix) {
3086 btrfs_free_fs_root(fs_info, gang[0]);
3087 } else {
3088 free_extent_buffer(gang[0]->node);
3089 free_extent_buffer(gang[0]->commit_root);
3090 kfree(gang[0]);
3091 }
3092 }
3093
d397712b 3094 while (1) {
0f7d52f4
CM
3095 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3096 (void **)gang, 0,
3097 ARRAY_SIZE(gang));
3098 if (!ret)
3099 break;
2619ba1f 3100 for (i = 0; i < ret; i++)
5eda7b5e 3101 btrfs_free_fs_root(fs_info, gang[i]);
0f7d52f4 3102 }
0f7d52f4 3103}
b4100d64 3104
c146afad 3105int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
cfaa7295 3106{
c146afad
YZ
3107 u64 root_objectid = 0;
3108 struct btrfs_root *gang[8];
3109 int i;
3768f368 3110 int ret;
e089f05c 3111
c146afad
YZ
3112 while (1) {
3113 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3114 (void **)gang, root_objectid,
3115 ARRAY_SIZE(gang));
3116 if (!ret)
3117 break;
5d4f98a2
YZ
3118
3119 root_objectid = gang[ret - 1]->root_key.objectid + 1;
c146afad 3120 for (i = 0; i < ret; i++) {
66b4ffd1
JB
3121 int err;
3122
c146afad 3123 root_objectid = gang[i]->root_key.objectid;
66b4ffd1
JB
3124 err = btrfs_orphan_cleanup(gang[i]);
3125 if (err)
3126 return err;
c146afad
YZ
3127 }
3128 root_objectid++;
3129 }
3130 return 0;
3131}
a2135011 3132
c146afad
YZ
3133int btrfs_commit_super(struct btrfs_root *root)
3134{
3135 struct btrfs_trans_handle *trans;
3136 int ret;
a74a4b97 3137
c146afad 3138 mutex_lock(&root->fs_info->cleaner_mutex);
24bbcf04 3139 btrfs_run_delayed_iputs(root);
a74a4b97 3140 btrfs_clean_old_snapshots(root);
c146afad 3141 mutex_unlock(&root->fs_info->cleaner_mutex);
c71bf099
YZ
3142
3143 /* wait until ongoing cleanup work done */
3144 down_write(&root->fs_info->cleanup_work_sem);
3145 up_write(&root->fs_info->cleanup_work_sem);
3146
7a7eaa40 3147 trans = btrfs_join_transaction(root);
3612b495
TI
3148 if (IS_ERR(trans))
3149 return PTR_ERR(trans);
54aa1f4d 3150 ret = btrfs_commit_transaction(trans, root);
79787eaa
JM
3151 if (ret)
3152 return ret;
c146afad 3153 /* run commit again to drop the original snapshot */
7a7eaa40 3154 trans = btrfs_join_transaction(root);
3612b495
TI
3155 if (IS_ERR(trans))
3156 return PTR_ERR(trans);
79787eaa
JM
3157 ret = btrfs_commit_transaction(trans, root);
3158 if (ret)
3159 return ret;
79154b1b 3160 ret = btrfs_write_and_wait_transaction(NULL, root);
79787eaa
JM
3161 if (ret) {
3162 btrfs_error(root->fs_info, ret,
3163 "Failed to sync btree inode to disk.");
3164 return ret;
3165 }
d6bfde87 3166
a512bbf8 3167 ret = write_ctree_super(NULL, root, 0);
c146afad
YZ
3168 return ret;
3169}
3170
3171int close_ctree(struct btrfs_root *root)
3172{
3173 struct btrfs_fs_info *fs_info = root->fs_info;
3174 int ret;
3175
3176 fs_info->closing = 1;
3177 smp_mb();
3178
837d5b6e
ID
3179 /* pause restriper - we want to resume on mount */
3180 btrfs_pause_balance(root->fs_info);
3181
a2de733c 3182 btrfs_scrub_cancel(root);
4cb5300b
CM
3183
3184 /* wait for any defraggers to finish */
3185 wait_event(fs_info->transaction_wait,
3186 (atomic_read(&fs_info->defrag_running) == 0));
3187
3188 /* clear out the rbtree of defraggable inodes */
e3029d9f 3189 btrfs_run_defrag_inodes(fs_info);
4cb5300b 3190
c146afad 3191 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
acce952b 3192 ret = btrfs_commit_super(root);
3193 if (ret)
3194 printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
3195 }
3196
68ce9682
SB
3197 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
3198 btrfs_error_commit_super(root);
0f7d52f4 3199
300e4f8a
JB
3200 btrfs_put_block_group_cache(fs_info);
3201
e3029d9f
AV
3202 kthread_stop(fs_info->transaction_kthread);
3203 kthread_stop(fs_info->cleaner_kthread);
8929ecfa 3204
f25784b3
YZ
3205 fs_info->closing = 2;
3206 smp_mb();
3207
bcef60f2
AJ
3208 btrfs_free_qgroup_config(root->fs_info);
3209
b0c68f8b 3210 if (fs_info->delalloc_bytes) {
d397712b 3211 printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
21380931 3212 (unsigned long long)fs_info->delalloc_bytes);
b0c68f8b 3213 }
31153d81 3214 if (fs_info->total_ref_cache_size) {
d397712b
CM
3215 printk(KERN_INFO "btrfs: at umount reference cache size %llu\n",
3216 (unsigned long long)fs_info->total_ref_cache_size);
31153d81 3217 }
bcc63abb 3218
5d4f98a2
YZ
3219 free_extent_buffer(fs_info->extent_root->node);
3220 free_extent_buffer(fs_info->extent_root->commit_root);
3221 free_extent_buffer(fs_info->tree_root->node);
3222 free_extent_buffer(fs_info->tree_root->commit_root);
e3029d9f
AV
3223 free_extent_buffer(fs_info->chunk_root->node);
3224 free_extent_buffer(fs_info->chunk_root->commit_root);
3225 free_extent_buffer(fs_info->dev_root->node);
3226 free_extent_buffer(fs_info->dev_root->commit_root);
3227 free_extent_buffer(fs_info->csum_root->node);
3228 free_extent_buffer(fs_info->csum_root->commit_root);
bcef60f2
AJ
3229 if (fs_info->quota_root) {
3230 free_extent_buffer(fs_info->quota_root->node);
3231 free_extent_buffer(fs_info->quota_root->commit_root);
3232 }
d20f7043 3233
e3029d9f 3234 btrfs_free_block_groups(fs_info);
d10c5f31 3235
c146afad 3236 del_fs_roots(fs_info);
d10c5f31 3237
c146afad 3238 iput(fs_info->btree_inode);
9ad6b7bc 3239
61d92c32 3240 btrfs_stop_workers(&fs_info->generic_worker);
247e743c 3241 btrfs_stop_workers(&fs_info->fixup_workers);
771ed689 3242 btrfs_stop_workers(&fs_info->delalloc_workers);
8b712842
CM
3243 btrfs_stop_workers(&fs_info->workers);
3244 btrfs_stop_workers(&fs_info->endio_workers);
d20f7043 3245 btrfs_stop_workers(&fs_info->endio_meta_workers);
cad321ad 3246 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
e6dcd2dc 3247 btrfs_stop_workers(&fs_info->endio_write_workers);
0cb59c99 3248 btrfs_stop_workers(&fs_info->endio_freespace_worker);
1cc127b5 3249 btrfs_stop_workers(&fs_info->submit_workers);
16cdcec7 3250 btrfs_stop_workers(&fs_info->delayed_workers);
bab39bf9 3251 btrfs_stop_workers(&fs_info->caching_workers);
90519d66 3252 btrfs_stop_workers(&fs_info->readahead_workers);
d6bfde87 3253
21adbd5c
SB
3254#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3255 if (btrfs_test_opt(root, CHECK_INTEGRITY))
3256 btrfsic_unmount(root, fs_info->fs_devices);
3257#endif
3258
dfe25020 3259 btrfs_close_devices(fs_info->fs_devices);
0b86a832 3260 btrfs_mapping_tree_free(&fs_info->mapping_tree);
b248a415 3261
04160088 3262 bdi_destroy(&fs_info->bdi);
76dda93c 3263 cleanup_srcu_struct(&fs_info->subvol_srcu);
0b86a832 3264
eb60ceac
CM
3265 return 0;
3266}
3267
b9fab919
CM
3268int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3269 int atomic)
5f39d397 3270{
1259ab75 3271 int ret;
727011e0 3272 struct inode *btree_inode = buf->pages[0]->mapping->host;
1259ab75 3273
0b32f4bb 3274 ret = extent_buffer_uptodate(buf);
1259ab75
CM
3275 if (!ret)
3276 return ret;
3277
3278 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
b9fab919
CM
3279 parent_transid, atomic);
3280 if (ret == -EAGAIN)
3281 return ret;
1259ab75 3282 return !ret;
5f39d397
CM
3283}
3284
3285int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
ccd467d6 3286{
0b32f4bb 3287 return set_extent_buffer_uptodate(buf);
5f39d397 3288}
6702ed49 3289
5f39d397
CM
3290void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3291{
727011e0 3292 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
5f39d397 3293 u64 transid = btrfs_header_generation(buf);
b9473439 3294 int was_dirty;
b4ce94de 3295
b9447ef8 3296 btrfs_assert_tree_locked(buf);
ccd467d6 3297 if (transid != root->fs_info->generation) {
d397712b
CM
3298 printk(KERN_CRIT "btrfs transid mismatch buffer %llu, "
3299 "found %llu running %llu\n",
db94535d 3300 (unsigned long long)buf->start,
d397712b
CM
3301 (unsigned long long)transid,
3302 (unsigned long long)root->fs_info->generation);
ccd467d6
CM
3303 WARN_ON(1);
3304 }
0b32f4bb 3305 was_dirty = set_extent_buffer_dirty(buf);
b9473439
CM
3306 if (!was_dirty) {
3307 spin_lock(&root->fs_info->delalloc_lock);
3308 root->fs_info->dirty_metadata_bytes += buf->len;
3309 spin_unlock(&root->fs_info->delalloc_lock);
3310 }
eb60ceac
CM
3311}
3312
d3c2fdcf 3313void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
16cdcec7
MX
3314{
3315 /*
3316 * looks as though older kernels can get into trouble with
3317 * this code, they end up stuck in balance_dirty_pages forever
3318 */
3319 u64 num_dirty;
3320 unsigned long thresh = 32 * 1024 * 1024;
3321
3322 if (current->flags & PF_MEMALLOC)
3323 return;
3324
3325 btrfs_balance_delayed_items(root);
3326
3327 num_dirty = root->fs_info->dirty_metadata_bytes;
3328
3329 if (num_dirty > thresh) {
3330 balance_dirty_pages_ratelimited_nr(
3331 root->fs_info->btree_inode->i_mapping, 1);
3332 }
3333 return;
3334}
3335
3336void __btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
35b7e476 3337{
188de649
CM
3338 /*
3339 * looks as though older kernels can get into trouble with
3340 * this code, they end up stuck in balance_dirty_pages forever
3341 */
d6bfde87 3342 u64 num_dirty;
771ed689 3343 unsigned long thresh = 32 * 1024 * 1024;
d6bfde87 3344
6933c02e 3345 if (current->flags & PF_MEMALLOC)
d6bfde87
CM
3346 return;
3347
585ad2c3
CM
3348 num_dirty = root->fs_info->dirty_metadata_bytes;
3349
d6bfde87
CM
3350 if (num_dirty > thresh) {
3351 balance_dirty_pages_ratelimited_nr(
d7fc640e 3352 root->fs_info->btree_inode->i_mapping, 1);
d6bfde87 3353 }
188de649 3354 return;
35b7e476 3355}
6b80053d 3356
ca7a79ad 3357int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
6b80053d 3358{
727011e0 3359 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
0b32f4bb 3360 return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
6b80053d 3361}
0da5468f 3362
20897f5c 3363int btree_lock_page_hook(struct page *page, void *data,
01d658f2 3364 void (*flush_fn)(void *))
4bef0848
CM
3365{
3366 struct inode *inode = page->mapping->host;
b9473439 3367 struct btrfs_root *root = BTRFS_I(inode)->root;
4bef0848 3368 struct extent_buffer *eb;
4bef0848 3369
4f2de97a
JB
3370 /*
3371 * We culled this eb but the page is still hanging out on the mapping,
3372 * carry on.
3373 */
3374 if (!PagePrivate(page))
4bef0848
CM
3375 goto out;
3376
4f2de97a
JB
3377 eb = (struct extent_buffer *)page->private;
3378 if (!eb) {
3379 WARN_ON(1);
3380 goto out;
3381 }
3382 if (page != eb->pages[0])
4bef0848
CM
3383 goto out;
3384
01d658f2
CM
3385 if (!btrfs_try_tree_write_lock(eb)) {
3386 flush_fn(data);
3387 btrfs_tree_lock(eb);
3388 }
4bef0848 3389 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
b9473439
CM
3390
3391 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3392 spin_lock(&root->fs_info->delalloc_lock);
3393 if (root->fs_info->dirty_metadata_bytes >= eb->len)
3394 root->fs_info->dirty_metadata_bytes -= eb->len;
3395 else
3396 WARN_ON(1);
3397 spin_unlock(&root->fs_info->delalloc_lock);
3398 }
3399
4bef0848 3400 btrfs_tree_unlock(eb);
4bef0848 3401out:
01d658f2
CM
3402 if (!trylock_page(page)) {
3403 flush_fn(data);
3404 lock_page(page);
3405 }
4bef0848
CM
3406 return 0;
3407}
3408
fcd1f065 3409static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
acce952b 3410 int read_only)
3411{
fcd1f065
DS
3412 if (btrfs_super_csum_type(fs_info->super_copy) >= ARRAY_SIZE(btrfs_csum_sizes)) {
3413 printk(KERN_ERR "btrfs: unsupported checksum algorithm\n");
3414 return -EINVAL;
3415 }
3416
acce952b 3417 if (read_only)
fcd1f065 3418 return 0;
acce952b 3419
fcd1f065 3420 return 0;
acce952b 3421}
3422
68ce9682 3423void btrfs_error_commit_super(struct btrfs_root *root)
acce952b 3424{
acce952b 3425 mutex_lock(&root->fs_info->cleaner_mutex);
3426 btrfs_run_delayed_iputs(root);
3427 mutex_unlock(&root->fs_info->cleaner_mutex);
3428
3429 down_write(&root->fs_info->cleanup_work_sem);
3430 up_write(&root->fs_info->cleanup_work_sem);
3431
3432 /* cleanup FS via transaction */
3433 btrfs_cleanup_transaction(root);
acce952b 3434}
3435
143bede5 3436static void btrfs_destroy_ordered_operations(struct btrfs_root *root)
acce952b 3437{
3438 struct btrfs_inode *btrfs_inode;
3439 struct list_head splice;
3440
3441 INIT_LIST_HEAD(&splice);
3442
3443 mutex_lock(&root->fs_info->ordered_operations_mutex);
3444 spin_lock(&root->fs_info->ordered_extent_lock);
3445
3446 list_splice_init(&root->fs_info->ordered_operations, &splice);
3447 while (!list_empty(&splice)) {
3448 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3449 ordered_operations);
3450
3451 list_del_init(&btrfs_inode->ordered_operations);
3452
3453 btrfs_invalidate_inodes(btrfs_inode->root);
3454 }
3455
3456 spin_unlock(&root->fs_info->ordered_extent_lock);
3457 mutex_unlock(&root->fs_info->ordered_operations_mutex);
acce952b 3458}
3459
143bede5 3460static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
acce952b 3461{
3462 struct list_head splice;
3463 struct btrfs_ordered_extent *ordered;
3464 struct inode *inode;
3465
3466 INIT_LIST_HEAD(&splice);
3467
3468 spin_lock(&root->fs_info->ordered_extent_lock);
3469
3470 list_splice_init(&root->fs_info->ordered_extents, &splice);
3471 while (!list_empty(&splice)) {
3472 ordered = list_entry(splice.next, struct btrfs_ordered_extent,
3473 root_extent_list);
3474
3475 list_del_init(&ordered->root_extent_list);
3476 atomic_inc(&ordered->refs);
3477
3478 /* the inode may be getting freed (in sys_unlink path). */
3479 inode = igrab(ordered->inode);
3480
3481 spin_unlock(&root->fs_info->ordered_extent_lock);
3482 if (inode)
3483 iput(inode);
3484
3485 atomic_set(&ordered->refs, 1);
3486 btrfs_put_ordered_extent(ordered);
3487
3488 spin_lock(&root->fs_info->ordered_extent_lock);
3489 }
3490
3491 spin_unlock(&root->fs_info->ordered_extent_lock);
acce952b 3492}
3493
79787eaa
JM
3494int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3495 struct btrfs_root *root)
acce952b 3496{
3497 struct rb_node *node;
3498 struct btrfs_delayed_ref_root *delayed_refs;
3499 struct btrfs_delayed_ref_node *ref;
3500 int ret = 0;
3501
3502 delayed_refs = &trans->delayed_refs;
3503
3504 spin_lock(&delayed_refs->lock);
3505 if (delayed_refs->num_entries == 0) {
cfece4db 3506 spin_unlock(&delayed_refs->lock);
acce952b 3507 printk(KERN_INFO "delayed_refs has NO entry\n");
3508 return ret;
3509 }
3510
b939d1ab 3511 while ((node = rb_first(&delayed_refs->root)) != NULL) {
acce952b 3512 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
acce952b 3513
3514 atomic_set(&ref->refs, 1);
3515 if (btrfs_delayed_ref_is_head(ref)) {
3516 struct btrfs_delayed_ref_head *head;
3517
3518 head = btrfs_delayed_node_to_head(ref);
b939d1ab
JB
3519 if (!mutex_trylock(&head->mutex)) {
3520 atomic_inc(&ref->refs);
3521 spin_unlock(&delayed_refs->lock);
3522
3523 /* Need to wait for the delayed ref to run */
3524 mutex_lock(&head->mutex);
3525 mutex_unlock(&head->mutex);
3526 btrfs_put_delayed_ref(ref);
3527
e18fca73 3528 spin_lock(&delayed_refs->lock);
b939d1ab
JB
3529 continue;
3530 }
3531
acce952b 3532 kfree(head->extent_op);
3533 delayed_refs->num_heads--;
3534 if (list_empty(&head->cluster))
3535 delayed_refs->num_heads_ready--;
3536 list_del_init(&head->cluster);
acce952b 3537 }
b939d1ab
JB
3538 ref->in_tree = 0;
3539 rb_erase(&ref->rb_node, &delayed_refs->root);
3540 delayed_refs->num_entries--;
3541
acce952b 3542 spin_unlock(&delayed_refs->lock);
3543 btrfs_put_delayed_ref(ref);
3544
3545 cond_resched();
3546 spin_lock(&delayed_refs->lock);
3547 }
3548
3549 spin_unlock(&delayed_refs->lock);
3550
3551 return ret;
3552}
3553
143bede5 3554static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t)
acce952b 3555{
3556 struct btrfs_pending_snapshot *snapshot;
3557 struct list_head splice;
3558
3559 INIT_LIST_HEAD(&splice);
3560
3561 list_splice_init(&t->pending_snapshots, &splice);
3562
3563 while (!list_empty(&splice)) {
3564 snapshot = list_entry(splice.next,
3565 struct btrfs_pending_snapshot,
3566 list);
3567
3568 list_del_init(&snapshot->list);
3569
3570 kfree(snapshot);
3571 }
acce952b 3572}
3573
143bede5 3574static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
acce952b 3575{
3576 struct btrfs_inode *btrfs_inode;
3577 struct list_head splice;
3578
3579 INIT_LIST_HEAD(&splice);
3580
acce952b 3581 spin_lock(&root->fs_info->delalloc_lock);
5be76758 3582 list_splice_init(&root->fs_info->delalloc_inodes, &splice);
acce952b 3583
3584 while (!list_empty(&splice)) {
3585 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3586 delalloc_inodes);
3587
3588 list_del_init(&btrfs_inode->delalloc_inodes);
3589
3590 btrfs_invalidate_inodes(btrfs_inode->root);
3591 }
3592
3593 spin_unlock(&root->fs_info->delalloc_lock);
acce952b 3594}
3595
3596static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3597 struct extent_io_tree *dirty_pages,
3598 int mark)
3599{
3600 int ret;
3601 struct page *page;
3602 struct inode *btree_inode = root->fs_info->btree_inode;
3603 struct extent_buffer *eb;
3604 u64 start = 0;
3605 u64 end;
3606 u64 offset;
3607 unsigned long index;
3608
3609 while (1) {
3610 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
3611 mark);
3612 if (ret)
3613 break;
3614
3615 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
3616 while (start <= end) {
3617 index = start >> PAGE_CACHE_SHIFT;
3618 start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
3619 page = find_get_page(btree_inode->i_mapping, index);
3620 if (!page)
3621 continue;
3622 offset = page_offset(page);
3623
3624 spin_lock(&dirty_pages->buffer_lock);
3625 eb = radix_tree_lookup(
3626 &(&BTRFS_I(page->mapping->host)->io_tree)->buffer,
3627 offset >> PAGE_CACHE_SHIFT);
3628 spin_unlock(&dirty_pages->buffer_lock);
ee670f0a 3629 if (eb)
acce952b 3630 ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY,
3631 &eb->bflags);
acce952b 3632 if (PageWriteback(page))
3633 end_page_writeback(page);
3634
3635 lock_page(page);
3636 if (PageDirty(page)) {
3637 clear_page_dirty_for_io(page);
3638 spin_lock_irq(&page->mapping->tree_lock);
3639 radix_tree_tag_clear(&page->mapping->page_tree,
3640 page_index(page),
3641 PAGECACHE_TAG_DIRTY);
3642 spin_unlock_irq(&page->mapping->tree_lock);
3643 }
3644
acce952b 3645 unlock_page(page);
ee670f0a 3646 page_cache_release(page);
acce952b 3647 }
3648 }
3649
3650 return ret;
3651}
3652
3653static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
3654 struct extent_io_tree *pinned_extents)
3655{
3656 struct extent_io_tree *unpin;
3657 u64 start;
3658 u64 end;
3659 int ret;
ed0eaa14 3660 bool loop = true;
acce952b 3661
3662 unpin = pinned_extents;
ed0eaa14 3663again:
acce952b 3664 while (1) {
3665 ret = find_first_extent_bit(unpin, 0, &start, &end,
3666 EXTENT_DIRTY);
3667 if (ret)
3668 break;
3669
3670 /* opt_discard */
5378e607
LD
3671 if (btrfs_test_opt(root, DISCARD))
3672 ret = btrfs_error_discard_extent(root, start,
3673 end + 1 - start,
3674 NULL);
acce952b 3675
3676 clear_extent_dirty(unpin, start, end, GFP_NOFS);
3677 btrfs_error_unpin_extent_range(root, start, end);
3678 cond_resched();
3679 }
3680
ed0eaa14
LB
3681 if (loop) {
3682 if (unpin == &root->fs_info->freed_extents[0])
3683 unpin = &root->fs_info->freed_extents[1];
3684 else
3685 unpin = &root->fs_info->freed_extents[0];
3686 loop = false;
3687 goto again;
3688 }
3689
acce952b 3690 return 0;
3691}
3692
49b25e05
JM
3693void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
3694 struct btrfs_root *root)
3695{
3696 btrfs_destroy_delayed_refs(cur_trans, root);
3697 btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
3698 cur_trans->dirty_pages.dirty_bytes);
3699
3700 /* FIXME: cleanup wait for commit */
3701 cur_trans->in_commit = 1;
3702 cur_trans->blocked = 1;
d7096fc3 3703 wake_up(&root->fs_info->transaction_blocked_wait);
49b25e05
JM
3704
3705 cur_trans->blocked = 0;
d7096fc3 3706 wake_up(&root->fs_info->transaction_wait);
49b25e05
JM
3707
3708 cur_trans->commit_done = 1;
d7096fc3 3709 wake_up(&cur_trans->commit_wait);
49b25e05 3710
67cde344
MX
3711 btrfs_destroy_delayed_inodes(root);
3712 btrfs_assert_delayed_root_empty(root);
49b25e05
JM
3713
3714 btrfs_destroy_pending_snapshots(cur_trans);
3715
3716 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
3717 EXTENT_DIRTY);
6e841e32
LB
3718 btrfs_destroy_pinned_extent(root,
3719 root->fs_info->pinned_extents);
49b25e05
JM
3720
3721 /*
3722 memset(cur_trans, 0, sizeof(*cur_trans));
3723 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
3724 */
3725}
3726
3727int btrfs_cleanup_transaction(struct btrfs_root *root)
acce952b 3728{
3729 struct btrfs_transaction *t;
3730 LIST_HEAD(list);
3731
acce952b 3732 mutex_lock(&root->fs_info->transaction_kthread_mutex);
3733
a4abeea4 3734 spin_lock(&root->fs_info->trans_lock);
acce952b 3735 list_splice_init(&root->fs_info->trans_list, &list);
a4abeea4
JB
3736 root->fs_info->trans_no_join = 1;
3737 spin_unlock(&root->fs_info->trans_lock);
3738
acce952b 3739 while (!list_empty(&list)) {
3740 t = list_entry(list.next, struct btrfs_transaction, list);
3741 if (!t)
3742 break;
3743
3744 btrfs_destroy_ordered_operations(root);
3745
3746 btrfs_destroy_ordered_extents(root);
3747
3748 btrfs_destroy_delayed_refs(t, root);
3749
3750 btrfs_block_rsv_release(root,
3751 &root->fs_info->trans_block_rsv,
3752 t->dirty_pages.dirty_bytes);
3753
3754 /* FIXME: cleanup wait for commit */
3755 t->in_commit = 1;
3756 t->blocked = 1;
66657b31 3757 smp_mb();
acce952b 3758 if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
3759 wake_up(&root->fs_info->transaction_blocked_wait);
3760
3761 t->blocked = 0;
66657b31 3762 smp_mb();
acce952b 3763 if (waitqueue_active(&root->fs_info->transaction_wait))
3764 wake_up(&root->fs_info->transaction_wait);
acce952b 3765
acce952b 3766 t->commit_done = 1;
66657b31 3767 smp_mb();
acce952b 3768 if (waitqueue_active(&t->commit_wait))
3769 wake_up(&t->commit_wait);
acce952b 3770
67cde344
MX
3771 btrfs_destroy_delayed_inodes(root);
3772 btrfs_assert_delayed_root_empty(root);
3773
acce952b 3774 btrfs_destroy_pending_snapshots(t);
3775
3776 btrfs_destroy_delalloc_inodes(root);
3777
a4abeea4 3778 spin_lock(&root->fs_info->trans_lock);
acce952b 3779 root->fs_info->running_transaction = NULL;
a4abeea4 3780 spin_unlock(&root->fs_info->trans_lock);
acce952b 3781
3782 btrfs_destroy_marked_extents(root, &t->dirty_pages,
3783 EXTENT_DIRTY);
3784
3785 btrfs_destroy_pinned_extent(root,
3786 root->fs_info->pinned_extents);
3787
13c5a93e 3788 atomic_set(&t->use_count, 0);
acce952b 3789 list_del_init(&t->list);
3790 memset(t, 0, sizeof(*t));
3791 kmem_cache_free(btrfs_transaction_cachep, t);
3792 }
3793
a4abeea4
JB
3794 spin_lock(&root->fs_info->trans_lock);
3795 root->fs_info->trans_no_join = 0;
3796 spin_unlock(&root->fs_info->trans_lock);
acce952b 3797 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
acce952b 3798
3799 return 0;
3800}
3801
d1310b2e 3802static struct extent_io_ops btree_extent_io_ops = {
4bef0848 3803 .write_cache_pages_lock_hook = btree_lock_page_hook,
ce9adaa5 3804 .readpage_end_io_hook = btree_readpage_end_io_hook,
4bb31e92 3805 .readpage_io_failed_hook = btree_io_failed_hook,
0b86a832 3806 .submit_bio_hook = btree_submit_bio_hook,
239b14b3
CM
3807 /* note we're sharing with inode.c for the merge bio hook */
3808 .merge_bio_hook = btrfs_merge_bio_hook,
0da5468f 3809};