md/raid1,raid10: use freeze_array in place of raise_barrier in various places.
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / md / raid10.c
CommitLineData
1da177e4
LT
1/*
2 * raid10.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 2000-2004 Neil Brown
5 *
6 * RAID-10 support for md.
7 *
25985edc 8 * Base on code in raid1.c. See raid1.c for further copyright information.
1da177e4
LT
9 *
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
5a0e3ad6 21#include <linux/slab.h>
25570727 22#include <linux/delay.h>
bff61975 23#include <linux/blkdev.h>
056075c7 24#include <linux/module.h>
bff61975 25#include <linux/seq_file.h>
8bda470e 26#include <linux/ratelimit.h>
3ea7daa5 27#include <linux/kthread.h>
43b2e5d8 28#include "md.h"
ef740c37 29#include "raid10.h"
dab8b292 30#include "raid0.h"
ef740c37 31#include "bitmap.h"
1da177e4
LT
32
33/*
34 * RAID10 provides a combination of RAID0 and RAID1 functionality.
35 * The layout of data is defined by
36 * chunk_size
37 * raid_disks
38 * near_copies (stored in low byte of layout)
39 * far_copies (stored in second byte of layout)
c93983bf 40 * far_offset (stored in bit 16 of layout )
475901af 41 * use_far_sets (stored in bit 17 of layout )
1da177e4 42 *
475901af
JB
43 * The data to be stored is divided into chunks using chunksize. Each device
44 * is divided into far_copies sections. In each section, chunks are laid out
45 * in a style similar to raid0, but near_copies copies of each chunk is stored
46 * (each on a different drive). The starting device for each section is offset
47 * near_copies from the starting device of the previous section. Thus there
48 * are (near_copies * far_copies) of each chunk, and each is on a different
49 * drive. near_copies and far_copies must be at least one, and their product
50 * is at most raid_disks.
c93983bf
N
51 *
52 * If far_offset is true, then the far_copies are handled a bit differently.
475901af
JB
53 * The copies are still in different stripes, but instead of being very far
54 * apart on disk, there are adjacent stripes.
55 *
56 * The far and offset algorithms are handled slightly differently if
57 * 'use_far_sets' is true. In this case, the array's devices are grouped into
58 * sets that are (near_copies * far_copies) in size. The far copied stripes
59 * are still shifted by 'near_copies' devices, but this shifting stays confined
60 * to the set rather than the entire array. This is done to improve the number
61 * of device combinations that can fail without causing the array to fail.
62 * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
63 * on a device):
64 * A B C D A B C D E
65 * ... ...
66 * D A B C E A B C D
67 * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
68 * [A B] [C D] [A B] [C D E]
69 * |...| |...| |...| | ... |
70 * [B A] [D C] [B A] [E C D]
1da177e4
LT
71 */
72
73/*
74 * Number of guaranteed r10bios in case of extreme VM load:
75 */
76#define NR_RAID10_BIOS 256
77
473e87ce
JB
78/* when we get a read error on a read-only array, we redirect to another
79 * device without failing the first device, or trying to over-write to
80 * correct the read error. To keep track of bad blocks on a per-bio
81 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
82 */
83#define IO_BLOCKED ((struct bio *)1)
84/* When we successfully write to a known bad-block, we need to remove the
85 * bad-block marking which must be done from process context. So we record
86 * the success by setting devs[n].bio to IO_MADE_GOOD
87 */
88#define IO_MADE_GOOD ((struct bio *)2)
89
90#define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
91
92/* When there are this many requests queued to be written by
34db0cd6
N
93 * the raid10 thread, we become 'congested' to provide back-pressure
94 * for writeback.
95 */
96static int max_queued_requests = 1024;
97
e879a879
N
98static void allow_barrier(struct r10conf *conf);
99static void lower_barrier(struct r10conf *conf);
fae8cc5e 100static int enough(struct r10conf *conf, int ignore);
3ea7daa5
N
101static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
102 int *skipped);
103static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
104static void end_reshape_write(struct bio *bio, int error);
105static void end_reshape(struct r10conf *conf);
0a27ec96 106
dd0fc66f 107static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4 108{
e879a879 109 struct r10conf *conf = data;
9f2c9d12 110 int size = offsetof(struct r10bio, devs[conf->copies]);
1da177e4 111
69335ef3
N
112 /* allocate a r10bio with room for raid_disks entries in the
113 * bios array */
7eaceacc 114 return kzalloc(size, gfp_flags);
1da177e4
LT
115}
116
117static void r10bio_pool_free(void *r10_bio, void *data)
118{
119 kfree(r10_bio);
120}
121
0310fa21 122/* Maximum size of each resync request */
1da177e4 123#define RESYNC_BLOCK_SIZE (64*1024)
1da177e4 124#define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
0310fa21
N
125/* amount of memory to reserve for resync requests */
126#define RESYNC_WINDOW (1024*1024)
127/* maximum number of concurrent requests, memory permitting */
128#define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
1da177e4
LT
129
130/*
131 * When performing a resync, we need to read and compare, so
132 * we need as many pages are there are copies.
133 * When performing a recovery, we need 2 bios, one for read,
134 * one for write (we recover only one drive per r10buf)
135 *
136 */
dd0fc66f 137static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4 138{
e879a879 139 struct r10conf *conf = data;
1da177e4 140 struct page *page;
9f2c9d12 141 struct r10bio *r10_bio;
1da177e4
LT
142 struct bio *bio;
143 int i, j;
144 int nalloc;
145
146 r10_bio = r10bio_pool_alloc(gfp_flags, conf);
7eaceacc 147 if (!r10_bio)
1da177e4 148 return NULL;
1da177e4 149
3ea7daa5
N
150 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
151 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
1da177e4
LT
152 nalloc = conf->copies; /* resync */
153 else
154 nalloc = 2; /* recovery */
155
156 /*
157 * Allocate bios.
158 */
159 for (j = nalloc ; j-- ; ) {
6746557f 160 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
1da177e4
LT
161 if (!bio)
162 goto out_free_bio;
163 r10_bio->devs[j].bio = bio;
69335ef3
N
164 if (!conf->have_replacement)
165 continue;
166 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
167 if (!bio)
168 goto out_free_bio;
169 r10_bio->devs[j].repl_bio = bio;
1da177e4
LT
170 }
171 /*
172 * Allocate RESYNC_PAGES data pages and attach them
173 * where needed.
174 */
175 for (j = 0 ; j < nalloc; j++) {
69335ef3 176 struct bio *rbio = r10_bio->devs[j].repl_bio;
1da177e4
LT
177 bio = r10_bio->devs[j].bio;
178 for (i = 0; i < RESYNC_PAGES; i++) {
3ea7daa5
N
179 if (j > 0 && !test_bit(MD_RECOVERY_SYNC,
180 &conf->mddev->recovery)) {
181 /* we can share bv_page's during recovery
182 * and reshape */
c65060ad
NK
183 struct bio *rbio = r10_bio->devs[0].bio;
184 page = rbio->bi_io_vec[i].bv_page;
185 get_page(page);
186 } else
187 page = alloc_page(gfp_flags);
1da177e4
LT
188 if (unlikely(!page))
189 goto out_free_pages;
190
191 bio->bi_io_vec[i].bv_page = page;
69335ef3
N
192 if (rbio)
193 rbio->bi_io_vec[i].bv_page = page;
1da177e4
LT
194 }
195 }
196
197 return r10_bio;
198
199out_free_pages:
200 for ( ; i > 0 ; i--)
1345b1d8 201 safe_put_page(bio->bi_io_vec[i-1].bv_page);
1da177e4
LT
202 while (j--)
203 for (i = 0; i < RESYNC_PAGES ; i++)
1345b1d8 204 safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
5fdd2cf8 205 j = 0;
1da177e4 206out_free_bio:
5fdd2cf8 207 for ( ; j < nalloc; j++) {
208 if (r10_bio->devs[j].bio)
209 bio_put(r10_bio->devs[j].bio);
69335ef3
N
210 if (r10_bio->devs[j].repl_bio)
211 bio_put(r10_bio->devs[j].repl_bio);
212 }
1da177e4
LT
213 r10bio_pool_free(r10_bio, conf);
214 return NULL;
215}
216
217static void r10buf_pool_free(void *__r10_bio, void *data)
218{
219 int i;
e879a879 220 struct r10conf *conf = data;
9f2c9d12 221 struct r10bio *r10bio = __r10_bio;
1da177e4
LT
222 int j;
223
224 for (j=0; j < conf->copies; j++) {
225 struct bio *bio = r10bio->devs[j].bio;
226 if (bio) {
227 for (i = 0; i < RESYNC_PAGES; i++) {
1345b1d8 228 safe_put_page(bio->bi_io_vec[i].bv_page);
1da177e4
LT
229 bio->bi_io_vec[i].bv_page = NULL;
230 }
231 bio_put(bio);
232 }
69335ef3
N
233 bio = r10bio->devs[j].repl_bio;
234 if (bio)
235 bio_put(bio);
1da177e4
LT
236 }
237 r10bio_pool_free(r10bio, conf);
238}
239
e879a879 240static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
1da177e4
LT
241{
242 int i;
243
244 for (i = 0; i < conf->copies; i++) {
245 struct bio **bio = & r10_bio->devs[i].bio;
749c55e9 246 if (!BIO_SPECIAL(*bio))
1da177e4
LT
247 bio_put(*bio);
248 *bio = NULL;
69335ef3
N
249 bio = &r10_bio->devs[i].repl_bio;
250 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
251 bio_put(*bio);
252 *bio = NULL;
1da177e4
LT
253 }
254}
255
9f2c9d12 256static void free_r10bio(struct r10bio *r10_bio)
1da177e4 257{
e879a879 258 struct r10conf *conf = r10_bio->mddev->private;
1da177e4 259
1da177e4
LT
260 put_all_bios(conf, r10_bio);
261 mempool_free(r10_bio, conf->r10bio_pool);
262}
263
9f2c9d12 264static void put_buf(struct r10bio *r10_bio)
1da177e4 265{
e879a879 266 struct r10conf *conf = r10_bio->mddev->private;
1da177e4
LT
267
268 mempool_free(r10_bio, conf->r10buf_pool);
269
0a27ec96 270 lower_barrier(conf);
1da177e4
LT
271}
272
9f2c9d12 273static void reschedule_retry(struct r10bio *r10_bio)
1da177e4
LT
274{
275 unsigned long flags;
fd01b88c 276 struct mddev *mddev = r10_bio->mddev;
e879a879 277 struct r10conf *conf = mddev->private;
1da177e4
LT
278
279 spin_lock_irqsave(&conf->device_lock, flags);
280 list_add(&r10_bio->retry_list, &conf->retry_list);
4443ae10 281 conf->nr_queued ++;
1da177e4
LT
282 spin_unlock_irqrestore(&conf->device_lock, flags);
283
388667be
AJ
284 /* wake up frozen array... */
285 wake_up(&conf->wait_barrier);
286
1da177e4
LT
287 md_wakeup_thread(mddev->thread);
288}
289
290/*
291 * raid_end_bio_io() is called when we have finished servicing a mirrored
292 * operation and are ready to return a success/failure code to the buffer
293 * cache layer.
294 */
9f2c9d12 295static void raid_end_bio_io(struct r10bio *r10_bio)
1da177e4
LT
296{
297 struct bio *bio = r10_bio->master_bio;
856e08e2 298 int done;
e879a879 299 struct r10conf *conf = r10_bio->mddev->private;
1da177e4 300
856e08e2
N
301 if (bio->bi_phys_segments) {
302 unsigned long flags;
303 spin_lock_irqsave(&conf->device_lock, flags);
304 bio->bi_phys_segments--;
305 done = (bio->bi_phys_segments == 0);
306 spin_unlock_irqrestore(&conf->device_lock, flags);
307 } else
308 done = 1;
309 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
310 clear_bit(BIO_UPTODATE, &bio->bi_flags);
311 if (done) {
312 bio_endio(bio, 0);
313 /*
314 * Wake up any possible resync thread that waits for the device
315 * to go idle.
316 */
317 allow_barrier(conf);
318 }
1da177e4
LT
319 free_r10bio(r10_bio);
320}
321
322/*
323 * Update disk head position estimator based on IRQ completion info.
324 */
9f2c9d12 325static inline void update_head_pos(int slot, struct r10bio *r10_bio)
1da177e4 326{
e879a879 327 struct r10conf *conf = r10_bio->mddev->private;
1da177e4
LT
328
329 conf->mirrors[r10_bio->devs[slot].devnum].head_position =
330 r10_bio->devs[slot].addr + (r10_bio->sectors);
331}
332
778ca018
NK
333/*
334 * Find the disk number which triggered given bio
335 */
e879a879 336static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
69335ef3 337 struct bio *bio, int *slotp, int *replp)
778ca018
NK
338{
339 int slot;
69335ef3 340 int repl = 0;
778ca018 341
69335ef3 342 for (slot = 0; slot < conf->copies; slot++) {
778ca018
NK
343 if (r10_bio->devs[slot].bio == bio)
344 break;
69335ef3
N
345 if (r10_bio->devs[slot].repl_bio == bio) {
346 repl = 1;
347 break;
348 }
349 }
778ca018
NK
350
351 BUG_ON(slot == conf->copies);
352 update_head_pos(slot, r10_bio);
353
749c55e9
N
354 if (slotp)
355 *slotp = slot;
69335ef3
N
356 if (replp)
357 *replp = repl;
778ca018
NK
358 return r10_bio->devs[slot].devnum;
359}
360
6712ecf8 361static void raid10_end_read_request(struct bio *bio, int error)
1da177e4
LT
362{
363 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
9f2c9d12 364 struct r10bio *r10_bio = bio->bi_private;
1da177e4 365 int slot, dev;
abbf098e 366 struct md_rdev *rdev;
e879a879 367 struct r10conf *conf = r10_bio->mddev->private;
1da177e4 368
1da177e4
LT
369
370 slot = r10_bio->read_slot;
371 dev = r10_bio->devs[slot].devnum;
abbf098e 372 rdev = r10_bio->devs[slot].rdev;
1da177e4
LT
373 /*
374 * this branch is our 'one mirror IO has finished' event handler:
375 */
4443ae10
N
376 update_head_pos(slot, r10_bio);
377
378 if (uptodate) {
1da177e4
LT
379 /*
380 * Set R10BIO_Uptodate in our master bio, so that
381 * we will return a good error code to the higher
382 * levels even if IO on some other mirrored buffer fails.
383 *
384 * The 'master' represents the composite IO operation to
385 * user-side. So if something waits for IO, then it will
386 * wait for the 'master' bio.
387 */
388 set_bit(R10BIO_Uptodate, &r10_bio->state);
fae8cc5e
N
389 } else {
390 /* If all other devices that store this block have
391 * failed, we want to return the error upwards rather
392 * than fail the last device. Here we redefine
393 * "uptodate" to mean "Don't want to retry"
394 */
395 unsigned long flags;
396 spin_lock_irqsave(&conf->device_lock, flags);
397 if (!enough(conf, rdev->raid_disk))
398 uptodate = 1;
399 spin_unlock_irqrestore(&conf->device_lock, flags);
400 }
401 if (uptodate) {
1da177e4 402 raid_end_bio_io(r10_bio);
abbf098e 403 rdev_dec_pending(rdev, conf->mddev);
4443ae10 404 } else {
1da177e4 405 /*
7c4e06ff 406 * oops, read error - keep the refcount on the rdev
1da177e4
LT
407 */
408 char b[BDEVNAME_SIZE];
8bda470e
CD
409 printk_ratelimited(KERN_ERR
410 "md/raid10:%s: %s: rescheduling sector %llu\n",
411 mdname(conf->mddev),
abbf098e 412 bdevname(rdev->bdev, b),
8bda470e 413 (unsigned long long)r10_bio->sector);
856e08e2 414 set_bit(R10BIO_ReadError, &r10_bio->state);
1da177e4
LT
415 reschedule_retry(r10_bio);
416 }
1da177e4
LT
417}
418
9f2c9d12 419static void close_write(struct r10bio *r10_bio)
bd870a16
N
420{
421 /* clear the bitmap if all writes complete successfully */
422 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
423 r10_bio->sectors,
424 !test_bit(R10BIO_Degraded, &r10_bio->state),
425 0);
426 md_write_end(r10_bio->mddev);
427}
428
9f2c9d12 429static void one_write_done(struct r10bio *r10_bio)
19d5f834
N
430{
431 if (atomic_dec_and_test(&r10_bio->remaining)) {
432 if (test_bit(R10BIO_WriteError, &r10_bio->state))
433 reschedule_retry(r10_bio);
434 else {
435 close_write(r10_bio);
436 if (test_bit(R10BIO_MadeGood, &r10_bio->state))
437 reschedule_retry(r10_bio);
438 else
439 raid_end_bio_io(r10_bio);
440 }
441 }
442}
443
6712ecf8 444static void raid10_end_write_request(struct bio *bio, int error)
1da177e4
LT
445{
446 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
9f2c9d12 447 struct r10bio *r10_bio = bio->bi_private;
778ca018 448 int dev;
749c55e9 449 int dec_rdev = 1;
e879a879 450 struct r10conf *conf = r10_bio->mddev->private;
475b0321 451 int slot, repl;
4ca40c2c 452 struct md_rdev *rdev = NULL;
1da177e4 453
475b0321 454 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
1da177e4 455
475b0321
N
456 if (repl)
457 rdev = conf->mirrors[dev].replacement;
4ca40c2c
N
458 if (!rdev) {
459 smp_rmb();
460 repl = 0;
475b0321 461 rdev = conf->mirrors[dev].rdev;
4ca40c2c 462 }
1da177e4
LT
463 /*
464 * this branch is our 'one mirror IO has finished' event handler:
465 */
6cce3b23 466 if (!uptodate) {
475b0321
N
467 if (repl)
468 /* Never record new bad blocks to replacement,
469 * just fail it.
470 */
471 md_error(rdev->mddev, rdev);
472 else {
473 set_bit(WriteErrorSeen, &rdev->flags);
b7044d41
N
474 if (!test_and_set_bit(WantReplacement, &rdev->flags))
475 set_bit(MD_RECOVERY_NEEDED,
476 &rdev->mddev->recovery);
475b0321
N
477 set_bit(R10BIO_WriteError, &r10_bio->state);
478 dec_rdev = 0;
479 }
749c55e9 480 } else {
1da177e4
LT
481 /*
482 * Set R10BIO_Uptodate in our master bio, so that
483 * we will return a good error code for to the higher
484 * levels even if IO on some other mirrored buffer fails.
485 *
486 * The 'master' represents the composite IO operation to
487 * user-side. So if something waits for IO, then it will
488 * wait for the 'master' bio.
489 */
749c55e9
N
490 sector_t first_bad;
491 int bad_sectors;
492
3056e3ae
AL
493 /*
494 * Do not set R10BIO_Uptodate if the current device is
495 * rebuilding or Faulty. This is because we cannot use
496 * such device for properly reading the data back (we could
497 * potentially use it, if the current write would have felt
498 * before rdev->recovery_offset, but for simplicity we don't
499 * check this here.
500 */
501 if (test_bit(In_sync, &rdev->flags) &&
502 !test_bit(Faulty, &rdev->flags))
503 set_bit(R10BIO_Uptodate, &r10_bio->state);
1da177e4 504
749c55e9 505 /* Maybe we can clear some bad blocks. */
475b0321 506 if (is_badblock(rdev,
749c55e9
N
507 r10_bio->devs[slot].addr,
508 r10_bio->sectors,
509 &first_bad, &bad_sectors)) {
510 bio_put(bio);
475b0321
N
511 if (repl)
512 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
513 else
514 r10_bio->devs[slot].bio = IO_MADE_GOOD;
749c55e9
N
515 dec_rdev = 0;
516 set_bit(R10BIO_MadeGood, &r10_bio->state);
517 }
518 }
519
1da177e4
LT
520 /*
521 *
522 * Let's see if all mirrored write operations have finished
523 * already.
524 */
19d5f834 525 one_write_done(r10_bio);
749c55e9 526 if (dec_rdev)
884162df 527 rdev_dec_pending(rdev, conf->mddev);
1da177e4
LT
528}
529
1da177e4
LT
530/*
531 * RAID10 layout manager
25985edc 532 * As well as the chunksize and raid_disks count, there are two
1da177e4
LT
533 * parameters: near_copies and far_copies.
534 * near_copies * far_copies must be <= raid_disks.
535 * Normally one of these will be 1.
536 * If both are 1, we get raid0.
537 * If near_copies == raid_disks, we get raid1.
538 *
25985edc 539 * Chunks are laid out in raid0 style with near_copies copies of the
1da177e4
LT
540 * first chunk, followed by near_copies copies of the next chunk and
541 * so on.
542 * If far_copies > 1, then after 1/far_copies of the array has been assigned
543 * as described above, we start again with a device offset of near_copies.
544 * So we effectively have another copy of the whole array further down all
545 * the drives, but with blocks on different drives.
546 * With this layout, and block is never stored twice on the one device.
547 *
548 * raid10_find_phys finds the sector offset of a given virtual sector
c93983bf 549 * on each device that it is on.
1da177e4
LT
550 *
551 * raid10_find_virt does the reverse mapping, from a device and a
552 * sector offset to a virtual address
553 */
554
f8c9e74f 555static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
1da177e4
LT
556{
557 int n,f;
558 sector_t sector;
559 sector_t chunk;
560 sector_t stripe;
561 int dev;
1da177e4 562 int slot = 0;
9a3152ab
JB
563 int last_far_set_start, last_far_set_size;
564
565 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
566 last_far_set_start *= geo->far_set_size;
567
568 last_far_set_size = geo->far_set_size;
569 last_far_set_size += (geo->raid_disks % geo->far_set_size);
1da177e4
LT
570
571 /* now calculate first sector/dev */
5cf00fcd
N
572 chunk = r10bio->sector >> geo->chunk_shift;
573 sector = r10bio->sector & geo->chunk_mask;
1da177e4 574
5cf00fcd 575 chunk *= geo->near_copies;
1da177e4 576 stripe = chunk;
5cf00fcd
N
577 dev = sector_div(stripe, geo->raid_disks);
578 if (geo->far_offset)
579 stripe *= geo->far_copies;
1da177e4 580
5cf00fcd 581 sector += stripe << geo->chunk_shift;
1da177e4
LT
582
583 /* and calculate all the others */
5cf00fcd 584 for (n = 0; n < geo->near_copies; n++) {
1da177e4 585 int d = dev;
475901af 586 int set;
1da177e4 587 sector_t s = sector;
1da177e4 588 r10bio->devs[slot].devnum = d;
4c0ca26b 589 r10bio->devs[slot].addr = s;
1da177e4
LT
590 slot++;
591
5cf00fcd 592 for (f = 1; f < geo->far_copies; f++) {
475901af 593 set = d / geo->far_set_size;
5cf00fcd 594 d += geo->near_copies;
475901af 595
9a3152ab
JB
596 if ((geo->raid_disks % geo->far_set_size) &&
597 (d > last_far_set_start)) {
598 d -= last_far_set_start;
599 d %= last_far_set_size;
600 d += last_far_set_start;
601 } else {
602 d %= geo->far_set_size;
603 d += geo->far_set_size * set;
604 }
5cf00fcd 605 s += geo->stride;
1da177e4
LT
606 r10bio->devs[slot].devnum = d;
607 r10bio->devs[slot].addr = s;
608 slot++;
609 }
610 dev++;
5cf00fcd 611 if (dev >= geo->raid_disks) {
1da177e4 612 dev = 0;
5cf00fcd 613 sector += (geo->chunk_mask + 1);
1da177e4
LT
614 }
615 }
f8c9e74f
N
616}
617
618static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
619{
620 struct geom *geo = &conf->geo;
621
622 if (conf->reshape_progress != MaxSector &&
623 ((r10bio->sector >= conf->reshape_progress) !=
624 conf->mddev->reshape_backwards)) {
625 set_bit(R10BIO_Previous, &r10bio->state);
626 geo = &conf->prev;
627 } else
628 clear_bit(R10BIO_Previous, &r10bio->state);
629
630 __raid10_find_phys(geo, r10bio);
1da177e4
LT
631}
632
e879a879 633static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
1da177e4
LT
634{
635 sector_t offset, chunk, vchunk;
f8c9e74f
N
636 /* Never use conf->prev as this is only called during resync
637 * or recovery, so reshape isn't happening
638 */
5cf00fcd 639 struct geom *geo = &conf->geo;
475901af
JB
640 int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
641 int far_set_size = geo->far_set_size;
9a3152ab
JB
642 int last_far_set_start;
643
644 if (geo->raid_disks % geo->far_set_size) {
645 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
646 last_far_set_start *= geo->far_set_size;
647
648 if (dev >= last_far_set_start) {
649 far_set_size = geo->far_set_size;
650 far_set_size += (geo->raid_disks % geo->far_set_size);
651 far_set_start = last_far_set_start;
652 }
653 }
1da177e4 654
5cf00fcd
N
655 offset = sector & geo->chunk_mask;
656 if (geo->far_offset) {
c93983bf 657 int fc;
5cf00fcd
N
658 chunk = sector >> geo->chunk_shift;
659 fc = sector_div(chunk, geo->far_copies);
660 dev -= fc * geo->near_copies;
475901af
JB
661 if (dev < far_set_start)
662 dev += far_set_size;
c93983bf 663 } else {
5cf00fcd
N
664 while (sector >= geo->stride) {
665 sector -= geo->stride;
475901af
JB
666 if (dev < (geo->near_copies + far_set_start))
667 dev += far_set_size - geo->near_copies;
c93983bf 668 else
5cf00fcd 669 dev -= geo->near_copies;
c93983bf 670 }
5cf00fcd 671 chunk = sector >> geo->chunk_shift;
c93983bf 672 }
5cf00fcd
N
673 vchunk = chunk * geo->raid_disks + dev;
674 sector_div(vchunk, geo->near_copies);
675 return (vchunk << geo->chunk_shift) + offset;
1da177e4
LT
676}
677
678/**
679 * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
680 * @q: request queue
cc371e66 681 * @bvm: properties of new bio
1da177e4
LT
682 * @biovec: the request that could be merged to it.
683 *
684 * Return amount of bytes we can accept at this offset
050b6615
N
685 * This requires checking for end-of-chunk if near_copies != raid_disks,
686 * and for subordinate merge_bvec_fns if merge_check_needed.
1da177e4 687 */
cc371e66
AK
688static int raid10_mergeable_bvec(struct request_queue *q,
689 struct bvec_merge_data *bvm,
690 struct bio_vec *biovec)
1da177e4 691{
fd01b88c 692 struct mddev *mddev = q->queuedata;
050b6615 693 struct r10conf *conf = mddev->private;
cc371e66 694 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
1da177e4 695 int max;
3ea7daa5 696 unsigned int chunk_sectors;
cc371e66 697 unsigned int bio_sectors = bvm->bi_size >> 9;
5cf00fcd 698 struct geom *geo = &conf->geo;
1da177e4 699
3ea7daa5 700 chunk_sectors = (conf->geo.chunk_mask & conf->prev.chunk_mask) + 1;
f8c9e74f
N
701 if (conf->reshape_progress != MaxSector &&
702 ((sector >= conf->reshape_progress) !=
703 conf->mddev->reshape_backwards))
704 geo = &conf->prev;
705
5cf00fcd 706 if (geo->near_copies < geo->raid_disks) {
050b6615
N
707 max = (chunk_sectors - ((sector & (chunk_sectors - 1))
708 + bio_sectors)) << 9;
709 if (max < 0)
710 /* bio_add cannot handle a negative return */
711 max = 0;
712 if (max <= biovec->bv_len && bio_sectors == 0)
713 return biovec->bv_len;
714 } else
715 max = biovec->bv_len;
716
717 if (mddev->merge_check_needed) {
e0ee7785
N
718 struct {
719 struct r10bio r10_bio;
720 struct r10dev devs[conf->copies];
721 } on_stack;
722 struct r10bio *r10_bio = &on_stack.r10_bio;
050b6615 723 int s;
f8c9e74f
N
724 if (conf->reshape_progress != MaxSector) {
725 /* Cannot give any guidance during reshape */
726 if (max <= biovec->bv_len && bio_sectors == 0)
727 return biovec->bv_len;
728 return 0;
729 }
e0ee7785
N
730 r10_bio->sector = sector;
731 raid10_find_phys(conf, r10_bio);
050b6615
N
732 rcu_read_lock();
733 for (s = 0; s < conf->copies; s++) {
e0ee7785 734 int disk = r10_bio->devs[s].devnum;
050b6615
N
735 struct md_rdev *rdev = rcu_dereference(
736 conf->mirrors[disk].rdev);
737 if (rdev && !test_bit(Faulty, &rdev->flags)) {
738 struct request_queue *q =
739 bdev_get_queue(rdev->bdev);
740 if (q->merge_bvec_fn) {
e0ee7785 741 bvm->bi_sector = r10_bio->devs[s].addr
050b6615
N
742 + rdev->data_offset;
743 bvm->bi_bdev = rdev->bdev;
744 max = min(max, q->merge_bvec_fn(
745 q, bvm, biovec));
746 }
747 }
748 rdev = rcu_dereference(conf->mirrors[disk].replacement);
749 if (rdev && !test_bit(Faulty, &rdev->flags)) {
750 struct request_queue *q =
751 bdev_get_queue(rdev->bdev);
752 if (q->merge_bvec_fn) {
e0ee7785 753 bvm->bi_sector = r10_bio->devs[s].addr
050b6615
N
754 + rdev->data_offset;
755 bvm->bi_bdev = rdev->bdev;
756 max = min(max, q->merge_bvec_fn(
757 q, bvm, biovec));
758 }
759 }
760 }
761 rcu_read_unlock();
762 }
763 return max;
1da177e4
LT
764}
765
766/*
767 * This routine returns the disk from which the requested read should
768 * be done. There is a per-array 'next expected sequential IO' sector
769 * number - if this matches on the next IO then we use the last disk.
770 * There is also a per-disk 'last know head position' sector that is
771 * maintained from IRQ contexts, both the normal and the resync IO
772 * completion handlers update this position correctly. If there is no
773 * perfect sequential match then we pick the disk whose head is closest.
774 *
775 * If there are 2 mirrors in the same 2 devices, performance degrades
776 * because position is mirror, not device based.
777 *
778 * The rdev for the device selected will have nr_pending incremented.
779 */
780
781/*
782 * FIXME: possibly should rethink readbalancing and do it differently
783 * depending on near_copies / far_copies geometry.
784 */
96c3fd1f
N
785static struct md_rdev *read_balance(struct r10conf *conf,
786 struct r10bio *r10_bio,
787 int *max_sectors)
1da177e4 788{
af3a2cd6 789 const sector_t this_sector = r10_bio->sector;
56d99121 790 int disk, slot;
856e08e2
N
791 int sectors = r10_bio->sectors;
792 int best_good_sectors;
56d99121 793 sector_t new_distance, best_dist;
3bbae04b 794 struct md_rdev *best_rdev, *rdev = NULL;
56d99121
N
795 int do_balance;
796 int best_slot;
5cf00fcd 797 struct geom *geo = &conf->geo;
1da177e4
LT
798
799 raid10_find_phys(conf, r10_bio);
800 rcu_read_lock();
56d99121 801retry:
856e08e2 802 sectors = r10_bio->sectors;
56d99121 803 best_slot = -1;
abbf098e 804 best_rdev = NULL;
56d99121 805 best_dist = MaxSector;
856e08e2 806 best_good_sectors = 0;
56d99121 807 do_balance = 1;
1da177e4
LT
808 /*
809 * Check if we can balance. We can balance on the whole
6cce3b23
N
810 * device if no resync is going on (recovery is ok), or below
811 * the resync window. We take the first readable disk when
812 * above the resync window.
1da177e4
LT
813 */
814 if (conf->mddev->recovery_cp < MaxSector
56d99121
N
815 && (this_sector + sectors >= conf->next_resync))
816 do_balance = 0;
1da177e4 817
56d99121 818 for (slot = 0; slot < conf->copies ; slot++) {
856e08e2
N
819 sector_t first_bad;
820 int bad_sectors;
821 sector_t dev_sector;
822
56d99121
N
823 if (r10_bio->devs[slot].bio == IO_BLOCKED)
824 continue;
1da177e4 825 disk = r10_bio->devs[slot].devnum;
abbf098e
N
826 rdev = rcu_dereference(conf->mirrors[disk].replacement);
827 if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
050b6615 828 test_bit(Unmerged, &rdev->flags) ||
abbf098e
N
829 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
830 rdev = rcu_dereference(conf->mirrors[disk].rdev);
050b6615
N
831 if (rdev == NULL ||
832 test_bit(Faulty, &rdev->flags) ||
833 test_bit(Unmerged, &rdev->flags))
abbf098e
N
834 continue;
835 if (!test_bit(In_sync, &rdev->flags) &&
836 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
56d99121
N
837 continue;
838
856e08e2
N
839 dev_sector = r10_bio->devs[slot].addr;
840 if (is_badblock(rdev, dev_sector, sectors,
841 &first_bad, &bad_sectors)) {
842 if (best_dist < MaxSector)
843 /* Already have a better slot */
844 continue;
845 if (first_bad <= dev_sector) {
846 /* Cannot read here. If this is the
847 * 'primary' device, then we must not read
848 * beyond 'bad_sectors' from another device.
849 */
850 bad_sectors -= (dev_sector - first_bad);
851 if (!do_balance && sectors > bad_sectors)
852 sectors = bad_sectors;
853 if (best_good_sectors > sectors)
854 best_good_sectors = sectors;
855 } else {
856 sector_t good_sectors =
857 first_bad - dev_sector;
858 if (good_sectors > best_good_sectors) {
859 best_good_sectors = good_sectors;
860 best_slot = slot;
abbf098e 861 best_rdev = rdev;
856e08e2
N
862 }
863 if (!do_balance)
864 /* Must read from here */
865 break;
866 }
867 continue;
868 } else
869 best_good_sectors = sectors;
870
56d99121
N
871 if (!do_balance)
872 break;
1da177e4 873
22dfdf52
N
874 /* This optimisation is debatable, and completely destroys
875 * sequential read speed for 'far copies' arrays. So only
876 * keep it for 'near' arrays, and review those later.
877 */
5cf00fcd 878 if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending))
1da177e4 879 break;
8ed3a195
KS
880
881 /* for far > 1 always use the lowest address */
5cf00fcd 882 if (geo->far_copies > 1)
56d99121 883 new_distance = r10_bio->devs[slot].addr;
8ed3a195 884 else
56d99121
N
885 new_distance = abs(r10_bio->devs[slot].addr -
886 conf->mirrors[disk].head_position);
887 if (new_distance < best_dist) {
888 best_dist = new_distance;
889 best_slot = slot;
abbf098e 890 best_rdev = rdev;
1da177e4
LT
891 }
892 }
abbf098e 893 if (slot >= conf->copies) {
56d99121 894 slot = best_slot;
abbf098e
N
895 rdev = best_rdev;
896 }
1da177e4 897
56d99121 898 if (slot >= 0) {
56d99121
N
899 atomic_inc(&rdev->nr_pending);
900 if (test_bit(Faulty, &rdev->flags)) {
901 /* Cannot risk returning a device that failed
902 * before we inc'ed nr_pending
903 */
904 rdev_dec_pending(rdev, conf->mddev);
905 goto retry;
906 }
907 r10_bio->read_slot = slot;
908 } else
96c3fd1f 909 rdev = NULL;
1da177e4 910 rcu_read_unlock();
856e08e2 911 *max_sectors = best_good_sectors;
1da177e4 912
96c3fd1f 913 return rdev;
1da177e4
LT
914}
915
cc4d1efd 916int md_raid10_congested(struct mddev *mddev, int bits)
0d129228 917{
e879a879 918 struct r10conf *conf = mddev->private;
0d129228
N
919 int i, ret = 0;
920
34db0cd6
N
921 if ((bits & (1 << BDI_async_congested)) &&
922 conf->pending_count >= max_queued_requests)
923 return 1;
924
0d129228 925 rcu_read_lock();
f8c9e74f
N
926 for (i = 0;
927 (i < conf->geo.raid_disks || i < conf->prev.raid_disks)
928 && ret == 0;
929 i++) {
3cb03002 930 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
0d129228 931 if (rdev && !test_bit(Faulty, &rdev->flags)) {
165125e1 932 struct request_queue *q = bdev_get_queue(rdev->bdev);
0d129228
N
933
934 ret |= bdi_congested(&q->backing_dev_info, bits);
935 }
936 }
937 rcu_read_unlock();
938 return ret;
939}
cc4d1efd
JB
940EXPORT_SYMBOL_GPL(md_raid10_congested);
941
942static int raid10_congested(void *data, int bits)
943{
944 struct mddev *mddev = data;
945
946 return mddev_congested(mddev, bits) ||
947 md_raid10_congested(mddev, bits);
948}
0d129228 949
e879a879 950static void flush_pending_writes(struct r10conf *conf)
a35e63ef
N
951{
952 /* Any writes that have been queued but are awaiting
953 * bitmap updates get flushed here.
a35e63ef 954 */
a35e63ef
N
955 spin_lock_irq(&conf->device_lock);
956
957 if (conf->pending_bio_list.head) {
958 struct bio *bio;
959 bio = bio_list_get(&conf->pending_bio_list);
34db0cd6 960 conf->pending_count = 0;
a35e63ef
N
961 spin_unlock_irq(&conf->device_lock);
962 /* flush any pending bitmap writes to disk
963 * before proceeding w/ I/O */
964 bitmap_unplug(conf->mddev->bitmap);
34db0cd6 965 wake_up(&conf->wait_barrier);
a35e63ef
N
966
967 while (bio) { /* submit pending writes */
968 struct bio *next = bio->bi_next;
969 bio->bi_next = NULL;
532a2a3f
SL
970 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
971 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
972 /* Just ignore it */
973 bio_endio(bio, 0);
974 else
975 generic_make_request(bio);
a35e63ef
N
976 bio = next;
977 }
a35e63ef
N
978 } else
979 spin_unlock_irq(&conf->device_lock);
a35e63ef 980}
7eaceacc 981
0a27ec96
N
982/* Barriers....
983 * Sometimes we need to suspend IO while we do something else,
984 * either some resync/recovery, or reconfigure the array.
985 * To do this we raise a 'barrier'.
986 * The 'barrier' is a counter that can be raised multiple times
987 * to count how many activities are happening which preclude
988 * normal IO.
989 * We can only raise the barrier if there is no pending IO.
990 * i.e. if nr_pending == 0.
991 * We choose only to raise the barrier if no-one is waiting for the
992 * barrier to go down. This means that as soon as an IO request
993 * is ready, no other operations which require a barrier will start
994 * until the IO request has had a chance.
995 *
996 * So: regular IO calls 'wait_barrier'. When that returns there
997 * is no backgroup IO happening, It must arrange to call
998 * allow_barrier when it has finished its IO.
999 * backgroup IO calls must call raise_barrier. Once that returns
1000 * there is no normal IO happeing. It must arrange to call
1001 * lower_barrier when the particular background IO completes.
1da177e4 1002 */
1da177e4 1003
e879a879 1004static void raise_barrier(struct r10conf *conf, int force)
1da177e4 1005{
6cce3b23 1006 BUG_ON(force && !conf->barrier);
1da177e4 1007 spin_lock_irq(&conf->resync_lock);
0a27ec96 1008
6cce3b23
N
1009 /* Wait until no block IO is waiting (unless 'force') */
1010 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
eed8c02e 1011 conf->resync_lock);
0a27ec96
N
1012
1013 /* block any new IO from starting */
1014 conf->barrier++;
1015
c3b328ac 1016 /* Now wait for all pending IO to complete */
0a27ec96
N
1017 wait_event_lock_irq(conf->wait_barrier,
1018 !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
eed8c02e 1019 conf->resync_lock);
0a27ec96
N
1020
1021 spin_unlock_irq(&conf->resync_lock);
1022}
1023
e879a879 1024static void lower_barrier(struct r10conf *conf)
0a27ec96
N
1025{
1026 unsigned long flags;
1027 spin_lock_irqsave(&conf->resync_lock, flags);
1028 conf->barrier--;
1029 spin_unlock_irqrestore(&conf->resync_lock, flags);
1030 wake_up(&conf->wait_barrier);
1031}
1032
e879a879 1033static void wait_barrier(struct r10conf *conf)
0a27ec96
N
1034{
1035 spin_lock_irq(&conf->resync_lock);
1036 if (conf->barrier) {
1037 conf->nr_waiting++;
d6b42dcb
N
1038 /* Wait for the barrier to drop.
1039 * However if there are already pending
1040 * requests (preventing the barrier from
1041 * rising completely), and the
1042 * pre-process bio queue isn't empty,
1043 * then don't wait, as we need to empty
1044 * that queue to get the nr_pending
1045 * count down.
1046 */
1047 wait_event_lock_irq(conf->wait_barrier,
1048 !conf->barrier ||
1049 (conf->nr_pending &&
1050 current->bio_list &&
1051 !bio_list_empty(current->bio_list)),
eed8c02e 1052 conf->resync_lock);
0a27ec96 1053 conf->nr_waiting--;
1da177e4 1054 }
0a27ec96 1055 conf->nr_pending++;
1da177e4
LT
1056 spin_unlock_irq(&conf->resync_lock);
1057}
1058
e879a879 1059static void allow_barrier(struct r10conf *conf)
0a27ec96
N
1060{
1061 unsigned long flags;
1062 spin_lock_irqsave(&conf->resync_lock, flags);
1063 conf->nr_pending--;
1064 spin_unlock_irqrestore(&conf->resync_lock, flags);
1065 wake_up(&conf->wait_barrier);
1066}
1067
e2d59925 1068static void freeze_array(struct r10conf *conf, int extra)
4443ae10
N
1069{
1070 /* stop syncio and normal IO and wait for everything to
f188593e 1071 * go quiet.
4443ae10 1072 * We increment barrier and nr_waiting, and then
e2d59925 1073 * wait until nr_pending match nr_queued+extra
1c830532
N
1074 * This is called in the context of one normal IO request
1075 * that has failed. Thus any sync request that might be pending
1076 * will be blocked by nr_pending, and we need to wait for
1077 * pending IO requests to complete or be queued for re-try.
e2d59925 1078 * Thus the number queued (nr_queued) plus this request (extra)
1c830532
N
1079 * must match the number of pending IOs (nr_pending) before
1080 * we continue.
4443ae10
N
1081 */
1082 spin_lock_irq(&conf->resync_lock);
1083 conf->barrier++;
1084 conf->nr_waiting++;
eed8c02e 1085 wait_event_lock_irq_cmd(conf->wait_barrier,
e2d59925 1086 conf->nr_pending == conf->nr_queued+extra,
eed8c02e
LC
1087 conf->resync_lock,
1088 flush_pending_writes(conf));
c3b328ac 1089
4443ae10
N
1090 spin_unlock_irq(&conf->resync_lock);
1091}
1092
e879a879 1093static void unfreeze_array(struct r10conf *conf)
4443ae10
N
1094{
1095 /* reverse the effect of the freeze */
1096 spin_lock_irq(&conf->resync_lock);
1097 conf->barrier--;
1098 conf->nr_waiting--;
1099 wake_up(&conf->wait_barrier);
1100 spin_unlock_irq(&conf->resync_lock);
1101}
1102
f8c9e74f
N
1103static sector_t choose_data_offset(struct r10bio *r10_bio,
1104 struct md_rdev *rdev)
1105{
1106 if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1107 test_bit(R10BIO_Previous, &r10_bio->state))
1108 return rdev->data_offset;
1109 else
1110 return rdev->new_data_offset;
1111}
1112
57c67df4
N
1113struct raid10_plug_cb {
1114 struct blk_plug_cb cb;
1115 struct bio_list pending;
1116 int pending_cnt;
1117};
1118
1119static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1120{
1121 struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1122 cb);
1123 struct mddev *mddev = plug->cb.data;
1124 struct r10conf *conf = mddev->private;
1125 struct bio *bio;
1126
874807a8 1127 if (from_schedule || current->bio_list) {
57c67df4
N
1128 spin_lock_irq(&conf->device_lock);
1129 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1130 conf->pending_count += plug->pending_cnt;
1131 spin_unlock_irq(&conf->device_lock);
ee0b0244 1132 wake_up(&conf->wait_barrier);
57c67df4
N
1133 md_wakeup_thread(mddev->thread);
1134 kfree(plug);
1135 return;
1136 }
1137
1138 /* we aren't scheduling, so we can do the write-out directly. */
1139 bio = bio_list_get(&plug->pending);
1140 bitmap_unplug(mddev->bitmap);
1141 wake_up(&conf->wait_barrier);
1142
1143 while (bio) { /* submit pending writes */
1144 struct bio *next = bio->bi_next;
1145 bio->bi_next = NULL;
32f9f570
SL
1146 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
1147 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1148 /* Just ignore it */
1149 bio_endio(bio, 0);
1150 else
1151 generic_make_request(bio);
57c67df4
N
1152 bio = next;
1153 }
1154 kfree(plug);
1155}
1156
b4fdcb02 1157static void make_request(struct mddev *mddev, struct bio * bio)
1da177e4 1158{
e879a879 1159 struct r10conf *conf = mddev->private;
9f2c9d12 1160 struct r10bio *r10_bio;
1da177e4
LT
1161 struct bio *read_bio;
1162 int i;
f8c9e74f 1163 sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
5cf00fcd 1164 int chunk_sects = chunk_mask + 1;
a362357b 1165 const int rw = bio_data_dir(bio);
2c7d46ec 1166 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
e9c7469b 1167 const unsigned long do_fua = (bio->bi_rw & REQ_FUA);
532a2a3f
SL
1168 const unsigned long do_discard = (bio->bi_rw
1169 & (REQ_DISCARD | REQ_SECURE));
c8dc9c65 1170 const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME);
6cce3b23 1171 unsigned long flags;
3cb03002 1172 struct md_rdev *blocked_rdev;
57c67df4
N
1173 struct blk_plug_cb *cb;
1174 struct raid10_plug_cb *plug = NULL;
d4432c23
N
1175 int sectors_handled;
1176 int max_sectors;
3ea7daa5 1177 int sectors;
1da177e4 1178
e9c7469b
TH
1179 if (unlikely(bio->bi_rw & REQ_FLUSH)) {
1180 md_flush_request(mddev, bio);
5a7bbad2 1181 return;
e5dcdd80
N
1182 }
1183
1da177e4
LT
1184 /* If this request crosses a chunk boundary, we need to
1185 * split it. This will only happen for 1 PAGE (or less) requests.
1186 */
5cf00fcd
N
1187 if (unlikely((bio->bi_sector & chunk_mask) + (bio->bi_size >> 9)
1188 > chunk_sects
f8c9e74f
N
1189 && (conf->geo.near_copies < conf->geo.raid_disks
1190 || conf->prev.near_copies < conf->prev.raid_disks))) {
1da177e4
LT
1191 struct bio_pair *bp;
1192 /* Sanity check -- queue functions should prevent this happening */
532a2a3f 1193 if ((bio->bi_vcnt != 1 && bio->bi_vcnt != 0) ||
1da177e4
LT
1194 bio->bi_idx != 0)
1195 goto bad_map;
1196 /* This is a one page bio that upper layers
1197 * refuse to split for us, so we need to split it.
1198 */
6feef531 1199 bp = bio_split(bio,
1da177e4 1200 chunk_sects - (bio->bi_sector & (chunk_sects - 1)) );
51e9ac77
N
1201
1202 /* Each of these 'make_request' calls will call 'wait_barrier'.
1203 * If the first succeeds but the second blocks due to the resync
1204 * thread raising the barrier, we will deadlock because the
1205 * IO to the underlying device will be queued in generic_make_request
1206 * and will never complete, so will never reduce nr_pending.
1207 * So increment nr_waiting here so no new raise_barriers will
1208 * succeed, and so the second wait_barrier cannot block.
1209 */
1210 spin_lock_irq(&conf->resync_lock);
1211 conf->nr_waiting++;
1212 spin_unlock_irq(&conf->resync_lock);
1213
5a7bbad2
CH
1214 make_request(mddev, &bp->bio1);
1215 make_request(mddev, &bp->bio2);
1da177e4 1216
51e9ac77
N
1217 spin_lock_irq(&conf->resync_lock);
1218 conf->nr_waiting--;
1219 wake_up(&conf->wait_barrier);
1220 spin_unlock_irq(&conf->resync_lock);
1221
1da177e4 1222 bio_pair_release(bp);
5a7bbad2 1223 return;
1da177e4 1224 bad_map:
128595ed
N
1225 printk("md/raid10:%s: make_request bug: can't convert block across chunks"
1226 " or bigger than %dk %llu %d\n", mdname(mddev), chunk_sects/2,
1da177e4
LT
1227 (unsigned long long)bio->bi_sector, bio->bi_size >> 10);
1228
6712ecf8 1229 bio_io_error(bio);
5a7bbad2 1230 return;
1da177e4
LT
1231 }
1232
3d310eb7 1233 md_write_start(mddev, bio);
06d91a5f 1234
1da177e4
LT
1235 /*
1236 * Register the new request and wait if the reconstruction
1237 * thread has put up a bar for new requests.
1238 * Continue immediately if no resync is active currently.
1239 */
0a27ec96 1240 wait_barrier(conf);
1da177e4 1241
3ea7daa5
N
1242 sectors = bio->bi_size >> 9;
1243 while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1244 bio->bi_sector < conf->reshape_progress &&
1245 bio->bi_sector + sectors > conf->reshape_progress) {
1246 /* IO spans the reshape position. Need to wait for
1247 * reshape to pass
1248 */
1249 allow_barrier(conf);
1250 wait_event(conf->wait_barrier,
1251 conf->reshape_progress <= bio->bi_sector ||
1252 conf->reshape_progress >= bio->bi_sector + sectors);
1253 wait_barrier(conf);
1254 }
1255 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1256 bio_data_dir(bio) == WRITE &&
1257 (mddev->reshape_backwards
1258 ? (bio->bi_sector < conf->reshape_safe &&
1259 bio->bi_sector + sectors > conf->reshape_progress)
1260 : (bio->bi_sector + sectors > conf->reshape_safe &&
1261 bio->bi_sector < conf->reshape_progress))) {
1262 /* Need to update reshape_position in metadata */
1263 mddev->reshape_position = conf->reshape_progress;
1264 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1265 set_bit(MD_CHANGE_PENDING, &mddev->flags);
1266 md_wakeup_thread(mddev->thread);
1267 wait_event(mddev->sb_wait,
1268 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
1269
1270 conf->reshape_safe = mddev->reshape_position;
1271 }
1272
1da177e4
LT
1273 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1274
1275 r10_bio->master_bio = bio;
3ea7daa5 1276 r10_bio->sectors = sectors;
1da177e4
LT
1277
1278 r10_bio->mddev = mddev;
1279 r10_bio->sector = bio->bi_sector;
6cce3b23 1280 r10_bio->state = 0;
1da177e4 1281
856e08e2
N
1282 /* We might need to issue multiple reads to different
1283 * devices if there are bad blocks around, so we keep
1284 * track of the number of reads in bio->bi_phys_segments.
1285 * If this is 0, there is only one r10_bio and no locking
1286 * will be needed when the request completes. If it is
1287 * non-zero, then it is the number of not-completed requests.
1288 */
1289 bio->bi_phys_segments = 0;
1290 clear_bit(BIO_SEG_VALID, &bio->bi_flags);
1291
a362357b 1292 if (rw == READ) {
1da177e4
LT
1293 /*
1294 * read balancing logic:
1295 */
96c3fd1f 1296 struct md_rdev *rdev;
856e08e2
N
1297 int slot;
1298
1299read_again:
96c3fd1f
N
1300 rdev = read_balance(conf, r10_bio, &max_sectors);
1301 if (!rdev) {
1da177e4 1302 raid_end_bio_io(r10_bio);
5a7bbad2 1303 return;
1da177e4 1304 }
96c3fd1f 1305 slot = r10_bio->read_slot;
1da177e4 1306
a167f663 1307 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
856e08e2
N
1308 md_trim_bio(read_bio, r10_bio->sector - bio->bi_sector,
1309 max_sectors);
1da177e4
LT
1310
1311 r10_bio->devs[slot].bio = read_bio;
abbf098e 1312 r10_bio->devs[slot].rdev = rdev;
1da177e4
LT
1313
1314 read_bio->bi_sector = r10_bio->devs[slot].addr +
f8c9e74f 1315 choose_data_offset(r10_bio, rdev);
96c3fd1f 1316 read_bio->bi_bdev = rdev->bdev;
1da177e4 1317 read_bio->bi_end_io = raid10_end_read_request;
7b6d91da 1318 read_bio->bi_rw = READ | do_sync;
1da177e4
LT
1319 read_bio->bi_private = r10_bio;
1320
856e08e2
N
1321 if (max_sectors < r10_bio->sectors) {
1322 /* Could not read all from this device, so we will
1323 * need another r10_bio.
1324 */
856e08e2
N
1325 sectors_handled = (r10_bio->sectors + max_sectors
1326 - bio->bi_sector);
1327 r10_bio->sectors = max_sectors;
1328 spin_lock_irq(&conf->device_lock);
1329 if (bio->bi_phys_segments == 0)
1330 bio->bi_phys_segments = 2;
1331 else
1332 bio->bi_phys_segments++;
1333 spin_unlock(&conf->device_lock);
1334 /* Cannot call generic_make_request directly
1335 * as that will be queued in __generic_make_request
1336 * and subsequent mempool_alloc might block
1337 * waiting for it. so hand bio over to raid10d.
1338 */
1339 reschedule_retry(r10_bio);
1340
1341 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1342
1343 r10_bio->master_bio = bio;
1344 r10_bio->sectors = ((bio->bi_size >> 9)
1345 - sectors_handled);
1346 r10_bio->state = 0;
1347 r10_bio->mddev = mddev;
1348 r10_bio->sector = bio->bi_sector + sectors_handled;
1349 goto read_again;
1350 } else
1351 generic_make_request(read_bio);
5a7bbad2 1352 return;
1da177e4
LT
1353 }
1354
1355 /*
1356 * WRITE:
1357 */
34db0cd6
N
1358 if (conf->pending_count >= max_queued_requests) {
1359 md_wakeup_thread(mddev->thread);
1360 wait_event(conf->wait_barrier,
1361 conf->pending_count < max_queued_requests);
1362 }
6bfe0b49 1363 /* first select target devices under rcu_lock and
1da177e4
LT
1364 * inc refcount on their rdev. Record them by setting
1365 * bios[x] to bio
d4432c23
N
1366 * If there are known/acknowledged bad blocks on any device
1367 * on which we have seen a write error, we want to avoid
1368 * writing to those blocks. This potentially requires several
1369 * writes to write around the bad blocks. Each set of writes
1370 * gets its own r10_bio with a set of bios attached. The number
1371 * of r10_bios is recored in bio->bi_phys_segments just as with
1372 * the read case.
1da177e4 1373 */
c3b328ac 1374
69335ef3 1375 r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1da177e4 1376 raid10_find_phys(conf, r10_bio);
d4432c23 1377retry_write:
cb6969e8 1378 blocked_rdev = NULL;
1da177e4 1379 rcu_read_lock();
d4432c23
N
1380 max_sectors = r10_bio->sectors;
1381
1da177e4
LT
1382 for (i = 0; i < conf->copies; i++) {
1383 int d = r10_bio->devs[i].devnum;
3cb03002 1384 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
475b0321
N
1385 struct md_rdev *rrdev = rcu_dereference(
1386 conf->mirrors[d].replacement);
4ca40c2c
N
1387 if (rdev == rrdev)
1388 rrdev = NULL;
6bfe0b49
DW
1389 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1390 atomic_inc(&rdev->nr_pending);
1391 blocked_rdev = rdev;
1392 break;
1393 }
475b0321
N
1394 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1395 atomic_inc(&rrdev->nr_pending);
1396 blocked_rdev = rrdev;
1397 break;
1398 }
e7c0c3fa
N
1399 if (rdev && (test_bit(Faulty, &rdev->flags)
1400 || test_bit(Unmerged, &rdev->flags)))
1401 rdev = NULL;
050b6615
N
1402 if (rrdev && (test_bit(Faulty, &rrdev->flags)
1403 || test_bit(Unmerged, &rrdev->flags)))
475b0321
N
1404 rrdev = NULL;
1405
d4432c23 1406 r10_bio->devs[i].bio = NULL;
475b0321 1407 r10_bio->devs[i].repl_bio = NULL;
e7c0c3fa
N
1408
1409 if (!rdev && !rrdev) {
6cce3b23 1410 set_bit(R10BIO_Degraded, &r10_bio->state);
d4432c23
N
1411 continue;
1412 }
e7c0c3fa 1413 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
d4432c23
N
1414 sector_t first_bad;
1415 sector_t dev_sector = r10_bio->devs[i].addr;
1416 int bad_sectors;
1417 int is_bad;
1418
1419 is_bad = is_badblock(rdev, dev_sector,
1420 max_sectors,
1421 &first_bad, &bad_sectors);
1422 if (is_bad < 0) {
1423 /* Mustn't write here until the bad block
1424 * is acknowledged
1425 */
1426 atomic_inc(&rdev->nr_pending);
1427 set_bit(BlockedBadBlocks, &rdev->flags);
1428 blocked_rdev = rdev;
1429 break;
1430 }
1431 if (is_bad && first_bad <= dev_sector) {
1432 /* Cannot write here at all */
1433 bad_sectors -= (dev_sector - first_bad);
1434 if (bad_sectors < max_sectors)
1435 /* Mustn't write more than bad_sectors
1436 * to other devices yet
1437 */
1438 max_sectors = bad_sectors;
1439 /* We don't set R10BIO_Degraded as that
1440 * only applies if the disk is missing,
1441 * so it might be re-added, and we want to
1442 * know to recover this chunk.
1443 * In this case the device is here, and the
1444 * fact that this chunk is not in-sync is
1445 * recorded in the bad block log.
1446 */
1447 continue;
1448 }
1449 if (is_bad) {
1450 int good_sectors = first_bad - dev_sector;
1451 if (good_sectors < max_sectors)
1452 max_sectors = good_sectors;
1453 }
6cce3b23 1454 }
e7c0c3fa
N
1455 if (rdev) {
1456 r10_bio->devs[i].bio = bio;
1457 atomic_inc(&rdev->nr_pending);
1458 }
475b0321
N
1459 if (rrdev) {
1460 r10_bio->devs[i].repl_bio = bio;
1461 atomic_inc(&rrdev->nr_pending);
1462 }
1da177e4
LT
1463 }
1464 rcu_read_unlock();
1465
6bfe0b49
DW
1466 if (unlikely(blocked_rdev)) {
1467 /* Have to wait for this device to get unblocked, then retry */
1468 int j;
1469 int d;
1470
475b0321 1471 for (j = 0; j < i; j++) {
6bfe0b49
DW
1472 if (r10_bio->devs[j].bio) {
1473 d = r10_bio->devs[j].devnum;
1474 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1475 }
475b0321 1476 if (r10_bio->devs[j].repl_bio) {
4ca40c2c 1477 struct md_rdev *rdev;
475b0321 1478 d = r10_bio->devs[j].devnum;
4ca40c2c
N
1479 rdev = conf->mirrors[d].replacement;
1480 if (!rdev) {
1481 /* Race with remove_disk */
1482 smp_mb();
1483 rdev = conf->mirrors[d].rdev;
1484 }
1485 rdev_dec_pending(rdev, mddev);
475b0321
N
1486 }
1487 }
6bfe0b49
DW
1488 allow_barrier(conf);
1489 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1490 wait_barrier(conf);
1491 goto retry_write;
1492 }
1493
d4432c23
N
1494 if (max_sectors < r10_bio->sectors) {
1495 /* We are splitting this into multiple parts, so
1496 * we need to prepare for allocating another r10_bio.
1497 */
1498 r10_bio->sectors = max_sectors;
1499 spin_lock_irq(&conf->device_lock);
1500 if (bio->bi_phys_segments == 0)
1501 bio->bi_phys_segments = 2;
1502 else
1503 bio->bi_phys_segments++;
1504 spin_unlock_irq(&conf->device_lock);
1505 }
1506 sectors_handled = r10_bio->sector + max_sectors - bio->bi_sector;
1507
4e78064f 1508 atomic_set(&r10_bio->remaining, 1);
d4432c23 1509 bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
06d91a5f 1510
1da177e4
LT
1511 for (i = 0; i < conf->copies; i++) {
1512 struct bio *mbio;
1513 int d = r10_bio->devs[i].devnum;
e7c0c3fa
N
1514 if (r10_bio->devs[i].bio) {
1515 struct md_rdev *rdev = conf->mirrors[d].rdev;
1516 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1517 md_trim_bio(mbio, r10_bio->sector - bio->bi_sector,
1518 max_sectors);
1519 r10_bio->devs[i].bio = mbio;
1520
1521 mbio->bi_sector = (r10_bio->devs[i].addr+
1522 choose_data_offset(r10_bio,
1523 rdev));
1524 mbio->bi_bdev = rdev->bdev;
1525 mbio->bi_end_io = raid10_end_write_request;
c8dc9c65
JL
1526 mbio->bi_rw =
1527 WRITE | do_sync | do_fua | do_discard | do_same;
e7c0c3fa
N
1528 mbio->bi_private = r10_bio;
1529
1530 atomic_inc(&r10_bio->remaining);
1531
1532 cb = blk_check_plugged(raid10_unplug, mddev,
1533 sizeof(*plug));
1534 if (cb)
1535 plug = container_of(cb, struct raid10_plug_cb,
1536 cb);
1537 else
1538 plug = NULL;
1539 spin_lock_irqsave(&conf->device_lock, flags);
1540 if (plug) {
1541 bio_list_add(&plug->pending, mbio);
1542 plug->pending_cnt++;
1543 } else {
1544 bio_list_add(&conf->pending_bio_list, mbio);
1545 conf->pending_count++;
1546 }
1547 spin_unlock_irqrestore(&conf->device_lock, flags);
1548 if (!plug)
1549 md_wakeup_thread(mddev->thread);
1550 }
57c67df4 1551
e7c0c3fa
N
1552 if (r10_bio->devs[i].repl_bio) {
1553 struct md_rdev *rdev = conf->mirrors[d].replacement;
1554 if (rdev == NULL) {
1555 /* Replacement just got moved to main 'rdev' */
1556 smp_mb();
1557 rdev = conf->mirrors[d].rdev;
1558 }
1559 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1560 md_trim_bio(mbio, r10_bio->sector - bio->bi_sector,
1561 max_sectors);
1562 r10_bio->devs[i].repl_bio = mbio;
1563
1564 mbio->bi_sector = (r10_bio->devs[i].addr +
1565 choose_data_offset(
1566 r10_bio, rdev));
1567 mbio->bi_bdev = rdev->bdev;
1568 mbio->bi_end_io = raid10_end_write_request;
c8dc9c65
JL
1569 mbio->bi_rw =
1570 WRITE | do_sync | do_fua | do_discard | do_same;
e7c0c3fa
N
1571 mbio->bi_private = r10_bio;
1572
1573 atomic_inc(&r10_bio->remaining);
1574 spin_lock_irqsave(&conf->device_lock, flags);
57c67df4
N
1575 bio_list_add(&conf->pending_bio_list, mbio);
1576 conf->pending_count++;
e7c0c3fa
N
1577 spin_unlock_irqrestore(&conf->device_lock, flags);
1578 if (!mddev_check_plugged(mddev))
1579 md_wakeup_thread(mddev->thread);
57c67df4 1580 }
1da177e4
LT
1581 }
1582
079fa166
N
1583 /* Don't remove the bias on 'remaining' (one_write_done) until
1584 * after checking if we need to go around again.
1585 */
a35e63ef 1586
d4432c23 1587 if (sectors_handled < (bio->bi_size >> 9)) {
079fa166 1588 one_write_done(r10_bio);
5e570289 1589 /* We need another r10_bio. It has already been counted
d4432c23
N
1590 * in bio->bi_phys_segments.
1591 */
1592 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1593
1594 r10_bio->master_bio = bio;
1595 r10_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
1596
1597 r10_bio->mddev = mddev;
1598 r10_bio->sector = bio->bi_sector + sectors_handled;
1599 r10_bio->state = 0;
1600 goto retry_write;
1601 }
079fa166
N
1602 one_write_done(r10_bio);
1603
1604 /* In case raid10d snuck in to freeze_array */
1605 wake_up(&conf->wait_barrier);
1da177e4
LT
1606}
1607
fd01b88c 1608static void status(struct seq_file *seq, struct mddev *mddev)
1da177e4 1609{
e879a879 1610 struct r10conf *conf = mddev->private;
1da177e4
LT
1611 int i;
1612
5cf00fcd 1613 if (conf->geo.near_copies < conf->geo.raid_disks)
9d8f0363 1614 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
5cf00fcd
N
1615 if (conf->geo.near_copies > 1)
1616 seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1617 if (conf->geo.far_copies > 1) {
1618 if (conf->geo.far_offset)
1619 seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
c93983bf 1620 else
5cf00fcd 1621 seq_printf(seq, " %d far-copies", conf->geo.far_copies);
c93983bf 1622 }
5cf00fcd
N
1623 seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1624 conf->geo.raid_disks - mddev->degraded);
1625 for (i = 0; i < conf->geo.raid_disks; i++)
1da177e4
LT
1626 seq_printf(seq, "%s",
1627 conf->mirrors[i].rdev &&
b2d444d7 1628 test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
1da177e4
LT
1629 seq_printf(seq, "]");
1630}
1631
700c7213
N
1632/* check if there are enough drives for
1633 * every block to appear on atleast one.
1634 * Don't consider the device numbered 'ignore'
1635 * as we might be about to remove it.
1636 */
f8c9e74f 1637static int _enough(struct r10conf *conf, struct geom *geo, int ignore)
700c7213
N
1638{
1639 int first = 0;
1640
1641 do {
1642 int n = conf->copies;
1643 int cnt = 0;
80b48124 1644 int this = first;
700c7213 1645 while (n--) {
80b48124
N
1646 if (conf->mirrors[this].rdev &&
1647 this != ignore)
700c7213 1648 cnt++;
80b48124 1649 this = (this+1) % geo->raid_disks;
700c7213
N
1650 }
1651 if (cnt == 0)
1652 return 0;
80b48124 1653 first = (first + geo->near_copies) % geo->raid_disks;
700c7213
N
1654 } while (first != 0);
1655 return 1;
1656}
1657
f8c9e74f
N
1658static int enough(struct r10conf *conf, int ignore)
1659{
1660 return _enough(conf, &conf->geo, ignore) &&
1661 _enough(conf, &conf->prev, ignore);
1662}
1663
fd01b88c 1664static void error(struct mddev *mddev, struct md_rdev *rdev)
1da177e4
LT
1665{
1666 char b[BDEVNAME_SIZE];
e879a879 1667 struct r10conf *conf = mddev->private;
1da177e4
LT
1668
1669 /*
1670 * If it is not operational, then we have already marked it as dead
1671 * else if it is the last working disks, ignore the error, let the
1672 * next level up know.
1673 * else mark the drive as failed
1674 */
b2d444d7 1675 if (test_bit(In_sync, &rdev->flags)
700c7213 1676 && !enough(conf, rdev->raid_disk))
1da177e4
LT
1677 /*
1678 * Don't fail the drive, just return an IO error.
1da177e4
LT
1679 */
1680 return;
c04be0aa
N
1681 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1682 unsigned long flags;
1683 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 1684 mddev->degraded++;
c04be0aa 1685 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
1686 /*
1687 * if recovery is running, make sure it aborts.
1688 */
dfc70645 1689 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1da177e4 1690 }
de393cde 1691 set_bit(Blocked, &rdev->flags);
b2d444d7 1692 set_bit(Faulty, &rdev->flags);
850b2b42 1693 set_bit(MD_CHANGE_DEVS, &mddev->flags);
067032bc
JP
1694 printk(KERN_ALERT
1695 "md/raid10:%s: Disk failure on %s, disabling device.\n"
1696 "md/raid10:%s: Operation continuing on %d devices.\n",
128595ed 1697 mdname(mddev), bdevname(rdev->bdev, b),
5cf00fcd 1698 mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1da177e4
LT
1699}
1700
e879a879 1701static void print_conf(struct r10conf *conf)
1da177e4
LT
1702{
1703 int i;
dc280d98 1704 struct raid10_info *tmp;
1da177e4 1705
128595ed 1706 printk(KERN_DEBUG "RAID10 conf printout:\n");
1da177e4 1707 if (!conf) {
128595ed 1708 printk(KERN_DEBUG "(!conf)\n");
1da177e4
LT
1709 return;
1710 }
5cf00fcd
N
1711 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1712 conf->geo.raid_disks);
1da177e4 1713
5cf00fcd 1714 for (i = 0; i < conf->geo.raid_disks; i++) {
1da177e4
LT
1715 char b[BDEVNAME_SIZE];
1716 tmp = conf->mirrors + i;
1717 if (tmp->rdev)
128595ed 1718 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
b2d444d7
N
1719 i, !test_bit(In_sync, &tmp->rdev->flags),
1720 !test_bit(Faulty, &tmp->rdev->flags),
1da177e4
LT
1721 bdevname(tmp->rdev->bdev,b));
1722 }
1723}
1724
e879a879 1725static void close_sync(struct r10conf *conf)
1da177e4 1726{
0a27ec96
N
1727 wait_barrier(conf);
1728 allow_barrier(conf);
1da177e4
LT
1729
1730 mempool_destroy(conf->r10buf_pool);
1731 conf->r10buf_pool = NULL;
1732}
1733
fd01b88c 1734static int raid10_spare_active(struct mddev *mddev)
1da177e4
LT
1735{
1736 int i;
e879a879 1737 struct r10conf *conf = mddev->private;
dc280d98 1738 struct raid10_info *tmp;
6b965620
N
1739 int count = 0;
1740 unsigned long flags;
1da177e4
LT
1741
1742 /*
1743 * Find all non-in_sync disks within the RAID10 configuration
1744 * and mark them in_sync
1745 */
5cf00fcd 1746 for (i = 0; i < conf->geo.raid_disks; i++) {
1da177e4 1747 tmp = conf->mirrors + i;
4ca40c2c
N
1748 if (tmp->replacement
1749 && tmp->replacement->recovery_offset == MaxSector
1750 && !test_bit(Faulty, &tmp->replacement->flags)
1751 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1752 /* Replacement has just become active */
1753 if (!tmp->rdev
1754 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1755 count++;
1756 if (tmp->rdev) {
1757 /* Replaced device not technically faulty,
1758 * but we need to be sure it gets removed
1759 * and never re-added.
1760 */
1761 set_bit(Faulty, &tmp->rdev->flags);
1762 sysfs_notify_dirent_safe(
1763 tmp->rdev->sysfs_state);
1764 }
1765 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1766 } else if (tmp->rdev
1767 && !test_bit(Faulty, &tmp->rdev->flags)
1768 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
6b965620 1769 count++;
2863b9eb 1770 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1da177e4
LT
1771 }
1772 }
6b965620
N
1773 spin_lock_irqsave(&conf->device_lock, flags);
1774 mddev->degraded -= count;
1775 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
1776
1777 print_conf(conf);
6b965620 1778 return count;
1da177e4
LT
1779}
1780
1781
fd01b88c 1782static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 1783{
e879a879 1784 struct r10conf *conf = mddev->private;
199050ea 1785 int err = -EEXIST;
1da177e4 1786 int mirror;
6c2fce2e 1787 int first = 0;
5cf00fcd 1788 int last = conf->geo.raid_disks - 1;
050b6615 1789 struct request_queue *q = bdev_get_queue(rdev->bdev);
1da177e4
LT
1790
1791 if (mddev->recovery_cp < MaxSector)
1792 /* only hot-add to in-sync arrays, as recovery is
1793 * very different from resync
1794 */
199050ea 1795 return -EBUSY;
f8c9e74f 1796 if (rdev->saved_raid_disk < 0 && !_enough(conf, &conf->prev, -1))
199050ea 1797 return -EINVAL;
1da177e4 1798
a53a6c85 1799 if (rdev->raid_disk >= 0)
6c2fce2e 1800 first = last = rdev->raid_disk;
1da177e4 1801
050b6615
N
1802 if (q->merge_bvec_fn) {
1803 set_bit(Unmerged, &rdev->flags);
1804 mddev->merge_check_needed = 1;
1805 }
1806
2c4193df 1807 if (rdev->saved_raid_disk >= first &&
6cce3b23
N
1808 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1809 mirror = rdev->saved_raid_disk;
1810 else
6c2fce2e 1811 mirror = first;
2bb77736 1812 for ( ; mirror <= last ; mirror++) {
dc280d98 1813 struct raid10_info *p = &conf->mirrors[mirror];
2bb77736
N
1814 if (p->recovery_disabled == mddev->recovery_disabled)
1815 continue;
b7044d41
N
1816 if (p->rdev) {
1817 if (!test_bit(WantReplacement, &p->rdev->flags) ||
1818 p->replacement != NULL)
1819 continue;
1820 clear_bit(In_sync, &rdev->flags);
1821 set_bit(Replacement, &rdev->flags);
1822 rdev->raid_disk = mirror;
1823 err = 0;
1824 disk_stack_limits(mddev->gendisk, rdev->bdev,
1825 rdev->data_offset << 9);
b7044d41
N
1826 conf->fullsync = 1;
1827 rcu_assign_pointer(p->replacement, rdev);
1828 break;
1829 }
1da177e4 1830
2bb77736
N
1831 disk_stack_limits(mddev->gendisk, rdev->bdev,
1832 rdev->data_offset << 9);
1da177e4 1833
2bb77736 1834 p->head_position = 0;
d890fa2b 1835 p->recovery_disabled = mddev->recovery_disabled - 1;
2bb77736
N
1836 rdev->raid_disk = mirror;
1837 err = 0;
1838 if (rdev->saved_raid_disk != mirror)
1839 conf->fullsync = 1;
1840 rcu_assign_pointer(p->rdev, rdev);
1841 break;
1842 }
050b6615
N
1843 if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
1844 /* Some requests might not have seen this new
1845 * merge_bvec_fn. We must wait for them to complete
1846 * before merging the device fully.
1847 * First we make sure any code which has tested
1848 * our function has submitted the request, then
1849 * we wait for all outstanding requests to complete.
1850 */
1851 synchronize_sched();
e2d59925
N
1852 freeze_array(conf, 0);
1853 unfreeze_array(conf);
050b6615
N
1854 clear_bit(Unmerged, &rdev->flags);
1855 }
ac5e7113 1856 md_integrity_add_rdev(rdev, mddev);
ed30be07 1857 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
532a2a3f
SL
1858 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1859
1da177e4 1860 print_conf(conf);
199050ea 1861 return err;
1da177e4
LT
1862}
1863
b8321b68 1864static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 1865{
e879a879 1866 struct r10conf *conf = mddev->private;
1da177e4 1867 int err = 0;
b8321b68 1868 int number = rdev->raid_disk;
c8ab903e 1869 struct md_rdev **rdevp;
dc280d98 1870 struct raid10_info *p = conf->mirrors + number;
1da177e4
LT
1871
1872 print_conf(conf);
c8ab903e
N
1873 if (rdev == p->rdev)
1874 rdevp = &p->rdev;
1875 else if (rdev == p->replacement)
1876 rdevp = &p->replacement;
1877 else
1878 return 0;
1879
1880 if (test_bit(In_sync, &rdev->flags) ||
1881 atomic_read(&rdev->nr_pending)) {
1882 err = -EBUSY;
1883 goto abort;
1884 }
1885 /* Only remove faulty devices if recovery
1886 * is not possible.
1887 */
1888 if (!test_bit(Faulty, &rdev->flags) &&
1889 mddev->recovery_disabled != p->recovery_disabled &&
4ca40c2c 1890 (!p->replacement || p->replacement == rdev) &&
63aced61 1891 number < conf->geo.raid_disks &&
c8ab903e
N
1892 enough(conf, -1)) {
1893 err = -EBUSY;
1894 goto abort;
1da177e4 1895 }
c8ab903e
N
1896 *rdevp = NULL;
1897 synchronize_rcu();
1898 if (atomic_read(&rdev->nr_pending)) {
1899 /* lost the race, try later */
1900 err = -EBUSY;
1901 *rdevp = rdev;
1902 goto abort;
4ca40c2c
N
1903 } else if (p->replacement) {
1904 /* We must have just cleared 'rdev' */
1905 p->rdev = p->replacement;
1906 clear_bit(Replacement, &p->replacement->flags);
1907 smp_mb(); /* Make sure other CPUs may see both as identical
1908 * but will never see neither -- if they are careful.
1909 */
1910 p->replacement = NULL;
1911 clear_bit(WantReplacement, &rdev->flags);
1912 } else
1913 /* We might have just remove the Replacement as faulty
1914 * Clear the flag just in case
1915 */
1916 clear_bit(WantReplacement, &rdev->flags);
1917
c8ab903e
N
1918 err = md_integrity_register(mddev);
1919
1da177e4
LT
1920abort:
1921
1922 print_conf(conf);
1923 return err;
1924}
1925
1926
6712ecf8 1927static void end_sync_read(struct bio *bio, int error)
1da177e4 1928{
9f2c9d12 1929 struct r10bio *r10_bio = bio->bi_private;
e879a879 1930 struct r10conf *conf = r10_bio->mddev->private;
778ca018 1931 int d;
1da177e4 1932
3ea7daa5
N
1933 if (bio == r10_bio->master_bio) {
1934 /* this is a reshape read */
1935 d = r10_bio->read_slot; /* really the read dev */
1936 } else
1937 d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
0eb3ff12
N
1938
1939 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1940 set_bit(R10BIO_Uptodate, &r10_bio->state);
e684e41d
N
1941 else
1942 /* The write handler will notice the lack of
1943 * R10BIO_Uptodate and record any errors etc
1944 */
4dbcdc75
N
1945 atomic_add(r10_bio->sectors,
1946 &conf->mirrors[d].rdev->corrected_errors);
1da177e4
LT
1947
1948 /* for reconstruct, we always reschedule after a read.
1949 * for resync, only after all reads
1950 */
73d5c38a 1951 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1da177e4
LT
1952 if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1953 atomic_dec_and_test(&r10_bio->remaining)) {
1954 /* we have read all the blocks,
1955 * do the comparison in process context in raid10d
1956 */
1957 reschedule_retry(r10_bio);
1958 }
1da177e4
LT
1959}
1960
9f2c9d12 1961static void end_sync_request(struct r10bio *r10_bio)
1da177e4 1962{
fd01b88c 1963 struct mddev *mddev = r10_bio->mddev;
dfc70645 1964
1da177e4
LT
1965 while (atomic_dec_and_test(&r10_bio->remaining)) {
1966 if (r10_bio->master_bio == NULL) {
1967 /* the primary of several recovery bios */
73d5c38a 1968 sector_t s = r10_bio->sectors;
1a0b7cd8
N
1969 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1970 test_bit(R10BIO_WriteError, &r10_bio->state))
749c55e9
N
1971 reschedule_retry(r10_bio);
1972 else
1973 put_buf(r10_bio);
73d5c38a 1974 md_done_sync(mddev, s, 1);
1da177e4
LT
1975 break;
1976 } else {
9f2c9d12 1977 struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1a0b7cd8
N
1978 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1979 test_bit(R10BIO_WriteError, &r10_bio->state))
749c55e9
N
1980 reschedule_retry(r10_bio);
1981 else
1982 put_buf(r10_bio);
1da177e4
LT
1983 r10_bio = r10_bio2;
1984 }
1985 }
1da177e4
LT
1986}
1987
5e570289
N
1988static void end_sync_write(struct bio *bio, int error)
1989{
1990 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
9f2c9d12 1991 struct r10bio *r10_bio = bio->bi_private;
fd01b88c 1992 struct mddev *mddev = r10_bio->mddev;
e879a879 1993 struct r10conf *conf = mddev->private;
5e570289
N
1994 int d;
1995 sector_t first_bad;
1996 int bad_sectors;
1997 int slot;
9ad1aefc 1998 int repl;
4ca40c2c 1999 struct md_rdev *rdev = NULL;
5e570289 2000
9ad1aefc
N
2001 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
2002 if (repl)
2003 rdev = conf->mirrors[d].replacement;
547414d1 2004 else
9ad1aefc 2005 rdev = conf->mirrors[d].rdev;
5e570289
N
2006
2007 if (!uptodate) {
9ad1aefc
N
2008 if (repl)
2009 md_error(mddev, rdev);
2010 else {
2011 set_bit(WriteErrorSeen, &rdev->flags);
b7044d41
N
2012 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2013 set_bit(MD_RECOVERY_NEEDED,
2014 &rdev->mddev->recovery);
9ad1aefc
N
2015 set_bit(R10BIO_WriteError, &r10_bio->state);
2016 }
2017 } else if (is_badblock(rdev,
5e570289
N
2018 r10_bio->devs[slot].addr,
2019 r10_bio->sectors,
2020 &first_bad, &bad_sectors))
2021 set_bit(R10BIO_MadeGood, &r10_bio->state);
2022
9ad1aefc 2023 rdev_dec_pending(rdev, mddev);
5e570289
N
2024
2025 end_sync_request(r10_bio);
2026}
2027
1da177e4
LT
2028/*
2029 * Note: sync and recover and handled very differently for raid10
2030 * This code is for resync.
2031 * For resync, we read through virtual addresses and read all blocks.
2032 * If there is any error, we schedule a write. The lowest numbered
2033 * drive is authoritative.
2034 * However requests come for physical address, so we need to map.
2035 * For every physical address there are raid_disks/copies virtual addresses,
2036 * which is always are least one, but is not necessarly an integer.
2037 * This means that a physical address can span multiple chunks, so we may
2038 * have to submit multiple io requests for a single sync request.
2039 */
2040/*
2041 * We check if all blocks are in-sync and only write to blocks that
2042 * aren't in sync
2043 */
9f2c9d12 2044static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
1da177e4 2045{
e879a879 2046 struct r10conf *conf = mddev->private;
1da177e4
LT
2047 int i, first;
2048 struct bio *tbio, *fbio;
f4380a91 2049 int vcnt;
1da177e4
LT
2050
2051 atomic_set(&r10_bio->remaining, 1);
2052
2053 /* find the first device with a block */
2054 for (i=0; i<conf->copies; i++)
2055 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
2056 break;
2057
2058 if (i == conf->copies)
2059 goto done;
2060
2061 first = i;
2062 fbio = r10_bio->devs[i].bio;
2063
f4380a91 2064 vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
1da177e4 2065 /* now find blocks with errors */
0eb3ff12
N
2066 for (i=0 ; i < conf->copies ; i++) {
2067 int j, d;
1da177e4 2068
1da177e4 2069 tbio = r10_bio->devs[i].bio;
0eb3ff12
N
2070
2071 if (tbio->bi_end_io != end_sync_read)
2072 continue;
2073 if (i == first)
1da177e4 2074 continue;
0eb3ff12
N
2075 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
2076 /* We know that the bi_io_vec layout is the same for
2077 * both 'first' and 'i', so we just compare them.
2078 * All vec entries are PAGE_SIZE;
2079 */
2080 for (j = 0; j < vcnt; j++)
2081 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
2082 page_address(tbio->bi_io_vec[j].bv_page),
5020ad7d 2083 fbio->bi_io_vec[j].bv_len))
0eb3ff12
N
2084 break;
2085 if (j == vcnt)
2086 continue;
7f7583d4 2087 atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
f84ee364
N
2088 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2089 /* Don't fix anything. */
2090 continue;
0eb3ff12 2091 }
f84ee364
N
2092 /* Ok, we need to write this bio, either to correct an
2093 * inconsistency or to correct an unreadable block.
1da177e4
LT
2094 * First we need to fixup bv_offset, bv_len and
2095 * bi_vecs, as the read request might have corrupted these
2096 */
2097 tbio->bi_vcnt = vcnt;
2098 tbio->bi_size = r10_bio->sectors << 9;
2099 tbio->bi_idx = 0;
2100 tbio->bi_phys_segments = 0;
1da177e4
LT
2101 tbio->bi_flags &= ~(BIO_POOL_MASK - 1);
2102 tbio->bi_flags |= 1 << BIO_UPTODATE;
2103 tbio->bi_next = NULL;
2104 tbio->bi_rw = WRITE;
2105 tbio->bi_private = r10_bio;
2106 tbio->bi_sector = r10_bio->devs[i].addr;
2107
2108 for (j=0; j < vcnt ; j++) {
2109 tbio->bi_io_vec[j].bv_offset = 0;
2110 tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
2111
2112 memcpy(page_address(tbio->bi_io_vec[j].bv_page),
2113 page_address(fbio->bi_io_vec[j].bv_page),
2114 PAGE_SIZE);
2115 }
2116 tbio->bi_end_io = end_sync_write;
2117
2118 d = r10_bio->devs[i].devnum;
2119 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2120 atomic_inc(&r10_bio->remaining);
2121 md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9);
2122
2123 tbio->bi_sector += conf->mirrors[d].rdev->data_offset;
2124 tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
2125 generic_make_request(tbio);
2126 }
2127
9ad1aefc
N
2128 /* Now write out to any replacement devices
2129 * that are active
2130 */
2131 for (i = 0; i < conf->copies; i++) {
2132 int j, d;
9ad1aefc
N
2133
2134 tbio = r10_bio->devs[i].repl_bio;
2135 if (!tbio || !tbio->bi_end_io)
2136 continue;
2137 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2138 && r10_bio->devs[i].bio != fbio)
2139 for (j = 0; j < vcnt; j++)
2140 memcpy(page_address(tbio->bi_io_vec[j].bv_page),
2141 page_address(fbio->bi_io_vec[j].bv_page),
2142 PAGE_SIZE);
2143 d = r10_bio->devs[i].devnum;
2144 atomic_inc(&r10_bio->remaining);
2145 md_sync_acct(conf->mirrors[d].replacement->bdev,
2146 tbio->bi_size >> 9);
2147 generic_make_request(tbio);
2148 }
2149
1da177e4
LT
2150done:
2151 if (atomic_dec_and_test(&r10_bio->remaining)) {
2152 md_done_sync(mddev, r10_bio->sectors, 1);
2153 put_buf(r10_bio);
2154 }
2155}
2156
2157/*
2158 * Now for the recovery code.
2159 * Recovery happens across physical sectors.
2160 * We recover all non-is_sync drives by finding the virtual address of
2161 * each, and then choose a working drive that also has that virt address.
2162 * There is a separate r10_bio for each non-in_sync drive.
2163 * Only the first two slots are in use. The first for reading,
2164 * The second for writing.
2165 *
2166 */
9f2c9d12 2167static void fix_recovery_read_error(struct r10bio *r10_bio)
5e570289
N
2168{
2169 /* We got a read error during recovery.
2170 * We repeat the read in smaller page-sized sections.
2171 * If a read succeeds, write it to the new device or record
2172 * a bad block if we cannot.
2173 * If a read fails, record a bad block on both old and
2174 * new devices.
2175 */
fd01b88c 2176 struct mddev *mddev = r10_bio->mddev;
e879a879 2177 struct r10conf *conf = mddev->private;
5e570289
N
2178 struct bio *bio = r10_bio->devs[0].bio;
2179 sector_t sect = 0;
2180 int sectors = r10_bio->sectors;
2181 int idx = 0;
2182 int dr = r10_bio->devs[0].devnum;
2183 int dw = r10_bio->devs[1].devnum;
2184
2185 while (sectors) {
2186 int s = sectors;
3cb03002 2187 struct md_rdev *rdev;
5e570289
N
2188 sector_t addr;
2189 int ok;
2190
2191 if (s > (PAGE_SIZE>>9))
2192 s = PAGE_SIZE >> 9;
2193
2194 rdev = conf->mirrors[dr].rdev;
2195 addr = r10_bio->devs[0].addr + sect,
2196 ok = sync_page_io(rdev,
2197 addr,
2198 s << 9,
2199 bio->bi_io_vec[idx].bv_page,
2200 READ, false);
2201 if (ok) {
2202 rdev = conf->mirrors[dw].rdev;
2203 addr = r10_bio->devs[1].addr + sect;
2204 ok = sync_page_io(rdev,
2205 addr,
2206 s << 9,
2207 bio->bi_io_vec[idx].bv_page,
2208 WRITE, false);
b7044d41 2209 if (!ok) {
5e570289 2210 set_bit(WriteErrorSeen, &rdev->flags);
b7044d41
N
2211 if (!test_and_set_bit(WantReplacement,
2212 &rdev->flags))
2213 set_bit(MD_RECOVERY_NEEDED,
2214 &rdev->mddev->recovery);
2215 }
5e570289
N
2216 }
2217 if (!ok) {
2218 /* We don't worry if we cannot set a bad block -
2219 * it really is bad so there is no loss in not
2220 * recording it yet
2221 */
2222 rdev_set_badblocks(rdev, addr, s, 0);
2223
2224 if (rdev != conf->mirrors[dw].rdev) {
2225 /* need bad block on destination too */
3cb03002 2226 struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
5e570289
N
2227 addr = r10_bio->devs[1].addr + sect;
2228 ok = rdev_set_badblocks(rdev2, addr, s, 0);
2229 if (!ok) {
2230 /* just abort the recovery */
2231 printk(KERN_NOTICE
2232 "md/raid10:%s: recovery aborted"
2233 " due to read error\n",
2234 mdname(mddev));
2235
2236 conf->mirrors[dw].recovery_disabled
2237 = mddev->recovery_disabled;
2238 set_bit(MD_RECOVERY_INTR,
2239 &mddev->recovery);
2240 break;
2241 }
2242 }
2243 }
2244
2245 sectors -= s;
2246 sect += s;
2247 idx++;
2248 }
2249}
1da177e4 2250
9f2c9d12 2251static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
1da177e4 2252{
e879a879 2253 struct r10conf *conf = mddev->private;
c65060ad 2254 int d;
24afd80d 2255 struct bio *wbio, *wbio2;
1da177e4 2256
5e570289
N
2257 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2258 fix_recovery_read_error(r10_bio);
2259 end_sync_request(r10_bio);
2260 return;
2261 }
2262
c65060ad
NK
2263 /*
2264 * share the pages with the first bio
1da177e4
LT
2265 * and submit the write request
2266 */
1da177e4 2267 d = r10_bio->devs[1].devnum;
24afd80d
N
2268 wbio = r10_bio->devs[1].bio;
2269 wbio2 = r10_bio->devs[1].repl_bio;
2270 if (wbio->bi_end_io) {
2271 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2272 md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9);
2273 generic_make_request(wbio);
2274 }
2275 if (wbio2 && wbio2->bi_end_io) {
2276 atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2277 md_sync_acct(conf->mirrors[d].replacement->bdev,
2278 wbio2->bi_size >> 9);
2279 generic_make_request(wbio2);
2280 }
1da177e4
LT
2281}
2282
2283
1e50915f
RB
2284/*
2285 * Used by fix_read_error() to decay the per rdev read_errors.
2286 * We halve the read error count for every hour that has elapsed
2287 * since the last recorded read error.
2288 *
2289 */
fd01b88c 2290static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
1e50915f
RB
2291{
2292 struct timespec cur_time_mon;
2293 unsigned long hours_since_last;
2294 unsigned int read_errors = atomic_read(&rdev->read_errors);
2295
2296 ktime_get_ts(&cur_time_mon);
2297
2298 if (rdev->last_read_error.tv_sec == 0 &&
2299 rdev->last_read_error.tv_nsec == 0) {
2300 /* first time we've seen a read error */
2301 rdev->last_read_error = cur_time_mon;
2302 return;
2303 }
2304
2305 hours_since_last = (cur_time_mon.tv_sec -
2306 rdev->last_read_error.tv_sec) / 3600;
2307
2308 rdev->last_read_error = cur_time_mon;
2309
2310 /*
2311 * if hours_since_last is > the number of bits in read_errors
2312 * just set read errors to 0. We do this to avoid
2313 * overflowing the shift of read_errors by hours_since_last.
2314 */
2315 if (hours_since_last >= 8 * sizeof(read_errors))
2316 atomic_set(&rdev->read_errors, 0);
2317 else
2318 atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2319}
2320
3cb03002 2321static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
58c54fcc
N
2322 int sectors, struct page *page, int rw)
2323{
2324 sector_t first_bad;
2325 int bad_sectors;
2326
2327 if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2328 && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2329 return -1;
2330 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
2331 /* success */
2332 return 1;
b7044d41 2333 if (rw == WRITE) {
58c54fcc 2334 set_bit(WriteErrorSeen, &rdev->flags);
b7044d41
N
2335 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2336 set_bit(MD_RECOVERY_NEEDED,
2337 &rdev->mddev->recovery);
2338 }
58c54fcc
N
2339 /* need to record an error - either for the block or the device */
2340 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2341 md_error(rdev->mddev, rdev);
2342 return 0;
2343}
2344
1da177e4
LT
2345/*
2346 * This is a kernel thread which:
2347 *
2348 * 1. Retries failed read operations on working mirrors.
2349 * 2. Updates the raid superblock when problems encounter.
6814d536 2350 * 3. Performs writes following reads for array synchronising.
1da177e4
LT
2351 */
2352
e879a879 2353static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
6814d536
N
2354{
2355 int sect = 0; /* Offset from r10_bio->sector */
2356 int sectors = r10_bio->sectors;
3cb03002 2357 struct md_rdev*rdev;
1e50915f 2358 int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
0544a21d 2359 int d = r10_bio->devs[r10_bio->read_slot].devnum;
1e50915f 2360
7c4e06ff
N
2361 /* still own a reference to this rdev, so it cannot
2362 * have been cleared recently.
2363 */
2364 rdev = conf->mirrors[d].rdev;
1e50915f 2365
7c4e06ff
N
2366 if (test_bit(Faulty, &rdev->flags))
2367 /* drive has already been failed, just ignore any
2368 more fix_read_error() attempts */
2369 return;
1e50915f 2370
7c4e06ff
N
2371 check_decay_read_errors(mddev, rdev);
2372 atomic_inc(&rdev->read_errors);
2373 if (atomic_read(&rdev->read_errors) > max_read_errors) {
2374 char b[BDEVNAME_SIZE];
2375 bdevname(rdev->bdev, b);
1e50915f 2376
7c4e06ff
N
2377 printk(KERN_NOTICE
2378 "md/raid10:%s: %s: Raid device exceeded "
2379 "read_error threshold [cur %d:max %d]\n",
2380 mdname(mddev), b,
2381 atomic_read(&rdev->read_errors), max_read_errors);
2382 printk(KERN_NOTICE
2383 "md/raid10:%s: %s: Failing raid device\n",
2384 mdname(mddev), b);
2385 md_error(mddev, conf->mirrors[d].rdev);
fae8cc5e 2386 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
7c4e06ff 2387 return;
1e50915f 2388 }
1e50915f 2389
6814d536
N
2390 while(sectors) {
2391 int s = sectors;
2392 int sl = r10_bio->read_slot;
2393 int success = 0;
2394 int start;
2395
2396 if (s > (PAGE_SIZE>>9))
2397 s = PAGE_SIZE >> 9;
2398
2399 rcu_read_lock();
2400 do {
8dbed5ce
N
2401 sector_t first_bad;
2402 int bad_sectors;
2403
0544a21d 2404 d = r10_bio->devs[sl].devnum;
6814d536
N
2405 rdev = rcu_dereference(conf->mirrors[d].rdev);
2406 if (rdev &&
050b6615 2407 !test_bit(Unmerged, &rdev->flags) &&
8dbed5ce
N
2408 test_bit(In_sync, &rdev->flags) &&
2409 is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2410 &first_bad, &bad_sectors) == 0) {
6814d536
N
2411 atomic_inc(&rdev->nr_pending);
2412 rcu_read_unlock();
2b193363 2413 success = sync_page_io(rdev,
6814d536 2414 r10_bio->devs[sl].addr +
ccebd4c4 2415 sect,
6814d536 2416 s<<9,
ccebd4c4 2417 conf->tmppage, READ, false);
6814d536
N
2418 rdev_dec_pending(rdev, mddev);
2419 rcu_read_lock();
2420 if (success)
2421 break;
2422 }
2423 sl++;
2424 if (sl == conf->copies)
2425 sl = 0;
2426 } while (!success && sl != r10_bio->read_slot);
2427 rcu_read_unlock();
2428
2429 if (!success) {
58c54fcc
N
2430 /* Cannot read from anywhere, just mark the block
2431 * as bad on the first device to discourage future
2432 * reads.
2433 */
6814d536 2434 int dn = r10_bio->devs[r10_bio->read_slot].devnum;
58c54fcc
N
2435 rdev = conf->mirrors[dn].rdev;
2436
2437 if (!rdev_set_badblocks(
2438 rdev,
2439 r10_bio->devs[r10_bio->read_slot].addr
2440 + sect,
fae8cc5e 2441 s, 0)) {
58c54fcc 2442 md_error(mddev, rdev);
fae8cc5e
N
2443 r10_bio->devs[r10_bio->read_slot].bio
2444 = IO_BLOCKED;
2445 }
6814d536
N
2446 break;
2447 }
2448
2449 start = sl;
2450 /* write it back and re-read */
2451 rcu_read_lock();
2452 while (sl != r10_bio->read_slot) {
67b8dc4b 2453 char b[BDEVNAME_SIZE];
0544a21d 2454
6814d536
N
2455 if (sl==0)
2456 sl = conf->copies;
2457 sl--;
2458 d = r10_bio->devs[sl].devnum;
2459 rdev = rcu_dereference(conf->mirrors[d].rdev);
1294b9c9 2460 if (!rdev ||
050b6615 2461 test_bit(Unmerged, &rdev->flags) ||
1294b9c9
N
2462 !test_bit(In_sync, &rdev->flags))
2463 continue;
2464
2465 atomic_inc(&rdev->nr_pending);
2466 rcu_read_unlock();
58c54fcc
N
2467 if (r10_sync_page_io(rdev,
2468 r10_bio->devs[sl].addr +
2469 sect,
055d3747 2470 s, conf->tmppage, WRITE)
1294b9c9
N
2471 == 0) {
2472 /* Well, this device is dead */
2473 printk(KERN_NOTICE
2474 "md/raid10:%s: read correction "
2475 "write failed"
2476 " (%d sectors at %llu on %s)\n",
2477 mdname(mddev), s,
2478 (unsigned long long)(
f8c9e74f
N
2479 sect +
2480 choose_data_offset(r10_bio,
2481 rdev)),
1294b9c9
N
2482 bdevname(rdev->bdev, b));
2483 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2484 "drive\n",
2485 mdname(mddev),
2486 bdevname(rdev->bdev, b));
6814d536 2487 }
1294b9c9
N
2488 rdev_dec_pending(rdev, mddev);
2489 rcu_read_lock();
6814d536
N
2490 }
2491 sl = start;
2492 while (sl != r10_bio->read_slot) {
1294b9c9 2493 char b[BDEVNAME_SIZE];
0544a21d 2494
6814d536
N
2495 if (sl==0)
2496 sl = conf->copies;
2497 sl--;
2498 d = r10_bio->devs[sl].devnum;
2499 rdev = rcu_dereference(conf->mirrors[d].rdev);
1294b9c9
N
2500 if (!rdev ||
2501 !test_bit(In_sync, &rdev->flags))
2502 continue;
6814d536 2503
1294b9c9
N
2504 atomic_inc(&rdev->nr_pending);
2505 rcu_read_unlock();
58c54fcc
N
2506 switch (r10_sync_page_io(rdev,
2507 r10_bio->devs[sl].addr +
2508 sect,
055d3747 2509 s, conf->tmppage,
58c54fcc
N
2510 READ)) {
2511 case 0:
1294b9c9
N
2512 /* Well, this device is dead */
2513 printk(KERN_NOTICE
2514 "md/raid10:%s: unable to read back "
2515 "corrected sectors"
2516 " (%d sectors at %llu on %s)\n",
2517 mdname(mddev), s,
2518 (unsigned long long)(
f8c9e74f
N
2519 sect +
2520 choose_data_offset(r10_bio, rdev)),
1294b9c9
N
2521 bdevname(rdev->bdev, b));
2522 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
2523 "drive\n",
2524 mdname(mddev),
2525 bdevname(rdev->bdev, b));
58c54fcc
N
2526 break;
2527 case 1:
1294b9c9
N
2528 printk(KERN_INFO
2529 "md/raid10:%s: read error corrected"
2530 " (%d sectors at %llu on %s)\n",
2531 mdname(mddev), s,
2532 (unsigned long long)(
f8c9e74f
N
2533 sect +
2534 choose_data_offset(r10_bio, rdev)),
1294b9c9
N
2535 bdevname(rdev->bdev, b));
2536 atomic_add(s, &rdev->corrected_errors);
6814d536 2537 }
1294b9c9
N
2538
2539 rdev_dec_pending(rdev, mddev);
2540 rcu_read_lock();
6814d536
N
2541 }
2542 rcu_read_unlock();
2543
2544 sectors -= s;
2545 sect += s;
2546 }
2547}
2548
bd870a16
N
2549static void bi_complete(struct bio *bio, int error)
2550{
2551 complete((struct completion *)bio->bi_private);
2552}
2553
2554static int submit_bio_wait(int rw, struct bio *bio)
2555{
2556 struct completion event;
2557 rw |= REQ_SYNC;
2558
2559 init_completion(&event);
2560 bio->bi_private = &event;
2561 bio->bi_end_io = bi_complete;
2562 submit_bio(rw, bio);
2563 wait_for_completion(&event);
2564
2565 return test_bit(BIO_UPTODATE, &bio->bi_flags);
2566}
2567
9f2c9d12 2568static int narrow_write_error(struct r10bio *r10_bio, int i)
bd870a16
N
2569{
2570 struct bio *bio = r10_bio->master_bio;
fd01b88c 2571 struct mddev *mddev = r10_bio->mddev;
e879a879 2572 struct r10conf *conf = mddev->private;
3cb03002 2573 struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
bd870a16
N
2574 /* bio has the data to be written to slot 'i' where
2575 * we just recently had a write error.
2576 * We repeatedly clone the bio and trim down to one block,
2577 * then try the write. Where the write fails we record
2578 * a bad block.
2579 * It is conceivable that the bio doesn't exactly align with
2580 * blocks. We must handle this.
2581 *
2582 * We currently own a reference to the rdev.
2583 */
2584
2585 int block_sectors;
2586 sector_t sector;
2587 int sectors;
2588 int sect_to_write = r10_bio->sectors;
2589 int ok = 1;
2590
2591 if (rdev->badblocks.shift < 0)
2592 return 0;
2593
2594 block_sectors = 1 << rdev->badblocks.shift;
2595 sector = r10_bio->sector;
2596 sectors = ((r10_bio->sector + block_sectors)
2597 & ~(sector_t)(block_sectors - 1))
2598 - sector;
2599
2600 while (sect_to_write) {
2601 struct bio *wbio;
2602 if (sectors > sect_to_write)
2603 sectors = sect_to_write;
2604 /* Write at 'sector' for 'sectors' */
2605 wbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
2606 md_trim_bio(wbio, sector - bio->bi_sector, sectors);
2607 wbio->bi_sector = (r10_bio->devs[i].addr+
f8c9e74f 2608 choose_data_offset(r10_bio, rdev) +
bd870a16
N
2609 (sector - r10_bio->sector));
2610 wbio->bi_bdev = rdev->bdev;
2611 if (submit_bio_wait(WRITE, wbio) == 0)
2612 /* Failure! */
2613 ok = rdev_set_badblocks(rdev, sector,
2614 sectors, 0)
2615 && ok;
2616
2617 bio_put(wbio);
2618 sect_to_write -= sectors;
2619 sector += sectors;
2620 sectors = block_sectors;
2621 }
2622 return ok;
2623}
2624
9f2c9d12 2625static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
560f8e55
N
2626{
2627 int slot = r10_bio->read_slot;
560f8e55 2628 struct bio *bio;
e879a879 2629 struct r10conf *conf = mddev->private;
abbf098e 2630 struct md_rdev *rdev = r10_bio->devs[slot].rdev;
560f8e55
N
2631 char b[BDEVNAME_SIZE];
2632 unsigned long do_sync;
856e08e2 2633 int max_sectors;
560f8e55
N
2634
2635 /* we got a read error. Maybe the drive is bad. Maybe just
2636 * the block and we can fix it.
2637 * We freeze all other IO, and try reading the block from
2638 * other devices. When we find one, we re-write
2639 * and check it that fixes the read error.
2640 * This is all done synchronously while the array is
2641 * frozen.
2642 */
fae8cc5e
N
2643 bio = r10_bio->devs[slot].bio;
2644 bdevname(bio->bi_bdev, b);
2645 bio_put(bio);
2646 r10_bio->devs[slot].bio = NULL;
2647
560f8e55 2648 if (mddev->ro == 0) {
e2d59925 2649 freeze_array(conf, 1);
560f8e55
N
2650 fix_read_error(conf, mddev, r10_bio);
2651 unfreeze_array(conf);
fae8cc5e
N
2652 } else
2653 r10_bio->devs[slot].bio = IO_BLOCKED;
2654
abbf098e 2655 rdev_dec_pending(rdev, mddev);
560f8e55 2656
7399c31b 2657read_more:
96c3fd1f
N
2658 rdev = read_balance(conf, r10_bio, &max_sectors);
2659 if (rdev == NULL) {
560f8e55
N
2660 printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O"
2661 " read error for block %llu\n",
7399c31b 2662 mdname(mddev), b,
560f8e55
N
2663 (unsigned long long)r10_bio->sector);
2664 raid_end_bio_io(r10_bio);
560f8e55
N
2665 return;
2666 }
2667
2668 do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC);
560f8e55 2669 slot = r10_bio->read_slot;
560f8e55
N
2670 printk_ratelimited(
2671 KERN_ERR
055d3747 2672 "md/raid10:%s: %s: redirecting "
560f8e55
N
2673 "sector %llu to another mirror\n",
2674 mdname(mddev),
2675 bdevname(rdev->bdev, b),
2676 (unsigned long long)r10_bio->sector);
2677 bio = bio_clone_mddev(r10_bio->master_bio,
2678 GFP_NOIO, mddev);
7399c31b
N
2679 md_trim_bio(bio,
2680 r10_bio->sector - bio->bi_sector,
2681 max_sectors);
560f8e55 2682 r10_bio->devs[slot].bio = bio;
abbf098e 2683 r10_bio->devs[slot].rdev = rdev;
560f8e55 2684 bio->bi_sector = r10_bio->devs[slot].addr
f8c9e74f 2685 + choose_data_offset(r10_bio, rdev);
560f8e55
N
2686 bio->bi_bdev = rdev->bdev;
2687 bio->bi_rw = READ | do_sync;
2688 bio->bi_private = r10_bio;
2689 bio->bi_end_io = raid10_end_read_request;
7399c31b
N
2690 if (max_sectors < r10_bio->sectors) {
2691 /* Drat - have to split this up more */
2692 struct bio *mbio = r10_bio->master_bio;
2693 int sectors_handled =
2694 r10_bio->sector + max_sectors
2695 - mbio->bi_sector;
2696 r10_bio->sectors = max_sectors;
2697 spin_lock_irq(&conf->device_lock);
2698 if (mbio->bi_phys_segments == 0)
2699 mbio->bi_phys_segments = 2;
2700 else
2701 mbio->bi_phys_segments++;
2702 spin_unlock_irq(&conf->device_lock);
2703 generic_make_request(bio);
7399c31b
N
2704
2705 r10_bio = mempool_alloc(conf->r10bio_pool,
2706 GFP_NOIO);
2707 r10_bio->master_bio = mbio;
2708 r10_bio->sectors = (mbio->bi_size >> 9)
2709 - sectors_handled;
2710 r10_bio->state = 0;
2711 set_bit(R10BIO_ReadError,
2712 &r10_bio->state);
2713 r10_bio->mddev = mddev;
2714 r10_bio->sector = mbio->bi_sector
2715 + sectors_handled;
2716
2717 goto read_more;
2718 } else
2719 generic_make_request(bio);
560f8e55
N
2720}
2721
e879a879 2722static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
749c55e9
N
2723{
2724 /* Some sort of write request has finished and it
2725 * succeeded in writing where we thought there was a
2726 * bad block. So forget the bad block.
1a0b7cd8
N
2727 * Or possibly if failed and we need to record
2728 * a bad block.
749c55e9
N
2729 */
2730 int m;
3cb03002 2731 struct md_rdev *rdev;
749c55e9
N
2732
2733 if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2734 test_bit(R10BIO_IsRecover, &r10_bio->state)) {
1a0b7cd8
N
2735 for (m = 0; m < conf->copies; m++) {
2736 int dev = r10_bio->devs[m].devnum;
2737 rdev = conf->mirrors[dev].rdev;
2738 if (r10_bio->devs[m].bio == NULL)
2739 continue;
2740 if (test_bit(BIO_UPTODATE,
749c55e9 2741 &r10_bio->devs[m].bio->bi_flags)) {
749c55e9
N
2742 rdev_clear_badblocks(
2743 rdev,
2744 r10_bio->devs[m].addr,
c6563a8c 2745 r10_bio->sectors, 0);
1a0b7cd8
N
2746 } else {
2747 if (!rdev_set_badblocks(
2748 rdev,
2749 r10_bio->devs[m].addr,
2750 r10_bio->sectors, 0))
2751 md_error(conf->mddev, rdev);
749c55e9 2752 }
9ad1aefc
N
2753 rdev = conf->mirrors[dev].replacement;
2754 if (r10_bio->devs[m].repl_bio == NULL)
2755 continue;
2756 if (test_bit(BIO_UPTODATE,
2757 &r10_bio->devs[m].repl_bio->bi_flags)) {
2758 rdev_clear_badblocks(
2759 rdev,
2760 r10_bio->devs[m].addr,
c6563a8c 2761 r10_bio->sectors, 0);
9ad1aefc
N
2762 } else {
2763 if (!rdev_set_badblocks(
2764 rdev,
2765 r10_bio->devs[m].addr,
2766 r10_bio->sectors, 0))
2767 md_error(conf->mddev, rdev);
2768 }
1a0b7cd8 2769 }
749c55e9
N
2770 put_buf(r10_bio);
2771 } else {
bd870a16
N
2772 for (m = 0; m < conf->copies; m++) {
2773 int dev = r10_bio->devs[m].devnum;
2774 struct bio *bio = r10_bio->devs[m].bio;
2775 rdev = conf->mirrors[dev].rdev;
2776 if (bio == IO_MADE_GOOD) {
749c55e9
N
2777 rdev_clear_badblocks(
2778 rdev,
2779 r10_bio->devs[m].addr,
c6563a8c 2780 r10_bio->sectors, 0);
749c55e9 2781 rdev_dec_pending(rdev, conf->mddev);
bd870a16
N
2782 } else if (bio != NULL &&
2783 !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
2784 if (!narrow_write_error(r10_bio, m)) {
2785 md_error(conf->mddev, rdev);
2786 set_bit(R10BIO_Degraded,
2787 &r10_bio->state);
2788 }
2789 rdev_dec_pending(rdev, conf->mddev);
749c55e9 2790 }
475b0321
N
2791 bio = r10_bio->devs[m].repl_bio;
2792 rdev = conf->mirrors[dev].replacement;
4ca40c2c 2793 if (rdev && bio == IO_MADE_GOOD) {
475b0321
N
2794 rdev_clear_badblocks(
2795 rdev,
2796 r10_bio->devs[m].addr,
c6563a8c 2797 r10_bio->sectors, 0);
475b0321
N
2798 rdev_dec_pending(rdev, conf->mddev);
2799 }
bd870a16
N
2800 }
2801 if (test_bit(R10BIO_WriteError,
2802 &r10_bio->state))
2803 close_write(r10_bio);
749c55e9
N
2804 raid_end_bio_io(r10_bio);
2805 }
2806}
2807
4ed8731d 2808static void raid10d(struct md_thread *thread)
1da177e4 2809{
4ed8731d 2810 struct mddev *mddev = thread->mddev;
9f2c9d12 2811 struct r10bio *r10_bio;
1da177e4 2812 unsigned long flags;
e879a879 2813 struct r10conf *conf = mddev->private;
1da177e4 2814 struct list_head *head = &conf->retry_list;
e1dfa0a2 2815 struct blk_plug plug;
1da177e4
LT
2816
2817 md_check_recovery(mddev);
1da177e4 2818
e1dfa0a2 2819 blk_start_plug(&plug);
1da177e4 2820 for (;;) {
6cce3b23 2821
0021b7bc 2822 flush_pending_writes(conf);
6cce3b23 2823
a35e63ef
N
2824 spin_lock_irqsave(&conf->device_lock, flags);
2825 if (list_empty(head)) {
2826 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 2827 break;
a35e63ef 2828 }
9f2c9d12 2829 r10_bio = list_entry(head->prev, struct r10bio, retry_list);
1da177e4 2830 list_del(head->prev);
4443ae10 2831 conf->nr_queued--;
1da177e4
LT
2832 spin_unlock_irqrestore(&conf->device_lock, flags);
2833
2834 mddev = r10_bio->mddev;
070ec55d 2835 conf = mddev->private;
bd870a16
N
2836 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2837 test_bit(R10BIO_WriteError, &r10_bio->state))
749c55e9 2838 handle_write_completed(conf, r10_bio);
3ea7daa5
N
2839 else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2840 reshape_request_write(mddev, r10_bio);
749c55e9 2841 else if (test_bit(R10BIO_IsSync, &r10_bio->state))
1da177e4 2842 sync_request_write(mddev, r10_bio);
7eaceacc 2843 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
1da177e4 2844 recovery_request_write(mddev, r10_bio);
856e08e2 2845 else if (test_bit(R10BIO_ReadError, &r10_bio->state))
560f8e55 2846 handle_read_error(mddev, r10_bio);
856e08e2
N
2847 else {
2848 /* just a partial read to be scheduled from a
2849 * separate context
2850 */
2851 int slot = r10_bio->read_slot;
2852 generic_make_request(r10_bio->devs[slot].bio);
2853 }
560f8e55 2854
1d9d5241 2855 cond_resched();
de393cde
N
2856 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2857 md_check_recovery(mddev);
1da177e4 2858 }
e1dfa0a2 2859 blk_finish_plug(&plug);
1da177e4
LT
2860}
2861
2862
e879a879 2863static int init_resync(struct r10conf *conf)
1da177e4
LT
2864{
2865 int buffs;
69335ef3 2866 int i;
1da177e4
LT
2867
2868 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
b6385483 2869 BUG_ON(conf->r10buf_pool);
69335ef3 2870 conf->have_replacement = 0;
5cf00fcd 2871 for (i = 0; i < conf->geo.raid_disks; i++)
69335ef3
N
2872 if (conf->mirrors[i].replacement)
2873 conf->have_replacement = 1;
1da177e4
LT
2874 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2875 if (!conf->r10buf_pool)
2876 return -ENOMEM;
2877 conf->next_resync = 0;
2878 return 0;
2879}
2880
2881/*
2882 * perform a "sync" on one "block"
2883 *
2884 * We need to make sure that no normal I/O request - particularly write
2885 * requests - conflict with active sync requests.
2886 *
2887 * This is achieved by tracking pending requests and a 'barrier' concept
2888 * that can be installed to exclude normal IO requests.
2889 *
2890 * Resync and recovery are handled very differently.
2891 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2892 *
2893 * For resync, we iterate over virtual addresses, read all copies,
2894 * and update if there are differences. If only one copy is live,
2895 * skip it.
2896 * For recovery, we iterate over physical addresses, read a good
2897 * value for each non-in_sync drive, and over-write.
2898 *
2899 * So, for recovery we may have several outstanding complex requests for a
2900 * given address, one for each out-of-sync device. We model this by allocating
2901 * a number of r10_bio structures, one for each out-of-sync device.
2902 * As we setup these structures, we collect all bio's together into a list
2903 * which we then process collectively to add pages, and then process again
2904 * to pass to generic_make_request.
2905 *
2906 * The r10_bio structures are linked using a borrowed master_bio pointer.
2907 * This link is counted in ->remaining. When the r10_bio that points to NULL
2908 * has its remaining count decremented to 0, the whole complex operation
2909 * is complete.
2910 *
2911 */
2912
fd01b88c 2913static sector_t sync_request(struct mddev *mddev, sector_t sector_nr,
ab9d47e9 2914 int *skipped, int go_faster)
1da177e4 2915{
e879a879 2916 struct r10conf *conf = mddev->private;
9f2c9d12 2917 struct r10bio *r10_bio;
1da177e4
LT
2918 struct bio *biolist = NULL, *bio;
2919 sector_t max_sector, nr_sectors;
1da177e4 2920 int i;
6cce3b23 2921 int max_sync;
57dab0bd 2922 sector_t sync_blocks;
1da177e4
LT
2923 sector_t sectors_skipped = 0;
2924 int chunks_skipped = 0;
5cf00fcd 2925 sector_t chunk_mask = conf->geo.chunk_mask;
1da177e4
LT
2926
2927 if (!conf->r10buf_pool)
2928 if (init_resync(conf))
57afd89f 2929 return 0;
1da177e4 2930
7e83ccbe
MW
2931 /*
2932 * Allow skipping a full rebuild for incremental assembly
2933 * of a clean array, like RAID1 does.
2934 */
2935 if (mddev->bitmap == NULL &&
2936 mddev->recovery_cp == MaxSector &&
2937 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2938 conf->fullsync == 0) {
2939 *skipped = 1;
2940 max_sector = mddev->dev_sectors;
2941 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2942 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2943 max_sector = mddev->resync_max_sectors;
2944 return max_sector - sector_nr;
2945 }
2946
1da177e4 2947 skipped:
58c0fed4 2948 max_sector = mddev->dev_sectors;
3ea7daa5
N
2949 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2950 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
1da177e4
LT
2951 max_sector = mddev->resync_max_sectors;
2952 if (sector_nr >= max_sector) {
6cce3b23
N
2953 /* If we aborted, we need to abort the
2954 * sync on the 'current' bitmap chucks (there can
2955 * be several when recovering multiple devices).
2956 * as we may have started syncing it but not finished.
2957 * We can find the current address in
2958 * mddev->curr_resync, but for recovery,
2959 * we need to convert that to several
2960 * virtual addresses.
2961 */
3ea7daa5
N
2962 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2963 end_reshape(conf);
2964 return 0;
2965 }
2966
6cce3b23
N
2967 if (mddev->curr_resync < max_sector) { /* aborted */
2968 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2969 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2970 &sync_blocks, 1);
5cf00fcd 2971 else for (i = 0; i < conf->geo.raid_disks; i++) {
6cce3b23
N
2972 sector_t sect =
2973 raid10_find_virt(conf, mddev->curr_resync, i);
2974 bitmap_end_sync(mddev->bitmap, sect,
2975 &sync_blocks, 1);
2976 }
9ad1aefc
N
2977 } else {
2978 /* completed sync */
2979 if ((!mddev->bitmap || conf->fullsync)
2980 && conf->have_replacement
2981 && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2982 /* Completed a full sync so the replacements
2983 * are now fully recovered.
2984 */
5cf00fcd 2985 for (i = 0; i < conf->geo.raid_disks; i++)
9ad1aefc
N
2986 if (conf->mirrors[i].replacement)
2987 conf->mirrors[i].replacement
2988 ->recovery_offset
2989 = MaxSector;
2990 }
6cce3b23 2991 conf->fullsync = 0;
9ad1aefc 2992 }
6cce3b23 2993 bitmap_close_sync(mddev->bitmap);
1da177e4 2994 close_sync(conf);
57afd89f 2995 *skipped = 1;
1da177e4
LT
2996 return sectors_skipped;
2997 }
3ea7daa5
N
2998
2999 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3000 return reshape_request(mddev, sector_nr, skipped);
3001
5cf00fcd 3002 if (chunks_skipped >= conf->geo.raid_disks) {
1da177e4
LT
3003 /* if there has been nothing to do on any drive,
3004 * then there is nothing to do at all..
3005 */
57afd89f
N
3006 *skipped = 1;
3007 return (max_sector - sector_nr) + sectors_skipped;
1da177e4
LT
3008 }
3009
c6207277
N
3010 if (max_sector > mddev->resync_max)
3011 max_sector = mddev->resync_max; /* Don't do IO beyond here */
3012
1da177e4
LT
3013 /* make sure whole request will fit in a chunk - if chunks
3014 * are meaningful
3015 */
5cf00fcd
N
3016 if (conf->geo.near_copies < conf->geo.raid_disks &&
3017 max_sector > (sector_nr | chunk_mask))
3018 max_sector = (sector_nr | chunk_mask) + 1;
1da177e4
LT
3019 /*
3020 * If there is non-resync activity waiting for us then
3021 * put in a delay to throttle resync.
3022 */
0a27ec96 3023 if (!go_faster && conf->nr_waiting)
1da177e4 3024 msleep_interruptible(1000);
1da177e4
LT
3025
3026 /* Again, very different code for resync and recovery.
3027 * Both must result in an r10bio with a list of bios that
3028 * have bi_end_io, bi_sector, bi_bdev set,
3029 * and bi_private set to the r10bio.
3030 * For recovery, we may actually create several r10bios
3031 * with 2 bios in each, that correspond to the bios in the main one.
3032 * In this case, the subordinate r10bios link back through a
3033 * borrowed master_bio pointer, and the counter in the master
3034 * includes a ref from each subordinate.
3035 */
3036 /* First, we decide what to do and set ->bi_end_io
3037 * To end_sync_read if we want to read, and
3038 * end_sync_write if we will want to write.
3039 */
3040
6cce3b23 3041 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
1da177e4
LT
3042 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3043 /* recovery... the complicated one */
e875ecea 3044 int j;
1da177e4
LT
3045 r10_bio = NULL;
3046
5cf00fcd 3047 for (i = 0 ; i < conf->geo.raid_disks; i++) {
ab9d47e9 3048 int still_degraded;
9f2c9d12 3049 struct r10bio *rb2;
ab9d47e9
N
3050 sector_t sect;
3051 int must_sync;
e875ecea 3052 int any_working;
dc280d98 3053 struct raid10_info *mirror = &conf->mirrors[i];
24afd80d
N
3054
3055 if ((mirror->rdev == NULL ||
3056 test_bit(In_sync, &mirror->rdev->flags))
3057 &&
3058 (mirror->replacement == NULL ||
3059 test_bit(Faulty,
3060 &mirror->replacement->flags)))
ab9d47e9 3061 continue;
1da177e4 3062
ab9d47e9
N
3063 still_degraded = 0;
3064 /* want to reconstruct this device */
3065 rb2 = r10_bio;
3066 sect = raid10_find_virt(conf, sector_nr, i);
fc448a18
N
3067 if (sect >= mddev->resync_max_sectors) {
3068 /* last stripe is not complete - don't
3069 * try to recover this sector.
3070 */
3071 continue;
3072 }
24afd80d
N
3073 /* Unless we are doing a full sync, or a replacement
3074 * we only need to recover the block if it is set in
3075 * the bitmap
ab9d47e9
N
3076 */
3077 must_sync = bitmap_start_sync(mddev->bitmap, sect,
3078 &sync_blocks, 1);
3079 if (sync_blocks < max_sync)
3080 max_sync = sync_blocks;
3081 if (!must_sync &&
24afd80d 3082 mirror->replacement == NULL &&
ab9d47e9
N
3083 !conf->fullsync) {
3084 /* yep, skip the sync_blocks here, but don't assume
3085 * that there will never be anything to do here
3086 */
3087 chunks_skipped = -1;
3088 continue;
3089 }
6cce3b23 3090
ab9d47e9
N
3091 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3092 raise_barrier(conf, rb2 != NULL);
3093 atomic_set(&r10_bio->remaining, 0);
18055569 3094
ab9d47e9
N
3095 r10_bio->master_bio = (struct bio*)rb2;
3096 if (rb2)
3097 atomic_inc(&rb2->remaining);
3098 r10_bio->mddev = mddev;
3099 set_bit(R10BIO_IsRecover, &r10_bio->state);
3100 r10_bio->sector = sect;
1da177e4 3101
ab9d47e9
N
3102 raid10_find_phys(conf, r10_bio);
3103
3104 /* Need to check if the array will still be
3105 * degraded
3106 */
5cf00fcd 3107 for (j = 0; j < conf->geo.raid_disks; j++)
ab9d47e9
N
3108 if (conf->mirrors[j].rdev == NULL ||
3109 test_bit(Faulty, &conf->mirrors[j].rdev->flags)) {
3110 still_degraded = 1;
87fc767b 3111 break;
1da177e4 3112 }
ab9d47e9
N
3113
3114 must_sync = bitmap_start_sync(mddev->bitmap, sect,
3115 &sync_blocks, still_degraded);
3116
e875ecea 3117 any_working = 0;
ab9d47e9 3118 for (j=0; j<conf->copies;j++) {
e875ecea 3119 int k;
ab9d47e9 3120 int d = r10_bio->devs[j].devnum;
5e570289 3121 sector_t from_addr, to_addr;
3cb03002 3122 struct md_rdev *rdev;
40c356ce
N
3123 sector_t sector, first_bad;
3124 int bad_sectors;
ab9d47e9
N
3125 if (!conf->mirrors[d].rdev ||
3126 !test_bit(In_sync, &conf->mirrors[d].rdev->flags))
3127 continue;
3128 /* This is where we read from */
e875ecea 3129 any_working = 1;
40c356ce
N
3130 rdev = conf->mirrors[d].rdev;
3131 sector = r10_bio->devs[j].addr;
3132
3133 if (is_badblock(rdev, sector, max_sync,
3134 &first_bad, &bad_sectors)) {
3135 if (first_bad > sector)
3136 max_sync = first_bad - sector;
3137 else {
3138 bad_sectors -= (sector
3139 - first_bad);
3140 if (max_sync > bad_sectors)
3141 max_sync = bad_sectors;
3142 continue;
3143 }
3144 }
ab9d47e9
N
3145 bio = r10_bio->devs[0].bio;
3146 bio->bi_next = biolist;
3147 biolist = bio;
3148 bio->bi_private = r10_bio;
3149 bio->bi_end_io = end_sync_read;
3150 bio->bi_rw = READ;
5e570289 3151 from_addr = r10_bio->devs[j].addr;
24afd80d
N
3152 bio->bi_sector = from_addr + rdev->data_offset;
3153 bio->bi_bdev = rdev->bdev;
3154 atomic_inc(&rdev->nr_pending);
3155 /* and we write to 'i' (if not in_sync) */
ab9d47e9
N
3156
3157 for (k=0; k<conf->copies; k++)
3158 if (r10_bio->devs[k].devnum == i)
3159 break;
3160 BUG_ON(k == conf->copies);
5e570289 3161 to_addr = r10_bio->devs[k].addr;
ab9d47e9 3162 r10_bio->devs[0].devnum = d;
5e570289 3163 r10_bio->devs[0].addr = from_addr;
ab9d47e9 3164 r10_bio->devs[1].devnum = i;
5e570289 3165 r10_bio->devs[1].addr = to_addr;
ab9d47e9 3166
24afd80d
N
3167 rdev = mirror->rdev;
3168 if (!test_bit(In_sync, &rdev->flags)) {
3169 bio = r10_bio->devs[1].bio;
3170 bio->bi_next = biolist;
3171 biolist = bio;
3172 bio->bi_private = r10_bio;
3173 bio->bi_end_io = end_sync_write;
3174 bio->bi_rw = WRITE;
3175 bio->bi_sector = to_addr
3176 + rdev->data_offset;
3177 bio->bi_bdev = rdev->bdev;
3178 atomic_inc(&r10_bio->remaining);
3179 } else
3180 r10_bio->devs[1].bio->bi_end_io = NULL;
3181
3182 /* and maybe write to replacement */
3183 bio = r10_bio->devs[1].repl_bio;
3184 if (bio)
3185 bio->bi_end_io = NULL;
3186 rdev = mirror->replacement;
3187 /* Note: if rdev != NULL, then bio
3188 * cannot be NULL as r10buf_pool_alloc will
3189 * have allocated it.
3190 * So the second test here is pointless.
3191 * But it keeps semantic-checkers happy, and
3192 * this comment keeps human reviewers
3193 * happy.
3194 */
3195 if (rdev == NULL || bio == NULL ||
3196 test_bit(Faulty, &rdev->flags))
3197 break;
3198 bio->bi_next = biolist;
3199 biolist = bio;
3200 bio->bi_private = r10_bio;
3201 bio->bi_end_io = end_sync_write;
3202 bio->bi_rw = WRITE;
3203 bio->bi_sector = to_addr + rdev->data_offset;
3204 bio->bi_bdev = rdev->bdev;
3205 atomic_inc(&r10_bio->remaining);
ab9d47e9
N
3206 break;
3207 }
3208 if (j == conf->copies) {
e875ecea
N
3209 /* Cannot recover, so abort the recovery or
3210 * record a bad block */
ab9d47e9
N
3211 put_buf(r10_bio);
3212 if (rb2)
3213 atomic_dec(&rb2->remaining);
3214 r10_bio = rb2;
e875ecea
N
3215 if (any_working) {
3216 /* problem is that there are bad blocks
3217 * on other device(s)
3218 */
3219 int k;
3220 for (k = 0; k < conf->copies; k++)
3221 if (r10_bio->devs[k].devnum == i)
3222 break;
24afd80d
N
3223 if (!test_bit(In_sync,
3224 &mirror->rdev->flags)
3225 && !rdev_set_badblocks(
3226 mirror->rdev,
3227 r10_bio->devs[k].addr,
3228 max_sync, 0))
3229 any_working = 0;
3230 if (mirror->replacement &&
3231 !rdev_set_badblocks(
3232 mirror->replacement,
e875ecea
N
3233 r10_bio->devs[k].addr,
3234 max_sync, 0))
3235 any_working = 0;
3236 }
3237 if (!any_working) {
3238 if (!test_and_set_bit(MD_RECOVERY_INTR,
3239 &mddev->recovery))
3240 printk(KERN_INFO "md/raid10:%s: insufficient "
3241 "working devices for recovery.\n",
3242 mdname(mddev));
24afd80d 3243 mirror->recovery_disabled
e875ecea
N
3244 = mddev->recovery_disabled;
3245 }
ab9d47e9 3246 break;
1da177e4 3247 }
ab9d47e9 3248 }
1da177e4
LT
3249 if (biolist == NULL) {
3250 while (r10_bio) {
9f2c9d12
N
3251 struct r10bio *rb2 = r10_bio;
3252 r10_bio = (struct r10bio*) rb2->master_bio;
1da177e4
LT
3253 rb2->master_bio = NULL;
3254 put_buf(rb2);
3255 }
3256 goto giveup;
3257 }
3258 } else {
3259 /* resync. Schedule a read for every block at this virt offset */
3260 int count = 0;
6cce3b23 3261
78200d45
N
3262 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
3263
6cce3b23
N
3264 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
3265 &sync_blocks, mddev->degraded) &&
ab9d47e9
N
3266 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3267 &mddev->recovery)) {
6cce3b23
N
3268 /* We can skip this block */
3269 *skipped = 1;
3270 return sync_blocks + sectors_skipped;
3271 }
3272 if (sync_blocks < max_sync)
3273 max_sync = sync_blocks;
1da177e4
LT
3274 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
3275
1da177e4
LT
3276 r10_bio->mddev = mddev;
3277 atomic_set(&r10_bio->remaining, 0);
6cce3b23
N
3278 raise_barrier(conf, 0);
3279 conf->next_resync = sector_nr;
1da177e4
LT
3280
3281 r10_bio->master_bio = NULL;
3282 r10_bio->sector = sector_nr;
3283 set_bit(R10BIO_IsSync, &r10_bio->state);
3284 raid10_find_phys(conf, r10_bio);
5cf00fcd 3285 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
1da177e4 3286
5cf00fcd 3287 for (i = 0; i < conf->copies; i++) {
1da177e4 3288 int d = r10_bio->devs[i].devnum;
40c356ce
N
3289 sector_t first_bad, sector;
3290 int bad_sectors;
3291
9ad1aefc
N
3292 if (r10_bio->devs[i].repl_bio)
3293 r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3294
1da177e4
LT
3295 bio = r10_bio->devs[i].bio;
3296 bio->bi_end_io = NULL;
af03b8e4 3297 clear_bit(BIO_UPTODATE, &bio->bi_flags);
1da177e4 3298 if (conf->mirrors[d].rdev == NULL ||
b2d444d7 3299 test_bit(Faulty, &conf->mirrors[d].rdev->flags))
1da177e4 3300 continue;
40c356ce
N
3301 sector = r10_bio->devs[i].addr;
3302 if (is_badblock(conf->mirrors[d].rdev,
3303 sector, max_sync,
3304 &first_bad, &bad_sectors)) {
3305 if (first_bad > sector)
3306 max_sync = first_bad - sector;
3307 else {
3308 bad_sectors -= (sector - first_bad);
3309 if (max_sync > bad_sectors)
91502f09 3310 max_sync = bad_sectors;
40c356ce
N
3311 continue;
3312 }
3313 }
1da177e4
LT
3314 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3315 atomic_inc(&r10_bio->remaining);
3316 bio->bi_next = biolist;
3317 biolist = bio;
3318 bio->bi_private = r10_bio;
3319 bio->bi_end_io = end_sync_read;
802ba064 3320 bio->bi_rw = READ;
40c356ce 3321 bio->bi_sector = sector +
1da177e4
LT
3322 conf->mirrors[d].rdev->data_offset;
3323 bio->bi_bdev = conf->mirrors[d].rdev->bdev;
3324 count++;
9ad1aefc
N
3325
3326 if (conf->mirrors[d].replacement == NULL ||
3327 test_bit(Faulty,
3328 &conf->mirrors[d].replacement->flags))
3329 continue;
3330
3331 /* Need to set up for writing to the replacement */
3332 bio = r10_bio->devs[i].repl_bio;
3333 clear_bit(BIO_UPTODATE, &bio->bi_flags);
3334
3335 sector = r10_bio->devs[i].addr;
3336 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
3337 bio->bi_next = biolist;
3338 biolist = bio;
3339 bio->bi_private = r10_bio;
3340 bio->bi_end_io = end_sync_write;
3341 bio->bi_rw = WRITE;
3342 bio->bi_sector = sector +
3343 conf->mirrors[d].replacement->data_offset;
3344 bio->bi_bdev = conf->mirrors[d].replacement->bdev;
3345 count++;
1da177e4
LT
3346 }
3347
3348 if (count < 2) {
3349 for (i=0; i<conf->copies; i++) {
3350 int d = r10_bio->devs[i].devnum;
3351 if (r10_bio->devs[i].bio->bi_end_io)
ab9d47e9
N
3352 rdev_dec_pending(conf->mirrors[d].rdev,
3353 mddev);
9ad1aefc
N
3354 if (r10_bio->devs[i].repl_bio &&
3355 r10_bio->devs[i].repl_bio->bi_end_io)
3356 rdev_dec_pending(
3357 conf->mirrors[d].replacement,
3358 mddev);
1da177e4
LT
3359 }
3360 put_buf(r10_bio);
3361 biolist = NULL;
3362 goto giveup;
3363 }
3364 }
3365
3366 for (bio = biolist; bio ; bio=bio->bi_next) {
3367
3368 bio->bi_flags &= ~(BIO_POOL_MASK - 1);
3369 if (bio->bi_end_io)
3370 bio->bi_flags |= 1 << BIO_UPTODATE;
3371 bio->bi_vcnt = 0;
3372 bio->bi_idx = 0;
3373 bio->bi_phys_segments = 0;
1da177e4
LT
3374 bio->bi_size = 0;
3375 }
3376
3377 nr_sectors = 0;
6cce3b23
N
3378 if (sector_nr + max_sync < max_sector)
3379 max_sector = sector_nr + max_sync;
1da177e4
LT
3380 do {
3381 struct page *page;
3382 int len = PAGE_SIZE;
1da177e4
LT
3383 if (sector_nr + (len>>9) > max_sector)
3384 len = (max_sector - sector_nr) << 9;
3385 if (len == 0)
3386 break;
3387 for (bio= biolist ; bio ; bio=bio->bi_next) {
ab9d47e9 3388 struct bio *bio2;
1da177e4 3389 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
ab9d47e9
N
3390 if (bio_add_page(bio, page, len, 0))
3391 continue;
3392
3393 /* stop here */
3394 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
3395 for (bio2 = biolist;
3396 bio2 && bio2 != bio;
3397 bio2 = bio2->bi_next) {
3398 /* remove last page from this bio */
3399 bio2->bi_vcnt--;
3400 bio2->bi_size -= len;
3401 bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
1da177e4 3402 }
ab9d47e9 3403 goto bio_full;
1da177e4
LT
3404 }
3405 nr_sectors += len>>9;
3406 sector_nr += len>>9;
3407 } while (biolist->bi_vcnt < RESYNC_PAGES);
3408 bio_full:
3409 r10_bio->sectors = nr_sectors;
3410
3411 while (biolist) {
3412 bio = biolist;
3413 biolist = biolist->bi_next;
3414
3415 bio->bi_next = NULL;
3416 r10_bio = bio->bi_private;
3417 r10_bio->sectors = nr_sectors;
3418
3419 if (bio->bi_end_io == end_sync_read) {
3420 md_sync_acct(bio->bi_bdev, nr_sectors);
3421 generic_make_request(bio);
3422 }
3423 }
3424
57afd89f
N
3425 if (sectors_skipped)
3426 /* pretend they weren't skipped, it makes
3427 * no important difference in this case
3428 */
3429 md_done_sync(mddev, sectors_skipped, 1);
3430
1da177e4
LT
3431 return sectors_skipped + nr_sectors;
3432 giveup:
3433 /* There is nowhere to write, so all non-sync
e875ecea
N
3434 * drives must be failed or in resync, all drives
3435 * have a bad block, so try the next chunk...
1da177e4 3436 */
09b4068a
N
3437 if (sector_nr + max_sync < max_sector)
3438 max_sector = sector_nr + max_sync;
3439
3440 sectors_skipped += (max_sector - sector_nr);
1da177e4
LT
3441 chunks_skipped ++;
3442 sector_nr = max_sector;
1da177e4 3443 goto skipped;
1da177e4
LT
3444}
3445
80c3a6ce 3446static sector_t
fd01b88c 3447raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
80c3a6ce
DW
3448{
3449 sector_t size;
e879a879 3450 struct r10conf *conf = mddev->private;
80c3a6ce
DW
3451
3452 if (!raid_disks)
3ea7daa5
N
3453 raid_disks = min(conf->geo.raid_disks,
3454 conf->prev.raid_disks);
80c3a6ce 3455 if (!sectors)
dab8b292 3456 sectors = conf->dev_sectors;
80c3a6ce 3457
5cf00fcd
N
3458 size = sectors >> conf->geo.chunk_shift;
3459 sector_div(size, conf->geo.far_copies);
80c3a6ce 3460 size = size * raid_disks;
5cf00fcd 3461 sector_div(size, conf->geo.near_copies);
80c3a6ce 3462
5cf00fcd 3463 return size << conf->geo.chunk_shift;
80c3a6ce
DW
3464}
3465
6508fdbf
N
3466static void calc_sectors(struct r10conf *conf, sector_t size)
3467{
3468 /* Calculate the number of sectors-per-device that will
3469 * actually be used, and set conf->dev_sectors and
3470 * conf->stride
3471 */
3472
5cf00fcd
N
3473 size = size >> conf->geo.chunk_shift;
3474 sector_div(size, conf->geo.far_copies);
3475 size = size * conf->geo.raid_disks;
3476 sector_div(size, conf->geo.near_copies);
6508fdbf
N
3477 /* 'size' is now the number of chunks in the array */
3478 /* calculate "used chunks per device" */
3479 size = size * conf->copies;
3480
3481 /* We need to round up when dividing by raid_disks to
3482 * get the stride size.
3483 */
5cf00fcd 3484 size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
6508fdbf 3485
5cf00fcd 3486 conf->dev_sectors = size << conf->geo.chunk_shift;
6508fdbf 3487
5cf00fcd
N
3488 if (conf->geo.far_offset)
3489 conf->geo.stride = 1 << conf->geo.chunk_shift;
6508fdbf 3490 else {
5cf00fcd
N
3491 sector_div(size, conf->geo.far_copies);
3492 conf->geo.stride = size << conf->geo.chunk_shift;
6508fdbf
N
3493 }
3494}
dab8b292 3495
deb200d0
N
3496enum geo_type {geo_new, geo_old, geo_start};
3497static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3498{
3499 int nc, fc, fo;
3500 int layout, chunk, disks;
3501 switch (new) {
3502 case geo_old:
3503 layout = mddev->layout;
3504 chunk = mddev->chunk_sectors;
3505 disks = mddev->raid_disks - mddev->delta_disks;
3506 break;
3507 case geo_new:
3508 layout = mddev->new_layout;
3509 chunk = mddev->new_chunk_sectors;
3510 disks = mddev->raid_disks;
3511 break;
3512 default: /* avoid 'may be unused' warnings */
3513 case geo_start: /* new when starting reshape - raid_disks not
3514 * updated yet. */
3515 layout = mddev->new_layout;
3516 chunk = mddev->new_chunk_sectors;
3517 disks = mddev->raid_disks + mddev->delta_disks;
3518 break;
3519 }
475901af 3520 if (layout >> 18)
deb200d0
N
3521 return -1;
3522 if (chunk < (PAGE_SIZE >> 9) ||
3523 !is_power_of_2(chunk))
3524 return -2;
3525 nc = layout & 255;
3526 fc = (layout >> 8) & 255;
3527 fo = layout & (1<<16);
3528 geo->raid_disks = disks;
3529 geo->near_copies = nc;
3530 geo->far_copies = fc;
3531 geo->far_offset = fo;
475901af 3532 geo->far_set_size = (layout & (1<<17)) ? disks / fc : disks;
deb200d0
N
3533 geo->chunk_mask = chunk - 1;
3534 geo->chunk_shift = ffz(~chunk);
3535 return nc*fc;
3536}
3537
e879a879 3538static struct r10conf *setup_conf(struct mddev *mddev)
1da177e4 3539{
e879a879 3540 struct r10conf *conf = NULL;
dab8b292 3541 int err = -EINVAL;
deb200d0
N
3542 struct geom geo;
3543 int copies;
3544
3545 copies = setup_geo(&geo, mddev, geo_new);
1da177e4 3546
deb200d0 3547 if (copies == -2) {
128595ed
N
3548 printk(KERN_ERR "md/raid10:%s: chunk size must be "
3549 "at least PAGE_SIZE(%ld) and be a power of 2.\n",
3550 mdname(mddev), PAGE_SIZE);
dab8b292 3551 goto out;
1da177e4 3552 }
2604b703 3553
deb200d0 3554 if (copies < 2 || copies > mddev->raid_disks) {
128595ed 3555 printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
f73ea873 3556 mdname(mddev), mddev->new_layout);
1da177e4
LT
3557 goto out;
3558 }
dab8b292
TM
3559
3560 err = -ENOMEM;
e879a879 3561 conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
dab8b292 3562 if (!conf)
1da177e4 3563 goto out;
dab8b292 3564
3ea7daa5 3565 /* FIXME calc properly */
dc280d98 3566 conf->mirrors = kzalloc(sizeof(struct raid10_info)*(mddev->raid_disks +
3ea7daa5 3567 max(0,mddev->delta_disks)),
dab8b292
TM
3568 GFP_KERNEL);
3569 if (!conf->mirrors)
3570 goto out;
4443ae10
N
3571
3572 conf->tmppage = alloc_page(GFP_KERNEL);
3573 if (!conf->tmppage)
dab8b292
TM
3574 goto out;
3575
deb200d0
N
3576 conf->geo = geo;
3577 conf->copies = copies;
dab8b292
TM
3578 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
3579 r10bio_pool_free, conf);
3580 if (!conf->r10bio_pool)
3581 goto out;
3582
6508fdbf 3583 calc_sectors(conf, mddev->dev_sectors);
3ea7daa5
N
3584 if (mddev->reshape_position == MaxSector) {
3585 conf->prev = conf->geo;
3586 conf->reshape_progress = MaxSector;
3587 } else {
3588 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3589 err = -EINVAL;
3590 goto out;
3591 }
3592 conf->reshape_progress = mddev->reshape_position;
3593 if (conf->prev.far_offset)
3594 conf->prev.stride = 1 << conf->prev.chunk_shift;
3595 else
3596 /* far_copies must be 1 */
3597 conf->prev.stride = conf->dev_sectors;
3598 }
e7e72bf6 3599 spin_lock_init(&conf->device_lock);
dab8b292
TM
3600 INIT_LIST_HEAD(&conf->retry_list);
3601
3602 spin_lock_init(&conf->resync_lock);
3603 init_waitqueue_head(&conf->wait_barrier);
3604
0232605d 3605 conf->thread = md_register_thread(raid10d, mddev, "raid10");
dab8b292
TM
3606 if (!conf->thread)
3607 goto out;
3608
dab8b292
TM
3609 conf->mddev = mddev;
3610 return conf;
3611
3612 out:
3ea7daa5
N
3613 if (err == -ENOMEM)
3614 printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n",
3615 mdname(mddev));
dab8b292
TM
3616 if (conf) {
3617 if (conf->r10bio_pool)
3618 mempool_destroy(conf->r10bio_pool);
3619 kfree(conf->mirrors);
3620 safe_put_page(conf->tmppage);
3621 kfree(conf);
3622 }
3623 return ERR_PTR(err);
3624}
3625
fd01b88c 3626static int run(struct mddev *mddev)
dab8b292 3627{
e879a879 3628 struct r10conf *conf;
dab8b292 3629 int i, disk_idx, chunk_size;
dc280d98 3630 struct raid10_info *disk;
3cb03002 3631 struct md_rdev *rdev;
dab8b292 3632 sector_t size;
3ea7daa5
N
3633 sector_t min_offset_diff = 0;
3634 int first = 1;
532a2a3f 3635 bool discard_supported = false;
dab8b292
TM
3636
3637 if (mddev->private == NULL) {
3638 conf = setup_conf(mddev);
3639 if (IS_ERR(conf))
3640 return PTR_ERR(conf);
3641 mddev->private = conf;
3642 }
3643 conf = mddev->private;
3644 if (!conf)
3645 goto out;
3646
dab8b292
TM
3647 mddev->thread = conf->thread;
3648 conf->thread = NULL;
3649
8f6c2e4b 3650 chunk_size = mddev->chunk_sectors << 9;
cc4d1efd 3651 if (mddev->queue) {
532a2a3f
SL
3652 blk_queue_max_discard_sectors(mddev->queue,
3653 mddev->chunk_sectors);
c8dc9c65
JL
3654 blk_queue_max_write_same_sectors(mddev->queue,
3655 mddev->chunk_sectors);
cc4d1efd
JB
3656 blk_queue_io_min(mddev->queue, chunk_size);
3657 if (conf->geo.raid_disks % conf->geo.near_copies)
3658 blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
3659 else
3660 blk_queue_io_opt(mddev->queue, chunk_size *
3661 (conf->geo.raid_disks / conf->geo.near_copies));
3662 }
8f6c2e4b 3663
dafb20fa 3664 rdev_for_each(rdev, mddev) {
3ea7daa5 3665 long long diff;
aba336bd 3666 struct request_queue *q;
34b343cf 3667
1da177e4 3668 disk_idx = rdev->raid_disk;
f8c9e74f
N
3669 if (disk_idx < 0)
3670 continue;
3671 if (disk_idx >= conf->geo.raid_disks &&
3672 disk_idx >= conf->prev.raid_disks)
1da177e4
LT
3673 continue;
3674 disk = conf->mirrors + disk_idx;
3675
56a2559b
N
3676 if (test_bit(Replacement, &rdev->flags)) {
3677 if (disk->replacement)
3678 goto out_free_conf;
3679 disk->replacement = rdev;
3680 } else {
3681 if (disk->rdev)
3682 goto out_free_conf;
3683 disk->rdev = rdev;
3684 }
aba336bd
N
3685 q = bdev_get_queue(rdev->bdev);
3686 if (q->merge_bvec_fn)
3687 mddev->merge_check_needed = 1;
3ea7daa5
N
3688 diff = (rdev->new_data_offset - rdev->data_offset);
3689 if (!mddev->reshape_backwards)
3690 diff = -diff;
3691 if (diff < 0)
3692 diff = 0;
3693 if (first || diff < min_offset_diff)
3694 min_offset_diff = diff;
56a2559b 3695
cc4d1efd
JB
3696 if (mddev->gendisk)
3697 disk_stack_limits(mddev->gendisk, rdev->bdev,
3698 rdev->data_offset << 9);
1da177e4
LT
3699
3700 disk->head_position = 0;
532a2a3f
SL
3701
3702 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3703 discard_supported = true;
1da177e4 3704 }
3ea7daa5 3705
ed30be07
JB
3706 if (mddev->queue) {
3707 if (discard_supported)
3708 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
3709 mddev->queue);
3710 else
3711 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
3712 mddev->queue);
3713 }
6d508242 3714 /* need to check that every block has at least one working mirror */
700c7213 3715 if (!enough(conf, -1)) {
128595ed 3716 printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n",
6d508242 3717 mdname(mddev));
1da177e4
LT
3718 goto out_free_conf;
3719 }
3720
3ea7daa5
N
3721 if (conf->reshape_progress != MaxSector) {
3722 /* must ensure that shape change is supported */
3723 if (conf->geo.far_copies != 1 &&
3724 conf->geo.far_offset == 0)
3725 goto out_free_conf;
3726 if (conf->prev.far_copies != 1 &&
3727 conf->geo.far_offset == 0)
3728 goto out_free_conf;
3729 }
3730
1da177e4 3731 mddev->degraded = 0;
f8c9e74f
N
3732 for (i = 0;
3733 i < conf->geo.raid_disks
3734 || i < conf->prev.raid_disks;
3735 i++) {
1da177e4
LT
3736
3737 disk = conf->mirrors + i;
3738
56a2559b
N
3739 if (!disk->rdev && disk->replacement) {
3740 /* The replacement is all we have - use it */
3741 disk->rdev = disk->replacement;
3742 disk->replacement = NULL;
3743 clear_bit(Replacement, &disk->rdev->flags);
3744 }
3745
5fd6c1dc 3746 if (!disk->rdev ||
2e333e89 3747 !test_bit(In_sync, &disk->rdev->flags)) {
1da177e4
LT
3748 disk->head_position = 0;
3749 mddev->degraded++;
8c2e870a
NB
3750 if (disk->rdev)
3751 conf->fullsync = 1;
1da177e4 3752 }
d890fa2b 3753 disk->recovery_disabled = mddev->recovery_disabled - 1;
1da177e4
LT
3754 }
3755
8c6ac868 3756 if (mddev->recovery_cp != MaxSector)
128595ed 3757 printk(KERN_NOTICE "md/raid10:%s: not clean"
8c6ac868
AN
3758 " -- starting background reconstruction\n",
3759 mdname(mddev));
1da177e4 3760 printk(KERN_INFO
128595ed 3761 "md/raid10:%s: active with %d out of %d devices\n",
5cf00fcd
N
3762 mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3763 conf->geo.raid_disks);
1da177e4
LT
3764 /*
3765 * Ok, everything is just fine now
3766 */
dab8b292
TM
3767 mddev->dev_sectors = conf->dev_sectors;
3768 size = raid10_size(mddev, 0, 0);
3769 md_set_array_sectors(mddev, size);
3770 mddev->resync_max_sectors = size;
1da177e4 3771
cc4d1efd 3772 if (mddev->queue) {
5cf00fcd 3773 int stripe = conf->geo.raid_disks *
9d8f0363 3774 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
cc4d1efd
JB
3775 mddev->queue->backing_dev_info.congested_fn = raid10_congested;
3776 mddev->queue->backing_dev_info.congested_data = mddev;
3777
3778 /* Calculate max read-ahead size.
3779 * We need to readahead at least twice a whole stripe....
3780 * maybe...
3781 */
5cf00fcd 3782 stripe /= conf->geo.near_copies;
3ea7daa5
N
3783 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
3784 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
cc4d1efd 3785 blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
1da177e4
LT
3786 }
3787
a91a2785
MP
3788
3789 if (md_integrity_register(mddev))
3790 goto out_free_conf;
3791
3ea7daa5
N
3792 if (conf->reshape_progress != MaxSector) {
3793 unsigned long before_length, after_length;
3794
3795 before_length = ((1 << conf->prev.chunk_shift) *
3796 conf->prev.far_copies);
3797 after_length = ((1 << conf->geo.chunk_shift) *
3798 conf->geo.far_copies);
3799
3800 if (max(before_length, after_length) > min_offset_diff) {
3801 /* This cannot work */
3802 printk("md/raid10: offset difference not enough to continue reshape\n");
3803 goto out_free_conf;
3804 }
3805 conf->offset_diff = min_offset_diff;
3806
3807 conf->reshape_safe = conf->reshape_progress;
3808 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3809 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3810 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3811 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3812 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3813 "reshape");
3814 }
3815
1da177e4
LT
3816 return 0;
3817
3818out_free_conf:
01f96c0a 3819 md_unregister_thread(&mddev->thread);
1da177e4
LT
3820 if (conf->r10bio_pool)
3821 mempool_destroy(conf->r10bio_pool);
1345b1d8 3822 safe_put_page(conf->tmppage);
990a8baf 3823 kfree(conf->mirrors);
1da177e4
LT
3824 kfree(conf);
3825 mddev->private = NULL;
3826out:
3827 return -EIO;
3828}
3829
fd01b88c 3830static int stop(struct mddev *mddev)
1da177e4 3831{
e879a879 3832 struct r10conf *conf = mddev->private;
1da177e4 3833
409c57f3
N
3834 raise_barrier(conf, 0);
3835 lower_barrier(conf);
3836
01f96c0a 3837 md_unregister_thread(&mddev->thread);
cc4d1efd
JB
3838 if (mddev->queue)
3839 /* the unplug fn references 'conf'*/
3840 blk_sync_queue(mddev->queue);
3841
1da177e4
LT
3842 if (conf->r10bio_pool)
3843 mempool_destroy(conf->r10bio_pool);
0fea7ed8 3844 safe_put_page(conf->tmppage);
990a8baf 3845 kfree(conf->mirrors);
1da177e4
LT
3846 kfree(conf);
3847 mddev->private = NULL;
3848 return 0;
3849}
3850
fd01b88c 3851static void raid10_quiesce(struct mddev *mddev, int state)
6cce3b23 3852{
e879a879 3853 struct r10conf *conf = mddev->private;
6cce3b23
N
3854
3855 switch(state) {
3856 case 1:
3857 raise_barrier(conf, 0);
3858 break;
3859 case 0:
3860 lower_barrier(conf);
3861 break;
3862 }
6cce3b23 3863}
1da177e4 3864
006a09a0
N
3865static int raid10_resize(struct mddev *mddev, sector_t sectors)
3866{
3867 /* Resize of 'far' arrays is not supported.
3868 * For 'near' and 'offset' arrays we can set the
3869 * number of sectors used to be an appropriate multiple
3870 * of the chunk size.
3871 * For 'offset', this is far_copies*chunksize.
3872 * For 'near' the multiplier is the LCM of
3873 * near_copies and raid_disks.
3874 * So if far_copies > 1 && !far_offset, fail.
3875 * Else find LCM(raid_disks, near_copy)*far_copies and
3876 * multiply by chunk_size. Then round to this number.
3877 * This is mostly done by raid10_size()
3878 */
3879 struct r10conf *conf = mddev->private;
3880 sector_t oldsize, size;
3881
f8c9e74f
N
3882 if (mddev->reshape_position != MaxSector)
3883 return -EBUSY;
3884
5cf00fcd 3885 if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
006a09a0
N
3886 return -EINVAL;
3887
3888 oldsize = raid10_size(mddev, 0, 0);
3889 size = raid10_size(mddev, sectors, 0);
a4a6125a
N
3890 if (mddev->external_size &&
3891 mddev->array_sectors > size)
006a09a0 3892 return -EINVAL;
a4a6125a
N
3893 if (mddev->bitmap) {
3894 int ret = bitmap_resize(mddev->bitmap, size, 0, 0);
3895 if (ret)
3896 return ret;
3897 }
3898 md_set_array_sectors(mddev, size);
006a09a0
N
3899 set_capacity(mddev->gendisk, mddev->array_sectors);
3900 revalidate_disk(mddev->gendisk);
3901 if (sectors > mddev->dev_sectors &&
3902 mddev->recovery_cp > oldsize) {
3903 mddev->recovery_cp = oldsize;
3904 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3905 }
6508fdbf
N
3906 calc_sectors(conf, sectors);
3907 mddev->dev_sectors = conf->dev_sectors;
006a09a0
N
3908 mddev->resync_max_sectors = size;
3909 return 0;
3910}
3911
fd01b88c 3912static void *raid10_takeover_raid0(struct mddev *mddev)
dab8b292 3913{
3cb03002 3914 struct md_rdev *rdev;
e879a879 3915 struct r10conf *conf;
dab8b292
TM
3916
3917 if (mddev->degraded > 0) {
128595ed
N
3918 printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n",
3919 mdname(mddev));
dab8b292
TM
3920 return ERR_PTR(-EINVAL);
3921 }
3922
dab8b292
TM
3923 /* Set new parameters */
3924 mddev->new_level = 10;
3925 /* new layout: far_copies = 1, near_copies = 2 */
3926 mddev->new_layout = (1<<8) + 2;
3927 mddev->new_chunk_sectors = mddev->chunk_sectors;
3928 mddev->delta_disks = mddev->raid_disks;
dab8b292
TM
3929 mddev->raid_disks *= 2;
3930 /* make sure it will be not marked as dirty */
3931 mddev->recovery_cp = MaxSector;
3932
3933 conf = setup_conf(mddev);
02214dc5 3934 if (!IS_ERR(conf)) {
dafb20fa 3935 rdev_for_each(rdev, mddev)
e93f68a1
N
3936 if (rdev->raid_disk >= 0)
3937 rdev->new_raid_disk = rdev->raid_disk * 2;
02214dc5
KW
3938 conf->barrier = 1;
3939 }
3940
dab8b292
TM
3941 return conf;
3942}
3943
fd01b88c 3944static void *raid10_takeover(struct mddev *mddev)
dab8b292 3945{
e373ab10 3946 struct r0conf *raid0_conf;
dab8b292
TM
3947
3948 /* raid10 can take over:
3949 * raid0 - providing it has only two drives
3950 */
3951 if (mddev->level == 0) {
3952 /* for raid0 takeover only one zone is supported */
e373ab10
N
3953 raid0_conf = mddev->private;
3954 if (raid0_conf->nr_strip_zones > 1) {
128595ed
N
3955 printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0"
3956 " with more than one zone.\n",
3957 mdname(mddev));
dab8b292
TM
3958 return ERR_PTR(-EINVAL);
3959 }
3960 return raid10_takeover_raid0(mddev);
3961 }
3962 return ERR_PTR(-EINVAL);
3963}
3964
3ea7daa5
N
3965static int raid10_check_reshape(struct mddev *mddev)
3966{
3967 /* Called when there is a request to change
3968 * - layout (to ->new_layout)
3969 * - chunk size (to ->new_chunk_sectors)
3970 * - raid_disks (by delta_disks)
3971 * or when trying to restart a reshape that was ongoing.
3972 *
3973 * We need to validate the request and possibly allocate
3974 * space if that might be an issue later.
3975 *
3976 * Currently we reject any reshape of a 'far' mode array,
3977 * allow chunk size to change if new is generally acceptable,
3978 * allow raid_disks to increase, and allow
3979 * a switch between 'near' mode and 'offset' mode.
3980 */
3981 struct r10conf *conf = mddev->private;
3982 struct geom geo;
3983
3984 if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
3985 return -EINVAL;
3986
3987 if (setup_geo(&geo, mddev, geo_start) != conf->copies)
3988 /* mustn't change number of copies */
3989 return -EINVAL;
3990 if (geo.far_copies > 1 && !geo.far_offset)
3991 /* Cannot switch to 'far' mode */
3992 return -EINVAL;
3993
3994 if (mddev->array_sectors & geo.chunk_mask)
3995 /* not factor of array size */
3996 return -EINVAL;
3997
3ea7daa5
N
3998 if (!enough(conf, -1))
3999 return -EINVAL;
4000
4001 kfree(conf->mirrors_new);
4002 conf->mirrors_new = NULL;
4003 if (mddev->delta_disks > 0) {
4004 /* allocate new 'mirrors' list */
4005 conf->mirrors_new = kzalloc(
dc280d98 4006 sizeof(struct raid10_info)
3ea7daa5
N
4007 *(mddev->raid_disks +
4008 mddev->delta_disks),
4009 GFP_KERNEL);
4010 if (!conf->mirrors_new)
4011 return -ENOMEM;
4012 }
4013 return 0;
4014}
4015
4016/*
4017 * Need to check if array has failed when deciding whether to:
4018 * - start an array
4019 * - remove non-faulty devices
4020 * - add a spare
4021 * - allow a reshape
4022 * This determination is simple when no reshape is happening.
4023 * However if there is a reshape, we need to carefully check
4024 * both the before and after sections.
4025 * This is because some failed devices may only affect one
4026 * of the two sections, and some non-in_sync devices may
4027 * be insync in the section most affected by failed devices.
4028 */
4029static int calc_degraded(struct r10conf *conf)
4030{
4031 int degraded, degraded2;
4032 int i;
4033
4034 rcu_read_lock();
4035 degraded = 0;
4036 /* 'prev' section first */
4037 for (i = 0; i < conf->prev.raid_disks; i++) {
4038 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4039 if (!rdev || test_bit(Faulty, &rdev->flags))
4040 degraded++;
4041 else if (!test_bit(In_sync, &rdev->flags))
4042 /* When we can reduce the number of devices in
4043 * an array, this might not contribute to
4044 * 'degraded'. It does now.
4045 */
4046 degraded++;
4047 }
4048 rcu_read_unlock();
4049 if (conf->geo.raid_disks == conf->prev.raid_disks)
4050 return degraded;
4051 rcu_read_lock();
4052 degraded2 = 0;
4053 for (i = 0; i < conf->geo.raid_disks; i++) {
4054 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4055 if (!rdev || test_bit(Faulty, &rdev->flags))
4056 degraded2++;
4057 else if (!test_bit(In_sync, &rdev->flags)) {
4058 /* If reshape is increasing the number of devices,
4059 * this section has already been recovered, so
4060 * it doesn't contribute to degraded.
4061 * else it does.
4062 */
4063 if (conf->geo.raid_disks <= conf->prev.raid_disks)
4064 degraded2++;
4065 }
4066 }
4067 rcu_read_unlock();
4068 if (degraded2 > degraded)
4069 return degraded2;
4070 return degraded;
4071}
4072
4073static int raid10_start_reshape(struct mddev *mddev)
4074{
4075 /* A 'reshape' has been requested. This commits
4076 * the various 'new' fields and sets MD_RECOVER_RESHAPE
4077 * This also checks if there are enough spares and adds them
4078 * to the array.
4079 * We currently require enough spares to make the final
4080 * array non-degraded. We also require that the difference
4081 * between old and new data_offset - on each device - is
4082 * enough that we never risk over-writing.
4083 */
4084
4085 unsigned long before_length, after_length;
4086 sector_t min_offset_diff = 0;
4087 int first = 1;
4088 struct geom new;
4089 struct r10conf *conf = mddev->private;
4090 struct md_rdev *rdev;
4091 int spares = 0;
bb63a701 4092 int ret;
3ea7daa5
N
4093
4094 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4095 return -EBUSY;
4096
4097 if (setup_geo(&new, mddev, geo_start) != conf->copies)
4098 return -EINVAL;
4099
4100 before_length = ((1 << conf->prev.chunk_shift) *
4101 conf->prev.far_copies);
4102 after_length = ((1 << conf->geo.chunk_shift) *
4103 conf->geo.far_copies);
4104
4105 rdev_for_each(rdev, mddev) {
4106 if (!test_bit(In_sync, &rdev->flags)
4107 && !test_bit(Faulty, &rdev->flags))
4108 spares++;
4109 if (rdev->raid_disk >= 0) {
4110 long long diff = (rdev->new_data_offset
4111 - rdev->data_offset);
4112 if (!mddev->reshape_backwards)
4113 diff = -diff;
4114 if (diff < 0)
4115 diff = 0;
4116 if (first || diff < min_offset_diff)
4117 min_offset_diff = diff;
4118 }
4119 }
4120
4121 if (max(before_length, after_length) > min_offset_diff)
4122 return -EINVAL;
4123
4124 if (spares < mddev->delta_disks)
4125 return -EINVAL;
4126
4127 conf->offset_diff = min_offset_diff;
4128 spin_lock_irq(&conf->device_lock);
4129 if (conf->mirrors_new) {
4130 memcpy(conf->mirrors_new, conf->mirrors,
dc280d98 4131 sizeof(struct raid10_info)*conf->prev.raid_disks);
3ea7daa5
N
4132 smp_mb();
4133 kfree(conf->mirrors_old); /* FIXME and elsewhere */
4134 conf->mirrors_old = conf->mirrors;
4135 conf->mirrors = conf->mirrors_new;
4136 conf->mirrors_new = NULL;
4137 }
4138 setup_geo(&conf->geo, mddev, geo_start);
4139 smp_mb();
4140 if (mddev->reshape_backwards) {
4141 sector_t size = raid10_size(mddev, 0, 0);
4142 if (size < mddev->array_sectors) {
4143 spin_unlock_irq(&conf->device_lock);
4144 printk(KERN_ERR "md/raid10:%s: array size must be reduce before number of disks\n",
4145 mdname(mddev));
4146 return -EINVAL;
4147 }
4148 mddev->resync_max_sectors = size;
4149 conf->reshape_progress = size;
4150 } else
4151 conf->reshape_progress = 0;
4152 spin_unlock_irq(&conf->device_lock);
4153
bb63a701
N
4154 if (mddev->delta_disks && mddev->bitmap) {
4155 ret = bitmap_resize(mddev->bitmap,
4156 raid10_size(mddev, 0,
4157 conf->geo.raid_disks),
4158 0, 0);
4159 if (ret)
4160 goto abort;
4161 }
3ea7daa5
N
4162 if (mddev->delta_disks > 0) {
4163 rdev_for_each(rdev, mddev)
4164 if (rdev->raid_disk < 0 &&
4165 !test_bit(Faulty, &rdev->flags)) {
4166 if (raid10_add_disk(mddev, rdev) == 0) {
4167 if (rdev->raid_disk >=
4168 conf->prev.raid_disks)
4169 set_bit(In_sync, &rdev->flags);
4170 else
4171 rdev->recovery_offset = 0;
4172
4173 if (sysfs_link_rdev(mddev, rdev))
4174 /* Failure here is OK */;
4175 }
4176 } else if (rdev->raid_disk >= conf->prev.raid_disks
4177 && !test_bit(Faulty, &rdev->flags)) {
4178 /* This is a spare that was manually added */
4179 set_bit(In_sync, &rdev->flags);
4180 }
4181 }
4182 /* When a reshape changes the number of devices,
4183 * ->degraded is measured against the larger of the
4184 * pre and post numbers.
4185 */
4186 spin_lock_irq(&conf->device_lock);
4187 mddev->degraded = calc_degraded(conf);
4188 spin_unlock_irq(&conf->device_lock);
4189 mddev->raid_disks = conf->geo.raid_disks;
4190 mddev->reshape_position = conf->reshape_progress;
4191 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4192
4193 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4194 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4195 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4196 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4197
4198 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4199 "reshape");
4200 if (!mddev->sync_thread) {
bb63a701
N
4201 ret = -EAGAIN;
4202 goto abort;
3ea7daa5
N
4203 }
4204 conf->reshape_checkpoint = jiffies;
4205 md_wakeup_thread(mddev->sync_thread);
4206 md_new_event(mddev);
4207 return 0;
bb63a701
N
4208
4209abort:
4210 mddev->recovery = 0;
4211 spin_lock_irq(&conf->device_lock);
4212 conf->geo = conf->prev;
4213 mddev->raid_disks = conf->geo.raid_disks;
4214 rdev_for_each(rdev, mddev)
4215 rdev->new_data_offset = rdev->data_offset;
4216 smp_wmb();
4217 conf->reshape_progress = MaxSector;
4218 mddev->reshape_position = MaxSector;
4219 spin_unlock_irq(&conf->device_lock);
4220 return ret;
3ea7daa5
N
4221}
4222
4223/* Calculate the last device-address that could contain
4224 * any block from the chunk that includes the array-address 's'
4225 * and report the next address.
4226 * i.e. the address returned will be chunk-aligned and after
4227 * any data that is in the chunk containing 's'.
4228 */
4229static sector_t last_dev_address(sector_t s, struct geom *geo)
4230{
4231 s = (s | geo->chunk_mask) + 1;
4232 s >>= geo->chunk_shift;
4233 s *= geo->near_copies;
4234 s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4235 s *= geo->far_copies;
4236 s <<= geo->chunk_shift;
4237 return s;
4238}
4239
4240/* Calculate the first device-address that could contain
4241 * any block from the chunk that includes the array-address 's'.
4242 * This too will be the start of a chunk
4243 */
4244static sector_t first_dev_address(sector_t s, struct geom *geo)
4245{
4246 s >>= geo->chunk_shift;
4247 s *= geo->near_copies;
4248 sector_div(s, geo->raid_disks);
4249 s *= geo->far_copies;
4250 s <<= geo->chunk_shift;
4251 return s;
4252}
4253
4254static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4255 int *skipped)
4256{
4257 /* We simply copy at most one chunk (smallest of old and new)
4258 * at a time, possibly less if that exceeds RESYNC_PAGES,
4259 * or we hit a bad block or something.
4260 * This might mean we pause for normal IO in the middle of
4261 * a chunk, but that is not a problem was mddev->reshape_position
4262 * can record any location.
4263 *
4264 * If we will want to write to a location that isn't
4265 * yet recorded as 'safe' (i.e. in metadata on disk) then
4266 * we need to flush all reshape requests and update the metadata.
4267 *
4268 * When reshaping forwards (e.g. to more devices), we interpret
4269 * 'safe' as the earliest block which might not have been copied
4270 * down yet. We divide this by previous stripe size and multiply
4271 * by previous stripe length to get lowest device offset that we
4272 * cannot write to yet.
4273 * We interpret 'sector_nr' as an address that we want to write to.
4274 * From this we use last_device_address() to find where we might
4275 * write to, and first_device_address on the 'safe' position.
4276 * If this 'next' write position is after the 'safe' position,
4277 * we must update the metadata to increase the 'safe' position.
4278 *
4279 * When reshaping backwards, we round in the opposite direction
4280 * and perform the reverse test: next write position must not be
4281 * less than current safe position.
4282 *
4283 * In all this the minimum difference in data offsets
4284 * (conf->offset_diff - always positive) allows a bit of slack,
4285 * so next can be after 'safe', but not by more than offset_disk
4286 *
4287 * We need to prepare all the bios here before we start any IO
4288 * to ensure the size we choose is acceptable to all devices.
4289 * The means one for each copy for write-out and an extra one for
4290 * read-in.
4291 * We store the read-in bio in ->master_bio and the others in
4292 * ->devs[x].bio and ->devs[x].repl_bio.
4293 */
4294 struct r10conf *conf = mddev->private;
4295 struct r10bio *r10_bio;
4296 sector_t next, safe, last;
4297 int max_sectors;
4298 int nr_sectors;
4299 int s;
4300 struct md_rdev *rdev;
4301 int need_flush = 0;
4302 struct bio *blist;
4303 struct bio *bio, *read_bio;
4304 int sectors_done = 0;
4305
4306 if (sector_nr == 0) {
4307 /* If restarting in the middle, skip the initial sectors */
4308 if (mddev->reshape_backwards &&
4309 conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4310 sector_nr = (raid10_size(mddev, 0, 0)
4311 - conf->reshape_progress);
4312 } else if (!mddev->reshape_backwards &&
4313 conf->reshape_progress > 0)
4314 sector_nr = conf->reshape_progress;
4315 if (sector_nr) {
4316 mddev->curr_resync_completed = sector_nr;
4317 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4318 *skipped = 1;
4319 return sector_nr;
4320 }
4321 }
4322
4323 /* We don't use sector_nr to track where we are up to
4324 * as that doesn't work well for ->reshape_backwards.
4325 * So just use ->reshape_progress.
4326 */
4327 if (mddev->reshape_backwards) {
4328 /* 'next' is the earliest device address that we might
4329 * write to for this chunk in the new layout
4330 */
4331 next = first_dev_address(conf->reshape_progress - 1,
4332 &conf->geo);
4333
4334 /* 'safe' is the last device address that we might read from
4335 * in the old layout after a restart
4336 */
4337 safe = last_dev_address(conf->reshape_safe - 1,
4338 &conf->prev);
4339
4340 if (next + conf->offset_diff < safe)
4341 need_flush = 1;
4342
4343 last = conf->reshape_progress - 1;
4344 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4345 & conf->prev.chunk_mask);
4346 if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
4347 sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
4348 } else {
4349 /* 'next' is after the last device address that we
4350 * might write to for this chunk in the new layout
4351 */
4352 next = last_dev_address(conf->reshape_progress, &conf->geo);
4353
4354 /* 'safe' is the earliest device address that we might
4355 * read from in the old layout after a restart
4356 */
4357 safe = first_dev_address(conf->reshape_safe, &conf->prev);
4358
4359 /* Need to update metadata if 'next' might be beyond 'safe'
4360 * as that would possibly corrupt data
4361 */
4362 if (next > safe + conf->offset_diff)
4363 need_flush = 1;
4364
4365 sector_nr = conf->reshape_progress;
4366 last = sector_nr | (conf->geo.chunk_mask
4367 & conf->prev.chunk_mask);
4368
4369 if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
4370 last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
4371 }
4372
4373 if (need_flush ||
4374 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4375 /* Need to update reshape_position in metadata */
4376 wait_barrier(conf);
4377 mddev->reshape_position = conf->reshape_progress;
4378 if (mddev->reshape_backwards)
4379 mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4380 - conf->reshape_progress;
4381 else
4382 mddev->curr_resync_completed = conf->reshape_progress;
4383 conf->reshape_checkpoint = jiffies;
4384 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4385 md_wakeup_thread(mddev->thread);
4386 wait_event(mddev->sb_wait, mddev->flags == 0 ||
4387 kthread_should_stop());
4388 conf->reshape_safe = mddev->reshape_position;
4389 allow_barrier(conf);
4390 }
4391
4392read_more:
4393 /* Now schedule reads for blocks from sector_nr to last */
4394 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
4395 raise_barrier(conf, sectors_done != 0);
4396 atomic_set(&r10_bio->remaining, 0);
4397 r10_bio->mddev = mddev;
4398 r10_bio->sector = sector_nr;
4399 set_bit(R10BIO_IsReshape, &r10_bio->state);
4400 r10_bio->sectors = last - sector_nr + 1;
4401 rdev = read_balance(conf, r10_bio, &max_sectors);
4402 BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4403
4404 if (!rdev) {
4405 /* Cannot read from here, so need to record bad blocks
4406 * on all the target devices.
4407 */
4408 // FIXME
4409 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4410 return sectors_done;
4411 }
4412
4413 read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4414
4415 read_bio->bi_bdev = rdev->bdev;
4416 read_bio->bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4417 + rdev->data_offset);
4418 read_bio->bi_private = r10_bio;
4419 read_bio->bi_end_io = end_sync_read;
4420 read_bio->bi_rw = READ;
4421 read_bio->bi_flags &= ~(BIO_POOL_MASK - 1);
4422 read_bio->bi_flags |= 1 << BIO_UPTODATE;
4423 read_bio->bi_vcnt = 0;
4424 read_bio->bi_idx = 0;
4425 read_bio->bi_size = 0;
4426 r10_bio->master_bio = read_bio;
4427 r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4428
4429 /* Now find the locations in the new layout */
4430 __raid10_find_phys(&conf->geo, r10_bio);
4431
4432 blist = read_bio;
4433 read_bio->bi_next = NULL;
4434
4435 for (s = 0; s < conf->copies*2; s++) {
4436 struct bio *b;
4437 int d = r10_bio->devs[s/2].devnum;
4438 struct md_rdev *rdev2;
4439 if (s&1) {
4440 rdev2 = conf->mirrors[d].replacement;
4441 b = r10_bio->devs[s/2].repl_bio;
4442 } else {
4443 rdev2 = conf->mirrors[d].rdev;
4444 b = r10_bio->devs[s/2].bio;
4445 }
4446 if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4447 continue;
4448 b->bi_bdev = rdev2->bdev;
4449 b->bi_sector = r10_bio->devs[s/2].addr + rdev2->new_data_offset;
4450 b->bi_private = r10_bio;
4451 b->bi_end_io = end_reshape_write;
4452 b->bi_rw = WRITE;
4453 b->bi_flags &= ~(BIO_POOL_MASK - 1);
4454 b->bi_flags |= 1 << BIO_UPTODATE;
4455 b->bi_next = blist;
4456 b->bi_vcnt = 0;
4457 b->bi_idx = 0;
4458 b->bi_size = 0;
4459 blist = b;
4460 }
4461
4462 /* Now add as many pages as possible to all of these bios. */
4463
4464 nr_sectors = 0;
4465 for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4466 struct page *page = r10_bio->devs[0].bio->bi_io_vec[s/(PAGE_SIZE>>9)].bv_page;
4467 int len = (max_sectors - s) << 9;
4468 if (len > PAGE_SIZE)
4469 len = PAGE_SIZE;
4470 for (bio = blist; bio ; bio = bio->bi_next) {
4471 struct bio *bio2;
4472 if (bio_add_page(bio, page, len, 0))
4473 continue;
4474
4475 /* Didn't fit, must stop */
4476 for (bio2 = blist;
4477 bio2 && bio2 != bio;
4478 bio2 = bio2->bi_next) {
4479 /* Remove last page from this bio */
4480 bio2->bi_vcnt--;
4481 bio2->bi_size -= len;
4482 bio2->bi_flags &= ~(1<<BIO_SEG_VALID);
4483 }
4484 goto bio_full;
4485 }
4486 sector_nr += len >> 9;
4487 nr_sectors += len >> 9;
4488 }
4489bio_full:
4490 r10_bio->sectors = nr_sectors;
4491
4492 /* Now submit the read */
4493 md_sync_acct(read_bio->bi_bdev, r10_bio->sectors);
4494 atomic_inc(&r10_bio->remaining);
4495 read_bio->bi_next = NULL;
4496 generic_make_request(read_bio);
4497 sector_nr += nr_sectors;
4498 sectors_done += nr_sectors;
4499 if (sector_nr <= last)
4500 goto read_more;
4501
4502 /* Now that we have done the whole section we can
4503 * update reshape_progress
4504 */
4505 if (mddev->reshape_backwards)
4506 conf->reshape_progress -= sectors_done;
4507 else
4508 conf->reshape_progress += sectors_done;
4509
4510 return sectors_done;
4511}
4512
4513static void end_reshape_request(struct r10bio *r10_bio);
4514static int handle_reshape_read_error(struct mddev *mddev,
4515 struct r10bio *r10_bio);
4516static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4517{
4518 /* Reshape read completed. Hopefully we have a block
4519 * to write out.
4520 * If we got a read error then we do sync 1-page reads from
4521 * elsewhere until we find the data - or give up.
4522 */
4523 struct r10conf *conf = mddev->private;
4524 int s;
4525
4526 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4527 if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4528 /* Reshape has been aborted */
4529 md_done_sync(mddev, r10_bio->sectors, 0);
4530 return;
4531 }
4532
4533 /* We definitely have the data in the pages, schedule the
4534 * writes.
4535 */
4536 atomic_set(&r10_bio->remaining, 1);
4537 for (s = 0; s < conf->copies*2; s++) {
4538 struct bio *b;
4539 int d = r10_bio->devs[s/2].devnum;
4540 struct md_rdev *rdev;
4541 if (s&1) {
4542 rdev = conf->mirrors[d].replacement;
4543 b = r10_bio->devs[s/2].repl_bio;
4544 } else {
4545 rdev = conf->mirrors[d].rdev;
4546 b = r10_bio->devs[s/2].bio;
4547 }
4548 if (!rdev || test_bit(Faulty, &rdev->flags))
4549 continue;
4550 atomic_inc(&rdev->nr_pending);
4551 md_sync_acct(b->bi_bdev, r10_bio->sectors);
4552 atomic_inc(&r10_bio->remaining);
4553 b->bi_next = NULL;
4554 generic_make_request(b);
4555 }
4556 end_reshape_request(r10_bio);
4557}
4558
4559static void end_reshape(struct r10conf *conf)
4560{
4561 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4562 return;
4563
4564 spin_lock_irq(&conf->device_lock);
4565 conf->prev = conf->geo;
4566 md_finish_reshape(conf->mddev);
4567 smp_wmb();
4568 conf->reshape_progress = MaxSector;
4569 spin_unlock_irq(&conf->device_lock);
4570
4571 /* read-ahead size must cover two whole stripes, which is
4572 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4573 */
4574 if (conf->mddev->queue) {
4575 int stripe = conf->geo.raid_disks *
4576 ((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
4577 stripe /= conf->geo.near_copies;
4578 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4579 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4580 }
4581 conf->fullsync = 0;
4582}
4583
4584
4585static int handle_reshape_read_error(struct mddev *mddev,
4586 struct r10bio *r10_bio)
4587{
4588 /* Use sync reads to get the blocks from somewhere else */
4589 int sectors = r10_bio->sectors;
3ea7daa5 4590 struct r10conf *conf = mddev->private;
e0ee7785
N
4591 struct {
4592 struct r10bio r10_bio;
4593 struct r10dev devs[conf->copies];
4594 } on_stack;
4595 struct r10bio *r10b = &on_stack.r10_bio;
3ea7daa5
N
4596 int slot = 0;
4597 int idx = 0;
4598 struct bio_vec *bvec = r10_bio->master_bio->bi_io_vec;
4599
e0ee7785
N
4600 r10b->sector = r10_bio->sector;
4601 __raid10_find_phys(&conf->prev, r10b);
3ea7daa5
N
4602
4603 while (sectors) {
4604 int s = sectors;
4605 int success = 0;
4606 int first_slot = slot;
4607
4608 if (s > (PAGE_SIZE >> 9))
4609 s = PAGE_SIZE >> 9;
4610
4611 while (!success) {
e0ee7785 4612 int d = r10b->devs[slot].devnum;
3ea7daa5
N
4613 struct md_rdev *rdev = conf->mirrors[d].rdev;
4614 sector_t addr;
4615 if (rdev == NULL ||
4616 test_bit(Faulty, &rdev->flags) ||
4617 !test_bit(In_sync, &rdev->flags))
4618 goto failed;
4619
e0ee7785 4620 addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
3ea7daa5
N
4621 success = sync_page_io(rdev,
4622 addr,
4623 s << 9,
4624 bvec[idx].bv_page,
4625 READ, false);
4626 if (success)
4627 break;
4628 failed:
4629 slot++;
4630 if (slot >= conf->copies)
4631 slot = 0;
4632 if (slot == first_slot)
4633 break;
4634 }
4635 if (!success) {
4636 /* couldn't read this block, must give up */
4637 set_bit(MD_RECOVERY_INTR,
4638 &mddev->recovery);
4639 return -EIO;
4640 }
4641 sectors -= s;
4642 idx++;
4643 }
4644 return 0;
4645}
4646
4647static void end_reshape_write(struct bio *bio, int error)
4648{
4649 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
4650 struct r10bio *r10_bio = bio->bi_private;
4651 struct mddev *mddev = r10_bio->mddev;
4652 struct r10conf *conf = mddev->private;
4653 int d;
4654 int slot;
4655 int repl;
4656 struct md_rdev *rdev = NULL;
4657
4658 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4659 if (repl)
4660 rdev = conf->mirrors[d].replacement;
4661 if (!rdev) {
4662 smp_mb();
4663 rdev = conf->mirrors[d].rdev;
4664 }
4665
4666 if (!uptodate) {
4667 /* FIXME should record badblock */
4668 md_error(mddev, rdev);
4669 }
4670
4671 rdev_dec_pending(rdev, mddev);
4672 end_reshape_request(r10_bio);
4673}
4674
4675static void end_reshape_request(struct r10bio *r10_bio)
4676{
4677 if (!atomic_dec_and_test(&r10_bio->remaining))
4678 return;
4679 md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4680 bio_put(r10_bio->master_bio);
4681 put_buf(r10_bio);
4682}
4683
4684static void raid10_finish_reshape(struct mddev *mddev)
4685{
4686 struct r10conf *conf = mddev->private;
4687
4688 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4689 return;
4690
4691 if (mddev->delta_disks > 0) {
4692 sector_t size = raid10_size(mddev, 0, 0);
4693 md_set_array_sectors(mddev, size);
4694 if (mddev->recovery_cp > mddev->resync_max_sectors) {
4695 mddev->recovery_cp = mddev->resync_max_sectors;
4696 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4697 }
4698 mddev->resync_max_sectors = size;
4699 set_capacity(mddev->gendisk, mddev->array_sectors);
4700 revalidate_disk(mddev->gendisk);
63aced61
N
4701 } else {
4702 int d;
4703 for (d = conf->geo.raid_disks ;
4704 d < conf->geo.raid_disks - mddev->delta_disks;
4705 d++) {
4706 struct md_rdev *rdev = conf->mirrors[d].rdev;
4707 if (rdev)
4708 clear_bit(In_sync, &rdev->flags);
4709 rdev = conf->mirrors[d].replacement;
4710 if (rdev)
4711 clear_bit(In_sync, &rdev->flags);
4712 }
3ea7daa5
N
4713 }
4714 mddev->layout = mddev->new_layout;
4715 mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4716 mddev->reshape_position = MaxSector;
4717 mddev->delta_disks = 0;
4718 mddev->reshape_backwards = 0;
4719}
4720
84fc4b56 4721static struct md_personality raid10_personality =
1da177e4
LT
4722{
4723 .name = "raid10",
2604b703 4724 .level = 10,
1da177e4
LT
4725 .owner = THIS_MODULE,
4726 .make_request = make_request,
4727 .run = run,
4728 .stop = stop,
4729 .status = status,
4730 .error_handler = error,
4731 .hot_add_disk = raid10_add_disk,
4732 .hot_remove_disk= raid10_remove_disk,
4733 .spare_active = raid10_spare_active,
4734 .sync_request = sync_request,
6cce3b23 4735 .quiesce = raid10_quiesce,
80c3a6ce 4736 .size = raid10_size,
006a09a0 4737 .resize = raid10_resize,
dab8b292 4738 .takeover = raid10_takeover,
3ea7daa5
N
4739 .check_reshape = raid10_check_reshape,
4740 .start_reshape = raid10_start_reshape,
4741 .finish_reshape = raid10_finish_reshape,
1da177e4
LT
4742};
4743
4744static int __init raid_init(void)
4745{
2604b703 4746 return register_md_personality(&raid10_personality);
1da177e4
LT
4747}
4748
4749static void raid_exit(void)
4750{
2604b703 4751 unregister_md_personality(&raid10_personality);
1da177e4
LT
4752}
4753
4754module_init(raid_init);
4755module_exit(raid_exit);
4756MODULE_LICENSE("GPL");
0efb9e61 4757MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
1da177e4 4758MODULE_ALIAS("md-personality-9"); /* RAID10 */
d9d166c2 4759MODULE_ALIAS("md-raid10");
2604b703 4760MODULE_ALIAS("md-level-10");
34db0cd6
N
4761
4762module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);