md: md_unregister_thread should cope with being passed NULL
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / md / raid10.c
CommitLineData
1da177e4
LT
1/*
2 * raid10.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 2000-2004 Neil Brown
5 *
6 * RAID-10 support for md.
7 *
8 * Base on code in raid1.c. See raid1.c for futher copyright information.
9 *
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
25570727 21#include <linux/delay.h>
bff61975 22#include <linux/blkdev.h>
bff61975 23#include <linux/seq_file.h>
43b2e5d8 24#include "md.h"
bff61975 25#include "dm-bio-list.h"
ef740c37
CH
26#include "raid10.h"
27#include "bitmap.h"
1da177e4
LT
28
29/*
30 * RAID10 provides a combination of RAID0 and RAID1 functionality.
31 * The layout of data is defined by
32 * chunk_size
33 * raid_disks
34 * near_copies (stored in low byte of layout)
35 * far_copies (stored in second byte of layout)
c93983bf 36 * far_offset (stored in bit 16 of layout )
1da177e4
LT
37 *
38 * The data to be stored is divided into chunks using chunksize.
39 * Each device is divided into far_copies sections.
40 * In each section, chunks are laid out in a style similar to raid0, but
41 * near_copies copies of each chunk is stored (each on a different drive).
42 * The starting device for each section is offset near_copies from the starting
43 * device of the previous section.
c93983bf 44 * Thus they are (near_copies*far_copies) of each chunk, and each is on a different
1da177e4
LT
45 * drive.
46 * near_copies and far_copies must be at least one, and their product is at most
47 * raid_disks.
c93983bf
N
48 *
49 * If far_offset is true, then the far_copies are handled a bit differently.
50 * The copies are still in different stripes, but instead of be very far apart
51 * on disk, there are adjacent stripes.
1da177e4
LT
52 */
53
54/*
55 * Number of guaranteed r10bios in case of extreme VM load:
56 */
57#define NR_RAID10_BIOS 256
58
59static void unplug_slaves(mddev_t *mddev);
60
0a27ec96
N
61static void allow_barrier(conf_t *conf);
62static void lower_barrier(conf_t *conf);
63
dd0fc66f 64static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4
LT
65{
66 conf_t *conf = data;
67 r10bio_t *r10_bio;
68 int size = offsetof(struct r10bio_s, devs[conf->copies]);
69
70 /* allocate a r10bio with room for raid_disks entries in the bios array */
9ffae0cf
N
71 r10_bio = kzalloc(size, gfp_flags);
72 if (!r10_bio)
1da177e4
LT
73 unplug_slaves(conf->mddev);
74
75 return r10_bio;
76}
77
78static void r10bio_pool_free(void *r10_bio, void *data)
79{
80 kfree(r10_bio);
81}
82
0310fa21 83/* Maximum size of each resync request */
1da177e4 84#define RESYNC_BLOCK_SIZE (64*1024)
1da177e4 85#define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
0310fa21
N
86/* amount of memory to reserve for resync requests */
87#define RESYNC_WINDOW (1024*1024)
88/* maximum number of concurrent requests, memory permitting */
89#define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
1da177e4
LT
90
91/*
92 * When performing a resync, we need to read and compare, so
93 * we need as many pages are there are copies.
94 * When performing a recovery, we need 2 bios, one for read,
95 * one for write (we recover only one drive per r10buf)
96 *
97 */
dd0fc66f 98static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4
LT
99{
100 conf_t *conf = data;
101 struct page *page;
102 r10bio_t *r10_bio;
103 struct bio *bio;
104 int i, j;
105 int nalloc;
106
107 r10_bio = r10bio_pool_alloc(gfp_flags, conf);
108 if (!r10_bio) {
109 unplug_slaves(conf->mddev);
110 return NULL;
111 }
112
113 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
114 nalloc = conf->copies; /* resync */
115 else
116 nalloc = 2; /* recovery */
117
118 /*
119 * Allocate bios.
120 */
121 for (j = nalloc ; j-- ; ) {
122 bio = bio_alloc(gfp_flags, RESYNC_PAGES);
123 if (!bio)
124 goto out_free_bio;
125 r10_bio->devs[j].bio = bio;
126 }
127 /*
128 * Allocate RESYNC_PAGES data pages and attach them
129 * where needed.
130 */
131 for (j = 0 ; j < nalloc; j++) {
132 bio = r10_bio->devs[j].bio;
133 for (i = 0; i < RESYNC_PAGES; i++) {
134 page = alloc_page(gfp_flags);
135 if (unlikely(!page))
136 goto out_free_pages;
137
138 bio->bi_io_vec[i].bv_page = page;
139 }
140 }
141
142 return r10_bio;
143
144out_free_pages:
145 for ( ; i > 0 ; i--)
1345b1d8 146 safe_put_page(bio->bi_io_vec[i-1].bv_page);
1da177e4
LT
147 while (j--)
148 for (i = 0; i < RESYNC_PAGES ; i++)
1345b1d8 149 safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
1da177e4
LT
150 j = -1;
151out_free_bio:
152 while ( ++j < nalloc )
153 bio_put(r10_bio->devs[j].bio);
154 r10bio_pool_free(r10_bio, conf);
155 return NULL;
156}
157
158static void r10buf_pool_free(void *__r10_bio, void *data)
159{
160 int i;
161 conf_t *conf = data;
162 r10bio_t *r10bio = __r10_bio;
163 int j;
164
165 for (j=0; j < conf->copies; j++) {
166 struct bio *bio = r10bio->devs[j].bio;
167 if (bio) {
168 for (i = 0; i < RESYNC_PAGES; i++) {
1345b1d8 169 safe_put_page(bio->bi_io_vec[i].bv_page);
1da177e4
LT
170 bio->bi_io_vec[i].bv_page = NULL;
171 }
172 bio_put(bio);
173 }
174 }
175 r10bio_pool_free(r10bio, conf);
176}
177
178static void put_all_bios(conf_t *conf, r10bio_t *r10_bio)
179{
180 int i;
181
182 for (i = 0; i < conf->copies; i++) {
183 struct bio **bio = & r10_bio->devs[i].bio;
0eb3ff12 184 if (*bio && *bio != IO_BLOCKED)
1da177e4
LT
185 bio_put(*bio);
186 *bio = NULL;
187 }
188}
189
858119e1 190static void free_r10bio(r10bio_t *r10_bio)
1da177e4 191{
1da177e4
LT
192 conf_t *conf = mddev_to_conf(r10_bio->mddev);
193
194 /*
195 * Wake up any possible resync thread that waits for the device
196 * to go idle.
197 */
0a27ec96 198 allow_barrier(conf);
1da177e4
LT
199
200 put_all_bios(conf, r10_bio);
201 mempool_free(r10_bio, conf->r10bio_pool);
202}
203
858119e1 204static void put_buf(r10bio_t *r10_bio)
1da177e4
LT
205{
206 conf_t *conf = mddev_to_conf(r10_bio->mddev);
1da177e4
LT
207
208 mempool_free(r10_bio, conf->r10buf_pool);
209
0a27ec96 210 lower_barrier(conf);
1da177e4
LT
211}
212
213static void reschedule_retry(r10bio_t *r10_bio)
214{
215 unsigned long flags;
216 mddev_t *mddev = r10_bio->mddev;
217 conf_t *conf = mddev_to_conf(mddev);
218
219 spin_lock_irqsave(&conf->device_lock, flags);
220 list_add(&r10_bio->retry_list, &conf->retry_list);
4443ae10 221 conf->nr_queued ++;
1da177e4
LT
222 spin_unlock_irqrestore(&conf->device_lock, flags);
223
388667be
AJ
224 /* wake up frozen array... */
225 wake_up(&conf->wait_barrier);
226
1da177e4
LT
227 md_wakeup_thread(mddev->thread);
228}
229
230/*
231 * raid_end_bio_io() is called when we have finished servicing a mirrored
232 * operation and are ready to return a success/failure code to the buffer
233 * cache layer.
234 */
235static void raid_end_bio_io(r10bio_t *r10_bio)
236{
237 struct bio *bio = r10_bio->master_bio;
238
6712ecf8 239 bio_endio(bio,
1da177e4
LT
240 test_bit(R10BIO_Uptodate, &r10_bio->state) ? 0 : -EIO);
241 free_r10bio(r10_bio);
242}
243
244/*
245 * Update disk head position estimator based on IRQ completion info.
246 */
247static inline void update_head_pos(int slot, r10bio_t *r10_bio)
248{
249 conf_t *conf = mddev_to_conf(r10_bio->mddev);
250
251 conf->mirrors[r10_bio->devs[slot].devnum].head_position =
252 r10_bio->devs[slot].addr + (r10_bio->sectors);
253}
254
6712ecf8 255static void raid10_end_read_request(struct bio *bio, int error)
1da177e4
LT
256{
257 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
258 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
259 int slot, dev;
260 conf_t *conf = mddev_to_conf(r10_bio->mddev);
261
1da177e4
LT
262
263 slot = r10_bio->read_slot;
264 dev = r10_bio->devs[slot].devnum;
265 /*
266 * this branch is our 'one mirror IO has finished' event handler:
267 */
4443ae10
N
268 update_head_pos(slot, r10_bio);
269
270 if (uptodate) {
1da177e4
LT
271 /*
272 * Set R10BIO_Uptodate in our master bio, so that
273 * we will return a good error code to the higher
274 * levels even if IO on some other mirrored buffer fails.
275 *
276 * The 'master' represents the composite IO operation to
277 * user-side. So if something waits for IO, then it will
278 * wait for the 'master' bio.
279 */
280 set_bit(R10BIO_Uptodate, &r10_bio->state);
1da177e4 281 raid_end_bio_io(r10_bio);
4443ae10 282 } else {
1da177e4
LT
283 /*
284 * oops, read error:
285 */
286 char b[BDEVNAME_SIZE];
287 if (printk_ratelimit())
288 printk(KERN_ERR "raid10: %s: rescheduling sector %llu\n",
289 bdevname(conf->mirrors[dev].rdev->bdev,b), (unsigned long long)r10_bio->sector);
290 reschedule_retry(r10_bio);
291 }
292
293 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
1da177e4
LT
294}
295
6712ecf8 296static void raid10_end_write_request(struct bio *bio, int error)
1da177e4
LT
297{
298 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
299 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
300 int slot, dev;
301 conf_t *conf = mddev_to_conf(r10_bio->mddev);
302
1da177e4
LT
303 for (slot = 0; slot < conf->copies; slot++)
304 if (r10_bio->devs[slot].bio == bio)
305 break;
306 dev = r10_bio->devs[slot].devnum;
307
308 /*
309 * this branch is our 'one mirror IO has finished' event handler:
310 */
6cce3b23 311 if (!uptodate) {
1da177e4 312 md_error(r10_bio->mddev, conf->mirrors[dev].rdev);
6cce3b23
N
313 /* an I/O failed, we can't clear the bitmap */
314 set_bit(R10BIO_Degraded, &r10_bio->state);
315 } else
1da177e4
LT
316 /*
317 * Set R10BIO_Uptodate in our master bio, so that
318 * we will return a good error code for to the higher
319 * levels even if IO on some other mirrored buffer fails.
320 *
321 * The 'master' represents the composite IO operation to
322 * user-side. So if something waits for IO, then it will
323 * wait for the 'master' bio.
324 */
325 set_bit(R10BIO_Uptodate, &r10_bio->state);
326
327 update_head_pos(slot, r10_bio);
328
329 /*
330 *
331 * Let's see if all mirrored write operations have finished
332 * already.
333 */
334 if (atomic_dec_and_test(&r10_bio->remaining)) {
6cce3b23
N
335 /* clear the bitmap if all writes complete successfully */
336 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
337 r10_bio->sectors,
338 !test_bit(R10BIO_Degraded, &r10_bio->state),
339 0);
1da177e4
LT
340 md_write_end(r10_bio->mddev);
341 raid_end_bio_io(r10_bio);
342 }
343
344 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
1da177e4
LT
345}
346
347
348/*
349 * RAID10 layout manager
350 * Aswell as the chunksize and raid_disks count, there are two
351 * parameters: near_copies and far_copies.
352 * near_copies * far_copies must be <= raid_disks.
353 * Normally one of these will be 1.
354 * If both are 1, we get raid0.
355 * If near_copies == raid_disks, we get raid1.
356 *
357 * Chunks are layed out in raid0 style with near_copies copies of the
358 * first chunk, followed by near_copies copies of the next chunk and
359 * so on.
360 * If far_copies > 1, then after 1/far_copies of the array has been assigned
361 * as described above, we start again with a device offset of near_copies.
362 * So we effectively have another copy of the whole array further down all
363 * the drives, but with blocks on different drives.
364 * With this layout, and block is never stored twice on the one device.
365 *
366 * raid10_find_phys finds the sector offset of a given virtual sector
c93983bf 367 * on each device that it is on.
1da177e4
LT
368 *
369 * raid10_find_virt does the reverse mapping, from a device and a
370 * sector offset to a virtual address
371 */
372
373static void raid10_find_phys(conf_t *conf, r10bio_t *r10bio)
374{
375 int n,f;
376 sector_t sector;
377 sector_t chunk;
378 sector_t stripe;
379 int dev;
380
381 int slot = 0;
382
383 /* now calculate first sector/dev */
384 chunk = r10bio->sector >> conf->chunk_shift;
385 sector = r10bio->sector & conf->chunk_mask;
386
387 chunk *= conf->near_copies;
388 stripe = chunk;
389 dev = sector_div(stripe, conf->raid_disks);
c93983bf
N
390 if (conf->far_offset)
391 stripe *= conf->far_copies;
1da177e4
LT
392
393 sector += stripe << conf->chunk_shift;
394
395 /* and calculate all the others */
396 for (n=0; n < conf->near_copies; n++) {
397 int d = dev;
398 sector_t s = sector;
399 r10bio->devs[slot].addr = sector;
400 r10bio->devs[slot].devnum = d;
401 slot++;
402
403 for (f = 1; f < conf->far_copies; f++) {
404 d += conf->near_copies;
405 if (d >= conf->raid_disks)
406 d -= conf->raid_disks;
407 s += conf->stride;
408 r10bio->devs[slot].devnum = d;
409 r10bio->devs[slot].addr = s;
410 slot++;
411 }
412 dev++;
413 if (dev >= conf->raid_disks) {
414 dev = 0;
415 sector += (conf->chunk_mask + 1);
416 }
417 }
418 BUG_ON(slot != conf->copies);
419}
420
421static sector_t raid10_find_virt(conf_t *conf, sector_t sector, int dev)
422{
423 sector_t offset, chunk, vchunk;
424
1da177e4 425 offset = sector & conf->chunk_mask;
c93983bf
N
426 if (conf->far_offset) {
427 int fc;
428 chunk = sector >> conf->chunk_shift;
429 fc = sector_div(chunk, conf->far_copies);
430 dev -= fc * conf->near_copies;
431 if (dev < 0)
432 dev += conf->raid_disks;
433 } else {
64a742bc 434 while (sector >= conf->stride) {
c93983bf
N
435 sector -= conf->stride;
436 if (dev < conf->near_copies)
437 dev += conf->raid_disks - conf->near_copies;
438 else
439 dev -= conf->near_copies;
440 }
441 chunk = sector >> conf->chunk_shift;
442 }
1da177e4
LT
443 vchunk = chunk * conf->raid_disks + dev;
444 sector_div(vchunk, conf->near_copies);
445 return (vchunk << conf->chunk_shift) + offset;
446}
447
448/**
449 * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
450 * @q: request queue
cc371e66 451 * @bvm: properties of new bio
1da177e4
LT
452 * @biovec: the request that could be merged to it.
453 *
454 * Return amount of bytes we can accept at this offset
455 * If near_copies == raid_disk, there are no striping issues,
456 * but in that case, the function isn't called at all.
457 */
cc371e66
AK
458static int raid10_mergeable_bvec(struct request_queue *q,
459 struct bvec_merge_data *bvm,
460 struct bio_vec *biovec)
1da177e4
LT
461{
462 mddev_t *mddev = q->queuedata;
cc371e66 463 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
1da177e4
LT
464 int max;
465 unsigned int chunk_sectors = mddev->chunk_size >> 9;
cc371e66 466 unsigned int bio_sectors = bvm->bi_size >> 9;
1da177e4
LT
467
468 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
469 if (max < 0) max = 0; /* bio_add cannot handle a negative return */
cc371e66
AK
470 if (max <= biovec->bv_len && bio_sectors == 0)
471 return biovec->bv_len;
1da177e4
LT
472 else
473 return max;
474}
475
476/*
477 * This routine returns the disk from which the requested read should
478 * be done. There is a per-array 'next expected sequential IO' sector
479 * number - if this matches on the next IO then we use the last disk.
480 * There is also a per-disk 'last know head position' sector that is
481 * maintained from IRQ contexts, both the normal and the resync IO
482 * completion handlers update this position correctly. If there is no
483 * perfect sequential match then we pick the disk whose head is closest.
484 *
485 * If there are 2 mirrors in the same 2 devices, performance degrades
486 * because position is mirror, not device based.
487 *
488 * The rdev for the device selected will have nr_pending incremented.
489 */
490
491/*
492 * FIXME: possibly should rethink readbalancing and do it differently
493 * depending on near_copies / far_copies geometry.
494 */
495static int read_balance(conf_t *conf, r10bio_t *r10_bio)
496{
497 const unsigned long this_sector = r10_bio->sector;
498 int disk, slot, nslot;
499 const int sectors = r10_bio->sectors;
500 sector_t new_distance, current_distance;
d6065f7b 501 mdk_rdev_t *rdev;
1da177e4
LT
502
503 raid10_find_phys(conf, r10_bio);
504 rcu_read_lock();
505 /*
506 * Check if we can balance. We can balance on the whole
6cce3b23
N
507 * device if no resync is going on (recovery is ok), or below
508 * the resync window. We take the first readable disk when
509 * above the resync window.
1da177e4
LT
510 */
511 if (conf->mddev->recovery_cp < MaxSector
512 && (this_sector + sectors >= conf->next_resync)) {
513 /* make sure that disk is operational */
514 slot = 0;
515 disk = r10_bio->devs[slot].devnum;
516
d6065f7b 517 while ((rdev = rcu_dereference(conf->mirrors[disk].rdev)) == NULL ||
0eb3ff12 518 r10_bio->devs[slot].bio == IO_BLOCKED ||
b2d444d7 519 !test_bit(In_sync, &rdev->flags)) {
1da177e4
LT
520 slot++;
521 if (slot == conf->copies) {
522 slot = 0;
523 disk = -1;
524 break;
525 }
526 disk = r10_bio->devs[slot].devnum;
527 }
528 goto rb_out;
529 }
530
531
532 /* make sure the disk is operational */
533 slot = 0;
534 disk = r10_bio->devs[slot].devnum;
d6065f7b 535 while ((rdev=rcu_dereference(conf->mirrors[disk].rdev)) == NULL ||
0eb3ff12 536 r10_bio->devs[slot].bio == IO_BLOCKED ||
b2d444d7 537 !test_bit(In_sync, &rdev->flags)) {
1da177e4
LT
538 slot ++;
539 if (slot == conf->copies) {
540 disk = -1;
541 goto rb_out;
542 }
543 disk = r10_bio->devs[slot].devnum;
544 }
545
546
3ec67ac1
N
547 current_distance = abs(r10_bio->devs[slot].addr -
548 conf->mirrors[disk].head_position);
1da177e4 549
8ed3a195
KS
550 /* Find the disk whose head is closest,
551 * or - for far > 1 - find the closest to partition beginning */
1da177e4
LT
552
553 for (nslot = slot; nslot < conf->copies; nslot++) {
554 int ndisk = r10_bio->devs[nslot].devnum;
555
556
d6065f7b 557 if ((rdev=rcu_dereference(conf->mirrors[ndisk].rdev)) == NULL ||
0eb3ff12 558 r10_bio->devs[nslot].bio == IO_BLOCKED ||
b2d444d7 559 !test_bit(In_sync, &rdev->flags))
1da177e4
LT
560 continue;
561
22dfdf52
N
562 /* This optimisation is debatable, and completely destroys
563 * sequential read speed for 'far copies' arrays. So only
564 * keep it for 'near' arrays, and review those later.
565 */
566 if (conf->near_copies > 1 && !atomic_read(&rdev->nr_pending)) {
1da177e4
LT
567 disk = ndisk;
568 slot = nslot;
569 break;
570 }
8ed3a195
KS
571
572 /* for far > 1 always use the lowest address */
573 if (conf->far_copies > 1)
574 new_distance = r10_bio->devs[nslot].addr;
575 else
576 new_distance = abs(r10_bio->devs[nslot].addr -
577 conf->mirrors[ndisk].head_position);
1da177e4
LT
578 if (new_distance < current_distance) {
579 current_distance = new_distance;
580 disk = ndisk;
581 slot = nslot;
582 }
583 }
584
585rb_out:
586 r10_bio->read_slot = slot;
587/* conf->next_seq_sect = this_sector + sectors;*/
588
d6065f7b 589 if (disk >= 0 && (rdev=rcu_dereference(conf->mirrors[disk].rdev))!= NULL)
1da177e4 590 atomic_inc(&conf->mirrors[disk].rdev->nr_pending);
29fc7e3e
N
591 else
592 disk = -1;
1da177e4
LT
593 rcu_read_unlock();
594
595 return disk;
596}
597
598static void unplug_slaves(mddev_t *mddev)
599{
600 conf_t *conf = mddev_to_conf(mddev);
601 int i;
602
603 rcu_read_lock();
604 for (i=0; i<mddev->raid_disks; i++) {
d6065f7b 605 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
b2d444d7 606 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
165125e1 607 struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
1da177e4
LT
608
609 atomic_inc(&rdev->nr_pending);
610 rcu_read_unlock();
611
2ad8b1ef 612 blk_unplug(r_queue);
1da177e4
LT
613
614 rdev_dec_pending(rdev, mddev);
615 rcu_read_lock();
616 }
617 }
618 rcu_read_unlock();
619}
620
165125e1 621static void raid10_unplug(struct request_queue *q)
1da177e4 622{
6cce3b23
N
623 mddev_t *mddev = q->queuedata;
624
1da177e4 625 unplug_slaves(q->queuedata);
6cce3b23 626 md_wakeup_thread(mddev->thread);
1da177e4
LT
627}
628
0d129228
N
629static int raid10_congested(void *data, int bits)
630{
631 mddev_t *mddev = data;
632 conf_t *conf = mddev_to_conf(mddev);
633 int i, ret = 0;
634
635 rcu_read_lock();
636 for (i = 0; i < mddev->raid_disks && ret == 0; i++) {
637 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
638 if (rdev && !test_bit(Faulty, &rdev->flags)) {
165125e1 639 struct request_queue *q = bdev_get_queue(rdev->bdev);
0d129228
N
640
641 ret |= bdi_congested(&q->backing_dev_info, bits);
642 }
643 }
644 rcu_read_unlock();
645 return ret;
646}
647
a35e63ef
N
648static int flush_pending_writes(conf_t *conf)
649{
650 /* Any writes that have been queued but are awaiting
651 * bitmap updates get flushed here.
652 * We return 1 if any requests were actually submitted.
653 */
654 int rv = 0;
655
656 spin_lock_irq(&conf->device_lock);
657
658 if (conf->pending_bio_list.head) {
659 struct bio *bio;
660 bio = bio_list_get(&conf->pending_bio_list);
661 blk_remove_plug(conf->mddev->queue);
662 spin_unlock_irq(&conf->device_lock);
663 /* flush any pending bitmap writes to disk
664 * before proceeding w/ I/O */
665 bitmap_unplug(conf->mddev->bitmap);
666
667 while (bio) { /* submit pending writes */
668 struct bio *next = bio->bi_next;
669 bio->bi_next = NULL;
670 generic_make_request(bio);
671 bio = next;
672 }
673 rv = 1;
674 } else
675 spin_unlock_irq(&conf->device_lock);
676 return rv;
677}
0a27ec96
N
678/* Barriers....
679 * Sometimes we need to suspend IO while we do something else,
680 * either some resync/recovery, or reconfigure the array.
681 * To do this we raise a 'barrier'.
682 * The 'barrier' is a counter that can be raised multiple times
683 * to count how many activities are happening which preclude
684 * normal IO.
685 * We can only raise the barrier if there is no pending IO.
686 * i.e. if nr_pending == 0.
687 * We choose only to raise the barrier if no-one is waiting for the
688 * barrier to go down. This means that as soon as an IO request
689 * is ready, no other operations which require a barrier will start
690 * until the IO request has had a chance.
691 *
692 * So: regular IO calls 'wait_barrier'. When that returns there
693 * is no backgroup IO happening, It must arrange to call
694 * allow_barrier when it has finished its IO.
695 * backgroup IO calls must call raise_barrier. Once that returns
696 * there is no normal IO happeing. It must arrange to call
697 * lower_barrier when the particular background IO completes.
1da177e4 698 */
1da177e4 699
6cce3b23 700static void raise_barrier(conf_t *conf, int force)
1da177e4 701{
6cce3b23 702 BUG_ON(force && !conf->barrier);
1da177e4 703 spin_lock_irq(&conf->resync_lock);
0a27ec96 704
6cce3b23
N
705 /* Wait until no block IO is waiting (unless 'force') */
706 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
0a27ec96
N
707 conf->resync_lock,
708 raid10_unplug(conf->mddev->queue));
709
710 /* block any new IO from starting */
711 conf->barrier++;
712
713 /* No wait for all pending IO to complete */
714 wait_event_lock_irq(conf->wait_barrier,
715 !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
716 conf->resync_lock,
717 raid10_unplug(conf->mddev->queue));
718
719 spin_unlock_irq(&conf->resync_lock);
720}
721
722static void lower_barrier(conf_t *conf)
723{
724 unsigned long flags;
725 spin_lock_irqsave(&conf->resync_lock, flags);
726 conf->barrier--;
727 spin_unlock_irqrestore(&conf->resync_lock, flags);
728 wake_up(&conf->wait_barrier);
729}
730
731static void wait_barrier(conf_t *conf)
732{
733 spin_lock_irq(&conf->resync_lock);
734 if (conf->barrier) {
735 conf->nr_waiting++;
736 wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
737 conf->resync_lock,
738 raid10_unplug(conf->mddev->queue));
739 conf->nr_waiting--;
1da177e4 740 }
0a27ec96 741 conf->nr_pending++;
1da177e4
LT
742 spin_unlock_irq(&conf->resync_lock);
743}
744
0a27ec96
N
745static void allow_barrier(conf_t *conf)
746{
747 unsigned long flags;
748 spin_lock_irqsave(&conf->resync_lock, flags);
749 conf->nr_pending--;
750 spin_unlock_irqrestore(&conf->resync_lock, flags);
751 wake_up(&conf->wait_barrier);
752}
753
4443ae10
N
754static void freeze_array(conf_t *conf)
755{
756 /* stop syncio and normal IO and wait for everything to
f188593e 757 * go quiet.
4443ae10 758 * We increment barrier and nr_waiting, and then
1c830532
N
759 * wait until nr_pending match nr_queued+1
760 * This is called in the context of one normal IO request
761 * that has failed. Thus any sync request that might be pending
762 * will be blocked by nr_pending, and we need to wait for
763 * pending IO requests to complete or be queued for re-try.
764 * Thus the number queued (nr_queued) plus this request (1)
765 * must match the number of pending IOs (nr_pending) before
766 * we continue.
4443ae10
N
767 */
768 spin_lock_irq(&conf->resync_lock);
769 conf->barrier++;
770 conf->nr_waiting++;
771 wait_event_lock_irq(conf->wait_barrier,
1c830532 772 conf->nr_pending == conf->nr_queued+1,
4443ae10 773 conf->resync_lock,
a35e63ef
N
774 ({ flush_pending_writes(conf);
775 raid10_unplug(conf->mddev->queue); }));
4443ae10
N
776 spin_unlock_irq(&conf->resync_lock);
777}
778
779static void unfreeze_array(conf_t *conf)
780{
781 /* reverse the effect of the freeze */
782 spin_lock_irq(&conf->resync_lock);
783 conf->barrier--;
784 conf->nr_waiting--;
785 wake_up(&conf->wait_barrier);
786 spin_unlock_irq(&conf->resync_lock);
787}
788
165125e1 789static int make_request(struct request_queue *q, struct bio * bio)
1da177e4
LT
790{
791 mddev_t *mddev = q->queuedata;
792 conf_t *conf = mddev_to_conf(mddev);
793 mirror_info_t *mirror;
794 r10bio_t *r10_bio;
795 struct bio *read_bio;
c9959059 796 int cpu;
1da177e4
LT
797 int i;
798 int chunk_sects = conf->chunk_mask + 1;
a362357b 799 const int rw = bio_data_dir(bio);
e3881a68 800 const int do_sync = bio_sync(bio);
6cce3b23
N
801 struct bio_list bl;
802 unsigned long flags;
6bfe0b49 803 mdk_rdev_t *blocked_rdev;
1da177e4 804
e5dcdd80 805 if (unlikely(bio_barrier(bio))) {
6712ecf8 806 bio_endio(bio, -EOPNOTSUPP);
e5dcdd80
N
807 return 0;
808 }
809
1da177e4
LT
810 /* If this request crosses a chunk boundary, we need to
811 * split it. This will only happen for 1 PAGE (or less) requests.
812 */
813 if (unlikely( (bio->bi_sector & conf->chunk_mask) + (bio->bi_size >> 9)
814 > chunk_sects &&
815 conf->near_copies < conf->raid_disks)) {
816 struct bio_pair *bp;
817 /* Sanity check -- queue functions should prevent this happening */
818 if (bio->bi_vcnt != 1 ||
819 bio->bi_idx != 0)
820 goto bad_map;
821 /* This is a one page bio that upper layers
822 * refuse to split for us, so we need to split it.
823 */
6feef531 824 bp = bio_split(bio,
1da177e4
LT
825 chunk_sects - (bio->bi_sector & (chunk_sects - 1)) );
826 if (make_request(q, &bp->bio1))
827 generic_make_request(&bp->bio1);
828 if (make_request(q, &bp->bio2))
829 generic_make_request(&bp->bio2);
830
831 bio_pair_release(bp);
832 return 0;
833 bad_map:
834 printk("raid10_make_request bug: can't convert block across chunks"
835 " or bigger than %dk %llu %d\n", chunk_sects/2,
836 (unsigned long long)bio->bi_sector, bio->bi_size >> 10);
837
6712ecf8 838 bio_io_error(bio);
1da177e4
LT
839 return 0;
840 }
841
3d310eb7 842 md_write_start(mddev, bio);
06d91a5f 843
1da177e4
LT
844 /*
845 * Register the new request and wait if the reconstruction
846 * thread has put up a bar for new requests.
847 * Continue immediately if no resync is active currently.
848 */
0a27ec96 849 wait_barrier(conf);
1da177e4 850
074a7aca
TH
851 cpu = part_stat_lock();
852 part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
853 part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw],
854 bio_sectors(bio));
855 part_stat_unlock();
1da177e4
LT
856
857 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
858
859 r10_bio->master_bio = bio;
860 r10_bio->sectors = bio->bi_size >> 9;
861
862 r10_bio->mddev = mddev;
863 r10_bio->sector = bio->bi_sector;
6cce3b23 864 r10_bio->state = 0;
1da177e4 865
a362357b 866 if (rw == READ) {
1da177e4
LT
867 /*
868 * read balancing logic:
869 */
870 int disk = read_balance(conf, r10_bio);
871 int slot = r10_bio->read_slot;
872 if (disk < 0) {
873 raid_end_bio_io(r10_bio);
874 return 0;
875 }
876 mirror = conf->mirrors + disk;
877
878 read_bio = bio_clone(bio, GFP_NOIO);
879
880 r10_bio->devs[slot].bio = read_bio;
881
882 read_bio->bi_sector = r10_bio->devs[slot].addr +
883 mirror->rdev->data_offset;
884 read_bio->bi_bdev = mirror->rdev->bdev;
885 read_bio->bi_end_io = raid10_end_read_request;
e3881a68 886 read_bio->bi_rw = READ | do_sync;
1da177e4
LT
887 read_bio->bi_private = r10_bio;
888
889 generic_make_request(read_bio);
890 return 0;
891 }
892
893 /*
894 * WRITE:
895 */
6bfe0b49 896 /* first select target devices under rcu_lock and
1da177e4
LT
897 * inc refcount on their rdev. Record them by setting
898 * bios[x] to bio
899 */
900 raid10_find_phys(conf, r10_bio);
6bfe0b49 901 retry_write:
cb6969e8 902 blocked_rdev = NULL;
1da177e4
LT
903 rcu_read_lock();
904 for (i = 0; i < conf->copies; i++) {
905 int d = r10_bio->devs[i].devnum;
d6065f7b 906 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[d].rdev);
6bfe0b49
DW
907 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
908 atomic_inc(&rdev->nr_pending);
909 blocked_rdev = rdev;
910 break;
911 }
912 if (rdev && !test_bit(Faulty, &rdev->flags)) {
d6065f7b 913 atomic_inc(&rdev->nr_pending);
1da177e4 914 r10_bio->devs[i].bio = bio;
6cce3b23 915 } else {
1da177e4 916 r10_bio->devs[i].bio = NULL;
6cce3b23
N
917 set_bit(R10BIO_Degraded, &r10_bio->state);
918 }
1da177e4
LT
919 }
920 rcu_read_unlock();
921
6bfe0b49
DW
922 if (unlikely(blocked_rdev)) {
923 /* Have to wait for this device to get unblocked, then retry */
924 int j;
925 int d;
926
927 for (j = 0; j < i; j++)
928 if (r10_bio->devs[j].bio) {
929 d = r10_bio->devs[j].devnum;
930 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
931 }
932 allow_barrier(conf);
933 md_wait_for_blocked_rdev(blocked_rdev, mddev);
934 wait_barrier(conf);
935 goto retry_write;
936 }
937
6cce3b23 938 atomic_set(&r10_bio->remaining, 0);
06d91a5f 939
6cce3b23 940 bio_list_init(&bl);
1da177e4
LT
941 for (i = 0; i < conf->copies; i++) {
942 struct bio *mbio;
943 int d = r10_bio->devs[i].devnum;
944 if (!r10_bio->devs[i].bio)
945 continue;
946
947 mbio = bio_clone(bio, GFP_NOIO);
948 r10_bio->devs[i].bio = mbio;
949
950 mbio->bi_sector = r10_bio->devs[i].addr+
951 conf->mirrors[d].rdev->data_offset;
952 mbio->bi_bdev = conf->mirrors[d].rdev->bdev;
953 mbio->bi_end_io = raid10_end_write_request;
e3881a68 954 mbio->bi_rw = WRITE | do_sync;
1da177e4
LT
955 mbio->bi_private = r10_bio;
956
957 atomic_inc(&r10_bio->remaining);
6cce3b23 958 bio_list_add(&bl, mbio);
1da177e4
LT
959 }
960
f6f953aa
AR
961 if (unlikely(!atomic_read(&r10_bio->remaining))) {
962 /* the array is dead */
963 md_write_end(mddev);
964 raid_end_bio_io(r10_bio);
965 return 0;
966 }
967
6cce3b23
N
968 bitmap_startwrite(mddev->bitmap, bio->bi_sector, r10_bio->sectors, 0);
969 spin_lock_irqsave(&conf->device_lock, flags);
970 bio_list_merge(&conf->pending_bio_list, &bl);
971 blk_plug_device(mddev->queue);
972 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 973
a35e63ef
N
974 /* In case raid10d snuck in to freeze_array */
975 wake_up(&conf->wait_barrier);
976
e3881a68
LE
977 if (do_sync)
978 md_wakeup_thread(mddev->thread);
979
1da177e4
LT
980 return 0;
981}
982
983static void status(struct seq_file *seq, mddev_t *mddev)
984{
985 conf_t *conf = mddev_to_conf(mddev);
986 int i;
987
988 if (conf->near_copies < conf->raid_disks)
989 seq_printf(seq, " %dK chunks", mddev->chunk_size/1024);
990 if (conf->near_copies > 1)
991 seq_printf(seq, " %d near-copies", conf->near_copies);
c93983bf
N
992 if (conf->far_copies > 1) {
993 if (conf->far_offset)
994 seq_printf(seq, " %d offset-copies", conf->far_copies);
995 else
996 seq_printf(seq, " %d far-copies", conf->far_copies);
997 }
1da177e4 998 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
76186dd8 999 conf->raid_disks - mddev->degraded);
1da177e4
LT
1000 for (i = 0; i < conf->raid_disks; i++)
1001 seq_printf(seq, "%s",
1002 conf->mirrors[i].rdev &&
b2d444d7 1003 test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
1da177e4
LT
1004 seq_printf(seq, "]");
1005}
1006
1007static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1008{
1009 char b[BDEVNAME_SIZE];
1010 conf_t *conf = mddev_to_conf(mddev);
1011
1012 /*
1013 * If it is not operational, then we have already marked it as dead
1014 * else if it is the last working disks, ignore the error, let the
1015 * next level up know.
1016 * else mark the drive as failed
1017 */
b2d444d7 1018 if (test_bit(In_sync, &rdev->flags)
76186dd8 1019 && conf->raid_disks-mddev->degraded == 1)
1da177e4
LT
1020 /*
1021 * Don't fail the drive, just return an IO error.
1022 * The test should really be more sophisticated than
1023 * "working_disks == 1", but it isn't critical, and
1024 * can wait until we do more sophisticated "is the drive
1025 * really dead" tests...
1026 */
1027 return;
c04be0aa
N
1028 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1029 unsigned long flags;
1030 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 1031 mddev->degraded++;
c04be0aa 1032 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
1033 /*
1034 * if recovery is running, make sure it aborts.
1035 */
dfc70645 1036 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1da177e4 1037 }
b2d444d7 1038 set_bit(Faulty, &rdev->flags);
850b2b42 1039 set_bit(MD_CHANGE_DEVS, &mddev->flags);
d7a420c9
NA
1040 printk(KERN_ALERT "raid10: Disk failure on %s, disabling device.\n"
1041 "raid10: Operation continuing on %d devices.\n",
76186dd8 1042 bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
1da177e4
LT
1043}
1044
1045static void print_conf(conf_t *conf)
1046{
1047 int i;
1048 mirror_info_t *tmp;
1049
1050 printk("RAID10 conf printout:\n");
1051 if (!conf) {
1052 printk("(!conf)\n");
1053 return;
1054 }
76186dd8 1055 printk(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1da177e4
LT
1056 conf->raid_disks);
1057
1058 for (i = 0; i < conf->raid_disks; i++) {
1059 char b[BDEVNAME_SIZE];
1060 tmp = conf->mirrors + i;
1061 if (tmp->rdev)
1062 printk(" disk %d, wo:%d, o:%d, dev:%s\n",
b2d444d7
N
1063 i, !test_bit(In_sync, &tmp->rdev->flags),
1064 !test_bit(Faulty, &tmp->rdev->flags),
1da177e4
LT
1065 bdevname(tmp->rdev->bdev,b));
1066 }
1067}
1068
1069static void close_sync(conf_t *conf)
1070{
0a27ec96
N
1071 wait_barrier(conf);
1072 allow_barrier(conf);
1da177e4
LT
1073
1074 mempool_destroy(conf->r10buf_pool);
1075 conf->r10buf_pool = NULL;
1076}
1077
6d508242
N
1078/* check if there are enough drives for
1079 * every block to appear on atleast one
1080 */
1081static int enough(conf_t *conf)
1082{
1083 int first = 0;
1084
1085 do {
1086 int n = conf->copies;
1087 int cnt = 0;
1088 while (n--) {
1089 if (conf->mirrors[first].rdev)
1090 cnt++;
1091 first = (first+1) % conf->raid_disks;
1092 }
1093 if (cnt == 0)
1094 return 0;
1095 } while (first != 0);
1096 return 1;
1097}
1098
1da177e4
LT
1099static int raid10_spare_active(mddev_t *mddev)
1100{
1101 int i;
1102 conf_t *conf = mddev->private;
1103 mirror_info_t *tmp;
1104
1105 /*
1106 * Find all non-in_sync disks within the RAID10 configuration
1107 * and mark them in_sync
1108 */
1109 for (i = 0; i < conf->raid_disks; i++) {
1110 tmp = conf->mirrors + i;
1111 if (tmp->rdev
b2d444d7 1112 && !test_bit(Faulty, &tmp->rdev->flags)
c04be0aa
N
1113 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1114 unsigned long flags;
1115 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 1116 mddev->degraded--;
c04be0aa 1117 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
1118 }
1119 }
1120
1121 print_conf(conf);
1122 return 0;
1123}
1124
1125
1126static int raid10_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
1127{
1128 conf_t *conf = mddev->private;
199050ea 1129 int err = -EEXIST;
1da177e4
LT
1130 int mirror;
1131 mirror_info_t *p;
6c2fce2e
NB
1132 int first = 0;
1133 int last = mddev->raid_disks - 1;
1da177e4
LT
1134
1135 if (mddev->recovery_cp < MaxSector)
1136 /* only hot-add to in-sync arrays, as recovery is
1137 * very different from resync
1138 */
199050ea 1139 return -EBUSY;
6d508242 1140 if (!enough(conf))
199050ea 1141 return -EINVAL;
1da177e4 1142
a53a6c85 1143 if (rdev->raid_disk >= 0)
6c2fce2e 1144 first = last = rdev->raid_disk;
1da177e4 1145
6cce3b23 1146 if (rdev->saved_raid_disk >= 0 &&
6c2fce2e 1147 rdev->saved_raid_disk >= first &&
6cce3b23
N
1148 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1149 mirror = rdev->saved_raid_disk;
1150 else
6c2fce2e
NB
1151 mirror = first;
1152 for ( ; mirror <= last ; mirror++)
1da177e4
LT
1153 if ( !(p=conf->mirrors+mirror)->rdev) {
1154
1155 blk_queue_stack_limits(mddev->queue,
1156 rdev->bdev->bd_disk->queue);
1157 /* as we don't honour merge_bvec_fn, we must never risk
1158 * violating it, so limit ->max_sector to one PAGE, as
1159 * a one page request is never in violation.
1160 */
1161 if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
1162 mddev->queue->max_sectors > (PAGE_SIZE>>9))
1163 mddev->queue->max_sectors = (PAGE_SIZE>>9);
1164
1165 p->head_position = 0;
1166 rdev->raid_disk = mirror;
199050ea 1167 err = 0;
6cce3b23
N
1168 if (rdev->saved_raid_disk != mirror)
1169 conf->fullsync = 1;
d6065f7b 1170 rcu_assign_pointer(p->rdev, rdev);
1da177e4
LT
1171 break;
1172 }
1173
1174 print_conf(conf);
199050ea 1175 return err;
1da177e4
LT
1176}
1177
1178static int raid10_remove_disk(mddev_t *mddev, int number)
1179{
1180 conf_t *conf = mddev->private;
1181 int err = 0;
1182 mdk_rdev_t *rdev;
1183 mirror_info_t *p = conf->mirrors+ number;
1184
1185 print_conf(conf);
1186 rdev = p->rdev;
1187 if (rdev) {
b2d444d7 1188 if (test_bit(In_sync, &rdev->flags) ||
1da177e4
LT
1189 atomic_read(&rdev->nr_pending)) {
1190 err = -EBUSY;
1191 goto abort;
1192 }
dfc70645
N
1193 /* Only remove faulty devices in recovery
1194 * is not possible.
1195 */
1196 if (!test_bit(Faulty, &rdev->flags) &&
1197 enough(conf)) {
1198 err = -EBUSY;
1199 goto abort;
1200 }
1da177e4 1201 p->rdev = NULL;
fbd568a3 1202 synchronize_rcu();
1da177e4
LT
1203 if (atomic_read(&rdev->nr_pending)) {
1204 /* lost the race, try later */
1205 err = -EBUSY;
1206 p->rdev = rdev;
1207 }
1208 }
1209abort:
1210
1211 print_conf(conf);
1212 return err;
1213}
1214
1215
6712ecf8 1216static void end_sync_read(struct bio *bio, int error)
1da177e4 1217{
1da177e4
LT
1218 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
1219 conf_t *conf = mddev_to_conf(r10_bio->mddev);
1220 int i,d;
1221
1da177e4
LT
1222 for (i=0; i<conf->copies; i++)
1223 if (r10_bio->devs[i].bio == bio)
1224 break;
b6385483 1225 BUG_ON(i == conf->copies);
1da177e4
LT
1226 update_head_pos(i, r10_bio);
1227 d = r10_bio->devs[i].devnum;
0eb3ff12
N
1228
1229 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1230 set_bit(R10BIO_Uptodate, &r10_bio->state);
4dbcdc75
N
1231 else {
1232 atomic_add(r10_bio->sectors,
1233 &conf->mirrors[d].rdev->corrected_errors);
1234 if (!test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
1235 md_error(r10_bio->mddev,
1236 conf->mirrors[d].rdev);
1237 }
1da177e4
LT
1238
1239 /* for reconstruct, we always reschedule after a read.
1240 * for resync, only after all reads
1241 */
73d5c38a 1242 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1da177e4
LT
1243 if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1244 atomic_dec_and_test(&r10_bio->remaining)) {
1245 /* we have read all the blocks,
1246 * do the comparison in process context in raid10d
1247 */
1248 reschedule_retry(r10_bio);
1249 }
1da177e4
LT
1250}
1251
6712ecf8 1252static void end_sync_write(struct bio *bio, int error)
1da177e4
LT
1253{
1254 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1255 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
1256 mddev_t *mddev = r10_bio->mddev;
1257 conf_t *conf = mddev_to_conf(mddev);
1258 int i,d;
1259
1da177e4
LT
1260 for (i = 0; i < conf->copies; i++)
1261 if (r10_bio->devs[i].bio == bio)
1262 break;
1263 d = r10_bio->devs[i].devnum;
1264
1265 if (!uptodate)
1266 md_error(mddev, conf->mirrors[d].rdev);
dfc70645 1267
1da177e4
LT
1268 update_head_pos(i, r10_bio);
1269
73d5c38a 1270 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1da177e4
LT
1271 while (atomic_dec_and_test(&r10_bio->remaining)) {
1272 if (r10_bio->master_bio == NULL) {
1273 /* the primary of several recovery bios */
73d5c38a 1274 sector_t s = r10_bio->sectors;
1da177e4 1275 put_buf(r10_bio);
73d5c38a 1276 md_done_sync(mddev, s, 1);
1da177e4
LT
1277 break;
1278 } else {
1279 r10bio_t *r10_bio2 = (r10bio_t *)r10_bio->master_bio;
1280 put_buf(r10_bio);
1281 r10_bio = r10_bio2;
1282 }
1283 }
1da177e4
LT
1284}
1285
1286/*
1287 * Note: sync and recover and handled very differently for raid10
1288 * This code is for resync.
1289 * For resync, we read through virtual addresses and read all blocks.
1290 * If there is any error, we schedule a write. The lowest numbered
1291 * drive is authoritative.
1292 * However requests come for physical address, so we need to map.
1293 * For every physical address there are raid_disks/copies virtual addresses,
1294 * which is always are least one, but is not necessarly an integer.
1295 * This means that a physical address can span multiple chunks, so we may
1296 * have to submit multiple io requests for a single sync request.
1297 */
1298/*
1299 * We check if all blocks are in-sync and only write to blocks that
1300 * aren't in sync
1301 */
1302static void sync_request_write(mddev_t *mddev, r10bio_t *r10_bio)
1303{
1304 conf_t *conf = mddev_to_conf(mddev);
1305 int i, first;
1306 struct bio *tbio, *fbio;
1307
1308 atomic_set(&r10_bio->remaining, 1);
1309
1310 /* find the first device with a block */
1311 for (i=0; i<conf->copies; i++)
1312 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
1313 break;
1314
1315 if (i == conf->copies)
1316 goto done;
1317
1318 first = i;
1319 fbio = r10_bio->devs[i].bio;
1320
1321 /* now find blocks with errors */
0eb3ff12
N
1322 for (i=0 ; i < conf->copies ; i++) {
1323 int j, d;
1324 int vcnt = r10_bio->sectors >> (PAGE_SHIFT-9);
1da177e4 1325
1da177e4 1326 tbio = r10_bio->devs[i].bio;
0eb3ff12
N
1327
1328 if (tbio->bi_end_io != end_sync_read)
1329 continue;
1330 if (i == first)
1da177e4 1331 continue;
0eb3ff12
N
1332 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
1333 /* We know that the bi_io_vec layout is the same for
1334 * both 'first' and 'i', so we just compare them.
1335 * All vec entries are PAGE_SIZE;
1336 */
1337 for (j = 0; j < vcnt; j++)
1338 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
1339 page_address(tbio->bi_io_vec[j].bv_page),
1340 PAGE_SIZE))
1341 break;
1342 if (j == vcnt)
1343 continue;
1344 mddev->resync_mismatches += r10_bio->sectors;
1345 }
18f08819
N
1346 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
1347 /* Don't fix anything. */
1348 continue;
1da177e4
LT
1349 /* Ok, we need to write this bio
1350 * First we need to fixup bv_offset, bv_len and
1351 * bi_vecs, as the read request might have corrupted these
1352 */
1353 tbio->bi_vcnt = vcnt;
1354 tbio->bi_size = r10_bio->sectors << 9;
1355 tbio->bi_idx = 0;
1356 tbio->bi_phys_segments = 0;
1da177e4
LT
1357 tbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1358 tbio->bi_flags |= 1 << BIO_UPTODATE;
1359 tbio->bi_next = NULL;
1360 tbio->bi_rw = WRITE;
1361 tbio->bi_private = r10_bio;
1362 tbio->bi_sector = r10_bio->devs[i].addr;
1363
1364 for (j=0; j < vcnt ; j++) {
1365 tbio->bi_io_vec[j].bv_offset = 0;
1366 tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
1367
1368 memcpy(page_address(tbio->bi_io_vec[j].bv_page),
1369 page_address(fbio->bi_io_vec[j].bv_page),
1370 PAGE_SIZE);
1371 }
1372 tbio->bi_end_io = end_sync_write;
1373
1374 d = r10_bio->devs[i].devnum;
1375 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1376 atomic_inc(&r10_bio->remaining);
1377 md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9);
1378
1379 tbio->bi_sector += conf->mirrors[d].rdev->data_offset;
1380 tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
1381 generic_make_request(tbio);
1382 }
1383
1384done:
1385 if (atomic_dec_and_test(&r10_bio->remaining)) {
1386 md_done_sync(mddev, r10_bio->sectors, 1);
1387 put_buf(r10_bio);
1388 }
1389}
1390
1391/*
1392 * Now for the recovery code.
1393 * Recovery happens across physical sectors.
1394 * We recover all non-is_sync drives by finding the virtual address of
1395 * each, and then choose a working drive that also has that virt address.
1396 * There is a separate r10_bio for each non-in_sync drive.
1397 * Only the first two slots are in use. The first for reading,
1398 * The second for writing.
1399 *
1400 */
1401
1402static void recovery_request_write(mddev_t *mddev, r10bio_t *r10_bio)
1403{
1404 conf_t *conf = mddev_to_conf(mddev);
1405 int i, d;
1406 struct bio *bio, *wbio;
1407
1408
1409 /* move the pages across to the second bio
1410 * and submit the write request
1411 */
1412 bio = r10_bio->devs[0].bio;
1413 wbio = r10_bio->devs[1].bio;
1414 for (i=0; i < wbio->bi_vcnt; i++) {
1415 struct page *p = bio->bi_io_vec[i].bv_page;
1416 bio->bi_io_vec[i].bv_page = wbio->bi_io_vec[i].bv_page;
1417 wbio->bi_io_vec[i].bv_page = p;
1418 }
1419 d = r10_bio->devs[1].devnum;
1420
1421 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1422 md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9);
0eb3ff12
N
1423 if (test_bit(R10BIO_Uptodate, &r10_bio->state))
1424 generic_make_request(wbio);
1425 else
6712ecf8 1426 bio_endio(wbio, -EIO);
1da177e4
LT
1427}
1428
1429
1430/*
1431 * This is a kernel thread which:
1432 *
1433 * 1. Retries failed read operations on working mirrors.
1434 * 2. Updates the raid superblock when problems encounter.
6814d536 1435 * 3. Performs writes following reads for array synchronising.
1da177e4
LT
1436 */
1437
6814d536
N
1438static void fix_read_error(conf_t *conf, mddev_t *mddev, r10bio_t *r10_bio)
1439{
1440 int sect = 0; /* Offset from r10_bio->sector */
1441 int sectors = r10_bio->sectors;
1442 mdk_rdev_t*rdev;
1443 while(sectors) {
1444 int s = sectors;
1445 int sl = r10_bio->read_slot;
1446 int success = 0;
1447 int start;
1448
1449 if (s > (PAGE_SIZE>>9))
1450 s = PAGE_SIZE >> 9;
1451
1452 rcu_read_lock();
1453 do {
1454 int d = r10_bio->devs[sl].devnum;
1455 rdev = rcu_dereference(conf->mirrors[d].rdev);
1456 if (rdev &&
1457 test_bit(In_sync, &rdev->flags)) {
1458 atomic_inc(&rdev->nr_pending);
1459 rcu_read_unlock();
1460 success = sync_page_io(rdev->bdev,
1461 r10_bio->devs[sl].addr +
1462 sect + rdev->data_offset,
1463 s<<9,
1464 conf->tmppage, READ);
1465 rdev_dec_pending(rdev, mddev);
1466 rcu_read_lock();
1467 if (success)
1468 break;
1469 }
1470 sl++;
1471 if (sl == conf->copies)
1472 sl = 0;
1473 } while (!success && sl != r10_bio->read_slot);
1474 rcu_read_unlock();
1475
1476 if (!success) {
1477 /* Cannot read from anywhere -- bye bye array */
1478 int dn = r10_bio->devs[r10_bio->read_slot].devnum;
1479 md_error(mddev, conf->mirrors[dn].rdev);
1480 break;
1481 }
1482
1483 start = sl;
1484 /* write it back and re-read */
1485 rcu_read_lock();
1486 while (sl != r10_bio->read_slot) {
1487 int d;
1488 if (sl==0)
1489 sl = conf->copies;
1490 sl--;
1491 d = r10_bio->devs[sl].devnum;
1492 rdev = rcu_dereference(conf->mirrors[d].rdev);
1493 if (rdev &&
1494 test_bit(In_sync, &rdev->flags)) {
1495 atomic_inc(&rdev->nr_pending);
1496 rcu_read_unlock();
1497 atomic_add(s, &rdev->corrected_errors);
1498 if (sync_page_io(rdev->bdev,
1499 r10_bio->devs[sl].addr +
1500 sect + rdev->data_offset,
1501 s<<9, conf->tmppage, WRITE)
1502 == 0)
1503 /* Well, this device is dead */
1504 md_error(mddev, rdev);
1505 rdev_dec_pending(rdev, mddev);
1506 rcu_read_lock();
1507 }
1508 }
1509 sl = start;
1510 while (sl != r10_bio->read_slot) {
1511 int d;
1512 if (sl==0)
1513 sl = conf->copies;
1514 sl--;
1515 d = r10_bio->devs[sl].devnum;
1516 rdev = rcu_dereference(conf->mirrors[d].rdev);
1517 if (rdev &&
1518 test_bit(In_sync, &rdev->flags)) {
1519 char b[BDEVNAME_SIZE];
1520 atomic_inc(&rdev->nr_pending);
1521 rcu_read_unlock();
1522 if (sync_page_io(rdev->bdev,
1523 r10_bio->devs[sl].addr +
1524 sect + rdev->data_offset,
1525 s<<9, conf->tmppage, READ) == 0)
1526 /* Well, this device is dead */
1527 md_error(mddev, rdev);
1528 else
1529 printk(KERN_INFO
1530 "raid10:%s: read error corrected"
1531 " (%d sectors at %llu on %s)\n",
1532 mdname(mddev), s,
969b755a
RD
1533 (unsigned long long)(sect+
1534 rdev->data_offset),
6814d536
N
1535 bdevname(rdev->bdev, b));
1536
1537 rdev_dec_pending(rdev, mddev);
1538 rcu_read_lock();
1539 }
1540 }
1541 rcu_read_unlock();
1542
1543 sectors -= s;
1544 sect += s;
1545 }
1546}
1547
1da177e4
LT
1548static void raid10d(mddev_t *mddev)
1549{
1550 r10bio_t *r10_bio;
1551 struct bio *bio;
1552 unsigned long flags;
1553 conf_t *conf = mddev_to_conf(mddev);
1554 struct list_head *head = &conf->retry_list;
1555 int unplug=0;
1556 mdk_rdev_t *rdev;
1557
1558 md_check_recovery(mddev);
1da177e4
LT
1559
1560 for (;;) {
1561 char b[BDEVNAME_SIZE];
6cce3b23 1562
a35e63ef 1563 unplug += flush_pending_writes(conf);
6cce3b23 1564
a35e63ef
N
1565 spin_lock_irqsave(&conf->device_lock, flags);
1566 if (list_empty(head)) {
1567 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 1568 break;
a35e63ef 1569 }
1da177e4
LT
1570 r10_bio = list_entry(head->prev, r10bio_t, retry_list);
1571 list_del(head->prev);
4443ae10 1572 conf->nr_queued--;
1da177e4
LT
1573 spin_unlock_irqrestore(&conf->device_lock, flags);
1574
1575 mddev = r10_bio->mddev;
1576 conf = mddev_to_conf(mddev);
1577 if (test_bit(R10BIO_IsSync, &r10_bio->state)) {
1578 sync_request_write(mddev, r10_bio);
1579 unplug = 1;
1580 } else if (test_bit(R10BIO_IsRecover, &r10_bio->state)) {
1581 recovery_request_write(mddev, r10_bio);
1582 unplug = 1;
1583 } else {
1584 int mirror;
4443ae10
N
1585 /* we got a read error. Maybe the drive is bad. Maybe just
1586 * the block and we can fix it.
1587 * We freeze all other IO, and try reading the block from
1588 * other devices. When we find one, we re-write
1589 * and check it that fixes the read error.
1590 * This is all done synchronously while the array is
1591 * frozen.
1592 */
6814d536
N
1593 if (mddev->ro == 0) {
1594 freeze_array(conf);
1595 fix_read_error(conf, mddev, r10_bio);
1596 unfreeze_array(conf);
4443ae10
N
1597 }
1598
1da177e4 1599 bio = r10_bio->devs[r10_bio->read_slot].bio;
0eb3ff12
N
1600 r10_bio->devs[r10_bio->read_slot].bio =
1601 mddev->ro ? IO_BLOCKED : NULL;
1da177e4
LT
1602 mirror = read_balance(conf, r10_bio);
1603 if (mirror == -1) {
1604 printk(KERN_ALERT "raid10: %s: unrecoverable I/O"
1605 " read error for block %llu\n",
1606 bdevname(bio->bi_bdev,b),
1607 (unsigned long long)r10_bio->sector);
1608 raid_end_bio_io(r10_bio);
14e71344 1609 bio_put(bio);
1da177e4 1610 } else {
e3881a68 1611 const int do_sync = bio_sync(r10_bio->master_bio);
14e71344 1612 bio_put(bio);
1da177e4
LT
1613 rdev = conf->mirrors[mirror].rdev;
1614 if (printk_ratelimit())
1615 printk(KERN_ERR "raid10: %s: redirecting sector %llu to"
1616 " another mirror\n",
1617 bdevname(rdev->bdev,b),
1618 (unsigned long long)r10_bio->sector);
1619 bio = bio_clone(r10_bio->master_bio, GFP_NOIO);
1620 r10_bio->devs[r10_bio->read_slot].bio = bio;
1621 bio->bi_sector = r10_bio->devs[r10_bio->read_slot].addr
1622 + rdev->data_offset;
1623 bio->bi_bdev = rdev->bdev;
e3881a68 1624 bio->bi_rw = READ | do_sync;
1da177e4
LT
1625 bio->bi_private = r10_bio;
1626 bio->bi_end_io = raid10_end_read_request;
1627 unplug = 1;
1628 generic_make_request(bio);
1629 }
1630 }
1631 }
1da177e4
LT
1632 if (unplug)
1633 unplug_slaves(mddev);
1634}
1635
1636
1637static int init_resync(conf_t *conf)
1638{
1639 int buffs;
1640
1641 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
b6385483 1642 BUG_ON(conf->r10buf_pool);
1da177e4
LT
1643 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
1644 if (!conf->r10buf_pool)
1645 return -ENOMEM;
1646 conf->next_resync = 0;
1647 return 0;
1648}
1649
1650/*
1651 * perform a "sync" on one "block"
1652 *
1653 * We need to make sure that no normal I/O request - particularly write
1654 * requests - conflict with active sync requests.
1655 *
1656 * This is achieved by tracking pending requests and a 'barrier' concept
1657 * that can be installed to exclude normal IO requests.
1658 *
1659 * Resync and recovery are handled very differently.
1660 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
1661 *
1662 * For resync, we iterate over virtual addresses, read all copies,
1663 * and update if there are differences. If only one copy is live,
1664 * skip it.
1665 * For recovery, we iterate over physical addresses, read a good
1666 * value for each non-in_sync drive, and over-write.
1667 *
1668 * So, for recovery we may have several outstanding complex requests for a
1669 * given address, one for each out-of-sync device. We model this by allocating
1670 * a number of r10_bio structures, one for each out-of-sync device.
1671 * As we setup these structures, we collect all bio's together into a list
1672 * which we then process collectively to add pages, and then process again
1673 * to pass to generic_make_request.
1674 *
1675 * The r10_bio structures are linked using a borrowed master_bio pointer.
1676 * This link is counted in ->remaining. When the r10_bio that points to NULL
1677 * has its remaining count decremented to 0, the whole complex operation
1678 * is complete.
1679 *
1680 */
1681
57afd89f 1682static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
1da177e4
LT
1683{
1684 conf_t *conf = mddev_to_conf(mddev);
1685 r10bio_t *r10_bio;
1686 struct bio *biolist = NULL, *bio;
1687 sector_t max_sector, nr_sectors;
1688 int disk;
1689 int i;
6cce3b23
N
1690 int max_sync;
1691 int sync_blocks;
1da177e4
LT
1692
1693 sector_t sectors_skipped = 0;
1694 int chunks_skipped = 0;
1695
1696 if (!conf->r10buf_pool)
1697 if (init_resync(conf))
57afd89f 1698 return 0;
1da177e4
LT
1699
1700 skipped:
58c0fed4 1701 max_sector = mddev->dev_sectors;
1da177e4
LT
1702 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
1703 max_sector = mddev->resync_max_sectors;
1704 if (sector_nr >= max_sector) {
6cce3b23
N
1705 /* If we aborted, we need to abort the
1706 * sync on the 'current' bitmap chucks (there can
1707 * be several when recovering multiple devices).
1708 * as we may have started syncing it but not finished.
1709 * We can find the current address in
1710 * mddev->curr_resync, but for recovery,
1711 * we need to convert that to several
1712 * virtual addresses.
1713 */
1714 if (mddev->curr_resync < max_sector) { /* aborted */
1715 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
1716 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
1717 &sync_blocks, 1);
1718 else for (i=0; i<conf->raid_disks; i++) {
1719 sector_t sect =
1720 raid10_find_virt(conf, mddev->curr_resync, i);
1721 bitmap_end_sync(mddev->bitmap, sect,
1722 &sync_blocks, 1);
1723 }
1724 } else /* completed sync */
1725 conf->fullsync = 0;
1726
1727 bitmap_close_sync(mddev->bitmap);
1da177e4 1728 close_sync(conf);
57afd89f 1729 *skipped = 1;
1da177e4
LT
1730 return sectors_skipped;
1731 }
1732 if (chunks_skipped >= conf->raid_disks) {
1733 /* if there has been nothing to do on any drive,
1734 * then there is nothing to do at all..
1735 */
57afd89f
N
1736 *skipped = 1;
1737 return (max_sector - sector_nr) + sectors_skipped;
1da177e4
LT
1738 }
1739
c6207277
N
1740 if (max_sector > mddev->resync_max)
1741 max_sector = mddev->resync_max; /* Don't do IO beyond here */
1742
1da177e4
LT
1743 /* make sure whole request will fit in a chunk - if chunks
1744 * are meaningful
1745 */
1746 if (conf->near_copies < conf->raid_disks &&
1747 max_sector > (sector_nr | conf->chunk_mask))
1748 max_sector = (sector_nr | conf->chunk_mask) + 1;
1749 /*
1750 * If there is non-resync activity waiting for us then
1751 * put in a delay to throttle resync.
1752 */
0a27ec96 1753 if (!go_faster && conf->nr_waiting)
1da177e4 1754 msleep_interruptible(1000);
1da177e4
LT
1755
1756 /* Again, very different code for resync and recovery.
1757 * Both must result in an r10bio with a list of bios that
1758 * have bi_end_io, bi_sector, bi_bdev set,
1759 * and bi_private set to the r10bio.
1760 * For recovery, we may actually create several r10bios
1761 * with 2 bios in each, that correspond to the bios in the main one.
1762 * In this case, the subordinate r10bios link back through a
1763 * borrowed master_bio pointer, and the counter in the master
1764 * includes a ref from each subordinate.
1765 */
1766 /* First, we decide what to do and set ->bi_end_io
1767 * To end_sync_read if we want to read, and
1768 * end_sync_write if we will want to write.
1769 */
1770
6cce3b23 1771 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
1da177e4
LT
1772 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
1773 /* recovery... the complicated one */
1774 int i, j, k;
1775 r10_bio = NULL;
1776
1777 for (i=0 ; i<conf->raid_disks; i++)
1778 if (conf->mirrors[i].rdev &&
b2d444d7 1779 !test_bit(In_sync, &conf->mirrors[i].rdev->flags)) {
6cce3b23 1780 int still_degraded = 0;
1da177e4
LT
1781 /* want to reconstruct this device */
1782 r10bio_t *rb2 = r10_bio;
6cce3b23
N
1783 sector_t sect = raid10_find_virt(conf, sector_nr, i);
1784 int must_sync;
1785 /* Unless we are doing a full sync, we only need
1786 * to recover the block if it is set in the bitmap
1787 */
1788 must_sync = bitmap_start_sync(mddev->bitmap, sect,
1789 &sync_blocks, 1);
1790 if (sync_blocks < max_sync)
1791 max_sync = sync_blocks;
1792 if (!must_sync &&
1793 !conf->fullsync) {
1794 /* yep, skip the sync_blocks here, but don't assume
1795 * that there will never be anything to do here
1796 */
1797 chunks_skipped = -1;
1798 continue;
1799 }
1da177e4
LT
1800
1801 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
6cce3b23 1802 raise_barrier(conf, rb2 != NULL);
1da177e4
LT
1803 atomic_set(&r10_bio->remaining, 0);
1804
1805 r10_bio->master_bio = (struct bio*)rb2;
1806 if (rb2)
1807 atomic_inc(&rb2->remaining);
1808 r10_bio->mddev = mddev;
1809 set_bit(R10BIO_IsRecover, &r10_bio->state);
6cce3b23
N
1810 r10_bio->sector = sect;
1811
1da177e4 1812 raid10_find_phys(conf, r10_bio);
6cce3b23
N
1813 /* Need to check if this section will still be
1814 * degraded
1815 */
1816 for (j=0; j<conf->copies;j++) {
1817 int d = r10_bio->devs[j].devnum;
1818 if (conf->mirrors[d].rdev == NULL ||
a24a8dd8 1819 test_bit(Faulty, &conf->mirrors[d].rdev->flags)) {
6cce3b23 1820 still_degraded = 1;
a24a8dd8
N
1821 break;
1822 }
6cce3b23
N
1823 }
1824 must_sync = bitmap_start_sync(mddev->bitmap, sect,
1825 &sync_blocks, still_degraded);
1826
1da177e4
LT
1827 for (j=0; j<conf->copies;j++) {
1828 int d = r10_bio->devs[j].devnum;
1829 if (conf->mirrors[d].rdev &&
b2d444d7 1830 test_bit(In_sync, &conf->mirrors[d].rdev->flags)) {
1da177e4
LT
1831 /* This is where we read from */
1832 bio = r10_bio->devs[0].bio;
1833 bio->bi_next = biolist;
1834 biolist = bio;
1835 bio->bi_private = r10_bio;
1836 bio->bi_end_io = end_sync_read;
802ba064 1837 bio->bi_rw = READ;
1da177e4
LT
1838 bio->bi_sector = r10_bio->devs[j].addr +
1839 conf->mirrors[d].rdev->data_offset;
1840 bio->bi_bdev = conf->mirrors[d].rdev->bdev;
1841 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1842 atomic_inc(&r10_bio->remaining);
1843 /* and we write to 'i' */
1844
1845 for (k=0; k<conf->copies; k++)
1846 if (r10_bio->devs[k].devnum == i)
1847 break;
64a742bc 1848 BUG_ON(k == conf->copies);
1da177e4
LT
1849 bio = r10_bio->devs[1].bio;
1850 bio->bi_next = biolist;
1851 biolist = bio;
1852 bio->bi_private = r10_bio;
1853 bio->bi_end_io = end_sync_write;
802ba064 1854 bio->bi_rw = WRITE;
1da177e4
LT
1855 bio->bi_sector = r10_bio->devs[k].addr +
1856 conf->mirrors[i].rdev->data_offset;
1857 bio->bi_bdev = conf->mirrors[i].rdev->bdev;
1858
1859 r10_bio->devs[0].devnum = d;
1860 r10_bio->devs[1].devnum = i;
1861
1862 break;
1863 }
1864 }
1865 if (j == conf->copies) {
87fc767b
N
1866 /* Cannot recover, so abort the recovery */
1867 put_buf(r10_bio);
a07e6ab4
T
1868 if (rb2)
1869 atomic_dec(&rb2->remaining);
87fc767b 1870 r10_bio = rb2;
dfc70645
N
1871 if (!test_and_set_bit(MD_RECOVERY_INTR,
1872 &mddev->recovery))
87fc767b
N
1873 printk(KERN_INFO "raid10: %s: insufficient working devices for recovery.\n",
1874 mdname(mddev));
1875 break;
1da177e4
LT
1876 }
1877 }
1878 if (biolist == NULL) {
1879 while (r10_bio) {
1880 r10bio_t *rb2 = r10_bio;
1881 r10_bio = (r10bio_t*) rb2->master_bio;
1882 rb2->master_bio = NULL;
1883 put_buf(rb2);
1884 }
1885 goto giveup;
1886 }
1887 } else {
1888 /* resync. Schedule a read for every block at this virt offset */
1889 int count = 0;
6cce3b23 1890
78200d45
N
1891 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
1892
6cce3b23
N
1893 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
1894 &sync_blocks, mddev->degraded) &&
1895 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1896 /* We can skip this block */
1897 *skipped = 1;
1898 return sync_blocks + sectors_skipped;
1899 }
1900 if (sync_blocks < max_sync)
1901 max_sync = sync_blocks;
1da177e4
LT
1902 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
1903
1da177e4
LT
1904 r10_bio->mddev = mddev;
1905 atomic_set(&r10_bio->remaining, 0);
6cce3b23
N
1906 raise_barrier(conf, 0);
1907 conf->next_resync = sector_nr;
1da177e4
LT
1908
1909 r10_bio->master_bio = NULL;
1910 r10_bio->sector = sector_nr;
1911 set_bit(R10BIO_IsSync, &r10_bio->state);
1912 raid10_find_phys(conf, r10_bio);
1913 r10_bio->sectors = (sector_nr | conf->chunk_mask) - sector_nr +1;
1914
1915 for (i=0; i<conf->copies; i++) {
1916 int d = r10_bio->devs[i].devnum;
1917 bio = r10_bio->devs[i].bio;
1918 bio->bi_end_io = NULL;
af03b8e4 1919 clear_bit(BIO_UPTODATE, &bio->bi_flags);
1da177e4 1920 if (conf->mirrors[d].rdev == NULL ||
b2d444d7 1921 test_bit(Faulty, &conf->mirrors[d].rdev->flags))
1da177e4
LT
1922 continue;
1923 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1924 atomic_inc(&r10_bio->remaining);
1925 bio->bi_next = biolist;
1926 biolist = bio;
1927 bio->bi_private = r10_bio;
1928 bio->bi_end_io = end_sync_read;
802ba064 1929 bio->bi_rw = READ;
1da177e4
LT
1930 bio->bi_sector = r10_bio->devs[i].addr +
1931 conf->mirrors[d].rdev->data_offset;
1932 bio->bi_bdev = conf->mirrors[d].rdev->bdev;
1933 count++;
1934 }
1935
1936 if (count < 2) {
1937 for (i=0; i<conf->copies; i++) {
1938 int d = r10_bio->devs[i].devnum;
1939 if (r10_bio->devs[i].bio->bi_end_io)
1940 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1941 }
1942 put_buf(r10_bio);
1943 biolist = NULL;
1944 goto giveup;
1945 }
1946 }
1947
1948 for (bio = biolist; bio ; bio=bio->bi_next) {
1949
1950 bio->bi_flags &= ~(BIO_POOL_MASK - 1);
1951 if (bio->bi_end_io)
1952 bio->bi_flags |= 1 << BIO_UPTODATE;
1953 bio->bi_vcnt = 0;
1954 bio->bi_idx = 0;
1955 bio->bi_phys_segments = 0;
1da177e4
LT
1956 bio->bi_size = 0;
1957 }
1958
1959 nr_sectors = 0;
6cce3b23
N
1960 if (sector_nr + max_sync < max_sector)
1961 max_sector = sector_nr + max_sync;
1da177e4
LT
1962 do {
1963 struct page *page;
1964 int len = PAGE_SIZE;
1965 disk = 0;
1966 if (sector_nr + (len>>9) > max_sector)
1967 len = (max_sector - sector_nr) << 9;
1968 if (len == 0)
1969 break;
1970 for (bio= biolist ; bio ; bio=bio->bi_next) {
1971 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
1972 if (bio_add_page(bio, page, len, 0) == 0) {
1973 /* stop here */
1974 struct bio *bio2;
1975 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
1976 for (bio2 = biolist; bio2 && bio2 != bio; bio2 = bio2->bi_next) {
1977 /* remove last page from this bio */
1978 bio2->bi_vcnt--;
1979 bio2->bi_size -= len;
1980 bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
1981 }
1982 goto bio_full;
1983 }
1984 disk = i;
1985 }
1986 nr_sectors += len>>9;
1987 sector_nr += len>>9;
1988 } while (biolist->bi_vcnt < RESYNC_PAGES);
1989 bio_full:
1990 r10_bio->sectors = nr_sectors;
1991
1992 while (biolist) {
1993 bio = biolist;
1994 biolist = biolist->bi_next;
1995
1996 bio->bi_next = NULL;
1997 r10_bio = bio->bi_private;
1998 r10_bio->sectors = nr_sectors;
1999
2000 if (bio->bi_end_io == end_sync_read) {
2001 md_sync_acct(bio->bi_bdev, nr_sectors);
2002 generic_make_request(bio);
2003 }
2004 }
2005
57afd89f
N
2006 if (sectors_skipped)
2007 /* pretend they weren't skipped, it makes
2008 * no important difference in this case
2009 */
2010 md_done_sync(mddev, sectors_skipped, 1);
2011
1da177e4
LT
2012 return sectors_skipped + nr_sectors;
2013 giveup:
2014 /* There is nowhere to write, so all non-sync
2015 * drives must be failed, so try the next chunk...
2016 */
09b4068a
N
2017 if (sector_nr + max_sync < max_sector)
2018 max_sector = sector_nr + max_sync;
2019
2020 sectors_skipped += (max_sector - sector_nr);
1da177e4
LT
2021 chunks_skipped ++;
2022 sector_nr = max_sector;
1da177e4 2023 goto skipped;
1da177e4
LT
2024}
2025
2026static int run(mddev_t *mddev)
2027{
2028 conf_t *conf;
2029 int i, disk_idx;
2030 mirror_info_t *disk;
2031 mdk_rdev_t *rdev;
c93983bf 2032 int nc, fc, fo;
1da177e4
LT
2033 sector_t stride, size;
2034
4bbf3771
N
2035 if (mddev->chunk_size < PAGE_SIZE) {
2036 printk(KERN_ERR "md/raid10: chunk size must be "
2037 "at least PAGE_SIZE(%ld).\n", PAGE_SIZE);
2604b703 2038 return -EINVAL;
1da177e4 2039 }
2604b703 2040
1da177e4
LT
2041 nc = mddev->layout & 255;
2042 fc = (mddev->layout >> 8) & 255;
c93983bf 2043 fo = mddev->layout & (1<<16);
1da177e4 2044 if ((nc*fc) <2 || (nc*fc) > mddev->raid_disks ||
c93983bf 2045 (mddev->layout >> 17)) {
1da177e4
LT
2046 printk(KERN_ERR "raid10: %s: unsupported raid10 layout: 0x%8x\n",
2047 mdname(mddev), mddev->layout);
2048 goto out;
2049 }
2050 /*
2051 * copy the already verified devices into our private RAID10
2052 * bookkeeping area. [whatever we allocate in run(),
2053 * should be freed in stop()]
2054 */
4443ae10 2055 conf = kzalloc(sizeof(conf_t), GFP_KERNEL);
1da177e4
LT
2056 mddev->private = conf;
2057 if (!conf) {
2058 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n",
2059 mdname(mddev));
2060 goto out;
2061 }
4443ae10 2062 conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
1da177e4
LT
2063 GFP_KERNEL);
2064 if (!conf->mirrors) {
2065 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n",
2066 mdname(mddev));
2067 goto out_free_conf;
2068 }
4443ae10
N
2069
2070 conf->tmppage = alloc_page(GFP_KERNEL);
2071 if (!conf->tmppage)
2072 goto out_free_conf;
1da177e4 2073
64a742bc
N
2074 conf->mddev = mddev;
2075 conf->raid_disks = mddev->raid_disks;
1da177e4
LT
2076 conf->near_copies = nc;
2077 conf->far_copies = fc;
2078 conf->copies = nc*fc;
c93983bf 2079 conf->far_offset = fo;
1da177e4
LT
2080 conf->chunk_mask = (sector_t)(mddev->chunk_size>>9)-1;
2081 conf->chunk_shift = ffz(~mddev->chunk_size) - 9;
58c0fed4 2082 size = mddev->dev_sectors >> conf->chunk_shift;
64a742bc
N
2083 sector_div(size, fc);
2084 size = size * conf->raid_disks;
2085 sector_div(size, nc);
2086 /* 'size' is now the number of chunks in the array */
2087 /* calculate "used chunks per device" in 'stride' */
2088 stride = size * conf->copies;
af03b8e4
N
2089
2090 /* We need to round up when dividing by raid_disks to
2091 * get the stride size.
2092 */
2093 stride += conf->raid_disks - 1;
64a742bc 2094 sector_div(stride, conf->raid_disks);
58c0fed4 2095 mddev->dev_sectors = stride << conf->chunk_shift;
64a742bc 2096
c93983bf 2097 if (fo)
64a742bc
N
2098 stride = 1;
2099 else
c93983bf 2100 sector_div(stride, fc);
64a742bc
N
2101 conf->stride = stride << conf->chunk_shift;
2102
1da177e4
LT
2103 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
2104 r10bio_pool_free, conf);
2105 if (!conf->r10bio_pool) {
2106 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n",
2107 mdname(mddev));
2108 goto out_free_conf;
2109 }
1da177e4 2110
e7e72bf6
NB
2111 spin_lock_init(&conf->device_lock);
2112 mddev->queue->queue_lock = &conf->device_lock;
2113
159ec1fc 2114 list_for_each_entry(rdev, &mddev->disks, same_set) {
1da177e4
LT
2115 disk_idx = rdev->raid_disk;
2116 if (disk_idx >= mddev->raid_disks
2117 || disk_idx < 0)
2118 continue;
2119 disk = conf->mirrors + disk_idx;
2120
2121 disk->rdev = rdev;
2122
2123 blk_queue_stack_limits(mddev->queue,
2124 rdev->bdev->bd_disk->queue);
2125 /* as we don't honour merge_bvec_fn, we must never risk
2126 * violating it, so limit ->max_sector to one PAGE, as
2127 * a one page request is never in violation.
2128 */
2129 if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
2130 mddev->queue->max_sectors > (PAGE_SIZE>>9))
2131 mddev->queue->max_sectors = (PAGE_SIZE>>9);
2132
2133 disk->head_position = 0;
1da177e4 2134 }
1da177e4
LT
2135 INIT_LIST_HEAD(&conf->retry_list);
2136
2137 spin_lock_init(&conf->resync_lock);
0a27ec96 2138 init_waitqueue_head(&conf->wait_barrier);
1da177e4 2139
6d508242
N
2140 /* need to check that every block has at least one working mirror */
2141 if (!enough(conf)) {
2142 printk(KERN_ERR "raid10: not enough operational mirrors for %s\n",
2143 mdname(mddev));
1da177e4
LT
2144 goto out_free_conf;
2145 }
2146
2147 mddev->degraded = 0;
2148 for (i = 0; i < conf->raid_disks; i++) {
2149
2150 disk = conf->mirrors + i;
2151
5fd6c1dc 2152 if (!disk->rdev ||
2e333e89 2153 !test_bit(In_sync, &disk->rdev->flags)) {
1da177e4
LT
2154 disk->head_position = 0;
2155 mddev->degraded++;
8c2e870a
NB
2156 if (disk->rdev)
2157 conf->fullsync = 1;
1da177e4
LT
2158 }
2159 }
2160
2161
2162 mddev->thread = md_register_thread(raid10d, mddev, "%s_raid10");
2163 if (!mddev->thread) {
2164 printk(KERN_ERR
2165 "raid10: couldn't allocate thread for %s\n",
2166 mdname(mddev));
2167 goto out_free_conf;
2168 }
2169
2170 printk(KERN_INFO
2171 "raid10: raid set %s active with %d out of %d devices\n",
2172 mdname(mddev), mddev->raid_disks - mddev->degraded,
2173 mddev->raid_disks);
2174 /*
2175 * Ok, everything is just fine now
2176 */
f233ea5c 2177 mddev->array_sectors = size << conf->chunk_shift;
64a742bc 2178 mddev->resync_max_sectors = size << conf->chunk_shift;
1da177e4 2179
7a5febe9 2180 mddev->queue->unplug_fn = raid10_unplug;
0d129228
N
2181 mddev->queue->backing_dev_info.congested_fn = raid10_congested;
2182 mddev->queue->backing_dev_info.congested_data = mddev;
7a5febe9 2183
1da177e4
LT
2184 /* Calculate max read-ahead size.
2185 * We need to readahead at least twice a whole stripe....
2186 * maybe...
2187 */
2188 {
8932c2e0 2189 int stripe = conf->raid_disks * (mddev->chunk_size / PAGE_SIZE);
1da177e4
LT
2190 stripe /= conf->near_copies;
2191 if (mddev->queue->backing_dev_info.ra_pages < 2* stripe)
2192 mddev->queue->backing_dev_info.ra_pages = 2* stripe;
2193 }
2194
2195 if (conf->near_copies < mddev->raid_disks)
2196 blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
2197 return 0;
2198
2199out_free_conf:
2200 if (conf->r10bio_pool)
2201 mempool_destroy(conf->r10bio_pool);
1345b1d8 2202 safe_put_page(conf->tmppage);
990a8baf 2203 kfree(conf->mirrors);
1da177e4
LT
2204 kfree(conf);
2205 mddev->private = NULL;
2206out:
2207 return -EIO;
2208}
2209
2210static int stop(mddev_t *mddev)
2211{
2212 conf_t *conf = mddev_to_conf(mddev);
2213
2214 md_unregister_thread(mddev->thread);
2215 mddev->thread = NULL;
2216 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
2217 if (conf->r10bio_pool)
2218 mempool_destroy(conf->r10bio_pool);
990a8baf 2219 kfree(conf->mirrors);
1da177e4
LT
2220 kfree(conf);
2221 mddev->private = NULL;
2222 return 0;
2223}
2224
6cce3b23
N
2225static void raid10_quiesce(mddev_t *mddev, int state)
2226{
2227 conf_t *conf = mddev_to_conf(mddev);
2228
2229 switch(state) {
2230 case 1:
2231 raise_barrier(conf, 0);
2232 break;
2233 case 0:
2234 lower_barrier(conf);
2235 break;
2236 }
2237 if (mddev->thread) {
2238 if (mddev->bitmap)
2239 mddev->thread->timeout = mddev->bitmap->daemon_sleep * HZ;
2240 else
2241 mddev->thread->timeout = MAX_SCHEDULE_TIMEOUT;
2242 md_wakeup_thread(mddev->thread);
2243 }
2244}
1da177e4 2245
2604b703 2246static struct mdk_personality raid10_personality =
1da177e4
LT
2247{
2248 .name = "raid10",
2604b703 2249 .level = 10,
1da177e4
LT
2250 .owner = THIS_MODULE,
2251 .make_request = make_request,
2252 .run = run,
2253 .stop = stop,
2254 .status = status,
2255 .error_handler = error,
2256 .hot_add_disk = raid10_add_disk,
2257 .hot_remove_disk= raid10_remove_disk,
2258 .spare_active = raid10_spare_active,
2259 .sync_request = sync_request,
6cce3b23 2260 .quiesce = raid10_quiesce,
1da177e4
LT
2261};
2262
2263static int __init raid_init(void)
2264{
2604b703 2265 return register_md_personality(&raid10_personality);
1da177e4
LT
2266}
2267
2268static void raid_exit(void)
2269{
2604b703 2270 unregister_md_personality(&raid10_personality);
1da177e4
LT
2271}
2272
2273module_init(raid_init);
2274module_exit(raid_exit);
2275MODULE_LICENSE("GPL");
2276MODULE_ALIAS("md-personality-9"); /* RAID10 */
d9d166c2 2277MODULE_ALIAS("md-raid10");
2604b703 2278MODULE_ALIAS("md-level-10");