md: Relax minimum size restrictions on chunk_size.
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / md / raid10.c
CommitLineData
1da177e4
LT
1/*
2 * raid10.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 2000-2004 Neil Brown
5 *
6 * RAID-10 support for md.
7 *
8 * Base on code in raid1.c. See raid1.c for futher copyright information.
9 *
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
6cce3b23 21#include "dm-bio-list.h"
1da177e4 22#include <linux/raid/raid10.h>
6cce3b23 23#include <linux/raid/bitmap.h>
1da177e4
LT
24
25/*
26 * RAID10 provides a combination of RAID0 and RAID1 functionality.
27 * The layout of data is defined by
28 * chunk_size
29 * raid_disks
30 * near_copies (stored in low byte of layout)
31 * far_copies (stored in second byte of layout)
c93983bf 32 * far_offset (stored in bit 16 of layout )
1da177e4
LT
33 *
34 * The data to be stored is divided into chunks using chunksize.
35 * Each device is divided into far_copies sections.
36 * In each section, chunks are laid out in a style similar to raid0, but
37 * near_copies copies of each chunk is stored (each on a different drive).
38 * The starting device for each section is offset near_copies from the starting
39 * device of the previous section.
c93983bf 40 * Thus they are (near_copies*far_copies) of each chunk, and each is on a different
1da177e4
LT
41 * drive.
42 * near_copies and far_copies must be at least one, and their product is at most
43 * raid_disks.
c93983bf
N
44 *
45 * If far_offset is true, then the far_copies are handled a bit differently.
46 * The copies are still in different stripes, but instead of be very far apart
47 * on disk, there are adjacent stripes.
1da177e4
LT
48 */
49
50/*
51 * Number of guaranteed r10bios in case of extreme VM load:
52 */
53#define NR_RAID10_BIOS 256
54
55static void unplug_slaves(mddev_t *mddev);
56
0a27ec96
N
57static void allow_barrier(conf_t *conf);
58static void lower_barrier(conf_t *conf);
59
dd0fc66f 60static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4
LT
61{
62 conf_t *conf = data;
63 r10bio_t *r10_bio;
64 int size = offsetof(struct r10bio_s, devs[conf->copies]);
65
66 /* allocate a r10bio with room for raid_disks entries in the bios array */
9ffae0cf
N
67 r10_bio = kzalloc(size, gfp_flags);
68 if (!r10_bio)
1da177e4
LT
69 unplug_slaves(conf->mddev);
70
71 return r10_bio;
72}
73
74static void r10bio_pool_free(void *r10_bio, void *data)
75{
76 kfree(r10_bio);
77}
78
0310fa21 79/* Maximum size of each resync request */
1da177e4 80#define RESYNC_BLOCK_SIZE (64*1024)
1da177e4 81#define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
0310fa21
N
82/* amount of memory to reserve for resync requests */
83#define RESYNC_WINDOW (1024*1024)
84/* maximum number of concurrent requests, memory permitting */
85#define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
1da177e4
LT
86
87/*
88 * When performing a resync, we need to read and compare, so
89 * we need as many pages are there are copies.
90 * When performing a recovery, we need 2 bios, one for read,
91 * one for write (we recover only one drive per r10buf)
92 *
93 */
dd0fc66f 94static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4
LT
95{
96 conf_t *conf = data;
97 struct page *page;
98 r10bio_t *r10_bio;
99 struct bio *bio;
100 int i, j;
101 int nalloc;
102
103 r10_bio = r10bio_pool_alloc(gfp_flags, conf);
104 if (!r10_bio) {
105 unplug_slaves(conf->mddev);
106 return NULL;
107 }
108
109 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
110 nalloc = conf->copies; /* resync */
111 else
112 nalloc = 2; /* recovery */
113
114 /*
115 * Allocate bios.
116 */
117 for (j = nalloc ; j-- ; ) {
118 bio = bio_alloc(gfp_flags, RESYNC_PAGES);
119 if (!bio)
120 goto out_free_bio;
121 r10_bio->devs[j].bio = bio;
122 }
123 /*
124 * Allocate RESYNC_PAGES data pages and attach them
125 * where needed.
126 */
127 for (j = 0 ; j < nalloc; j++) {
128 bio = r10_bio->devs[j].bio;
129 for (i = 0; i < RESYNC_PAGES; i++) {
130 page = alloc_page(gfp_flags);
131 if (unlikely(!page))
132 goto out_free_pages;
133
134 bio->bi_io_vec[i].bv_page = page;
135 }
136 }
137
138 return r10_bio;
139
140out_free_pages:
141 for ( ; i > 0 ; i--)
1345b1d8 142 safe_put_page(bio->bi_io_vec[i-1].bv_page);
1da177e4
LT
143 while (j--)
144 for (i = 0; i < RESYNC_PAGES ; i++)
1345b1d8 145 safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
1da177e4
LT
146 j = -1;
147out_free_bio:
148 while ( ++j < nalloc )
149 bio_put(r10_bio->devs[j].bio);
150 r10bio_pool_free(r10_bio, conf);
151 return NULL;
152}
153
154static void r10buf_pool_free(void *__r10_bio, void *data)
155{
156 int i;
157 conf_t *conf = data;
158 r10bio_t *r10bio = __r10_bio;
159 int j;
160
161 for (j=0; j < conf->copies; j++) {
162 struct bio *bio = r10bio->devs[j].bio;
163 if (bio) {
164 for (i = 0; i < RESYNC_PAGES; i++) {
1345b1d8 165 safe_put_page(bio->bi_io_vec[i].bv_page);
1da177e4
LT
166 bio->bi_io_vec[i].bv_page = NULL;
167 }
168 bio_put(bio);
169 }
170 }
171 r10bio_pool_free(r10bio, conf);
172}
173
174static void put_all_bios(conf_t *conf, r10bio_t *r10_bio)
175{
176 int i;
177
178 for (i = 0; i < conf->copies; i++) {
179 struct bio **bio = & r10_bio->devs[i].bio;
0eb3ff12 180 if (*bio && *bio != IO_BLOCKED)
1da177e4
LT
181 bio_put(*bio);
182 *bio = NULL;
183 }
184}
185
858119e1 186static void free_r10bio(r10bio_t *r10_bio)
1da177e4 187{
1da177e4
LT
188 conf_t *conf = mddev_to_conf(r10_bio->mddev);
189
190 /*
191 * Wake up any possible resync thread that waits for the device
192 * to go idle.
193 */
0a27ec96 194 allow_barrier(conf);
1da177e4
LT
195
196 put_all_bios(conf, r10_bio);
197 mempool_free(r10_bio, conf->r10bio_pool);
198}
199
858119e1 200static void put_buf(r10bio_t *r10_bio)
1da177e4
LT
201{
202 conf_t *conf = mddev_to_conf(r10_bio->mddev);
1da177e4
LT
203
204 mempool_free(r10_bio, conf->r10buf_pool);
205
0a27ec96 206 lower_barrier(conf);
1da177e4
LT
207}
208
209static void reschedule_retry(r10bio_t *r10_bio)
210{
211 unsigned long flags;
212 mddev_t *mddev = r10_bio->mddev;
213 conf_t *conf = mddev_to_conf(mddev);
214
215 spin_lock_irqsave(&conf->device_lock, flags);
216 list_add(&r10_bio->retry_list, &conf->retry_list);
4443ae10 217 conf->nr_queued ++;
1da177e4
LT
218 spin_unlock_irqrestore(&conf->device_lock, flags);
219
388667be
AJ
220 /* wake up frozen array... */
221 wake_up(&conf->wait_barrier);
222
1da177e4
LT
223 md_wakeup_thread(mddev->thread);
224}
225
226/*
227 * raid_end_bio_io() is called when we have finished servicing a mirrored
228 * operation and are ready to return a success/failure code to the buffer
229 * cache layer.
230 */
231static void raid_end_bio_io(r10bio_t *r10_bio)
232{
233 struct bio *bio = r10_bio->master_bio;
234
6712ecf8 235 bio_endio(bio,
1da177e4
LT
236 test_bit(R10BIO_Uptodate, &r10_bio->state) ? 0 : -EIO);
237 free_r10bio(r10_bio);
238}
239
240/*
241 * Update disk head position estimator based on IRQ completion info.
242 */
243static inline void update_head_pos(int slot, r10bio_t *r10_bio)
244{
245 conf_t *conf = mddev_to_conf(r10_bio->mddev);
246
247 conf->mirrors[r10_bio->devs[slot].devnum].head_position =
248 r10_bio->devs[slot].addr + (r10_bio->sectors);
249}
250
6712ecf8 251static void raid10_end_read_request(struct bio *bio, int error)
1da177e4
LT
252{
253 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
254 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
255 int slot, dev;
256 conf_t *conf = mddev_to_conf(r10_bio->mddev);
257
1da177e4
LT
258
259 slot = r10_bio->read_slot;
260 dev = r10_bio->devs[slot].devnum;
261 /*
262 * this branch is our 'one mirror IO has finished' event handler:
263 */
4443ae10
N
264 update_head_pos(slot, r10_bio);
265
266 if (uptodate) {
1da177e4
LT
267 /*
268 * Set R10BIO_Uptodate in our master bio, so that
269 * we will return a good error code to the higher
270 * levels even if IO on some other mirrored buffer fails.
271 *
272 * The 'master' represents the composite IO operation to
273 * user-side. So if something waits for IO, then it will
274 * wait for the 'master' bio.
275 */
276 set_bit(R10BIO_Uptodate, &r10_bio->state);
1da177e4 277 raid_end_bio_io(r10_bio);
4443ae10 278 } else {
1da177e4
LT
279 /*
280 * oops, read error:
281 */
282 char b[BDEVNAME_SIZE];
283 if (printk_ratelimit())
284 printk(KERN_ERR "raid10: %s: rescheduling sector %llu\n",
285 bdevname(conf->mirrors[dev].rdev->bdev,b), (unsigned long long)r10_bio->sector);
286 reschedule_retry(r10_bio);
287 }
288
289 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
1da177e4
LT
290}
291
6712ecf8 292static void raid10_end_write_request(struct bio *bio, int error)
1da177e4
LT
293{
294 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
295 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
296 int slot, dev;
297 conf_t *conf = mddev_to_conf(r10_bio->mddev);
298
1da177e4
LT
299 for (slot = 0; slot < conf->copies; slot++)
300 if (r10_bio->devs[slot].bio == bio)
301 break;
302 dev = r10_bio->devs[slot].devnum;
303
304 /*
305 * this branch is our 'one mirror IO has finished' event handler:
306 */
6cce3b23 307 if (!uptodate) {
1da177e4 308 md_error(r10_bio->mddev, conf->mirrors[dev].rdev);
6cce3b23
N
309 /* an I/O failed, we can't clear the bitmap */
310 set_bit(R10BIO_Degraded, &r10_bio->state);
311 } else
1da177e4
LT
312 /*
313 * Set R10BIO_Uptodate in our master bio, so that
314 * we will return a good error code for to the higher
315 * levels even if IO on some other mirrored buffer fails.
316 *
317 * The 'master' represents the composite IO operation to
318 * user-side. So if something waits for IO, then it will
319 * wait for the 'master' bio.
320 */
321 set_bit(R10BIO_Uptodate, &r10_bio->state);
322
323 update_head_pos(slot, r10_bio);
324
325 /*
326 *
327 * Let's see if all mirrored write operations have finished
328 * already.
329 */
330 if (atomic_dec_and_test(&r10_bio->remaining)) {
6cce3b23
N
331 /* clear the bitmap if all writes complete successfully */
332 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
333 r10_bio->sectors,
334 !test_bit(R10BIO_Degraded, &r10_bio->state),
335 0);
1da177e4
LT
336 md_write_end(r10_bio->mddev);
337 raid_end_bio_io(r10_bio);
338 }
339
340 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
1da177e4
LT
341}
342
343
344/*
345 * RAID10 layout manager
346 * Aswell as the chunksize and raid_disks count, there are two
347 * parameters: near_copies and far_copies.
348 * near_copies * far_copies must be <= raid_disks.
349 * Normally one of these will be 1.
350 * If both are 1, we get raid0.
351 * If near_copies == raid_disks, we get raid1.
352 *
353 * Chunks are layed out in raid0 style with near_copies copies of the
354 * first chunk, followed by near_copies copies of the next chunk and
355 * so on.
356 * If far_copies > 1, then after 1/far_copies of the array has been assigned
357 * as described above, we start again with a device offset of near_copies.
358 * So we effectively have another copy of the whole array further down all
359 * the drives, but with blocks on different drives.
360 * With this layout, and block is never stored twice on the one device.
361 *
362 * raid10_find_phys finds the sector offset of a given virtual sector
c93983bf 363 * on each device that it is on.
1da177e4
LT
364 *
365 * raid10_find_virt does the reverse mapping, from a device and a
366 * sector offset to a virtual address
367 */
368
369static void raid10_find_phys(conf_t *conf, r10bio_t *r10bio)
370{
371 int n,f;
372 sector_t sector;
373 sector_t chunk;
374 sector_t stripe;
375 int dev;
376
377 int slot = 0;
378
379 /* now calculate first sector/dev */
380 chunk = r10bio->sector >> conf->chunk_shift;
381 sector = r10bio->sector & conf->chunk_mask;
382
383 chunk *= conf->near_copies;
384 stripe = chunk;
385 dev = sector_div(stripe, conf->raid_disks);
c93983bf
N
386 if (conf->far_offset)
387 stripe *= conf->far_copies;
1da177e4
LT
388
389 sector += stripe << conf->chunk_shift;
390
391 /* and calculate all the others */
392 for (n=0; n < conf->near_copies; n++) {
393 int d = dev;
394 sector_t s = sector;
395 r10bio->devs[slot].addr = sector;
396 r10bio->devs[slot].devnum = d;
397 slot++;
398
399 for (f = 1; f < conf->far_copies; f++) {
400 d += conf->near_copies;
401 if (d >= conf->raid_disks)
402 d -= conf->raid_disks;
403 s += conf->stride;
404 r10bio->devs[slot].devnum = d;
405 r10bio->devs[slot].addr = s;
406 slot++;
407 }
408 dev++;
409 if (dev >= conf->raid_disks) {
410 dev = 0;
411 sector += (conf->chunk_mask + 1);
412 }
413 }
414 BUG_ON(slot != conf->copies);
415}
416
417static sector_t raid10_find_virt(conf_t *conf, sector_t sector, int dev)
418{
419 sector_t offset, chunk, vchunk;
420
1da177e4 421 offset = sector & conf->chunk_mask;
c93983bf
N
422 if (conf->far_offset) {
423 int fc;
424 chunk = sector >> conf->chunk_shift;
425 fc = sector_div(chunk, conf->far_copies);
426 dev -= fc * conf->near_copies;
427 if (dev < 0)
428 dev += conf->raid_disks;
429 } else {
64a742bc 430 while (sector >= conf->stride) {
c93983bf
N
431 sector -= conf->stride;
432 if (dev < conf->near_copies)
433 dev += conf->raid_disks - conf->near_copies;
434 else
435 dev -= conf->near_copies;
436 }
437 chunk = sector >> conf->chunk_shift;
438 }
1da177e4
LT
439 vchunk = chunk * conf->raid_disks + dev;
440 sector_div(vchunk, conf->near_copies);
441 return (vchunk << conf->chunk_shift) + offset;
442}
443
444/**
445 * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
446 * @q: request queue
cc371e66 447 * @bvm: properties of new bio
1da177e4
LT
448 * @biovec: the request that could be merged to it.
449 *
450 * Return amount of bytes we can accept at this offset
451 * If near_copies == raid_disk, there are no striping issues,
452 * but in that case, the function isn't called at all.
453 */
cc371e66
AK
454static int raid10_mergeable_bvec(struct request_queue *q,
455 struct bvec_merge_data *bvm,
456 struct bio_vec *biovec)
1da177e4
LT
457{
458 mddev_t *mddev = q->queuedata;
cc371e66 459 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
1da177e4
LT
460 int max;
461 unsigned int chunk_sectors = mddev->chunk_size >> 9;
cc371e66 462 unsigned int bio_sectors = bvm->bi_size >> 9;
1da177e4
LT
463
464 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
465 if (max < 0) max = 0; /* bio_add cannot handle a negative return */
cc371e66
AK
466 if (max <= biovec->bv_len && bio_sectors == 0)
467 return biovec->bv_len;
1da177e4
LT
468 else
469 return max;
470}
471
472/*
473 * This routine returns the disk from which the requested read should
474 * be done. There is a per-array 'next expected sequential IO' sector
475 * number - if this matches on the next IO then we use the last disk.
476 * There is also a per-disk 'last know head position' sector that is
477 * maintained from IRQ contexts, both the normal and the resync IO
478 * completion handlers update this position correctly. If there is no
479 * perfect sequential match then we pick the disk whose head is closest.
480 *
481 * If there are 2 mirrors in the same 2 devices, performance degrades
482 * because position is mirror, not device based.
483 *
484 * The rdev for the device selected will have nr_pending incremented.
485 */
486
487/*
488 * FIXME: possibly should rethink readbalancing and do it differently
489 * depending on near_copies / far_copies geometry.
490 */
491static int read_balance(conf_t *conf, r10bio_t *r10_bio)
492{
493 const unsigned long this_sector = r10_bio->sector;
494 int disk, slot, nslot;
495 const int sectors = r10_bio->sectors;
496 sector_t new_distance, current_distance;
d6065f7b 497 mdk_rdev_t *rdev;
1da177e4
LT
498
499 raid10_find_phys(conf, r10_bio);
500 rcu_read_lock();
501 /*
502 * Check if we can balance. We can balance on the whole
6cce3b23
N
503 * device if no resync is going on (recovery is ok), or below
504 * the resync window. We take the first readable disk when
505 * above the resync window.
1da177e4
LT
506 */
507 if (conf->mddev->recovery_cp < MaxSector
508 && (this_sector + sectors >= conf->next_resync)) {
509 /* make sure that disk is operational */
510 slot = 0;
511 disk = r10_bio->devs[slot].devnum;
512
d6065f7b 513 while ((rdev = rcu_dereference(conf->mirrors[disk].rdev)) == NULL ||
0eb3ff12 514 r10_bio->devs[slot].bio == IO_BLOCKED ||
b2d444d7 515 !test_bit(In_sync, &rdev->flags)) {
1da177e4
LT
516 slot++;
517 if (slot == conf->copies) {
518 slot = 0;
519 disk = -1;
520 break;
521 }
522 disk = r10_bio->devs[slot].devnum;
523 }
524 goto rb_out;
525 }
526
527
528 /* make sure the disk is operational */
529 slot = 0;
530 disk = r10_bio->devs[slot].devnum;
d6065f7b 531 while ((rdev=rcu_dereference(conf->mirrors[disk].rdev)) == NULL ||
0eb3ff12 532 r10_bio->devs[slot].bio == IO_BLOCKED ||
b2d444d7 533 !test_bit(In_sync, &rdev->flags)) {
1da177e4
LT
534 slot ++;
535 if (slot == conf->copies) {
536 disk = -1;
537 goto rb_out;
538 }
539 disk = r10_bio->devs[slot].devnum;
540 }
541
542
3ec67ac1
N
543 current_distance = abs(r10_bio->devs[slot].addr -
544 conf->mirrors[disk].head_position);
1da177e4 545
8ed3a195
KS
546 /* Find the disk whose head is closest,
547 * or - for far > 1 - find the closest to partition beginning */
1da177e4
LT
548
549 for (nslot = slot; nslot < conf->copies; nslot++) {
550 int ndisk = r10_bio->devs[nslot].devnum;
551
552
d6065f7b 553 if ((rdev=rcu_dereference(conf->mirrors[ndisk].rdev)) == NULL ||
0eb3ff12 554 r10_bio->devs[nslot].bio == IO_BLOCKED ||
b2d444d7 555 !test_bit(In_sync, &rdev->flags))
1da177e4
LT
556 continue;
557
22dfdf52
N
558 /* This optimisation is debatable, and completely destroys
559 * sequential read speed for 'far copies' arrays. So only
560 * keep it for 'near' arrays, and review those later.
561 */
562 if (conf->near_copies > 1 && !atomic_read(&rdev->nr_pending)) {
1da177e4
LT
563 disk = ndisk;
564 slot = nslot;
565 break;
566 }
8ed3a195
KS
567
568 /* for far > 1 always use the lowest address */
569 if (conf->far_copies > 1)
570 new_distance = r10_bio->devs[nslot].addr;
571 else
572 new_distance = abs(r10_bio->devs[nslot].addr -
573 conf->mirrors[ndisk].head_position);
1da177e4
LT
574 if (new_distance < current_distance) {
575 current_distance = new_distance;
576 disk = ndisk;
577 slot = nslot;
578 }
579 }
580
581rb_out:
582 r10_bio->read_slot = slot;
583/* conf->next_seq_sect = this_sector + sectors;*/
584
d6065f7b 585 if (disk >= 0 && (rdev=rcu_dereference(conf->mirrors[disk].rdev))!= NULL)
1da177e4 586 atomic_inc(&conf->mirrors[disk].rdev->nr_pending);
29fc7e3e
N
587 else
588 disk = -1;
1da177e4
LT
589 rcu_read_unlock();
590
591 return disk;
592}
593
594static void unplug_slaves(mddev_t *mddev)
595{
596 conf_t *conf = mddev_to_conf(mddev);
597 int i;
598
599 rcu_read_lock();
600 for (i=0; i<mddev->raid_disks; i++) {
d6065f7b 601 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
b2d444d7 602 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
165125e1 603 struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
1da177e4
LT
604
605 atomic_inc(&rdev->nr_pending);
606 rcu_read_unlock();
607
2ad8b1ef 608 blk_unplug(r_queue);
1da177e4
LT
609
610 rdev_dec_pending(rdev, mddev);
611 rcu_read_lock();
612 }
613 }
614 rcu_read_unlock();
615}
616
165125e1 617static void raid10_unplug(struct request_queue *q)
1da177e4 618{
6cce3b23
N
619 mddev_t *mddev = q->queuedata;
620
1da177e4 621 unplug_slaves(q->queuedata);
6cce3b23 622 md_wakeup_thread(mddev->thread);
1da177e4
LT
623}
624
0d129228
N
625static int raid10_congested(void *data, int bits)
626{
627 mddev_t *mddev = data;
628 conf_t *conf = mddev_to_conf(mddev);
629 int i, ret = 0;
630
631 rcu_read_lock();
632 for (i = 0; i < mddev->raid_disks && ret == 0; i++) {
633 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
634 if (rdev && !test_bit(Faulty, &rdev->flags)) {
165125e1 635 struct request_queue *q = bdev_get_queue(rdev->bdev);
0d129228
N
636
637 ret |= bdi_congested(&q->backing_dev_info, bits);
638 }
639 }
640 rcu_read_unlock();
641 return ret;
642}
643
a35e63ef
N
644static int flush_pending_writes(conf_t *conf)
645{
646 /* Any writes that have been queued but are awaiting
647 * bitmap updates get flushed here.
648 * We return 1 if any requests were actually submitted.
649 */
650 int rv = 0;
651
652 spin_lock_irq(&conf->device_lock);
653
654 if (conf->pending_bio_list.head) {
655 struct bio *bio;
656 bio = bio_list_get(&conf->pending_bio_list);
657 blk_remove_plug(conf->mddev->queue);
658 spin_unlock_irq(&conf->device_lock);
659 /* flush any pending bitmap writes to disk
660 * before proceeding w/ I/O */
661 bitmap_unplug(conf->mddev->bitmap);
662
663 while (bio) { /* submit pending writes */
664 struct bio *next = bio->bi_next;
665 bio->bi_next = NULL;
666 generic_make_request(bio);
667 bio = next;
668 }
669 rv = 1;
670 } else
671 spin_unlock_irq(&conf->device_lock);
672 return rv;
673}
0a27ec96
N
674/* Barriers....
675 * Sometimes we need to suspend IO while we do something else,
676 * either some resync/recovery, or reconfigure the array.
677 * To do this we raise a 'barrier'.
678 * The 'barrier' is a counter that can be raised multiple times
679 * to count how many activities are happening which preclude
680 * normal IO.
681 * We can only raise the barrier if there is no pending IO.
682 * i.e. if nr_pending == 0.
683 * We choose only to raise the barrier if no-one is waiting for the
684 * barrier to go down. This means that as soon as an IO request
685 * is ready, no other operations which require a barrier will start
686 * until the IO request has had a chance.
687 *
688 * So: regular IO calls 'wait_barrier'. When that returns there
689 * is no backgroup IO happening, It must arrange to call
690 * allow_barrier when it has finished its IO.
691 * backgroup IO calls must call raise_barrier. Once that returns
692 * there is no normal IO happeing. It must arrange to call
693 * lower_barrier when the particular background IO completes.
1da177e4 694 */
1da177e4 695
6cce3b23 696static void raise_barrier(conf_t *conf, int force)
1da177e4 697{
6cce3b23 698 BUG_ON(force && !conf->barrier);
1da177e4 699 spin_lock_irq(&conf->resync_lock);
0a27ec96 700
6cce3b23
N
701 /* Wait until no block IO is waiting (unless 'force') */
702 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
0a27ec96
N
703 conf->resync_lock,
704 raid10_unplug(conf->mddev->queue));
705
706 /* block any new IO from starting */
707 conf->barrier++;
708
709 /* No wait for all pending IO to complete */
710 wait_event_lock_irq(conf->wait_barrier,
711 !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
712 conf->resync_lock,
713 raid10_unplug(conf->mddev->queue));
714
715 spin_unlock_irq(&conf->resync_lock);
716}
717
718static void lower_barrier(conf_t *conf)
719{
720 unsigned long flags;
721 spin_lock_irqsave(&conf->resync_lock, flags);
722 conf->barrier--;
723 spin_unlock_irqrestore(&conf->resync_lock, flags);
724 wake_up(&conf->wait_barrier);
725}
726
727static void wait_barrier(conf_t *conf)
728{
729 spin_lock_irq(&conf->resync_lock);
730 if (conf->barrier) {
731 conf->nr_waiting++;
732 wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
733 conf->resync_lock,
734 raid10_unplug(conf->mddev->queue));
735 conf->nr_waiting--;
1da177e4 736 }
0a27ec96 737 conf->nr_pending++;
1da177e4
LT
738 spin_unlock_irq(&conf->resync_lock);
739}
740
0a27ec96
N
741static void allow_barrier(conf_t *conf)
742{
743 unsigned long flags;
744 spin_lock_irqsave(&conf->resync_lock, flags);
745 conf->nr_pending--;
746 spin_unlock_irqrestore(&conf->resync_lock, flags);
747 wake_up(&conf->wait_barrier);
748}
749
4443ae10
N
750static void freeze_array(conf_t *conf)
751{
752 /* stop syncio and normal IO and wait for everything to
f188593e 753 * go quiet.
4443ae10 754 * We increment barrier and nr_waiting, and then
1c830532
N
755 * wait until nr_pending match nr_queued+1
756 * This is called in the context of one normal IO request
757 * that has failed. Thus any sync request that might be pending
758 * will be blocked by nr_pending, and we need to wait for
759 * pending IO requests to complete or be queued for re-try.
760 * Thus the number queued (nr_queued) plus this request (1)
761 * must match the number of pending IOs (nr_pending) before
762 * we continue.
4443ae10
N
763 */
764 spin_lock_irq(&conf->resync_lock);
765 conf->barrier++;
766 conf->nr_waiting++;
767 wait_event_lock_irq(conf->wait_barrier,
1c830532 768 conf->nr_pending == conf->nr_queued+1,
4443ae10 769 conf->resync_lock,
a35e63ef
N
770 ({ flush_pending_writes(conf);
771 raid10_unplug(conf->mddev->queue); }));
4443ae10
N
772 spin_unlock_irq(&conf->resync_lock);
773}
774
775static void unfreeze_array(conf_t *conf)
776{
777 /* reverse the effect of the freeze */
778 spin_lock_irq(&conf->resync_lock);
779 conf->barrier--;
780 conf->nr_waiting--;
781 wake_up(&conf->wait_barrier);
782 spin_unlock_irq(&conf->resync_lock);
783}
784
165125e1 785static int make_request(struct request_queue *q, struct bio * bio)
1da177e4
LT
786{
787 mddev_t *mddev = q->queuedata;
788 conf_t *conf = mddev_to_conf(mddev);
789 mirror_info_t *mirror;
790 r10bio_t *r10_bio;
791 struct bio *read_bio;
c9959059 792 int cpu;
1da177e4
LT
793 int i;
794 int chunk_sects = conf->chunk_mask + 1;
a362357b 795 const int rw = bio_data_dir(bio);
e3881a68 796 const int do_sync = bio_sync(bio);
6cce3b23
N
797 struct bio_list bl;
798 unsigned long flags;
6bfe0b49 799 mdk_rdev_t *blocked_rdev;
1da177e4 800
e5dcdd80 801 if (unlikely(bio_barrier(bio))) {
6712ecf8 802 bio_endio(bio, -EOPNOTSUPP);
e5dcdd80
N
803 return 0;
804 }
805
1da177e4
LT
806 /* If this request crosses a chunk boundary, we need to
807 * split it. This will only happen for 1 PAGE (or less) requests.
808 */
809 if (unlikely( (bio->bi_sector & conf->chunk_mask) + (bio->bi_size >> 9)
810 > chunk_sects &&
811 conf->near_copies < conf->raid_disks)) {
812 struct bio_pair *bp;
813 /* Sanity check -- queue functions should prevent this happening */
814 if (bio->bi_vcnt != 1 ||
815 bio->bi_idx != 0)
816 goto bad_map;
817 /* This is a one page bio that upper layers
818 * refuse to split for us, so we need to split it.
819 */
6feef531 820 bp = bio_split(bio,
1da177e4
LT
821 chunk_sects - (bio->bi_sector & (chunk_sects - 1)) );
822 if (make_request(q, &bp->bio1))
823 generic_make_request(&bp->bio1);
824 if (make_request(q, &bp->bio2))
825 generic_make_request(&bp->bio2);
826
827 bio_pair_release(bp);
828 return 0;
829 bad_map:
830 printk("raid10_make_request bug: can't convert block across chunks"
831 " or bigger than %dk %llu %d\n", chunk_sects/2,
832 (unsigned long long)bio->bi_sector, bio->bi_size >> 10);
833
6712ecf8 834 bio_io_error(bio);
1da177e4
LT
835 return 0;
836 }
837
3d310eb7 838 md_write_start(mddev, bio);
06d91a5f 839
1da177e4
LT
840 /*
841 * Register the new request and wait if the reconstruction
842 * thread has put up a bar for new requests.
843 * Continue immediately if no resync is active currently.
844 */
0a27ec96 845 wait_barrier(conf);
1da177e4 846
074a7aca
TH
847 cpu = part_stat_lock();
848 part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
849 part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw],
850 bio_sectors(bio));
851 part_stat_unlock();
1da177e4
LT
852
853 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
854
855 r10_bio->master_bio = bio;
856 r10_bio->sectors = bio->bi_size >> 9;
857
858 r10_bio->mddev = mddev;
859 r10_bio->sector = bio->bi_sector;
6cce3b23 860 r10_bio->state = 0;
1da177e4 861
a362357b 862 if (rw == READ) {
1da177e4
LT
863 /*
864 * read balancing logic:
865 */
866 int disk = read_balance(conf, r10_bio);
867 int slot = r10_bio->read_slot;
868 if (disk < 0) {
869 raid_end_bio_io(r10_bio);
870 return 0;
871 }
872 mirror = conf->mirrors + disk;
873
874 read_bio = bio_clone(bio, GFP_NOIO);
875
876 r10_bio->devs[slot].bio = read_bio;
877
878 read_bio->bi_sector = r10_bio->devs[slot].addr +
879 mirror->rdev->data_offset;
880 read_bio->bi_bdev = mirror->rdev->bdev;
881 read_bio->bi_end_io = raid10_end_read_request;
e3881a68 882 read_bio->bi_rw = READ | do_sync;
1da177e4
LT
883 read_bio->bi_private = r10_bio;
884
885 generic_make_request(read_bio);
886 return 0;
887 }
888
889 /*
890 * WRITE:
891 */
6bfe0b49 892 /* first select target devices under rcu_lock and
1da177e4
LT
893 * inc refcount on their rdev. Record them by setting
894 * bios[x] to bio
895 */
896 raid10_find_phys(conf, r10_bio);
6bfe0b49 897 retry_write:
cb6969e8 898 blocked_rdev = NULL;
1da177e4
LT
899 rcu_read_lock();
900 for (i = 0; i < conf->copies; i++) {
901 int d = r10_bio->devs[i].devnum;
d6065f7b 902 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[d].rdev);
6bfe0b49
DW
903 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
904 atomic_inc(&rdev->nr_pending);
905 blocked_rdev = rdev;
906 break;
907 }
908 if (rdev && !test_bit(Faulty, &rdev->flags)) {
d6065f7b 909 atomic_inc(&rdev->nr_pending);
1da177e4 910 r10_bio->devs[i].bio = bio;
6cce3b23 911 } else {
1da177e4 912 r10_bio->devs[i].bio = NULL;
6cce3b23
N
913 set_bit(R10BIO_Degraded, &r10_bio->state);
914 }
1da177e4
LT
915 }
916 rcu_read_unlock();
917
6bfe0b49
DW
918 if (unlikely(blocked_rdev)) {
919 /* Have to wait for this device to get unblocked, then retry */
920 int j;
921 int d;
922
923 for (j = 0; j < i; j++)
924 if (r10_bio->devs[j].bio) {
925 d = r10_bio->devs[j].devnum;
926 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
927 }
928 allow_barrier(conf);
929 md_wait_for_blocked_rdev(blocked_rdev, mddev);
930 wait_barrier(conf);
931 goto retry_write;
932 }
933
6cce3b23 934 atomic_set(&r10_bio->remaining, 0);
06d91a5f 935
6cce3b23 936 bio_list_init(&bl);
1da177e4
LT
937 for (i = 0; i < conf->copies; i++) {
938 struct bio *mbio;
939 int d = r10_bio->devs[i].devnum;
940 if (!r10_bio->devs[i].bio)
941 continue;
942
943 mbio = bio_clone(bio, GFP_NOIO);
944 r10_bio->devs[i].bio = mbio;
945
946 mbio->bi_sector = r10_bio->devs[i].addr+
947 conf->mirrors[d].rdev->data_offset;
948 mbio->bi_bdev = conf->mirrors[d].rdev->bdev;
949 mbio->bi_end_io = raid10_end_write_request;
e3881a68 950 mbio->bi_rw = WRITE | do_sync;
1da177e4
LT
951 mbio->bi_private = r10_bio;
952
953 atomic_inc(&r10_bio->remaining);
6cce3b23 954 bio_list_add(&bl, mbio);
1da177e4
LT
955 }
956
f6f953aa
AR
957 if (unlikely(!atomic_read(&r10_bio->remaining))) {
958 /* the array is dead */
959 md_write_end(mddev);
960 raid_end_bio_io(r10_bio);
961 return 0;
962 }
963
6cce3b23
N
964 bitmap_startwrite(mddev->bitmap, bio->bi_sector, r10_bio->sectors, 0);
965 spin_lock_irqsave(&conf->device_lock, flags);
966 bio_list_merge(&conf->pending_bio_list, &bl);
967 blk_plug_device(mddev->queue);
968 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 969
a35e63ef
N
970 /* In case raid10d snuck in to freeze_array */
971 wake_up(&conf->wait_barrier);
972
e3881a68
LE
973 if (do_sync)
974 md_wakeup_thread(mddev->thread);
975
1da177e4
LT
976 return 0;
977}
978
979static void status(struct seq_file *seq, mddev_t *mddev)
980{
981 conf_t *conf = mddev_to_conf(mddev);
982 int i;
983
984 if (conf->near_copies < conf->raid_disks)
985 seq_printf(seq, " %dK chunks", mddev->chunk_size/1024);
986 if (conf->near_copies > 1)
987 seq_printf(seq, " %d near-copies", conf->near_copies);
c93983bf
N
988 if (conf->far_copies > 1) {
989 if (conf->far_offset)
990 seq_printf(seq, " %d offset-copies", conf->far_copies);
991 else
992 seq_printf(seq, " %d far-copies", conf->far_copies);
993 }
1da177e4 994 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
76186dd8 995 conf->raid_disks - mddev->degraded);
1da177e4
LT
996 for (i = 0; i < conf->raid_disks; i++)
997 seq_printf(seq, "%s",
998 conf->mirrors[i].rdev &&
b2d444d7 999 test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
1da177e4
LT
1000 seq_printf(seq, "]");
1001}
1002
1003static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1004{
1005 char b[BDEVNAME_SIZE];
1006 conf_t *conf = mddev_to_conf(mddev);
1007
1008 /*
1009 * If it is not operational, then we have already marked it as dead
1010 * else if it is the last working disks, ignore the error, let the
1011 * next level up know.
1012 * else mark the drive as failed
1013 */
b2d444d7 1014 if (test_bit(In_sync, &rdev->flags)
76186dd8 1015 && conf->raid_disks-mddev->degraded == 1)
1da177e4
LT
1016 /*
1017 * Don't fail the drive, just return an IO error.
1018 * The test should really be more sophisticated than
1019 * "working_disks == 1", but it isn't critical, and
1020 * can wait until we do more sophisticated "is the drive
1021 * really dead" tests...
1022 */
1023 return;
c04be0aa
N
1024 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1025 unsigned long flags;
1026 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 1027 mddev->degraded++;
c04be0aa 1028 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
1029 /*
1030 * if recovery is running, make sure it aborts.
1031 */
dfc70645 1032 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1da177e4 1033 }
b2d444d7 1034 set_bit(Faulty, &rdev->flags);
850b2b42 1035 set_bit(MD_CHANGE_DEVS, &mddev->flags);
d7a420c9
NA
1036 printk(KERN_ALERT "raid10: Disk failure on %s, disabling device.\n"
1037 "raid10: Operation continuing on %d devices.\n",
76186dd8 1038 bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
1da177e4
LT
1039}
1040
1041static void print_conf(conf_t *conf)
1042{
1043 int i;
1044 mirror_info_t *tmp;
1045
1046 printk("RAID10 conf printout:\n");
1047 if (!conf) {
1048 printk("(!conf)\n");
1049 return;
1050 }
76186dd8 1051 printk(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1da177e4
LT
1052 conf->raid_disks);
1053
1054 for (i = 0; i < conf->raid_disks; i++) {
1055 char b[BDEVNAME_SIZE];
1056 tmp = conf->mirrors + i;
1057 if (tmp->rdev)
1058 printk(" disk %d, wo:%d, o:%d, dev:%s\n",
b2d444d7
N
1059 i, !test_bit(In_sync, &tmp->rdev->flags),
1060 !test_bit(Faulty, &tmp->rdev->flags),
1da177e4
LT
1061 bdevname(tmp->rdev->bdev,b));
1062 }
1063}
1064
1065static void close_sync(conf_t *conf)
1066{
0a27ec96
N
1067 wait_barrier(conf);
1068 allow_barrier(conf);
1da177e4
LT
1069
1070 mempool_destroy(conf->r10buf_pool);
1071 conf->r10buf_pool = NULL;
1072}
1073
6d508242
N
1074/* check if there are enough drives for
1075 * every block to appear on atleast one
1076 */
1077static int enough(conf_t *conf)
1078{
1079 int first = 0;
1080
1081 do {
1082 int n = conf->copies;
1083 int cnt = 0;
1084 while (n--) {
1085 if (conf->mirrors[first].rdev)
1086 cnt++;
1087 first = (first+1) % conf->raid_disks;
1088 }
1089 if (cnt == 0)
1090 return 0;
1091 } while (first != 0);
1092 return 1;
1093}
1094
1da177e4
LT
1095static int raid10_spare_active(mddev_t *mddev)
1096{
1097 int i;
1098 conf_t *conf = mddev->private;
1099 mirror_info_t *tmp;
1100
1101 /*
1102 * Find all non-in_sync disks within the RAID10 configuration
1103 * and mark them in_sync
1104 */
1105 for (i = 0; i < conf->raid_disks; i++) {
1106 tmp = conf->mirrors + i;
1107 if (tmp->rdev
b2d444d7 1108 && !test_bit(Faulty, &tmp->rdev->flags)
c04be0aa
N
1109 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1110 unsigned long flags;
1111 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 1112 mddev->degraded--;
c04be0aa 1113 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
1114 }
1115 }
1116
1117 print_conf(conf);
1118 return 0;
1119}
1120
1121
1122static int raid10_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
1123{
1124 conf_t *conf = mddev->private;
199050ea 1125 int err = -EEXIST;
1da177e4
LT
1126 int mirror;
1127 mirror_info_t *p;
6c2fce2e
NB
1128 int first = 0;
1129 int last = mddev->raid_disks - 1;
1da177e4
LT
1130
1131 if (mddev->recovery_cp < MaxSector)
1132 /* only hot-add to in-sync arrays, as recovery is
1133 * very different from resync
1134 */
199050ea 1135 return -EBUSY;
6d508242 1136 if (!enough(conf))
199050ea 1137 return -EINVAL;
1da177e4 1138
6c2fce2e
NB
1139 if (rdev->raid_disk)
1140 first = last = rdev->raid_disk;
1da177e4 1141
6cce3b23 1142 if (rdev->saved_raid_disk >= 0 &&
6c2fce2e 1143 rdev->saved_raid_disk >= first &&
6cce3b23
N
1144 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1145 mirror = rdev->saved_raid_disk;
1146 else
6c2fce2e
NB
1147 mirror = first;
1148 for ( ; mirror <= last ; mirror++)
1da177e4
LT
1149 if ( !(p=conf->mirrors+mirror)->rdev) {
1150
1151 blk_queue_stack_limits(mddev->queue,
1152 rdev->bdev->bd_disk->queue);
1153 /* as we don't honour merge_bvec_fn, we must never risk
1154 * violating it, so limit ->max_sector to one PAGE, as
1155 * a one page request is never in violation.
1156 */
1157 if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
1158 mddev->queue->max_sectors > (PAGE_SIZE>>9))
1159 mddev->queue->max_sectors = (PAGE_SIZE>>9);
1160
1161 p->head_position = 0;
1162 rdev->raid_disk = mirror;
199050ea 1163 err = 0;
6cce3b23
N
1164 if (rdev->saved_raid_disk != mirror)
1165 conf->fullsync = 1;
d6065f7b 1166 rcu_assign_pointer(p->rdev, rdev);
1da177e4
LT
1167 break;
1168 }
1169
1170 print_conf(conf);
199050ea 1171 return err;
1da177e4
LT
1172}
1173
1174static int raid10_remove_disk(mddev_t *mddev, int number)
1175{
1176 conf_t *conf = mddev->private;
1177 int err = 0;
1178 mdk_rdev_t *rdev;
1179 mirror_info_t *p = conf->mirrors+ number;
1180
1181 print_conf(conf);
1182 rdev = p->rdev;
1183 if (rdev) {
b2d444d7 1184 if (test_bit(In_sync, &rdev->flags) ||
1da177e4
LT
1185 atomic_read(&rdev->nr_pending)) {
1186 err = -EBUSY;
1187 goto abort;
1188 }
dfc70645
N
1189 /* Only remove faulty devices in recovery
1190 * is not possible.
1191 */
1192 if (!test_bit(Faulty, &rdev->flags) &&
1193 enough(conf)) {
1194 err = -EBUSY;
1195 goto abort;
1196 }
1da177e4 1197 p->rdev = NULL;
fbd568a3 1198 synchronize_rcu();
1da177e4
LT
1199 if (atomic_read(&rdev->nr_pending)) {
1200 /* lost the race, try later */
1201 err = -EBUSY;
1202 p->rdev = rdev;
1203 }
1204 }
1205abort:
1206
1207 print_conf(conf);
1208 return err;
1209}
1210
1211
6712ecf8 1212static void end_sync_read(struct bio *bio, int error)
1da177e4 1213{
1da177e4
LT
1214 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
1215 conf_t *conf = mddev_to_conf(r10_bio->mddev);
1216 int i,d;
1217
1da177e4
LT
1218 for (i=0; i<conf->copies; i++)
1219 if (r10_bio->devs[i].bio == bio)
1220 break;
b6385483 1221 BUG_ON(i == conf->copies);
1da177e4
LT
1222 update_head_pos(i, r10_bio);
1223 d = r10_bio->devs[i].devnum;
0eb3ff12
N
1224
1225 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1226 set_bit(R10BIO_Uptodate, &r10_bio->state);
4dbcdc75
N
1227 else {
1228 atomic_add(r10_bio->sectors,
1229 &conf->mirrors[d].rdev->corrected_errors);
1230 if (!test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
1231 md_error(r10_bio->mddev,
1232 conf->mirrors[d].rdev);
1233 }
1da177e4
LT
1234
1235 /* for reconstruct, we always reschedule after a read.
1236 * for resync, only after all reads
1237 */
1238 if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1239 atomic_dec_and_test(&r10_bio->remaining)) {
1240 /* we have read all the blocks,
1241 * do the comparison in process context in raid10d
1242 */
1243 reschedule_retry(r10_bio);
1244 }
1245 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1da177e4
LT
1246}
1247
6712ecf8 1248static void end_sync_write(struct bio *bio, int error)
1da177e4
LT
1249{
1250 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1251 r10bio_t * r10_bio = (r10bio_t *)(bio->bi_private);
1252 mddev_t *mddev = r10_bio->mddev;
1253 conf_t *conf = mddev_to_conf(mddev);
1254 int i,d;
1255
1da177e4
LT
1256 for (i = 0; i < conf->copies; i++)
1257 if (r10_bio->devs[i].bio == bio)
1258 break;
1259 d = r10_bio->devs[i].devnum;
1260
1261 if (!uptodate)
1262 md_error(mddev, conf->mirrors[d].rdev);
dfc70645 1263
1da177e4
LT
1264 update_head_pos(i, r10_bio);
1265
1266 while (atomic_dec_and_test(&r10_bio->remaining)) {
1267 if (r10_bio->master_bio == NULL) {
1268 /* the primary of several recovery bios */
1269 md_done_sync(mddev, r10_bio->sectors, 1);
1270 put_buf(r10_bio);
1271 break;
1272 } else {
1273 r10bio_t *r10_bio2 = (r10bio_t *)r10_bio->master_bio;
1274 put_buf(r10_bio);
1275 r10_bio = r10_bio2;
1276 }
1277 }
1278 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1da177e4
LT
1279}
1280
1281/*
1282 * Note: sync and recover and handled very differently for raid10
1283 * This code is for resync.
1284 * For resync, we read through virtual addresses and read all blocks.
1285 * If there is any error, we schedule a write. The lowest numbered
1286 * drive is authoritative.
1287 * However requests come for physical address, so we need to map.
1288 * For every physical address there are raid_disks/copies virtual addresses,
1289 * which is always are least one, but is not necessarly an integer.
1290 * This means that a physical address can span multiple chunks, so we may
1291 * have to submit multiple io requests for a single sync request.
1292 */
1293/*
1294 * We check if all blocks are in-sync and only write to blocks that
1295 * aren't in sync
1296 */
1297static void sync_request_write(mddev_t *mddev, r10bio_t *r10_bio)
1298{
1299 conf_t *conf = mddev_to_conf(mddev);
1300 int i, first;
1301 struct bio *tbio, *fbio;
1302
1303 atomic_set(&r10_bio->remaining, 1);
1304
1305 /* find the first device with a block */
1306 for (i=0; i<conf->copies; i++)
1307 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
1308 break;
1309
1310 if (i == conf->copies)
1311 goto done;
1312
1313 first = i;
1314 fbio = r10_bio->devs[i].bio;
1315
1316 /* now find blocks with errors */
0eb3ff12
N
1317 for (i=0 ; i < conf->copies ; i++) {
1318 int j, d;
1319 int vcnt = r10_bio->sectors >> (PAGE_SHIFT-9);
1da177e4 1320
1da177e4 1321 tbio = r10_bio->devs[i].bio;
0eb3ff12
N
1322
1323 if (tbio->bi_end_io != end_sync_read)
1324 continue;
1325 if (i == first)
1da177e4 1326 continue;
0eb3ff12
N
1327 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
1328 /* We know that the bi_io_vec layout is the same for
1329 * both 'first' and 'i', so we just compare them.
1330 * All vec entries are PAGE_SIZE;
1331 */
1332 for (j = 0; j < vcnt; j++)
1333 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
1334 page_address(tbio->bi_io_vec[j].bv_page),
1335 PAGE_SIZE))
1336 break;
1337 if (j == vcnt)
1338 continue;
1339 mddev->resync_mismatches += r10_bio->sectors;
1340 }
18f08819
N
1341 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
1342 /* Don't fix anything. */
1343 continue;
1da177e4
LT
1344 /* Ok, we need to write this bio
1345 * First we need to fixup bv_offset, bv_len and
1346 * bi_vecs, as the read request might have corrupted these
1347 */
1348 tbio->bi_vcnt = vcnt;
1349 tbio->bi_size = r10_bio->sectors << 9;
1350 tbio->bi_idx = 0;
1351 tbio->bi_phys_segments = 0;
1da177e4
LT
1352 tbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1353 tbio->bi_flags |= 1 << BIO_UPTODATE;
1354 tbio->bi_next = NULL;
1355 tbio->bi_rw = WRITE;
1356 tbio->bi_private = r10_bio;
1357 tbio->bi_sector = r10_bio->devs[i].addr;
1358
1359 for (j=0; j < vcnt ; j++) {
1360 tbio->bi_io_vec[j].bv_offset = 0;
1361 tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
1362
1363 memcpy(page_address(tbio->bi_io_vec[j].bv_page),
1364 page_address(fbio->bi_io_vec[j].bv_page),
1365 PAGE_SIZE);
1366 }
1367 tbio->bi_end_io = end_sync_write;
1368
1369 d = r10_bio->devs[i].devnum;
1370 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1371 atomic_inc(&r10_bio->remaining);
1372 md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9);
1373
1374 tbio->bi_sector += conf->mirrors[d].rdev->data_offset;
1375 tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
1376 generic_make_request(tbio);
1377 }
1378
1379done:
1380 if (atomic_dec_and_test(&r10_bio->remaining)) {
1381 md_done_sync(mddev, r10_bio->sectors, 1);
1382 put_buf(r10_bio);
1383 }
1384}
1385
1386/*
1387 * Now for the recovery code.
1388 * Recovery happens across physical sectors.
1389 * We recover all non-is_sync drives by finding the virtual address of
1390 * each, and then choose a working drive that also has that virt address.
1391 * There is a separate r10_bio for each non-in_sync drive.
1392 * Only the first two slots are in use. The first for reading,
1393 * The second for writing.
1394 *
1395 */
1396
1397static void recovery_request_write(mddev_t *mddev, r10bio_t *r10_bio)
1398{
1399 conf_t *conf = mddev_to_conf(mddev);
1400 int i, d;
1401 struct bio *bio, *wbio;
1402
1403
1404 /* move the pages across to the second bio
1405 * and submit the write request
1406 */
1407 bio = r10_bio->devs[0].bio;
1408 wbio = r10_bio->devs[1].bio;
1409 for (i=0; i < wbio->bi_vcnt; i++) {
1410 struct page *p = bio->bi_io_vec[i].bv_page;
1411 bio->bi_io_vec[i].bv_page = wbio->bi_io_vec[i].bv_page;
1412 wbio->bi_io_vec[i].bv_page = p;
1413 }
1414 d = r10_bio->devs[1].devnum;
1415
1416 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1417 md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9);
0eb3ff12
N
1418 if (test_bit(R10BIO_Uptodate, &r10_bio->state))
1419 generic_make_request(wbio);
1420 else
6712ecf8 1421 bio_endio(wbio, -EIO);
1da177e4
LT
1422}
1423
1424
1425/*
1426 * This is a kernel thread which:
1427 *
1428 * 1. Retries failed read operations on working mirrors.
1429 * 2. Updates the raid superblock when problems encounter.
6814d536 1430 * 3. Performs writes following reads for array synchronising.
1da177e4
LT
1431 */
1432
6814d536
N
1433static void fix_read_error(conf_t *conf, mddev_t *mddev, r10bio_t *r10_bio)
1434{
1435 int sect = 0; /* Offset from r10_bio->sector */
1436 int sectors = r10_bio->sectors;
1437 mdk_rdev_t*rdev;
1438 while(sectors) {
1439 int s = sectors;
1440 int sl = r10_bio->read_slot;
1441 int success = 0;
1442 int start;
1443
1444 if (s > (PAGE_SIZE>>9))
1445 s = PAGE_SIZE >> 9;
1446
1447 rcu_read_lock();
1448 do {
1449 int d = r10_bio->devs[sl].devnum;
1450 rdev = rcu_dereference(conf->mirrors[d].rdev);
1451 if (rdev &&
1452 test_bit(In_sync, &rdev->flags)) {
1453 atomic_inc(&rdev->nr_pending);
1454 rcu_read_unlock();
1455 success = sync_page_io(rdev->bdev,
1456 r10_bio->devs[sl].addr +
1457 sect + rdev->data_offset,
1458 s<<9,
1459 conf->tmppage, READ);
1460 rdev_dec_pending(rdev, mddev);
1461 rcu_read_lock();
1462 if (success)
1463 break;
1464 }
1465 sl++;
1466 if (sl == conf->copies)
1467 sl = 0;
1468 } while (!success && sl != r10_bio->read_slot);
1469 rcu_read_unlock();
1470
1471 if (!success) {
1472 /* Cannot read from anywhere -- bye bye array */
1473 int dn = r10_bio->devs[r10_bio->read_slot].devnum;
1474 md_error(mddev, conf->mirrors[dn].rdev);
1475 break;
1476 }
1477
1478 start = sl;
1479 /* write it back and re-read */
1480 rcu_read_lock();
1481 while (sl != r10_bio->read_slot) {
1482 int d;
1483 if (sl==0)
1484 sl = conf->copies;
1485 sl--;
1486 d = r10_bio->devs[sl].devnum;
1487 rdev = rcu_dereference(conf->mirrors[d].rdev);
1488 if (rdev &&
1489 test_bit(In_sync, &rdev->flags)) {
1490 atomic_inc(&rdev->nr_pending);
1491 rcu_read_unlock();
1492 atomic_add(s, &rdev->corrected_errors);
1493 if (sync_page_io(rdev->bdev,
1494 r10_bio->devs[sl].addr +
1495 sect + rdev->data_offset,
1496 s<<9, conf->tmppage, WRITE)
1497 == 0)
1498 /* Well, this device is dead */
1499 md_error(mddev, rdev);
1500 rdev_dec_pending(rdev, mddev);
1501 rcu_read_lock();
1502 }
1503 }
1504 sl = start;
1505 while (sl != r10_bio->read_slot) {
1506 int d;
1507 if (sl==0)
1508 sl = conf->copies;
1509 sl--;
1510 d = r10_bio->devs[sl].devnum;
1511 rdev = rcu_dereference(conf->mirrors[d].rdev);
1512 if (rdev &&
1513 test_bit(In_sync, &rdev->flags)) {
1514 char b[BDEVNAME_SIZE];
1515 atomic_inc(&rdev->nr_pending);
1516 rcu_read_unlock();
1517 if (sync_page_io(rdev->bdev,
1518 r10_bio->devs[sl].addr +
1519 sect + rdev->data_offset,
1520 s<<9, conf->tmppage, READ) == 0)
1521 /* Well, this device is dead */
1522 md_error(mddev, rdev);
1523 else
1524 printk(KERN_INFO
1525 "raid10:%s: read error corrected"
1526 " (%d sectors at %llu on %s)\n",
1527 mdname(mddev), s,
969b755a
RD
1528 (unsigned long long)(sect+
1529 rdev->data_offset),
6814d536
N
1530 bdevname(rdev->bdev, b));
1531
1532 rdev_dec_pending(rdev, mddev);
1533 rcu_read_lock();
1534 }
1535 }
1536 rcu_read_unlock();
1537
1538 sectors -= s;
1539 sect += s;
1540 }
1541}
1542
1da177e4
LT
1543static void raid10d(mddev_t *mddev)
1544{
1545 r10bio_t *r10_bio;
1546 struct bio *bio;
1547 unsigned long flags;
1548 conf_t *conf = mddev_to_conf(mddev);
1549 struct list_head *head = &conf->retry_list;
1550 int unplug=0;
1551 mdk_rdev_t *rdev;
1552
1553 md_check_recovery(mddev);
1da177e4
LT
1554
1555 for (;;) {
1556 char b[BDEVNAME_SIZE];
6cce3b23 1557
a35e63ef 1558 unplug += flush_pending_writes(conf);
6cce3b23 1559
a35e63ef
N
1560 spin_lock_irqsave(&conf->device_lock, flags);
1561 if (list_empty(head)) {
1562 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 1563 break;
a35e63ef 1564 }
1da177e4
LT
1565 r10_bio = list_entry(head->prev, r10bio_t, retry_list);
1566 list_del(head->prev);
4443ae10 1567 conf->nr_queued--;
1da177e4
LT
1568 spin_unlock_irqrestore(&conf->device_lock, flags);
1569
1570 mddev = r10_bio->mddev;
1571 conf = mddev_to_conf(mddev);
1572 if (test_bit(R10BIO_IsSync, &r10_bio->state)) {
1573 sync_request_write(mddev, r10_bio);
1574 unplug = 1;
1575 } else if (test_bit(R10BIO_IsRecover, &r10_bio->state)) {
1576 recovery_request_write(mddev, r10_bio);
1577 unplug = 1;
1578 } else {
1579 int mirror;
4443ae10
N
1580 /* we got a read error. Maybe the drive is bad. Maybe just
1581 * the block and we can fix it.
1582 * We freeze all other IO, and try reading the block from
1583 * other devices. When we find one, we re-write
1584 * and check it that fixes the read error.
1585 * This is all done synchronously while the array is
1586 * frozen.
1587 */
6814d536
N
1588 if (mddev->ro == 0) {
1589 freeze_array(conf);
1590 fix_read_error(conf, mddev, r10_bio);
1591 unfreeze_array(conf);
4443ae10
N
1592 }
1593
1da177e4 1594 bio = r10_bio->devs[r10_bio->read_slot].bio;
0eb3ff12
N
1595 r10_bio->devs[r10_bio->read_slot].bio =
1596 mddev->ro ? IO_BLOCKED : NULL;
1da177e4
LT
1597 mirror = read_balance(conf, r10_bio);
1598 if (mirror == -1) {
1599 printk(KERN_ALERT "raid10: %s: unrecoverable I/O"
1600 " read error for block %llu\n",
1601 bdevname(bio->bi_bdev,b),
1602 (unsigned long long)r10_bio->sector);
1603 raid_end_bio_io(r10_bio);
14e71344 1604 bio_put(bio);
1da177e4 1605 } else {
e3881a68 1606 const int do_sync = bio_sync(r10_bio->master_bio);
14e71344 1607 bio_put(bio);
1da177e4
LT
1608 rdev = conf->mirrors[mirror].rdev;
1609 if (printk_ratelimit())
1610 printk(KERN_ERR "raid10: %s: redirecting sector %llu to"
1611 " another mirror\n",
1612 bdevname(rdev->bdev,b),
1613 (unsigned long long)r10_bio->sector);
1614 bio = bio_clone(r10_bio->master_bio, GFP_NOIO);
1615 r10_bio->devs[r10_bio->read_slot].bio = bio;
1616 bio->bi_sector = r10_bio->devs[r10_bio->read_slot].addr
1617 + rdev->data_offset;
1618 bio->bi_bdev = rdev->bdev;
e3881a68 1619 bio->bi_rw = READ | do_sync;
1da177e4
LT
1620 bio->bi_private = r10_bio;
1621 bio->bi_end_io = raid10_end_read_request;
1622 unplug = 1;
1623 generic_make_request(bio);
1624 }
1625 }
1626 }
1da177e4
LT
1627 if (unplug)
1628 unplug_slaves(mddev);
1629}
1630
1631
1632static int init_resync(conf_t *conf)
1633{
1634 int buffs;
1635
1636 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
b6385483 1637 BUG_ON(conf->r10buf_pool);
1da177e4
LT
1638 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
1639 if (!conf->r10buf_pool)
1640 return -ENOMEM;
1641 conf->next_resync = 0;
1642 return 0;
1643}
1644
1645/*
1646 * perform a "sync" on one "block"
1647 *
1648 * We need to make sure that no normal I/O request - particularly write
1649 * requests - conflict with active sync requests.
1650 *
1651 * This is achieved by tracking pending requests and a 'barrier' concept
1652 * that can be installed to exclude normal IO requests.
1653 *
1654 * Resync and recovery are handled very differently.
1655 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
1656 *
1657 * For resync, we iterate over virtual addresses, read all copies,
1658 * and update if there are differences. If only one copy is live,
1659 * skip it.
1660 * For recovery, we iterate over physical addresses, read a good
1661 * value for each non-in_sync drive, and over-write.
1662 *
1663 * So, for recovery we may have several outstanding complex requests for a
1664 * given address, one for each out-of-sync device. We model this by allocating
1665 * a number of r10_bio structures, one for each out-of-sync device.
1666 * As we setup these structures, we collect all bio's together into a list
1667 * which we then process collectively to add pages, and then process again
1668 * to pass to generic_make_request.
1669 *
1670 * The r10_bio structures are linked using a borrowed master_bio pointer.
1671 * This link is counted in ->remaining. When the r10_bio that points to NULL
1672 * has its remaining count decremented to 0, the whole complex operation
1673 * is complete.
1674 *
1675 */
1676
57afd89f 1677static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
1da177e4
LT
1678{
1679 conf_t *conf = mddev_to_conf(mddev);
1680 r10bio_t *r10_bio;
1681 struct bio *biolist = NULL, *bio;
1682 sector_t max_sector, nr_sectors;
1683 int disk;
1684 int i;
6cce3b23
N
1685 int max_sync;
1686 int sync_blocks;
1da177e4
LT
1687
1688 sector_t sectors_skipped = 0;
1689 int chunks_skipped = 0;
1690
1691 if (!conf->r10buf_pool)
1692 if (init_resync(conf))
57afd89f 1693 return 0;
1da177e4
LT
1694
1695 skipped:
1696 max_sector = mddev->size << 1;
1697 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
1698 max_sector = mddev->resync_max_sectors;
1699 if (sector_nr >= max_sector) {
6cce3b23
N
1700 /* If we aborted, we need to abort the
1701 * sync on the 'current' bitmap chucks (there can
1702 * be several when recovering multiple devices).
1703 * as we may have started syncing it but not finished.
1704 * We can find the current address in
1705 * mddev->curr_resync, but for recovery,
1706 * we need to convert that to several
1707 * virtual addresses.
1708 */
1709 if (mddev->curr_resync < max_sector) { /* aborted */
1710 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
1711 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
1712 &sync_blocks, 1);
1713 else for (i=0; i<conf->raid_disks; i++) {
1714 sector_t sect =
1715 raid10_find_virt(conf, mddev->curr_resync, i);
1716 bitmap_end_sync(mddev->bitmap, sect,
1717 &sync_blocks, 1);
1718 }
1719 } else /* completed sync */
1720 conf->fullsync = 0;
1721
1722 bitmap_close_sync(mddev->bitmap);
1da177e4 1723 close_sync(conf);
57afd89f 1724 *skipped = 1;
1da177e4
LT
1725 return sectors_skipped;
1726 }
1727 if (chunks_skipped >= conf->raid_disks) {
1728 /* if there has been nothing to do on any drive,
1729 * then there is nothing to do at all..
1730 */
57afd89f
N
1731 *skipped = 1;
1732 return (max_sector - sector_nr) + sectors_skipped;
1da177e4
LT
1733 }
1734
c6207277
N
1735 if (max_sector > mddev->resync_max)
1736 max_sector = mddev->resync_max; /* Don't do IO beyond here */
1737
1da177e4
LT
1738 /* make sure whole request will fit in a chunk - if chunks
1739 * are meaningful
1740 */
1741 if (conf->near_copies < conf->raid_disks &&
1742 max_sector > (sector_nr | conf->chunk_mask))
1743 max_sector = (sector_nr | conf->chunk_mask) + 1;
1744 /*
1745 * If there is non-resync activity waiting for us then
1746 * put in a delay to throttle resync.
1747 */
0a27ec96 1748 if (!go_faster && conf->nr_waiting)
1da177e4 1749 msleep_interruptible(1000);
1da177e4 1750
b47490c9
N
1751 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
1752
1da177e4
LT
1753 /* Again, very different code for resync and recovery.
1754 * Both must result in an r10bio with a list of bios that
1755 * have bi_end_io, bi_sector, bi_bdev set,
1756 * and bi_private set to the r10bio.
1757 * For recovery, we may actually create several r10bios
1758 * with 2 bios in each, that correspond to the bios in the main one.
1759 * In this case, the subordinate r10bios link back through a
1760 * borrowed master_bio pointer, and the counter in the master
1761 * includes a ref from each subordinate.
1762 */
1763 /* First, we decide what to do and set ->bi_end_io
1764 * To end_sync_read if we want to read, and
1765 * end_sync_write if we will want to write.
1766 */
1767
6cce3b23 1768 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
1da177e4
LT
1769 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
1770 /* recovery... the complicated one */
1771 int i, j, k;
1772 r10_bio = NULL;
1773
1774 for (i=0 ; i<conf->raid_disks; i++)
1775 if (conf->mirrors[i].rdev &&
b2d444d7 1776 !test_bit(In_sync, &conf->mirrors[i].rdev->flags)) {
6cce3b23 1777 int still_degraded = 0;
1da177e4
LT
1778 /* want to reconstruct this device */
1779 r10bio_t *rb2 = r10_bio;
6cce3b23
N
1780 sector_t sect = raid10_find_virt(conf, sector_nr, i);
1781 int must_sync;
1782 /* Unless we are doing a full sync, we only need
1783 * to recover the block if it is set in the bitmap
1784 */
1785 must_sync = bitmap_start_sync(mddev->bitmap, sect,
1786 &sync_blocks, 1);
1787 if (sync_blocks < max_sync)
1788 max_sync = sync_blocks;
1789 if (!must_sync &&
1790 !conf->fullsync) {
1791 /* yep, skip the sync_blocks here, but don't assume
1792 * that there will never be anything to do here
1793 */
1794 chunks_skipped = -1;
1795 continue;
1796 }
1da177e4
LT
1797
1798 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
6cce3b23 1799 raise_barrier(conf, rb2 != NULL);
1da177e4
LT
1800 atomic_set(&r10_bio->remaining, 0);
1801
1802 r10_bio->master_bio = (struct bio*)rb2;
1803 if (rb2)
1804 atomic_inc(&rb2->remaining);
1805 r10_bio->mddev = mddev;
1806 set_bit(R10BIO_IsRecover, &r10_bio->state);
6cce3b23
N
1807 r10_bio->sector = sect;
1808
1da177e4 1809 raid10_find_phys(conf, r10_bio);
6cce3b23
N
1810 /* Need to check if this section will still be
1811 * degraded
1812 */
1813 for (j=0; j<conf->copies;j++) {
1814 int d = r10_bio->devs[j].devnum;
1815 if (conf->mirrors[d].rdev == NULL ||
a24a8dd8 1816 test_bit(Faulty, &conf->mirrors[d].rdev->flags)) {
6cce3b23 1817 still_degraded = 1;
a24a8dd8
N
1818 break;
1819 }
6cce3b23
N
1820 }
1821 must_sync = bitmap_start_sync(mddev->bitmap, sect,
1822 &sync_blocks, still_degraded);
1823
1da177e4
LT
1824 for (j=0; j<conf->copies;j++) {
1825 int d = r10_bio->devs[j].devnum;
1826 if (conf->mirrors[d].rdev &&
b2d444d7 1827 test_bit(In_sync, &conf->mirrors[d].rdev->flags)) {
1da177e4
LT
1828 /* This is where we read from */
1829 bio = r10_bio->devs[0].bio;
1830 bio->bi_next = biolist;
1831 biolist = bio;
1832 bio->bi_private = r10_bio;
1833 bio->bi_end_io = end_sync_read;
802ba064 1834 bio->bi_rw = READ;
1da177e4
LT
1835 bio->bi_sector = r10_bio->devs[j].addr +
1836 conf->mirrors[d].rdev->data_offset;
1837 bio->bi_bdev = conf->mirrors[d].rdev->bdev;
1838 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1839 atomic_inc(&r10_bio->remaining);
1840 /* and we write to 'i' */
1841
1842 for (k=0; k<conf->copies; k++)
1843 if (r10_bio->devs[k].devnum == i)
1844 break;
64a742bc 1845 BUG_ON(k == conf->copies);
1da177e4
LT
1846 bio = r10_bio->devs[1].bio;
1847 bio->bi_next = biolist;
1848 biolist = bio;
1849 bio->bi_private = r10_bio;
1850 bio->bi_end_io = end_sync_write;
802ba064 1851 bio->bi_rw = WRITE;
1da177e4
LT
1852 bio->bi_sector = r10_bio->devs[k].addr +
1853 conf->mirrors[i].rdev->data_offset;
1854 bio->bi_bdev = conf->mirrors[i].rdev->bdev;
1855
1856 r10_bio->devs[0].devnum = d;
1857 r10_bio->devs[1].devnum = i;
1858
1859 break;
1860 }
1861 }
1862 if (j == conf->copies) {
87fc767b
N
1863 /* Cannot recover, so abort the recovery */
1864 put_buf(r10_bio);
a07e6ab4
T
1865 if (rb2)
1866 atomic_dec(&rb2->remaining);
87fc767b 1867 r10_bio = rb2;
dfc70645
N
1868 if (!test_and_set_bit(MD_RECOVERY_INTR,
1869 &mddev->recovery))
87fc767b
N
1870 printk(KERN_INFO "raid10: %s: insufficient working devices for recovery.\n",
1871 mdname(mddev));
1872 break;
1da177e4
LT
1873 }
1874 }
1875 if (biolist == NULL) {
1876 while (r10_bio) {
1877 r10bio_t *rb2 = r10_bio;
1878 r10_bio = (r10bio_t*) rb2->master_bio;
1879 rb2->master_bio = NULL;
1880 put_buf(rb2);
1881 }
1882 goto giveup;
1883 }
1884 } else {
1885 /* resync. Schedule a read for every block at this virt offset */
1886 int count = 0;
6cce3b23
N
1887
1888 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
1889 &sync_blocks, mddev->degraded) &&
1890 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1891 /* We can skip this block */
1892 *skipped = 1;
1893 return sync_blocks + sectors_skipped;
1894 }
1895 if (sync_blocks < max_sync)
1896 max_sync = sync_blocks;
1da177e4
LT
1897 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
1898
1da177e4
LT
1899 r10_bio->mddev = mddev;
1900 atomic_set(&r10_bio->remaining, 0);
6cce3b23
N
1901 raise_barrier(conf, 0);
1902 conf->next_resync = sector_nr;
1da177e4
LT
1903
1904 r10_bio->master_bio = NULL;
1905 r10_bio->sector = sector_nr;
1906 set_bit(R10BIO_IsSync, &r10_bio->state);
1907 raid10_find_phys(conf, r10_bio);
1908 r10_bio->sectors = (sector_nr | conf->chunk_mask) - sector_nr +1;
1909
1910 for (i=0; i<conf->copies; i++) {
1911 int d = r10_bio->devs[i].devnum;
1912 bio = r10_bio->devs[i].bio;
1913 bio->bi_end_io = NULL;
af03b8e4 1914 clear_bit(BIO_UPTODATE, &bio->bi_flags);
1da177e4 1915 if (conf->mirrors[d].rdev == NULL ||
b2d444d7 1916 test_bit(Faulty, &conf->mirrors[d].rdev->flags))
1da177e4
LT
1917 continue;
1918 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1919 atomic_inc(&r10_bio->remaining);
1920 bio->bi_next = biolist;
1921 biolist = bio;
1922 bio->bi_private = r10_bio;
1923 bio->bi_end_io = end_sync_read;
802ba064 1924 bio->bi_rw = READ;
1da177e4
LT
1925 bio->bi_sector = r10_bio->devs[i].addr +
1926 conf->mirrors[d].rdev->data_offset;
1927 bio->bi_bdev = conf->mirrors[d].rdev->bdev;
1928 count++;
1929 }
1930
1931 if (count < 2) {
1932 for (i=0; i<conf->copies; i++) {
1933 int d = r10_bio->devs[i].devnum;
1934 if (r10_bio->devs[i].bio->bi_end_io)
1935 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1936 }
1937 put_buf(r10_bio);
1938 biolist = NULL;
1939 goto giveup;
1940 }
1941 }
1942
1943 for (bio = biolist; bio ; bio=bio->bi_next) {
1944
1945 bio->bi_flags &= ~(BIO_POOL_MASK - 1);
1946 if (bio->bi_end_io)
1947 bio->bi_flags |= 1 << BIO_UPTODATE;
1948 bio->bi_vcnt = 0;
1949 bio->bi_idx = 0;
1950 bio->bi_phys_segments = 0;
1da177e4
LT
1951 bio->bi_size = 0;
1952 }
1953
1954 nr_sectors = 0;
6cce3b23
N
1955 if (sector_nr + max_sync < max_sector)
1956 max_sector = sector_nr + max_sync;
1da177e4
LT
1957 do {
1958 struct page *page;
1959 int len = PAGE_SIZE;
1960 disk = 0;
1961 if (sector_nr + (len>>9) > max_sector)
1962 len = (max_sector - sector_nr) << 9;
1963 if (len == 0)
1964 break;
1965 for (bio= biolist ; bio ; bio=bio->bi_next) {
1966 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
1967 if (bio_add_page(bio, page, len, 0) == 0) {
1968 /* stop here */
1969 struct bio *bio2;
1970 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
1971 for (bio2 = biolist; bio2 && bio2 != bio; bio2 = bio2->bi_next) {
1972 /* remove last page from this bio */
1973 bio2->bi_vcnt--;
1974 bio2->bi_size -= len;
1975 bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
1976 }
1977 goto bio_full;
1978 }
1979 disk = i;
1980 }
1981 nr_sectors += len>>9;
1982 sector_nr += len>>9;
1983 } while (biolist->bi_vcnt < RESYNC_PAGES);
1984 bio_full:
1985 r10_bio->sectors = nr_sectors;
1986
1987 while (biolist) {
1988 bio = biolist;
1989 biolist = biolist->bi_next;
1990
1991 bio->bi_next = NULL;
1992 r10_bio = bio->bi_private;
1993 r10_bio->sectors = nr_sectors;
1994
1995 if (bio->bi_end_io == end_sync_read) {
1996 md_sync_acct(bio->bi_bdev, nr_sectors);
1997 generic_make_request(bio);
1998 }
1999 }
2000
57afd89f
N
2001 if (sectors_skipped)
2002 /* pretend they weren't skipped, it makes
2003 * no important difference in this case
2004 */
2005 md_done_sync(mddev, sectors_skipped, 1);
2006
1da177e4
LT
2007 return sectors_skipped + nr_sectors;
2008 giveup:
2009 /* There is nowhere to write, so all non-sync
2010 * drives must be failed, so try the next chunk...
2011 */
2012 {
57afd89f 2013 sector_t sec = max_sector - sector_nr;
1da177e4
LT
2014 sectors_skipped += sec;
2015 chunks_skipped ++;
2016 sector_nr = max_sector;
1da177e4
LT
2017 goto skipped;
2018 }
2019}
2020
2021static int run(mddev_t *mddev)
2022{
2023 conf_t *conf;
2024 int i, disk_idx;
2025 mirror_info_t *disk;
2026 mdk_rdev_t *rdev;
2027 struct list_head *tmp;
c93983bf 2028 int nc, fc, fo;
1da177e4
LT
2029 sector_t stride, size;
2030
4bbf3771
N
2031 if (mddev->chunk_size < PAGE_SIZE) {
2032 printk(KERN_ERR "md/raid10: chunk size must be "
2033 "at least PAGE_SIZE(%ld).\n", PAGE_SIZE);
2604b703 2034 return -EINVAL;
1da177e4 2035 }
2604b703 2036
1da177e4
LT
2037 nc = mddev->layout & 255;
2038 fc = (mddev->layout >> 8) & 255;
c93983bf 2039 fo = mddev->layout & (1<<16);
1da177e4 2040 if ((nc*fc) <2 || (nc*fc) > mddev->raid_disks ||
c93983bf 2041 (mddev->layout >> 17)) {
1da177e4
LT
2042 printk(KERN_ERR "raid10: %s: unsupported raid10 layout: 0x%8x\n",
2043 mdname(mddev), mddev->layout);
2044 goto out;
2045 }
2046 /*
2047 * copy the already verified devices into our private RAID10
2048 * bookkeeping area. [whatever we allocate in run(),
2049 * should be freed in stop()]
2050 */
4443ae10 2051 conf = kzalloc(sizeof(conf_t), GFP_KERNEL);
1da177e4
LT
2052 mddev->private = conf;
2053 if (!conf) {
2054 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n",
2055 mdname(mddev));
2056 goto out;
2057 }
4443ae10 2058 conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
1da177e4
LT
2059 GFP_KERNEL);
2060 if (!conf->mirrors) {
2061 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n",
2062 mdname(mddev));
2063 goto out_free_conf;
2064 }
4443ae10
N
2065
2066 conf->tmppage = alloc_page(GFP_KERNEL);
2067 if (!conf->tmppage)
2068 goto out_free_conf;
1da177e4 2069
64a742bc
N
2070 conf->mddev = mddev;
2071 conf->raid_disks = mddev->raid_disks;
1da177e4
LT
2072 conf->near_copies = nc;
2073 conf->far_copies = fc;
2074 conf->copies = nc*fc;
c93983bf 2075 conf->far_offset = fo;
1da177e4
LT
2076 conf->chunk_mask = (sector_t)(mddev->chunk_size>>9)-1;
2077 conf->chunk_shift = ffz(~mddev->chunk_size) - 9;
64a742bc
N
2078 size = mddev->size >> (conf->chunk_shift-1);
2079 sector_div(size, fc);
2080 size = size * conf->raid_disks;
2081 sector_div(size, nc);
2082 /* 'size' is now the number of chunks in the array */
2083 /* calculate "used chunks per device" in 'stride' */
2084 stride = size * conf->copies;
af03b8e4
N
2085
2086 /* We need to round up when dividing by raid_disks to
2087 * get the stride size.
2088 */
2089 stride += conf->raid_disks - 1;
64a742bc
N
2090 sector_div(stride, conf->raid_disks);
2091 mddev->size = stride << (conf->chunk_shift-1);
2092
c93983bf 2093 if (fo)
64a742bc
N
2094 stride = 1;
2095 else
c93983bf 2096 sector_div(stride, fc);
64a742bc
N
2097 conf->stride = stride << conf->chunk_shift;
2098
1da177e4
LT
2099 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
2100 r10bio_pool_free, conf);
2101 if (!conf->r10bio_pool) {
2102 printk(KERN_ERR "raid10: couldn't allocate memory for %s\n",
2103 mdname(mddev));
2104 goto out_free_conf;
2105 }
1da177e4 2106
e7e72bf6
NB
2107 spin_lock_init(&conf->device_lock);
2108 mddev->queue->queue_lock = &conf->device_lock;
2109
d089c6af 2110 rdev_for_each(rdev, tmp, mddev) {
1da177e4
LT
2111 disk_idx = rdev->raid_disk;
2112 if (disk_idx >= mddev->raid_disks
2113 || disk_idx < 0)
2114 continue;
2115 disk = conf->mirrors + disk_idx;
2116
2117 disk->rdev = rdev;
2118
2119 blk_queue_stack_limits(mddev->queue,
2120 rdev->bdev->bd_disk->queue);
2121 /* as we don't honour merge_bvec_fn, we must never risk
2122 * violating it, so limit ->max_sector to one PAGE, as
2123 * a one page request is never in violation.
2124 */
2125 if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
2126 mddev->queue->max_sectors > (PAGE_SIZE>>9))
2127 mddev->queue->max_sectors = (PAGE_SIZE>>9);
2128
2129 disk->head_position = 0;
1da177e4 2130 }
1da177e4
LT
2131 INIT_LIST_HEAD(&conf->retry_list);
2132
2133 spin_lock_init(&conf->resync_lock);
0a27ec96 2134 init_waitqueue_head(&conf->wait_barrier);
1da177e4 2135
6d508242
N
2136 /* need to check that every block has at least one working mirror */
2137 if (!enough(conf)) {
2138 printk(KERN_ERR "raid10: not enough operational mirrors for %s\n",
2139 mdname(mddev));
1da177e4
LT
2140 goto out_free_conf;
2141 }
2142
2143 mddev->degraded = 0;
2144 for (i = 0; i < conf->raid_disks; i++) {
2145
2146 disk = conf->mirrors + i;
2147
5fd6c1dc 2148 if (!disk->rdev ||
2e333e89 2149 !test_bit(In_sync, &disk->rdev->flags)) {
1da177e4
LT
2150 disk->head_position = 0;
2151 mddev->degraded++;
8c2e870a
NB
2152 if (disk->rdev)
2153 conf->fullsync = 1;
1da177e4
LT
2154 }
2155 }
2156
2157
2158 mddev->thread = md_register_thread(raid10d, mddev, "%s_raid10");
2159 if (!mddev->thread) {
2160 printk(KERN_ERR
2161 "raid10: couldn't allocate thread for %s\n",
2162 mdname(mddev));
2163 goto out_free_conf;
2164 }
2165
2166 printk(KERN_INFO
2167 "raid10: raid set %s active with %d out of %d devices\n",
2168 mdname(mddev), mddev->raid_disks - mddev->degraded,
2169 mddev->raid_disks);
2170 /*
2171 * Ok, everything is just fine now
2172 */
f233ea5c 2173 mddev->array_sectors = size << conf->chunk_shift;
64a742bc 2174 mddev->resync_max_sectors = size << conf->chunk_shift;
1da177e4 2175
7a5febe9 2176 mddev->queue->unplug_fn = raid10_unplug;
0d129228
N
2177 mddev->queue->backing_dev_info.congested_fn = raid10_congested;
2178 mddev->queue->backing_dev_info.congested_data = mddev;
7a5febe9 2179
1da177e4
LT
2180 /* Calculate max read-ahead size.
2181 * We need to readahead at least twice a whole stripe....
2182 * maybe...
2183 */
2184 {
8932c2e0 2185 int stripe = conf->raid_disks * (mddev->chunk_size / PAGE_SIZE);
1da177e4
LT
2186 stripe /= conf->near_copies;
2187 if (mddev->queue->backing_dev_info.ra_pages < 2* stripe)
2188 mddev->queue->backing_dev_info.ra_pages = 2* stripe;
2189 }
2190
2191 if (conf->near_copies < mddev->raid_disks)
2192 blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
2193 return 0;
2194
2195out_free_conf:
2196 if (conf->r10bio_pool)
2197 mempool_destroy(conf->r10bio_pool);
1345b1d8 2198 safe_put_page(conf->tmppage);
990a8baf 2199 kfree(conf->mirrors);
1da177e4
LT
2200 kfree(conf);
2201 mddev->private = NULL;
2202out:
2203 return -EIO;
2204}
2205
2206static int stop(mddev_t *mddev)
2207{
2208 conf_t *conf = mddev_to_conf(mddev);
2209
2210 md_unregister_thread(mddev->thread);
2211 mddev->thread = NULL;
2212 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
2213 if (conf->r10bio_pool)
2214 mempool_destroy(conf->r10bio_pool);
990a8baf 2215 kfree(conf->mirrors);
1da177e4
LT
2216 kfree(conf);
2217 mddev->private = NULL;
2218 return 0;
2219}
2220
6cce3b23
N
2221static void raid10_quiesce(mddev_t *mddev, int state)
2222{
2223 conf_t *conf = mddev_to_conf(mddev);
2224
2225 switch(state) {
2226 case 1:
2227 raise_barrier(conf, 0);
2228 break;
2229 case 0:
2230 lower_barrier(conf);
2231 break;
2232 }
2233 if (mddev->thread) {
2234 if (mddev->bitmap)
2235 mddev->thread->timeout = mddev->bitmap->daemon_sleep * HZ;
2236 else
2237 mddev->thread->timeout = MAX_SCHEDULE_TIMEOUT;
2238 md_wakeup_thread(mddev->thread);
2239 }
2240}
1da177e4 2241
2604b703 2242static struct mdk_personality raid10_personality =
1da177e4
LT
2243{
2244 .name = "raid10",
2604b703 2245 .level = 10,
1da177e4
LT
2246 .owner = THIS_MODULE,
2247 .make_request = make_request,
2248 .run = run,
2249 .stop = stop,
2250 .status = status,
2251 .error_handler = error,
2252 .hot_add_disk = raid10_add_disk,
2253 .hot_remove_disk= raid10_remove_disk,
2254 .spare_active = raid10_spare_active,
2255 .sync_request = sync_request,
6cce3b23 2256 .quiesce = raid10_quiesce,
1da177e4
LT
2257};
2258
2259static int __init raid_init(void)
2260{
2604b703 2261 return register_md_personality(&raid10_personality);
1da177e4
LT
2262}
2263
2264static void raid_exit(void)
2265{
2604b703 2266 unregister_md_personality(&raid10_personality);
1da177e4
LT
2267}
2268
2269module_init(raid_init);
2270module_exit(raid_exit);
2271MODULE_LICENSE("GPL");
2272MODULE_ALIAS("md-personality-9"); /* RAID10 */
d9d166c2 2273MODULE_ALIAS("md-raid10");
2604b703 2274MODULE_ALIAS("md-level-10");