md/raid5: Mark device want_replacement when we see a write error.
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / md / raid10.c
CommitLineData
1da177e4
LT
1/*
2 * raid10.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 2000-2004 Neil Brown
5 *
6 * RAID-10 support for md.
7 *
25985edc 8 * Base on code in raid1.c. See raid1.c for further copyright information.
1da177e4
LT
9 *
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
5a0e3ad6 21#include <linux/slab.h>
25570727 22#include <linux/delay.h>
bff61975 23#include <linux/blkdev.h>
056075c7 24#include <linux/module.h>
bff61975 25#include <linux/seq_file.h>
8bda470e 26#include <linux/ratelimit.h>
43b2e5d8 27#include "md.h"
ef740c37 28#include "raid10.h"
dab8b292 29#include "raid0.h"
ef740c37 30#include "bitmap.h"
1da177e4
LT
31
32/*
33 * RAID10 provides a combination of RAID0 and RAID1 functionality.
34 * The layout of data is defined by
35 * chunk_size
36 * raid_disks
37 * near_copies (stored in low byte of layout)
38 * far_copies (stored in second byte of layout)
c93983bf 39 * far_offset (stored in bit 16 of layout )
1da177e4
LT
40 *
41 * The data to be stored is divided into chunks using chunksize.
42 * Each device is divided into far_copies sections.
43 * In each section, chunks are laid out in a style similar to raid0, but
44 * near_copies copies of each chunk is stored (each on a different drive).
45 * The starting device for each section is offset near_copies from the starting
46 * device of the previous section.
c93983bf 47 * Thus they are (near_copies*far_copies) of each chunk, and each is on a different
1da177e4
LT
48 * drive.
49 * near_copies and far_copies must be at least one, and their product is at most
50 * raid_disks.
c93983bf
N
51 *
52 * If far_offset is true, then the far_copies are handled a bit differently.
53 * The copies are still in different stripes, but instead of be very far apart
54 * on disk, there are adjacent stripes.
1da177e4
LT
55 */
56
57/*
58 * Number of guaranteed r10bios in case of extreme VM load:
59 */
60#define NR_RAID10_BIOS 256
61
34db0cd6
N
62/* When there are this many requests queue to be written by
63 * the raid10 thread, we become 'congested' to provide back-pressure
64 * for writeback.
65 */
66static int max_queued_requests = 1024;
67
e879a879
N
68static void allow_barrier(struct r10conf *conf);
69static void lower_barrier(struct r10conf *conf);
0a27ec96 70
dd0fc66f 71static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4 72{
e879a879 73 struct r10conf *conf = data;
9f2c9d12 74 int size = offsetof(struct r10bio, devs[conf->copies]);
1da177e4
LT
75
76 /* allocate a r10bio with room for raid_disks entries in the bios array */
7eaceacc 77 return kzalloc(size, gfp_flags);
1da177e4
LT
78}
79
80static void r10bio_pool_free(void *r10_bio, void *data)
81{
82 kfree(r10_bio);
83}
84
0310fa21 85/* Maximum size of each resync request */
1da177e4 86#define RESYNC_BLOCK_SIZE (64*1024)
1da177e4 87#define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
0310fa21
N
88/* amount of memory to reserve for resync requests */
89#define RESYNC_WINDOW (1024*1024)
90/* maximum number of concurrent requests, memory permitting */
91#define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
1da177e4
LT
92
93/*
94 * When performing a resync, we need to read and compare, so
95 * we need as many pages are there are copies.
96 * When performing a recovery, we need 2 bios, one for read,
97 * one for write (we recover only one drive per r10buf)
98 *
99 */
dd0fc66f 100static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4 101{
e879a879 102 struct r10conf *conf = data;
1da177e4 103 struct page *page;
9f2c9d12 104 struct r10bio *r10_bio;
1da177e4
LT
105 struct bio *bio;
106 int i, j;
107 int nalloc;
108
109 r10_bio = r10bio_pool_alloc(gfp_flags, conf);
7eaceacc 110 if (!r10_bio)
1da177e4 111 return NULL;
1da177e4
LT
112
113 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
114 nalloc = conf->copies; /* resync */
115 else
116 nalloc = 2; /* recovery */
117
118 /*
119 * Allocate bios.
120 */
121 for (j = nalloc ; j-- ; ) {
6746557f 122 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
1da177e4
LT
123 if (!bio)
124 goto out_free_bio;
125 r10_bio->devs[j].bio = bio;
126 }
127 /*
128 * Allocate RESYNC_PAGES data pages and attach them
129 * where needed.
130 */
131 for (j = 0 ; j < nalloc; j++) {
132 bio = r10_bio->devs[j].bio;
133 for (i = 0; i < RESYNC_PAGES; i++) {
c65060ad
NK
134 if (j == 1 && !test_bit(MD_RECOVERY_SYNC,
135 &conf->mddev->recovery)) {
136 /* we can share bv_page's during recovery */
137 struct bio *rbio = r10_bio->devs[0].bio;
138 page = rbio->bi_io_vec[i].bv_page;
139 get_page(page);
140 } else
141 page = alloc_page(gfp_flags);
1da177e4
LT
142 if (unlikely(!page))
143 goto out_free_pages;
144
145 bio->bi_io_vec[i].bv_page = page;
146 }
147 }
148
149 return r10_bio;
150
151out_free_pages:
152 for ( ; i > 0 ; i--)
1345b1d8 153 safe_put_page(bio->bi_io_vec[i-1].bv_page);
1da177e4
LT
154 while (j--)
155 for (i = 0; i < RESYNC_PAGES ; i++)
1345b1d8 156 safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
1da177e4
LT
157 j = -1;
158out_free_bio:
159 while ( ++j < nalloc )
160 bio_put(r10_bio->devs[j].bio);
161 r10bio_pool_free(r10_bio, conf);
162 return NULL;
163}
164
165static void r10buf_pool_free(void *__r10_bio, void *data)
166{
167 int i;
e879a879 168 struct r10conf *conf = data;
9f2c9d12 169 struct r10bio *r10bio = __r10_bio;
1da177e4
LT
170 int j;
171
172 for (j=0; j < conf->copies; j++) {
173 struct bio *bio = r10bio->devs[j].bio;
174 if (bio) {
175 for (i = 0; i < RESYNC_PAGES; i++) {
1345b1d8 176 safe_put_page(bio->bi_io_vec[i].bv_page);
1da177e4
LT
177 bio->bi_io_vec[i].bv_page = NULL;
178 }
179 bio_put(bio);
180 }
181 }
182 r10bio_pool_free(r10bio, conf);
183}
184
e879a879 185static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
1da177e4
LT
186{
187 int i;
188
189 for (i = 0; i < conf->copies; i++) {
190 struct bio **bio = & r10_bio->devs[i].bio;
749c55e9 191 if (!BIO_SPECIAL(*bio))
1da177e4
LT
192 bio_put(*bio);
193 *bio = NULL;
194 }
195}
196
9f2c9d12 197static void free_r10bio(struct r10bio *r10_bio)
1da177e4 198{
e879a879 199 struct r10conf *conf = r10_bio->mddev->private;
1da177e4 200
1da177e4
LT
201 put_all_bios(conf, r10_bio);
202 mempool_free(r10_bio, conf->r10bio_pool);
203}
204
9f2c9d12 205static void put_buf(struct r10bio *r10_bio)
1da177e4 206{
e879a879 207 struct r10conf *conf = r10_bio->mddev->private;
1da177e4
LT
208
209 mempool_free(r10_bio, conf->r10buf_pool);
210
0a27ec96 211 lower_barrier(conf);
1da177e4
LT
212}
213
9f2c9d12 214static void reschedule_retry(struct r10bio *r10_bio)
1da177e4
LT
215{
216 unsigned long flags;
fd01b88c 217 struct mddev *mddev = r10_bio->mddev;
e879a879 218 struct r10conf *conf = mddev->private;
1da177e4
LT
219
220 spin_lock_irqsave(&conf->device_lock, flags);
221 list_add(&r10_bio->retry_list, &conf->retry_list);
4443ae10 222 conf->nr_queued ++;
1da177e4
LT
223 spin_unlock_irqrestore(&conf->device_lock, flags);
224
388667be
AJ
225 /* wake up frozen array... */
226 wake_up(&conf->wait_barrier);
227
1da177e4
LT
228 md_wakeup_thread(mddev->thread);
229}
230
231/*
232 * raid_end_bio_io() is called when we have finished servicing a mirrored
233 * operation and are ready to return a success/failure code to the buffer
234 * cache layer.
235 */
9f2c9d12 236static void raid_end_bio_io(struct r10bio *r10_bio)
1da177e4
LT
237{
238 struct bio *bio = r10_bio->master_bio;
856e08e2 239 int done;
e879a879 240 struct r10conf *conf = r10_bio->mddev->private;
1da177e4 241
856e08e2
N
242 if (bio->bi_phys_segments) {
243 unsigned long flags;
244 spin_lock_irqsave(&conf->device_lock, flags);
245 bio->bi_phys_segments--;
246 done = (bio->bi_phys_segments == 0);
247 spin_unlock_irqrestore(&conf->device_lock, flags);
248 } else
249 done = 1;
250 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
251 clear_bit(BIO_UPTODATE, &bio->bi_flags);
252 if (done) {
253 bio_endio(bio, 0);
254 /*
255 * Wake up any possible resync thread that waits for the device
256 * to go idle.
257 */
258 allow_barrier(conf);
259 }
1da177e4
LT
260 free_r10bio(r10_bio);
261}
262
263/*
264 * Update disk head position estimator based on IRQ completion info.
265 */
9f2c9d12 266static inline void update_head_pos(int slot, struct r10bio *r10_bio)
1da177e4 267{
e879a879 268 struct r10conf *conf = r10_bio->mddev->private;
1da177e4
LT
269
270 conf->mirrors[r10_bio->devs[slot].devnum].head_position =
271 r10_bio->devs[slot].addr + (r10_bio->sectors);
272}
273
778ca018
NK
274/*
275 * Find the disk number which triggered given bio
276 */
e879a879 277static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
749c55e9 278 struct bio *bio, int *slotp)
778ca018
NK
279{
280 int slot;
281
282 for (slot = 0; slot < conf->copies; slot++)
283 if (r10_bio->devs[slot].bio == bio)
284 break;
285
286 BUG_ON(slot == conf->copies);
287 update_head_pos(slot, r10_bio);
288
749c55e9
N
289 if (slotp)
290 *slotp = slot;
778ca018
NK
291 return r10_bio->devs[slot].devnum;
292}
293
6712ecf8 294static void raid10_end_read_request(struct bio *bio, int error)
1da177e4
LT
295{
296 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
9f2c9d12 297 struct r10bio *r10_bio = bio->bi_private;
1da177e4 298 int slot, dev;
e879a879 299 struct r10conf *conf = r10_bio->mddev->private;
1da177e4 300
1da177e4
LT
301
302 slot = r10_bio->read_slot;
303 dev = r10_bio->devs[slot].devnum;
304 /*
305 * this branch is our 'one mirror IO has finished' event handler:
306 */
4443ae10
N
307 update_head_pos(slot, r10_bio);
308
309 if (uptodate) {
1da177e4
LT
310 /*
311 * Set R10BIO_Uptodate in our master bio, so that
312 * we will return a good error code to the higher
313 * levels even if IO on some other mirrored buffer fails.
314 *
315 * The 'master' represents the composite IO operation to
316 * user-side. So if something waits for IO, then it will
317 * wait for the 'master' bio.
318 */
319 set_bit(R10BIO_Uptodate, &r10_bio->state);
1da177e4 320 raid_end_bio_io(r10_bio);
7c4e06ff 321 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
4443ae10 322 } else {
1da177e4 323 /*
7c4e06ff 324 * oops, read error - keep the refcount on the rdev
1da177e4
LT
325 */
326 char b[BDEVNAME_SIZE];
8bda470e
CD
327 printk_ratelimited(KERN_ERR
328 "md/raid10:%s: %s: rescheduling sector %llu\n",
329 mdname(conf->mddev),
330 bdevname(conf->mirrors[dev].rdev->bdev, b),
331 (unsigned long long)r10_bio->sector);
856e08e2 332 set_bit(R10BIO_ReadError, &r10_bio->state);
1da177e4
LT
333 reschedule_retry(r10_bio);
334 }
1da177e4
LT
335}
336
9f2c9d12 337static void close_write(struct r10bio *r10_bio)
bd870a16
N
338{
339 /* clear the bitmap if all writes complete successfully */
340 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
341 r10_bio->sectors,
342 !test_bit(R10BIO_Degraded, &r10_bio->state),
343 0);
344 md_write_end(r10_bio->mddev);
345}
346
9f2c9d12 347static void one_write_done(struct r10bio *r10_bio)
19d5f834
N
348{
349 if (atomic_dec_and_test(&r10_bio->remaining)) {
350 if (test_bit(R10BIO_WriteError, &r10_bio->state))
351 reschedule_retry(r10_bio);
352 else {
353 close_write(r10_bio);
354 if (test_bit(R10BIO_MadeGood, &r10_bio->state))
355 reschedule_retry(r10_bio);
356 else
357 raid_end_bio_io(r10_bio);
358 }
359 }
360}
361
6712ecf8 362static void raid10_end_write_request(struct bio *bio, int error)
1da177e4
LT
363{
364 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
9f2c9d12 365 struct r10bio *r10_bio = bio->bi_private;
778ca018 366 int dev;
749c55e9 367 int dec_rdev = 1;
e879a879 368 struct r10conf *conf = r10_bio->mddev->private;
749c55e9 369 int slot;
1da177e4 370
749c55e9 371 dev = find_bio_disk(conf, r10_bio, bio, &slot);
1da177e4
LT
372
373 /*
374 * this branch is our 'one mirror IO has finished' event handler:
375 */
6cce3b23 376 if (!uptodate) {
bd870a16
N
377 set_bit(WriteErrorSeen, &conf->mirrors[dev].rdev->flags);
378 set_bit(R10BIO_WriteError, &r10_bio->state);
379 dec_rdev = 0;
749c55e9 380 } else {
1da177e4
LT
381 /*
382 * Set R10BIO_Uptodate in our master bio, so that
383 * we will return a good error code for to the higher
384 * levels even if IO on some other mirrored buffer fails.
385 *
386 * The 'master' represents the composite IO operation to
387 * user-side. So if something waits for IO, then it will
388 * wait for the 'master' bio.
389 */
749c55e9
N
390 sector_t first_bad;
391 int bad_sectors;
392
1da177e4
LT
393 set_bit(R10BIO_Uptodate, &r10_bio->state);
394
749c55e9
N
395 /* Maybe we can clear some bad blocks. */
396 if (is_badblock(conf->mirrors[dev].rdev,
397 r10_bio->devs[slot].addr,
398 r10_bio->sectors,
399 &first_bad, &bad_sectors)) {
400 bio_put(bio);
401 r10_bio->devs[slot].bio = IO_MADE_GOOD;
402 dec_rdev = 0;
403 set_bit(R10BIO_MadeGood, &r10_bio->state);
404 }
405 }
406
1da177e4
LT
407 /*
408 *
409 * Let's see if all mirrored write operations have finished
410 * already.
411 */
19d5f834 412 one_write_done(r10_bio);
749c55e9
N
413 if (dec_rdev)
414 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
1da177e4
LT
415}
416
417
418/*
419 * RAID10 layout manager
25985edc 420 * As well as the chunksize and raid_disks count, there are two
1da177e4
LT
421 * parameters: near_copies and far_copies.
422 * near_copies * far_copies must be <= raid_disks.
423 * Normally one of these will be 1.
424 * If both are 1, we get raid0.
425 * If near_copies == raid_disks, we get raid1.
426 *
25985edc 427 * Chunks are laid out in raid0 style with near_copies copies of the
1da177e4
LT
428 * first chunk, followed by near_copies copies of the next chunk and
429 * so on.
430 * If far_copies > 1, then after 1/far_copies of the array has been assigned
431 * as described above, we start again with a device offset of near_copies.
432 * So we effectively have another copy of the whole array further down all
433 * the drives, but with blocks on different drives.
434 * With this layout, and block is never stored twice on the one device.
435 *
436 * raid10_find_phys finds the sector offset of a given virtual sector
c93983bf 437 * on each device that it is on.
1da177e4
LT
438 *
439 * raid10_find_virt does the reverse mapping, from a device and a
440 * sector offset to a virtual address
441 */
442
e879a879 443static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
1da177e4
LT
444{
445 int n,f;
446 sector_t sector;
447 sector_t chunk;
448 sector_t stripe;
449 int dev;
450
451 int slot = 0;
452
453 /* now calculate first sector/dev */
454 chunk = r10bio->sector >> conf->chunk_shift;
455 sector = r10bio->sector & conf->chunk_mask;
456
457 chunk *= conf->near_copies;
458 stripe = chunk;
459 dev = sector_div(stripe, conf->raid_disks);
c93983bf
N
460 if (conf->far_offset)
461 stripe *= conf->far_copies;
1da177e4
LT
462
463 sector += stripe << conf->chunk_shift;
464
465 /* and calculate all the others */
466 for (n=0; n < conf->near_copies; n++) {
467 int d = dev;
468 sector_t s = sector;
469 r10bio->devs[slot].addr = sector;
470 r10bio->devs[slot].devnum = d;
471 slot++;
472
473 for (f = 1; f < conf->far_copies; f++) {
474 d += conf->near_copies;
475 if (d >= conf->raid_disks)
476 d -= conf->raid_disks;
477 s += conf->stride;
478 r10bio->devs[slot].devnum = d;
479 r10bio->devs[slot].addr = s;
480 slot++;
481 }
482 dev++;
483 if (dev >= conf->raid_disks) {
484 dev = 0;
485 sector += (conf->chunk_mask + 1);
486 }
487 }
488 BUG_ON(slot != conf->copies);
489}
490
e879a879 491static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
1da177e4
LT
492{
493 sector_t offset, chunk, vchunk;
494
1da177e4 495 offset = sector & conf->chunk_mask;
c93983bf
N
496 if (conf->far_offset) {
497 int fc;
498 chunk = sector >> conf->chunk_shift;
499 fc = sector_div(chunk, conf->far_copies);
500 dev -= fc * conf->near_copies;
501 if (dev < 0)
502 dev += conf->raid_disks;
503 } else {
64a742bc 504 while (sector >= conf->stride) {
c93983bf
N
505 sector -= conf->stride;
506 if (dev < conf->near_copies)
507 dev += conf->raid_disks - conf->near_copies;
508 else
509 dev -= conf->near_copies;
510 }
511 chunk = sector >> conf->chunk_shift;
512 }
1da177e4
LT
513 vchunk = chunk * conf->raid_disks + dev;
514 sector_div(vchunk, conf->near_copies);
515 return (vchunk << conf->chunk_shift) + offset;
516}
517
518/**
519 * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
520 * @q: request queue
cc371e66 521 * @bvm: properties of new bio
1da177e4
LT
522 * @biovec: the request that could be merged to it.
523 *
524 * Return amount of bytes we can accept at this offset
525 * If near_copies == raid_disk, there are no striping issues,
526 * but in that case, the function isn't called at all.
527 */
cc371e66
AK
528static int raid10_mergeable_bvec(struct request_queue *q,
529 struct bvec_merge_data *bvm,
530 struct bio_vec *biovec)
1da177e4 531{
fd01b88c 532 struct mddev *mddev = q->queuedata;
cc371e66 533 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
1da177e4 534 int max;
9d8f0363 535 unsigned int chunk_sectors = mddev->chunk_sectors;
cc371e66 536 unsigned int bio_sectors = bvm->bi_size >> 9;
1da177e4
LT
537
538 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
539 if (max < 0) max = 0; /* bio_add cannot handle a negative return */
cc371e66
AK
540 if (max <= biovec->bv_len && bio_sectors == 0)
541 return biovec->bv_len;
1da177e4
LT
542 else
543 return max;
544}
545
546/*
547 * This routine returns the disk from which the requested read should
548 * be done. There is a per-array 'next expected sequential IO' sector
549 * number - if this matches on the next IO then we use the last disk.
550 * There is also a per-disk 'last know head position' sector that is
551 * maintained from IRQ contexts, both the normal and the resync IO
552 * completion handlers update this position correctly. If there is no
553 * perfect sequential match then we pick the disk whose head is closest.
554 *
555 * If there are 2 mirrors in the same 2 devices, performance degrades
556 * because position is mirror, not device based.
557 *
558 * The rdev for the device selected will have nr_pending incremented.
559 */
560
561/*
562 * FIXME: possibly should rethink readbalancing and do it differently
563 * depending on near_copies / far_copies geometry.
564 */
e879a879 565static int read_balance(struct r10conf *conf, struct r10bio *r10_bio, int *max_sectors)
1da177e4 566{
af3a2cd6 567 const sector_t this_sector = r10_bio->sector;
56d99121 568 int disk, slot;
856e08e2
N
569 int sectors = r10_bio->sectors;
570 int best_good_sectors;
56d99121 571 sector_t new_distance, best_dist;
3cb03002 572 struct md_rdev *rdev;
56d99121
N
573 int do_balance;
574 int best_slot;
1da177e4
LT
575
576 raid10_find_phys(conf, r10_bio);
577 rcu_read_lock();
56d99121 578retry:
856e08e2 579 sectors = r10_bio->sectors;
56d99121
N
580 best_slot = -1;
581 best_dist = MaxSector;
856e08e2 582 best_good_sectors = 0;
56d99121 583 do_balance = 1;
1da177e4
LT
584 /*
585 * Check if we can balance. We can balance on the whole
6cce3b23
N
586 * device if no resync is going on (recovery is ok), or below
587 * the resync window. We take the first readable disk when
588 * above the resync window.
1da177e4
LT
589 */
590 if (conf->mddev->recovery_cp < MaxSector
56d99121
N
591 && (this_sector + sectors >= conf->next_resync))
592 do_balance = 0;
1da177e4 593
56d99121 594 for (slot = 0; slot < conf->copies ; slot++) {
856e08e2
N
595 sector_t first_bad;
596 int bad_sectors;
597 sector_t dev_sector;
598
56d99121
N
599 if (r10_bio->devs[slot].bio == IO_BLOCKED)
600 continue;
1da177e4 601 disk = r10_bio->devs[slot].devnum;
56d99121
N
602 rdev = rcu_dereference(conf->mirrors[disk].rdev);
603 if (rdev == NULL)
1da177e4 604 continue;
56d99121
N
605 if (!test_bit(In_sync, &rdev->flags))
606 continue;
607
856e08e2
N
608 dev_sector = r10_bio->devs[slot].addr;
609 if (is_badblock(rdev, dev_sector, sectors,
610 &first_bad, &bad_sectors)) {
611 if (best_dist < MaxSector)
612 /* Already have a better slot */
613 continue;
614 if (first_bad <= dev_sector) {
615 /* Cannot read here. If this is the
616 * 'primary' device, then we must not read
617 * beyond 'bad_sectors' from another device.
618 */
619 bad_sectors -= (dev_sector - first_bad);
620 if (!do_balance && sectors > bad_sectors)
621 sectors = bad_sectors;
622 if (best_good_sectors > sectors)
623 best_good_sectors = sectors;
624 } else {
625 sector_t good_sectors =
626 first_bad - dev_sector;
627 if (good_sectors > best_good_sectors) {
628 best_good_sectors = good_sectors;
629 best_slot = slot;
630 }
631 if (!do_balance)
632 /* Must read from here */
633 break;
634 }
635 continue;
636 } else
637 best_good_sectors = sectors;
638
56d99121
N
639 if (!do_balance)
640 break;
1da177e4 641
22dfdf52
N
642 /* This optimisation is debatable, and completely destroys
643 * sequential read speed for 'far copies' arrays. So only
644 * keep it for 'near' arrays, and review those later.
645 */
56d99121 646 if (conf->near_copies > 1 && !atomic_read(&rdev->nr_pending))
1da177e4 647 break;
8ed3a195
KS
648
649 /* for far > 1 always use the lowest address */
650 if (conf->far_copies > 1)
56d99121 651 new_distance = r10_bio->devs[slot].addr;
8ed3a195 652 else
56d99121
N
653 new_distance = abs(r10_bio->devs[slot].addr -
654 conf->mirrors[disk].head_position);
655 if (new_distance < best_dist) {
656 best_dist = new_distance;
657 best_slot = slot;
1da177e4
LT
658 }
659 }
56d99121
N
660 if (slot == conf->copies)
661 slot = best_slot;
1da177e4 662
56d99121
N
663 if (slot >= 0) {
664 disk = r10_bio->devs[slot].devnum;
665 rdev = rcu_dereference(conf->mirrors[disk].rdev);
666 if (!rdev)
667 goto retry;
668 atomic_inc(&rdev->nr_pending);
669 if (test_bit(Faulty, &rdev->flags)) {
670 /* Cannot risk returning a device that failed
671 * before we inc'ed nr_pending
672 */
673 rdev_dec_pending(rdev, conf->mddev);
674 goto retry;
675 }
676 r10_bio->read_slot = slot;
677 } else
29fc7e3e 678 disk = -1;
1da177e4 679 rcu_read_unlock();
856e08e2 680 *max_sectors = best_good_sectors;
1da177e4
LT
681
682 return disk;
683}
684
0d129228
N
685static int raid10_congested(void *data, int bits)
686{
fd01b88c 687 struct mddev *mddev = data;
e879a879 688 struct r10conf *conf = mddev->private;
0d129228
N
689 int i, ret = 0;
690
34db0cd6
N
691 if ((bits & (1 << BDI_async_congested)) &&
692 conf->pending_count >= max_queued_requests)
693 return 1;
694
3fa841d7
N
695 if (mddev_congested(mddev, bits))
696 return 1;
0d129228 697 rcu_read_lock();
84707f38 698 for (i = 0; i < conf->raid_disks && ret == 0; i++) {
3cb03002 699 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
0d129228 700 if (rdev && !test_bit(Faulty, &rdev->flags)) {
165125e1 701 struct request_queue *q = bdev_get_queue(rdev->bdev);
0d129228
N
702
703 ret |= bdi_congested(&q->backing_dev_info, bits);
704 }
705 }
706 rcu_read_unlock();
707 return ret;
708}
709
e879a879 710static void flush_pending_writes(struct r10conf *conf)
a35e63ef
N
711{
712 /* Any writes that have been queued but are awaiting
713 * bitmap updates get flushed here.
a35e63ef 714 */
a35e63ef
N
715 spin_lock_irq(&conf->device_lock);
716
717 if (conf->pending_bio_list.head) {
718 struct bio *bio;
719 bio = bio_list_get(&conf->pending_bio_list);
34db0cd6 720 conf->pending_count = 0;
a35e63ef
N
721 spin_unlock_irq(&conf->device_lock);
722 /* flush any pending bitmap writes to disk
723 * before proceeding w/ I/O */
724 bitmap_unplug(conf->mddev->bitmap);
34db0cd6 725 wake_up(&conf->wait_barrier);
a35e63ef
N
726
727 while (bio) { /* submit pending writes */
728 struct bio *next = bio->bi_next;
729 bio->bi_next = NULL;
730 generic_make_request(bio);
731 bio = next;
732 }
a35e63ef
N
733 } else
734 spin_unlock_irq(&conf->device_lock);
a35e63ef 735}
7eaceacc 736
0a27ec96
N
737/* Barriers....
738 * Sometimes we need to suspend IO while we do something else,
739 * either some resync/recovery, or reconfigure the array.
740 * To do this we raise a 'barrier'.
741 * The 'barrier' is a counter that can be raised multiple times
742 * to count how many activities are happening which preclude
743 * normal IO.
744 * We can only raise the barrier if there is no pending IO.
745 * i.e. if nr_pending == 0.
746 * We choose only to raise the barrier if no-one is waiting for the
747 * barrier to go down. This means that as soon as an IO request
748 * is ready, no other operations which require a barrier will start
749 * until the IO request has had a chance.
750 *
751 * So: regular IO calls 'wait_barrier'. When that returns there
752 * is no backgroup IO happening, It must arrange to call
753 * allow_barrier when it has finished its IO.
754 * backgroup IO calls must call raise_barrier. Once that returns
755 * there is no normal IO happeing. It must arrange to call
756 * lower_barrier when the particular background IO completes.
1da177e4 757 */
1da177e4 758
e879a879 759static void raise_barrier(struct r10conf *conf, int force)
1da177e4 760{
6cce3b23 761 BUG_ON(force && !conf->barrier);
1da177e4 762 spin_lock_irq(&conf->resync_lock);
0a27ec96 763
6cce3b23
N
764 /* Wait until no block IO is waiting (unless 'force') */
765 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
c3b328ac 766 conf->resync_lock, );
0a27ec96
N
767
768 /* block any new IO from starting */
769 conf->barrier++;
770
c3b328ac 771 /* Now wait for all pending IO to complete */
0a27ec96
N
772 wait_event_lock_irq(conf->wait_barrier,
773 !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
c3b328ac 774 conf->resync_lock, );
0a27ec96
N
775
776 spin_unlock_irq(&conf->resync_lock);
777}
778
e879a879 779static void lower_barrier(struct r10conf *conf)
0a27ec96
N
780{
781 unsigned long flags;
782 spin_lock_irqsave(&conf->resync_lock, flags);
783 conf->barrier--;
784 spin_unlock_irqrestore(&conf->resync_lock, flags);
785 wake_up(&conf->wait_barrier);
786}
787
e879a879 788static void wait_barrier(struct r10conf *conf)
0a27ec96
N
789{
790 spin_lock_irq(&conf->resync_lock);
791 if (conf->barrier) {
792 conf->nr_waiting++;
793 wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
794 conf->resync_lock,
c3b328ac 795 );
0a27ec96 796 conf->nr_waiting--;
1da177e4 797 }
0a27ec96 798 conf->nr_pending++;
1da177e4
LT
799 spin_unlock_irq(&conf->resync_lock);
800}
801
e879a879 802static void allow_barrier(struct r10conf *conf)
0a27ec96
N
803{
804 unsigned long flags;
805 spin_lock_irqsave(&conf->resync_lock, flags);
806 conf->nr_pending--;
807 spin_unlock_irqrestore(&conf->resync_lock, flags);
808 wake_up(&conf->wait_barrier);
809}
810
e879a879 811static void freeze_array(struct r10conf *conf)
4443ae10
N
812{
813 /* stop syncio and normal IO and wait for everything to
f188593e 814 * go quiet.
4443ae10 815 * We increment barrier and nr_waiting, and then
1c830532
N
816 * wait until nr_pending match nr_queued+1
817 * This is called in the context of one normal IO request
818 * that has failed. Thus any sync request that might be pending
819 * will be blocked by nr_pending, and we need to wait for
820 * pending IO requests to complete or be queued for re-try.
821 * Thus the number queued (nr_queued) plus this request (1)
822 * must match the number of pending IOs (nr_pending) before
823 * we continue.
4443ae10
N
824 */
825 spin_lock_irq(&conf->resync_lock);
826 conf->barrier++;
827 conf->nr_waiting++;
828 wait_event_lock_irq(conf->wait_barrier,
1c830532 829 conf->nr_pending == conf->nr_queued+1,
4443ae10 830 conf->resync_lock,
c3b328ac
N
831 flush_pending_writes(conf));
832
4443ae10
N
833 spin_unlock_irq(&conf->resync_lock);
834}
835
e879a879 836static void unfreeze_array(struct r10conf *conf)
4443ae10
N
837{
838 /* reverse the effect of the freeze */
839 spin_lock_irq(&conf->resync_lock);
840 conf->barrier--;
841 conf->nr_waiting--;
842 wake_up(&conf->wait_barrier);
843 spin_unlock_irq(&conf->resync_lock);
844}
845
b4fdcb02 846static void make_request(struct mddev *mddev, struct bio * bio)
1da177e4 847{
e879a879 848 struct r10conf *conf = mddev->private;
0f6d02d5 849 struct mirror_info *mirror;
9f2c9d12 850 struct r10bio *r10_bio;
1da177e4
LT
851 struct bio *read_bio;
852 int i;
853 int chunk_sects = conf->chunk_mask + 1;
a362357b 854 const int rw = bio_data_dir(bio);
2c7d46ec 855 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
e9c7469b 856 const unsigned long do_fua = (bio->bi_rw & REQ_FUA);
6cce3b23 857 unsigned long flags;
3cb03002 858 struct md_rdev *blocked_rdev;
c3b328ac 859 int plugged;
d4432c23
N
860 int sectors_handled;
861 int max_sectors;
1da177e4 862
e9c7469b
TH
863 if (unlikely(bio->bi_rw & REQ_FLUSH)) {
864 md_flush_request(mddev, bio);
5a7bbad2 865 return;
e5dcdd80
N
866 }
867
1da177e4
LT
868 /* If this request crosses a chunk boundary, we need to
869 * split it. This will only happen for 1 PAGE (or less) requests.
870 */
871 if (unlikely( (bio->bi_sector & conf->chunk_mask) + (bio->bi_size >> 9)
872 > chunk_sects &&
873 conf->near_copies < conf->raid_disks)) {
874 struct bio_pair *bp;
875 /* Sanity check -- queue functions should prevent this happening */
876 if (bio->bi_vcnt != 1 ||
877 bio->bi_idx != 0)
878 goto bad_map;
879 /* This is a one page bio that upper layers
880 * refuse to split for us, so we need to split it.
881 */
6feef531 882 bp = bio_split(bio,
1da177e4 883 chunk_sects - (bio->bi_sector & (chunk_sects - 1)) );
51e9ac77
N
884
885 /* Each of these 'make_request' calls will call 'wait_barrier'.
886 * If the first succeeds but the second blocks due to the resync
887 * thread raising the barrier, we will deadlock because the
888 * IO to the underlying device will be queued in generic_make_request
889 * and will never complete, so will never reduce nr_pending.
890 * So increment nr_waiting here so no new raise_barriers will
891 * succeed, and so the second wait_barrier cannot block.
892 */
893 spin_lock_irq(&conf->resync_lock);
894 conf->nr_waiting++;
895 spin_unlock_irq(&conf->resync_lock);
896
5a7bbad2
CH
897 make_request(mddev, &bp->bio1);
898 make_request(mddev, &bp->bio2);
1da177e4 899
51e9ac77
N
900 spin_lock_irq(&conf->resync_lock);
901 conf->nr_waiting--;
902 wake_up(&conf->wait_barrier);
903 spin_unlock_irq(&conf->resync_lock);
904
1da177e4 905 bio_pair_release(bp);
5a7bbad2 906 return;
1da177e4 907 bad_map:
128595ed
N
908 printk("md/raid10:%s: make_request bug: can't convert block across chunks"
909 " or bigger than %dk %llu %d\n", mdname(mddev), chunk_sects/2,
1da177e4
LT
910 (unsigned long long)bio->bi_sector, bio->bi_size >> 10);
911
6712ecf8 912 bio_io_error(bio);
5a7bbad2 913 return;
1da177e4
LT
914 }
915
3d310eb7 916 md_write_start(mddev, bio);
06d91a5f 917
1da177e4
LT
918 /*
919 * Register the new request and wait if the reconstruction
920 * thread has put up a bar for new requests.
921 * Continue immediately if no resync is active currently.
922 */
0a27ec96 923 wait_barrier(conf);
1da177e4 924
1da177e4
LT
925 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
926
927 r10_bio->master_bio = bio;
928 r10_bio->sectors = bio->bi_size >> 9;
929
930 r10_bio->mddev = mddev;
931 r10_bio->sector = bio->bi_sector;
6cce3b23 932 r10_bio->state = 0;
1da177e4 933
856e08e2
N
934 /* We might need to issue multiple reads to different
935 * devices if there are bad blocks around, so we keep
936 * track of the number of reads in bio->bi_phys_segments.
937 * If this is 0, there is only one r10_bio and no locking
938 * will be needed when the request completes. If it is
939 * non-zero, then it is the number of not-completed requests.
940 */
941 bio->bi_phys_segments = 0;
942 clear_bit(BIO_SEG_VALID, &bio->bi_flags);
943
a362357b 944 if (rw == READ) {
1da177e4
LT
945 /*
946 * read balancing logic:
947 */
856e08e2
N
948 int disk;
949 int slot;
950
951read_again:
952 disk = read_balance(conf, r10_bio, &max_sectors);
953 slot = r10_bio->read_slot;
1da177e4
LT
954 if (disk < 0) {
955 raid_end_bio_io(r10_bio);
5a7bbad2 956 return;
1da177e4
LT
957 }
958 mirror = conf->mirrors + disk;
959
a167f663 960 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
856e08e2
N
961 md_trim_bio(read_bio, r10_bio->sector - bio->bi_sector,
962 max_sectors);
1da177e4
LT
963
964 r10_bio->devs[slot].bio = read_bio;
965
966 read_bio->bi_sector = r10_bio->devs[slot].addr +
967 mirror->rdev->data_offset;
968 read_bio->bi_bdev = mirror->rdev->bdev;
969 read_bio->bi_end_io = raid10_end_read_request;
7b6d91da 970 read_bio->bi_rw = READ | do_sync;
1da177e4
LT
971 read_bio->bi_private = r10_bio;
972
856e08e2
N
973 if (max_sectors < r10_bio->sectors) {
974 /* Could not read all from this device, so we will
975 * need another r10_bio.
976 */
856e08e2
N
977 sectors_handled = (r10_bio->sectors + max_sectors
978 - bio->bi_sector);
979 r10_bio->sectors = max_sectors;
980 spin_lock_irq(&conf->device_lock);
981 if (bio->bi_phys_segments == 0)
982 bio->bi_phys_segments = 2;
983 else
984 bio->bi_phys_segments++;
985 spin_unlock(&conf->device_lock);
986 /* Cannot call generic_make_request directly
987 * as that will be queued in __generic_make_request
988 * and subsequent mempool_alloc might block
989 * waiting for it. so hand bio over to raid10d.
990 */
991 reschedule_retry(r10_bio);
992
993 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
994
995 r10_bio->master_bio = bio;
996 r10_bio->sectors = ((bio->bi_size >> 9)
997 - sectors_handled);
998 r10_bio->state = 0;
999 r10_bio->mddev = mddev;
1000 r10_bio->sector = bio->bi_sector + sectors_handled;
1001 goto read_again;
1002 } else
1003 generic_make_request(read_bio);
5a7bbad2 1004 return;
1da177e4
LT
1005 }
1006
1007 /*
1008 * WRITE:
1009 */
34db0cd6
N
1010 if (conf->pending_count >= max_queued_requests) {
1011 md_wakeup_thread(mddev->thread);
1012 wait_event(conf->wait_barrier,
1013 conf->pending_count < max_queued_requests);
1014 }
6bfe0b49 1015 /* first select target devices under rcu_lock and
1da177e4
LT
1016 * inc refcount on their rdev. Record them by setting
1017 * bios[x] to bio
d4432c23
N
1018 * If there are known/acknowledged bad blocks on any device
1019 * on which we have seen a write error, we want to avoid
1020 * writing to those blocks. This potentially requires several
1021 * writes to write around the bad blocks. Each set of writes
1022 * gets its own r10_bio with a set of bios attached. The number
1023 * of r10_bios is recored in bio->bi_phys_segments just as with
1024 * the read case.
1da177e4 1025 */
c3b328ac
N
1026 plugged = mddev_check_plugged(mddev);
1027
1da177e4 1028 raid10_find_phys(conf, r10_bio);
d4432c23 1029retry_write:
cb6969e8 1030 blocked_rdev = NULL;
1da177e4 1031 rcu_read_lock();
d4432c23
N
1032 max_sectors = r10_bio->sectors;
1033
1da177e4
LT
1034 for (i = 0; i < conf->copies; i++) {
1035 int d = r10_bio->devs[i].devnum;
3cb03002 1036 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
6bfe0b49
DW
1037 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1038 atomic_inc(&rdev->nr_pending);
1039 blocked_rdev = rdev;
1040 break;
1041 }
d4432c23
N
1042 r10_bio->devs[i].bio = NULL;
1043 if (!rdev || test_bit(Faulty, &rdev->flags)) {
6cce3b23 1044 set_bit(R10BIO_Degraded, &r10_bio->state);
d4432c23
N
1045 continue;
1046 }
1047 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1048 sector_t first_bad;
1049 sector_t dev_sector = r10_bio->devs[i].addr;
1050 int bad_sectors;
1051 int is_bad;
1052
1053 is_bad = is_badblock(rdev, dev_sector,
1054 max_sectors,
1055 &first_bad, &bad_sectors);
1056 if (is_bad < 0) {
1057 /* Mustn't write here until the bad block
1058 * is acknowledged
1059 */
1060 atomic_inc(&rdev->nr_pending);
1061 set_bit(BlockedBadBlocks, &rdev->flags);
1062 blocked_rdev = rdev;
1063 break;
1064 }
1065 if (is_bad && first_bad <= dev_sector) {
1066 /* Cannot write here at all */
1067 bad_sectors -= (dev_sector - first_bad);
1068 if (bad_sectors < max_sectors)
1069 /* Mustn't write more than bad_sectors
1070 * to other devices yet
1071 */
1072 max_sectors = bad_sectors;
1073 /* We don't set R10BIO_Degraded as that
1074 * only applies if the disk is missing,
1075 * so it might be re-added, and we want to
1076 * know to recover this chunk.
1077 * In this case the device is here, and the
1078 * fact that this chunk is not in-sync is
1079 * recorded in the bad block log.
1080 */
1081 continue;
1082 }
1083 if (is_bad) {
1084 int good_sectors = first_bad - dev_sector;
1085 if (good_sectors < max_sectors)
1086 max_sectors = good_sectors;
1087 }
6cce3b23 1088 }
d4432c23
N
1089 r10_bio->devs[i].bio = bio;
1090 atomic_inc(&rdev->nr_pending);
1da177e4
LT
1091 }
1092 rcu_read_unlock();
1093
6bfe0b49
DW
1094 if (unlikely(blocked_rdev)) {
1095 /* Have to wait for this device to get unblocked, then retry */
1096 int j;
1097 int d;
1098
1099 for (j = 0; j < i; j++)
1100 if (r10_bio->devs[j].bio) {
1101 d = r10_bio->devs[j].devnum;
1102 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1103 }
1104 allow_barrier(conf);
1105 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1106 wait_barrier(conf);
1107 goto retry_write;
1108 }
1109
d4432c23
N
1110 if (max_sectors < r10_bio->sectors) {
1111 /* We are splitting this into multiple parts, so
1112 * we need to prepare for allocating another r10_bio.
1113 */
1114 r10_bio->sectors = max_sectors;
1115 spin_lock_irq(&conf->device_lock);
1116 if (bio->bi_phys_segments == 0)
1117 bio->bi_phys_segments = 2;
1118 else
1119 bio->bi_phys_segments++;
1120 spin_unlock_irq(&conf->device_lock);
1121 }
1122 sectors_handled = r10_bio->sector + max_sectors - bio->bi_sector;
1123
4e78064f 1124 atomic_set(&r10_bio->remaining, 1);
d4432c23 1125 bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
06d91a5f 1126
1da177e4
LT
1127 for (i = 0; i < conf->copies; i++) {
1128 struct bio *mbio;
1129 int d = r10_bio->devs[i].devnum;
1130 if (!r10_bio->devs[i].bio)
1131 continue;
1132
a167f663 1133 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
d4432c23
N
1134 md_trim_bio(mbio, r10_bio->sector - bio->bi_sector,
1135 max_sectors);
1da177e4
LT
1136 r10_bio->devs[i].bio = mbio;
1137
d4432c23
N
1138 mbio->bi_sector = (r10_bio->devs[i].addr+
1139 conf->mirrors[d].rdev->data_offset);
1da177e4
LT
1140 mbio->bi_bdev = conf->mirrors[d].rdev->bdev;
1141 mbio->bi_end_io = raid10_end_write_request;
e9c7469b 1142 mbio->bi_rw = WRITE | do_sync | do_fua;
1da177e4
LT
1143 mbio->bi_private = r10_bio;
1144
1145 atomic_inc(&r10_bio->remaining);
4e78064f
N
1146 spin_lock_irqsave(&conf->device_lock, flags);
1147 bio_list_add(&conf->pending_bio_list, mbio);
34db0cd6 1148 conf->pending_count++;
4e78064f 1149 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
1150 }
1151
079fa166
N
1152 /* Don't remove the bias on 'remaining' (one_write_done) until
1153 * after checking if we need to go around again.
1154 */
a35e63ef 1155
d4432c23 1156 if (sectors_handled < (bio->bi_size >> 9)) {
079fa166 1157 one_write_done(r10_bio);
5e570289 1158 /* We need another r10_bio. It has already been counted
d4432c23
N
1159 * in bio->bi_phys_segments.
1160 */
1161 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1162
1163 r10_bio->master_bio = bio;
1164 r10_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
1165
1166 r10_bio->mddev = mddev;
1167 r10_bio->sector = bio->bi_sector + sectors_handled;
1168 r10_bio->state = 0;
1169 goto retry_write;
1170 }
079fa166
N
1171 one_write_done(r10_bio);
1172
1173 /* In case raid10d snuck in to freeze_array */
1174 wake_up(&conf->wait_barrier);
d4432c23 1175
c3b328ac 1176 if (do_sync || !mddev->bitmap || !plugged)
e3881a68 1177 md_wakeup_thread(mddev->thread);
1da177e4
LT
1178}
1179
fd01b88c 1180static void status(struct seq_file *seq, struct mddev *mddev)
1da177e4 1181{
e879a879 1182 struct r10conf *conf = mddev->private;
1da177e4
LT
1183 int i;
1184
1185 if (conf->near_copies < conf->raid_disks)
9d8f0363 1186 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1da177e4
LT
1187 if (conf->near_copies > 1)
1188 seq_printf(seq, " %d near-copies", conf->near_copies);
c93983bf
N
1189 if (conf->far_copies > 1) {
1190 if (conf->far_offset)
1191 seq_printf(seq, " %d offset-copies", conf->far_copies);
1192 else
1193 seq_printf(seq, " %d far-copies", conf->far_copies);
1194 }
1da177e4 1195 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
76186dd8 1196 conf->raid_disks - mddev->degraded);
1da177e4
LT
1197 for (i = 0; i < conf->raid_disks; i++)
1198 seq_printf(seq, "%s",
1199 conf->mirrors[i].rdev &&
b2d444d7 1200 test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
1da177e4
LT
1201 seq_printf(seq, "]");
1202}
1203
700c7213
N
1204/* check if there are enough drives for
1205 * every block to appear on atleast one.
1206 * Don't consider the device numbered 'ignore'
1207 * as we might be about to remove it.
1208 */
e879a879 1209static int enough(struct r10conf *conf, int ignore)
700c7213
N
1210{
1211 int first = 0;
1212
1213 do {
1214 int n = conf->copies;
1215 int cnt = 0;
1216 while (n--) {
1217 if (conf->mirrors[first].rdev &&
1218 first != ignore)
1219 cnt++;
1220 first = (first+1) % conf->raid_disks;
1221 }
1222 if (cnt == 0)
1223 return 0;
1224 } while (first != 0);
1225 return 1;
1226}
1227
fd01b88c 1228static void error(struct mddev *mddev, struct md_rdev *rdev)
1da177e4
LT
1229{
1230 char b[BDEVNAME_SIZE];
e879a879 1231 struct r10conf *conf = mddev->private;
1da177e4
LT
1232
1233 /*
1234 * If it is not operational, then we have already marked it as dead
1235 * else if it is the last working disks, ignore the error, let the
1236 * next level up know.
1237 * else mark the drive as failed
1238 */
b2d444d7 1239 if (test_bit(In_sync, &rdev->flags)
700c7213 1240 && !enough(conf, rdev->raid_disk))
1da177e4
LT
1241 /*
1242 * Don't fail the drive, just return an IO error.
1da177e4
LT
1243 */
1244 return;
c04be0aa
N
1245 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1246 unsigned long flags;
1247 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 1248 mddev->degraded++;
c04be0aa 1249 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
1250 /*
1251 * if recovery is running, make sure it aborts.
1252 */
dfc70645 1253 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1da177e4 1254 }
de393cde 1255 set_bit(Blocked, &rdev->flags);
b2d444d7 1256 set_bit(Faulty, &rdev->flags);
850b2b42 1257 set_bit(MD_CHANGE_DEVS, &mddev->flags);
067032bc
JP
1258 printk(KERN_ALERT
1259 "md/raid10:%s: Disk failure on %s, disabling device.\n"
1260 "md/raid10:%s: Operation continuing on %d devices.\n",
128595ed
N
1261 mdname(mddev), bdevname(rdev->bdev, b),
1262 mdname(mddev), conf->raid_disks - mddev->degraded);
1da177e4
LT
1263}
1264
e879a879 1265static void print_conf(struct r10conf *conf)
1da177e4
LT
1266{
1267 int i;
0f6d02d5 1268 struct mirror_info *tmp;
1da177e4 1269
128595ed 1270 printk(KERN_DEBUG "RAID10 conf printout:\n");
1da177e4 1271 if (!conf) {
128595ed 1272 printk(KERN_DEBUG "(!conf)\n");
1da177e4
LT
1273 return;
1274 }
128595ed 1275 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1da177e4
LT
1276 conf->raid_disks);
1277
1278 for (i = 0; i < conf->raid_disks; i++) {
1279 char b[BDEVNAME_SIZE];
1280 tmp = conf->mirrors + i;
1281 if (tmp->rdev)
128595ed 1282 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
b2d444d7
N
1283 i, !test_bit(In_sync, &tmp->rdev->flags),
1284 !test_bit(Faulty, &tmp->rdev->flags),
1da177e4
LT
1285 bdevname(tmp->rdev->bdev,b));
1286 }
1287}
1288
e879a879 1289static void close_sync(struct r10conf *conf)
1da177e4 1290{
0a27ec96
N
1291 wait_barrier(conf);
1292 allow_barrier(conf);
1da177e4
LT
1293
1294 mempool_destroy(conf->r10buf_pool);
1295 conf->r10buf_pool = NULL;
1296}
1297
fd01b88c 1298static int raid10_spare_active(struct mddev *mddev)
1da177e4
LT
1299{
1300 int i;
e879a879 1301 struct r10conf *conf = mddev->private;
0f6d02d5 1302 struct mirror_info *tmp;
6b965620
N
1303 int count = 0;
1304 unsigned long flags;
1da177e4
LT
1305
1306 /*
1307 * Find all non-in_sync disks within the RAID10 configuration
1308 * and mark them in_sync
1309 */
1310 for (i = 0; i < conf->raid_disks; i++) {
1311 tmp = conf->mirrors + i;
1312 if (tmp->rdev
b2d444d7 1313 && !test_bit(Faulty, &tmp->rdev->flags)
c04be0aa 1314 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
6b965620 1315 count++;
e6ffbcb6 1316 sysfs_notify_dirent(tmp->rdev->sysfs_state);
1da177e4
LT
1317 }
1318 }
6b965620
N
1319 spin_lock_irqsave(&conf->device_lock, flags);
1320 mddev->degraded -= count;
1321 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
1322
1323 print_conf(conf);
6b965620 1324 return count;
1da177e4
LT
1325}
1326
1327
fd01b88c 1328static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 1329{
e879a879 1330 struct r10conf *conf = mddev->private;
199050ea 1331 int err = -EEXIST;
1da177e4 1332 int mirror;
6c2fce2e 1333 int first = 0;
84707f38 1334 int last = conf->raid_disks - 1;
1da177e4
LT
1335
1336 if (mddev->recovery_cp < MaxSector)
1337 /* only hot-add to in-sync arrays, as recovery is
1338 * very different from resync
1339 */
199050ea 1340 return -EBUSY;
700c7213 1341 if (!enough(conf, -1))
199050ea 1342 return -EINVAL;
1da177e4 1343
a53a6c85 1344 if (rdev->raid_disk >= 0)
6c2fce2e 1345 first = last = rdev->raid_disk;
1da177e4 1346
2c4193df 1347 if (rdev->saved_raid_disk >= first &&
6cce3b23
N
1348 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1349 mirror = rdev->saved_raid_disk;
1350 else
6c2fce2e 1351 mirror = first;
2bb77736 1352 for ( ; mirror <= last ; mirror++) {
0f6d02d5 1353 struct mirror_info *p = &conf->mirrors[mirror];
2bb77736
N
1354 if (p->recovery_disabled == mddev->recovery_disabled)
1355 continue;
7fcc7c8a 1356 if (p->rdev)
2bb77736 1357 continue;
1da177e4 1358
2bb77736
N
1359 disk_stack_limits(mddev->gendisk, rdev->bdev,
1360 rdev->data_offset << 9);
1361 /* as we don't honour merge_bvec_fn, we must
1362 * never risk violating it, so limit
1363 * ->max_segments to one lying with a single
1364 * page, as a one page request is never in
1365 * violation.
1366 */
1367 if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
1368 blk_queue_max_segments(mddev->queue, 1);
1369 blk_queue_segment_boundary(mddev->queue,
1370 PAGE_CACHE_SIZE - 1);
1da177e4
LT
1371 }
1372
2bb77736 1373 p->head_position = 0;
d890fa2b 1374 p->recovery_disabled = mddev->recovery_disabled - 1;
2bb77736
N
1375 rdev->raid_disk = mirror;
1376 err = 0;
1377 if (rdev->saved_raid_disk != mirror)
1378 conf->fullsync = 1;
1379 rcu_assign_pointer(p->rdev, rdev);
1380 break;
1381 }
1382
ac5e7113 1383 md_integrity_add_rdev(rdev, mddev);
1da177e4 1384 print_conf(conf);
199050ea 1385 return err;
1da177e4
LT
1386}
1387
b8321b68 1388static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 1389{
e879a879 1390 struct r10conf *conf = mddev->private;
1da177e4 1391 int err = 0;
b8321b68 1392 int number = rdev->raid_disk;
0f6d02d5 1393 struct mirror_info *p = conf->mirrors+ number;
1da177e4
LT
1394
1395 print_conf(conf);
b8321b68 1396 if (rdev == p->rdev) {
b2d444d7 1397 if (test_bit(In_sync, &rdev->flags) ||
1da177e4
LT
1398 atomic_read(&rdev->nr_pending)) {
1399 err = -EBUSY;
1400 goto abort;
1401 }
dfc70645
N
1402 /* Only remove faulty devices in recovery
1403 * is not possible.
1404 */
1405 if (!test_bit(Faulty, &rdev->flags) &&
2bb77736 1406 mddev->recovery_disabled != p->recovery_disabled &&
700c7213 1407 enough(conf, -1)) {
dfc70645
N
1408 err = -EBUSY;
1409 goto abort;
1410 }
1da177e4 1411 p->rdev = NULL;
fbd568a3 1412 synchronize_rcu();
1da177e4
LT
1413 if (atomic_read(&rdev->nr_pending)) {
1414 /* lost the race, try later */
1415 err = -EBUSY;
1416 p->rdev = rdev;
ac5e7113 1417 goto abort;
1da177e4 1418 }
a91a2785 1419 err = md_integrity_register(mddev);
1da177e4
LT
1420 }
1421abort:
1422
1423 print_conf(conf);
1424 return err;
1425}
1426
1427
6712ecf8 1428static void end_sync_read(struct bio *bio, int error)
1da177e4 1429{
9f2c9d12 1430 struct r10bio *r10_bio = bio->bi_private;
e879a879 1431 struct r10conf *conf = r10_bio->mddev->private;
778ca018 1432 int d;
1da177e4 1433
749c55e9 1434 d = find_bio_disk(conf, r10_bio, bio, NULL);
0eb3ff12
N
1435
1436 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1437 set_bit(R10BIO_Uptodate, &r10_bio->state);
e684e41d
N
1438 else
1439 /* The write handler will notice the lack of
1440 * R10BIO_Uptodate and record any errors etc
1441 */
4dbcdc75
N
1442 atomic_add(r10_bio->sectors,
1443 &conf->mirrors[d].rdev->corrected_errors);
1da177e4
LT
1444
1445 /* for reconstruct, we always reschedule after a read.
1446 * for resync, only after all reads
1447 */
73d5c38a 1448 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1da177e4
LT
1449 if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1450 atomic_dec_and_test(&r10_bio->remaining)) {
1451 /* we have read all the blocks,
1452 * do the comparison in process context in raid10d
1453 */
1454 reschedule_retry(r10_bio);
1455 }
1da177e4
LT
1456}
1457
9f2c9d12 1458static void end_sync_request(struct r10bio *r10_bio)
1da177e4 1459{
fd01b88c 1460 struct mddev *mddev = r10_bio->mddev;
dfc70645 1461
1da177e4
LT
1462 while (atomic_dec_and_test(&r10_bio->remaining)) {
1463 if (r10_bio->master_bio == NULL) {
1464 /* the primary of several recovery bios */
73d5c38a 1465 sector_t s = r10_bio->sectors;
1a0b7cd8
N
1466 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1467 test_bit(R10BIO_WriteError, &r10_bio->state))
749c55e9
N
1468 reschedule_retry(r10_bio);
1469 else
1470 put_buf(r10_bio);
73d5c38a 1471 md_done_sync(mddev, s, 1);
1da177e4
LT
1472 break;
1473 } else {
9f2c9d12 1474 struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1a0b7cd8
N
1475 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1476 test_bit(R10BIO_WriteError, &r10_bio->state))
749c55e9
N
1477 reschedule_retry(r10_bio);
1478 else
1479 put_buf(r10_bio);
1da177e4
LT
1480 r10_bio = r10_bio2;
1481 }
1482 }
1da177e4
LT
1483}
1484
5e570289
N
1485static void end_sync_write(struct bio *bio, int error)
1486{
1487 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
9f2c9d12 1488 struct r10bio *r10_bio = bio->bi_private;
fd01b88c 1489 struct mddev *mddev = r10_bio->mddev;
e879a879 1490 struct r10conf *conf = mddev->private;
5e570289
N
1491 int d;
1492 sector_t first_bad;
1493 int bad_sectors;
1494 int slot;
1495
1496 d = find_bio_disk(conf, r10_bio, bio, &slot);
1497
1498 if (!uptodate) {
1499 set_bit(WriteErrorSeen, &conf->mirrors[d].rdev->flags);
1500 set_bit(R10BIO_WriteError, &r10_bio->state);
1501 } else if (is_badblock(conf->mirrors[d].rdev,
1502 r10_bio->devs[slot].addr,
1503 r10_bio->sectors,
1504 &first_bad, &bad_sectors))
1505 set_bit(R10BIO_MadeGood, &r10_bio->state);
1506
1507 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1508
1509 end_sync_request(r10_bio);
1510}
1511
1da177e4
LT
1512/*
1513 * Note: sync and recover and handled very differently for raid10
1514 * This code is for resync.
1515 * For resync, we read through virtual addresses and read all blocks.
1516 * If there is any error, we schedule a write. The lowest numbered
1517 * drive is authoritative.
1518 * However requests come for physical address, so we need to map.
1519 * For every physical address there are raid_disks/copies virtual addresses,
1520 * which is always are least one, but is not necessarly an integer.
1521 * This means that a physical address can span multiple chunks, so we may
1522 * have to submit multiple io requests for a single sync request.
1523 */
1524/*
1525 * We check if all blocks are in-sync and only write to blocks that
1526 * aren't in sync
1527 */
9f2c9d12 1528static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
1da177e4 1529{
e879a879 1530 struct r10conf *conf = mddev->private;
1da177e4
LT
1531 int i, first;
1532 struct bio *tbio, *fbio;
1533
1534 atomic_set(&r10_bio->remaining, 1);
1535
1536 /* find the first device with a block */
1537 for (i=0; i<conf->copies; i++)
1538 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
1539 break;
1540
1541 if (i == conf->copies)
1542 goto done;
1543
1544 first = i;
1545 fbio = r10_bio->devs[i].bio;
1546
1547 /* now find blocks with errors */
0eb3ff12
N
1548 for (i=0 ; i < conf->copies ; i++) {
1549 int j, d;
1550 int vcnt = r10_bio->sectors >> (PAGE_SHIFT-9);
1da177e4 1551
1da177e4 1552 tbio = r10_bio->devs[i].bio;
0eb3ff12
N
1553
1554 if (tbio->bi_end_io != end_sync_read)
1555 continue;
1556 if (i == first)
1da177e4 1557 continue;
0eb3ff12
N
1558 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
1559 /* We know that the bi_io_vec layout is the same for
1560 * both 'first' and 'i', so we just compare them.
1561 * All vec entries are PAGE_SIZE;
1562 */
1563 for (j = 0; j < vcnt; j++)
1564 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
1565 page_address(tbio->bi_io_vec[j].bv_page),
1566 PAGE_SIZE))
1567 break;
1568 if (j == vcnt)
1569 continue;
1570 mddev->resync_mismatches += r10_bio->sectors;
f84ee364
N
1571 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
1572 /* Don't fix anything. */
1573 continue;
0eb3ff12 1574 }
f84ee364
N
1575 /* Ok, we need to write this bio, either to correct an
1576 * inconsistency or to correct an unreadable block.
1da177e4
LT
1577 * First we need to fixup bv_offset, bv_len and
1578 * bi_vecs, as the read request might have corrupted these
1579 */
1580 tbio->bi_vcnt = vcnt;
1581 tbio->bi_size = r10_bio->sectors << 9;
1582 tbio->bi_idx = 0;
1583 tbio->bi_phys_segments = 0;
1da177e4
LT
1584 tbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1585 tbio->bi_flags |= 1 << BIO_UPTODATE;
1586 tbio->bi_next = NULL;
1587 tbio->bi_rw = WRITE;
1588 tbio->bi_private = r10_bio;
1589 tbio->bi_sector = r10_bio->devs[i].addr;
1590
1591 for (j=0; j < vcnt ; j++) {
1592 tbio->bi_io_vec[j].bv_offset = 0;
1593 tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
1594
1595 memcpy(page_address(tbio->bi_io_vec[j].bv_page),
1596 page_address(fbio->bi_io_vec[j].bv_page),
1597 PAGE_SIZE);
1598 }
1599 tbio->bi_end_io = end_sync_write;
1600
1601 d = r10_bio->devs[i].devnum;
1602 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1603 atomic_inc(&r10_bio->remaining);
1604 md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9);
1605
1606 tbio->bi_sector += conf->mirrors[d].rdev->data_offset;
1607 tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
1608 generic_make_request(tbio);
1609 }
1610
1611done:
1612 if (atomic_dec_and_test(&r10_bio->remaining)) {
1613 md_done_sync(mddev, r10_bio->sectors, 1);
1614 put_buf(r10_bio);
1615 }
1616}
1617
1618/*
1619 * Now for the recovery code.
1620 * Recovery happens across physical sectors.
1621 * We recover all non-is_sync drives by finding the virtual address of
1622 * each, and then choose a working drive that also has that virt address.
1623 * There is a separate r10_bio for each non-in_sync drive.
1624 * Only the first two slots are in use. The first for reading,
1625 * The second for writing.
1626 *
1627 */
9f2c9d12 1628static void fix_recovery_read_error(struct r10bio *r10_bio)
5e570289
N
1629{
1630 /* We got a read error during recovery.
1631 * We repeat the read in smaller page-sized sections.
1632 * If a read succeeds, write it to the new device or record
1633 * a bad block if we cannot.
1634 * If a read fails, record a bad block on both old and
1635 * new devices.
1636 */
fd01b88c 1637 struct mddev *mddev = r10_bio->mddev;
e879a879 1638 struct r10conf *conf = mddev->private;
5e570289
N
1639 struct bio *bio = r10_bio->devs[0].bio;
1640 sector_t sect = 0;
1641 int sectors = r10_bio->sectors;
1642 int idx = 0;
1643 int dr = r10_bio->devs[0].devnum;
1644 int dw = r10_bio->devs[1].devnum;
1645
1646 while (sectors) {
1647 int s = sectors;
3cb03002 1648 struct md_rdev *rdev;
5e570289
N
1649 sector_t addr;
1650 int ok;
1651
1652 if (s > (PAGE_SIZE>>9))
1653 s = PAGE_SIZE >> 9;
1654
1655 rdev = conf->mirrors[dr].rdev;
1656 addr = r10_bio->devs[0].addr + sect,
1657 ok = sync_page_io(rdev,
1658 addr,
1659 s << 9,
1660 bio->bi_io_vec[idx].bv_page,
1661 READ, false);
1662 if (ok) {
1663 rdev = conf->mirrors[dw].rdev;
1664 addr = r10_bio->devs[1].addr + sect;
1665 ok = sync_page_io(rdev,
1666 addr,
1667 s << 9,
1668 bio->bi_io_vec[idx].bv_page,
1669 WRITE, false);
1670 if (!ok)
1671 set_bit(WriteErrorSeen, &rdev->flags);
1672 }
1673 if (!ok) {
1674 /* We don't worry if we cannot set a bad block -
1675 * it really is bad so there is no loss in not
1676 * recording it yet
1677 */
1678 rdev_set_badblocks(rdev, addr, s, 0);
1679
1680 if (rdev != conf->mirrors[dw].rdev) {
1681 /* need bad block on destination too */
3cb03002 1682 struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
5e570289
N
1683 addr = r10_bio->devs[1].addr + sect;
1684 ok = rdev_set_badblocks(rdev2, addr, s, 0);
1685 if (!ok) {
1686 /* just abort the recovery */
1687 printk(KERN_NOTICE
1688 "md/raid10:%s: recovery aborted"
1689 " due to read error\n",
1690 mdname(mddev));
1691
1692 conf->mirrors[dw].recovery_disabled
1693 = mddev->recovery_disabled;
1694 set_bit(MD_RECOVERY_INTR,
1695 &mddev->recovery);
1696 break;
1697 }
1698 }
1699 }
1700
1701 sectors -= s;
1702 sect += s;
1703 idx++;
1704 }
1705}
1da177e4 1706
9f2c9d12 1707static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
1da177e4 1708{
e879a879 1709 struct r10conf *conf = mddev->private;
c65060ad
NK
1710 int d;
1711 struct bio *wbio;
1da177e4 1712
5e570289
N
1713 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
1714 fix_recovery_read_error(r10_bio);
1715 end_sync_request(r10_bio);
1716 return;
1717 }
1718
c65060ad
NK
1719 /*
1720 * share the pages with the first bio
1da177e4
LT
1721 * and submit the write request
1722 */
1da177e4 1723 wbio = r10_bio->devs[1].bio;
1da177e4
LT
1724 d = r10_bio->devs[1].devnum;
1725
1726 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1727 md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9);
5e570289 1728 generic_make_request(wbio);
1da177e4
LT
1729}
1730
1731
1e50915f
RB
1732/*
1733 * Used by fix_read_error() to decay the per rdev read_errors.
1734 * We halve the read error count for every hour that has elapsed
1735 * since the last recorded read error.
1736 *
1737 */
fd01b88c 1738static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
1e50915f
RB
1739{
1740 struct timespec cur_time_mon;
1741 unsigned long hours_since_last;
1742 unsigned int read_errors = atomic_read(&rdev->read_errors);
1743
1744 ktime_get_ts(&cur_time_mon);
1745
1746 if (rdev->last_read_error.tv_sec == 0 &&
1747 rdev->last_read_error.tv_nsec == 0) {
1748 /* first time we've seen a read error */
1749 rdev->last_read_error = cur_time_mon;
1750 return;
1751 }
1752
1753 hours_since_last = (cur_time_mon.tv_sec -
1754 rdev->last_read_error.tv_sec) / 3600;
1755
1756 rdev->last_read_error = cur_time_mon;
1757
1758 /*
1759 * if hours_since_last is > the number of bits in read_errors
1760 * just set read errors to 0. We do this to avoid
1761 * overflowing the shift of read_errors by hours_since_last.
1762 */
1763 if (hours_since_last >= 8 * sizeof(read_errors))
1764 atomic_set(&rdev->read_errors, 0);
1765 else
1766 atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
1767}
1768
3cb03002 1769static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
58c54fcc
N
1770 int sectors, struct page *page, int rw)
1771{
1772 sector_t first_bad;
1773 int bad_sectors;
1774
1775 if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
1776 && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
1777 return -1;
1778 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
1779 /* success */
1780 return 1;
1781 if (rw == WRITE)
1782 set_bit(WriteErrorSeen, &rdev->flags);
1783 /* need to record an error - either for the block or the device */
1784 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1785 md_error(rdev->mddev, rdev);
1786 return 0;
1787}
1788
1da177e4
LT
1789/*
1790 * This is a kernel thread which:
1791 *
1792 * 1. Retries failed read operations on working mirrors.
1793 * 2. Updates the raid superblock when problems encounter.
6814d536 1794 * 3. Performs writes following reads for array synchronising.
1da177e4
LT
1795 */
1796
e879a879 1797static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
6814d536
N
1798{
1799 int sect = 0; /* Offset from r10_bio->sector */
1800 int sectors = r10_bio->sectors;
3cb03002 1801 struct md_rdev*rdev;
1e50915f 1802 int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
0544a21d 1803 int d = r10_bio->devs[r10_bio->read_slot].devnum;
1e50915f 1804
7c4e06ff
N
1805 /* still own a reference to this rdev, so it cannot
1806 * have been cleared recently.
1807 */
1808 rdev = conf->mirrors[d].rdev;
1e50915f 1809
7c4e06ff
N
1810 if (test_bit(Faulty, &rdev->flags))
1811 /* drive has already been failed, just ignore any
1812 more fix_read_error() attempts */
1813 return;
1e50915f 1814
7c4e06ff
N
1815 check_decay_read_errors(mddev, rdev);
1816 atomic_inc(&rdev->read_errors);
1817 if (atomic_read(&rdev->read_errors) > max_read_errors) {
1818 char b[BDEVNAME_SIZE];
1819 bdevname(rdev->bdev, b);
1e50915f 1820
7c4e06ff
N
1821 printk(KERN_NOTICE
1822 "md/raid10:%s: %s: Raid device exceeded "
1823 "read_error threshold [cur %d:max %d]\n",
1824 mdname(mddev), b,
1825 atomic_read(&rdev->read_errors), max_read_errors);
1826 printk(KERN_NOTICE
1827 "md/raid10:%s: %s: Failing raid device\n",
1828 mdname(mddev), b);
1829 md_error(mddev, conf->mirrors[d].rdev);
1830 return;
1e50915f 1831 }
1e50915f 1832
6814d536
N
1833 while(sectors) {
1834 int s = sectors;
1835 int sl = r10_bio->read_slot;
1836 int success = 0;
1837 int start;
1838
1839 if (s > (PAGE_SIZE>>9))
1840 s = PAGE_SIZE >> 9;
1841
1842 rcu_read_lock();
1843 do {
8dbed5ce
N
1844 sector_t first_bad;
1845 int bad_sectors;
1846
0544a21d 1847 d = r10_bio->devs[sl].devnum;
6814d536
N
1848 rdev = rcu_dereference(conf->mirrors[d].rdev);
1849 if (rdev &&
8dbed5ce
N
1850 test_bit(In_sync, &rdev->flags) &&
1851 is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
1852 &first_bad, &bad_sectors) == 0) {
6814d536
N
1853 atomic_inc(&rdev->nr_pending);
1854 rcu_read_unlock();
2b193363 1855 success = sync_page_io(rdev,
6814d536 1856 r10_bio->devs[sl].addr +
ccebd4c4 1857 sect,
6814d536 1858 s<<9,
ccebd4c4 1859 conf->tmppage, READ, false);
6814d536
N
1860 rdev_dec_pending(rdev, mddev);
1861 rcu_read_lock();
1862 if (success)
1863 break;
1864 }
1865 sl++;
1866 if (sl == conf->copies)
1867 sl = 0;
1868 } while (!success && sl != r10_bio->read_slot);
1869 rcu_read_unlock();
1870
1871 if (!success) {
58c54fcc
N
1872 /* Cannot read from anywhere, just mark the block
1873 * as bad on the first device to discourage future
1874 * reads.
1875 */
6814d536 1876 int dn = r10_bio->devs[r10_bio->read_slot].devnum;
58c54fcc
N
1877 rdev = conf->mirrors[dn].rdev;
1878
1879 if (!rdev_set_badblocks(
1880 rdev,
1881 r10_bio->devs[r10_bio->read_slot].addr
1882 + sect,
1883 s, 0))
1884 md_error(mddev, rdev);
6814d536
N
1885 break;
1886 }
1887
1888 start = sl;
1889 /* write it back and re-read */
1890 rcu_read_lock();
1891 while (sl != r10_bio->read_slot) {
67b8dc4b 1892 char b[BDEVNAME_SIZE];
0544a21d 1893
6814d536
N
1894 if (sl==0)
1895 sl = conf->copies;
1896 sl--;
1897 d = r10_bio->devs[sl].devnum;
1898 rdev = rcu_dereference(conf->mirrors[d].rdev);
1294b9c9
N
1899 if (!rdev ||
1900 !test_bit(In_sync, &rdev->flags))
1901 continue;
1902
1903 atomic_inc(&rdev->nr_pending);
1904 rcu_read_unlock();
58c54fcc
N
1905 if (r10_sync_page_io(rdev,
1906 r10_bio->devs[sl].addr +
1907 sect,
1908 s<<9, conf->tmppage, WRITE)
1294b9c9
N
1909 == 0) {
1910 /* Well, this device is dead */
1911 printk(KERN_NOTICE
1912 "md/raid10:%s: read correction "
1913 "write failed"
1914 " (%d sectors at %llu on %s)\n",
1915 mdname(mddev), s,
1916 (unsigned long long)(
1917 sect + rdev->data_offset),
1918 bdevname(rdev->bdev, b));
1919 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
1920 "drive\n",
1921 mdname(mddev),
1922 bdevname(rdev->bdev, b));
6814d536 1923 }
1294b9c9
N
1924 rdev_dec_pending(rdev, mddev);
1925 rcu_read_lock();
6814d536
N
1926 }
1927 sl = start;
1928 while (sl != r10_bio->read_slot) {
1294b9c9 1929 char b[BDEVNAME_SIZE];
0544a21d 1930
6814d536
N
1931 if (sl==0)
1932 sl = conf->copies;
1933 sl--;
1934 d = r10_bio->devs[sl].devnum;
1935 rdev = rcu_dereference(conf->mirrors[d].rdev);
1294b9c9
N
1936 if (!rdev ||
1937 !test_bit(In_sync, &rdev->flags))
1938 continue;
6814d536 1939
1294b9c9
N
1940 atomic_inc(&rdev->nr_pending);
1941 rcu_read_unlock();
58c54fcc
N
1942 switch (r10_sync_page_io(rdev,
1943 r10_bio->devs[sl].addr +
1944 sect,
1945 s<<9, conf->tmppage,
1946 READ)) {
1947 case 0:
1294b9c9
N
1948 /* Well, this device is dead */
1949 printk(KERN_NOTICE
1950 "md/raid10:%s: unable to read back "
1951 "corrected sectors"
1952 " (%d sectors at %llu on %s)\n",
1953 mdname(mddev), s,
1954 (unsigned long long)(
1955 sect + rdev->data_offset),
1956 bdevname(rdev->bdev, b));
1957 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
1958 "drive\n",
1959 mdname(mddev),
1960 bdevname(rdev->bdev, b));
58c54fcc
N
1961 break;
1962 case 1:
1294b9c9
N
1963 printk(KERN_INFO
1964 "md/raid10:%s: read error corrected"
1965 " (%d sectors at %llu on %s)\n",
1966 mdname(mddev), s,
1967 (unsigned long long)(
1968 sect + rdev->data_offset),
1969 bdevname(rdev->bdev, b));
1970 atomic_add(s, &rdev->corrected_errors);
6814d536 1971 }
1294b9c9
N
1972
1973 rdev_dec_pending(rdev, mddev);
1974 rcu_read_lock();
6814d536
N
1975 }
1976 rcu_read_unlock();
1977
1978 sectors -= s;
1979 sect += s;
1980 }
1981}
1982
bd870a16
N
1983static void bi_complete(struct bio *bio, int error)
1984{
1985 complete((struct completion *)bio->bi_private);
1986}
1987
1988static int submit_bio_wait(int rw, struct bio *bio)
1989{
1990 struct completion event;
1991 rw |= REQ_SYNC;
1992
1993 init_completion(&event);
1994 bio->bi_private = &event;
1995 bio->bi_end_io = bi_complete;
1996 submit_bio(rw, bio);
1997 wait_for_completion(&event);
1998
1999 return test_bit(BIO_UPTODATE, &bio->bi_flags);
2000}
2001
9f2c9d12 2002static int narrow_write_error(struct r10bio *r10_bio, int i)
bd870a16
N
2003{
2004 struct bio *bio = r10_bio->master_bio;
fd01b88c 2005 struct mddev *mddev = r10_bio->mddev;
e879a879 2006 struct r10conf *conf = mddev->private;
3cb03002 2007 struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
bd870a16
N
2008 /* bio has the data to be written to slot 'i' where
2009 * we just recently had a write error.
2010 * We repeatedly clone the bio and trim down to one block,
2011 * then try the write. Where the write fails we record
2012 * a bad block.
2013 * It is conceivable that the bio doesn't exactly align with
2014 * blocks. We must handle this.
2015 *
2016 * We currently own a reference to the rdev.
2017 */
2018
2019 int block_sectors;
2020 sector_t sector;
2021 int sectors;
2022 int sect_to_write = r10_bio->sectors;
2023 int ok = 1;
2024
2025 if (rdev->badblocks.shift < 0)
2026 return 0;
2027
2028 block_sectors = 1 << rdev->badblocks.shift;
2029 sector = r10_bio->sector;
2030 sectors = ((r10_bio->sector + block_sectors)
2031 & ~(sector_t)(block_sectors - 1))
2032 - sector;
2033
2034 while (sect_to_write) {
2035 struct bio *wbio;
2036 if (sectors > sect_to_write)
2037 sectors = sect_to_write;
2038 /* Write at 'sector' for 'sectors' */
2039 wbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
2040 md_trim_bio(wbio, sector - bio->bi_sector, sectors);
2041 wbio->bi_sector = (r10_bio->devs[i].addr+
2042 rdev->data_offset+
2043 (sector - r10_bio->sector));
2044 wbio->bi_bdev = rdev->bdev;
2045 if (submit_bio_wait(WRITE, wbio) == 0)
2046 /* Failure! */
2047 ok = rdev_set_badblocks(rdev, sector,
2048 sectors, 0)
2049 && ok;
2050
2051 bio_put(wbio);
2052 sect_to_write -= sectors;
2053 sector += sectors;
2054 sectors = block_sectors;
2055 }
2056 return ok;
2057}
2058
9f2c9d12 2059static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
560f8e55
N
2060{
2061 int slot = r10_bio->read_slot;
2062 int mirror = r10_bio->devs[slot].devnum;
2063 struct bio *bio;
e879a879 2064 struct r10conf *conf = mddev->private;
3cb03002 2065 struct md_rdev *rdev;
560f8e55
N
2066 char b[BDEVNAME_SIZE];
2067 unsigned long do_sync;
856e08e2 2068 int max_sectors;
560f8e55
N
2069
2070 /* we got a read error. Maybe the drive is bad. Maybe just
2071 * the block and we can fix it.
2072 * We freeze all other IO, and try reading the block from
2073 * other devices. When we find one, we re-write
2074 * and check it that fixes the read error.
2075 * This is all done synchronously while the array is
2076 * frozen.
2077 */
2078 if (mddev->ro == 0) {
2079 freeze_array(conf);
2080 fix_read_error(conf, mddev, r10_bio);
2081 unfreeze_array(conf);
2082 }
2083 rdev_dec_pending(conf->mirrors[mirror].rdev, mddev);
2084
2085 bio = r10_bio->devs[slot].bio;
7399c31b 2086 bdevname(bio->bi_bdev, b);
560f8e55
N
2087 r10_bio->devs[slot].bio =
2088 mddev->ro ? IO_BLOCKED : NULL;
7399c31b 2089read_more:
856e08e2 2090 mirror = read_balance(conf, r10_bio, &max_sectors);
7399c31b 2091 if (mirror == -1) {
560f8e55
N
2092 printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O"
2093 " read error for block %llu\n",
7399c31b 2094 mdname(mddev), b,
560f8e55
N
2095 (unsigned long long)r10_bio->sector);
2096 raid_end_bio_io(r10_bio);
2097 bio_put(bio);
2098 return;
2099 }
2100
2101 do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC);
7399c31b
N
2102 if (bio)
2103 bio_put(bio);
560f8e55
N
2104 slot = r10_bio->read_slot;
2105 rdev = conf->mirrors[mirror].rdev;
2106 printk_ratelimited(
2107 KERN_ERR
2108 "md/raid10:%s: %s: redirecting"
2109 "sector %llu to another mirror\n",
2110 mdname(mddev),
2111 bdevname(rdev->bdev, b),
2112 (unsigned long long)r10_bio->sector);
2113 bio = bio_clone_mddev(r10_bio->master_bio,
2114 GFP_NOIO, mddev);
7399c31b
N
2115 md_trim_bio(bio,
2116 r10_bio->sector - bio->bi_sector,
2117 max_sectors);
560f8e55
N
2118 r10_bio->devs[slot].bio = bio;
2119 bio->bi_sector = r10_bio->devs[slot].addr
2120 + rdev->data_offset;
2121 bio->bi_bdev = rdev->bdev;
2122 bio->bi_rw = READ | do_sync;
2123 bio->bi_private = r10_bio;
2124 bio->bi_end_io = raid10_end_read_request;
7399c31b
N
2125 if (max_sectors < r10_bio->sectors) {
2126 /* Drat - have to split this up more */
2127 struct bio *mbio = r10_bio->master_bio;
2128 int sectors_handled =
2129 r10_bio->sector + max_sectors
2130 - mbio->bi_sector;
2131 r10_bio->sectors = max_sectors;
2132 spin_lock_irq(&conf->device_lock);
2133 if (mbio->bi_phys_segments == 0)
2134 mbio->bi_phys_segments = 2;
2135 else
2136 mbio->bi_phys_segments++;
2137 spin_unlock_irq(&conf->device_lock);
2138 generic_make_request(bio);
2139 bio = NULL;
2140
2141 r10_bio = mempool_alloc(conf->r10bio_pool,
2142 GFP_NOIO);
2143 r10_bio->master_bio = mbio;
2144 r10_bio->sectors = (mbio->bi_size >> 9)
2145 - sectors_handled;
2146 r10_bio->state = 0;
2147 set_bit(R10BIO_ReadError,
2148 &r10_bio->state);
2149 r10_bio->mddev = mddev;
2150 r10_bio->sector = mbio->bi_sector
2151 + sectors_handled;
2152
2153 goto read_more;
2154 } else
2155 generic_make_request(bio);
560f8e55
N
2156}
2157
e879a879 2158static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
749c55e9
N
2159{
2160 /* Some sort of write request has finished and it
2161 * succeeded in writing where we thought there was a
2162 * bad block. So forget the bad block.
1a0b7cd8
N
2163 * Or possibly if failed and we need to record
2164 * a bad block.
749c55e9
N
2165 */
2166 int m;
3cb03002 2167 struct md_rdev *rdev;
749c55e9
N
2168
2169 if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2170 test_bit(R10BIO_IsRecover, &r10_bio->state)) {
1a0b7cd8
N
2171 for (m = 0; m < conf->copies; m++) {
2172 int dev = r10_bio->devs[m].devnum;
2173 rdev = conf->mirrors[dev].rdev;
2174 if (r10_bio->devs[m].bio == NULL)
2175 continue;
2176 if (test_bit(BIO_UPTODATE,
749c55e9 2177 &r10_bio->devs[m].bio->bi_flags)) {
749c55e9
N
2178 rdev_clear_badblocks(
2179 rdev,
2180 r10_bio->devs[m].addr,
2181 r10_bio->sectors);
1a0b7cd8
N
2182 } else {
2183 if (!rdev_set_badblocks(
2184 rdev,
2185 r10_bio->devs[m].addr,
2186 r10_bio->sectors, 0))
2187 md_error(conf->mddev, rdev);
749c55e9 2188 }
1a0b7cd8 2189 }
749c55e9
N
2190 put_buf(r10_bio);
2191 } else {
bd870a16
N
2192 for (m = 0; m < conf->copies; m++) {
2193 int dev = r10_bio->devs[m].devnum;
2194 struct bio *bio = r10_bio->devs[m].bio;
2195 rdev = conf->mirrors[dev].rdev;
2196 if (bio == IO_MADE_GOOD) {
749c55e9
N
2197 rdev_clear_badblocks(
2198 rdev,
2199 r10_bio->devs[m].addr,
2200 r10_bio->sectors);
2201 rdev_dec_pending(rdev, conf->mddev);
bd870a16
N
2202 } else if (bio != NULL &&
2203 !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
2204 if (!narrow_write_error(r10_bio, m)) {
2205 md_error(conf->mddev, rdev);
2206 set_bit(R10BIO_Degraded,
2207 &r10_bio->state);
2208 }
2209 rdev_dec_pending(rdev, conf->mddev);
749c55e9 2210 }
bd870a16
N
2211 }
2212 if (test_bit(R10BIO_WriteError,
2213 &r10_bio->state))
2214 close_write(r10_bio);
749c55e9
N
2215 raid_end_bio_io(r10_bio);
2216 }
2217}
2218
fd01b88c 2219static void raid10d(struct mddev *mddev)
1da177e4 2220{
9f2c9d12 2221 struct r10bio *r10_bio;
1da177e4 2222 unsigned long flags;
e879a879 2223 struct r10conf *conf = mddev->private;
1da177e4 2224 struct list_head *head = &conf->retry_list;
e1dfa0a2 2225 struct blk_plug plug;
1da177e4
LT
2226
2227 md_check_recovery(mddev);
1da177e4 2228
e1dfa0a2 2229 blk_start_plug(&plug);
1da177e4 2230 for (;;) {
6cce3b23 2231
7eaceacc 2232 flush_pending_writes(conf);
6cce3b23 2233
a35e63ef
N
2234 spin_lock_irqsave(&conf->device_lock, flags);
2235 if (list_empty(head)) {
2236 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 2237 break;
a35e63ef 2238 }
9f2c9d12 2239 r10_bio = list_entry(head->prev, struct r10bio, retry_list);
1da177e4 2240 list_del(head->prev);
4443ae10 2241 conf->nr_queued--;
1da177e4
LT
2242 spin_unlock_irqrestore(&conf->device_lock, flags);
2243
2244 mddev = r10_bio->mddev;
070ec55d 2245 conf = mddev->private;
bd870a16
N
2246 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2247 test_bit(R10BIO_WriteError, &r10_bio->state))
749c55e9
N
2248 handle_write_completed(conf, r10_bio);
2249 else if (test_bit(R10BIO_IsSync, &r10_bio->state))
1da177e4 2250 sync_request_write(mddev, r10_bio);
7eaceacc 2251 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
1da177e4 2252 recovery_request_write(mddev, r10_bio);
856e08e2 2253 else if (test_bit(R10BIO_ReadError, &r10_bio->state))
560f8e55 2254 handle_read_error(mddev, r10_bio);
856e08e2
N
2255 else {
2256 /* just a partial read to be scheduled from a
2257 * separate context
2258 */
2259 int slot = r10_bio->read_slot;
2260 generic_make_request(r10_bio->devs[slot].bio);
2261 }
560f8e55 2262
1d9d5241 2263 cond_resched();
de393cde
N
2264 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2265 md_check_recovery(mddev);
1da177e4 2266 }
e1dfa0a2 2267 blk_finish_plug(&plug);
1da177e4
LT
2268}
2269
2270
e879a879 2271static int init_resync(struct r10conf *conf)
1da177e4
LT
2272{
2273 int buffs;
2274
2275 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
b6385483 2276 BUG_ON(conf->r10buf_pool);
1da177e4
LT
2277 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2278 if (!conf->r10buf_pool)
2279 return -ENOMEM;
2280 conf->next_resync = 0;
2281 return 0;
2282}
2283
2284/*
2285 * perform a "sync" on one "block"
2286 *
2287 * We need to make sure that no normal I/O request - particularly write
2288 * requests - conflict with active sync requests.
2289 *
2290 * This is achieved by tracking pending requests and a 'barrier' concept
2291 * that can be installed to exclude normal IO requests.
2292 *
2293 * Resync and recovery are handled very differently.
2294 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2295 *
2296 * For resync, we iterate over virtual addresses, read all copies,
2297 * and update if there are differences. If only one copy is live,
2298 * skip it.
2299 * For recovery, we iterate over physical addresses, read a good
2300 * value for each non-in_sync drive, and over-write.
2301 *
2302 * So, for recovery we may have several outstanding complex requests for a
2303 * given address, one for each out-of-sync device. We model this by allocating
2304 * a number of r10_bio structures, one for each out-of-sync device.
2305 * As we setup these structures, we collect all bio's together into a list
2306 * which we then process collectively to add pages, and then process again
2307 * to pass to generic_make_request.
2308 *
2309 * The r10_bio structures are linked using a borrowed master_bio pointer.
2310 * This link is counted in ->remaining. When the r10_bio that points to NULL
2311 * has its remaining count decremented to 0, the whole complex operation
2312 * is complete.
2313 *
2314 */
2315
fd01b88c 2316static sector_t sync_request(struct mddev *mddev, sector_t sector_nr,
ab9d47e9 2317 int *skipped, int go_faster)
1da177e4 2318{
e879a879 2319 struct r10conf *conf = mddev->private;
9f2c9d12 2320 struct r10bio *r10_bio;
1da177e4
LT
2321 struct bio *biolist = NULL, *bio;
2322 sector_t max_sector, nr_sectors;
1da177e4 2323 int i;
6cce3b23 2324 int max_sync;
57dab0bd 2325 sector_t sync_blocks;
1da177e4
LT
2326 sector_t sectors_skipped = 0;
2327 int chunks_skipped = 0;
2328
2329 if (!conf->r10buf_pool)
2330 if (init_resync(conf))
57afd89f 2331 return 0;
1da177e4
LT
2332
2333 skipped:
58c0fed4 2334 max_sector = mddev->dev_sectors;
1da177e4
LT
2335 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2336 max_sector = mddev->resync_max_sectors;
2337 if (sector_nr >= max_sector) {
6cce3b23
N
2338 /* If we aborted, we need to abort the
2339 * sync on the 'current' bitmap chucks (there can
2340 * be several when recovering multiple devices).
2341 * as we may have started syncing it but not finished.
2342 * We can find the current address in
2343 * mddev->curr_resync, but for recovery,
2344 * we need to convert that to several
2345 * virtual addresses.
2346 */
2347 if (mddev->curr_resync < max_sector) { /* aborted */
2348 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2349 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2350 &sync_blocks, 1);
2351 else for (i=0; i<conf->raid_disks; i++) {
2352 sector_t sect =
2353 raid10_find_virt(conf, mddev->curr_resync, i);
2354 bitmap_end_sync(mddev->bitmap, sect,
2355 &sync_blocks, 1);
2356 }
2357 } else /* completed sync */
2358 conf->fullsync = 0;
2359
2360 bitmap_close_sync(mddev->bitmap);
1da177e4 2361 close_sync(conf);
57afd89f 2362 *skipped = 1;
1da177e4
LT
2363 return sectors_skipped;
2364 }
2365 if (chunks_skipped >= conf->raid_disks) {
2366 /* if there has been nothing to do on any drive,
2367 * then there is nothing to do at all..
2368 */
57afd89f
N
2369 *skipped = 1;
2370 return (max_sector - sector_nr) + sectors_skipped;
1da177e4
LT
2371 }
2372
c6207277
N
2373 if (max_sector > mddev->resync_max)
2374 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2375
1da177e4
LT
2376 /* make sure whole request will fit in a chunk - if chunks
2377 * are meaningful
2378 */
2379 if (conf->near_copies < conf->raid_disks &&
2380 max_sector > (sector_nr | conf->chunk_mask))
2381 max_sector = (sector_nr | conf->chunk_mask) + 1;
2382 /*
2383 * If there is non-resync activity waiting for us then
2384 * put in a delay to throttle resync.
2385 */
0a27ec96 2386 if (!go_faster && conf->nr_waiting)
1da177e4 2387 msleep_interruptible(1000);
1da177e4
LT
2388
2389 /* Again, very different code for resync and recovery.
2390 * Both must result in an r10bio with a list of bios that
2391 * have bi_end_io, bi_sector, bi_bdev set,
2392 * and bi_private set to the r10bio.
2393 * For recovery, we may actually create several r10bios
2394 * with 2 bios in each, that correspond to the bios in the main one.
2395 * In this case, the subordinate r10bios link back through a
2396 * borrowed master_bio pointer, and the counter in the master
2397 * includes a ref from each subordinate.
2398 */
2399 /* First, we decide what to do and set ->bi_end_io
2400 * To end_sync_read if we want to read, and
2401 * end_sync_write if we will want to write.
2402 */
2403
6cce3b23 2404 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
1da177e4
LT
2405 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2406 /* recovery... the complicated one */
e875ecea 2407 int j;
1da177e4
LT
2408 r10_bio = NULL;
2409
ab9d47e9
N
2410 for (i=0 ; i<conf->raid_disks; i++) {
2411 int still_degraded;
9f2c9d12 2412 struct r10bio *rb2;
ab9d47e9
N
2413 sector_t sect;
2414 int must_sync;
e875ecea 2415 int any_working;
1da177e4 2416
ab9d47e9
N
2417 if (conf->mirrors[i].rdev == NULL ||
2418 test_bit(In_sync, &conf->mirrors[i].rdev->flags))
2419 continue;
1da177e4 2420
ab9d47e9
N
2421 still_degraded = 0;
2422 /* want to reconstruct this device */
2423 rb2 = r10_bio;
2424 sect = raid10_find_virt(conf, sector_nr, i);
2425 /* Unless we are doing a full sync, we only need
2426 * to recover the block if it is set in the bitmap
2427 */
2428 must_sync = bitmap_start_sync(mddev->bitmap, sect,
2429 &sync_blocks, 1);
2430 if (sync_blocks < max_sync)
2431 max_sync = sync_blocks;
2432 if (!must_sync &&
2433 !conf->fullsync) {
2434 /* yep, skip the sync_blocks here, but don't assume
2435 * that there will never be anything to do here
2436 */
2437 chunks_skipped = -1;
2438 continue;
2439 }
6cce3b23 2440
ab9d47e9
N
2441 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
2442 raise_barrier(conf, rb2 != NULL);
2443 atomic_set(&r10_bio->remaining, 0);
18055569 2444
ab9d47e9
N
2445 r10_bio->master_bio = (struct bio*)rb2;
2446 if (rb2)
2447 atomic_inc(&rb2->remaining);
2448 r10_bio->mddev = mddev;
2449 set_bit(R10BIO_IsRecover, &r10_bio->state);
2450 r10_bio->sector = sect;
1da177e4 2451
ab9d47e9
N
2452 raid10_find_phys(conf, r10_bio);
2453
2454 /* Need to check if the array will still be
2455 * degraded
2456 */
2457 for (j=0; j<conf->raid_disks; j++)
2458 if (conf->mirrors[j].rdev == NULL ||
2459 test_bit(Faulty, &conf->mirrors[j].rdev->flags)) {
2460 still_degraded = 1;
87fc767b 2461 break;
1da177e4 2462 }
ab9d47e9
N
2463
2464 must_sync = bitmap_start_sync(mddev->bitmap, sect,
2465 &sync_blocks, still_degraded);
2466
e875ecea 2467 any_working = 0;
ab9d47e9 2468 for (j=0; j<conf->copies;j++) {
e875ecea 2469 int k;
ab9d47e9 2470 int d = r10_bio->devs[j].devnum;
5e570289 2471 sector_t from_addr, to_addr;
3cb03002 2472 struct md_rdev *rdev;
40c356ce
N
2473 sector_t sector, first_bad;
2474 int bad_sectors;
ab9d47e9
N
2475 if (!conf->mirrors[d].rdev ||
2476 !test_bit(In_sync, &conf->mirrors[d].rdev->flags))
2477 continue;
2478 /* This is where we read from */
e875ecea 2479 any_working = 1;
40c356ce
N
2480 rdev = conf->mirrors[d].rdev;
2481 sector = r10_bio->devs[j].addr;
2482
2483 if (is_badblock(rdev, sector, max_sync,
2484 &first_bad, &bad_sectors)) {
2485 if (first_bad > sector)
2486 max_sync = first_bad - sector;
2487 else {
2488 bad_sectors -= (sector
2489 - first_bad);
2490 if (max_sync > bad_sectors)
2491 max_sync = bad_sectors;
2492 continue;
2493 }
2494 }
ab9d47e9
N
2495 bio = r10_bio->devs[0].bio;
2496 bio->bi_next = biolist;
2497 biolist = bio;
2498 bio->bi_private = r10_bio;
2499 bio->bi_end_io = end_sync_read;
2500 bio->bi_rw = READ;
5e570289
N
2501 from_addr = r10_bio->devs[j].addr;
2502 bio->bi_sector = from_addr +
ab9d47e9
N
2503 conf->mirrors[d].rdev->data_offset;
2504 bio->bi_bdev = conf->mirrors[d].rdev->bdev;
2505 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2506 atomic_inc(&r10_bio->remaining);
2507 /* and we write to 'i' */
2508
2509 for (k=0; k<conf->copies; k++)
2510 if (r10_bio->devs[k].devnum == i)
2511 break;
2512 BUG_ON(k == conf->copies);
2513 bio = r10_bio->devs[1].bio;
2514 bio->bi_next = biolist;
2515 biolist = bio;
2516 bio->bi_private = r10_bio;
2517 bio->bi_end_io = end_sync_write;
2518 bio->bi_rw = WRITE;
5e570289
N
2519 to_addr = r10_bio->devs[k].addr;
2520 bio->bi_sector = to_addr +
ab9d47e9
N
2521 conf->mirrors[i].rdev->data_offset;
2522 bio->bi_bdev = conf->mirrors[i].rdev->bdev;
2523
2524 r10_bio->devs[0].devnum = d;
5e570289 2525 r10_bio->devs[0].addr = from_addr;
ab9d47e9 2526 r10_bio->devs[1].devnum = i;
5e570289 2527 r10_bio->devs[1].addr = to_addr;
ab9d47e9
N
2528
2529 break;
2530 }
2531 if (j == conf->copies) {
e875ecea
N
2532 /* Cannot recover, so abort the recovery or
2533 * record a bad block */
ab9d47e9
N
2534 put_buf(r10_bio);
2535 if (rb2)
2536 atomic_dec(&rb2->remaining);
2537 r10_bio = rb2;
e875ecea
N
2538 if (any_working) {
2539 /* problem is that there are bad blocks
2540 * on other device(s)
2541 */
2542 int k;
2543 for (k = 0; k < conf->copies; k++)
2544 if (r10_bio->devs[k].devnum == i)
2545 break;
2546 if (!rdev_set_badblocks(
2547 conf->mirrors[i].rdev,
2548 r10_bio->devs[k].addr,
2549 max_sync, 0))
2550 any_working = 0;
2551 }
2552 if (!any_working) {
2553 if (!test_and_set_bit(MD_RECOVERY_INTR,
2554 &mddev->recovery))
2555 printk(KERN_INFO "md/raid10:%s: insufficient "
2556 "working devices for recovery.\n",
2557 mdname(mddev));
2558 conf->mirrors[i].recovery_disabled
2559 = mddev->recovery_disabled;
2560 }
ab9d47e9 2561 break;
1da177e4 2562 }
ab9d47e9 2563 }
1da177e4
LT
2564 if (biolist == NULL) {
2565 while (r10_bio) {
9f2c9d12
N
2566 struct r10bio *rb2 = r10_bio;
2567 r10_bio = (struct r10bio*) rb2->master_bio;
1da177e4
LT
2568 rb2->master_bio = NULL;
2569 put_buf(rb2);
2570 }
2571 goto giveup;
2572 }
2573 } else {
2574 /* resync. Schedule a read for every block at this virt offset */
2575 int count = 0;
6cce3b23 2576
78200d45
N
2577 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
2578
6cce3b23
N
2579 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2580 &sync_blocks, mddev->degraded) &&
ab9d47e9
N
2581 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
2582 &mddev->recovery)) {
6cce3b23
N
2583 /* We can skip this block */
2584 *skipped = 1;
2585 return sync_blocks + sectors_skipped;
2586 }
2587 if (sync_blocks < max_sync)
2588 max_sync = sync_blocks;
1da177e4
LT
2589 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
2590
1da177e4
LT
2591 r10_bio->mddev = mddev;
2592 atomic_set(&r10_bio->remaining, 0);
6cce3b23
N
2593 raise_barrier(conf, 0);
2594 conf->next_resync = sector_nr;
1da177e4
LT
2595
2596 r10_bio->master_bio = NULL;
2597 r10_bio->sector = sector_nr;
2598 set_bit(R10BIO_IsSync, &r10_bio->state);
2599 raid10_find_phys(conf, r10_bio);
2600 r10_bio->sectors = (sector_nr | conf->chunk_mask) - sector_nr +1;
2601
2602 for (i=0; i<conf->copies; i++) {
2603 int d = r10_bio->devs[i].devnum;
40c356ce
N
2604 sector_t first_bad, sector;
2605 int bad_sectors;
2606
1da177e4
LT
2607 bio = r10_bio->devs[i].bio;
2608 bio->bi_end_io = NULL;
af03b8e4 2609 clear_bit(BIO_UPTODATE, &bio->bi_flags);
1da177e4 2610 if (conf->mirrors[d].rdev == NULL ||
b2d444d7 2611 test_bit(Faulty, &conf->mirrors[d].rdev->flags))
1da177e4 2612 continue;
40c356ce
N
2613 sector = r10_bio->devs[i].addr;
2614 if (is_badblock(conf->mirrors[d].rdev,
2615 sector, max_sync,
2616 &first_bad, &bad_sectors)) {
2617 if (first_bad > sector)
2618 max_sync = first_bad - sector;
2619 else {
2620 bad_sectors -= (sector - first_bad);
2621 if (max_sync > bad_sectors)
2622 max_sync = max_sync;
2623 continue;
2624 }
2625 }
1da177e4
LT
2626 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2627 atomic_inc(&r10_bio->remaining);
2628 bio->bi_next = biolist;
2629 biolist = bio;
2630 bio->bi_private = r10_bio;
2631 bio->bi_end_io = end_sync_read;
802ba064 2632 bio->bi_rw = READ;
40c356ce 2633 bio->bi_sector = sector +
1da177e4
LT
2634 conf->mirrors[d].rdev->data_offset;
2635 bio->bi_bdev = conf->mirrors[d].rdev->bdev;
2636 count++;
2637 }
2638
2639 if (count < 2) {
2640 for (i=0; i<conf->copies; i++) {
2641 int d = r10_bio->devs[i].devnum;
2642 if (r10_bio->devs[i].bio->bi_end_io)
ab9d47e9
N
2643 rdev_dec_pending(conf->mirrors[d].rdev,
2644 mddev);
1da177e4
LT
2645 }
2646 put_buf(r10_bio);
2647 biolist = NULL;
2648 goto giveup;
2649 }
2650 }
2651
2652 for (bio = biolist; bio ; bio=bio->bi_next) {
2653
2654 bio->bi_flags &= ~(BIO_POOL_MASK - 1);
2655 if (bio->bi_end_io)
2656 bio->bi_flags |= 1 << BIO_UPTODATE;
2657 bio->bi_vcnt = 0;
2658 bio->bi_idx = 0;
2659 bio->bi_phys_segments = 0;
1da177e4
LT
2660 bio->bi_size = 0;
2661 }
2662
2663 nr_sectors = 0;
6cce3b23
N
2664 if (sector_nr + max_sync < max_sector)
2665 max_sector = sector_nr + max_sync;
1da177e4
LT
2666 do {
2667 struct page *page;
2668 int len = PAGE_SIZE;
1da177e4
LT
2669 if (sector_nr + (len>>9) > max_sector)
2670 len = (max_sector - sector_nr) << 9;
2671 if (len == 0)
2672 break;
2673 for (bio= biolist ; bio ; bio=bio->bi_next) {
ab9d47e9 2674 struct bio *bio2;
1da177e4 2675 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
ab9d47e9
N
2676 if (bio_add_page(bio, page, len, 0))
2677 continue;
2678
2679 /* stop here */
2680 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2681 for (bio2 = biolist;
2682 bio2 && bio2 != bio;
2683 bio2 = bio2->bi_next) {
2684 /* remove last page from this bio */
2685 bio2->bi_vcnt--;
2686 bio2->bi_size -= len;
2687 bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
1da177e4 2688 }
ab9d47e9 2689 goto bio_full;
1da177e4
LT
2690 }
2691 nr_sectors += len>>9;
2692 sector_nr += len>>9;
2693 } while (biolist->bi_vcnt < RESYNC_PAGES);
2694 bio_full:
2695 r10_bio->sectors = nr_sectors;
2696
2697 while (biolist) {
2698 bio = biolist;
2699 biolist = biolist->bi_next;
2700
2701 bio->bi_next = NULL;
2702 r10_bio = bio->bi_private;
2703 r10_bio->sectors = nr_sectors;
2704
2705 if (bio->bi_end_io == end_sync_read) {
2706 md_sync_acct(bio->bi_bdev, nr_sectors);
2707 generic_make_request(bio);
2708 }
2709 }
2710
57afd89f
N
2711 if (sectors_skipped)
2712 /* pretend they weren't skipped, it makes
2713 * no important difference in this case
2714 */
2715 md_done_sync(mddev, sectors_skipped, 1);
2716
1da177e4
LT
2717 return sectors_skipped + nr_sectors;
2718 giveup:
2719 /* There is nowhere to write, so all non-sync
e875ecea
N
2720 * drives must be failed or in resync, all drives
2721 * have a bad block, so try the next chunk...
1da177e4 2722 */
09b4068a
N
2723 if (sector_nr + max_sync < max_sector)
2724 max_sector = sector_nr + max_sync;
2725
2726 sectors_skipped += (max_sector - sector_nr);
1da177e4
LT
2727 chunks_skipped ++;
2728 sector_nr = max_sector;
1da177e4 2729 goto skipped;
1da177e4
LT
2730}
2731
80c3a6ce 2732static sector_t
fd01b88c 2733raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
80c3a6ce
DW
2734{
2735 sector_t size;
e879a879 2736 struct r10conf *conf = mddev->private;
80c3a6ce
DW
2737
2738 if (!raid_disks)
84707f38 2739 raid_disks = conf->raid_disks;
80c3a6ce 2740 if (!sectors)
dab8b292 2741 sectors = conf->dev_sectors;
80c3a6ce
DW
2742
2743 size = sectors >> conf->chunk_shift;
2744 sector_div(size, conf->far_copies);
2745 size = size * raid_disks;
2746 sector_div(size, conf->near_copies);
2747
2748 return size << conf->chunk_shift;
2749}
2750
dab8b292 2751
e879a879 2752static struct r10conf *setup_conf(struct mddev *mddev)
1da177e4 2753{
e879a879 2754 struct r10conf *conf = NULL;
c93983bf 2755 int nc, fc, fo;
1da177e4 2756 sector_t stride, size;
dab8b292 2757 int err = -EINVAL;
1da177e4 2758
f73ea873
MT
2759 if (mddev->new_chunk_sectors < (PAGE_SIZE >> 9) ||
2760 !is_power_of_2(mddev->new_chunk_sectors)) {
128595ed
N
2761 printk(KERN_ERR "md/raid10:%s: chunk size must be "
2762 "at least PAGE_SIZE(%ld) and be a power of 2.\n",
2763 mdname(mddev), PAGE_SIZE);
dab8b292 2764 goto out;
1da177e4 2765 }
2604b703 2766
f73ea873
MT
2767 nc = mddev->new_layout & 255;
2768 fc = (mddev->new_layout >> 8) & 255;
2769 fo = mddev->new_layout & (1<<16);
dab8b292 2770
1da177e4 2771 if ((nc*fc) <2 || (nc*fc) > mddev->raid_disks ||
f73ea873 2772 (mddev->new_layout >> 17)) {
128595ed 2773 printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
f73ea873 2774 mdname(mddev), mddev->new_layout);
1da177e4
LT
2775 goto out;
2776 }
dab8b292
TM
2777
2778 err = -ENOMEM;
e879a879 2779 conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
dab8b292 2780 if (!conf)
1da177e4 2781 goto out;
dab8b292 2782
4443ae10 2783 conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
dab8b292
TM
2784 GFP_KERNEL);
2785 if (!conf->mirrors)
2786 goto out;
4443ae10
N
2787
2788 conf->tmppage = alloc_page(GFP_KERNEL);
2789 if (!conf->tmppage)
dab8b292
TM
2790 goto out;
2791
1da177e4 2792
64a742bc 2793 conf->raid_disks = mddev->raid_disks;
1da177e4
LT
2794 conf->near_copies = nc;
2795 conf->far_copies = fc;
2796 conf->copies = nc*fc;
c93983bf 2797 conf->far_offset = fo;
dab8b292
TM
2798 conf->chunk_mask = mddev->new_chunk_sectors - 1;
2799 conf->chunk_shift = ffz(~mddev->new_chunk_sectors);
2800
2801 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
2802 r10bio_pool_free, conf);
2803 if (!conf->r10bio_pool)
2804 goto out;
2805
58c0fed4 2806 size = mddev->dev_sectors >> conf->chunk_shift;
64a742bc
N
2807 sector_div(size, fc);
2808 size = size * conf->raid_disks;
2809 sector_div(size, nc);
2810 /* 'size' is now the number of chunks in the array */
2811 /* calculate "used chunks per device" in 'stride' */
2812 stride = size * conf->copies;
af03b8e4
N
2813
2814 /* We need to round up when dividing by raid_disks to
2815 * get the stride size.
2816 */
2817 stride += conf->raid_disks - 1;
64a742bc 2818 sector_div(stride, conf->raid_disks);
dab8b292
TM
2819
2820 conf->dev_sectors = stride << conf->chunk_shift;
64a742bc 2821
c93983bf 2822 if (fo)
64a742bc
N
2823 stride = 1;
2824 else
c93983bf 2825 sector_div(stride, fc);
64a742bc
N
2826 conf->stride = stride << conf->chunk_shift;
2827
1da177e4 2828
e7e72bf6 2829 spin_lock_init(&conf->device_lock);
dab8b292
TM
2830 INIT_LIST_HEAD(&conf->retry_list);
2831
2832 spin_lock_init(&conf->resync_lock);
2833 init_waitqueue_head(&conf->wait_barrier);
2834
2835 conf->thread = md_register_thread(raid10d, mddev, NULL);
2836 if (!conf->thread)
2837 goto out;
2838
dab8b292
TM
2839 conf->mddev = mddev;
2840 return conf;
2841
2842 out:
128595ed 2843 printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n",
dab8b292
TM
2844 mdname(mddev));
2845 if (conf) {
2846 if (conf->r10bio_pool)
2847 mempool_destroy(conf->r10bio_pool);
2848 kfree(conf->mirrors);
2849 safe_put_page(conf->tmppage);
2850 kfree(conf);
2851 }
2852 return ERR_PTR(err);
2853}
2854
fd01b88c 2855static int run(struct mddev *mddev)
dab8b292 2856{
e879a879 2857 struct r10conf *conf;
dab8b292 2858 int i, disk_idx, chunk_size;
0f6d02d5 2859 struct mirror_info *disk;
3cb03002 2860 struct md_rdev *rdev;
dab8b292
TM
2861 sector_t size;
2862
2863 /*
2864 * copy the already verified devices into our private RAID10
2865 * bookkeeping area. [whatever we allocate in run(),
2866 * should be freed in stop()]
2867 */
2868
2869 if (mddev->private == NULL) {
2870 conf = setup_conf(mddev);
2871 if (IS_ERR(conf))
2872 return PTR_ERR(conf);
2873 mddev->private = conf;
2874 }
2875 conf = mddev->private;
2876 if (!conf)
2877 goto out;
2878
dab8b292
TM
2879 mddev->thread = conf->thread;
2880 conf->thread = NULL;
2881
8f6c2e4b
MP
2882 chunk_size = mddev->chunk_sectors << 9;
2883 blk_queue_io_min(mddev->queue, chunk_size);
2884 if (conf->raid_disks % conf->near_copies)
2885 blk_queue_io_opt(mddev->queue, chunk_size * conf->raid_disks);
2886 else
2887 blk_queue_io_opt(mddev->queue, chunk_size *
2888 (conf->raid_disks / conf->near_copies));
2889
159ec1fc 2890 list_for_each_entry(rdev, &mddev->disks, same_set) {
34b343cf 2891
1da177e4 2892 disk_idx = rdev->raid_disk;
84707f38 2893 if (disk_idx >= conf->raid_disks
1da177e4
LT
2894 || disk_idx < 0)
2895 continue;
2896 disk = conf->mirrors + disk_idx;
2897
2898 disk->rdev = rdev;
8f6c2e4b
MP
2899 disk_stack_limits(mddev->gendisk, rdev->bdev,
2900 rdev->data_offset << 9);
1da177e4 2901 /* as we don't honour merge_bvec_fn, we must never risk
627a2d3c
N
2902 * violating it, so limit max_segments to 1 lying
2903 * within a single page.
1da177e4 2904 */
627a2d3c
N
2905 if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
2906 blk_queue_max_segments(mddev->queue, 1);
2907 blk_queue_segment_boundary(mddev->queue,
2908 PAGE_CACHE_SIZE - 1);
2909 }
1da177e4
LT
2910
2911 disk->head_position = 0;
1da177e4 2912 }
6d508242 2913 /* need to check that every block has at least one working mirror */
700c7213 2914 if (!enough(conf, -1)) {
128595ed 2915 printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n",
6d508242 2916 mdname(mddev));
1da177e4
LT
2917 goto out_free_conf;
2918 }
2919
2920 mddev->degraded = 0;
2921 for (i = 0; i < conf->raid_disks; i++) {
2922
2923 disk = conf->mirrors + i;
2924
5fd6c1dc 2925 if (!disk->rdev ||
2e333e89 2926 !test_bit(In_sync, &disk->rdev->flags)) {
1da177e4
LT
2927 disk->head_position = 0;
2928 mddev->degraded++;
8c2e870a
NB
2929 if (disk->rdev)
2930 conf->fullsync = 1;
1da177e4 2931 }
d890fa2b 2932 disk->recovery_disabled = mddev->recovery_disabled - 1;
1da177e4
LT
2933 }
2934
8c6ac868 2935 if (mddev->recovery_cp != MaxSector)
128595ed 2936 printk(KERN_NOTICE "md/raid10:%s: not clean"
8c6ac868
AN
2937 " -- starting background reconstruction\n",
2938 mdname(mddev));
1da177e4 2939 printk(KERN_INFO
128595ed 2940 "md/raid10:%s: active with %d out of %d devices\n",
84707f38
N
2941 mdname(mddev), conf->raid_disks - mddev->degraded,
2942 conf->raid_disks);
1da177e4
LT
2943 /*
2944 * Ok, everything is just fine now
2945 */
dab8b292
TM
2946 mddev->dev_sectors = conf->dev_sectors;
2947 size = raid10_size(mddev, 0, 0);
2948 md_set_array_sectors(mddev, size);
2949 mddev->resync_max_sectors = size;
1da177e4 2950
0d129228
N
2951 mddev->queue->backing_dev_info.congested_fn = raid10_congested;
2952 mddev->queue->backing_dev_info.congested_data = mddev;
7a5febe9 2953
1da177e4
LT
2954 /* Calculate max read-ahead size.
2955 * We need to readahead at least twice a whole stripe....
2956 * maybe...
2957 */
2958 {
9d8f0363
AN
2959 int stripe = conf->raid_disks *
2960 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
1da177e4
LT
2961 stripe /= conf->near_copies;
2962 if (mddev->queue->backing_dev_info.ra_pages < 2* stripe)
2963 mddev->queue->backing_dev_info.ra_pages = 2* stripe;
2964 }
2965
84707f38 2966 if (conf->near_copies < conf->raid_disks)
1da177e4 2967 blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
a91a2785
MP
2968
2969 if (md_integrity_register(mddev))
2970 goto out_free_conf;
2971
1da177e4
LT
2972 return 0;
2973
2974out_free_conf:
01f96c0a 2975 md_unregister_thread(&mddev->thread);
1da177e4
LT
2976 if (conf->r10bio_pool)
2977 mempool_destroy(conf->r10bio_pool);
1345b1d8 2978 safe_put_page(conf->tmppage);
990a8baf 2979 kfree(conf->mirrors);
1da177e4
LT
2980 kfree(conf);
2981 mddev->private = NULL;
2982out:
2983 return -EIO;
2984}
2985
fd01b88c 2986static int stop(struct mddev *mddev)
1da177e4 2987{
e879a879 2988 struct r10conf *conf = mddev->private;
1da177e4 2989
409c57f3
N
2990 raise_barrier(conf, 0);
2991 lower_barrier(conf);
2992
01f96c0a 2993 md_unregister_thread(&mddev->thread);
1da177e4
LT
2994 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
2995 if (conf->r10bio_pool)
2996 mempool_destroy(conf->r10bio_pool);
990a8baf 2997 kfree(conf->mirrors);
1da177e4
LT
2998 kfree(conf);
2999 mddev->private = NULL;
3000 return 0;
3001}
3002
fd01b88c 3003static void raid10_quiesce(struct mddev *mddev, int state)
6cce3b23 3004{
e879a879 3005 struct r10conf *conf = mddev->private;
6cce3b23
N
3006
3007 switch(state) {
3008 case 1:
3009 raise_barrier(conf, 0);
3010 break;
3011 case 0:
3012 lower_barrier(conf);
3013 break;
3014 }
6cce3b23 3015}
1da177e4 3016
fd01b88c 3017static void *raid10_takeover_raid0(struct mddev *mddev)
dab8b292 3018{
3cb03002 3019 struct md_rdev *rdev;
e879a879 3020 struct r10conf *conf;
dab8b292
TM
3021
3022 if (mddev->degraded > 0) {
128595ed
N
3023 printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n",
3024 mdname(mddev));
dab8b292
TM
3025 return ERR_PTR(-EINVAL);
3026 }
3027
dab8b292
TM
3028 /* Set new parameters */
3029 mddev->new_level = 10;
3030 /* new layout: far_copies = 1, near_copies = 2 */
3031 mddev->new_layout = (1<<8) + 2;
3032 mddev->new_chunk_sectors = mddev->chunk_sectors;
3033 mddev->delta_disks = mddev->raid_disks;
dab8b292
TM
3034 mddev->raid_disks *= 2;
3035 /* make sure it will be not marked as dirty */
3036 mddev->recovery_cp = MaxSector;
3037
3038 conf = setup_conf(mddev);
02214dc5 3039 if (!IS_ERR(conf)) {
e93f68a1
N
3040 list_for_each_entry(rdev, &mddev->disks, same_set)
3041 if (rdev->raid_disk >= 0)
3042 rdev->new_raid_disk = rdev->raid_disk * 2;
02214dc5
KW
3043 conf->barrier = 1;
3044 }
3045
dab8b292
TM
3046 return conf;
3047}
3048
fd01b88c 3049static void *raid10_takeover(struct mddev *mddev)
dab8b292 3050{
e373ab10 3051 struct r0conf *raid0_conf;
dab8b292
TM
3052
3053 /* raid10 can take over:
3054 * raid0 - providing it has only two drives
3055 */
3056 if (mddev->level == 0) {
3057 /* for raid0 takeover only one zone is supported */
e373ab10
N
3058 raid0_conf = mddev->private;
3059 if (raid0_conf->nr_strip_zones > 1) {
128595ed
N
3060 printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0"
3061 " with more than one zone.\n",
3062 mdname(mddev));
dab8b292
TM
3063 return ERR_PTR(-EINVAL);
3064 }
3065 return raid10_takeover_raid0(mddev);
3066 }
3067 return ERR_PTR(-EINVAL);
3068}
3069
84fc4b56 3070static struct md_personality raid10_personality =
1da177e4
LT
3071{
3072 .name = "raid10",
2604b703 3073 .level = 10,
1da177e4
LT
3074 .owner = THIS_MODULE,
3075 .make_request = make_request,
3076 .run = run,
3077 .stop = stop,
3078 .status = status,
3079 .error_handler = error,
3080 .hot_add_disk = raid10_add_disk,
3081 .hot_remove_disk= raid10_remove_disk,
3082 .spare_active = raid10_spare_active,
3083 .sync_request = sync_request,
6cce3b23 3084 .quiesce = raid10_quiesce,
80c3a6ce 3085 .size = raid10_size,
dab8b292 3086 .takeover = raid10_takeover,
1da177e4
LT
3087};
3088
3089static int __init raid_init(void)
3090{
2604b703 3091 return register_md_personality(&raid10_personality);
1da177e4
LT
3092}
3093
3094static void raid_exit(void)
3095{
2604b703 3096 unregister_md_personality(&raid10_personality);
1da177e4
LT
3097}
3098
3099module_init(raid_init);
3100module_exit(raid_exit);
3101MODULE_LICENSE("GPL");
0efb9e61 3102MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
1da177e4 3103MODULE_ALIAS("md-personality-9"); /* RAID10 */
d9d166c2 3104MODULE_ALIAS("md-raid10");
2604b703 3105MODULE_ALIAS("md-level-10");
34db0cd6
N
3106
3107module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);