md/raid10: simplify read error handling during recovery.
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / md / raid10.c
CommitLineData
1da177e4
LT
1/*
2 * raid10.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 2000-2004 Neil Brown
5 *
6 * RAID-10 support for md.
7 *
25985edc 8 * Base on code in raid1.c. See raid1.c for further copyright information.
1da177e4
LT
9 *
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
5a0e3ad6 21#include <linux/slab.h>
25570727 22#include <linux/delay.h>
bff61975 23#include <linux/blkdev.h>
bff61975 24#include <linux/seq_file.h>
8bda470e 25#include <linux/ratelimit.h>
43b2e5d8 26#include "md.h"
ef740c37 27#include "raid10.h"
dab8b292 28#include "raid0.h"
ef740c37 29#include "bitmap.h"
1da177e4
LT
30
31/*
32 * RAID10 provides a combination of RAID0 and RAID1 functionality.
33 * The layout of data is defined by
34 * chunk_size
35 * raid_disks
36 * near_copies (stored in low byte of layout)
37 * far_copies (stored in second byte of layout)
c93983bf 38 * far_offset (stored in bit 16 of layout )
1da177e4
LT
39 *
40 * The data to be stored is divided into chunks using chunksize.
41 * Each device is divided into far_copies sections.
42 * In each section, chunks are laid out in a style similar to raid0, but
43 * near_copies copies of each chunk is stored (each on a different drive).
44 * The starting device for each section is offset near_copies from the starting
45 * device of the previous section.
c93983bf 46 * Thus they are (near_copies*far_copies) of each chunk, and each is on a different
1da177e4
LT
47 * drive.
48 * near_copies and far_copies must be at least one, and their product is at most
49 * raid_disks.
c93983bf
N
50 *
51 * If far_offset is true, then the far_copies are handled a bit differently.
52 * The copies are still in different stripes, but instead of be very far apart
53 * on disk, there are adjacent stripes.
1da177e4
LT
54 */
55
56/*
57 * Number of guaranteed r10bios in case of extreme VM load:
58 */
59#define NR_RAID10_BIOS 256
60
0a27ec96
N
61static void allow_barrier(conf_t *conf);
62static void lower_barrier(conf_t *conf);
63
dd0fc66f 64static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4
LT
65{
66 conf_t *conf = data;
1da177e4
LT
67 int size = offsetof(struct r10bio_s, devs[conf->copies]);
68
69 /* allocate a r10bio with room for raid_disks entries in the bios array */
7eaceacc 70 return kzalloc(size, gfp_flags);
1da177e4
LT
71}
72
73static void r10bio_pool_free(void *r10_bio, void *data)
74{
75 kfree(r10_bio);
76}
77
0310fa21 78/* Maximum size of each resync request */
1da177e4 79#define RESYNC_BLOCK_SIZE (64*1024)
1da177e4 80#define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
0310fa21
N
81/* amount of memory to reserve for resync requests */
82#define RESYNC_WINDOW (1024*1024)
83/* maximum number of concurrent requests, memory permitting */
84#define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
1da177e4
LT
85
86/*
87 * When performing a resync, we need to read and compare, so
88 * we need as many pages are there are copies.
89 * When performing a recovery, we need 2 bios, one for read,
90 * one for write (we recover only one drive per r10buf)
91 *
92 */
dd0fc66f 93static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4
LT
94{
95 conf_t *conf = data;
96 struct page *page;
97 r10bio_t *r10_bio;
98 struct bio *bio;
99 int i, j;
100 int nalloc;
101
102 r10_bio = r10bio_pool_alloc(gfp_flags, conf);
7eaceacc 103 if (!r10_bio)
1da177e4 104 return NULL;
1da177e4
LT
105
106 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
107 nalloc = conf->copies; /* resync */
108 else
109 nalloc = 2; /* recovery */
110
111 /*
112 * Allocate bios.
113 */
114 for (j = nalloc ; j-- ; ) {
6746557f 115 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
1da177e4
LT
116 if (!bio)
117 goto out_free_bio;
118 r10_bio->devs[j].bio = bio;
119 }
120 /*
121 * Allocate RESYNC_PAGES data pages and attach them
122 * where needed.
123 */
124 for (j = 0 ; j < nalloc; j++) {
125 bio = r10_bio->devs[j].bio;
126 for (i = 0; i < RESYNC_PAGES; i++) {
c65060ad
NK
127 if (j == 1 && !test_bit(MD_RECOVERY_SYNC,
128 &conf->mddev->recovery)) {
129 /* we can share bv_page's during recovery */
130 struct bio *rbio = r10_bio->devs[0].bio;
131 page = rbio->bi_io_vec[i].bv_page;
132 get_page(page);
133 } else
134 page = alloc_page(gfp_flags);
1da177e4
LT
135 if (unlikely(!page))
136 goto out_free_pages;
137
138 bio->bi_io_vec[i].bv_page = page;
139 }
140 }
141
142 return r10_bio;
143
144out_free_pages:
145 for ( ; i > 0 ; i--)
1345b1d8 146 safe_put_page(bio->bi_io_vec[i-1].bv_page);
1da177e4
LT
147 while (j--)
148 for (i = 0; i < RESYNC_PAGES ; i++)
1345b1d8 149 safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
1da177e4
LT
150 j = -1;
151out_free_bio:
152 while ( ++j < nalloc )
153 bio_put(r10_bio->devs[j].bio);
154 r10bio_pool_free(r10_bio, conf);
155 return NULL;
156}
157
158static void r10buf_pool_free(void *__r10_bio, void *data)
159{
160 int i;
161 conf_t *conf = data;
162 r10bio_t *r10bio = __r10_bio;
163 int j;
164
165 for (j=0; j < conf->copies; j++) {
166 struct bio *bio = r10bio->devs[j].bio;
167 if (bio) {
168 for (i = 0; i < RESYNC_PAGES; i++) {
1345b1d8 169 safe_put_page(bio->bi_io_vec[i].bv_page);
1da177e4
LT
170 bio->bi_io_vec[i].bv_page = NULL;
171 }
172 bio_put(bio);
173 }
174 }
175 r10bio_pool_free(r10bio, conf);
176}
177
178static void put_all_bios(conf_t *conf, r10bio_t *r10_bio)
179{
180 int i;
181
182 for (i = 0; i < conf->copies; i++) {
183 struct bio **bio = & r10_bio->devs[i].bio;
749c55e9 184 if (!BIO_SPECIAL(*bio))
1da177e4
LT
185 bio_put(*bio);
186 *bio = NULL;
187 }
188}
189
858119e1 190static void free_r10bio(r10bio_t *r10_bio)
1da177e4 191{
070ec55d 192 conf_t *conf = r10_bio->mddev->private;
1da177e4 193
1da177e4
LT
194 put_all_bios(conf, r10_bio);
195 mempool_free(r10_bio, conf->r10bio_pool);
196}
197
858119e1 198static void put_buf(r10bio_t *r10_bio)
1da177e4 199{
070ec55d 200 conf_t *conf = r10_bio->mddev->private;
1da177e4
LT
201
202 mempool_free(r10_bio, conf->r10buf_pool);
203
0a27ec96 204 lower_barrier(conf);
1da177e4
LT
205}
206
207static void reschedule_retry(r10bio_t *r10_bio)
208{
209 unsigned long flags;
210 mddev_t *mddev = r10_bio->mddev;
070ec55d 211 conf_t *conf = mddev->private;
1da177e4
LT
212
213 spin_lock_irqsave(&conf->device_lock, flags);
214 list_add(&r10_bio->retry_list, &conf->retry_list);
4443ae10 215 conf->nr_queued ++;
1da177e4
LT
216 spin_unlock_irqrestore(&conf->device_lock, flags);
217
388667be
AJ
218 /* wake up frozen array... */
219 wake_up(&conf->wait_barrier);
220
1da177e4
LT
221 md_wakeup_thread(mddev->thread);
222}
223
224/*
225 * raid_end_bio_io() is called when we have finished servicing a mirrored
226 * operation and are ready to return a success/failure code to the buffer
227 * cache layer.
228 */
229static void raid_end_bio_io(r10bio_t *r10_bio)
230{
231 struct bio *bio = r10_bio->master_bio;
856e08e2
N
232 int done;
233 conf_t *conf = r10_bio->mddev->private;
1da177e4 234
856e08e2
N
235 if (bio->bi_phys_segments) {
236 unsigned long flags;
237 spin_lock_irqsave(&conf->device_lock, flags);
238 bio->bi_phys_segments--;
239 done = (bio->bi_phys_segments == 0);
240 spin_unlock_irqrestore(&conf->device_lock, flags);
241 } else
242 done = 1;
243 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
244 clear_bit(BIO_UPTODATE, &bio->bi_flags);
245 if (done) {
246 bio_endio(bio, 0);
247 /*
248 * Wake up any possible resync thread that waits for the device
249 * to go idle.
250 */
251 allow_barrier(conf);
252 }
1da177e4
LT
253 free_r10bio(r10_bio);
254}
255
256/*
257 * Update disk head position estimator based on IRQ completion info.
258 */
259static inline void update_head_pos(int slot, r10bio_t *r10_bio)
260{
070ec55d 261 conf_t *conf = r10_bio->mddev->private;
1da177e4
LT
262
263 conf->mirrors[r10_bio->devs[slot].devnum].head_position =
264 r10_bio->devs[slot].addr + (r10_bio->sectors);
265}
266
778ca018
NK
267/*
268 * Find the disk number which triggered given bio
269 */
749c55e9
N
270static int find_bio_disk(conf_t *conf, r10bio_t *r10_bio,
271 struct bio *bio, int *slotp)
778ca018
NK
272{
273 int slot;
274
275 for (slot = 0; slot < conf->copies; slot++)
276 if (r10_bio->devs[slot].bio == bio)
277 break;
278
279 BUG_ON(slot == conf->copies);
280 update_head_pos(slot, r10_bio);
281
749c55e9
N
282 if (slotp)
283 *slotp = slot;
778ca018
NK
284 return r10_bio->devs[slot].devnum;
285}
286
6712ecf8 287static void raid10_end_read_request(struct bio *bio, int error)
1da177e4
LT
288{
289 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
7b92813c 290 r10bio_t *r10_bio = bio->bi_private;
1da177e4 291 int slot, dev;
070ec55d 292 conf_t *conf = r10_bio->mddev->private;
1da177e4 293
1da177e4
LT
294
295 slot = r10_bio->read_slot;
296 dev = r10_bio->devs[slot].devnum;
297 /*
298 * this branch is our 'one mirror IO has finished' event handler:
299 */
4443ae10
N
300 update_head_pos(slot, r10_bio);
301
302 if (uptodate) {
1da177e4
LT
303 /*
304 * Set R10BIO_Uptodate in our master bio, so that
305 * we will return a good error code to the higher
306 * levels even if IO on some other mirrored buffer fails.
307 *
308 * The 'master' represents the composite IO operation to
309 * user-side. So if something waits for IO, then it will
310 * wait for the 'master' bio.
311 */
312 set_bit(R10BIO_Uptodate, &r10_bio->state);
1da177e4 313 raid_end_bio_io(r10_bio);
7c4e06ff 314 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
4443ae10 315 } else {
1da177e4 316 /*
7c4e06ff 317 * oops, read error - keep the refcount on the rdev
1da177e4
LT
318 */
319 char b[BDEVNAME_SIZE];
8bda470e
CD
320 printk_ratelimited(KERN_ERR
321 "md/raid10:%s: %s: rescheduling sector %llu\n",
322 mdname(conf->mddev),
323 bdevname(conf->mirrors[dev].rdev->bdev, b),
324 (unsigned long long)r10_bio->sector);
856e08e2 325 set_bit(R10BIO_ReadError, &r10_bio->state);
1da177e4
LT
326 reschedule_retry(r10_bio);
327 }
1da177e4
LT
328}
329
bd870a16
N
330static void close_write(r10bio_t *r10_bio)
331{
332 /* clear the bitmap if all writes complete successfully */
333 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
334 r10_bio->sectors,
335 !test_bit(R10BIO_Degraded, &r10_bio->state),
336 0);
337 md_write_end(r10_bio->mddev);
338}
339
6712ecf8 340static void raid10_end_write_request(struct bio *bio, int error)
1da177e4
LT
341{
342 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
7b92813c 343 r10bio_t *r10_bio = bio->bi_private;
778ca018 344 int dev;
749c55e9 345 int dec_rdev = 1;
070ec55d 346 conf_t *conf = r10_bio->mddev->private;
749c55e9 347 int slot;
1da177e4 348
749c55e9 349 dev = find_bio_disk(conf, r10_bio, bio, &slot);
1da177e4
LT
350
351 /*
352 * this branch is our 'one mirror IO has finished' event handler:
353 */
6cce3b23 354 if (!uptodate) {
bd870a16
N
355 set_bit(WriteErrorSeen, &conf->mirrors[dev].rdev->flags);
356 set_bit(R10BIO_WriteError, &r10_bio->state);
357 dec_rdev = 0;
749c55e9 358 } else {
1da177e4
LT
359 /*
360 * Set R10BIO_Uptodate in our master bio, so that
361 * we will return a good error code for to the higher
362 * levels even if IO on some other mirrored buffer fails.
363 *
364 * The 'master' represents the composite IO operation to
365 * user-side. So if something waits for IO, then it will
366 * wait for the 'master' bio.
367 */
749c55e9
N
368 sector_t first_bad;
369 int bad_sectors;
370
1da177e4
LT
371 set_bit(R10BIO_Uptodate, &r10_bio->state);
372
749c55e9
N
373 /* Maybe we can clear some bad blocks. */
374 if (is_badblock(conf->mirrors[dev].rdev,
375 r10_bio->devs[slot].addr,
376 r10_bio->sectors,
377 &first_bad, &bad_sectors)) {
378 bio_put(bio);
379 r10_bio->devs[slot].bio = IO_MADE_GOOD;
380 dec_rdev = 0;
381 set_bit(R10BIO_MadeGood, &r10_bio->state);
382 }
383 }
384
1da177e4
LT
385 /*
386 *
387 * Let's see if all mirrored write operations have finished
388 * already.
389 */
390 if (atomic_dec_and_test(&r10_bio->remaining)) {
bd870a16 391 if (test_bit(R10BIO_WriteError, &r10_bio->state))
749c55e9 392 reschedule_retry(r10_bio);
bd870a16
N
393 else {
394 close_write(r10_bio);
395 if (test_bit(R10BIO_MadeGood, &r10_bio->state))
396 reschedule_retry(r10_bio);
397 else
398 raid_end_bio_io(r10_bio);
399 }
1da177e4 400 }
749c55e9
N
401 if (dec_rdev)
402 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
1da177e4
LT
403}
404
405
406/*
407 * RAID10 layout manager
25985edc 408 * As well as the chunksize and raid_disks count, there are two
1da177e4
LT
409 * parameters: near_copies and far_copies.
410 * near_copies * far_copies must be <= raid_disks.
411 * Normally one of these will be 1.
412 * If both are 1, we get raid0.
413 * If near_copies == raid_disks, we get raid1.
414 *
25985edc 415 * Chunks are laid out in raid0 style with near_copies copies of the
1da177e4
LT
416 * first chunk, followed by near_copies copies of the next chunk and
417 * so on.
418 * If far_copies > 1, then after 1/far_copies of the array has been assigned
419 * as described above, we start again with a device offset of near_copies.
420 * So we effectively have another copy of the whole array further down all
421 * the drives, but with blocks on different drives.
422 * With this layout, and block is never stored twice on the one device.
423 *
424 * raid10_find_phys finds the sector offset of a given virtual sector
c93983bf 425 * on each device that it is on.
1da177e4
LT
426 *
427 * raid10_find_virt does the reverse mapping, from a device and a
428 * sector offset to a virtual address
429 */
430
431static void raid10_find_phys(conf_t *conf, r10bio_t *r10bio)
432{
433 int n,f;
434 sector_t sector;
435 sector_t chunk;
436 sector_t stripe;
437 int dev;
438
439 int slot = 0;
440
441 /* now calculate first sector/dev */
442 chunk = r10bio->sector >> conf->chunk_shift;
443 sector = r10bio->sector & conf->chunk_mask;
444
445 chunk *= conf->near_copies;
446 stripe = chunk;
447 dev = sector_div(stripe, conf->raid_disks);
c93983bf
N
448 if (conf->far_offset)
449 stripe *= conf->far_copies;
1da177e4
LT
450
451 sector += stripe << conf->chunk_shift;
452
453 /* and calculate all the others */
454 for (n=0; n < conf->near_copies; n++) {
455 int d = dev;
456 sector_t s = sector;
457 r10bio->devs[slot].addr = sector;
458 r10bio->devs[slot].devnum = d;
459 slot++;
460
461 for (f = 1; f < conf->far_copies; f++) {
462 d += conf->near_copies;
463 if (d >= conf->raid_disks)
464 d -= conf->raid_disks;
465 s += conf->stride;
466 r10bio->devs[slot].devnum = d;
467 r10bio->devs[slot].addr = s;
468 slot++;
469 }
470 dev++;
471 if (dev >= conf->raid_disks) {
472 dev = 0;
473 sector += (conf->chunk_mask + 1);
474 }
475 }
476 BUG_ON(slot != conf->copies);
477}
478
479static sector_t raid10_find_virt(conf_t *conf, sector_t sector, int dev)
480{
481 sector_t offset, chunk, vchunk;
482
1da177e4 483 offset = sector & conf->chunk_mask;
c93983bf
N
484 if (conf->far_offset) {
485 int fc;
486 chunk = sector >> conf->chunk_shift;
487 fc = sector_div(chunk, conf->far_copies);
488 dev -= fc * conf->near_copies;
489 if (dev < 0)
490 dev += conf->raid_disks;
491 } else {
64a742bc 492 while (sector >= conf->stride) {
c93983bf
N
493 sector -= conf->stride;
494 if (dev < conf->near_copies)
495 dev += conf->raid_disks - conf->near_copies;
496 else
497 dev -= conf->near_copies;
498 }
499 chunk = sector >> conf->chunk_shift;
500 }
1da177e4
LT
501 vchunk = chunk * conf->raid_disks + dev;
502 sector_div(vchunk, conf->near_copies);
503 return (vchunk << conf->chunk_shift) + offset;
504}
505
506/**
507 * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
508 * @q: request queue
cc371e66 509 * @bvm: properties of new bio
1da177e4
LT
510 * @biovec: the request that could be merged to it.
511 *
512 * Return amount of bytes we can accept at this offset
513 * If near_copies == raid_disk, there are no striping issues,
514 * but in that case, the function isn't called at all.
515 */
cc371e66
AK
516static int raid10_mergeable_bvec(struct request_queue *q,
517 struct bvec_merge_data *bvm,
518 struct bio_vec *biovec)
1da177e4
LT
519{
520 mddev_t *mddev = q->queuedata;
cc371e66 521 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
1da177e4 522 int max;
9d8f0363 523 unsigned int chunk_sectors = mddev->chunk_sectors;
cc371e66 524 unsigned int bio_sectors = bvm->bi_size >> 9;
1da177e4
LT
525
526 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
527 if (max < 0) max = 0; /* bio_add cannot handle a negative return */
cc371e66
AK
528 if (max <= biovec->bv_len && bio_sectors == 0)
529 return biovec->bv_len;
1da177e4
LT
530 else
531 return max;
532}
533
534/*
535 * This routine returns the disk from which the requested read should
536 * be done. There is a per-array 'next expected sequential IO' sector
537 * number - if this matches on the next IO then we use the last disk.
538 * There is also a per-disk 'last know head position' sector that is
539 * maintained from IRQ contexts, both the normal and the resync IO
540 * completion handlers update this position correctly. If there is no
541 * perfect sequential match then we pick the disk whose head is closest.
542 *
543 * If there are 2 mirrors in the same 2 devices, performance degrades
544 * because position is mirror, not device based.
545 *
546 * The rdev for the device selected will have nr_pending incremented.
547 */
548
549/*
550 * FIXME: possibly should rethink readbalancing and do it differently
551 * depending on near_copies / far_copies geometry.
552 */
856e08e2 553static int read_balance(conf_t *conf, r10bio_t *r10_bio, int *max_sectors)
1da177e4 554{
af3a2cd6 555 const sector_t this_sector = r10_bio->sector;
56d99121 556 int disk, slot;
856e08e2
N
557 int sectors = r10_bio->sectors;
558 int best_good_sectors;
56d99121 559 sector_t new_distance, best_dist;
d6065f7b 560 mdk_rdev_t *rdev;
56d99121
N
561 int do_balance;
562 int best_slot;
1da177e4
LT
563
564 raid10_find_phys(conf, r10_bio);
565 rcu_read_lock();
56d99121 566retry:
856e08e2 567 sectors = r10_bio->sectors;
56d99121
N
568 best_slot = -1;
569 best_dist = MaxSector;
856e08e2 570 best_good_sectors = 0;
56d99121 571 do_balance = 1;
1da177e4
LT
572 /*
573 * Check if we can balance. We can balance on the whole
6cce3b23
N
574 * device if no resync is going on (recovery is ok), or below
575 * the resync window. We take the first readable disk when
576 * above the resync window.
1da177e4
LT
577 */
578 if (conf->mddev->recovery_cp < MaxSector
56d99121
N
579 && (this_sector + sectors >= conf->next_resync))
580 do_balance = 0;
1da177e4 581
56d99121 582 for (slot = 0; slot < conf->copies ; slot++) {
856e08e2
N
583 sector_t first_bad;
584 int bad_sectors;
585 sector_t dev_sector;
586
56d99121
N
587 if (r10_bio->devs[slot].bio == IO_BLOCKED)
588 continue;
1da177e4 589 disk = r10_bio->devs[slot].devnum;
56d99121
N
590 rdev = rcu_dereference(conf->mirrors[disk].rdev);
591 if (rdev == NULL)
1da177e4 592 continue;
56d99121
N
593 if (!test_bit(In_sync, &rdev->flags))
594 continue;
595
856e08e2
N
596 dev_sector = r10_bio->devs[slot].addr;
597 if (is_badblock(rdev, dev_sector, sectors,
598 &first_bad, &bad_sectors)) {
599 if (best_dist < MaxSector)
600 /* Already have a better slot */
601 continue;
602 if (first_bad <= dev_sector) {
603 /* Cannot read here. If this is the
604 * 'primary' device, then we must not read
605 * beyond 'bad_sectors' from another device.
606 */
607 bad_sectors -= (dev_sector - first_bad);
608 if (!do_balance && sectors > bad_sectors)
609 sectors = bad_sectors;
610 if (best_good_sectors > sectors)
611 best_good_sectors = sectors;
612 } else {
613 sector_t good_sectors =
614 first_bad - dev_sector;
615 if (good_sectors > best_good_sectors) {
616 best_good_sectors = good_sectors;
617 best_slot = slot;
618 }
619 if (!do_balance)
620 /* Must read from here */
621 break;
622 }
623 continue;
624 } else
625 best_good_sectors = sectors;
626
56d99121
N
627 if (!do_balance)
628 break;
1da177e4 629
22dfdf52
N
630 /* This optimisation is debatable, and completely destroys
631 * sequential read speed for 'far copies' arrays. So only
632 * keep it for 'near' arrays, and review those later.
633 */
56d99121 634 if (conf->near_copies > 1 && !atomic_read(&rdev->nr_pending))
1da177e4 635 break;
8ed3a195
KS
636
637 /* for far > 1 always use the lowest address */
638 if (conf->far_copies > 1)
56d99121 639 new_distance = r10_bio->devs[slot].addr;
8ed3a195 640 else
56d99121
N
641 new_distance = abs(r10_bio->devs[slot].addr -
642 conf->mirrors[disk].head_position);
643 if (new_distance < best_dist) {
644 best_dist = new_distance;
645 best_slot = slot;
1da177e4
LT
646 }
647 }
56d99121
N
648 if (slot == conf->copies)
649 slot = best_slot;
1da177e4 650
56d99121
N
651 if (slot >= 0) {
652 disk = r10_bio->devs[slot].devnum;
653 rdev = rcu_dereference(conf->mirrors[disk].rdev);
654 if (!rdev)
655 goto retry;
656 atomic_inc(&rdev->nr_pending);
657 if (test_bit(Faulty, &rdev->flags)) {
658 /* Cannot risk returning a device that failed
659 * before we inc'ed nr_pending
660 */
661 rdev_dec_pending(rdev, conf->mddev);
662 goto retry;
663 }
664 r10_bio->read_slot = slot;
665 } else
29fc7e3e 666 disk = -1;
1da177e4 667 rcu_read_unlock();
856e08e2 668 *max_sectors = best_good_sectors;
1da177e4
LT
669
670 return disk;
671}
672
0d129228
N
673static int raid10_congested(void *data, int bits)
674{
675 mddev_t *mddev = data;
070ec55d 676 conf_t *conf = mddev->private;
0d129228
N
677 int i, ret = 0;
678
3fa841d7
N
679 if (mddev_congested(mddev, bits))
680 return 1;
0d129228 681 rcu_read_lock();
84707f38 682 for (i = 0; i < conf->raid_disks && ret == 0; i++) {
0d129228
N
683 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
684 if (rdev && !test_bit(Faulty, &rdev->flags)) {
165125e1 685 struct request_queue *q = bdev_get_queue(rdev->bdev);
0d129228
N
686
687 ret |= bdi_congested(&q->backing_dev_info, bits);
688 }
689 }
690 rcu_read_unlock();
691 return ret;
692}
693
7eaceacc 694static void flush_pending_writes(conf_t *conf)
a35e63ef
N
695{
696 /* Any writes that have been queued but are awaiting
697 * bitmap updates get flushed here.
a35e63ef 698 */
a35e63ef
N
699 spin_lock_irq(&conf->device_lock);
700
701 if (conf->pending_bio_list.head) {
702 struct bio *bio;
703 bio = bio_list_get(&conf->pending_bio_list);
a35e63ef
N
704 spin_unlock_irq(&conf->device_lock);
705 /* flush any pending bitmap writes to disk
706 * before proceeding w/ I/O */
707 bitmap_unplug(conf->mddev->bitmap);
708
709 while (bio) { /* submit pending writes */
710 struct bio *next = bio->bi_next;
711 bio->bi_next = NULL;
712 generic_make_request(bio);
713 bio = next;
714 }
a35e63ef
N
715 } else
716 spin_unlock_irq(&conf->device_lock);
a35e63ef 717}
7eaceacc 718
0a27ec96
N
719/* Barriers....
720 * Sometimes we need to suspend IO while we do something else,
721 * either some resync/recovery, or reconfigure the array.
722 * To do this we raise a 'barrier'.
723 * The 'barrier' is a counter that can be raised multiple times
724 * to count how many activities are happening which preclude
725 * normal IO.
726 * We can only raise the barrier if there is no pending IO.
727 * i.e. if nr_pending == 0.
728 * We choose only to raise the barrier if no-one is waiting for the
729 * barrier to go down. This means that as soon as an IO request
730 * is ready, no other operations which require a barrier will start
731 * until the IO request has had a chance.
732 *
733 * So: regular IO calls 'wait_barrier'. When that returns there
734 * is no backgroup IO happening, It must arrange to call
735 * allow_barrier when it has finished its IO.
736 * backgroup IO calls must call raise_barrier. Once that returns
737 * there is no normal IO happeing. It must arrange to call
738 * lower_barrier when the particular background IO completes.
1da177e4 739 */
1da177e4 740
6cce3b23 741static void raise_barrier(conf_t *conf, int force)
1da177e4 742{
6cce3b23 743 BUG_ON(force && !conf->barrier);
1da177e4 744 spin_lock_irq(&conf->resync_lock);
0a27ec96 745
6cce3b23
N
746 /* Wait until no block IO is waiting (unless 'force') */
747 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
c3b328ac 748 conf->resync_lock, );
0a27ec96
N
749
750 /* block any new IO from starting */
751 conf->barrier++;
752
c3b328ac 753 /* Now wait for all pending IO to complete */
0a27ec96
N
754 wait_event_lock_irq(conf->wait_barrier,
755 !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
c3b328ac 756 conf->resync_lock, );
0a27ec96
N
757
758 spin_unlock_irq(&conf->resync_lock);
759}
760
761static void lower_barrier(conf_t *conf)
762{
763 unsigned long flags;
764 spin_lock_irqsave(&conf->resync_lock, flags);
765 conf->barrier--;
766 spin_unlock_irqrestore(&conf->resync_lock, flags);
767 wake_up(&conf->wait_barrier);
768}
769
770static void wait_barrier(conf_t *conf)
771{
772 spin_lock_irq(&conf->resync_lock);
773 if (conf->barrier) {
774 conf->nr_waiting++;
775 wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
776 conf->resync_lock,
c3b328ac 777 );
0a27ec96 778 conf->nr_waiting--;
1da177e4 779 }
0a27ec96 780 conf->nr_pending++;
1da177e4
LT
781 spin_unlock_irq(&conf->resync_lock);
782}
783
0a27ec96
N
784static void allow_barrier(conf_t *conf)
785{
786 unsigned long flags;
787 spin_lock_irqsave(&conf->resync_lock, flags);
788 conf->nr_pending--;
789 spin_unlock_irqrestore(&conf->resync_lock, flags);
790 wake_up(&conf->wait_barrier);
791}
792
4443ae10
N
793static void freeze_array(conf_t *conf)
794{
795 /* stop syncio and normal IO and wait for everything to
f188593e 796 * go quiet.
4443ae10 797 * We increment barrier and nr_waiting, and then
1c830532
N
798 * wait until nr_pending match nr_queued+1
799 * This is called in the context of one normal IO request
800 * that has failed. Thus any sync request that might be pending
801 * will be blocked by nr_pending, and we need to wait for
802 * pending IO requests to complete or be queued for re-try.
803 * Thus the number queued (nr_queued) plus this request (1)
804 * must match the number of pending IOs (nr_pending) before
805 * we continue.
4443ae10
N
806 */
807 spin_lock_irq(&conf->resync_lock);
808 conf->barrier++;
809 conf->nr_waiting++;
810 wait_event_lock_irq(conf->wait_barrier,
1c830532 811 conf->nr_pending == conf->nr_queued+1,
4443ae10 812 conf->resync_lock,
c3b328ac
N
813 flush_pending_writes(conf));
814
4443ae10
N
815 spin_unlock_irq(&conf->resync_lock);
816}
817
818static void unfreeze_array(conf_t *conf)
819{
820 /* reverse the effect of the freeze */
821 spin_lock_irq(&conf->resync_lock);
822 conf->barrier--;
823 conf->nr_waiting--;
824 wake_up(&conf->wait_barrier);
825 spin_unlock_irq(&conf->resync_lock);
826}
827
21a52c6d 828static int make_request(mddev_t *mddev, struct bio * bio)
1da177e4 829{
070ec55d 830 conf_t *conf = mddev->private;
1da177e4
LT
831 mirror_info_t *mirror;
832 r10bio_t *r10_bio;
833 struct bio *read_bio;
834 int i;
835 int chunk_sects = conf->chunk_mask + 1;
a362357b 836 const int rw = bio_data_dir(bio);
2c7d46ec 837 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
e9c7469b 838 const unsigned long do_fua = (bio->bi_rw & REQ_FUA);
6cce3b23 839 unsigned long flags;
6bfe0b49 840 mdk_rdev_t *blocked_rdev;
c3b328ac 841 int plugged;
d4432c23
N
842 int sectors_handled;
843 int max_sectors;
1da177e4 844
e9c7469b
TH
845 if (unlikely(bio->bi_rw & REQ_FLUSH)) {
846 md_flush_request(mddev, bio);
e5dcdd80
N
847 return 0;
848 }
849
1da177e4
LT
850 /* If this request crosses a chunk boundary, we need to
851 * split it. This will only happen for 1 PAGE (or less) requests.
852 */
853 if (unlikely( (bio->bi_sector & conf->chunk_mask) + (bio->bi_size >> 9)
854 > chunk_sects &&
855 conf->near_copies < conf->raid_disks)) {
856 struct bio_pair *bp;
857 /* Sanity check -- queue functions should prevent this happening */
858 if (bio->bi_vcnt != 1 ||
859 bio->bi_idx != 0)
860 goto bad_map;
861 /* This is a one page bio that upper layers
862 * refuse to split for us, so we need to split it.
863 */
6feef531 864 bp = bio_split(bio,
1da177e4 865 chunk_sects - (bio->bi_sector & (chunk_sects - 1)) );
51e9ac77
N
866
867 /* Each of these 'make_request' calls will call 'wait_barrier'.
868 * If the first succeeds but the second blocks due to the resync
869 * thread raising the barrier, we will deadlock because the
870 * IO to the underlying device will be queued in generic_make_request
871 * and will never complete, so will never reduce nr_pending.
872 * So increment nr_waiting here so no new raise_barriers will
873 * succeed, and so the second wait_barrier cannot block.
874 */
875 spin_lock_irq(&conf->resync_lock);
876 conf->nr_waiting++;
877 spin_unlock_irq(&conf->resync_lock);
878
21a52c6d 879 if (make_request(mddev, &bp->bio1))
1da177e4 880 generic_make_request(&bp->bio1);
21a52c6d 881 if (make_request(mddev, &bp->bio2))
1da177e4
LT
882 generic_make_request(&bp->bio2);
883
51e9ac77
N
884 spin_lock_irq(&conf->resync_lock);
885 conf->nr_waiting--;
886 wake_up(&conf->wait_barrier);
887 spin_unlock_irq(&conf->resync_lock);
888
1da177e4
LT
889 bio_pair_release(bp);
890 return 0;
891 bad_map:
128595ed
N
892 printk("md/raid10:%s: make_request bug: can't convert block across chunks"
893 " or bigger than %dk %llu %d\n", mdname(mddev), chunk_sects/2,
1da177e4
LT
894 (unsigned long long)bio->bi_sector, bio->bi_size >> 10);
895
6712ecf8 896 bio_io_error(bio);
1da177e4
LT
897 return 0;
898 }
899
3d310eb7 900 md_write_start(mddev, bio);
06d91a5f 901
1da177e4
LT
902 /*
903 * Register the new request and wait if the reconstruction
904 * thread has put up a bar for new requests.
905 * Continue immediately if no resync is active currently.
906 */
0a27ec96 907 wait_barrier(conf);
1da177e4 908
1da177e4
LT
909 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
910
911 r10_bio->master_bio = bio;
912 r10_bio->sectors = bio->bi_size >> 9;
913
914 r10_bio->mddev = mddev;
915 r10_bio->sector = bio->bi_sector;
6cce3b23 916 r10_bio->state = 0;
1da177e4 917
856e08e2
N
918 /* We might need to issue multiple reads to different
919 * devices if there are bad blocks around, so we keep
920 * track of the number of reads in bio->bi_phys_segments.
921 * If this is 0, there is only one r10_bio and no locking
922 * will be needed when the request completes. If it is
923 * non-zero, then it is the number of not-completed requests.
924 */
925 bio->bi_phys_segments = 0;
926 clear_bit(BIO_SEG_VALID, &bio->bi_flags);
927
a362357b 928 if (rw == READ) {
1da177e4
LT
929 /*
930 * read balancing logic:
931 */
856e08e2
N
932 int disk;
933 int slot;
934
935read_again:
936 disk = read_balance(conf, r10_bio, &max_sectors);
937 slot = r10_bio->read_slot;
1da177e4
LT
938 if (disk < 0) {
939 raid_end_bio_io(r10_bio);
940 return 0;
941 }
942 mirror = conf->mirrors + disk;
943
a167f663 944 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
856e08e2
N
945 md_trim_bio(read_bio, r10_bio->sector - bio->bi_sector,
946 max_sectors);
1da177e4
LT
947
948 r10_bio->devs[slot].bio = read_bio;
949
950 read_bio->bi_sector = r10_bio->devs[slot].addr +
951 mirror->rdev->data_offset;
952 read_bio->bi_bdev = mirror->rdev->bdev;
953 read_bio->bi_end_io = raid10_end_read_request;
7b6d91da 954 read_bio->bi_rw = READ | do_sync;
1da177e4
LT
955 read_bio->bi_private = r10_bio;
956
856e08e2
N
957 if (max_sectors < r10_bio->sectors) {
958 /* Could not read all from this device, so we will
959 * need another r10_bio.
960 */
856e08e2
N
961 sectors_handled = (r10_bio->sectors + max_sectors
962 - bio->bi_sector);
963 r10_bio->sectors = max_sectors;
964 spin_lock_irq(&conf->device_lock);
965 if (bio->bi_phys_segments == 0)
966 bio->bi_phys_segments = 2;
967 else
968 bio->bi_phys_segments++;
969 spin_unlock(&conf->device_lock);
970 /* Cannot call generic_make_request directly
971 * as that will be queued in __generic_make_request
972 * and subsequent mempool_alloc might block
973 * waiting for it. so hand bio over to raid10d.
974 */
975 reschedule_retry(r10_bio);
976
977 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
978
979 r10_bio->master_bio = bio;
980 r10_bio->sectors = ((bio->bi_size >> 9)
981 - sectors_handled);
982 r10_bio->state = 0;
983 r10_bio->mddev = mddev;
984 r10_bio->sector = bio->bi_sector + sectors_handled;
985 goto read_again;
986 } else
987 generic_make_request(read_bio);
1da177e4
LT
988 return 0;
989 }
990
991 /*
992 * WRITE:
993 */
6bfe0b49 994 /* first select target devices under rcu_lock and
1da177e4
LT
995 * inc refcount on their rdev. Record them by setting
996 * bios[x] to bio
d4432c23
N
997 * If there are known/acknowledged bad blocks on any device
998 * on which we have seen a write error, we want to avoid
999 * writing to those blocks. This potentially requires several
1000 * writes to write around the bad blocks. Each set of writes
1001 * gets its own r10_bio with a set of bios attached. The number
1002 * of r10_bios is recored in bio->bi_phys_segments just as with
1003 * the read case.
1da177e4 1004 */
c3b328ac
N
1005 plugged = mddev_check_plugged(mddev);
1006
1da177e4 1007 raid10_find_phys(conf, r10_bio);
d4432c23 1008retry_write:
cb6969e8 1009 blocked_rdev = NULL;
1da177e4 1010 rcu_read_lock();
d4432c23
N
1011 max_sectors = r10_bio->sectors;
1012
1da177e4
LT
1013 for (i = 0; i < conf->copies; i++) {
1014 int d = r10_bio->devs[i].devnum;
d6065f7b 1015 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[d].rdev);
6bfe0b49
DW
1016 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1017 atomic_inc(&rdev->nr_pending);
1018 blocked_rdev = rdev;
1019 break;
1020 }
d4432c23
N
1021 r10_bio->devs[i].bio = NULL;
1022 if (!rdev || test_bit(Faulty, &rdev->flags)) {
6cce3b23 1023 set_bit(R10BIO_Degraded, &r10_bio->state);
d4432c23
N
1024 continue;
1025 }
1026 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1027 sector_t first_bad;
1028 sector_t dev_sector = r10_bio->devs[i].addr;
1029 int bad_sectors;
1030 int is_bad;
1031
1032 is_bad = is_badblock(rdev, dev_sector,
1033 max_sectors,
1034 &first_bad, &bad_sectors);
1035 if (is_bad < 0) {
1036 /* Mustn't write here until the bad block
1037 * is acknowledged
1038 */
1039 atomic_inc(&rdev->nr_pending);
1040 set_bit(BlockedBadBlocks, &rdev->flags);
1041 blocked_rdev = rdev;
1042 break;
1043 }
1044 if (is_bad && first_bad <= dev_sector) {
1045 /* Cannot write here at all */
1046 bad_sectors -= (dev_sector - first_bad);
1047 if (bad_sectors < max_sectors)
1048 /* Mustn't write more than bad_sectors
1049 * to other devices yet
1050 */
1051 max_sectors = bad_sectors;
1052 /* We don't set R10BIO_Degraded as that
1053 * only applies if the disk is missing,
1054 * so it might be re-added, and we want to
1055 * know to recover this chunk.
1056 * In this case the device is here, and the
1057 * fact that this chunk is not in-sync is
1058 * recorded in the bad block log.
1059 */
1060 continue;
1061 }
1062 if (is_bad) {
1063 int good_sectors = first_bad - dev_sector;
1064 if (good_sectors < max_sectors)
1065 max_sectors = good_sectors;
1066 }
6cce3b23 1067 }
d4432c23
N
1068 r10_bio->devs[i].bio = bio;
1069 atomic_inc(&rdev->nr_pending);
1da177e4
LT
1070 }
1071 rcu_read_unlock();
1072
6bfe0b49
DW
1073 if (unlikely(blocked_rdev)) {
1074 /* Have to wait for this device to get unblocked, then retry */
1075 int j;
1076 int d;
1077
1078 for (j = 0; j < i; j++)
1079 if (r10_bio->devs[j].bio) {
1080 d = r10_bio->devs[j].devnum;
1081 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1082 }
1083 allow_barrier(conf);
1084 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1085 wait_barrier(conf);
1086 goto retry_write;
1087 }
1088
d4432c23
N
1089 if (max_sectors < r10_bio->sectors) {
1090 /* We are splitting this into multiple parts, so
1091 * we need to prepare for allocating another r10_bio.
1092 */
1093 r10_bio->sectors = max_sectors;
1094 spin_lock_irq(&conf->device_lock);
1095 if (bio->bi_phys_segments == 0)
1096 bio->bi_phys_segments = 2;
1097 else
1098 bio->bi_phys_segments++;
1099 spin_unlock_irq(&conf->device_lock);
1100 }
1101 sectors_handled = r10_bio->sector + max_sectors - bio->bi_sector;
1102
4e78064f 1103 atomic_set(&r10_bio->remaining, 1);
d4432c23 1104 bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
06d91a5f 1105
1da177e4
LT
1106 for (i = 0; i < conf->copies; i++) {
1107 struct bio *mbio;
1108 int d = r10_bio->devs[i].devnum;
1109 if (!r10_bio->devs[i].bio)
1110 continue;
1111
a167f663 1112 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
d4432c23
N
1113 md_trim_bio(mbio, r10_bio->sector - bio->bi_sector,
1114 max_sectors);
1da177e4
LT
1115 r10_bio->devs[i].bio = mbio;
1116
d4432c23
N
1117 mbio->bi_sector = (r10_bio->devs[i].addr+
1118 conf->mirrors[d].rdev->data_offset);
1da177e4
LT
1119 mbio->bi_bdev = conf->mirrors[d].rdev->bdev;
1120 mbio->bi_end_io = raid10_end_write_request;
e9c7469b 1121 mbio->bi_rw = WRITE | do_sync | do_fua;
1da177e4
LT
1122 mbio->bi_private = r10_bio;
1123
1124 atomic_inc(&r10_bio->remaining);
4e78064f
N
1125 spin_lock_irqsave(&conf->device_lock, flags);
1126 bio_list_add(&conf->pending_bio_list, mbio);
4e78064f 1127 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
1128 }
1129
4e78064f
N
1130 if (atomic_dec_and_test(&r10_bio->remaining)) {
1131 /* This matches the end of raid10_end_write_request() */
1132 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
1133 r10_bio->sectors,
1134 !test_bit(R10BIO_Degraded, &r10_bio->state),
1135 0);
f6f953aa
AR
1136 md_write_end(mddev);
1137 raid_end_bio_io(r10_bio);
f6f953aa
AR
1138 }
1139
a35e63ef
N
1140 /* In case raid10d snuck in to freeze_array */
1141 wake_up(&conf->wait_barrier);
1142
d4432c23
N
1143 if (sectors_handled < (bio->bi_size >> 9)) {
1144 /* We need another r1_bio. It has already been counted
1145 * in bio->bi_phys_segments.
1146 */
1147 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
1148
1149 r10_bio->master_bio = bio;
1150 r10_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
1151
1152 r10_bio->mddev = mddev;
1153 r10_bio->sector = bio->bi_sector + sectors_handled;
1154 r10_bio->state = 0;
1155 goto retry_write;
1156 }
1157
c3b328ac 1158 if (do_sync || !mddev->bitmap || !plugged)
e3881a68 1159 md_wakeup_thread(mddev->thread);
1da177e4
LT
1160 return 0;
1161}
1162
1163static void status(struct seq_file *seq, mddev_t *mddev)
1164{
070ec55d 1165 conf_t *conf = mddev->private;
1da177e4
LT
1166 int i;
1167
1168 if (conf->near_copies < conf->raid_disks)
9d8f0363 1169 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1da177e4
LT
1170 if (conf->near_copies > 1)
1171 seq_printf(seq, " %d near-copies", conf->near_copies);
c93983bf
N
1172 if (conf->far_copies > 1) {
1173 if (conf->far_offset)
1174 seq_printf(seq, " %d offset-copies", conf->far_copies);
1175 else
1176 seq_printf(seq, " %d far-copies", conf->far_copies);
1177 }
1da177e4 1178 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
76186dd8 1179 conf->raid_disks - mddev->degraded);
1da177e4
LT
1180 for (i = 0; i < conf->raid_disks; i++)
1181 seq_printf(seq, "%s",
1182 conf->mirrors[i].rdev &&
b2d444d7 1183 test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
1da177e4
LT
1184 seq_printf(seq, "]");
1185}
1186
700c7213
N
1187/* check if there are enough drives for
1188 * every block to appear on atleast one.
1189 * Don't consider the device numbered 'ignore'
1190 * as we might be about to remove it.
1191 */
1192static int enough(conf_t *conf, int ignore)
1193{
1194 int first = 0;
1195
1196 do {
1197 int n = conf->copies;
1198 int cnt = 0;
1199 while (n--) {
1200 if (conf->mirrors[first].rdev &&
1201 first != ignore)
1202 cnt++;
1203 first = (first+1) % conf->raid_disks;
1204 }
1205 if (cnt == 0)
1206 return 0;
1207 } while (first != 0);
1208 return 1;
1209}
1210
1da177e4
LT
1211static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1212{
1213 char b[BDEVNAME_SIZE];
070ec55d 1214 conf_t *conf = mddev->private;
1da177e4
LT
1215
1216 /*
1217 * If it is not operational, then we have already marked it as dead
1218 * else if it is the last working disks, ignore the error, let the
1219 * next level up know.
1220 * else mark the drive as failed
1221 */
b2d444d7 1222 if (test_bit(In_sync, &rdev->flags)
700c7213 1223 && !enough(conf, rdev->raid_disk))
1da177e4
LT
1224 /*
1225 * Don't fail the drive, just return an IO error.
1da177e4
LT
1226 */
1227 return;
c04be0aa
N
1228 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1229 unsigned long flags;
1230 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 1231 mddev->degraded++;
c04be0aa 1232 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
1233 /*
1234 * if recovery is running, make sure it aborts.
1235 */
dfc70645 1236 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1da177e4 1237 }
de393cde 1238 set_bit(Blocked, &rdev->flags);
b2d444d7 1239 set_bit(Faulty, &rdev->flags);
850b2b42 1240 set_bit(MD_CHANGE_DEVS, &mddev->flags);
067032bc
JP
1241 printk(KERN_ALERT
1242 "md/raid10:%s: Disk failure on %s, disabling device.\n"
1243 "md/raid10:%s: Operation continuing on %d devices.\n",
128595ed
N
1244 mdname(mddev), bdevname(rdev->bdev, b),
1245 mdname(mddev), conf->raid_disks - mddev->degraded);
1da177e4
LT
1246}
1247
1248static void print_conf(conf_t *conf)
1249{
1250 int i;
1251 mirror_info_t *tmp;
1252
128595ed 1253 printk(KERN_DEBUG "RAID10 conf printout:\n");
1da177e4 1254 if (!conf) {
128595ed 1255 printk(KERN_DEBUG "(!conf)\n");
1da177e4
LT
1256 return;
1257 }
128595ed 1258 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1da177e4
LT
1259 conf->raid_disks);
1260
1261 for (i = 0; i < conf->raid_disks; i++) {
1262 char b[BDEVNAME_SIZE];
1263 tmp = conf->mirrors + i;
1264 if (tmp->rdev)
128595ed 1265 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
b2d444d7
N
1266 i, !test_bit(In_sync, &tmp->rdev->flags),
1267 !test_bit(Faulty, &tmp->rdev->flags),
1da177e4
LT
1268 bdevname(tmp->rdev->bdev,b));
1269 }
1270}
1271
1272static void close_sync(conf_t *conf)
1273{
0a27ec96
N
1274 wait_barrier(conf);
1275 allow_barrier(conf);
1da177e4
LT
1276
1277 mempool_destroy(conf->r10buf_pool);
1278 conf->r10buf_pool = NULL;
1279}
1280
1281static int raid10_spare_active(mddev_t *mddev)
1282{
1283 int i;
1284 conf_t *conf = mddev->private;
1285 mirror_info_t *tmp;
6b965620
N
1286 int count = 0;
1287 unsigned long flags;
1da177e4
LT
1288
1289 /*
1290 * Find all non-in_sync disks within the RAID10 configuration
1291 * and mark them in_sync
1292 */
1293 for (i = 0; i < conf->raid_disks; i++) {
1294 tmp = conf->mirrors + i;
1295 if (tmp->rdev
b2d444d7 1296 && !test_bit(Faulty, &tmp->rdev->flags)
c04be0aa 1297 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
6b965620 1298 count++;
e6ffbcb6 1299 sysfs_notify_dirent(tmp->rdev->sysfs_state);
1da177e4
LT
1300 }
1301 }
6b965620
N
1302 spin_lock_irqsave(&conf->device_lock, flags);
1303 mddev->degraded -= count;
1304 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
1305
1306 print_conf(conf);
6b965620 1307 return count;
1da177e4
LT
1308}
1309
1310
1311static int raid10_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
1312{
1313 conf_t *conf = mddev->private;
199050ea 1314 int err = -EEXIST;
1da177e4 1315 int mirror;
6c2fce2e 1316 int first = 0;
84707f38 1317 int last = conf->raid_disks - 1;
1da177e4
LT
1318
1319 if (mddev->recovery_cp < MaxSector)
1320 /* only hot-add to in-sync arrays, as recovery is
1321 * very different from resync
1322 */
199050ea 1323 return -EBUSY;
700c7213 1324 if (!enough(conf, -1))
199050ea 1325 return -EINVAL;
1da177e4 1326
a53a6c85 1327 if (rdev->raid_disk >= 0)
6c2fce2e 1328 first = last = rdev->raid_disk;
1da177e4 1329
2c4193df 1330 if (rdev->saved_raid_disk >= first &&
6cce3b23
N
1331 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1332 mirror = rdev->saved_raid_disk;
1333 else
6c2fce2e 1334 mirror = first;
2bb77736
N
1335 for ( ; mirror <= last ; mirror++) {
1336 mirror_info_t *p = &conf->mirrors[mirror];
1337 if (p->recovery_disabled == mddev->recovery_disabled)
1338 continue;
1339 if (!p->rdev)
1340 continue;
1da177e4 1341
2bb77736
N
1342 disk_stack_limits(mddev->gendisk, rdev->bdev,
1343 rdev->data_offset << 9);
1344 /* as we don't honour merge_bvec_fn, we must
1345 * never risk violating it, so limit
1346 * ->max_segments to one lying with a single
1347 * page, as a one page request is never in
1348 * violation.
1349 */
1350 if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
1351 blk_queue_max_segments(mddev->queue, 1);
1352 blk_queue_segment_boundary(mddev->queue,
1353 PAGE_CACHE_SIZE - 1);
1da177e4
LT
1354 }
1355
2bb77736
N
1356 p->head_position = 0;
1357 rdev->raid_disk = mirror;
1358 err = 0;
1359 if (rdev->saved_raid_disk != mirror)
1360 conf->fullsync = 1;
1361 rcu_assign_pointer(p->rdev, rdev);
1362 break;
1363 }
1364
ac5e7113 1365 md_integrity_add_rdev(rdev, mddev);
1da177e4 1366 print_conf(conf);
199050ea 1367 return err;
1da177e4
LT
1368}
1369
1370static int raid10_remove_disk(mddev_t *mddev, int number)
1371{
1372 conf_t *conf = mddev->private;
1373 int err = 0;
1374 mdk_rdev_t *rdev;
1375 mirror_info_t *p = conf->mirrors+ number;
1376
1377 print_conf(conf);
1378 rdev = p->rdev;
1379 if (rdev) {
b2d444d7 1380 if (test_bit(In_sync, &rdev->flags) ||
1da177e4
LT
1381 atomic_read(&rdev->nr_pending)) {
1382 err = -EBUSY;
1383 goto abort;
1384 }
dfc70645
N
1385 /* Only remove faulty devices in recovery
1386 * is not possible.
1387 */
1388 if (!test_bit(Faulty, &rdev->flags) &&
2bb77736 1389 mddev->recovery_disabled != p->recovery_disabled &&
700c7213 1390 enough(conf, -1)) {
dfc70645
N
1391 err = -EBUSY;
1392 goto abort;
1393 }
1da177e4 1394 p->rdev = NULL;
fbd568a3 1395 synchronize_rcu();
1da177e4
LT
1396 if (atomic_read(&rdev->nr_pending)) {
1397 /* lost the race, try later */
1398 err = -EBUSY;
1399 p->rdev = rdev;
ac5e7113 1400 goto abort;
1da177e4 1401 }
a91a2785 1402 err = md_integrity_register(mddev);
1da177e4
LT
1403 }
1404abort:
1405
1406 print_conf(conf);
1407 return err;
1408}
1409
1410
6712ecf8 1411static void end_sync_read(struct bio *bio, int error)
1da177e4 1412{
7b92813c 1413 r10bio_t *r10_bio = bio->bi_private;
070ec55d 1414 conf_t *conf = r10_bio->mddev->private;
778ca018 1415 int d;
1da177e4 1416
749c55e9 1417 d = find_bio_disk(conf, r10_bio, bio, NULL);
0eb3ff12
N
1418
1419 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1420 set_bit(R10BIO_Uptodate, &r10_bio->state);
e684e41d
N
1421 else
1422 /* The write handler will notice the lack of
1423 * R10BIO_Uptodate and record any errors etc
1424 */
4dbcdc75
N
1425 atomic_add(r10_bio->sectors,
1426 &conf->mirrors[d].rdev->corrected_errors);
1da177e4
LT
1427
1428 /* for reconstruct, we always reschedule after a read.
1429 * for resync, only after all reads
1430 */
73d5c38a 1431 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1da177e4
LT
1432 if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1433 atomic_dec_and_test(&r10_bio->remaining)) {
1434 /* we have read all the blocks,
1435 * do the comparison in process context in raid10d
1436 */
1437 reschedule_retry(r10_bio);
1438 }
1da177e4
LT
1439}
1440
6712ecf8 1441static void end_sync_write(struct bio *bio, int error)
1da177e4
LT
1442{
1443 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
7b92813c 1444 r10bio_t *r10_bio = bio->bi_private;
1da177e4 1445 mddev_t *mddev = r10_bio->mddev;
070ec55d 1446 conf_t *conf = mddev->private;
778ca018 1447 int d;
749c55e9
N
1448 sector_t first_bad;
1449 int bad_sectors;
1450 int slot;
1da177e4 1451
749c55e9 1452 d = find_bio_disk(conf, r10_bio, bio, &slot);
1da177e4 1453
1a0b7cd8
N
1454 if (!uptodate) {
1455 set_bit(WriteErrorSeen, &conf->mirrors[d].rdev->flags);
1456 set_bit(R10BIO_WriteError, &r10_bio->state);
1457 } else if (is_badblock(conf->mirrors[d].rdev,
749c55e9
N
1458 r10_bio->devs[slot].addr,
1459 r10_bio->sectors,
1460 &first_bad, &bad_sectors))
1461 set_bit(R10BIO_MadeGood, &r10_bio->state);
dfc70645 1462
73d5c38a 1463 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1da177e4
LT
1464 while (atomic_dec_and_test(&r10_bio->remaining)) {
1465 if (r10_bio->master_bio == NULL) {
1466 /* the primary of several recovery bios */
73d5c38a 1467 sector_t s = r10_bio->sectors;
1a0b7cd8
N
1468 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1469 test_bit(R10BIO_WriteError, &r10_bio->state))
749c55e9
N
1470 reschedule_retry(r10_bio);
1471 else
1472 put_buf(r10_bio);
73d5c38a 1473 md_done_sync(mddev, s, 1);
1da177e4
LT
1474 break;
1475 } else {
1476 r10bio_t *r10_bio2 = (r10bio_t *)r10_bio->master_bio;
1a0b7cd8
N
1477 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1478 test_bit(R10BIO_WriteError, &r10_bio->state))
749c55e9
N
1479 reschedule_retry(r10_bio);
1480 else
1481 put_buf(r10_bio);
1da177e4
LT
1482 r10_bio = r10_bio2;
1483 }
1484 }
1da177e4
LT
1485}
1486
1487/*
1488 * Note: sync and recover and handled very differently for raid10
1489 * This code is for resync.
1490 * For resync, we read through virtual addresses and read all blocks.
1491 * If there is any error, we schedule a write. The lowest numbered
1492 * drive is authoritative.
1493 * However requests come for physical address, so we need to map.
1494 * For every physical address there are raid_disks/copies virtual addresses,
1495 * which is always are least one, but is not necessarly an integer.
1496 * This means that a physical address can span multiple chunks, so we may
1497 * have to submit multiple io requests for a single sync request.
1498 */
1499/*
1500 * We check if all blocks are in-sync and only write to blocks that
1501 * aren't in sync
1502 */
1503static void sync_request_write(mddev_t *mddev, r10bio_t *r10_bio)
1504{
070ec55d 1505 conf_t *conf = mddev->private;
1da177e4
LT
1506 int i, first;
1507 struct bio *tbio, *fbio;
1508
1509 atomic_set(&r10_bio->remaining, 1);
1510
1511 /* find the first device with a block */
1512 for (i=0; i<conf->copies; i++)
1513 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
1514 break;
1515
1516 if (i == conf->copies)
1517 goto done;
1518
1519 first = i;
1520 fbio = r10_bio->devs[i].bio;
1521
1522 /* now find blocks with errors */
0eb3ff12
N
1523 for (i=0 ; i < conf->copies ; i++) {
1524 int j, d;
1525 int vcnt = r10_bio->sectors >> (PAGE_SHIFT-9);
1da177e4 1526
1da177e4 1527 tbio = r10_bio->devs[i].bio;
0eb3ff12
N
1528
1529 if (tbio->bi_end_io != end_sync_read)
1530 continue;
1531 if (i == first)
1da177e4 1532 continue;
0eb3ff12
N
1533 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
1534 /* We know that the bi_io_vec layout is the same for
1535 * both 'first' and 'i', so we just compare them.
1536 * All vec entries are PAGE_SIZE;
1537 */
1538 for (j = 0; j < vcnt; j++)
1539 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
1540 page_address(tbio->bi_io_vec[j].bv_page),
1541 PAGE_SIZE))
1542 break;
1543 if (j == vcnt)
1544 continue;
1545 mddev->resync_mismatches += r10_bio->sectors;
f84ee364
N
1546 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
1547 /* Don't fix anything. */
1548 continue;
0eb3ff12 1549 }
f84ee364
N
1550 /* Ok, we need to write this bio, either to correct an
1551 * inconsistency or to correct an unreadable block.
1da177e4
LT
1552 * First we need to fixup bv_offset, bv_len and
1553 * bi_vecs, as the read request might have corrupted these
1554 */
1555 tbio->bi_vcnt = vcnt;
1556 tbio->bi_size = r10_bio->sectors << 9;
1557 tbio->bi_idx = 0;
1558 tbio->bi_phys_segments = 0;
1da177e4
LT
1559 tbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1560 tbio->bi_flags |= 1 << BIO_UPTODATE;
1561 tbio->bi_next = NULL;
1562 tbio->bi_rw = WRITE;
1563 tbio->bi_private = r10_bio;
1564 tbio->bi_sector = r10_bio->devs[i].addr;
1565
1566 for (j=0; j < vcnt ; j++) {
1567 tbio->bi_io_vec[j].bv_offset = 0;
1568 tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
1569
1570 memcpy(page_address(tbio->bi_io_vec[j].bv_page),
1571 page_address(fbio->bi_io_vec[j].bv_page),
1572 PAGE_SIZE);
1573 }
1574 tbio->bi_end_io = end_sync_write;
1575
1576 d = r10_bio->devs[i].devnum;
1577 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1578 atomic_inc(&r10_bio->remaining);
1579 md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9);
1580
1581 tbio->bi_sector += conf->mirrors[d].rdev->data_offset;
1582 tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
1583 generic_make_request(tbio);
1584 }
1585
1586done:
1587 if (atomic_dec_and_test(&r10_bio->remaining)) {
1588 md_done_sync(mddev, r10_bio->sectors, 1);
1589 put_buf(r10_bio);
1590 }
1591}
1592
1593/*
1594 * Now for the recovery code.
1595 * Recovery happens across physical sectors.
1596 * We recover all non-is_sync drives by finding the virtual address of
1597 * each, and then choose a working drive that also has that virt address.
1598 * There is a separate r10_bio for each non-in_sync drive.
1599 * Only the first two slots are in use. The first for reading,
1600 * The second for writing.
1601 *
1602 */
1603
1604static void recovery_request_write(mddev_t *mddev, r10bio_t *r10_bio)
1605{
070ec55d 1606 conf_t *conf = mddev->private;
c65060ad
NK
1607 int d;
1608 struct bio *wbio;
1da177e4 1609
c65060ad
NK
1610 /*
1611 * share the pages with the first bio
1da177e4
LT
1612 * and submit the write request
1613 */
1da177e4 1614 wbio = r10_bio->devs[1].bio;
1da177e4
LT
1615 d = r10_bio->devs[1].devnum;
1616
1617 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1618 md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9);
0eb3ff12
N
1619 if (test_bit(R10BIO_Uptodate, &r10_bio->state))
1620 generic_make_request(wbio);
2bb77736
N
1621 else {
1622 printk(KERN_NOTICE
1623 "md/raid10:%s: recovery aborted due to read error\n",
1624 mdname(mddev));
1625 conf->mirrors[d].recovery_disabled = mddev->recovery_disabled;
1626 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1627 bio_endio(wbio, 0);
1628 }
1da177e4
LT
1629}
1630
1631
1e50915f
RB
1632/*
1633 * Used by fix_read_error() to decay the per rdev read_errors.
1634 * We halve the read error count for every hour that has elapsed
1635 * since the last recorded read error.
1636 *
1637 */
1638static void check_decay_read_errors(mddev_t *mddev, mdk_rdev_t *rdev)
1639{
1640 struct timespec cur_time_mon;
1641 unsigned long hours_since_last;
1642 unsigned int read_errors = atomic_read(&rdev->read_errors);
1643
1644 ktime_get_ts(&cur_time_mon);
1645
1646 if (rdev->last_read_error.tv_sec == 0 &&
1647 rdev->last_read_error.tv_nsec == 0) {
1648 /* first time we've seen a read error */
1649 rdev->last_read_error = cur_time_mon;
1650 return;
1651 }
1652
1653 hours_since_last = (cur_time_mon.tv_sec -
1654 rdev->last_read_error.tv_sec) / 3600;
1655
1656 rdev->last_read_error = cur_time_mon;
1657
1658 /*
1659 * if hours_since_last is > the number of bits in read_errors
1660 * just set read errors to 0. We do this to avoid
1661 * overflowing the shift of read_errors by hours_since_last.
1662 */
1663 if (hours_since_last >= 8 * sizeof(read_errors))
1664 atomic_set(&rdev->read_errors, 0);
1665 else
1666 atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
1667}
1668
1da177e4
LT
1669/*
1670 * This is a kernel thread which:
1671 *
1672 * 1. Retries failed read operations on working mirrors.
1673 * 2. Updates the raid superblock when problems encounter.
6814d536 1674 * 3. Performs writes following reads for array synchronising.
1da177e4
LT
1675 */
1676
6814d536
N
1677static void fix_read_error(conf_t *conf, mddev_t *mddev, r10bio_t *r10_bio)
1678{
1679 int sect = 0; /* Offset from r10_bio->sector */
1680 int sectors = r10_bio->sectors;
1681 mdk_rdev_t*rdev;
1e50915f 1682 int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
0544a21d 1683 int d = r10_bio->devs[r10_bio->read_slot].devnum;
1e50915f 1684
7c4e06ff
N
1685 /* still own a reference to this rdev, so it cannot
1686 * have been cleared recently.
1687 */
1688 rdev = conf->mirrors[d].rdev;
1e50915f 1689
7c4e06ff
N
1690 if (test_bit(Faulty, &rdev->flags))
1691 /* drive has already been failed, just ignore any
1692 more fix_read_error() attempts */
1693 return;
1e50915f 1694
7c4e06ff
N
1695 check_decay_read_errors(mddev, rdev);
1696 atomic_inc(&rdev->read_errors);
1697 if (atomic_read(&rdev->read_errors) > max_read_errors) {
1698 char b[BDEVNAME_SIZE];
1699 bdevname(rdev->bdev, b);
1e50915f 1700
7c4e06ff
N
1701 printk(KERN_NOTICE
1702 "md/raid10:%s: %s: Raid device exceeded "
1703 "read_error threshold [cur %d:max %d]\n",
1704 mdname(mddev), b,
1705 atomic_read(&rdev->read_errors), max_read_errors);
1706 printk(KERN_NOTICE
1707 "md/raid10:%s: %s: Failing raid device\n",
1708 mdname(mddev), b);
1709 md_error(mddev, conf->mirrors[d].rdev);
1710 return;
1e50915f 1711 }
1e50915f 1712
6814d536
N
1713 while(sectors) {
1714 int s = sectors;
1715 int sl = r10_bio->read_slot;
1716 int success = 0;
1717 int start;
1718
1719 if (s > (PAGE_SIZE>>9))
1720 s = PAGE_SIZE >> 9;
1721
1722 rcu_read_lock();
1723 do {
8dbed5ce
N
1724 sector_t first_bad;
1725 int bad_sectors;
1726
0544a21d 1727 d = r10_bio->devs[sl].devnum;
6814d536
N
1728 rdev = rcu_dereference(conf->mirrors[d].rdev);
1729 if (rdev &&
8dbed5ce
N
1730 test_bit(In_sync, &rdev->flags) &&
1731 is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
1732 &first_bad, &bad_sectors) == 0) {
6814d536
N
1733 atomic_inc(&rdev->nr_pending);
1734 rcu_read_unlock();
2b193363 1735 success = sync_page_io(rdev,
6814d536 1736 r10_bio->devs[sl].addr +
ccebd4c4 1737 sect,
6814d536 1738 s<<9,
ccebd4c4 1739 conf->tmppage, READ, false);
6814d536
N
1740 rdev_dec_pending(rdev, mddev);
1741 rcu_read_lock();
1742 if (success)
1743 break;
1744 }
1745 sl++;
1746 if (sl == conf->copies)
1747 sl = 0;
1748 } while (!success && sl != r10_bio->read_slot);
1749 rcu_read_unlock();
1750
1751 if (!success) {
1752 /* Cannot read from anywhere -- bye bye array */
1753 int dn = r10_bio->devs[r10_bio->read_slot].devnum;
1754 md_error(mddev, conf->mirrors[dn].rdev);
1755 break;
1756 }
1757
1758 start = sl;
1759 /* write it back and re-read */
1760 rcu_read_lock();
1761 while (sl != r10_bio->read_slot) {
67b8dc4b 1762 char b[BDEVNAME_SIZE];
0544a21d 1763
6814d536
N
1764 if (sl==0)
1765 sl = conf->copies;
1766 sl--;
1767 d = r10_bio->devs[sl].devnum;
1768 rdev = rcu_dereference(conf->mirrors[d].rdev);
1294b9c9
N
1769 if (!rdev ||
1770 !test_bit(In_sync, &rdev->flags))
1771 continue;
1772
1773 atomic_inc(&rdev->nr_pending);
1774 rcu_read_unlock();
1775 if (sync_page_io(rdev,
1776 r10_bio->devs[sl].addr +
1777 sect,
1778 s<<9, conf->tmppage, WRITE, false)
1779 == 0) {
1780 /* Well, this device is dead */
1781 printk(KERN_NOTICE
1782 "md/raid10:%s: read correction "
1783 "write failed"
1784 " (%d sectors at %llu on %s)\n",
1785 mdname(mddev), s,
1786 (unsigned long long)(
1787 sect + rdev->data_offset),
1788 bdevname(rdev->bdev, b));
1789 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
1790 "drive\n",
1791 mdname(mddev),
1792 bdevname(rdev->bdev, b));
1793 md_error(mddev, rdev);
6814d536 1794 }
1294b9c9
N
1795 rdev_dec_pending(rdev, mddev);
1796 rcu_read_lock();
6814d536
N
1797 }
1798 sl = start;
1799 while (sl != r10_bio->read_slot) {
1294b9c9 1800 char b[BDEVNAME_SIZE];
0544a21d 1801
6814d536
N
1802 if (sl==0)
1803 sl = conf->copies;
1804 sl--;
1805 d = r10_bio->devs[sl].devnum;
1806 rdev = rcu_dereference(conf->mirrors[d].rdev);
1294b9c9
N
1807 if (!rdev ||
1808 !test_bit(In_sync, &rdev->flags))
1809 continue;
6814d536 1810
1294b9c9
N
1811 atomic_inc(&rdev->nr_pending);
1812 rcu_read_unlock();
1813 if (sync_page_io(rdev,
1814 r10_bio->devs[sl].addr +
1815 sect,
1816 s<<9, conf->tmppage,
1817 READ, false) == 0) {
1818 /* Well, this device is dead */
1819 printk(KERN_NOTICE
1820 "md/raid10:%s: unable to read back "
1821 "corrected sectors"
1822 " (%d sectors at %llu on %s)\n",
1823 mdname(mddev), s,
1824 (unsigned long long)(
1825 sect + rdev->data_offset),
1826 bdevname(rdev->bdev, b));
1827 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
1828 "drive\n",
1829 mdname(mddev),
1830 bdevname(rdev->bdev, b));
1831
1832 md_error(mddev, rdev);
1833 } else {
1834 printk(KERN_INFO
1835 "md/raid10:%s: read error corrected"
1836 " (%d sectors at %llu on %s)\n",
1837 mdname(mddev), s,
1838 (unsigned long long)(
1839 sect + rdev->data_offset),
1840 bdevname(rdev->bdev, b));
1841 atomic_add(s, &rdev->corrected_errors);
6814d536 1842 }
1294b9c9
N
1843
1844 rdev_dec_pending(rdev, mddev);
1845 rcu_read_lock();
6814d536
N
1846 }
1847 rcu_read_unlock();
1848
1849 sectors -= s;
1850 sect += s;
1851 }
1852}
1853
bd870a16
N
1854static void bi_complete(struct bio *bio, int error)
1855{
1856 complete((struct completion *)bio->bi_private);
1857}
1858
1859static int submit_bio_wait(int rw, struct bio *bio)
1860{
1861 struct completion event;
1862 rw |= REQ_SYNC;
1863
1864 init_completion(&event);
1865 bio->bi_private = &event;
1866 bio->bi_end_io = bi_complete;
1867 submit_bio(rw, bio);
1868 wait_for_completion(&event);
1869
1870 return test_bit(BIO_UPTODATE, &bio->bi_flags);
1871}
1872
1873static int narrow_write_error(r10bio_t *r10_bio, int i)
1874{
1875 struct bio *bio = r10_bio->master_bio;
1876 mddev_t *mddev = r10_bio->mddev;
1877 conf_t *conf = mddev->private;
1878 mdk_rdev_t *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
1879 /* bio has the data to be written to slot 'i' where
1880 * we just recently had a write error.
1881 * We repeatedly clone the bio and trim down to one block,
1882 * then try the write. Where the write fails we record
1883 * a bad block.
1884 * It is conceivable that the bio doesn't exactly align with
1885 * blocks. We must handle this.
1886 *
1887 * We currently own a reference to the rdev.
1888 */
1889
1890 int block_sectors;
1891 sector_t sector;
1892 int sectors;
1893 int sect_to_write = r10_bio->sectors;
1894 int ok = 1;
1895
1896 if (rdev->badblocks.shift < 0)
1897 return 0;
1898
1899 block_sectors = 1 << rdev->badblocks.shift;
1900 sector = r10_bio->sector;
1901 sectors = ((r10_bio->sector + block_sectors)
1902 & ~(sector_t)(block_sectors - 1))
1903 - sector;
1904
1905 while (sect_to_write) {
1906 struct bio *wbio;
1907 if (sectors > sect_to_write)
1908 sectors = sect_to_write;
1909 /* Write at 'sector' for 'sectors' */
1910 wbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
1911 md_trim_bio(wbio, sector - bio->bi_sector, sectors);
1912 wbio->bi_sector = (r10_bio->devs[i].addr+
1913 rdev->data_offset+
1914 (sector - r10_bio->sector));
1915 wbio->bi_bdev = rdev->bdev;
1916 if (submit_bio_wait(WRITE, wbio) == 0)
1917 /* Failure! */
1918 ok = rdev_set_badblocks(rdev, sector,
1919 sectors, 0)
1920 && ok;
1921
1922 bio_put(wbio);
1923 sect_to_write -= sectors;
1924 sector += sectors;
1925 sectors = block_sectors;
1926 }
1927 return ok;
1928}
1929
560f8e55
N
1930static void handle_read_error(mddev_t *mddev, r10bio_t *r10_bio)
1931{
1932 int slot = r10_bio->read_slot;
1933 int mirror = r10_bio->devs[slot].devnum;
1934 struct bio *bio;
1935 conf_t *conf = mddev->private;
1936 mdk_rdev_t *rdev;
1937 char b[BDEVNAME_SIZE];
1938 unsigned long do_sync;
856e08e2 1939 int max_sectors;
560f8e55
N
1940
1941 /* we got a read error. Maybe the drive is bad. Maybe just
1942 * the block and we can fix it.
1943 * We freeze all other IO, and try reading the block from
1944 * other devices. When we find one, we re-write
1945 * and check it that fixes the read error.
1946 * This is all done synchronously while the array is
1947 * frozen.
1948 */
1949 if (mddev->ro == 0) {
1950 freeze_array(conf);
1951 fix_read_error(conf, mddev, r10_bio);
1952 unfreeze_array(conf);
1953 }
1954 rdev_dec_pending(conf->mirrors[mirror].rdev, mddev);
1955
1956 bio = r10_bio->devs[slot].bio;
7399c31b 1957 bdevname(bio->bi_bdev, b);
560f8e55
N
1958 r10_bio->devs[slot].bio =
1959 mddev->ro ? IO_BLOCKED : NULL;
7399c31b 1960read_more:
856e08e2 1961 mirror = read_balance(conf, r10_bio, &max_sectors);
7399c31b 1962 if (mirror == -1) {
560f8e55
N
1963 printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O"
1964 " read error for block %llu\n",
7399c31b 1965 mdname(mddev), b,
560f8e55
N
1966 (unsigned long long)r10_bio->sector);
1967 raid_end_bio_io(r10_bio);
1968 bio_put(bio);
1969 return;
1970 }
1971
1972 do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC);
7399c31b
N
1973 if (bio)
1974 bio_put(bio);
560f8e55
N
1975 slot = r10_bio->read_slot;
1976 rdev = conf->mirrors[mirror].rdev;
1977 printk_ratelimited(
1978 KERN_ERR
1979 "md/raid10:%s: %s: redirecting"
1980 "sector %llu to another mirror\n",
1981 mdname(mddev),
1982 bdevname(rdev->bdev, b),
1983 (unsigned long long)r10_bio->sector);
1984 bio = bio_clone_mddev(r10_bio->master_bio,
1985 GFP_NOIO, mddev);
7399c31b
N
1986 md_trim_bio(bio,
1987 r10_bio->sector - bio->bi_sector,
1988 max_sectors);
560f8e55
N
1989 r10_bio->devs[slot].bio = bio;
1990 bio->bi_sector = r10_bio->devs[slot].addr
1991 + rdev->data_offset;
1992 bio->bi_bdev = rdev->bdev;
1993 bio->bi_rw = READ | do_sync;
1994 bio->bi_private = r10_bio;
1995 bio->bi_end_io = raid10_end_read_request;
7399c31b
N
1996 if (max_sectors < r10_bio->sectors) {
1997 /* Drat - have to split this up more */
1998 struct bio *mbio = r10_bio->master_bio;
1999 int sectors_handled =
2000 r10_bio->sector + max_sectors
2001 - mbio->bi_sector;
2002 r10_bio->sectors = max_sectors;
2003 spin_lock_irq(&conf->device_lock);
2004 if (mbio->bi_phys_segments == 0)
2005 mbio->bi_phys_segments = 2;
2006 else
2007 mbio->bi_phys_segments++;
2008 spin_unlock_irq(&conf->device_lock);
2009 generic_make_request(bio);
2010 bio = NULL;
2011
2012 r10_bio = mempool_alloc(conf->r10bio_pool,
2013 GFP_NOIO);
2014 r10_bio->master_bio = mbio;
2015 r10_bio->sectors = (mbio->bi_size >> 9)
2016 - sectors_handled;
2017 r10_bio->state = 0;
2018 set_bit(R10BIO_ReadError,
2019 &r10_bio->state);
2020 r10_bio->mddev = mddev;
2021 r10_bio->sector = mbio->bi_sector
2022 + sectors_handled;
2023
2024 goto read_more;
2025 } else
2026 generic_make_request(bio);
560f8e55
N
2027}
2028
749c55e9
N
2029static void handle_write_completed(conf_t *conf, r10bio_t *r10_bio)
2030{
2031 /* Some sort of write request has finished and it
2032 * succeeded in writing where we thought there was a
2033 * bad block. So forget the bad block.
1a0b7cd8
N
2034 * Or possibly if failed and we need to record
2035 * a bad block.
749c55e9
N
2036 */
2037 int m;
2038 mdk_rdev_t *rdev;
2039
2040 if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2041 test_bit(R10BIO_IsRecover, &r10_bio->state)) {
1a0b7cd8
N
2042 for (m = 0; m < conf->copies; m++) {
2043 int dev = r10_bio->devs[m].devnum;
2044 rdev = conf->mirrors[dev].rdev;
2045 if (r10_bio->devs[m].bio == NULL)
2046 continue;
2047 if (test_bit(BIO_UPTODATE,
749c55e9 2048 &r10_bio->devs[m].bio->bi_flags)) {
749c55e9
N
2049 rdev_clear_badblocks(
2050 rdev,
2051 r10_bio->devs[m].addr,
2052 r10_bio->sectors);
1a0b7cd8
N
2053 } else {
2054 if (!rdev_set_badblocks(
2055 rdev,
2056 r10_bio->devs[m].addr,
2057 r10_bio->sectors, 0))
2058 md_error(conf->mddev, rdev);
749c55e9 2059 }
1a0b7cd8 2060 }
749c55e9
N
2061 put_buf(r10_bio);
2062 } else {
bd870a16
N
2063 for (m = 0; m < conf->copies; m++) {
2064 int dev = r10_bio->devs[m].devnum;
2065 struct bio *bio = r10_bio->devs[m].bio;
2066 rdev = conf->mirrors[dev].rdev;
2067 if (bio == IO_MADE_GOOD) {
749c55e9
N
2068 rdev_clear_badblocks(
2069 rdev,
2070 r10_bio->devs[m].addr,
2071 r10_bio->sectors);
2072 rdev_dec_pending(rdev, conf->mddev);
bd870a16
N
2073 } else if (bio != NULL &&
2074 !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
2075 if (!narrow_write_error(r10_bio, m)) {
2076 md_error(conf->mddev, rdev);
2077 set_bit(R10BIO_Degraded,
2078 &r10_bio->state);
2079 }
2080 rdev_dec_pending(rdev, conf->mddev);
749c55e9 2081 }
bd870a16
N
2082 }
2083 if (test_bit(R10BIO_WriteError,
2084 &r10_bio->state))
2085 close_write(r10_bio);
749c55e9
N
2086 raid_end_bio_io(r10_bio);
2087 }
2088}
2089
1da177e4
LT
2090static void raid10d(mddev_t *mddev)
2091{
2092 r10bio_t *r10_bio;
1da177e4 2093 unsigned long flags;
070ec55d 2094 conf_t *conf = mddev->private;
1da177e4 2095 struct list_head *head = &conf->retry_list;
e1dfa0a2 2096 struct blk_plug plug;
1da177e4
LT
2097
2098 md_check_recovery(mddev);
1da177e4 2099
e1dfa0a2 2100 blk_start_plug(&plug);
1da177e4 2101 for (;;) {
6cce3b23 2102
7eaceacc 2103 flush_pending_writes(conf);
6cce3b23 2104
a35e63ef
N
2105 spin_lock_irqsave(&conf->device_lock, flags);
2106 if (list_empty(head)) {
2107 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 2108 break;
a35e63ef 2109 }
1da177e4
LT
2110 r10_bio = list_entry(head->prev, r10bio_t, retry_list);
2111 list_del(head->prev);
4443ae10 2112 conf->nr_queued--;
1da177e4
LT
2113 spin_unlock_irqrestore(&conf->device_lock, flags);
2114
2115 mddev = r10_bio->mddev;
070ec55d 2116 conf = mddev->private;
bd870a16
N
2117 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2118 test_bit(R10BIO_WriteError, &r10_bio->state))
749c55e9
N
2119 handle_write_completed(conf, r10_bio);
2120 else if (test_bit(R10BIO_IsSync, &r10_bio->state))
1da177e4 2121 sync_request_write(mddev, r10_bio);
7eaceacc 2122 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
1da177e4 2123 recovery_request_write(mddev, r10_bio);
856e08e2 2124 else if (test_bit(R10BIO_ReadError, &r10_bio->state))
560f8e55 2125 handle_read_error(mddev, r10_bio);
856e08e2
N
2126 else {
2127 /* just a partial read to be scheduled from a
2128 * separate context
2129 */
2130 int slot = r10_bio->read_slot;
2131 generic_make_request(r10_bio->devs[slot].bio);
2132 }
560f8e55 2133
1d9d5241 2134 cond_resched();
de393cde
N
2135 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2136 md_check_recovery(mddev);
1da177e4 2137 }
e1dfa0a2 2138 blk_finish_plug(&plug);
1da177e4
LT
2139}
2140
2141
2142static int init_resync(conf_t *conf)
2143{
2144 int buffs;
2145
2146 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
b6385483 2147 BUG_ON(conf->r10buf_pool);
1da177e4
LT
2148 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
2149 if (!conf->r10buf_pool)
2150 return -ENOMEM;
2151 conf->next_resync = 0;
2152 return 0;
2153}
2154
2155/*
2156 * perform a "sync" on one "block"
2157 *
2158 * We need to make sure that no normal I/O request - particularly write
2159 * requests - conflict with active sync requests.
2160 *
2161 * This is achieved by tracking pending requests and a 'barrier' concept
2162 * that can be installed to exclude normal IO requests.
2163 *
2164 * Resync and recovery are handled very differently.
2165 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2166 *
2167 * For resync, we iterate over virtual addresses, read all copies,
2168 * and update if there are differences. If only one copy is live,
2169 * skip it.
2170 * For recovery, we iterate over physical addresses, read a good
2171 * value for each non-in_sync drive, and over-write.
2172 *
2173 * So, for recovery we may have several outstanding complex requests for a
2174 * given address, one for each out-of-sync device. We model this by allocating
2175 * a number of r10_bio structures, one for each out-of-sync device.
2176 * As we setup these structures, we collect all bio's together into a list
2177 * which we then process collectively to add pages, and then process again
2178 * to pass to generic_make_request.
2179 *
2180 * The r10_bio structures are linked using a borrowed master_bio pointer.
2181 * This link is counted in ->remaining. When the r10_bio that points to NULL
2182 * has its remaining count decremented to 0, the whole complex operation
2183 * is complete.
2184 *
2185 */
2186
ab9d47e9
N
2187static sector_t sync_request(mddev_t *mddev, sector_t sector_nr,
2188 int *skipped, int go_faster)
1da177e4 2189{
070ec55d 2190 conf_t *conf = mddev->private;
1da177e4
LT
2191 r10bio_t *r10_bio;
2192 struct bio *biolist = NULL, *bio;
2193 sector_t max_sector, nr_sectors;
1da177e4 2194 int i;
6cce3b23 2195 int max_sync;
57dab0bd 2196 sector_t sync_blocks;
1da177e4
LT
2197 sector_t sectors_skipped = 0;
2198 int chunks_skipped = 0;
2199
2200 if (!conf->r10buf_pool)
2201 if (init_resync(conf))
57afd89f 2202 return 0;
1da177e4
LT
2203
2204 skipped:
58c0fed4 2205 max_sector = mddev->dev_sectors;
1da177e4
LT
2206 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2207 max_sector = mddev->resync_max_sectors;
2208 if (sector_nr >= max_sector) {
6cce3b23
N
2209 /* If we aborted, we need to abort the
2210 * sync on the 'current' bitmap chucks (there can
2211 * be several when recovering multiple devices).
2212 * as we may have started syncing it but not finished.
2213 * We can find the current address in
2214 * mddev->curr_resync, but for recovery,
2215 * we need to convert that to several
2216 * virtual addresses.
2217 */
2218 if (mddev->curr_resync < max_sector) { /* aborted */
2219 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2220 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2221 &sync_blocks, 1);
2222 else for (i=0; i<conf->raid_disks; i++) {
2223 sector_t sect =
2224 raid10_find_virt(conf, mddev->curr_resync, i);
2225 bitmap_end_sync(mddev->bitmap, sect,
2226 &sync_blocks, 1);
2227 }
2228 } else /* completed sync */
2229 conf->fullsync = 0;
2230
2231 bitmap_close_sync(mddev->bitmap);
1da177e4 2232 close_sync(conf);
57afd89f 2233 *skipped = 1;
1da177e4
LT
2234 return sectors_skipped;
2235 }
2236 if (chunks_skipped >= conf->raid_disks) {
2237 /* if there has been nothing to do on any drive,
2238 * then there is nothing to do at all..
2239 */
57afd89f
N
2240 *skipped = 1;
2241 return (max_sector - sector_nr) + sectors_skipped;
1da177e4
LT
2242 }
2243
c6207277
N
2244 if (max_sector > mddev->resync_max)
2245 max_sector = mddev->resync_max; /* Don't do IO beyond here */
2246
1da177e4
LT
2247 /* make sure whole request will fit in a chunk - if chunks
2248 * are meaningful
2249 */
2250 if (conf->near_copies < conf->raid_disks &&
2251 max_sector > (sector_nr | conf->chunk_mask))
2252 max_sector = (sector_nr | conf->chunk_mask) + 1;
2253 /*
2254 * If there is non-resync activity waiting for us then
2255 * put in a delay to throttle resync.
2256 */
0a27ec96 2257 if (!go_faster && conf->nr_waiting)
1da177e4 2258 msleep_interruptible(1000);
1da177e4
LT
2259
2260 /* Again, very different code for resync and recovery.
2261 * Both must result in an r10bio with a list of bios that
2262 * have bi_end_io, bi_sector, bi_bdev set,
2263 * and bi_private set to the r10bio.
2264 * For recovery, we may actually create several r10bios
2265 * with 2 bios in each, that correspond to the bios in the main one.
2266 * In this case, the subordinate r10bios link back through a
2267 * borrowed master_bio pointer, and the counter in the master
2268 * includes a ref from each subordinate.
2269 */
2270 /* First, we decide what to do and set ->bi_end_io
2271 * To end_sync_read if we want to read, and
2272 * end_sync_write if we will want to write.
2273 */
2274
6cce3b23 2275 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
1da177e4
LT
2276 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
2277 /* recovery... the complicated one */
e875ecea 2278 int j;
1da177e4
LT
2279 r10_bio = NULL;
2280
ab9d47e9
N
2281 for (i=0 ; i<conf->raid_disks; i++) {
2282 int still_degraded;
2283 r10bio_t *rb2;
2284 sector_t sect;
2285 int must_sync;
e875ecea 2286 int any_working;
1da177e4 2287
ab9d47e9
N
2288 if (conf->mirrors[i].rdev == NULL ||
2289 test_bit(In_sync, &conf->mirrors[i].rdev->flags))
2290 continue;
1da177e4 2291
ab9d47e9
N
2292 still_degraded = 0;
2293 /* want to reconstruct this device */
2294 rb2 = r10_bio;
2295 sect = raid10_find_virt(conf, sector_nr, i);
2296 /* Unless we are doing a full sync, we only need
2297 * to recover the block if it is set in the bitmap
2298 */
2299 must_sync = bitmap_start_sync(mddev->bitmap, sect,
2300 &sync_blocks, 1);
2301 if (sync_blocks < max_sync)
2302 max_sync = sync_blocks;
2303 if (!must_sync &&
2304 !conf->fullsync) {
2305 /* yep, skip the sync_blocks here, but don't assume
2306 * that there will never be anything to do here
2307 */
2308 chunks_skipped = -1;
2309 continue;
2310 }
6cce3b23 2311
ab9d47e9
N
2312 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
2313 raise_barrier(conf, rb2 != NULL);
2314 atomic_set(&r10_bio->remaining, 0);
18055569 2315
ab9d47e9
N
2316 r10_bio->master_bio = (struct bio*)rb2;
2317 if (rb2)
2318 atomic_inc(&rb2->remaining);
2319 r10_bio->mddev = mddev;
2320 set_bit(R10BIO_IsRecover, &r10_bio->state);
2321 r10_bio->sector = sect;
1da177e4 2322
ab9d47e9
N
2323 raid10_find_phys(conf, r10_bio);
2324
2325 /* Need to check if the array will still be
2326 * degraded
2327 */
2328 for (j=0; j<conf->raid_disks; j++)
2329 if (conf->mirrors[j].rdev == NULL ||
2330 test_bit(Faulty, &conf->mirrors[j].rdev->flags)) {
2331 still_degraded = 1;
87fc767b 2332 break;
1da177e4 2333 }
ab9d47e9
N
2334
2335 must_sync = bitmap_start_sync(mddev->bitmap, sect,
2336 &sync_blocks, still_degraded);
2337
e875ecea 2338 any_working = 0;
ab9d47e9 2339 for (j=0; j<conf->copies;j++) {
e875ecea 2340 int k;
ab9d47e9 2341 int d = r10_bio->devs[j].devnum;
40c356ce
N
2342 mdk_rdev_t *rdev;
2343 sector_t sector, first_bad;
2344 int bad_sectors;
ab9d47e9
N
2345 if (!conf->mirrors[d].rdev ||
2346 !test_bit(In_sync, &conf->mirrors[d].rdev->flags))
2347 continue;
2348 /* This is where we read from */
e875ecea 2349 any_working = 1;
40c356ce
N
2350 rdev = conf->mirrors[d].rdev;
2351 sector = r10_bio->devs[j].addr;
2352
2353 if (is_badblock(rdev, sector, max_sync,
2354 &first_bad, &bad_sectors)) {
2355 if (first_bad > sector)
2356 max_sync = first_bad - sector;
2357 else {
2358 bad_sectors -= (sector
2359 - first_bad);
2360 if (max_sync > bad_sectors)
2361 max_sync = bad_sectors;
2362 continue;
2363 }
2364 }
ab9d47e9
N
2365 bio = r10_bio->devs[0].bio;
2366 bio->bi_next = biolist;
2367 biolist = bio;
2368 bio->bi_private = r10_bio;
2369 bio->bi_end_io = end_sync_read;
2370 bio->bi_rw = READ;
2371 bio->bi_sector = r10_bio->devs[j].addr +
2372 conf->mirrors[d].rdev->data_offset;
2373 bio->bi_bdev = conf->mirrors[d].rdev->bdev;
2374 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2375 atomic_inc(&r10_bio->remaining);
2376 /* and we write to 'i' */
2377
2378 for (k=0; k<conf->copies; k++)
2379 if (r10_bio->devs[k].devnum == i)
2380 break;
2381 BUG_ON(k == conf->copies);
2382 bio = r10_bio->devs[1].bio;
2383 bio->bi_next = biolist;
2384 biolist = bio;
2385 bio->bi_private = r10_bio;
2386 bio->bi_end_io = end_sync_write;
2387 bio->bi_rw = WRITE;
2388 bio->bi_sector = r10_bio->devs[k].addr +
2389 conf->mirrors[i].rdev->data_offset;
2390 bio->bi_bdev = conf->mirrors[i].rdev->bdev;
2391
2392 r10_bio->devs[0].devnum = d;
2393 r10_bio->devs[1].devnum = i;
2394
2395 break;
2396 }
2397 if (j == conf->copies) {
e875ecea
N
2398 /* Cannot recover, so abort the recovery or
2399 * record a bad block */
ab9d47e9
N
2400 put_buf(r10_bio);
2401 if (rb2)
2402 atomic_dec(&rb2->remaining);
2403 r10_bio = rb2;
e875ecea
N
2404 if (any_working) {
2405 /* problem is that there are bad blocks
2406 * on other device(s)
2407 */
2408 int k;
2409 for (k = 0; k < conf->copies; k++)
2410 if (r10_bio->devs[k].devnum == i)
2411 break;
2412 if (!rdev_set_badblocks(
2413 conf->mirrors[i].rdev,
2414 r10_bio->devs[k].addr,
2415 max_sync, 0))
2416 any_working = 0;
2417 }
2418 if (!any_working) {
2419 if (!test_and_set_bit(MD_RECOVERY_INTR,
2420 &mddev->recovery))
2421 printk(KERN_INFO "md/raid10:%s: insufficient "
2422 "working devices for recovery.\n",
2423 mdname(mddev));
2424 conf->mirrors[i].recovery_disabled
2425 = mddev->recovery_disabled;
2426 }
ab9d47e9 2427 break;
1da177e4 2428 }
ab9d47e9 2429 }
1da177e4
LT
2430 if (biolist == NULL) {
2431 while (r10_bio) {
2432 r10bio_t *rb2 = r10_bio;
2433 r10_bio = (r10bio_t*) rb2->master_bio;
2434 rb2->master_bio = NULL;
2435 put_buf(rb2);
2436 }
2437 goto giveup;
2438 }
2439 } else {
2440 /* resync. Schedule a read for every block at this virt offset */
2441 int count = 0;
6cce3b23 2442
78200d45
N
2443 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
2444
6cce3b23
N
2445 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
2446 &sync_blocks, mddev->degraded) &&
ab9d47e9
N
2447 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
2448 &mddev->recovery)) {
6cce3b23
N
2449 /* We can skip this block */
2450 *skipped = 1;
2451 return sync_blocks + sectors_skipped;
2452 }
2453 if (sync_blocks < max_sync)
2454 max_sync = sync_blocks;
1da177e4
LT
2455 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
2456
1da177e4
LT
2457 r10_bio->mddev = mddev;
2458 atomic_set(&r10_bio->remaining, 0);
6cce3b23
N
2459 raise_barrier(conf, 0);
2460 conf->next_resync = sector_nr;
1da177e4
LT
2461
2462 r10_bio->master_bio = NULL;
2463 r10_bio->sector = sector_nr;
2464 set_bit(R10BIO_IsSync, &r10_bio->state);
2465 raid10_find_phys(conf, r10_bio);
2466 r10_bio->sectors = (sector_nr | conf->chunk_mask) - sector_nr +1;
2467
2468 for (i=0; i<conf->copies; i++) {
2469 int d = r10_bio->devs[i].devnum;
40c356ce
N
2470 sector_t first_bad, sector;
2471 int bad_sectors;
2472
1da177e4
LT
2473 bio = r10_bio->devs[i].bio;
2474 bio->bi_end_io = NULL;
af03b8e4 2475 clear_bit(BIO_UPTODATE, &bio->bi_flags);
1da177e4 2476 if (conf->mirrors[d].rdev == NULL ||
b2d444d7 2477 test_bit(Faulty, &conf->mirrors[d].rdev->flags))
1da177e4 2478 continue;
40c356ce
N
2479 sector = r10_bio->devs[i].addr;
2480 if (is_badblock(conf->mirrors[d].rdev,
2481 sector, max_sync,
2482 &first_bad, &bad_sectors)) {
2483 if (first_bad > sector)
2484 max_sync = first_bad - sector;
2485 else {
2486 bad_sectors -= (sector - first_bad);
2487 if (max_sync > bad_sectors)
2488 max_sync = max_sync;
2489 continue;
2490 }
2491 }
1da177e4
LT
2492 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2493 atomic_inc(&r10_bio->remaining);
2494 bio->bi_next = biolist;
2495 biolist = bio;
2496 bio->bi_private = r10_bio;
2497 bio->bi_end_io = end_sync_read;
802ba064 2498 bio->bi_rw = READ;
40c356ce 2499 bio->bi_sector = sector +
1da177e4
LT
2500 conf->mirrors[d].rdev->data_offset;
2501 bio->bi_bdev = conf->mirrors[d].rdev->bdev;
2502 count++;
2503 }
2504
2505 if (count < 2) {
2506 for (i=0; i<conf->copies; i++) {
2507 int d = r10_bio->devs[i].devnum;
2508 if (r10_bio->devs[i].bio->bi_end_io)
ab9d47e9
N
2509 rdev_dec_pending(conf->mirrors[d].rdev,
2510 mddev);
1da177e4
LT
2511 }
2512 put_buf(r10_bio);
2513 biolist = NULL;
2514 goto giveup;
2515 }
2516 }
2517
2518 for (bio = biolist; bio ; bio=bio->bi_next) {
2519
2520 bio->bi_flags &= ~(BIO_POOL_MASK - 1);
2521 if (bio->bi_end_io)
2522 bio->bi_flags |= 1 << BIO_UPTODATE;
2523 bio->bi_vcnt = 0;
2524 bio->bi_idx = 0;
2525 bio->bi_phys_segments = 0;
1da177e4
LT
2526 bio->bi_size = 0;
2527 }
2528
2529 nr_sectors = 0;
6cce3b23
N
2530 if (sector_nr + max_sync < max_sector)
2531 max_sector = sector_nr + max_sync;
1da177e4
LT
2532 do {
2533 struct page *page;
2534 int len = PAGE_SIZE;
1da177e4
LT
2535 if (sector_nr + (len>>9) > max_sector)
2536 len = (max_sector - sector_nr) << 9;
2537 if (len == 0)
2538 break;
2539 for (bio= biolist ; bio ; bio=bio->bi_next) {
ab9d47e9 2540 struct bio *bio2;
1da177e4 2541 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
ab9d47e9
N
2542 if (bio_add_page(bio, page, len, 0))
2543 continue;
2544
2545 /* stop here */
2546 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2547 for (bio2 = biolist;
2548 bio2 && bio2 != bio;
2549 bio2 = bio2->bi_next) {
2550 /* remove last page from this bio */
2551 bio2->bi_vcnt--;
2552 bio2->bi_size -= len;
2553 bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
1da177e4 2554 }
ab9d47e9 2555 goto bio_full;
1da177e4
LT
2556 }
2557 nr_sectors += len>>9;
2558 sector_nr += len>>9;
2559 } while (biolist->bi_vcnt < RESYNC_PAGES);
2560 bio_full:
2561 r10_bio->sectors = nr_sectors;
2562
2563 while (biolist) {
2564 bio = biolist;
2565 biolist = biolist->bi_next;
2566
2567 bio->bi_next = NULL;
2568 r10_bio = bio->bi_private;
2569 r10_bio->sectors = nr_sectors;
2570
2571 if (bio->bi_end_io == end_sync_read) {
2572 md_sync_acct(bio->bi_bdev, nr_sectors);
2573 generic_make_request(bio);
2574 }
2575 }
2576
57afd89f
N
2577 if (sectors_skipped)
2578 /* pretend they weren't skipped, it makes
2579 * no important difference in this case
2580 */
2581 md_done_sync(mddev, sectors_skipped, 1);
2582
1da177e4
LT
2583 return sectors_skipped + nr_sectors;
2584 giveup:
2585 /* There is nowhere to write, so all non-sync
e875ecea
N
2586 * drives must be failed or in resync, all drives
2587 * have a bad block, so try the next chunk...
1da177e4 2588 */
09b4068a
N
2589 if (sector_nr + max_sync < max_sector)
2590 max_sector = sector_nr + max_sync;
2591
2592 sectors_skipped += (max_sector - sector_nr);
1da177e4
LT
2593 chunks_skipped ++;
2594 sector_nr = max_sector;
1da177e4 2595 goto skipped;
1da177e4
LT
2596}
2597
80c3a6ce
DW
2598static sector_t
2599raid10_size(mddev_t *mddev, sector_t sectors, int raid_disks)
2600{
2601 sector_t size;
070ec55d 2602 conf_t *conf = mddev->private;
80c3a6ce
DW
2603
2604 if (!raid_disks)
84707f38 2605 raid_disks = conf->raid_disks;
80c3a6ce 2606 if (!sectors)
dab8b292 2607 sectors = conf->dev_sectors;
80c3a6ce
DW
2608
2609 size = sectors >> conf->chunk_shift;
2610 sector_div(size, conf->far_copies);
2611 size = size * raid_disks;
2612 sector_div(size, conf->near_copies);
2613
2614 return size << conf->chunk_shift;
2615}
2616
dab8b292
TM
2617
2618static conf_t *setup_conf(mddev_t *mddev)
1da177e4 2619{
dab8b292 2620 conf_t *conf = NULL;
c93983bf 2621 int nc, fc, fo;
1da177e4 2622 sector_t stride, size;
dab8b292 2623 int err = -EINVAL;
1da177e4 2624
f73ea873
MT
2625 if (mddev->new_chunk_sectors < (PAGE_SIZE >> 9) ||
2626 !is_power_of_2(mddev->new_chunk_sectors)) {
128595ed
N
2627 printk(KERN_ERR "md/raid10:%s: chunk size must be "
2628 "at least PAGE_SIZE(%ld) and be a power of 2.\n",
2629 mdname(mddev), PAGE_SIZE);
dab8b292 2630 goto out;
1da177e4 2631 }
2604b703 2632
f73ea873
MT
2633 nc = mddev->new_layout & 255;
2634 fc = (mddev->new_layout >> 8) & 255;
2635 fo = mddev->new_layout & (1<<16);
dab8b292 2636
1da177e4 2637 if ((nc*fc) <2 || (nc*fc) > mddev->raid_disks ||
f73ea873 2638 (mddev->new_layout >> 17)) {
128595ed 2639 printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
f73ea873 2640 mdname(mddev), mddev->new_layout);
1da177e4
LT
2641 goto out;
2642 }
dab8b292
TM
2643
2644 err = -ENOMEM;
4443ae10 2645 conf = kzalloc(sizeof(conf_t), GFP_KERNEL);
dab8b292 2646 if (!conf)
1da177e4 2647 goto out;
dab8b292 2648
4443ae10 2649 conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
dab8b292
TM
2650 GFP_KERNEL);
2651 if (!conf->mirrors)
2652 goto out;
4443ae10
N
2653
2654 conf->tmppage = alloc_page(GFP_KERNEL);
2655 if (!conf->tmppage)
dab8b292
TM
2656 goto out;
2657
1da177e4 2658
64a742bc 2659 conf->raid_disks = mddev->raid_disks;
1da177e4
LT
2660 conf->near_copies = nc;
2661 conf->far_copies = fc;
2662 conf->copies = nc*fc;
c93983bf 2663 conf->far_offset = fo;
dab8b292
TM
2664 conf->chunk_mask = mddev->new_chunk_sectors - 1;
2665 conf->chunk_shift = ffz(~mddev->new_chunk_sectors);
2666
2667 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
2668 r10bio_pool_free, conf);
2669 if (!conf->r10bio_pool)
2670 goto out;
2671
58c0fed4 2672 size = mddev->dev_sectors >> conf->chunk_shift;
64a742bc
N
2673 sector_div(size, fc);
2674 size = size * conf->raid_disks;
2675 sector_div(size, nc);
2676 /* 'size' is now the number of chunks in the array */
2677 /* calculate "used chunks per device" in 'stride' */
2678 stride = size * conf->copies;
af03b8e4
N
2679
2680 /* We need to round up when dividing by raid_disks to
2681 * get the stride size.
2682 */
2683 stride += conf->raid_disks - 1;
64a742bc 2684 sector_div(stride, conf->raid_disks);
dab8b292
TM
2685
2686 conf->dev_sectors = stride << conf->chunk_shift;
64a742bc 2687
c93983bf 2688 if (fo)
64a742bc
N
2689 stride = 1;
2690 else
c93983bf 2691 sector_div(stride, fc);
64a742bc
N
2692 conf->stride = stride << conf->chunk_shift;
2693
1da177e4 2694
e7e72bf6 2695 spin_lock_init(&conf->device_lock);
dab8b292
TM
2696 INIT_LIST_HEAD(&conf->retry_list);
2697
2698 spin_lock_init(&conf->resync_lock);
2699 init_waitqueue_head(&conf->wait_barrier);
2700
2701 conf->thread = md_register_thread(raid10d, mddev, NULL);
2702 if (!conf->thread)
2703 goto out;
2704
dab8b292
TM
2705 conf->mddev = mddev;
2706 return conf;
2707
2708 out:
128595ed 2709 printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n",
dab8b292
TM
2710 mdname(mddev));
2711 if (conf) {
2712 if (conf->r10bio_pool)
2713 mempool_destroy(conf->r10bio_pool);
2714 kfree(conf->mirrors);
2715 safe_put_page(conf->tmppage);
2716 kfree(conf);
2717 }
2718 return ERR_PTR(err);
2719}
2720
2721static int run(mddev_t *mddev)
2722{
2723 conf_t *conf;
2724 int i, disk_idx, chunk_size;
2725 mirror_info_t *disk;
2726 mdk_rdev_t *rdev;
2727 sector_t size;
2728
2729 /*
2730 * copy the already verified devices into our private RAID10
2731 * bookkeeping area. [whatever we allocate in run(),
2732 * should be freed in stop()]
2733 */
2734
2735 if (mddev->private == NULL) {
2736 conf = setup_conf(mddev);
2737 if (IS_ERR(conf))
2738 return PTR_ERR(conf);
2739 mddev->private = conf;
2740 }
2741 conf = mddev->private;
2742 if (!conf)
2743 goto out;
2744
dab8b292
TM
2745 mddev->thread = conf->thread;
2746 conf->thread = NULL;
2747
8f6c2e4b
MP
2748 chunk_size = mddev->chunk_sectors << 9;
2749 blk_queue_io_min(mddev->queue, chunk_size);
2750 if (conf->raid_disks % conf->near_copies)
2751 blk_queue_io_opt(mddev->queue, chunk_size * conf->raid_disks);
2752 else
2753 blk_queue_io_opt(mddev->queue, chunk_size *
2754 (conf->raid_disks / conf->near_copies));
2755
159ec1fc 2756 list_for_each_entry(rdev, &mddev->disks, same_set) {
34b343cf 2757
1da177e4 2758 disk_idx = rdev->raid_disk;
84707f38 2759 if (disk_idx >= conf->raid_disks
1da177e4
LT
2760 || disk_idx < 0)
2761 continue;
2762 disk = conf->mirrors + disk_idx;
2763
2764 disk->rdev = rdev;
8f6c2e4b
MP
2765 disk_stack_limits(mddev->gendisk, rdev->bdev,
2766 rdev->data_offset << 9);
1da177e4 2767 /* as we don't honour merge_bvec_fn, we must never risk
627a2d3c
N
2768 * violating it, so limit max_segments to 1 lying
2769 * within a single page.
1da177e4 2770 */
627a2d3c
N
2771 if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
2772 blk_queue_max_segments(mddev->queue, 1);
2773 blk_queue_segment_boundary(mddev->queue,
2774 PAGE_CACHE_SIZE - 1);
2775 }
1da177e4
LT
2776
2777 disk->head_position = 0;
1da177e4 2778 }
6d508242 2779 /* need to check that every block has at least one working mirror */
700c7213 2780 if (!enough(conf, -1)) {
128595ed 2781 printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n",
6d508242 2782 mdname(mddev));
1da177e4
LT
2783 goto out_free_conf;
2784 }
2785
2786 mddev->degraded = 0;
2787 for (i = 0; i < conf->raid_disks; i++) {
2788
2789 disk = conf->mirrors + i;
2790
5fd6c1dc 2791 if (!disk->rdev ||
2e333e89 2792 !test_bit(In_sync, &disk->rdev->flags)) {
1da177e4
LT
2793 disk->head_position = 0;
2794 mddev->degraded++;
8c2e870a
NB
2795 if (disk->rdev)
2796 conf->fullsync = 1;
1da177e4
LT
2797 }
2798 }
2799
8c6ac868 2800 if (mddev->recovery_cp != MaxSector)
128595ed 2801 printk(KERN_NOTICE "md/raid10:%s: not clean"
8c6ac868
AN
2802 " -- starting background reconstruction\n",
2803 mdname(mddev));
1da177e4 2804 printk(KERN_INFO
128595ed 2805 "md/raid10:%s: active with %d out of %d devices\n",
84707f38
N
2806 mdname(mddev), conf->raid_disks - mddev->degraded,
2807 conf->raid_disks);
1da177e4
LT
2808 /*
2809 * Ok, everything is just fine now
2810 */
dab8b292
TM
2811 mddev->dev_sectors = conf->dev_sectors;
2812 size = raid10_size(mddev, 0, 0);
2813 md_set_array_sectors(mddev, size);
2814 mddev->resync_max_sectors = size;
1da177e4 2815
0d129228
N
2816 mddev->queue->backing_dev_info.congested_fn = raid10_congested;
2817 mddev->queue->backing_dev_info.congested_data = mddev;
7a5febe9 2818
1da177e4
LT
2819 /* Calculate max read-ahead size.
2820 * We need to readahead at least twice a whole stripe....
2821 * maybe...
2822 */
2823 {
9d8f0363
AN
2824 int stripe = conf->raid_disks *
2825 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
1da177e4
LT
2826 stripe /= conf->near_copies;
2827 if (mddev->queue->backing_dev_info.ra_pages < 2* stripe)
2828 mddev->queue->backing_dev_info.ra_pages = 2* stripe;
2829 }
2830
84707f38 2831 if (conf->near_copies < conf->raid_disks)
1da177e4 2832 blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
a91a2785
MP
2833
2834 if (md_integrity_register(mddev))
2835 goto out_free_conf;
2836
1da177e4
LT
2837 return 0;
2838
2839out_free_conf:
589a594b 2840 md_unregister_thread(mddev->thread);
1da177e4
LT
2841 if (conf->r10bio_pool)
2842 mempool_destroy(conf->r10bio_pool);
1345b1d8 2843 safe_put_page(conf->tmppage);
990a8baf 2844 kfree(conf->mirrors);
1da177e4
LT
2845 kfree(conf);
2846 mddev->private = NULL;
2847out:
2848 return -EIO;
2849}
2850
2851static int stop(mddev_t *mddev)
2852{
070ec55d 2853 conf_t *conf = mddev->private;
1da177e4 2854
409c57f3
N
2855 raise_barrier(conf, 0);
2856 lower_barrier(conf);
2857
1da177e4
LT
2858 md_unregister_thread(mddev->thread);
2859 mddev->thread = NULL;
2860 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
2861 if (conf->r10bio_pool)
2862 mempool_destroy(conf->r10bio_pool);
990a8baf 2863 kfree(conf->mirrors);
1da177e4
LT
2864 kfree(conf);
2865 mddev->private = NULL;
2866 return 0;
2867}
2868
6cce3b23
N
2869static void raid10_quiesce(mddev_t *mddev, int state)
2870{
070ec55d 2871 conf_t *conf = mddev->private;
6cce3b23
N
2872
2873 switch(state) {
2874 case 1:
2875 raise_barrier(conf, 0);
2876 break;
2877 case 0:
2878 lower_barrier(conf);
2879 break;
2880 }
6cce3b23 2881}
1da177e4 2882
dab8b292
TM
2883static void *raid10_takeover_raid0(mddev_t *mddev)
2884{
2885 mdk_rdev_t *rdev;
2886 conf_t *conf;
2887
2888 if (mddev->degraded > 0) {
128595ed
N
2889 printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n",
2890 mdname(mddev));
dab8b292
TM
2891 return ERR_PTR(-EINVAL);
2892 }
2893
dab8b292
TM
2894 /* Set new parameters */
2895 mddev->new_level = 10;
2896 /* new layout: far_copies = 1, near_copies = 2 */
2897 mddev->new_layout = (1<<8) + 2;
2898 mddev->new_chunk_sectors = mddev->chunk_sectors;
2899 mddev->delta_disks = mddev->raid_disks;
dab8b292
TM
2900 mddev->raid_disks *= 2;
2901 /* make sure it will be not marked as dirty */
2902 mddev->recovery_cp = MaxSector;
2903
2904 conf = setup_conf(mddev);
02214dc5 2905 if (!IS_ERR(conf)) {
e93f68a1
N
2906 list_for_each_entry(rdev, &mddev->disks, same_set)
2907 if (rdev->raid_disk >= 0)
2908 rdev->new_raid_disk = rdev->raid_disk * 2;
02214dc5
KW
2909 conf->barrier = 1;
2910 }
2911
dab8b292
TM
2912 return conf;
2913}
2914
2915static void *raid10_takeover(mddev_t *mddev)
2916{
2917 struct raid0_private_data *raid0_priv;
2918
2919 /* raid10 can take over:
2920 * raid0 - providing it has only two drives
2921 */
2922 if (mddev->level == 0) {
2923 /* for raid0 takeover only one zone is supported */
2924 raid0_priv = mddev->private;
2925 if (raid0_priv->nr_strip_zones > 1) {
128595ed
N
2926 printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0"
2927 " with more than one zone.\n",
2928 mdname(mddev));
dab8b292
TM
2929 return ERR_PTR(-EINVAL);
2930 }
2931 return raid10_takeover_raid0(mddev);
2932 }
2933 return ERR_PTR(-EINVAL);
2934}
2935
2604b703 2936static struct mdk_personality raid10_personality =
1da177e4
LT
2937{
2938 .name = "raid10",
2604b703 2939 .level = 10,
1da177e4
LT
2940 .owner = THIS_MODULE,
2941 .make_request = make_request,
2942 .run = run,
2943 .stop = stop,
2944 .status = status,
2945 .error_handler = error,
2946 .hot_add_disk = raid10_add_disk,
2947 .hot_remove_disk= raid10_remove_disk,
2948 .spare_active = raid10_spare_active,
2949 .sync_request = sync_request,
6cce3b23 2950 .quiesce = raid10_quiesce,
80c3a6ce 2951 .size = raid10_size,
dab8b292 2952 .takeover = raid10_takeover,
1da177e4
LT
2953};
2954
2955static int __init raid_init(void)
2956{
2604b703 2957 return register_md_personality(&raid10_personality);
1da177e4
LT
2958}
2959
2960static void raid_exit(void)
2961{
2604b703 2962 unregister_md_personality(&raid10_personality);
1da177e4
LT
2963}
2964
2965module_init(raid_init);
2966module_exit(raid_exit);
2967MODULE_LICENSE("GPL");
0efb9e61 2968MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
1da177e4 2969MODULE_ALIAS("md-personality-9"); /* RAID10 */
d9d166c2 2970MODULE_ALIAS("md-raid10");
2604b703 2971MODULE_ALIAS("md-level-10");