cfq: explicitly use 64bit divide operation for 64bit arguments
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / block / blk-core.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6728cb0e
JA
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
1da177e4
LT
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11/*
12 * This handles all read/write requests to block devices
13 */
1da177e4
LT
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/backing-dev.h>
17#include <linux/bio.h>
18#include <linux/blkdev.h>
19#include <linux/highmem.h>
20#include <linux/mm.h>
21#include <linux/kernel_stat.h>
22#include <linux/string.h>
23#include <linux/init.h>
1da177e4
LT
24#include <linux/completion.h>
25#include <linux/slab.h>
26#include <linux/swap.h>
27#include <linux/writeback.h>
faccbd4b 28#include <linux/task_io_accounting_ops.h>
c17bb495 29#include <linux/fault-inject.h>
73c10101 30#include <linux/list_sort.h>
e3c78ca5 31#include <linux/delay.h>
aaf7c680 32#include <linux/ratelimit.h>
6c954667 33#include <linux/pm_runtime.h>
55782138
LZ
34
35#define CREATE_TRACE_POINTS
36#include <trace/events/block.h>
1da177e4 37
8324aa91 38#include "blk.h"
5efd6113 39#include "blk-cgroup.h"
8324aa91 40
d07335e5 41EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
b0da3f0d 42EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
0a82a8d1 43EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
cbae8d45 44EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
0bfc2455 45
a73f730d
TH
46DEFINE_IDA(blk_queue_ida);
47
1da177e4
LT
48/*
49 * For the allocated request tables
50 */
5ece6c52 51static struct kmem_cache *request_cachep;
1da177e4
LT
52
53/*
54 * For queue allocation
55 */
6728cb0e 56struct kmem_cache *blk_requestq_cachep;
1da177e4 57
1da177e4
LT
58/*
59 * Controlling structure to kblockd
60 */
ff856bad 61static struct workqueue_struct *kblockd_workqueue;
1da177e4 62
26b8256e
JA
63static void drive_stat_acct(struct request *rq, int new_io)
64{
28f13702 65 struct hd_struct *part;
26b8256e 66 int rw = rq_data_dir(rq);
c9959059 67 int cpu;
26b8256e 68
c2553b58 69 if (!blk_do_io_stat(rq))
26b8256e
JA
70 return;
71
074a7aca 72 cpu = part_stat_lock();
c9959059 73
09e099d4
JM
74 if (!new_io) {
75 part = rq->part;
074a7aca 76 part_stat_inc(cpu, part, merges[rw]);
09e099d4
JM
77 } else {
78 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
6c23a968 79 if (!hd_struct_try_get(part)) {
09e099d4
JM
80 /*
81 * The partition is already being removed,
82 * the request will be accounted on the disk only
83 *
84 * We take a reference on disk->part0 although that
85 * partition will never be deleted, so we can treat
86 * it as any other partition.
87 */
88 part = &rq->rq_disk->part0;
6c23a968 89 hd_struct_get(part);
09e099d4 90 }
074a7aca 91 part_round_stats(cpu, part);
316d315b 92 part_inc_in_flight(part, rw);
09e099d4 93 rq->part = part;
26b8256e 94 }
e71bf0d0 95
074a7aca 96 part_stat_unlock();
26b8256e
JA
97}
98
8324aa91 99void blk_queue_congestion_threshold(struct request_queue *q)
1da177e4
LT
100{
101 int nr;
102
103 nr = q->nr_requests - (q->nr_requests / 8) + 1;
104 if (nr > q->nr_requests)
105 nr = q->nr_requests;
106 q->nr_congestion_on = nr;
107
108 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
109 if (nr < 1)
110 nr = 1;
111 q->nr_congestion_off = nr;
112}
113
1da177e4
LT
114/**
115 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
116 * @bdev: device
117 *
118 * Locates the passed device's request queue and returns the address of its
119 * backing_dev_info
120 *
121 * Will return NULL if the request queue cannot be located.
122 */
123struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
124{
125 struct backing_dev_info *ret = NULL;
165125e1 126 struct request_queue *q = bdev_get_queue(bdev);
1da177e4
LT
127
128 if (q)
129 ret = &q->backing_dev_info;
130 return ret;
131}
1da177e4
LT
132EXPORT_SYMBOL(blk_get_backing_dev_info);
133
2a4aa30c 134void blk_rq_init(struct request_queue *q, struct request *rq)
1da177e4 135{
1afb20f3
FT
136 memset(rq, 0, sizeof(*rq));
137
1da177e4 138 INIT_LIST_HEAD(&rq->queuelist);
242f9dcb 139 INIT_LIST_HEAD(&rq->timeout_list);
c7c22e4d 140 rq->cpu = -1;
63a71386 141 rq->q = q;
a2dec7b3 142 rq->__sector = (sector_t) -1;
2e662b65
JA
143 INIT_HLIST_NODE(&rq->hash);
144 RB_CLEAR_NODE(&rq->rb_node);
d7e3c324 145 rq->cmd = rq->__cmd;
e2494e1b 146 rq->cmd_len = BLK_MAX_CDB;
63a71386 147 rq->tag = -1;
1da177e4 148 rq->ref_count = 1;
b243ddcb 149 rq->start_time = jiffies;
9195291e 150 set_start_time_ns(rq);
09e099d4 151 rq->part = NULL;
1da177e4 152}
2a4aa30c 153EXPORT_SYMBOL(blk_rq_init);
1da177e4 154
5bb23a68
N
155static void req_bio_endio(struct request *rq, struct bio *bio,
156 unsigned int nbytes, int error)
1da177e4 157{
143a87f4
TH
158 if (error)
159 clear_bit(BIO_UPTODATE, &bio->bi_flags);
160 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
161 error = -EIO;
797e7dbb 162
143a87f4
TH
163 if (unlikely(rq->cmd_flags & REQ_QUIET))
164 set_bit(BIO_QUIET, &bio->bi_flags);
08bafc03 165
f79ea416 166 bio_advance(bio, nbytes);
7ba1ba12 167
143a87f4
TH
168 /* don't actually finish bio if it's part of flush sequence */
169 if (bio->bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
170 bio_endio(bio, error);
1da177e4 171}
1da177e4 172
1da177e4
LT
173void blk_dump_rq_flags(struct request *rq, char *msg)
174{
175 int bit;
176
6728cb0e 177 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
4aff5e23
JA
178 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
179 rq->cmd_flags);
1da177e4 180
83096ebf
TH
181 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
182 (unsigned long long)blk_rq_pos(rq),
183 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
731ec497 184 printk(KERN_INFO " bio %p, biotail %p, buffer %p, len %u\n",
2e46e8b2 185 rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq));
1da177e4 186
33659ebb 187 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
6728cb0e 188 printk(KERN_INFO " cdb: ");
d34c87e4 189 for (bit = 0; bit < BLK_MAX_CDB; bit++)
1da177e4
LT
190 printk("%02x ", rq->cmd[bit]);
191 printk("\n");
192 }
193}
1da177e4
LT
194EXPORT_SYMBOL(blk_dump_rq_flags);
195
3cca6dc1 196static void blk_delay_work(struct work_struct *work)
1da177e4 197{
3cca6dc1 198 struct request_queue *q;
1da177e4 199
3cca6dc1
JA
200 q = container_of(work, struct request_queue, delay_work.work);
201 spin_lock_irq(q->queue_lock);
24ecfbe2 202 __blk_run_queue(q);
3cca6dc1 203 spin_unlock_irq(q->queue_lock);
1da177e4 204}
1da177e4
LT
205
206/**
3cca6dc1
JA
207 * blk_delay_queue - restart queueing after defined interval
208 * @q: The &struct request_queue in question
209 * @msecs: Delay in msecs
1da177e4
LT
210 *
211 * Description:
3cca6dc1
JA
212 * Sometimes queueing needs to be postponed for a little while, to allow
213 * resources to come back. This function will make sure that queueing is
70460571 214 * restarted around the specified time. Queue lock must be held.
3cca6dc1
JA
215 */
216void blk_delay_queue(struct request_queue *q, unsigned long msecs)
2ad8b1ef 217{
70460571
BVA
218 if (likely(!blk_queue_dead(q)))
219 queue_delayed_work(kblockd_workqueue, &q->delay_work,
220 msecs_to_jiffies(msecs));
2ad8b1ef 221}
3cca6dc1 222EXPORT_SYMBOL(blk_delay_queue);
2ad8b1ef 223
1da177e4
LT
224/**
225 * blk_start_queue - restart a previously stopped queue
165125e1 226 * @q: The &struct request_queue in question
1da177e4
LT
227 *
228 * Description:
229 * blk_start_queue() will clear the stop flag on the queue, and call
230 * the request_fn for the queue if it was in a stopped state when
231 * entered. Also see blk_stop_queue(). Queue lock must be held.
232 **/
165125e1 233void blk_start_queue(struct request_queue *q)
1da177e4 234{
a038e253
PBG
235 WARN_ON(!irqs_disabled());
236
75ad23bc 237 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
24ecfbe2 238 __blk_run_queue(q);
1da177e4 239}
1da177e4
LT
240EXPORT_SYMBOL(blk_start_queue);
241
242/**
243 * blk_stop_queue - stop a queue
165125e1 244 * @q: The &struct request_queue in question
1da177e4
LT
245 *
246 * Description:
247 * The Linux block layer assumes that a block driver will consume all
248 * entries on the request queue when the request_fn strategy is called.
249 * Often this will not happen, because of hardware limitations (queue
250 * depth settings). If a device driver gets a 'queue full' response,
251 * or if it simply chooses not to queue more I/O at one point, it can
252 * call this function to prevent the request_fn from being called until
253 * the driver has signalled it's ready to go again. This happens by calling
254 * blk_start_queue() to restart queue operations. Queue lock must be held.
255 **/
165125e1 256void blk_stop_queue(struct request_queue *q)
1da177e4 257{
136b5721 258 cancel_delayed_work(&q->delay_work);
75ad23bc 259 queue_flag_set(QUEUE_FLAG_STOPPED, q);
1da177e4
LT
260}
261EXPORT_SYMBOL(blk_stop_queue);
262
263/**
264 * blk_sync_queue - cancel any pending callbacks on a queue
265 * @q: the queue
266 *
267 * Description:
268 * The block layer may perform asynchronous callback activity
269 * on a queue, such as calling the unplug function after a timeout.
270 * A block device may call blk_sync_queue to ensure that any
271 * such activity is cancelled, thus allowing it to release resources
59c51591 272 * that the callbacks might use. The caller must already have made sure
1da177e4
LT
273 * that its ->make_request_fn will not re-add plugging prior to calling
274 * this function.
275 *
da527770
VG
276 * This function does not cancel any asynchronous activity arising
277 * out of elevator or throttling code. That would require elevaotor_exit()
5efd6113 278 * and blkcg_exit_queue() to be called with queue lock initialized.
da527770 279 *
1da177e4
LT
280 */
281void blk_sync_queue(struct request_queue *q)
282{
70ed28b9 283 del_timer_sync(&q->timeout);
3cca6dc1 284 cancel_delayed_work_sync(&q->delay_work);
1da177e4
LT
285}
286EXPORT_SYMBOL(blk_sync_queue);
287
c246e80d
BVA
288/**
289 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
290 * @q: The queue to run
291 *
292 * Description:
293 * Invoke request handling on a queue if there are any pending requests.
294 * May be used to restart request handling after a request has completed.
295 * This variant runs the queue whether or not the queue has been
296 * stopped. Must be called with the queue lock held and interrupts
297 * disabled. See also @blk_run_queue.
298 */
299inline void __blk_run_queue_uncond(struct request_queue *q)
300{
301 if (unlikely(blk_queue_dead(q)))
302 return;
303
24faf6f6
BVA
304 /*
305 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
306 * the queue lock internally. As a result multiple threads may be
307 * running such a request function concurrently. Keep track of the
308 * number of active request_fn invocations such that blk_drain_queue()
309 * can wait until all these request_fn calls have finished.
310 */
311 q->request_fn_active++;
c246e80d 312 q->request_fn(q);
24faf6f6 313 q->request_fn_active--;
c246e80d
BVA
314}
315
1da177e4 316/**
80a4b58e 317 * __blk_run_queue - run a single device queue
1da177e4 318 * @q: The queue to run
80a4b58e
JA
319 *
320 * Description:
321 * See @blk_run_queue. This variant must be called with the queue lock
24ecfbe2 322 * held and interrupts disabled.
1da177e4 323 */
24ecfbe2 324void __blk_run_queue(struct request_queue *q)
1da177e4 325{
a538cd03
TH
326 if (unlikely(blk_queue_stopped(q)))
327 return;
328
c246e80d 329 __blk_run_queue_uncond(q);
75ad23bc
NP
330}
331EXPORT_SYMBOL(__blk_run_queue);
dac07ec1 332
24ecfbe2
CH
333/**
334 * blk_run_queue_async - run a single device queue in workqueue context
335 * @q: The queue to run
336 *
337 * Description:
338 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
70460571 339 * of us. The caller must hold the queue lock.
24ecfbe2
CH
340 */
341void blk_run_queue_async(struct request_queue *q)
342{
70460571 343 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
e7c2f967 344 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
24ecfbe2 345}
c21e6beb 346EXPORT_SYMBOL(blk_run_queue_async);
24ecfbe2 347
75ad23bc
NP
348/**
349 * blk_run_queue - run a single device queue
350 * @q: The queue to run
80a4b58e
JA
351 *
352 * Description:
353 * Invoke request handling on this queue, if it has pending work to do.
a7f55792 354 * May be used to restart queueing when a request has completed.
75ad23bc
NP
355 */
356void blk_run_queue(struct request_queue *q)
357{
358 unsigned long flags;
359
360 spin_lock_irqsave(q->queue_lock, flags);
24ecfbe2 361 __blk_run_queue(q);
1da177e4
LT
362 spin_unlock_irqrestore(q->queue_lock, flags);
363}
364EXPORT_SYMBOL(blk_run_queue);
365
165125e1 366void blk_put_queue(struct request_queue *q)
483f4afc
AV
367{
368 kobject_put(&q->kobj);
369}
d86e0e83 370EXPORT_SYMBOL(blk_put_queue);
483f4afc 371
e3c78ca5 372/**
807592a4 373 * __blk_drain_queue - drain requests from request_queue
e3c78ca5 374 * @q: queue to drain
c9a929dd 375 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
e3c78ca5 376 *
c9a929dd
TH
377 * Drain requests from @q. If @drain_all is set, all requests are drained.
378 * If not, only ELVPRIV requests are drained. The caller is responsible
379 * for ensuring that no new requests which need to be drained are queued.
e3c78ca5 380 */
807592a4
BVA
381static void __blk_drain_queue(struct request_queue *q, bool drain_all)
382 __releases(q->queue_lock)
383 __acquires(q->queue_lock)
e3c78ca5 384{
458f27a9
AH
385 int i;
386
807592a4
BVA
387 lockdep_assert_held(q->queue_lock);
388
e3c78ca5 389 while (true) {
481a7d64 390 bool drain = false;
e3c78ca5 391
b855b04a
TH
392 /*
393 * The caller might be trying to drain @q before its
394 * elevator is initialized.
395 */
396 if (q->elevator)
397 elv_drain_elevator(q);
398
5efd6113 399 blkcg_drain_queue(q);
e3c78ca5 400
4eabc941
TH
401 /*
402 * This function might be called on a queue which failed
b855b04a
TH
403 * driver init after queue creation or is not yet fully
404 * active yet. Some drivers (e.g. fd and loop) get unhappy
405 * in such cases. Kick queue iff dispatch queue has
406 * something on it and @q has request_fn set.
4eabc941 407 */
b855b04a 408 if (!list_empty(&q->queue_head) && q->request_fn)
4eabc941 409 __blk_run_queue(q);
c9a929dd 410
8a5ecdd4 411 drain |= q->nr_rqs_elvpriv;
24faf6f6 412 drain |= q->request_fn_active;
481a7d64
TH
413
414 /*
415 * Unfortunately, requests are queued at and tracked from
416 * multiple places and there's no single counter which can
417 * be drained. Check all the queues and counters.
418 */
419 if (drain_all) {
420 drain |= !list_empty(&q->queue_head);
421 for (i = 0; i < 2; i++) {
8a5ecdd4 422 drain |= q->nr_rqs[i];
481a7d64
TH
423 drain |= q->in_flight[i];
424 drain |= !list_empty(&q->flush_queue[i]);
425 }
426 }
e3c78ca5 427
481a7d64 428 if (!drain)
e3c78ca5 429 break;
807592a4
BVA
430
431 spin_unlock_irq(q->queue_lock);
432
e3c78ca5 433 msleep(10);
807592a4
BVA
434
435 spin_lock_irq(q->queue_lock);
e3c78ca5 436 }
458f27a9
AH
437
438 /*
439 * With queue marked dead, any woken up waiter will fail the
440 * allocation path, so the wakeup chaining is lost and we're
441 * left with hung waiters. We need to wake up those waiters.
442 */
443 if (q->request_fn) {
a051661c
TH
444 struct request_list *rl;
445
a051661c
TH
446 blk_queue_for_each_rl(rl, q)
447 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
448 wake_up_all(&rl->wait[i]);
458f27a9 449 }
e3c78ca5
TH
450}
451
d732580b
TH
452/**
453 * blk_queue_bypass_start - enter queue bypass mode
454 * @q: queue of interest
455 *
456 * In bypass mode, only the dispatch FIFO queue of @q is used. This
457 * function makes @q enter bypass mode and drains all requests which were
6ecf23af 458 * throttled or issued before. On return, it's guaranteed that no request
80fd9979
TH
459 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
460 * inside queue or RCU read lock.
d732580b
TH
461 */
462void blk_queue_bypass_start(struct request_queue *q)
463{
b82d4b19
TH
464 bool drain;
465
d732580b 466 spin_lock_irq(q->queue_lock);
b82d4b19 467 drain = !q->bypass_depth++;
d732580b
TH
468 queue_flag_set(QUEUE_FLAG_BYPASS, q);
469 spin_unlock_irq(q->queue_lock);
470
b82d4b19 471 if (drain) {
807592a4
BVA
472 spin_lock_irq(q->queue_lock);
473 __blk_drain_queue(q, false);
474 spin_unlock_irq(q->queue_lock);
475
b82d4b19
TH
476 /* ensure blk_queue_bypass() is %true inside RCU read lock */
477 synchronize_rcu();
478 }
d732580b
TH
479}
480EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
481
482/**
483 * blk_queue_bypass_end - leave queue bypass mode
484 * @q: queue of interest
485 *
486 * Leave bypass mode and restore the normal queueing behavior.
487 */
488void blk_queue_bypass_end(struct request_queue *q)
489{
490 spin_lock_irq(q->queue_lock);
491 if (!--q->bypass_depth)
492 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
493 WARN_ON_ONCE(q->bypass_depth < 0);
494 spin_unlock_irq(q->queue_lock);
495}
496EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
497
c9a929dd
TH
498/**
499 * blk_cleanup_queue - shutdown a request queue
500 * @q: request queue to shutdown
501 *
c246e80d
BVA
502 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
503 * put it. All future requests will be failed immediately with -ENODEV.
c94a96ac 504 */
6728cb0e 505void blk_cleanup_queue(struct request_queue *q)
483f4afc 506{
c9a929dd 507 spinlock_t *lock = q->queue_lock;
e3335de9 508
3f3299d5 509 /* mark @q DYING, no new request or merges will be allowed afterwards */
483f4afc 510 mutex_lock(&q->sysfs_lock);
3f3299d5 511 queue_flag_set_unlocked(QUEUE_FLAG_DYING, q);
c9a929dd 512 spin_lock_irq(lock);
6ecf23af 513
80fd9979 514 /*
3f3299d5 515 * A dying queue is permanently in bypass mode till released. Note
80fd9979
TH
516 * that, unlike blk_queue_bypass_start(), we aren't performing
517 * synchronize_rcu() after entering bypass mode to avoid the delay
518 * as some drivers create and destroy a lot of queues while
519 * probing. This is still safe because blk_release_queue() will be
520 * called only after the queue refcnt drops to zero and nothing,
521 * RCU or not, would be traversing the queue by then.
522 */
6ecf23af
TH
523 q->bypass_depth++;
524 queue_flag_set(QUEUE_FLAG_BYPASS, q);
525
c9a929dd
TH
526 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
527 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
3f3299d5 528 queue_flag_set(QUEUE_FLAG_DYING, q);
c9a929dd
TH
529 spin_unlock_irq(lock);
530 mutex_unlock(&q->sysfs_lock);
531
c246e80d
BVA
532 /*
533 * Drain all requests queued before DYING marking. Set DEAD flag to
534 * prevent that q->request_fn() gets invoked after draining finished.
535 */
807592a4
BVA
536 spin_lock_irq(lock);
537 __blk_drain_queue(q, true);
c246e80d 538 queue_flag_set(QUEUE_FLAG_DEAD, q);
807592a4 539 spin_unlock_irq(lock);
c9a929dd
TH
540
541 /* @q won't process any more request, flush async actions */
542 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
543 blk_sync_queue(q);
544
5e5cfac0
AH
545 spin_lock_irq(lock);
546 if (q->queue_lock != &q->__queue_lock)
547 q->queue_lock = &q->__queue_lock;
548 spin_unlock_irq(lock);
549
c9a929dd 550 /* @q is and will stay empty, shutdown and put */
483f4afc
AV
551 blk_put_queue(q);
552}
1da177e4
LT
553EXPORT_SYMBOL(blk_cleanup_queue);
554
5b788ce3
TH
555int blk_init_rl(struct request_list *rl, struct request_queue *q,
556 gfp_t gfp_mask)
1da177e4 557{
1abec4fd
MS
558 if (unlikely(rl->rq_pool))
559 return 0;
560
5b788ce3 561 rl->q = q;
1faa16d2
JA
562 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
563 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
1faa16d2
JA
564 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
565 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
1da177e4 566
1946089a 567 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
a91a5ac6 568 mempool_free_slab, request_cachep,
5b788ce3 569 gfp_mask, q->node);
1da177e4
LT
570 if (!rl->rq_pool)
571 return -ENOMEM;
572
573 return 0;
574}
575
5b788ce3
TH
576void blk_exit_rl(struct request_list *rl)
577{
578 if (rl->rq_pool)
579 mempool_destroy(rl->rq_pool);
580}
581
165125e1 582struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
1da177e4 583{
c304a51b 584 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
1946089a
CL
585}
586EXPORT_SYMBOL(blk_alloc_queue);
1da177e4 587
165125e1 588struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1946089a 589{
165125e1 590 struct request_queue *q;
e0bf68dd 591 int err;
1946089a 592
8324aa91 593 q = kmem_cache_alloc_node(blk_requestq_cachep,
94f6030c 594 gfp_mask | __GFP_ZERO, node_id);
1da177e4
LT
595 if (!q)
596 return NULL;
597
00380a40 598 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
a73f730d
TH
599 if (q->id < 0)
600 goto fail_q;
601
0989a025
JA
602 q->backing_dev_info.ra_pages =
603 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
604 q->backing_dev_info.state = 0;
605 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
d993831f 606 q->backing_dev_info.name = "block";
5151412d 607 q->node = node_id;
0989a025 608
e0bf68dd 609 err = bdi_init(&q->backing_dev_info);
a73f730d
TH
610 if (err)
611 goto fail_id;
e0bf68dd 612
31373d09
MG
613 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
614 laptop_mode_timer_fn, (unsigned long) q);
242f9dcb 615 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
b855b04a 616 INIT_LIST_HEAD(&q->queue_head);
242f9dcb 617 INIT_LIST_HEAD(&q->timeout_list);
a612fddf 618 INIT_LIST_HEAD(&q->icq_list);
4eef3049 619#ifdef CONFIG_BLK_CGROUP
e8989fae 620 INIT_LIST_HEAD(&q->blkg_list);
4eef3049 621#endif
ae1b1539
TH
622 INIT_LIST_HEAD(&q->flush_queue[0]);
623 INIT_LIST_HEAD(&q->flush_queue[1]);
624 INIT_LIST_HEAD(&q->flush_data_in_flight);
3cca6dc1 625 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
483f4afc 626
8324aa91 627 kobject_init(&q->kobj, &blk_queue_ktype);
1da177e4 628
483f4afc 629 mutex_init(&q->sysfs_lock);
e7e72bf6 630 spin_lock_init(&q->__queue_lock);
483f4afc 631
c94a96ac
VG
632 /*
633 * By default initialize queue_lock to internal lock and driver can
634 * override it later if need be.
635 */
636 q->queue_lock = &q->__queue_lock;
637
b82d4b19
TH
638 /*
639 * A queue starts its life with bypass turned on to avoid
640 * unnecessary bypass on/off overhead and nasty surprises during
749fefe6
TH
641 * init. The initial bypass will be finished when the queue is
642 * registered by blk_register_queue().
b82d4b19
TH
643 */
644 q->bypass_depth = 1;
645 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
646
5efd6113 647 if (blkcg_init_queue(q))
f51b802c
TH
648 goto fail_id;
649
1da177e4 650 return q;
a73f730d
TH
651
652fail_id:
653 ida_simple_remove(&blk_queue_ida, q->id);
654fail_q:
655 kmem_cache_free(blk_requestq_cachep, q);
656 return NULL;
1da177e4 657}
1946089a 658EXPORT_SYMBOL(blk_alloc_queue_node);
1da177e4
LT
659
660/**
661 * blk_init_queue - prepare a request queue for use with a block device
662 * @rfn: The function to be called to process requests that have been
663 * placed on the queue.
664 * @lock: Request queue spin lock
665 *
666 * Description:
667 * If a block device wishes to use the standard request handling procedures,
668 * which sorts requests and coalesces adjacent requests, then it must
669 * call blk_init_queue(). The function @rfn will be called when there
670 * are requests on the queue that need to be processed. If the device
671 * supports plugging, then @rfn may not be called immediately when requests
672 * are available on the queue, but may be called at some time later instead.
673 * Plugged queues are generally unplugged when a buffer belonging to one
674 * of the requests on the queue is needed, or due to memory pressure.
675 *
676 * @rfn is not required, or even expected, to remove all requests off the
677 * queue, but only as many as it can handle at a time. If it does leave
678 * requests on the queue, it is responsible for arranging that the requests
679 * get dealt with eventually.
680 *
681 * The queue spin lock must be held while manipulating the requests on the
a038e253
PBG
682 * request queue; this lock will be taken also from interrupt context, so irq
683 * disabling is needed for it.
1da177e4 684 *
710027a4 685 * Function returns a pointer to the initialized request queue, or %NULL if
1da177e4
LT
686 * it didn't succeed.
687 *
688 * Note:
689 * blk_init_queue() must be paired with a blk_cleanup_queue() call
690 * when the block device is deactivated (such as at module unload).
691 **/
1946089a 692
165125e1 693struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1da177e4 694{
c304a51b 695 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
1946089a
CL
696}
697EXPORT_SYMBOL(blk_init_queue);
698
165125e1 699struct request_queue *
1946089a
CL
700blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
701{
c86d1b8a 702 struct request_queue *uninit_q, *q;
1da177e4 703
c86d1b8a
MS
704 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
705 if (!uninit_q)
706 return NULL;
707
5151412d 708 q = blk_init_allocated_queue(uninit_q, rfn, lock);
c86d1b8a
MS
709 if (!q)
710 blk_cleanup_queue(uninit_q);
711
712 return q;
01effb0d
MS
713}
714EXPORT_SYMBOL(blk_init_queue_node);
715
716struct request_queue *
717blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
718 spinlock_t *lock)
01effb0d 719{
1da177e4
LT
720 if (!q)
721 return NULL;
722
a051661c 723 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
8669aafd 724 return NULL;
1da177e4
LT
725
726 q->request_fn = rfn;
1da177e4 727 q->prep_rq_fn = NULL;
28018c24 728 q->unprep_rq_fn = NULL;
60ea8226 729 q->queue_flags |= QUEUE_FLAG_DEFAULT;
c94a96ac
VG
730
731 /* Override internal queue lock with supplied lock pointer */
732 if (lock)
733 q->queue_lock = lock;
1da177e4 734
f3b144aa
JA
735 /*
736 * This also sets hw/phys segments, boundary and size
737 */
c20e8de2 738 blk_queue_make_request(q, blk_queue_bio);
1da177e4 739
44ec9542
AS
740 q->sg_reserved_size = INT_MAX;
741
b82d4b19
TH
742 /* init elevator */
743 if (elevator_init(q, NULL))
744 return NULL;
b82d4b19 745 return q;
1da177e4 746}
5151412d 747EXPORT_SYMBOL(blk_init_allocated_queue);
1da177e4 748
09ac46c4 749bool blk_get_queue(struct request_queue *q)
1da177e4 750{
3f3299d5 751 if (likely(!blk_queue_dying(q))) {
09ac46c4
TH
752 __blk_get_queue(q);
753 return true;
1da177e4
LT
754 }
755
09ac46c4 756 return false;
1da177e4 757}
d86e0e83 758EXPORT_SYMBOL(blk_get_queue);
1da177e4 759
5b788ce3 760static inline void blk_free_request(struct request_list *rl, struct request *rq)
1da177e4 761{
f1f8cc94 762 if (rq->cmd_flags & REQ_ELVPRIV) {
5b788ce3 763 elv_put_request(rl->q, rq);
f1f8cc94 764 if (rq->elv.icq)
11a3122f 765 put_io_context(rq->elv.icq->ioc);
f1f8cc94
TH
766 }
767
5b788ce3 768 mempool_free(rq, rl->rq_pool);
1da177e4
LT
769}
770
1da177e4
LT
771/*
772 * ioc_batching returns true if the ioc is a valid batching request and
773 * should be given priority access to a request.
774 */
165125e1 775static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
776{
777 if (!ioc)
778 return 0;
779
780 /*
781 * Make sure the process is able to allocate at least 1 request
782 * even if the batch times out, otherwise we could theoretically
783 * lose wakeups.
784 */
785 return ioc->nr_batch_requests == q->nr_batching ||
786 (ioc->nr_batch_requests > 0
787 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
788}
789
790/*
791 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
792 * will cause the process to be a "batcher" on all queues in the system. This
793 * is the behaviour we want though - once it gets a wakeup it should be given
794 * a nice run.
795 */
165125e1 796static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
797{
798 if (!ioc || ioc_batching(q, ioc))
799 return;
800
801 ioc->nr_batch_requests = q->nr_batching;
802 ioc->last_waited = jiffies;
803}
804
5b788ce3 805static void __freed_request(struct request_list *rl, int sync)
1da177e4 806{
5b788ce3 807 struct request_queue *q = rl->q;
1da177e4 808
a051661c
TH
809 /*
810 * bdi isn't aware of blkcg yet. As all async IOs end up root
811 * blkcg anyway, just use root blkcg state.
812 */
813 if (rl == &q->root_rl &&
814 rl->count[sync] < queue_congestion_off_threshold(q))
1faa16d2 815 blk_clear_queue_congested(q, sync);
1da177e4 816
1faa16d2
JA
817 if (rl->count[sync] + 1 <= q->nr_requests) {
818 if (waitqueue_active(&rl->wait[sync]))
819 wake_up(&rl->wait[sync]);
1da177e4 820
5b788ce3 821 blk_clear_rl_full(rl, sync);
1da177e4
LT
822 }
823}
824
825/*
826 * A request has just been released. Account for it, update the full and
827 * congestion status, wake up any waiters. Called under q->queue_lock.
828 */
5b788ce3 829static void freed_request(struct request_list *rl, unsigned int flags)
1da177e4 830{
5b788ce3 831 struct request_queue *q = rl->q;
75eb6c37 832 int sync = rw_is_sync(flags);
1da177e4 833
8a5ecdd4 834 q->nr_rqs[sync]--;
1faa16d2 835 rl->count[sync]--;
75eb6c37 836 if (flags & REQ_ELVPRIV)
8a5ecdd4 837 q->nr_rqs_elvpriv--;
1da177e4 838
5b788ce3 839 __freed_request(rl, sync);
1da177e4 840
1faa16d2 841 if (unlikely(rl->starved[sync ^ 1]))
5b788ce3 842 __freed_request(rl, sync ^ 1);
1da177e4
LT
843}
844
9d5a4e94
MS
845/*
846 * Determine if elevator data should be initialized when allocating the
847 * request associated with @bio.
848 */
849static bool blk_rq_should_init_elevator(struct bio *bio)
850{
851 if (!bio)
852 return true;
853
854 /*
855 * Flush requests do not use the elevator so skip initialization.
856 * This allows a request to share the flush and elevator data.
857 */
858 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
859 return false;
860
861 return true;
862}
863
852c788f
TH
864/**
865 * rq_ioc - determine io_context for request allocation
866 * @bio: request being allocated is for this bio (can be %NULL)
867 *
868 * Determine io_context to use for request allocation for @bio. May return
869 * %NULL if %current->io_context doesn't exist.
870 */
871static struct io_context *rq_ioc(struct bio *bio)
872{
873#ifdef CONFIG_BLK_CGROUP
874 if (bio && bio->bi_ioc)
875 return bio->bi_ioc;
876#endif
877 return current->io_context;
878}
879
da8303c6 880/**
a06e05e6 881 * __get_request - get a free request
5b788ce3 882 * @rl: request list to allocate from
da8303c6
TH
883 * @rw_flags: RW and SYNC flags
884 * @bio: bio to allocate request for (can be %NULL)
885 * @gfp_mask: allocation mask
886 *
887 * Get a free request from @q. This function may fail under memory
888 * pressure or if @q is dead.
889 *
890 * Must be callled with @q->queue_lock held and,
891 * Returns %NULL on failure, with @q->queue_lock held.
892 * Returns !%NULL on success, with @q->queue_lock *not held*.
1da177e4 893 */
5b788ce3 894static struct request *__get_request(struct request_list *rl, int rw_flags,
a06e05e6 895 struct bio *bio, gfp_t gfp_mask)
1da177e4 896{
5b788ce3 897 struct request_queue *q = rl->q;
b679281a 898 struct request *rq;
7f4b35d1
TH
899 struct elevator_type *et = q->elevator->type;
900 struct io_context *ioc = rq_ioc(bio);
f1f8cc94 901 struct io_cq *icq = NULL;
1faa16d2 902 const bool is_sync = rw_is_sync(rw_flags) != 0;
75eb6c37 903 int may_queue;
88ee5ef1 904
3f3299d5 905 if (unlikely(blk_queue_dying(q)))
da8303c6
TH
906 return NULL;
907
7749a8d4 908 may_queue = elv_may_queue(q, rw_flags);
88ee5ef1
JA
909 if (may_queue == ELV_MQUEUE_NO)
910 goto rq_starved;
911
1faa16d2
JA
912 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
913 if (rl->count[is_sync]+1 >= q->nr_requests) {
88ee5ef1
JA
914 /*
915 * The queue will fill after this allocation, so set
916 * it as full, and mark this process as "batching".
917 * This process will be allowed to complete a batch of
918 * requests, others will be blocked.
919 */
5b788ce3 920 if (!blk_rl_full(rl, is_sync)) {
88ee5ef1 921 ioc_set_batching(q, ioc);
5b788ce3 922 blk_set_rl_full(rl, is_sync);
88ee5ef1
JA
923 } else {
924 if (may_queue != ELV_MQUEUE_MUST
925 && !ioc_batching(q, ioc)) {
926 /*
927 * The queue is full and the allocating
928 * process is not a "batcher", and not
929 * exempted by the IO scheduler
930 */
b679281a 931 return NULL;
88ee5ef1
JA
932 }
933 }
1da177e4 934 }
a051661c
TH
935 /*
936 * bdi isn't aware of blkcg yet. As all async IOs end up
937 * root blkcg anyway, just use root blkcg state.
938 */
939 if (rl == &q->root_rl)
940 blk_set_queue_congested(q, is_sync);
1da177e4
LT
941 }
942
082cf69e
JA
943 /*
944 * Only allow batching queuers to allocate up to 50% over the defined
945 * limit of requests, otherwise we could have thousands of requests
946 * allocated with any setting of ->nr_requests
947 */
1faa16d2 948 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
b679281a 949 return NULL;
fd782a4a 950
8a5ecdd4 951 q->nr_rqs[is_sync]++;
1faa16d2
JA
952 rl->count[is_sync]++;
953 rl->starved[is_sync] = 0;
cb98fc8b 954
f1f8cc94
TH
955 /*
956 * Decide whether the new request will be managed by elevator. If
957 * so, mark @rw_flags and increment elvpriv. Non-zero elvpriv will
958 * prevent the current elevator from being destroyed until the new
959 * request is freed. This guarantees icq's won't be destroyed and
960 * makes creating new ones safe.
961 *
962 * Also, lookup icq while holding queue_lock. If it doesn't exist,
963 * it will be created after releasing queue_lock.
964 */
d732580b 965 if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) {
75eb6c37 966 rw_flags |= REQ_ELVPRIV;
8a5ecdd4 967 q->nr_rqs_elvpriv++;
f1f8cc94
TH
968 if (et->icq_cache && ioc)
969 icq = ioc_lookup_icq(ioc, q);
9d5a4e94 970 }
cb98fc8b 971
f253b86b
JA
972 if (blk_queue_io_stat(q))
973 rw_flags |= REQ_IO_STAT;
1da177e4
LT
974 spin_unlock_irq(q->queue_lock);
975
29e2b09a 976 /* allocate and init request */
5b788ce3 977 rq = mempool_alloc(rl->rq_pool, gfp_mask);
29e2b09a 978 if (!rq)
b679281a 979 goto fail_alloc;
1da177e4 980
29e2b09a 981 blk_rq_init(q, rq);
a051661c 982 blk_rq_set_rl(rq, rl);
29e2b09a
TH
983 rq->cmd_flags = rw_flags | REQ_ALLOCED;
984
aaf7c680 985 /* init elvpriv */
29e2b09a 986 if (rw_flags & REQ_ELVPRIV) {
aaf7c680 987 if (unlikely(et->icq_cache && !icq)) {
7f4b35d1
TH
988 if (ioc)
989 icq = ioc_create_icq(ioc, q, gfp_mask);
aaf7c680
TH
990 if (!icq)
991 goto fail_elvpriv;
29e2b09a 992 }
aaf7c680
TH
993
994 rq->elv.icq = icq;
995 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
996 goto fail_elvpriv;
997
998 /* @rq->elv.icq holds io_context until @rq is freed */
29e2b09a
TH
999 if (icq)
1000 get_io_context(icq->ioc);
1001 }
aaf7c680 1002out:
88ee5ef1
JA
1003 /*
1004 * ioc may be NULL here, and ioc_batching will be false. That's
1005 * OK, if the queue is under the request limit then requests need
1006 * not count toward the nr_batch_requests limit. There will always
1007 * be some limit enforced by BLK_BATCH_TIME.
1008 */
1da177e4
LT
1009 if (ioc_batching(q, ioc))
1010 ioc->nr_batch_requests--;
6728cb0e 1011
1faa16d2 1012 trace_block_getrq(q, bio, rw_flags & 1);
1da177e4 1013 return rq;
b679281a 1014
aaf7c680
TH
1015fail_elvpriv:
1016 /*
1017 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1018 * and may fail indefinitely under memory pressure and thus
1019 * shouldn't stall IO. Treat this request as !elvpriv. This will
1020 * disturb iosched and blkcg but weird is bettern than dead.
1021 */
1022 printk_ratelimited(KERN_WARNING "%s: request aux data allocation failed, iosched may be disturbed\n",
1023 dev_name(q->backing_dev_info.dev));
1024
1025 rq->cmd_flags &= ~REQ_ELVPRIV;
1026 rq->elv.icq = NULL;
1027
1028 spin_lock_irq(q->queue_lock);
8a5ecdd4 1029 q->nr_rqs_elvpriv--;
aaf7c680
TH
1030 spin_unlock_irq(q->queue_lock);
1031 goto out;
1032
b679281a
TH
1033fail_alloc:
1034 /*
1035 * Allocation failed presumably due to memory. Undo anything we
1036 * might have messed up.
1037 *
1038 * Allocating task should really be put onto the front of the wait
1039 * queue, but this is pretty rare.
1040 */
1041 spin_lock_irq(q->queue_lock);
5b788ce3 1042 freed_request(rl, rw_flags);
b679281a
TH
1043
1044 /*
1045 * in the very unlikely event that allocation failed and no
1046 * requests for this direction was pending, mark us starved so that
1047 * freeing of a request in the other direction will notice
1048 * us. another possible fix would be to split the rq mempool into
1049 * READ and WRITE
1050 */
1051rq_starved:
1052 if (unlikely(rl->count[is_sync] == 0))
1053 rl->starved[is_sync] = 1;
1054 return NULL;
1da177e4
LT
1055}
1056
da8303c6 1057/**
a06e05e6 1058 * get_request - get a free request
da8303c6
TH
1059 * @q: request_queue to allocate request from
1060 * @rw_flags: RW and SYNC flags
1061 * @bio: bio to allocate request for (can be %NULL)
a06e05e6 1062 * @gfp_mask: allocation mask
da8303c6 1063 *
a06e05e6
TH
1064 * Get a free request from @q. If %__GFP_WAIT is set in @gfp_mask, this
1065 * function keeps retrying under memory pressure and fails iff @q is dead.
d6344532 1066 *
da8303c6
TH
1067 * Must be callled with @q->queue_lock held and,
1068 * Returns %NULL on failure, with @q->queue_lock held.
1069 * Returns !%NULL on success, with @q->queue_lock *not held*.
1da177e4 1070 */
a06e05e6
TH
1071static struct request *get_request(struct request_queue *q, int rw_flags,
1072 struct bio *bio, gfp_t gfp_mask)
1da177e4 1073{
1faa16d2 1074 const bool is_sync = rw_is_sync(rw_flags) != 0;
a06e05e6 1075 DEFINE_WAIT(wait);
a051661c 1076 struct request_list *rl;
1da177e4 1077 struct request *rq;
a051661c
TH
1078
1079 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
a06e05e6 1080retry:
a051661c 1081 rq = __get_request(rl, rw_flags, bio, gfp_mask);
a06e05e6
TH
1082 if (rq)
1083 return rq;
1da177e4 1084
3f3299d5 1085 if (!(gfp_mask & __GFP_WAIT) || unlikely(blk_queue_dying(q))) {
a051661c 1086 blk_put_rl(rl);
a06e05e6 1087 return NULL;
a051661c 1088 }
1da177e4 1089
a06e05e6
TH
1090 /* wait on @rl and retry */
1091 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1092 TASK_UNINTERRUPTIBLE);
1da177e4 1093
a06e05e6 1094 trace_block_sleeprq(q, bio, rw_flags & 1);
1da177e4 1095
a06e05e6
TH
1096 spin_unlock_irq(q->queue_lock);
1097 io_schedule();
d6344532 1098
a06e05e6
TH
1099 /*
1100 * After sleeping, we become a "batching" process and will be able
1101 * to allocate at least one request, and up to a big batch of them
1102 * for a small period time. See ioc_batching, ioc_set_batching
1103 */
a06e05e6 1104 ioc_set_batching(q, current->io_context);
05caf8db 1105
a06e05e6
TH
1106 spin_lock_irq(q->queue_lock);
1107 finish_wait(&rl->wait[is_sync], &wait);
1da177e4 1108
a06e05e6 1109 goto retry;
1da177e4
LT
1110}
1111
165125e1 1112struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1da177e4
LT
1113{
1114 struct request *rq;
1115
1116 BUG_ON(rw != READ && rw != WRITE);
1117
7f4b35d1
TH
1118 /* create ioc upfront */
1119 create_io_context(gfp_mask, q->node);
1120
d6344532 1121 spin_lock_irq(q->queue_lock);
a06e05e6 1122 rq = get_request(q, rw, NULL, gfp_mask);
da8303c6
TH
1123 if (!rq)
1124 spin_unlock_irq(q->queue_lock);
d6344532 1125 /* q->queue_lock is unlocked at this point */
1da177e4
LT
1126
1127 return rq;
1128}
1da177e4
LT
1129EXPORT_SYMBOL(blk_get_request);
1130
dc72ef4a 1131/**
79eb63e9 1132 * blk_make_request - given a bio, allocate a corresponding struct request.
8ebf9756 1133 * @q: target request queue
79eb63e9
BH
1134 * @bio: The bio describing the memory mappings that will be submitted for IO.
1135 * It may be a chained-bio properly constructed by block/bio layer.
8ebf9756 1136 * @gfp_mask: gfp flags to be used for memory allocation
dc72ef4a 1137 *
79eb63e9
BH
1138 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
1139 * type commands. Where the struct request needs to be farther initialized by
1140 * the caller. It is passed a &struct bio, which describes the memory info of
1141 * the I/O transfer.
dc72ef4a 1142 *
79eb63e9
BH
1143 * The caller of blk_make_request must make sure that bi_io_vec
1144 * are set to describe the memory buffers. That bio_data_dir() will return
1145 * the needed direction of the request. (And all bio's in the passed bio-chain
1146 * are properly set accordingly)
1147 *
1148 * If called under none-sleepable conditions, mapped bio buffers must not
1149 * need bouncing, by calling the appropriate masked or flagged allocator,
1150 * suitable for the target device. Otherwise the call to blk_queue_bounce will
1151 * BUG.
53674ac5
JA
1152 *
1153 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
1154 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
1155 * anything but the first bio in the chain. Otherwise you risk waiting for IO
1156 * completion of a bio that hasn't been submitted yet, thus resulting in a
1157 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
1158 * of bio_alloc(), as that avoids the mempool deadlock.
1159 * If possible a big IO should be split into smaller parts when allocation
1160 * fails. Partial allocation should not be an error, or you risk a live-lock.
dc72ef4a 1161 */
79eb63e9
BH
1162struct request *blk_make_request(struct request_queue *q, struct bio *bio,
1163 gfp_t gfp_mask)
dc72ef4a 1164{
79eb63e9
BH
1165 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
1166
1167 if (unlikely(!rq))
1168 return ERR_PTR(-ENOMEM);
1169
1170 for_each_bio(bio) {
1171 struct bio *bounce_bio = bio;
1172 int ret;
1173
1174 blk_queue_bounce(q, &bounce_bio);
1175 ret = blk_rq_append_bio(q, rq, bounce_bio);
1176 if (unlikely(ret)) {
1177 blk_put_request(rq);
1178 return ERR_PTR(ret);
1179 }
1180 }
1181
1182 return rq;
dc72ef4a 1183}
79eb63e9 1184EXPORT_SYMBOL(blk_make_request);
dc72ef4a 1185
1da177e4
LT
1186/**
1187 * blk_requeue_request - put a request back on queue
1188 * @q: request queue where request should be inserted
1189 * @rq: request to be inserted
1190 *
1191 * Description:
1192 * Drivers often keep queueing requests until the hardware cannot accept
1193 * more, when that condition happens we need to put the request back
1194 * on the queue. Must be called with queue lock held.
1195 */
165125e1 1196void blk_requeue_request(struct request_queue *q, struct request *rq)
1da177e4 1197{
242f9dcb
JA
1198 blk_delete_timer(rq);
1199 blk_clear_rq_complete(rq);
5f3ea37c 1200 trace_block_rq_requeue(q, rq);
2056a782 1201
1da177e4
LT
1202 if (blk_rq_tagged(rq))
1203 blk_queue_end_tag(q, rq);
1204
ba396a6c
JB
1205 BUG_ON(blk_queued_rq(rq));
1206
1da177e4
LT
1207 elv_requeue_request(q, rq);
1208}
1da177e4
LT
1209EXPORT_SYMBOL(blk_requeue_request);
1210
73c10101
JA
1211static void add_acct_request(struct request_queue *q, struct request *rq,
1212 int where)
1213{
1214 drive_stat_acct(rq, 1);
7eaceacc 1215 __elv_add_request(q, rq, where);
73c10101
JA
1216}
1217
074a7aca
TH
1218static void part_round_stats_single(int cpu, struct hd_struct *part,
1219 unsigned long now)
1220{
1221 if (now == part->stamp)
1222 return;
1223
316d315b 1224 if (part_in_flight(part)) {
074a7aca 1225 __part_stat_add(cpu, part, time_in_queue,
316d315b 1226 part_in_flight(part) * (now - part->stamp));
074a7aca
TH
1227 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1228 }
1229 part->stamp = now;
1230}
1231
1232/**
496aa8a9
RD
1233 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1234 * @cpu: cpu number for stats access
1235 * @part: target partition
1da177e4
LT
1236 *
1237 * The average IO queue length and utilisation statistics are maintained
1238 * by observing the current state of the queue length and the amount of
1239 * time it has been in this state for.
1240 *
1241 * Normally, that accounting is done on IO completion, but that can result
1242 * in more than a second's worth of IO being accounted for within any one
1243 * second, leading to >100% utilisation. To deal with that, we call this
1244 * function to do a round-off before returning the results when reading
1245 * /proc/diskstats. This accounts immediately for all queue usage up to
1246 * the current jiffies and restarts the counters again.
1247 */
c9959059 1248void part_round_stats(int cpu, struct hd_struct *part)
6f2576af
JM
1249{
1250 unsigned long now = jiffies;
1251
074a7aca
TH
1252 if (part->partno)
1253 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1254 part_round_stats_single(cpu, part, now);
6f2576af 1255}
074a7aca 1256EXPORT_SYMBOL_GPL(part_round_stats);
6f2576af 1257
c8158819
LM
1258#ifdef CONFIG_PM_RUNTIME
1259static void blk_pm_put_request(struct request *rq)
1260{
1261 if (rq->q->dev && !(rq->cmd_flags & REQ_PM) && !--rq->q->nr_pending)
1262 pm_runtime_mark_last_busy(rq->q->dev);
1263}
1264#else
1265static inline void blk_pm_put_request(struct request *rq) {}
1266#endif
1267
1da177e4
LT
1268/*
1269 * queue lock must be held
1270 */
165125e1 1271void __blk_put_request(struct request_queue *q, struct request *req)
1da177e4 1272{
1da177e4
LT
1273 if (unlikely(!q))
1274 return;
1275 if (unlikely(--req->ref_count))
1276 return;
1277
c8158819
LM
1278 blk_pm_put_request(req);
1279
8922e16c
TH
1280 elv_completed_request(q, req);
1281
1cd96c24
BH
1282 /* this is a bio leak */
1283 WARN_ON(req->bio != NULL);
1284
1da177e4
LT
1285 /*
1286 * Request may not have originated from ll_rw_blk. if not,
1287 * it didn't come out of our reserved rq pools
1288 */
49171e5c 1289 if (req->cmd_flags & REQ_ALLOCED) {
75eb6c37 1290 unsigned int flags = req->cmd_flags;
a051661c 1291 struct request_list *rl = blk_rq_rl(req);
1da177e4 1292
1da177e4 1293 BUG_ON(!list_empty(&req->queuelist));
9817064b 1294 BUG_ON(!hlist_unhashed(&req->hash));
1da177e4 1295
a051661c
TH
1296 blk_free_request(rl, req);
1297 freed_request(rl, flags);
1298 blk_put_rl(rl);
1da177e4
LT
1299 }
1300}
6e39b69e
MC
1301EXPORT_SYMBOL_GPL(__blk_put_request);
1302
1da177e4
LT
1303void blk_put_request(struct request *req)
1304{
8922e16c 1305 unsigned long flags;
165125e1 1306 struct request_queue *q = req->q;
8922e16c 1307
52a93ba8
FT
1308 spin_lock_irqsave(q->queue_lock, flags);
1309 __blk_put_request(q, req);
1310 spin_unlock_irqrestore(q->queue_lock, flags);
1da177e4 1311}
1da177e4
LT
1312EXPORT_SYMBOL(blk_put_request);
1313
66ac0280
CH
1314/**
1315 * blk_add_request_payload - add a payload to a request
1316 * @rq: request to update
1317 * @page: page backing the payload
1318 * @len: length of the payload.
1319 *
1320 * This allows to later add a payload to an already submitted request by
1321 * a block driver. The driver needs to take care of freeing the payload
1322 * itself.
1323 *
1324 * Note that this is a quite horrible hack and nothing but handling of
1325 * discard requests should ever use it.
1326 */
1327void blk_add_request_payload(struct request *rq, struct page *page,
1328 unsigned int len)
1329{
1330 struct bio *bio = rq->bio;
1331
1332 bio->bi_io_vec->bv_page = page;
1333 bio->bi_io_vec->bv_offset = 0;
1334 bio->bi_io_vec->bv_len = len;
1335
1336 bio->bi_size = len;
1337 bio->bi_vcnt = 1;
1338 bio->bi_phys_segments = 1;
1339
1340 rq->__data_len = rq->resid_len = len;
1341 rq->nr_phys_segments = 1;
1342 rq->buffer = bio_data(bio);
1343}
1344EXPORT_SYMBOL_GPL(blk_add_request_payload);
1345
73c10101
JA
1346static bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1347 struct bio *bio)
1348{
1349 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1350
73c10101
JA
1351 if (!ll_back_merge_fn(q, req, bio))
1352 return false;
1353
8c1cf6bb 1354 trace_block_bio_backmerge(q, req, bio);
73c10101
JA
1355
1356 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1357 blk_rq_set_mixed_merge(req);
1358
1359 req->biotail->bi_next = bio;
1360 req->biotail = bio;
1361 req->__data_len += bio->bi_size;
1362 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1363
1364 drive_stat_acct(req, 0);
1365 return true;
1366}
1367
1368static bool bio_attempt_front_merge(struct request_queue *q,
1369 struct request *req, struct bio *bio)
1370{
1371 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
73c10101 1372
73c10101
JA
1373 if (!ll_front_merge_fn(q, req, bio))
1374 return false;
1375
8c1cf6bb 1376 trace_block_bio_frontmerge(q, req, bio);
73c10101
JA
1377
1378 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1379 blk_rq_set_mixed_merge(req);
1380
73c10101
JA
1381 bio->bi_next = req->bio;
1382 req->bio = bio;
1383
1384 /*
1385 * may not be valid. if the low level driver said
1386 * it didn't need a bounce buffer then it better
1387 * not touch req->buffer either...
1388 */
1389 req->buffer = bio_data(bio);
1390 req->__sector = bio->bi_sector;
1391 req->__data_len += bio->bi_size;
1392 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1393
1394 drive_stat_acct(req, 0);
1395 return true;
1396}
1397
bd87b589
TH
1398/**
1399 * attempt_plug_merge - try to merge with %current's plugged list
1400 * @q: request_queue new bio is being queued at
1401 * @bio: new bio being queued
1402 * @request_count: out parameter for number of traversed plugged requests
1403 *
1404 * Determine whether @bio being queued on @q can be merged with a request
1405 * on %current's plugged list. Returns %true if merge was successful,
1406 * otherwise %false.
1407 *
07c2bd37
TH
1408 * Plugging coalesces IOs from the same issuer for the same purpose without
1409 * going through @q->queue_lock. As such it's more of an issuing mechanism
1410 * than scheduling, and the request, while may have elvpriv data, is not
1411 * added on the elevator at this point. In addition, we don't have
1412 * reliable access to the elevator outside queue lock. Only check basic
1413 * merging parameters without querying the elevator.
73c10101 1414 */
bd87b589
TH
1415static bool attempt_plug_merge(struct request_queue *q, struct bio *bio,
1416 unsigned int *request_count)
73c10101
JA
1417{
1418 struct blk_plug *plug;
1419 struct request *rq;
1420 bool ret = false;
1421
bd87b589 1422 plug = current->plug;
73c10101
JA
1423 if (!plug)
1424 goto out;
56ebdaf2 1425 *request_count = 0;
73c10101
JA
1426
1427 list_for_each_entry_reverse(rq, &plug->list, queuelist) {
1428 int el_ret;
1429
1b2e19f1
SL
1430 if (rq->q == q)
1431 (*request_count)++;
56ebdaf2 1432
07c2bd37 1433 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
73c10101
JA
1434 continue;
1435
050c8ea8 1436 el_ret = blk_try_merge(rq, bio);
73c10101
JA
1437 if (el_ret == ELEVATOR_BACK_MERGE) {
1438 ret = bio_attempt_back_merge(q, rq, bio);
1439 if (ret)
1440 break;
1441 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1442 ret = bio_attempt_front_merge(q, rq, bio);
1443 if (ret)
1444 break;
1445 }
1446 }
1447out:
1448 return ret;
1449}
1450
86db1e29 1451void init_request_from_bio(struct request *req, struct bio *bio)
52d9e675 1452{
4aff5e23 1453 req->cmd_type = REQ_TYPE_FS;
52d9e675 1454
7b6d91da
CH
1455 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1456 if (bio->bi_rw & REQ_RAHEAD)
a82afdfc 1457 req->cmd_flags |= REQ_FAILFAST_MASK;
b31dc66a 1458
52d9e675 1459 req->errors = 0;
a2dec7b3 1460 req->__sector = bio->bi_sector;
52d9e675 1461 req->ioprio = bio_prio(bio);
bc1c56fd 1462 blk_rq_bio_prep(req->q, req, bio);
52d9e675
TH
1463}
1464
5a7bbad2 1465void blk_queue_bio(struct request_queue *q, struct bio *bio)
1da177e4 1466{
5e00d1b5 1467 const bool sync = !!(bio->bi_rw & REQ_SYNC);
73c10101
JA
1468 struct blk_plug *plug;
1469 int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1470 struct request *req;
56ebdaf2 1471 unsigned int request_count = 0;
1da177e4 1472
1da177e4
LT
1473 /*
1474 * low level driver can indicate that it wants pages above a
1475 * certain limit bounced to low memory (ie for highmem, or even
1476 * ISA dma in theory)
1477 */
1478 blk_queue_bounce(q, &bio);
1479
ffecfd1a
DW
1480 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1481 bio_endio(bio, -EIO);
1482 return;
1483 }
1484
4fed947c 1485 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
73c10101 1486 spin_lock_irq(q->queue_lock);
ae1b1539 1487 where = ELEVATOR_INSERT_FLUSH;
28e7d184
TH
1488 goto get_rq;
1489 }
1490
73c10101
JA
1491 /*
1492 * Check if we can merge with the plugged list before grabbing
1493 * any locks.
1494 */
bd87b589 1495 if (attempt_plug_merge(q, bio, &request_count))
5a7bbad2 1496 return;
1da177e4 1497
73c10101 1498 spin_lock_irq(q->queue_lock);
2056a782 1499
73c10101
JA
1500 el_ret = elv_merge(q, &req, bio);
1501 if (el_ret == ELEVATOR_BACK_MERGE) {
73c10101 1502 if (bio_attempt_back_merge(q, req, bio)) {
07c2bd37 1503 elv_bio_merged(q, req, bio);
73c10101
JA
1504 if (!attempt_back_merge(q, req))
1505 elv_merged_request(q, req, el_ret);
1506 goto out_unlock;
1507 }
1508 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
73c10101 1509 if (bio_attempt_front_merge(q, req, bio)) {
07c2bd37 1510 elv_bio_merged(q, req, bio);
73c10101
JA
1511 if (!attempt_front_merge(q, req))
1512 elv_merged_request(q, req, el_ret);
1513 goto out_unlock;
80a761fd 1514 }
1da177e4
LT
1515 }
1516
450991bc 1517get_rq:
7749a8d4
JA
1518 /*
1519 * This sync check and mask will be re-done in init_request_from_bio(),
1520 * but we need to set it earlier to expose the sync flag to the
1521 * rq allocator and io schedulers.
1522 */
1523 rw_flags = bio_data_dir(bio);
1524 if (sync)
7b6d91da 1525 rw_flags |= REQ_SYNC;
7749a8d4 1526
1da177e4 1527 /*
450991bc 1528 * Grab a free request. This is might sleep but can not fail.
d6344532 1529 * Returns with the queue unlocked.
450991bc 1530 */
a06e05e6 1531 req = get_request(q, rw_flags, bio, GFP_NOIO);
da8303c6
TH
1532 if (unlikely(!req)) {
1533 bio_endio(bio, -ENODEV); /* @q is dead */
1534 goto out_unlock;
1535 }
d6344532 1536
450991bc
NP
1537 /*
1538 * After dropping the lock and possibly sleeping here, our request
1539 * may now be mergeable after it had proven unmergeable (above).
1540 * We don't worry about that case for efficiency. It won't happen
1541 * often, and the elevators are able to handle it.
1da177e4 1542 */
52d9e675 1543 init_request_from_bio(req, bio);
1da177e4 1544
9562ad9a 1545 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
11ccf116 1546 req->cpu = raw_smp_processor_id();
73c10101
JA
1547
1548 plug = current->plug;
721a9602 1549 if (plug) {
dc6d36c9
JA
1550 /*
1551 * If this is the first request added after a plug, fire
1552 * of a plug trace. If others have been added before, check
1553 * if we have multiple devices in this plug. If so, make a
1554 * note to sort the list before dispatch.
1555 */
1556 if (list_empty(&plug->list))
1557 trace_block_plug(q);
3540d5e8 1558 else {
019ceb7d 1559 if (request_count >= BLK_MAX_REQUEST_COUNT) {
3540d5e8 1560 blk_flush_plug_list(plug, false);
019ceb7d
SL
1561 trace_block_plug(q);
1562 }
73c10101 1563 }
73c10101
JA
1564 list_add_tail(&req->queuelist, &plug->list);
1565 drive_stat_acct(req, 1);
1566 } else {
1567 spin_lock_irq(q->queue_lock);
1568 add_acct_request(q, req, where);
24ecfbe2 1569 __blk_run_queue(q);
73c10101
JA
1570out_unlock:
1571 spin_unlock_irq(q->queue_lock);
1572 }
1da177e4 1573}
c20e8de2 1574EXPORT_SYMBOL_GPL(blk_queue_bio); /* for device mapper only */
1da177e4
LT
1575
1576/*
1577 * If bio->bi_dev is a partition, remap the location
1578 */
1579static inline void blk_partition_remap(struct bio *bio)
1580{
1581 struct block_device *bdev = bio->bi_bdev;
1582
bf2de6f5 1583 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1da177e4
LT
1584 struct hd_struct *p = bdev->bd_part;
1585
1da177e4
LT
1586 bio->bi_sector += p->start_sect;
1587 bio->bi_bdev = bdev->bd_contains;
c7149d6b 1588
d07335e5
MS
1589 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1590 bdev->bd_dev,
1591 bio->bi_sector - p->start_sect);
1da177e4
LT
1592 }
1593}
1594
1da177e4
LT
1595static void handle_bad_sector(struct bio *bio)
1596{
1597 char b[BDEVNAME_SIZE];
1598
1599 printk(KERN_INFO "attempt to access beyond end of device\n");
1600 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1601 bdevname(bio->bi_bdev, b),
1602 bio->bi_rw,
f73a1c7d 1603 (unsigned long long)bio_end_sector(bio),
77304d2a 1604 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1da177e4
LT
1605
1606 set_bit(BIO_EOF, &bio->bi_flags);
1607}
1608
c17bb495
AM
1609#ifdef CONFIG_FAIL_MAKE_REQUEST
1610
1611static DECLARE_FAULT_ATTR(fail_make_request);
1612
1613static int __init setup_fail_make_request(char *str)
1614{
1615 return setup_fault_attr(&fail_make_request, str);
1616}
1617__setup("fail_make_request=", setup_fail_make_request);
1618
b2c9cd37 1619static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
c17bb495 1620{
b2c9cd37 1621 return part->make_it_fail && should_fail(&fail_make_request, bytes);
c17bb495
AM
1622}
1623
1624static int __init fail_make_request_debugfs(void)
1625{
dd48c085
AM
1626 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1627 NULL, &fail_make_request);
1628
1629 return IS_ERR(dir) ? PTR_ERR(dir) : 0;
c17bb495
AM
1630}
1631
1632late_initcall(fail_make_request_debugfs);
1633
1634#else /* CONFIG_FAIL_MAKE_REQUEST */
1635
b2c9cd37
AM
1636static inline bool should_fail_request(struct hd_struct *part,
1637 unsigned int bytes)
c17bb495 1638{
b2c9cd37 1639 return false;
c17bb495
AM
1640}
1641
1642#endif /* CONFIG_FAIL_MAKE_REQUEST */
1643
c07e2b41
JA
1644/*
1645 * Check whether this bio extends beyond the end of the device.
1646 */
1647static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1648{
1649 sector_t maxsector;
1650
1651 if (!nr_sectors)
1652 return 0;
1653
1654 /* Test device or partition size, when known. */
77304d2a 1655 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
c07e2b41
JA
1656 if (maxsector) {
1657 sector_t sector = bio->bi_sector;
1658
1659 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1660 /*
1661 * This may well happen - the kernel calls bread()
1662 * without checking the size of the device, e.g., when
1663 * mounting a device.
1664 */
1665 handle_bad_sector(bio);
1666 return 1;
1667 }
1668 }
1669
1670 return 0;
1671}
1672
27a84d54
CH
1673static noinline_for_stack bool
1674generic_make_request_checks(struct bio *bio)
1da177e4 1675{
165125e1 1676 struct request_queue *q;
5a7bbad2 1677 int nr_sectors = bio_sectors(bio);
51fd77bd 1678 int err = -EIO;
5a7bbad2
CH
1679 char b[BDEVNAME_SIZE];
1680 struct hd_struct *part;
1da177e4
LT
1681
1682 might_sleep();
1da177e4 1683
c07e2b41
JA
1684 if (bio_check_eod(bio, nr_sectors))
1685 goto end_io;
1da177e4 1686
5a7bbad2
CH
1687 q = bdev_get_queue(bio->bi_bdev);
1688 if (unlikely(!q)) {
1689 printk(KERN_ERR
1690 "generic_make_request: Trying to access "
1691 "nonexistent block-device %s (%Lu)\n",
1692 bdevname(bio->bi_bdev, b),
1693 (long long) bio->bi_sector);
1694 goto end_io;
1695 }
c17bb495 1696
e2a60da7
MP
1697 if (likely(bio_is_rw(bio) &&
1698 nr_sectors > queue_max_hw_sectors(q))) {
5a7bbad2
CH
1699 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1700 bdevname(bio->bi_bdev, b),
1701 bio_sectors(bio),
1702 queue_max_hw_sectors(q));
1703 goto end_io;
1704 }
1da177e4 1705
5a7bbad2
CH
1706 part = bio->bi_bdev->bd_part;
1707 if (should_fail_request(part, bio->bi_size) ||
1708 should_fail_request(&part_to_disk(part)->part0,
1709 bio->bi_size))
1710 goto end_io;
2056a782 1711
5a7bbad2
CH
1712 /*
1713 * If this device has partitions, remap block n
1714 * of partition p to block n+start(p) of the disk.
1715 */
1716 blk_partition_remap(bio);
2056a782 1717
5a7bbad2
CH
1718 if (bio_check_eod(bio, nr_sectors))
1719 goto end_io;
1e87901e 1720
5a7bbad2
CH
1721 /*
1722 * Filter flush bio's early so that make_request based
1723 * drivers without flush support don't have to worry
1724 * about them.
1725 */
1726 if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1727 bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1728 if (!nr_sectors) {
1729 err = 0;
51fd77bd
JA
1730 goto end_io;
1731 }
5a7bbad2 1732 }
5ddfe969 1733
5a7bbad2
CH
1734 if ((bio->bi_rw & REQ_DISCARD) &&
1735 (!blk_queue_discard(q) ||
e2a60da7 1736 ((bio->bi_rw & REQ_SECURE) && !blk_queue_secdiscard(q)))) {
5a7bbad2
CH
1737 err = -EOPNOTSUPP;
1738 goto end_io;
1739 }
01edede4 1740
4363ac7c 1741 if (bio->bi_rw & REQ_WRITE_SAME && !bdev_write_same(bio->bi_bdev)) {
5a7bbad2
CH
1742 err = -EOPNOTSUPP;
1743 goto end_io;
1744 }
01edede4 1745
7f4b35d1
TH
1746 /*
1747 * Various block parts want %current->io_context and lazy ioc
1748 * allocation ends up trading a lot of pain for a small amount of
1749 * memory. Just allocate it upfront. This may fail and block
1750 * layer knows how to live with it.
1751 */
1752 create_io_context(GFP_ATOMIC, q->node);
1753
bc16a4f9
TH
1754 if (blk_throtl_bio(q, bio))
1755 return false; /* throttled, will be resubmitted later */
27a84d54 1756
5a7bbad2 1757 trace_block_bio_queue(q, bio);
27a84d54 1758 return true;
a7384677
TH
1759
1760end_io:
1761 bio_endio(bio, err);
27a84d54 1762 return false;
1da177e4
LT
1763}
1764
27a84d54
CH
1765/**
1766 * generic_make_request - hand a buffer to its device driver for I/O
1767 * @bio: The bio describing the location in memory and on the device.
1768 *
1769 * generic_make_request() is used to make I/O requests of block
1770 * devices. It is passed a &struct bio, which describes the I/O that needs
1771 * to be done.
1772 *
1773 * generic_make_request() does not return any status. The
1774 * success/failure status of the request, along with notification of
1775 * completion, is delivered asynchronously through the bio->bi_end_io
1776 * function described (one day) else where.
1777 *
1778 * The caller of generic_make_request must make sure that bi_io_vec
1779 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1780 * set to describe the device address, and the
1781 * bi_end_io and optionally bi_private are set to describe how
1782 * completion notification should be signaled.
1783 *
1784 * generic_make_request and the drivers it calls may use bi_next if this
1785 * bio happens to be merged with someone else, and may resubmit the bio to
1786 * a lower device by calling into generic_make_request recursively, which
1787 * means the bio should NOT be touched after the call to ->make_request_fn.
d89d8796
NB
1788 */
1789void generic_make_request(struct bio *bio)
1790{
bddd87c7
AM
1791 struct bio_list bio_list_on_stack;
1792
27a84d54
CH
1793 if (!generic_make_request_checks(bio))
1794 return;
1795
1796 /*
1797 * We only want one ->make_request_fn to be active at a time, else
1798 * stack usage with stacked devices could be a problem. So use
1799 * current->bio_list to keep a list of requests submited by a
1800 * make_request_fn function. current->bio_list is also used as a
1801 * flag to say if generic_make_request is currently active in this
1802 * task or not. If it is NULL, then no make_request is active. If
1803 * it is non-NULL, then a make_request is active, and new requests
1804 * should be added at the tail
1805 */
bddd87c7 1806 if (current->bio_list) {
bddd87c7 1807 bio_list_add(current->bio_list, bio);
d89d8796
NB
1808 return;
1809 }
27a84d54 1810
d89d8796
NB
1811 /* following loop may be a bit non-obvious, and so deserves some
1812 * explanation.
1813 * Before entering the loop, bio->bi_next is NULL (as all callers
1814 * ensure that) so we have a list with a single bio.
1815 * We pretend that we have just taken it off a longer list, so
bddd87c7
AM
1816 * we assign bio_list to a pointer to the bio_list_on_stack,
1817 * thus initialising the bio_list of new bios to be
27a84d54 1818 * added. ->make_request() may indeed add some more bios
d89d8796
NB
1819 * through a recursive call to generic_make_request. If it
1820 * did, we find a non-NULL value in bio_list and re-enter the loop
1821 * from the top. In this case we really did just take the bio
bddd87c7 1822 * of the top of the list (no pretending) and so remove it from
27a84d54 1823 * bio_list, and call into ->make_request() again.
d89d8796
NB
1824 */
1825 BUG_ON(bio->bi_next);
bddd87c7
AM
1826 bio_list_init(&bio_list_on_stack);
1827 current->bio_list = &bio_list_on_stack;
d89d8796 1828 do {
27a84d54
CH
1829 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1830
1831 q->make_request_fn(q, bio);
1832
bddd87c7 1833 bio = bio_list_pop(current->bio_list);
d89d8796 1834 } while (bio);
bddd87c7 1835 current->bio_list = NULL; /* deactivate */
d89d8796 1836}
1da177e4
LT
1837EXPORT_SYMBOL(generic_make_request);
1838
1839/**
710027a4 1840 * submit_bio - submit a bio to the block device layer for I/O
1da177e4
LT
1841 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1842 * @bio: The &struct bio which describes the I/O
1843 *
1844 * submit_bio() is very similar in purpose to generic_make_request(), and
1845 * uses that function to do most of the work. Both are fairly rough
710027a4 1846 * interfaces; @bio must be presetup and ready for I/O.
1da177e4
LT
1847 *
1848 */
1849void submit_bio(int rw, struct bio *bio)
1850{
22e2c507 1851 bio->bi_rw |= rw;
1da177e4 1852
bf2de6f5
JA
1853 /*
1854 * If it's a regular read/write or a barrier with data attached,
1855 * go through the normal accounting stuff before submission.
1856 */
e2a60da7 1857 if (bio_has_data(bio)) {
4363ac7c
MP
1858 unsigned int count;
1859
1860 if (unlikely(rw & REQ_WRITE_SAME))
1861 count = bdev_logical_block_size(bio->bi_bdev) >> 9;
1862 else
1863 count = bio_sectors(bio);
1864
bf2de6f5
JA
1865 if (rw & WRITE) {
1866 count_vm_events(PGPGOUT, count);
1867 } else {
1868 task_io_account_read(bio->bi_size);
1869 count_vm_events(PGPGIN, count);
1870 }
1871
1872 if (unlikely(block_dump)) {
1873 char b[BDEVNAME_SIZE];
8dcbdc74 1874 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
ba25f9dc 1875 current->comm, task_pid_nr(current),
bf2de6f5
JA
1876 (rw & WRITE) ? "WRITE" : "READ",
1877 (unsigned long long)bio->bi_sector,
8dcbdc74
SM
1878 bdevname(bio->bi_bdev, b),
1879 count);
bf2de6f5 1880 }
1da177e4
LT
1881 }
1882
1883 generic_make_request(bio);
1884}
1da177e4
LT
1885EXPORT_SYMBOL(submit_bio);
1886
82124d60
KU
1887/**
1888 * blk_rq_check_limits - Helper function to check a request for the queue limit
1889 * @q: the queue
1890 * @rq: the request being checked
1891 *
1892 * Description:
1893 * @rq may have been made based on weaker limitations of upper-level queues
1894 * in request stacking drivers, and it may violate the limitation of @q.
1895 * Since the block layer and the underlying device driver trust @rq
1896 * after it is inserted to @q, it should be checked against @q before
1897 * the insertion using this generic function.
1898 *
1899 * This function should also be useful for request stacking drivers
eef35c2d 1900 * in some cases below, so export this function.
82124d60
KU
1901 * Request stacking drivers like request-based dm may change the queue
1902 * limits while requests are in the queue (e.g. dm's table swapping).
1903 * Such request stacking drivers should check those requests agaist
1904 * the new queue limits again when they dispatch those requests,
1905 * although such checkings are also done against the old queue limits
1906 * when submitting requests.
1907 */
1908int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1909{
e2a60da7 1910 if (!rq_mergeable(rq))
3383977f
S
1911 return 0;
1912
f31dc1cd 1913 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, rq->cmd_flags)) {
82124d60
KU
1914 printk(KERN_ERR "%s: over max size limit.\n", __func__);
1915 return -EIO;
1916 }
1917
1918 /*
1919 * queue's settings related to segment counting like q->bounce_pfn
1920 * may differ from that of other stacking queues.
1921 * Recalculate it to check the request correctly on this queue's
1922 * limitation.
1923 */
1924 blk_recalc_rq_segments(rq);
8a78362c 1925 if (rq->nr_phys_segments > queue_max_segments(q)) {
82124d60
KU
1926 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1927 return -EIO;
1928 }
1929
1930 return 0;
1931}
1932EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1933
1934/**
1935 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1936 * @q: the queue to submit the request
1937 * @rq: the request being queued
1938 */
1939int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1940{
1941 unsigned long flags;
4853abaa 1942 int where = ELEVATOR_INSERT_BACK;
82124d60
KU
1943
1944 if (blk_rq_check_limits(q, rq))
1945 return -EIO;
1946
b2c9cd37
AM
1947 if (rq->rq_disk &&
1948 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
82124d60 1949 return -EIO;
82124d60
KU
1950
1951 spin_lock_irqsave(q->queue_lock, flags);
3f3299d5 1952 if (unlikely(blk_queue_dying(q))) {
8ba61435
TH
1953 spin_unlock_irqrestore(q->queue_lock, flags);
1954 return -ENODEV;
1955 }
82124d60
KU
1956
1957 /*
1958 * Submitting request must be dequeued before calling this function
1959 * because it will be linked to another request_queue
1960 */
1961 BUG_ON(blk_queued_rq(rq));
1962
4853abaa
JM
1963 if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA))
1964 where = ELEVATOR_INSERT_FLUSH;
1965
1966 add_acct_request(q, rq, where);
e67b77c7
JM
1967 if (where == ELEVATOR_INSERT_FLUSH)
1968 __blk_run_queue(q);
82124d60
KU
1969 spin_unlock_irqrestore(q->queue_lock, flags);
1970
1971 return 0;
1972}
1973EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1974
80a761fd
TH
1975/**
1976 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1977 * @rq: request to examine
1978 *
1979 * Description:
1980 * A request could be merge of IOs which require different failure
1981 * handling. This function determines the number of bytes which
1982 * can be failed from the beginning of the request without
1983 * crossing into area which need to be retried further.
1984 *
1985 * Return:
1986 * The number of bytes to fail.
1987 *
1988 * Context:
1989 * queue_lock must be held.
1990 */
1991unsigned int blk_rq_err_bytes(const struct request *rq)
1992{
1993 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1994 unsigned int bytes = 0;
1995 struct bio *bio;
1996
1997 if (!(rq->cmd_flags & REQ_MIXED_MERGE))
1998 return blk_rq_bytes(rq);
1999
2000 /*
2001 * Currently the only 'mixing' which can happen is between
2002 * different fastfail types. We can safely fail portions
2003 * which have all the failfast bits that the first one has -
2004 * the ones which are at least as eager to fail as the first
2005 * one.
2006 */
2007 for (bio = rq->bio; bio; bio = bio->bi_next) {
2008 if ((bio->bi_rw & ff) != ff)
2009 break;
2010 bytes += bio->bi_size;
2011 }
2012
2013 /* this could lead to infinite loop */
2014 BUG_ON(blk_rq_bytes(rq) && !bytes);
2015 return bytes;
2016}
2017EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2018
bc58ba94
JA
2019static void blk_account_io_completion(struct request *req, unsigned int bytes)
2020{
c2553b58 2021 if (blk_do_io_stat(req)) {
bc58ba94
JA
2022 const int rw = rq_data_dir(req);
2023 struct hd_struct *part;
2024 int cpu;
2025
2026 cpu = part_stat_lock();
09e099d4 2027 part = req->part;
bc58ba94
JA
2028 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2029 part_stat_unlock();
2030 }
2031}
2032
2033static void blk_account_io_done(struct request *req)
2034{
bc58ba94 2035 /*
dd4c133f
TH
2036 * Account IO completion. flush_rq isn't accounted as a
2037 * normal IO on queueing nor completion. Accounting the
2038 * containing request is enough.
bc58ba94 2039 */
414b4ff5 2040 if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
bc58ba94
JA
2041 unsigned long duration = jiffies - req->start_time;
2042 const int rw = rq_data_dir(req);
2043 struct hd_struct *part;
2044 int cpu;
2045
2046 cpu = part_stat_lock();
09e099d4 2047 part = req->part;
bc58ba94
JA
2048
2049 part_stat_inc(cpu, part, ios[rw]);
2050 part_stat_add(cpu, part, ticks[rw], duration);
2051 part_round_stats(cpu, part);
316d315b 2052 part_dec_in_flight(part, rw);
bc58ba94 2053
6c23a968 2054 hd_struct_put(part);
bc58ba94
JA
2055 part_stat_unlock();
2056 }
2057}
2058
c8158819
LM
2059#ifdef CONFIG_PM_RUNTIME
2060/*
2061 * Don't process normal requests when queue is suspended
2062 * or in the process of suspending/resuming
2063 */
2064static struct request *blk_pm_peek_request(struct request_queue *q,
2065 struct request *rq)
2066{
2067 if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
2068 (q->rpm_status != RPM_ACTIVE && !(rq->cmd_flags & REQ_PM))))
2069 return NULL;
2070 else
2071 return rq;
2072}
2073#else
2074static inline struct request *blk_pm_peek_request(struct request_queue *q,
2075 struct request *rq)
2076{
2077 return rq;
2078}
2079#endif
2080
3bcddeac 2081/**
9934c8c0
TH
2082 * blk_peek_request - peek at the top of a request queue
2083 * @q: request queue to peek at
2084 *
2085 * Description:
2086 * Return the request at the top of @q. The returned request
2087 * should be started using blk_start_request() before LLD starts
2088 * processing it.
2089 *
2090 * Return:
2091 * Pointer to the request at the top of @q if available. Null
2092 * otherwise.
2093 *
2094 * Context:
2095 * queue_lock must be held.
2096 */
2097struct request *blk_peek_request(struct request_queue *q)
158dbda0
TH
2098{
2099 struct request *rq;
2100 int ret;
2101
2102 while ((rq = __elv_next_request(q)) != NULL) {
c8158819
LM
2103
2104 rq = blk_pm_peek_request(q, rq);
2105 if (!rq)
2106 break;
2107
158dbda0
TH
2108 if (!(rq->cmd_flags & REQ_STARTED)) {
2109 /*
2110 * This is the first time the device driver
2111 * sees this request (possibly after
2112 * requeueing). Notify IO scheduler.
2113 */
33659ebb 2114 if (rq->cmd_flags & REQ_SORTED)
158dbda0
TH
2115 elv_activate_rq(q, rq);
2116
2117 /*
2118 * just mark as started even if we don't start
2119 * it, a request that has been delayed should
2120 * not be passed by new incoming requests
2121 */
2122 rq->cmd_flags |= REQ_STARTED;
2123 trace_block_rq_issue(q, rq);
2124 }
2125
2126 if (!q->boundary_rq || q->boundary_rq == rq) {
2127 q->end_sector = rq_end_sector(rq);
2128 q->boundary_rq = NULL;
2129 }
2130
2131 if (rq->cmd_flags & REQ_DONTPREP)
2132 break;
2133
2e46e8b2 2134 if (q->dma_drain_size && blk_rq_bytes(rq)) {
158dbda0
TH
2135 /*
2136 * make sure space for the drain appears we
2137 * know we can do this because max_hw_segments
2138 * has been adjusted to be one fewer than the
2139 * device can handle
2140 */
2141 rq->nr_phys_segments++;
2142 }
2143
2144 if (!q->prep_rq_fn)
2145 break;
2146
2147 ret = q->prep_rq_fn(q, rq);
2148 if (ret == BLKPREP_OK) {
2149 break;
2150 } else if (ret == BLKPREP_DEFER) {
2151 /*
2152 * the request may have been (partially) prepped.
2153 * we need to keep this request in the front to
2154 * avoid resource deadlock. REQ_STARTED will
2155 * prevent other fs requests from passing this one.
2156 */
2e46e8b2 2157 if (q->dma_drain_size && blk_rq_bytes(rq) &&
158dbda0
TH
2158 !(rq->cmd_flags & REQ_DONTPREP)) {
2159 /*
2160 * remove the space for the drain we added
2161 * so that we don't add it again
2162 */
2163 --rq->nr_phys_segments;
2164 }
2165
2166 rq = NULL;
2167 break;
2168 } else if (ret == BLKPREP_KILL) {
2169 rq->cmd_flags |= REQ_QUIET;
c143dc90
JB
2170 /*
2171 * Mark this request as started so we don't trigger
2172 * any debug logic in the end I/O path.
2173 */
2174 blk_start_request(rq);
40cbbb78 2175 __blk_end_request_all(rq, -EIO);
158dbda0
TH
2176 } else {
2177 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2178 break;
2179 }
2180 }
2181
2182 return rq;
2183}
9934c8c0 2184EXPORT_SYMBOL(blk_peek_request);
158dbda0 2185
9934c8c0 2186void blk_dequeue_request(struct request *rq)
158dbda0 2187{
9934c8c0
TH
2188 struct request_queue *q = rq->q;
2189
158dbda0
TH
2190 BUG_ON(list_empty(&rq->queuelist));
2191 BUG_ON(ELV_ON_HASH(rq));
2192
2193 list_del_init(&rq->queuelist);
2194
2195 /*
2196 * the time frame between a request being removed from the lists
2197 * and to it is freed is accounted as io that is in progress at
2198 * the driver side.
2199 */
9195291e 2200 if (blk_account_rq(rq)) {
0a7ae2ff 2201 q->in_flight[rq_is_sync(rq)]++;
9195291e
DS
2202 set_io_start_time_ns(rq);
2203 }
158dbda0
TH
2204}
2205
9934c8c0
TH
2206/**
2207 * blk_start_request - start request processing on the driver
2208 * @req: request to dequeue
2209 *
2210 * Description:
2211 * Dequeue @req and start timeout timer on it. This hands off the
2212 * request to the driver.
2213 *
2214 * Block internal functions which don't want to start timer should
2215 * call blk_dequeue_request().
2216 *
2217 * Context:
2218 * queue_lock must be held.
2219 */
2220void blk_start_request(struct request *req)
2221{
2222 blk_dequeue_request(req);
2223
2224 /*
5f49f631
TH
2225 * We are now handing the request to the hardware, initialize
2226 * resid_len to full count and add the timeout handler.
9934c8c0 2227 */
5f49f631 2228 req->resid_len = blk_rq_bytes(req);
dbb66c4b
FT
2229 if (unlikely(blk_bidi_rq(req)))
2230 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
2231
9934c8c0
TH
2232 blk_add_timer(req);
2233}
2234EXPORT_SYMBOL(blk_start_request);
2235
2236/**
2237 * blk_fetch_request - fetch a request from a request queue
2238 * @q: request queue to fetch a request from
2239 *
2240 * Description:
2241 * Return the request at the top of @q. The request is started on
2242 * return and LLD can start processing it immediately.
2243 *
2244 * Return:
2245 * Pointer to the request at the top of @q if available. Null
2246 * otherwise.
2247 *
2248 * Context:
2249 * queue_lock must be held.
2250 */
2251struct request *blk_fetch_request(struct request_queue *q)
2252{
2253 struct request *rq;
2254
2255 rq = blk_peek_request(q);
2256 if (rq)
2257 blk_start_request(rq);
2258 return rq;
2259}
2260EXPORT_SYMBOL(blk_fetch_request);
2261
3bcddeac 2262/**
2e60e022 2263 * blk_update_request - Special helper function for request stacking drivers
8ebf9756 2264 * @req: the request being processed
710027a4 2265 * @error: %0 for success, < %0 for error
8ebf9756 2266 * @nr_bytes: number of bytes to complete @req
3bcddeac
KU
2267 *
2268 * Description:
8ebf9756
RD
2269 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2270 * the request structure even if @req doesn't have leftover.
2271 * If @req has leftover, sets it up for the next range of segments.
2e60e022
TH
2272 *
2273 * This special helper function is only for request stacking drivers
2274 * (e.g. request-based dm) so that they can handle partial completion.
2275 * Actual device drivers should use blk_end_request instead.
2276 *
2277 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2278 * %false return from this function.
3bcddeac
KU
2279 *
2280 * Return:
2e60e022
TH
2281 * %false - this request doesn't have any more data
2282 * %true - this request has more data
3bcddeac 2283 **/
2e60e022 2284bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
1da177e4 2285{
f79ea416 2286 int total_bytes;
1da177e4 2287
2e60e022
TH
2288 if (!req->bio)
2289 return false;
2290
5f3ea37c 2291 trace_block_rq_complete(req->q, req);
2056a782 2292
1da177e4 2293 /*
6f41469c
TH
2294 * For fs requests, rq is just carrier of independent bio's
2295 * and each partial completion should be handled separately.
2296 * Reset per-request error on each partial completion.
2297 *
2298 * TODO: tj: This is too subtle. It would be better to let
2299 * low level drivers do what they see fit.
1da177e4 2300 */
33659ebb 2301 if (req->cmd_type == REQ_TYPE_FS)
1da177e4
LT
2302 req->errors = 0;
2303
33659ebb
CH
2304 if (error && req->cmd_type == REQ_TYPE_FS &&
2305 !(req->cmd_flags & REQ_QUIET)) {
79775567
HR
2306 char *error_type;
2307
2308 switch (error) {
2309 case -ENOLINK:
2310 error_type = "recoverable transport";
2311 break;
2312 case -EREMOTEIO:
2313 error_type = "critical target";
2314 break;
2315 case -EBADE:
2316 error_type = "critical nexus";
2317 break;
2318 case -EIO:
2319 default:
2320 error_type = "I/O";
2321 break;
2322 }
37d7b34f
YZ
2323 printk_ratelimited(KERN_ERR "end_request: %s error, dev %s, sector %llu\n",
2324 error_type, req->rq_disk ?
2325 req->rq_disk->disk_name : "?",
2326 (unsigned long long)blk_rq_pos(req));
2327
1da177e4
LT
2328 }
2329
bc58ba94 2330 blk_account_io_completion(req, nr_bytes);
d72d904a 2331
f79ea416
KO
2332 total_bytes = 0;
2333 while (req->bio) {
2334 struct bio *bio = req->bio;
2335 unsigned bio_bytes = min(bio->bi_size, nr_bytes);
1da177e4 2336
f79ea416 2337 if (bio_bytes == bio->bi_size)
1da177e4 2338 req->bio = bio->bi_next;
1da177e4 2339
f79ea416 2340 req_bio_endio(req, bio, bio_bytes, error);
1da177e4 2341
f79ea416
KO
2342 total_bytes += bio_bytes;
2343 nr_bytes -= bio_bytes;
1da177e4 2344
f79ea416
KO
2345 if (!nr_bytes)
2346 break;
1da177e4
LT
2347 }
2348
2349 /*
2350 * completely done
2351 */
2e60e022
TH
2352 if (!req->bio) {
2353 /*
2354 * Reset counters so that the request stacking driver
2355 * can find how many bytes remain in the request
2356 * later.
2357 */
a2dec7b3 2358 req->__data_len = 0;
2e60e022
TH
2359 return false;
2360 }
1da177e4 2361
a2dec7b3 2362 req->__data_len -= total_bytes;
2e46e8b2
TH
2363 req->buffer = bio_data(req->bio);
2364
2365 /* update sector only for requests with clear definition of sector */
e2a60da7 2366 if (req->cmd_type == REQ_TYPE_FS)
a2dec7b3 2367 req->__sector += total_bytes >> 9;
2e46e8b2 2368
80a761fd
TH
2369 /* mixed attributes always follow the first bio */
2370 if (req->cmd_flags & REQ_MIXED_MERGE) {
2371 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2372 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2373 }
2374
2e46e8b2
TH
2375 /*
2376 * If total number of sectors is less than the first segment
2377 * size, something has gone terribly wrong.
2378 */
2379 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
8182924b 2380 blk_dump_rq_flags(req, "request botched");
a2dec7b3 2381 req->__data_len = blk_rq_cur_bytes(req);
2e46e8b2
TH
2382 }
2383
2384 /* recalculate the number of segments */
1da177e4 2385 blk_recalc_rq_segments(req);
2e46e8b2 2386
2e60e022 2387 return true;
1da177e4 2388}
2e60e022 2389EXPORT_SYMBOL_GPL(blk_update_request);
1da177e4 2390
2e60e022
TH
2391static bool blk_update_bidi_request(struct request *rq, int error,
2392 unsigned int nr_bytes,
2393 unsigned int bidi_bytes)
5efccd17 2394{
2e60e022
TH
2395 if (blk_update_request(rq, error, nr_bytes))
2396 return true;
5efccd17 2397
2e60e022
TH
2398 /* Bidi request must be completed as a whole */
2399 if (unlikely(blk_bidi_rq(rq)) &&
2400 blk_update_request(rq->next_rq, error, bidi_bytes))
2401 return true;
5efccd17 2402
e2e1a148
JA
2403 if (blk_queue_add_random(rq->q))
2404 add_disk_randomness(rq->rq_disk);
2e60e022
TH
2405
2406 return false;
1da177e4
LT
2407}
2408
28018c24
JB
2409/**
2410 * blk_unprep_request - unprepare a request
2411 * @req: the request
2412 *
2413 * This function makes a request ready for complete resubmission (or
2414 * completion). It happens only after all error handling is complete,
2415 * so represents the appropriate moment to deallocate any resources
2416 * that were allocated to the request in the prep_rq_fn. The queue
2417 * lock is held when calling this.
2418 */
2419void blk_unprep_request(struct request *req)
2420{
2421 struct request_queue *q = req->q;
2422
2423 req->cmd_flags &= ~REQ_DONTPREP;
2424 if (q->unprep_rq_fn)
2425 q->unprep_rq_fn(q, req);
2426}
2427EXPORT_SYMBOL_GPL(blk_unprep_request);
2428
1da177e4
LT
2429/*
2430 * queue lock must be held
2431 */
2e60e022 2432static void blk_finish_request(struct request *req, int error)
1da177e4 2433{
b8286239
KU
2434 if (blk_rq_tagged(req))
2435 blk_queue_end_tag(req->q, req);
2436
ba396a6c 2437 BUG_ON(blk_queued_rq(req));
1da177e4 2438
33659ebb 2439 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
31373d09 2440 laptop_io_completion(&req->q->backing_dev_info);
1da177e4 2441
e78042e5
MA
2442 blk_delete_timer(req);
2443
28018c24
JB
2444 if (req->cmd_flags & REQ_DONTPREP)
2445 blk_unprep_request(req);
2446
2447
bc58ba94 2448 blk_account_io_done(req);
b8286239 2449
1da177e4 2450 if (req->end_io)
8ffdc655 2451 req->end_io(req, error);
b8286239
KU
2452 else {
2453 if (blk_bidi_rq(req))
2454 __blk_put_request(req->next_rq->q, req->next_rq);
2455
1da177e4 2456 __blk_put_request(req->q, req);
b8286239 2457 }
1da177e4
LT
2458}
2459
3b11313a 2460/**
2e60e022
TH
2461 * blk_end_bidi_request - Complete a bidi request
2462 * @rq: the request to complete
2463 * @error: %0 for success, < %0 for error
2464 * @nr_bytes: number of bytes to complete @rq
2465 * @bidi_bytes: number of bytes to complete @rq->next_rq
a0cd1285
JA
2466 *
2467 * Description:
e3a04fe3 2468 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2e60e022
TH
2469 * Drivers that supports bidi can safely call this member for any
2470 * type of request, bidi or uni. In the later case @bidi_bytes is
2471 * just ignored.
336cdb40
KU
2472 *
2473 * Return:
2e60e022
TH
2474 * %false - we are done with this request
2475 * %true - still buffers pending for this request
a0cd1285 2476 **/
b1f74493 2477static bool blk_end_bidi_request(struct request *rq, int error,
32fab448
KU
2478 unsigned int nr_bytes, unsigned int bidi_bytes)
2479{
336cdb40 2480 struct request_queue *q = rq->q;
2e60e022 2481 unsigned long flags;
32fab448 2482
2e60e022
TH
2483 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2484 return true;
32fab448 2485
336cdb40 2486 spin_lock_irqsave(q->queue_lock, flags);
2e60e022 2487 blk_finish_request(rq, error);
336cdb40
KU
2488 spin_unlock_irqrestore(q->queue_lock, flags);
2489
2e60e022 2490 return false;
32fab448
KU
2491}
2492
336cdb40 2493/**
2e60e022
TH
2494 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2495 * @rq: the request to complete
710027a4 2496 * @error: %0 for success, < %0 for error
e3a04fe3
KU
2497 * @nr_bytes: number of bytes to complete @rq
2498 * @bidi_bytes: number of bytes to complete @rq->next_rq
336cdb40
KU
2499 *
2500 * Description:
2e60e022
TH
2501 * Identical to blk_end_bidi_request() except that queue lock is
2502 * assumed to be locked on entry and remains so on return.
336cdb40
KU
2503 *
2504 * Return:
2e60e022
TH
2505 * %false - we are done with this request
2506 * %true - still buffers pending for this request
336cdb40 2507 **/
4853abaa 2508bool __blk_end_bidi_request(struct request *rq, int error,
b1f74493 2509 unsigned int nr_bytes, unsigned int bidi_bytes)
336cdb40 2510{
2e60e022
TH
2511 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2512 return true;
336cdb40 2513
2e60e022 2514 blk_finish_request(rq, error);
336cdb40 2515
2e60e022 2516 return false;
336cdb40 2517}
e19a3ab0
KU
2518
2519/**
2520 * blk_end_request - Helper function for drivers to complete the request.
2521 * @rq: the request being processed
710027a4 2522 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2523 * @nr_bytes: number of bytes to complete
2524 *
2525 * Description:
2526 * Ends I/O on a number of bytes attached to @rq.
2527 * If @rq has leftover, sets it up for the next range of segments.
2528 *
2529 * Return:
b1f74493
FT
2530 * %false - we are done with this request
2531 * %true - still buffers pending for this request
e19a3ab0 2532 **/
b1f74493 2533bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e19a3ab0 2534{
b1f74493 2535 return blk_end_bidi_request(rq, error, nr_bytes, 0);
e19a3ab0 2536}
56ad1740 2537EXPORT_SYMBOL(blk_end_request);
336cdb40
KU
2538
2539/**
b1f74493
FT
2540 * blk_end_request_all - Helper function for drives to finish the request.
2541 * @rq: the request to finish
8ebf9756 2542 * @error: %0 for success, < %0 for error
336cdb40
KU
2543 *
2544 * Description:
b1f74493
FT
2545 * Completely finish @rq.
2546 */
2547void blk_end_request_all(struct request *rq, int error)
336cdb40 2548{
b1f74493
FT
2549 bool pending;
2550 unsigned int bidi_bytes = 0;
336cdb40 2551
b1f74493
FT
2552 if (unlikely(blk_bidi_rq(rq)))
2553 bidi_bytes = blk_rq_bytes(rq->next_rq);
336cdb40 2554
b1f74493
FT
2555 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2556 BUG_ON(pending);
2557}
56ad1740 2558EXPORT_SYMBOL(blk_end_request_all);
336cdb40 2559
b1f74493
FT
2560/**
2561 * blk_end_request_cur - Helper function to finish the current request chunk.
2562 * @rq: the request to finish the current chunk for
8ebf9756 2563 * @error: %0 for success, < %0 for error
b1f74493
FT
2564 *
2565 * Description:
2566 * Complete the current consecutively mapped chunk from @rq.
2567 *
2568 * Return:
2569 * %false - we are done with this request
2570 * %true - still buffers pending for this request
2571 */
2572bool blk_end_request_cur(struct request *rq, int error)
2573{
2574 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
336cdb40 2575}
56ad1740 2576EXPORT_SYMBOL(blk_end_request_cur);
336cdb40 2577
80a761fd
TH
2578/**
2579 * blk_end_request_err - Finish a request till the next failure boundary.
2580 * @rq: the request to finish till the next failure boundary for
2581 * @error: must be negative errno
2582 *
2583 * Description:
2584 * Complete @rq till the next failure boundary.
2585 *
2586 * Return:
2587 * %false - we are done with this request
2588 * %true - still buffers pending for this request
2589 */
2590bool blk_end_request_err(struct request *rq, int error)
2591{
2592 WARN_ON(error >= 0);
2593 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2594}
2595EXPORT_SYMBOL_GPL(blk_end_request_err);
2596
e3a04fe3 2597/**
b1f74493
FT
2598 * __blk_end_request - Helper function for drivers to complete the request.
2599 * @rq: the request being processed
2600 * @error: %0 for success, < %0 for error
2601 * @nr_bytes: number of bytes to complete
e3a04fe3
KU
2602 *
2603 * Description:
b1f74493 2604 * Must be called with queue lock held unlike blk_end_request().
e3a04fe3
KU
2605 *
2606 * Return:
b1f74493
FT
2607 * %false - we are done with this request
2608 * %true - still buffers pending for this request
e3a04fe3 2609 **/
b1f74493 2610bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e3a04fe3 2611{
b1f74493 2612 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
e3a04fe3 2613}
56ad1740 2614EXPORT_SYMBOL(__blk_end_request);
e3a04fe3 2615
32fab448 2616/**
b1f74493
FT
2617 * __blk_end_request_all - Helper function for drives to finish the request.
2618 * @rq: the request to finish
8ebf9756 2619 * @error: %0 for success, < %0 for error
32fab448
KU
2620 *
2621 * Description:
b1f74493 2622 * Completely finish @rq. Must be called with queue lock held.
32fab448 2623 */
b1f74493 2624void __blk_end_request_all(struct request *rq, int error)
32fab448 2625{
b1f74493
FT
2626 bool pending;
2627 unsigned int bidi_bytes = 0;
2628
2629 if (unlikely(blk_bidi_rq(rq)))
2630 bidi_bytes = blk_rq_bytes(rq->next_rq);
2631
2632 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2633 BUG_ON(pending);
32fab448 2634}
56ad1740 2635EXPORT_SYMBOL(__blk_end_request_all);
32fab448 2636
e19a3ab0 2637/**
b1f74493
FT
2638 * __blk_end_request_cur - Helper function to finish the current request chunk.
2639 * @rq: the request to finish the current chunk for
8ebf9756 2640 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2641 *
2642 * Description:
b1f74493
FT
2643 * Complete the current consecutively mapped chunk from @rq. Must
2644 * be called with queue lock held.
e19a3ab0
KU
2645 *
2646 * Return:
b1f74493
FT
2647 * %false - we are done with this request
2648 * %true - still buffers pending for this request
2649 */
2650bool __blk_end_request_cur(struct request *rq, int error)
e19a3ab0 2651{
b1f74493 2652 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
e19a3ab0 2653}
56ad1740 2654EXPORT_SYMBOL(__blk_end_request_cur);
e19a3ab0 2655
80a761fd
TH
2656/**
2657 * __blk_end_request_err - Finish a request till the next failure boundary.
2658 * @rq: the request to finish till the next failure boundary for
2659 * @error: must be negative errno
2660 *
2661 * Description:
2662 * Complete @rq till the next failure boundary. Must be called
2663 * with queue lock held.
2664 *
2665 * Return:
2666 * %false - we are done with this request
2667 * %true - still buffers pending for this request
2668 */
2669bool __blk_end_request_err(struct request *rq, int error)
2670{
2671 WARN_ON(error >= 0);
2672 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2673}
2674EXPORT_SYMBOL_GPL(__blk_end_request_err);
2675
86db1e29
JA
2676void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2677 struct bio *bio)
1da177e4 2678{
a82afdfc 2679 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
7b6d91da 2680 rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
1da177e4 2681
fb2dce86
DW
2682 if (bio_has_data(bio)) {
2683 rq->nr_phys_segments = bio_phys_segments(q, bio);
fb2dce86
DW
2684 rq->buffer = bio_data(bio);
2685 }
a2dec7b3 2686 rq->__data_len = bio->bi_size;
1da177e4 2687 rq->bio = rq->biotail = bio;
1da177e4 2688
66846572
N
2689 if (bio->bi_bdev)
2690 rq->rq_disk = bio->bi_bdev->bd_disk;
2691}
1da177e4 2692
2d4dc890
IL
2693#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2694/**
2695 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2696 * @rq: the request to be flushed
2697 *
2698 * Description:
2699 * Flush all pages in @rq.
2700 */
2701void rq_flush_dcache_pages(struct request *rq)
2702{
2703 struct req_iterator iter;
2704 struct bio_vec *bvec;
2705
2706 rq_for_each_segment(bvec, rq, iter)
2707 flush_dcache_page(bvec->bv_page);
2708}
2709EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2710#endif
2711
ef9e3fac
KU
2712/**
2713 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2714 * @q : the queue of the device being checked
2715 *
2716 * Description:
2717 * Check if underlying low-level drivers of a device are busy.
2718 * If the drivers want to export their busy state, they must set own
2719 * exporting function using blk_queue_lld_busy() first.
2720 *
2721 * Basically, this function is used only by request stacking drivers
2722 * to stop dispatching requests to underlying devices when underlying
2723 * devices are busy. This behavior helps more I/O merging on the queue
2724 * of the request stacking driver and prevents I/O throughput regression
2725 * on burst I/O load.
2726 *
2727 * Return:
2728 * 0 - Not busy (The request stacking driver should dispatch request)
2729 * 1 - Busy (The request stacking driver should stop dispatching request)
2730 */
2731int blk_lld_busy(struct request_queue *q)
2732{
2733 if (q->lld_busy_fn)
2734 return q->lld_busy_fn(q);
2735
2736 return 0;
2737}
2738EXPORT_SYMBOL_GPL(blk_lld_busy);
2739
b0fd271d
KU
2740/**
2741 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2742 * @rq: the clone request to be cleaned up
2743 *
2744 * Description:
2745 * Free all bios in @rq for a cloned request.
2746 */
2747void blk_rq_unprep_clone(struct request *rq)
2748{
2749 struct bio *bio;
2750
2751 while ((bio = rq->bio) != NULL) {
2752 rq->bio = bio->bi_next;
2753
2754 bio_put(bio);
2755 }
2756}
2757EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2758
2759/*
2760 * Copy attributes of the original request to the clone request.
2761 * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied.
2762 */
2763static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2764{
2765 dst->cpu = src->cpu;
3a2edd0d 2766 dst->cmd_flags = (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
b0fd271d
KU
2767 dst->cmd_type = src->cmd_type;
2768 dst->__sector = blk_rq_pos(src);
2769 dst->__data_len = blk_rq_bytes(src);
2770 dst->nr_phys_segments = src->nr_phys_segments;
2771 dst->ioprio = src->ioprio;
2772 dst->extra_len = src->extra_len;
2773}
2774
2775/**
2776 * blk_rq_prep_clone - Helper function to setup clone request
2777 * @rq: the request to be setup
2778 * @rq_src: original request to be cloned
2779 * @bs: bio_set that bios for clone are allocated from
2780 * @gfp_mask: memory allocation mask for bio
2781 * @bio_ctr: setup function to be called for each clone bio.
2782 * Returns %0 for success, non %0 for failure.
2783 * @data: private data to be passed to @bio_ctr
2784 *
2785 * Description:
2786 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2787 * The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense)
2788 * are not copied, and copying such parts is the caller's responsibility.
2789 * Also, pages which the original bios are pointing to are not copied
2790 * and the cloned bios just point same pages.
2791 * So cloned bios must be completed before original bios, which means
2792 * the caller must complete @rq before @rq_src.
2793 */
2794int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2795 struct bio_set *bs, gfp_t gfp_mask,
2796 int (*bio_ctr)(struct bio *, struct bio *, void *),
2797 void *data)
2798{
2799 struct bio *bio, *bio_src;
2800
2801 if (!bs)
2802 bs = fs_bio_set;
2803
2804 blk_rq_init(NULL, rq);
2805
2806 __rq_for_each_bio(bio_src, rq_src) {
bf800ef1 2807 bio = bio_clone_bioset(bio_src, gfp_mask, bs);
b0fd271d
KU
2808 if (!bio)
2809 goto free_and_out;
2810
b0fd271d
KU
2811 if (bio_ctr && bio_ctr(bio, bio_src, data))
2812 goto free_and_out;
2813
2814 if (rq->bio) {
2815 rq->biotail->bi_next = bio;
2816 rq->biotail = bio;
2817 } else
2818 rq->bio = rq->biotail = bio;
2819 }
2820
2821 __blk_rq_prep_clone(rq, rq_src);
2822
2823 return 0;
2824
2825free_and_out:
2826 if (bio)
4254bba1 2827 bio_put(bio);
b0fd271d
KU
2828 blk_rq_unprep_clone(rq);
2829
2830 return -ENOMEM;
2831}
2832EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2833
18887ad9 2834int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
1da177e4
LT
2835{
2836 return queue_work(kblockd_workqueue, work);
2837}
1da177e4
LT
2838EXPORT_SYMBOL(kblockd_schedule_work);
2839
e43473b7
VG
2840int kblockd_schedule_delayed_work(struct request_queue *q,
2841 struct delayed_work *dwork, unsigned long delay)
2842{
2843 return queue_delayed_work(kblockd_workqueue, dwork, delay);
2844}
2845EXPORT_SYMBOL(kblockd_schedule_delayed_work);
2846
73c10101
JA
2847#define PLUG_MAGIC 0x91827364
2848
75df7136
SJ
2849/**
2850 * blk_start_plug - initialize blk_plug and track it inside the task_struct
2851 * @plug: The &struct blk_plug that needs to be initialized
2852 *
2853 * Description:
2854 * Tracking blk_plug inside the task_struct will help with auto-flushing the
2855 * pending I/O should the task end up blocking between blk_start_plug() and
2856 * blk_finish_plug(). This is important from a performance perspective, but
2857 * also ensures that we don't deadlock. For instance, if the task is blocking
2858 * for a memory allocation, memory reclaim could end up wanting to free a
2859 * page belonging to that request that is currently residing in our private
2860 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
2861 * this kind of deadlock.
2862 */
73c10101
JA
2863void blk_start_plug(struct blk_plug *plug)
2864{
2865 struct task_struct *tsk = current;
2866
2867 plug->magic = PLUG_MAGIC;
2868 INIT_LIST_HEAD(&plug->list);
048c9374 2869 INIT_LIST_HEAD(&plug->cb_list);
73c10101
JA
2870
2871 /*
2872 * If this is a nested plug, don't actually assign it. It will be
2873 * flushed on its own.
2874 */
2875 if (!tsk->plug) {
2876 /*
2877 * Store ordering should not be needed here, since a potential
2878 * preempt will imply a full memory barrier
2879 */
2880 tsk->plug = plug;
2881 }
2882}
2883EXPORT_SYMBOL(blk_start_plug);
2884
2885static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
2886{
2887 struct request *rqa = container_of(a, struct request, queuelist);
2888 struct request *rqb = container_of(b, struct request, queuelist);
2889
975927b9
JM
2890 return !(rqa->q < rqb->q ||
2891 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
73c10101
JA
2892}
2893
49cac01e
JA
2894/*
2895 * If 'from_schedule' is true, then postpone the dispatch of requests
2896 * until a safe kblockd context. We due this to avoid accidental big
2897 * additional stack usage in driver dispatch, in places where the originally
2898 * plugger did not intend it.
2899 */
f6603783 2900static void queue_unplugged(struct request_queue *q, unsigned int depth,
49cac01e 2901 bool from_schedule)
99e22598 2902 __releases(q->queue_lock)
94b5eb28 2903{
49cac01e 2904 trace_block_unplug(q, depth, !from_schedule);
99e22598 2905
70460571 2906 if (from_schedule)
24ecfbe2 2907 blk_run_queue_async(q);
70460571 2908 else
24ecfbe2 2909 __blk_run_queue(q);
70460571 2910 spin_unlock(q->queue_lock);
94b5eb28
JA
2911}
2912
74018dc3 2913static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
048c9374
N
2914{
2915 LIST_HEAD(callbacks);
2916
2a7d5559
SL
2917 while (!list_empty(&plug->cb_list)) {
2918 list_splice_init(&plug->cb_list, &callbacks);
048c9374 2919
2a7d5559
SL
2920 while (!list_empty(&callbacks)) {
2921 struct blk_plug_cb *cb = list_first_entry(&callbacks,
048c9374
N
2922 struct blk_plug_cb,
2923 list);
2a7d5559 2924 list_del(&cb->list);
74018dc3 2925 cb->callback(cb, from_schedule);
2a7d5559 2926 }
048c9374
N
2927 }
2928}
2929
9cbb1750
N
2930struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
2931 int size)
2932{
2933 struct blk_plug *plug = current->plug;
2934 struct blk_plug_cb *cb;
2935
2936 if (!plug)
2937 return NULL;
2938
2939 list_for_each_entry(cb, &plug->cb_list, list)
2940 if (cb->callback == unplug && cb->data == data)
2941 return cb;
2942
2943 /* Not currently on the callback list */
2944 BUG_ON(size < sizeof(*cb));
2945 cb = kzalloc(size, GFP_ATOMIC);
2946 if (cb) {
2947 cb->data = data;
2948 cb->callback = unplug;
2949 list_add(&cb->list, &plug->cb_list);
2950 }
2951 return cb;
2952}
2953EXPORT_SYMBOL(blk_check_plugged);
2954
49cac01e 2955void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
73c10101
JA
2956{
2957 struct request_queue *q;
2958 unsigned long flags;
2959 struct request *rq;
109b8129 2960 LIST_HEAD(list);
94b5eb28 2961 unsigned int depth;
73c10101
JA
2962
2963 BUG_ON(plug->magic != PLUG_MAGIC);
2964
74018dc3 2965 flush_plug_callbacks(plug, from_schedule);
73c10101
JA
2966 if (list_empty(&plug->list))
2967 return;
2968
109b8129
N
2969 list_splice_init(&plug->list, &list);
2970
422765c2 2971 list_sort(NULL, &list, plug_rq_cmp);
73c10101
JA
2972
2973 q = NULL;
94b5eb28 2974 depth = 0;
18811272
JA
2975
2976 /*
2977 * Save and disable interrupts here, to avoid doing it for every
2978 * queue lock we have to take.
2979 */
73c10101 2980 local_irq_save(flags);
109b8129
N
2981 while (!list_empty(&list)) {
2982 rq = list_entry_rq(list.next);
73c10101 2983 list_del_init(&rq->queuelist);
73c10101
JA
2984 BUG_ON(!rq->q);
2985 if (rq->q != q) {
99e22598
JA
2986 /*
2987 * This drops the queue lock
2988 */
2989 if (q)
49cac01e 2990 queue_unplugged(q, depth, from_schedule);
73c10101 2991 q = rq->q;
94b5eb28 2992 depth = 0;
73c10101
JA
2993 spin_lock(q->queue_lock);
2994 }
8ba61435
TH
2995
2996 /*
2997 * Short-circuit if @q is dead
2998 */
3f3299d5 2999 if (unlikely(blk_queue_dying(q))) {
8ba61435
TH
3000 __blk_end_request_all(rq, -ENODEV);
3001 continue;
3002 }
3003
73c10101
JA
3004 /*
3005 * rq is already accounted, so use raw insert
3006 */
401a18e9
JA
3007 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
3008 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3009 else
3010 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
94b5eb28
JA
3011
3012 depth++;
73c10101
JA
3013 }
3014
99e22598
JA
3015 /*
3016 * This drops the queue lock
3017 */
3018 if (q)
49cac01e 3019 queue_unplugged(q, depth, from_schedule);
73c10101 3020
73c10101
JA
3021 local_irq_restore(flags);
3022}
73c10101
JA
3023
3024void blk_finish_plug(struct blk_plug *plug)
3025{
f6603783 3026 blk_flush_plug_list(plug, false);
73c10101 3027
88b996cd
CH
3028 if (plug == current->plug)
3029 current->plug = NULL;
73c10101 3030}
88b996cd 3031EXPORT_SYMBOL(blk_finish_plug);
73c10101 3032
6c954667
LM
3033#ifdef CONFIG_PM_RUNTIME
3034/**
3035 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3036 * @q: the queue of the device
3037 * @dev: the device the queue belongs to
3038 *
3039 * Description:
3040 * Initialize runtime-PM-related fields for @q and start auto suspend for
3041 * @dev. Drivers that want to take advantage of request-based runtime PM
3042 * should call this function after @dev has been initialized, and its
3043 * request queue @q has been allocated, and runtime PM for it can not happen
3044 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3045 * cases, driver should call this function before any I/O has taken place.
3046 *
3047 * This function takes care of setting up using auto suspend for the device,
3048 * the autosuspend delay is set to -1 to make runtime suspend impossible
3049 * until an updated value is either set by user or by driver. Drivers do
3050 * not need to touch other autosuspend settings.
3051 *
3052 * The block layer runtime PM is request based, so only works for drivers
3053 * that use request as their IO unit instead of those directly use bio's.
3054 */
3055void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3056{
3057 q->dev = dev;
3058 q->rpm_status = RPM_ACTIVE;
3059 pm_runtime_set_autosuspend_delay(q->dev, -1);
3060 pm_runtime_use_autosuspend(q->dev);
3061}
3062EXPORT_SYMBOL(blk_pm_runtime_init);
3063
3064/**
3065 * blk_pre_runtime_suspend - Pre runtime suspend check
3066 * @q: the queue of the device
3067 *
3068 * Description:
3069 * This function will check if runtime suspend is allowed for the device
3070 * by examining if there are any requests pending in the queue. If there
3071 * are requests pending, the device can not be runtime suspended; otherwise,
3072 * the queue's status will be updated to SUSPENDING and the driver can
3073 * proceed to suspend the device.
3074 *
3075 * For the not allowed case, we mark last busy for the device so that
3076 * runtime PM core will try to autosuspend it some time later.
3077 *
3078 * This function should be called near the start of the device's
3079 * runtime_suspend callback.
3080 *
3081 * Return:
3082 * 0 - OK to runtime suspend the device
3083 * -EBUSY - Device should not be runtime suspended
3084 */
3085int blk_pre_runtime_suspend(struct request_queue *q)
3086{
3087 int ret = 0;
3088
3089 spin_lock_irq(q->queue_lock);
3090 if (q->nr_pending) {
3091 ret = -EBUSY;
3092 pm_runtime_mark_last_busy(q->dev);
3093 } else {
3094 q->rpm_status = RPM_SUSPENDING;
3095 }
3096 spin_unlock_irq(q->queue_lock);
3097 return ret;
3098}
3099EXPORT_SYMBOL(blk_pre_runtime_suspend);
3100
3101/**
3102 * blk_post_runtime_suspend - Post runtime suspend processing
3103 * @q: the queue of the device
3104 * @err: return value of the device's runtime_suspend function
3105 *
3106 * Description:
3107 * Update the queue's runtime status according to the return value of the
3108 * device's runtime suspend function and mark last busy for the device so
3109 * that PM core will try to auto suspend the device at a later time.
3110 *
3111 * This function should be called near the end of the device's
3112 * runtime_suspend callback.
3113 */
3114void blk_post_runtime_suspend(struct request_queue *q, int err)
3115{
3116 spin_lock_irq(q->queue_lock);
3117 if (!err) {
3118 q->rpm_status = RPM_SUSPENDED;
3119 } else {
3120 q->rpm_status = RPM_ACTIVE;
3121 pm_runtime_mark_last_busy(q->dev);
3122 }
3123 spin_unlock_irq(q->queue_lock);
3124}
3125EXPORT_SYMBOL(blk_post_runtime_suspend);
3126
3127/**
3128 * blk_pre_runtime_resume - Pre runtime resume processing
3129 * @q: the queue of the device
3130 *
3131 * Description:
3132 * Update the queue's runtime status to RESUMING in preparation for the
3133 * runtime resume of the device.
3134 *
3135 * This function should be called near the start of the device's
3136 * runtime_resume callback.
3137 */
3138void blk_pre_runtime_resume(struct request_queue *q)
3139{
3140 spin_lock_irq(q->queue_lock);
3141 q->rpm_status = RPM_RESUMING;
3142 spin_unlock_irq(q->queue_lock);
3143}
3144EXPORT_SYMBOL(blk_pre_runtime_resume);
3145
3146/**
3147 * blk_post_runtime_resume - Post runtime resume processing
3148 * @q: the queue of the device
3149 * @err: return value of the device's runtime_resume function
3150 *
3151 * Description:
3152 * Update the queue's runtime status according to the return value of the
3153 * device's runtime_resume function. If it is successfully resumed, process
3154 * the requests that are queued into the device's queue when it is resuming
3155 * and then mark last busy and initiate autosuspend for it.
3156 *
3157 * This function should be called near the end of the device's
3158 * runtime_resume callback.
3159 */
3160void blk_post_runtime_resume(struct request_queue *q, int err)
3161{
3162 spin_lock_irq(q->queue_lock);
3163 if (!err) {
3164 q->rpm_status = RPM_ACTIVE;
3165 __blk_run_queue(q);
3166 pm_runtime_mark_last_busy(q->dev);
c60855cd 3167 pm_request_autosuspend(q->dev);
6c954667
LM
3168 } else {
3169 q->rpm_status = RPM_SUSPENDED;
3170 }
3171 spin_unlock_irq(q->queue_lock);
3172}
3173EXPORT_SYMBOL(blk_post_runtime_resume);
3174#endif
3175
1da177e4
LT
3176int __init blk_dev_init(void)
3177{
9eb55b03
NK
3178 BUILD_BUG_ON(__REQ_NR_BITS > 8 *
3179 sizeof(((struct request *)0)->cmd_flags));
3180
89b90be2
TH
3181 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3182 kblockd_workqueue = alloc_workqueue("kblockd",
3183 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1da177e4
LT
3184 if (!kblockd_workqueue)
3185 panic("Failed to create kblockd\n");
3186
3187 request_cachep = kmem_cache_create("blkdev_requests",
20c2df83 3188 sizeof(struct request), 0, SLAB_PANIC, NULL);
1da177e4 3189
8324aa91 3190 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
165125e1 3191 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1da177e4 3192
d38ecf93 3193 return 0;
1da177e4 3194}