block/swim3: Locking fixes
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / block / blk-core.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6728cb0e
JA
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
1da177e4
LT
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11/*
12 * This handles all read/write requests to block devices
13 */
1da177e4
LT
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/backing-dev.h>
17#include <linux/bio.h>
18#include <linux/blkdev.h>
19#include <linux/highmem.h>
20#include <linux/mm.h>
21#include <linux/kernel_stat.h>
22#include <linux/string.h>
23#include <linux/init.h>
1da177e4
LT
24#include <linux/completion.h>
25#include <linux/slab.h>
26#include <linux/swap.h>
27#include <linux/writeback.h>
faccbd4b 28#include <linux/task_io_accounting_ops.h>
c17bb495 29#include <linux/fault-inject.h>
73c10101 30#include <linux/list_sort.h>
e3c78ca5 31#include <linux/delay.h>
55782138
LZ
32
33#define CREATE_TRACE_POINTS
34#include <trace/events/block.h>
1da177e4 35
8324aa91
JA
36#include "blk.h"
37
d07335e5 38EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
b0da3f0d 39EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
55782138 40EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
0bfc2455 41
1da177e4
LT
42/*
43 * For the allocated request tables
44 */
5ece6c52 45static struct kmem_cache *request_cachep;
1da177e4
LT
46
47/*
48 * For queue allocation
49 */
6728cb0e 50struct kmem_cache *blk_requestq_cachep;
1da177e4 51
1da177e4
LT
52/*
53 * Controlling structure to kblockd
54 */
ff856bad 55static struct workqueue_struct *kblockd_workqueue;
1da177e4 56
26b8256e
JA
57static void drive_stat_acct(struct request *rq, int new_io)
58{
28f13702 59 struct hd_struct *part;
26b8256e 60 int rw = rq_data_dir(rq);
c9959059 61 int cpu;
26b8256e 62
c2553b58 63 if (!blk_do_io_stat(rq))
26b8256e
JA
64 return;
65
074a7aca 66 cpu = part_stat_lock();
c9959059 67
09e099d4
JM
68 if (!new_io) {
69 part = rq->part;
074a7aca 70 part_stat_inc(cpu, part, merges[rw]);
09e099d4
JM
71 } else {
72 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
6c23a968 73 if (!hd_struct_try_get(part)) {
09e099d4
JM
74 /*
75 * The partition is already being removed,
76 * the request will be accounted on the disk only
77 *
78 * We take a reference on disk->part0 although that
79 * partition will never be deleted, so we can treat
80 * it as any other partition.
81 */
82 part = &rq->rq_disk->part0;
6c23a968 83 hd_struct_get(part);
09e099d4 84 }
074a7aca 85 part_round_stats(cpu, part);
316d315b 86 part_inc_in_flight(part, rw);
09e099d4 87 rq->part = part;
26b8256e 88 }
e71bf0d0 89
074a7aca 90 part_stat_unlock();
26b8256e
JA
91}
92
8324aa91 93void blk_queue_congestion_threshold(struct request_queue *q)
1da177e4
LT
94{
95 int nr;
96
97 nr = q->nr_requests - (q->nr_requests / 8) + 1;
98 if (nr > q->nr_requests)
99 nr = q->nr_requests;
100 q->nr_congestion_on = nr;
101
102 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
103 if (nr < 1)
104 nr = 1;
105 q->nr_congestion_off = nr;
106}
107
1da177e4
LT
108/**
109 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
110 * @bdev: device
111 *
112 * Locates the passed device's request queue and returns the address of its
113 * backing_dev_info
114 *
115 * Will return NULL if the request queue cannot be located.
116 */
117struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
118{
119 struct backing_dev_info *ret = NULL;
165125e1 120 struct request_queue *q = bdev_get_queue(bdev);
1da177e4
LT
121
122 if (q)
123 ret = &q->backing_dev_info;
124 return ret;
125}
1da177e4
LT
126EXPORT_SYMBOL(blk_get_backing_dev_info);
127
2a4aa30c 128void blk_rq_init(struct request_queue *q, struct request *rq)
1da177e4 129{
1afb20f3
FT
130 memset(rq, 0, sizeof(*rq));
131
1da177e4 132 INIT_LIST_HEAD(&rq->queuelist);
242f9dcb 133 INIT_LIST_HEAD(&rq->timeout_list);
c7c22e4d 134 rq->cpu = -1;
63a71386 135 rq->q = q;
a2dec7b3 136 rq->__sector = (sector_t) -1;
2e662b65
JA
137 INIT_HLIST_NODE(&rq->hash);
138 RB_CLEAR_NODE(&rq->rb_node);
d7e3c324 139 rq->cmd = rq->__cmd;
e2494e1b 140 rq->cmd_len = BLK_MAX_CDB;
63a71386 141 rq->tag = -1;
1da177e4 142 rq->ref_count = 1;
b243ddcb 143 rq->start_time = jiffies;
9195291e 144 set_start_time_ns(rq);
09e099d4 145 rq->part = NULL;
1da177e4 146}
2a4aa30c 147EXPORT_SYMBOL(blk_rq_init);
1da177e4 148
5bb23a68
N
149static void req_bio_endio(struct request *rq, struct bio *bio,
150 unsigned int nbytes, int error)
1da177e4 151{
143a87f4
TH
152 if (error)
153 clear_bit(BIO_UPTODATE, &bio->bi_flags);
154 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
155 error = -EIO;
797e7dbb 156
143a87f4
TH
157 if (unlikely(nbytes > bio->bi_size)) {
158 printk(KERN_ERR "%s: want %u bytes done, %u left\n",
159 __func__, nbytes, bio->bi_size);
160 nbytes = bio->bi_size;
5bb23a68 161 }
797e7dbb 162
143a87f4
TH
163 if (unlikely(rq->cmd_flags & REQ_QUIET))
164 set_bit(BIO_QUIET, &bio->bi_flags);
08bafc03 165
143a87f4
TH
166 bio->bi_size -= nbytes;
167 bio->bi_sector += (nbytes >> 9);
7ba1ba12 168
143a87f4
TH
169 if (bio_integrity(bio))
170 bio_integrity_advance(bio, nbytes);
7ba1ba12 171
143a87f4
TH
172 /* don't actually finish bio if it's part of flush sequence */
173 if (bio->bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
174 bio_endio(bio, error);
1da177e4 175}
1da177e4 176
1da177e4
LT
177void blk_dump_rq_flags(struct request *rq, char *msg)
178{
179 int bit;
180
6728cb0e 181 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
4aff5e23
JA
182 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
183 rq->cmd_flags);
1da177e4 184
83096ebf
TH
185 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
186 (unsigned long long)blk_rq_pos(rq),
187 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
731ec497 188 printk(KERN_INFO " bio %p, biotail %p, buffer %p, len %u\n",
2e46e8b2 189 rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq));
1da177e4 190
33659ebb 191 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
6728cb0e 192 printk(KERN_INFO " cdb: ");
d34c87e4 193 for (bit = 0; bit < BLK_MAX_CDB; bit++)
1da177e4
LT
194 printk("%02x ", rq->cmd[bit]);
195 printk("\n");
196 }
197}
1da177e4
LT
198EXPORT_SYMBOL(blk_dump_rq_flags);
199
3cca6dc1 200static void blk_delay_work(struct work_struct *work)
1da177e4 201{
3cca6dc1 202 struct request_queue *q;
1da177e4 203
3cca6dc1
JA
204 q = container_of(work, struct request_queue, delay_work.work);
205 spin_lock_irq(q->queue_lock);
24ecfbe2 206 __blk_run_queue(q);
3cca6dc1 207 spin_unlock_irq(q->queue_lock);
1da177e4 208}
1da177e4
LT
209
210/**
3cca6dc1
JA
211 * blk_delay_queue - restart queueing after defined interval
212 * @q: The &struct request_queue in question
213 * @msecs: Delay in msecs
1da177e4
LT
214 *
215 * Description:
3cca6dc1
JA
216 * Sometimes queueing needs to be postponed for a little while, to allow
217 * resources to come back. This function will make sure that queueing is
218 * restarted around the specified time.
219 */
220void blk_delay_queue(struct request_queue *q, unsigned long msecs)
2ad8b1ef 221{
4521cc4e
JA
222 queue_delayed_work(kblockd_workqueue, &q->delay_work,
223 msecs_to_jiffies(msecs));
2ad8b1ef 224}
3cca6dc1 225EXPORT_SYMBOL(blk_delay_queue);
2ad8b1ef 226
1da177e4
LT
227/**
228 * blk_start_queue - restart a previously stopped queue
165125e1 229 * @q: The &struct request_queue in question
1da177e4
LT
230 *
231 * Description:
232 * blk_start_queue() will clear the stop flag on the queue, and call
233 * the request_fn for the queue if it was in a stopped state when
234 * entered. Also see blk_stop_queue(). Queue lock must be held.
235 **/
165125e1 236void blk_start_queue(struct request_queue *q)
1da177e4 237{
a038e253
PBG
238 WARN_ON(!irqs_disabled());
239
75ad23bc 240 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
24ecfbe2 241 __blk_run_queue(q);
1da177e4 242}
1da177e4
LT
243EXPORT_SYMBOL(blk_start_queue);
244
245/**
246 * blk_stop_queue - stop a queue
165125e1 247 * @q: The &struct request_queue in question
1da177e4
LT
248 *
249 * Description:
250 * The Linux block layer assumes that a block driver will consume all
251 * entries on the request queue when the request_fn strategy is called.
252 * Often this will not happen, because of hardware limitations (queue
253 * depth settings). If a device driver gets a 'queue full' response,
254 * or if it simply chooses not to queue more I/O at one point, it can
255 * call this function to prevent the request_fn from being called until
256 * the driver has signalled it's ready to go again. This happens by calling
257 * blk_start_queue() to restart queue operations. Queue lock must be held.
258 **/
165125e1 259void blk_stop_queue(struct request_queue *q)
1da177e4 260{
ad3d9d7e 261 __cancel_delayed_work(&q->delay_work);
75ad23bc 262 queue_flag_set(QUEUE_FLAG_STOPPED, q);
1da177e4
LT
263}
264EXPORT_SYMBOL(blk_stop_queue);
265
266/**
267 * blk_sync_queue - cancel any pending callbacks on a queue
268 * @q: the queue
269 *
270 * Description:
271 * The block layer may perform asynchronous callback activity
272 * on a queue, such as calling the unplug function after a timeout.
273 * A block device may call blk_sync_queue to ensure that any
274 * such activity is cancelled, thus allowing it to release resources
59c51591 275 * that the callbacks might use. The caller must already have made sure
1da177e4
LT
276 * that its ->make_request_fn will not re-add plugging prior to calling
277 * this function.
278 *
da527770
VG
279 * This function does not cancel any asynchronous activity arising
280 * out of elevator or throttling code. That would require elevaotor_exit()
281 * and blk_throtl_exit() to be called with queue lock initialized.
282 *
1da177e4
LT
283 */
284void blk_sync_queue(struct request_queue *q)
285{
70ed28b9 286 del_timer_sync(&q->timeout);
3cca6dc1 287 cancel_delayed_work_sync(&q->delay_work);
1da177e4
LT
288}
289EXPORT_SYMBOL(blk_sync_queue);
290
291/**
80a4b58e 292 * __blk_run_queue - run a single device queue
1da177e4 293 * @q: The queue to run
80a4b58e
JA
294 *
295 * Description:
296 * See @blk_run_queue. This variant must be called with the queue lock
24ecfbe2 297 * held and interrupts disabled.
1da177e4 298 */
24ecfbe2 299void __blk_run_queue(struct request_queue *q)
1da177e4 300{
a538cd03
TH
301 if (unlikely(blk_queue_stopped(q)))
302 return;
303
c21e6beb 304 q->request_fn(q);
75ad23bc
NP
305}
306EXPORT_SYMBOL(__blk_run_queue);
dac07ec1 307
24ecfbe2
CH
308/**
309 * blk_run_queue_async - run a single device queue in workqueue context
310 * @q: The queue to run
311 *
312 * Description:
313 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
314 * of us.
315 */
316void blk_run_queue_async(struct request_queue *q)
317{
3ec717b7
SL
318 if (likely(!blk_queue_stopped(q))) {
319 __cancel_delayed_work(&q->delay_work);
24ecfbe2 320 queue_delayed_work(kblockd_workqueue, &q->delay_work, 0);
3ec717b7 321 }
24ecfbe2 322}
c21e6beb 323EXPORT_SYMBOL(blk_run_queue_async);
24ecfbe2 324
75ad23bc
NP
325/**
326 * blk_run_queue - run a single device queue
327 * @q: The queue to run
80a4b58e
JA
328 *
329 * Description:
330 * Invoke request handling on this queue, if it has pending work to do.
a7f55792 331 * May be used to restart queueing when a request has completed.
75ad23bc
NP
332 */
333void blk_run_queue(struct request_queue *q)
334{
335 unsigned long flags;
336
337 spin_lock_irqsave(q->queue_lock, flags);
24ecfbe2 338 __blk_run_queue(q);
1da177e4
LT
339 spin_unlock_irqrestore(q->queue_lock, flags);
340}
341EXPORT_SYMBOL(blk_run_queue);
342
165125e1 343void blk_put_queue(struct request_queue *q)
483f4afc
AV
344{
345 kobject_put(&q->kobj);
346}
d86e0e83 347EXPORT_SYMBOL(blk_put_queue);
483f4afc 348
e3c78ca5
TH
349/**
350 * blk_drain_queue - drain requests from request_queue
351 * @q: queue to drain
c9a929dd 352 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
e3c78ca5 353 *
c9a929dd
TH
354 * Drain requests from @q. If @drain_all is set, all requests are drained.
355 * If not, only ELVPRIV requests are drained. The caller is responsible
356 * for ensuring that no new requests which need to be drained are queued.
e3c78ca5 357 */
c9a929dd 358void blk_drain_queue(struct request_queue *q, bool drain_all)
e3c78ca5
TH
359{
360 while (true) {
361 int nr_rqs;
362
363 spin_lock_irq(q->queue_lock);
364
365 elv_drain_elevator(q);
c9a929dd
TH
366 if (drain_all)
367 blk_throtl_drain(q);
e3c78ca5
TH
368
369 __blk_run_queue(q);
c9a929dd
TH
370
371 if (drain_all)
372 nr_rqs = q->rq.count[0] + q->rq.count[1];
373 else
374 nr_rqs = q->rq.elvpriv;
e3c78ca5
TH
375
376 spin_unlock_irq(q->queue_lock);
377
378 if (!nr_rqs)
379 break;
380 msleep(10);
381 }
382}
383
c9a929dd
TH
384/**
385 * blk_cleanup_queue - shutdown a request queue
386 * @q: request queue to shutdown
387 *
388 * Mark @q DEAD, drain all pending requests, destroy and put it. All
389 * future requests will be failed immediately with -ENODEV.
c94a96ac 390 */
6728cb0e 391void blk_cleanup_queue(struct request_queue *q)
483f4afc 392{
c9a929dd 393 spinlock_t *lock = q->queue_lock;
e3335de9 394
c9a929dd 395 /* mark @q DEAD, no new request or merges will be allowed afterwards */
483f4afc 396 mutex_lock(&q->sysfs_lock);
75ad23bc 397 queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q);
c9a929dd
TH
398
399 spin_lock_irq(lock);
400 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
401 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
402 queue_flag_set(QUEUE_FLAG_DEAD, q);
483f4afc 403
777eb1bf
HR
404 if (q->queue_lock != &q->__queue_lock)
405 q->queue_lock = &q->__queue_lock;
da527770 406
c9a929dd
TH
407 spin_unlock_irq(lock);
408 mutex_unlock(&q->sysfs_lock);
409
6dd9ad7d
TH
410 /*
411 * Drain all requests queued before DEAD marking. The caller might
412 * be trying to tear down @q before its elevator is initialized, in
413 * which case we don't want to call into draining.
414 */
415 if (q->elevator)
416 blk_drain_queue(q, true);
c9a929dd
TH
417
418 /* @q won't process any more request, flush async actions */
419 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
420 blk_sync_queue(q);
421
422 /* @q is and will stay empty, shutdown and put */
483f4afc
AV
423 blk_put_queue(q);
424}
1da177e4
LT
425EXPORT_SYMBOL(blk_cleanup_queue);
426
165125e1 427static int blk_init_free_list(struct request_queue *q)
1da177e4
LT
428{
429 struct request_list *rl = &q->rq;
430
1abec4fd
MS
431 if (unlikely(rl->rq_pool))
432 return 0;
433
1faa16d2
JA
434 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
435 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
cb98fc8b 436 rl->elvpriv = 0;
1faa16d2
JA
437 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
438 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
1da177e4 439
1946089a
CL
440 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
441 mempool_free_slab, request_cachep, q->node);
1da177e4
LT
442
443 if (!rl->rq_pool)
444 return -ENOMEM;
445
446 return 0;
447}
448
165125e1 449struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
1da177e4 450{
1946089a
CL
451 return blk_alloc_queue_node(gfp_mask, -1);
452}
453EXPORT_SYMBOL(blk_alloc_queue);
1da177e4 454
165125e1 455struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1946089a 456{
165125e1 457 struct request_queue *q;
e0bf68dd 458 int err;
1946089a 459
8324aa91 460 q = kmem_cache_alloc_node(blk_requestq_cachep,
94f6030c 461 gfp_mask | __GFP_ZERO, node_id);
1da177e4
LT
462 if (!q)
463 return NULL;
464
0989a025
JA
465 q->backing_dev_info.ra_pages =
466 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
467 q->backing_dev_info.state = 0;
468 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
d993831f 469 q->backing_dev_info.name = "block";
5151412d 470 q->node = node_id;
0989a025 471
e0bf68dd
PZ
472 err = bdi_init(&q->backing_dev_info);
473 if (err) {
8324aa91 474 kmem_cache_free(blk_requestq_cachep, q);
e0bf68dd
PZ
475 return NULL;
476 }
477
e43473b7
VG
478 if (blk_throtl_init(q)) {
479 kmem_cache_free(blk_requestq_cachep, q);
480 return NULL;
481 }
482
31373d09
MG
483 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
484 laptop_mode_timer_fn, (unsigned long) q);
242f9dcb
JA
485 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
486 INIT_LIST_HEAD(&q->timeout_list);
ae1b1539
TH
487 INIT_LIST_HEAD(&q->flush_queue[0]);
488 INIT_LIST_HEAD(&q->flush_queue[1]);
489 INIT_LIST_HEAD(&q->flush_data_in_flight);
3cca6dc1 490 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
483f4afc 491
8324aa91 492 kobject_init(&q->kobj, &blk_queue_ktype);
1da177e4 493
483f4afc 494 mutex_init(&q->sysfs_lock);
e7e72bf6 495 spin_lock_init(&q->__queue_lock);
483f4afc 496
c94a96ac
VG
497 /*
498 * By default initialize queue_lock to internal lock and driver can
499 * override it later if need be.
500 */
501 q->queue_lock = &q->__queue_lock;
502
1da177e4
LT
503 return q;
504}
1946089a 505EXPORT_SYMBOL(blk_alloc_queue_node);
1da177e4
LT
506
507/**
508 * blk_init_queue - prepare a request queue for use with a block device
509 * @rfn: The function to be called to process requests that have been
510 * placed on the queue.
511 * @lock: Request queue spin lock
512 *
513 * Description:
514 * If a block device wishes to use the standard request handling procedures,
515 * which sorts requests and coalesces adjacent requests, then it must
516 * call blk_init_queue(). The function @rfn will be called when there
517 * are requests on the queue that need to be processed. If the device
518 * supports plugging, then @rfn may not be called immediately when requests
519 * are available on the queue, but may be called at some time later instead.
520 * Plugged queues are generally unplugged when a buffer belonging to one
521 * of the requests on the queue is needed, or due to memory pressure.
522 *
523 * @rfn is not required, or even expected, to remove all requests off the
524 * queue, but only as many as it can handle at a time. If it does leave
525 * requests on the queue, it is responsible for arranging that the requests
526 * get dealt with eventually.
527 *
528 * The queue spin lock must be held while manipulating the requests on the
a038e253
PBG
529 * request queue; this lock will be taken also from interrupt context, so irq
530 * disabling is needed for it.
1da177e4 531 *
710027a4 532 * Function returns a pointer to the initialized request queue, or %NULL if
1da177e4
LT
533 * it didn't succeed.
534 *
535 * Note:
536 * blk_init_queue() must be paired with a blk_cleanup_queue() call
537 * when the block device is deactivated (such as at module unload).
538 **/
1946089a 539
165125e1 540struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1da177e4 541{
1946089a
CL
542 return blk_init_queue_node(rfn, lock, -1);
543}
544EXPORT_SYMBOL(blk_init_queue);
545
165125e1 546struct request_queue *
1946089a
CL
547blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
548{
c86d1b8a 549 struct request_queue *uninit_q, *q;
1da177e4 550
c86d1b8a
MS
551 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
552 if (!uninit_q)
553 return NULL;
554
5151412d 555 q = blk_init_allocated_queue(uninit_q, rfn, lock);
c86d1b8a
MS
556 if (!q)
557 blk_cleanup_queue(uninit_q);
558
559 return q;
01effb0d
MS
560}
561EXPORT_SYMBOL(blk_init_queue_node);
562
563struct request_queue *
564blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
565 spinlock_t *lock)
01effb0d 566{
1da177e4
LT
567 if (!q)
568 return NULL;
569
c86d1b8a 570 if (blk_init_free_list(q))
8669aafd 571 return NULL;
1da177e4
LT
572
573 q->request_fn = rfn;
1da177e4 574 q->prep_rq_fn = NULL;
28018c24 575 q->unprep_rq_fn = NULL;
bc58ba94 576 q->queue_flags = QUEUE_FLAG_DEFAULT;
c94a96ac
VG
577
578 /* Override internal queue lock with supplied lock pointer */
579 if (lock)
580 q->queue_lock = lock;
1da177e4 581
f3b144aa
JA
582 /*
583 * This also sets hw/phys segments, boundary and size
584 */
c20e8de2 585 blk_queue_make_request(q, blk_queue_bio);
1da177e4 586
44ec9542
AS
587 q->sg_reserved_size = INT_MAX;
588
1da177e4
LT
589 /*
590 * all done
591 */
592 if (!elevator_init(q, NULL)) {
593 blk_queue_congestion_threshold(q);
594 return q;
595 }
596
1da177e4
LT
597 return NULL;
598}
5151412d 599EXPORT_SYMBOL(blk_init_allocated_queue);
1da177e4 600
165125e1 601int blk_get_queue(struct request_queue *q)
1da177e4 602{
fde6ad22 603 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
483f4afc 604 kobject_get(&q->kobj);
1da177e4
LT
605 return 0;
606 }
607
608 return 1;
609}
d86e0e83 610EXPORT_SYMBOL(blk_get_queue);
1da177e4 611
165125e1 612static inline void blk_free_request(struct request_queue *q, struct request *rq)
1da177e4 613{
4aff5e23 614 if (rq->cmd_flags & REQ_ELVPRIV)
cb98fc8b 615 elv_put_request(q, rq);
1da177e4
LT
616 mempool_free(rq, q->rq.rq_pool);
617}
618
1ea25ecb 619static struct request *
75eb6c37 620blk_alloc_request(struct request_queue *q, unsigned int flags, gfp_t gfp_mask)
1da177e4
LT
621{
622 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
623
624 if (!rq)
625 return NULL;
626
2a4aa30c 627 blk_rq_init(q, rq);
1afb20f3 628
42dad764 629 rq->cmd_flags = flags | REQ_ALLOCED;
1da177e4 630
75eb6c37
TH
631 if ((flags & REQ_ELVPRIV) &&
632 unlikely(elv_set_request(q, rq, gfp_mask))) {
633 mempool_free(rq, q->rq.rq_pool);
634 return NULL;
cb98fc8b 635 }
1da177e4 636
cb98fc8b 637 return rq;
1da177e4
LT
638}
639
640/*
641 * ioc_batching returns true if the ioc is a valid batching request and
642 * should be given priority access to a request.
643 */
165125e1 644static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
645{
646 if (!ioc)
647 return 0;
648
649 /*
650 * Make sure the process is able to allocate at least 1 request
651 * even if the batch times out, otherwise we could theoretically
652 * lose wakeups.
653 */
654 return ioc->nr_batch_requests == q->nr_batching ||
655 (ioc->nr_batch_requests > 0
656 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
657}
658
659/*
660 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
661 * will cause the process to be a "batcher" on all queues in the system. This
662 * is the behaviour we want though - once it gets a wakeup it should be given
663 * a nice run.
664 */
165125e1 665static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
666{
667 if (!ioc || ioc_batching(q, ioc))
668 return;
669
670 ioc->nr_batch_requests = q->nr_batching;
671 ioc->last_waited = jiffies;
672}
673
1faa16d2 674static void __freed_request(struct request_queue *q, int sync)
1da177e4
LT
675{
676 struct request_list *rl = &q->rq;
677
1faa16d2
JA
678 if (rl->count[sync] < queue_congestion_off_threshold(q))
679 blk_clear_queue_congested(q, sync);
1da177e4 680
1faa16d2
JA
681 if (rl->count[sync] + 1 <= q->nr_requests) {
682 if (waitqueue_active(&rl->wait[sync]))
683 wake_up(&rl->wait[sync]);
1da177e4 684
1faa16d2 685 blk_clear_queue_full(q, sync);
1da177e4
LT
686 }
687}
688
689/*
690 * A request has just been released. Account for it, update the full and
691 * congestion status, wake up any waiters. Called under q->queue_lock.
692 */
75eb6c37 693static void freed_request(struct request_queue *q, unsigned int flags)
1da177e4
LT
694{
695 struct request_list *rl = &q->rq;
75eb6c37 696 int sync = rw_is_sync(flags);
1da177e4 697
1faa16d2 698 rl->count[sync]--;
75eb6c37 699 if (flags & REQ_ELVPRIV)
cb98fc8b 700 rl->elvpriv--;
1da177e4 701
1faa16d2 702 __freed_request(q, sync);
1da177e4 703
1faa16d2
JA
704 if (unlikely(rl->starved[sync ^ 1]))
705 __freed_request(q, sync ^ 1);
1da177e4
LT
706}
707
9d5a4e94
MS
708/*
709 * Determine if elevator data should be initialized when allocating the
710 * request associated with @bio.
711 */
712static bool blk_rq_should_init_elevator(struct bio *bio)
713{
714 if (!bio)
715 return true;
716
717 /*
718 * Flush requests do not use the elevator so skip initialization.
719 * This allows a request to share the flush and elevator data.
720 */
721 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
722 return false;
723
724 return true;
725}
726
da8303c6
TH
727/**
728 * get_request - get a free request
729 * @q: request_queue to allocate request from
730 * @rw_flags: RW and SYNC flags
731 * @bio: bio to allocate request for (can be %NULL)
732 * @gfp_mask: allocation mask
733 *
734 * Get a free request from @q. This function may fail under memory
735 * pressure or if @q is dead.
736 *
737 * Must be callled with @q->queue_lock held and,
738 * Returns %NULL on failure, with @q->queue_lock held.
739 * Returns !%NULL on success, with @q->queue_lock *not held*.
1da177e4 740 */
165125e1 741static struct request *get_request(struct request_queue *q, int rw_flags,
7749a8d4 742 struct bio *bio, gfp_t gfp_mask)
1da177e4
LT
743{
744 struct request *rq = NULL;
745 struct request_list *rl = &q->rq;
88ee5ef1 746 struct io_context *ioc = NULL;
1faa16d2 747 const bool is_sync = rw_is_sync(rw_flags) != 0;
75eb6c37 748 int may_queue;
88ee5ef1 749
da8303c6
TH
750 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
751 return NULL;
752
7749a8d4 753 may_queue = elv_may_queue(q, rw_flags);
88ee5ef1
JA
754 if (may_queue == ELV_MQUEUE_NO)
755 goto rq_starved;
756
1faa16d2
JA
757 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
758 if (rl->count[is_sync]+1 >= q->nr_requests) {
b5deef90 759 ioc = current_io_context(GFP_ATOMIC, q->node);
88ee5ef1
JA
760 /*
761 * The queue will fill after this allocation, so set
762 * it as full, and mark this process as "batching".
763 * This process will be allowed to complete a batch of
764 * requests, others will be blocked.
765 */
1faa16d2 766 if (!blk_queue_full(q, is_sync)) {
88ee5ef1 767 ioc_set_batching(q, ioc);
1faa16d2 768 blk_set_queue_full(q, is_sync);
88ee5ef1
JA
769 } else {
770 if (may_queue != ELV_MQUEUE_MUST
771 && !ioc_batching(q, ioc)) {
772 /*
773 * The queue is full and the allocating
774 * process is not a "batcher", and not
775 * exempted by the IO scheduler
776 */
777 goto out;
778 }
779 }
1da177e4 780 }
1faa16d2 781 blk_set_queue_congested(q, is_sync);
1da177e4
LT
782 }
783
082cf69e
JA
784 /*
785 * Only allow batching queuers to allocate up to 50% over the defined
786 * limit of requests, otherwise we could have thousands of requests
787 * allocated with any setting of ->nr_requests
788 */
1faa16d2 789 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
082cf69e 790 goto out;
fd782a4a 791
1faa16d2
JA
792 rl->count[is_sync]++;
793 rl->starved[is_sync] = 0;
cb98fc8b 794
75eb6c37
TH
795 if (blk_rq_should_init_elevator(bio) &&
796 !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags)) {
797 rw_flags |= REQ_ELVPRIV;
798 rl->elvpriv++;
9d5a4e94 799 }
cb98fc8b 800
f253b86b
JA
801 if (blk_queue_io_stat(q))
802 rw_flags |= REQ_IO_STAT;
1da177e4
LT
803 spin_unlock_irq(q->queue_lock);
804
75eb6c37 805 rq = blk_alloc_request(q, rw_flags, gfp_mask);
88ee5ef1 806 if (unlikely(!rq)) {
1da177e4
LT
807 /*
808 * Allocation failed presumably due to memory. Undo anything
809 * we might have messed up.
810 *
811 * Allocating task should really be put onto the front of the
812 * wait queue, but this is pretty rare.
813 */
814 spin_lock_irq(q->queue_lock);
75eb6c37 815 freed_request(q, rw_flags);
1da177e4
LT
816
817 /*
818 * in the very unlikely event that allocation failed and no
819 * requests for this direction was pending, mark us starved
820 * so that freeing of a request in the other direction will
821 * notice us. another possible fix would be to split the
822 * rq mempool into READ and WRITE
823 */
824rq_starved:
1faa16d2
JA
825 if (unlikely(rl->count[is_sync] == 0))
826 rl->starved[is_sync] = 1;
1da177e4 827
1da177e4
LT
828 goto out;
829 }
830
88ee5ef1
JA
831 /*
832 * ioc may be NULL here, and ioc_batching will be false. That's
833 * OK, if the queue is under the request limit then requests need
834 * not count toward the nr_batch_requests limit. There will always
835 * be some limit enforced by BLK_BATCH_TIME.
836 */
1da177e4
LT
837 if (ioc_batching(q, ioc))
838 ioc->nr_batch_requests--;
6728cb0e 839
1faa16d2 840 trace_block_getrq(q, bio, rw_flags & 1);
1da177e4 841out:
1da177e4
LT
842 return rq;
843}
844
da8303c6
TH
845/**
846 * get_request_wait - get a free request with retry
847 * @q: request_queue to allocate request from
848 * @rw_flags: RW and SYNC flags
849 * @bio: bio to allocate request for (can be %NULL)
850 *
851 * Get a free request from @q. This function keeps retrying under memory
852 * pressure and fails iff @q is dead.
d6344532 853 *
da8303c6
TH
854 * Must be callled with @q->queue_lock held and,
855 * Returns %NULL on failure, with @q->queue_lock held.
856 * Returns !%NULL on success, with @q->queue_lock *not held*.
1da177e4 857 */
165125e1 858static struct request *get_request_wait(struct request_queue *q, int rw_flags,
22e2c507 859 struct bio *bio)
1da177e4 860{
1faa16d2 861 const bool is_sync = rw_is_sync(rw_flags) != 0;
1da177e4
LT
862 struct request *rq;
863
7749a8d4 864 rq = get_request(q, rw_flags, bio, GFP_NOIO);
450991bc
NP
865 while (!rq) {
866 DEFINE_WAIT(wait);
05caf8db 867 struct io_context *ioc;
1da177e4
LT
868 struct request_list *rl = &q->rq;
869
da8303c6
TH
870 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
871 return NULL;
872
1faa16d2 873 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1da177e4
LT
874 TASK_UNINTERRUPTIBLE);
875
1faa16d2 876 trace_block_sleeprq(q, bio, rw_flags & 1);
1da177e4 877
05caf8db
ZY
878 spin_unlock_irq(q->queue_lock);
879 io_schedule();
1da177e4 880
05caf8db
ZY
881 /*
882 * After sleeping, we become a "batching" process and
883 * will be able to allocate at least one request, and
884 * up to a big batch of them for a small period time.
885 * See ioc_batching, ioc_set_batching
886 */
887 ioc = current_io_context(GFP_NOIO, q->node);
888 ioc_set_batching(q, ioc);
d6344532 889
05caf8db 890 spin_lock_irq(q->queue_lock);
1faa16d2 891 finish_wait(&rl->wait[is_sync], &wait);
05caf8db
ZY
892
893 rq = get_request(q, rw_flags, bio, GFP_NOIO);
894 };
1da177e4
LT
895
896 return rq;
897}
898
165125e1 899struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1da177e4
LT
900{
901 struct request *rq;
902
903 BUG_ON(rw != READ && rw != WRITE);
904
d6344532 905 spin_lock_irq(q->queue_lock);
da8303c6 906 if (gfp_mask & __GFP_WAIT)
22e2c507 907 rq = get_request_wait(q, rw, NULL);
da8303c6 908 else
22e2c507 909 rq = get_request(q, rw, NULL, gfp_mask);
da8303c6
TH
910 if (!rq)
911 spin_unlock_irq(q->queue_lock);
d6344532 912 /* q->queue_lock is unlocked at this point */
1da177e4
LT
913
914 return rq;
915}
1da177e4
LT
916EXPORT_SYMBOL(blk_get_request);
917
dc72ef4a 918/**
79eb63e9 919 * blk_make_request - given a bio, allocate a corresponding struct request.
8ebf9756 920 * @q: target request queue
79eb63e9
BH
921 * @bio: The bio describing the memory mappings that will be submitted for IO.
922 * It may be a chained-bio properly constructed by block/bio layer.
8ebf9756 923 * @gfp_mask: gfp flags to be used for memory allocation
dc72ef4a 924 *
79eb63e9
BH
925 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
926 * type commands. Where the struct request needs to be farther initialized by
927 * the caller. It is passed a &struct bio, which describes the memory info of
928 * the I/O transfer.
dc72ef4a 929 *
79eb63e9
BH
930 * The caller of blk_make_request must make sure that bi_io_vec
931 * are set to describe the memory buffers. That bio_data_dir() will return
932 * the needed direction of the request. (And all bio's in the passed bio-chain
933 * are properly set accordingly)
934 *
935 * If called under none-sleepable conditions, mapped bio buffers must not
936 * need bouncing, by calling the appropriate masked or flagged allocator,
937 * suitable for the target device. Otherwise the call to blk_queue_bounce will
938 * BUG.
53674ac5
JA
939 *
940 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
941 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
942 * anything but the first bio in the chain. Otherwise you risk waiting for IO
943 * completion of a bio that hasn't been submitted yet, thus resulting in a
944 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
945 * of bio_alloc(), as that avoids the mempool deadlock.
946 * If possible a big IO should be split into smaller parts when allocation
947 * fails. Partial allocation should not be an error, or you risk a live-lock.
dc72ef4a 948 */
79eb63e9
BH
949struct request *blk_make_request(struct request_queue *q, struct bio *bio,
950 gfp_t gfp_mask)
dc72ef4a 951{
79eb63e9
BH
952 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
953
954 if (unlikely(!rq))
955 return ERR_PTR(-ENOMEM);
956
957 for_each_bio(bio) {
958 struct bio *bounce_bio = bio;
959 int ret;
960
961 blk_queue_bounce(q, &bounce_bio);
962 ret = blk_rq_append_bio(q, rq, bounce_bio);
963 if (unlikely(ret)) {
964 blk_put_request(rq);
965 return ERR_PTR(ret);
966 }
967 }
968
969 return rq;
dc72ef4a 970}
79eb63e9 971EXPORT_SYMBOL(blk_make_request);
dc72ef4a 972
1da177e4
LT
973/**
974 * blk_requeue_request - put a request back on queue
975 * @q: request queue where request should be inserted
976 * @rq: request to be inserted
977 *
978 * Description:
979 * Drivers often keep queueing requests until the hardware cannot accept
980 * more, when that condition happens we need to put the request back
981 * on the queue. Must be called with queue lock held.
982 */
165125e1 983void blk_requeue_request(struct request_queue *q, struct request *rq)
1da177e4 984{
242f9dcb
JA
985 blk_delete_timer(rq);
986 blk_clear_rq_complete(rq);
5f3ea37c 987 trace_block_rq_requeue(q, rq);
2056a782 988
1da177e4
LT
989 if (blk_rq_tagged(rq))
990 blk_queue_end_tag(q, rq);
991
ba396a6c
JB
992 BUG_ON(blk_queued_rq(rq));
993
1da177e4
LT
994 elv_requeue_request(q, rq);
995}
1da177e4
LT
996EXPORT_SYMBOL(blk_requeue_request);
997
73c10101
JA
998static void add_acct_request(struct request_queue *q, struct request *rq,
999 int where)
1000{
1001 drive_stat_acct(rq, 1);
7eaceacc 1002 __elv_add_request(q, rq, where);
73c10101
JA
1003}
1004
1da177e4 1005/**
710027a4 1006 * blk_insert_request - insert a special request into a request queue
1da177e4
LT
1007 * @q: request queue where request should be inserted
1008 * @rq: request to be inserted
1009 * @at_head: insert request at head or tail of queue
1010 * @data: private data
1da177e4
LT
1011 *
1012 * Description:
1013 * Many block devices need to execute commands asynchronously, so they don't
1014 * block the whole kernel from preemption during request execution. This is
1015 * accomplished normally by inserting aritficial requests tagged as
710027a4
RD
1016 * REQ_TYPE_SPECIAL in to the corresponding request queue, and letting them
1017 * be scheduled for actual execution by the request queue.
1da177e4
LT
1018 *
1019 * We have the option of inserting the head or the tail of the queue.
1020 * Typically we use the tail for new ioctls and so forth. We use the head
1021 * of the queue for things like a QUEUE_FULL message from a device, or a
1022 * host that is unable to accept a particular command.
1023 */
165125e1 1024void blk_insert_request(struct request_queue *q, struct request *rq,
867d1191 1025 int at_head, void *data)
1da177e4 1026{
867d1191 1027 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
1da177e4
LT
1028 unsigned long flags;
1029
1030 /*
1031 * tell I/O scheduler that this isn't a regular read/write (ie it
1032 * must not attempt merges on this) and that it acts as a soft
1033 * barrier
1034 */
4aff5e23 1035 rq->cmd_type = REQ_TYPE_SPECIAL;
1da177e4
LT
1036
1037 rq->special = data;
1038
1039 spin_lock_irqsave(q->queue_lock, flags);
1040
1041 /*
1042 * If command is tagged, release the tag
1043 */
867d1191
TH
1044 if (blk_rq_tagged(rq))
1045 blk_queue_end_tag(q, rq);
1da177e4 1046
73c10101 1047 add_acct_request(q, rq, where);
24ecfbe2 1048 __blk_run_queue(q);
1da177e4
LT
1049 spin_unlock_irqrestore(q->queue_lock, flags);
1050}
1da177e4
LT
1051EXPORT_SYMBOL(blk_insert_request);
1052
074a7aca
TH
1053static void part_round_stats_single(int cpu, struct hd_struct *part,
1054 unsigned long now)
1055{
1056 if (now == part->stamp)
1057 return;
1058
316d315b 1059 if (part_in_flight(part)) {
074a7aca 1060 __part_stat_add(cpu, part, time_in_queue,
316d315b 1061 part_in_flight(part) * (now - part->stamp));
074a7aca
TH
1062 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1063 }
1064 part->stamp = now;
1065}
1066
1067/**
496aa8a9
RD
1068 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1069 * @cpu: cpu number for stats access
1070 * @part: target partition
1da177e4
LT
1071 *
1072 * The average IO queue length and utilisation statistics are maintained
1073 * by observing the current state of the queue length and the amount of
1074 * time it has been in this state for.
1075 *
1076 * Normally, that accounting is done on IO completion, but that can result
1077 * in more than a second's worth of IO being accounted for within any one
1078 * second, leading to >100% utilisation. To deal with that, we call this
1079 * function to do a round-off before returning the results when reading
1080 * /proc/diskstats. This accounts immediately for all queue usage up to
1081 * the current jiffies and restarts the counters again.
1082 */
c9959059 1083void part_round_stats(int cpu, struct hd_struct *part)
6f2576af
JM
1084{
1085 unsigned long now = jiffies;
1086
074a7aca
TH
1087 if (part->partno)
1088 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1089 part_round_stats_single(cpu, part, now);
6f2576af 1090}
074a7aca 1091EXPORT_SYMBOL_GPL(part_round_stats);
6f2576af 1092
1da177e4
LT
1093/*
1094 * queue lock must be held
1095 */
165125e1 1096void __blk_put_request(struct request_queue *q, struct request *req)
1da177e4 1097{
1da177e4
LT
1098 if (unlikely(!q))
1099 return;
1100 if (unlikely(--req->ref_count))
1101 return;
1102
8922e16c
TH
1103 elv_completed_request(q, req);
1104
1cd96c24
BH
1105 /* this is a bio leak */
1106 WARN_ON(req->bio != NULL);
1107
1da177e4
LT
1108 /*
1109 * Request may not have originated from ll_rw_blk. if not,
1110 * it didn't come out of our reserved rq pools
1111 */
49171e5c 1112 if (req->cmd_flags & REQ_ALLOCED) {
75eb6c37 1113 unsigned int flags = req->cmd_flags;
1da177e4 1114
1da177e4 1115 BUG_ON(!list_empty(&req->queuelist));
9817064b 1116 BUG_ON(!hlist_unhashed(&req->hash));
1da177e4
LT
1117
1118 blk_free_request(q, req);
75eb6c37 1119 freed_request(q, flags);
1da177e4
LT
1120 }
1121}
6e39b69e
MC
1122EXPORT_SYMBOL_GPL(__blk_put_request);
1123
1da177e4
LT
1124void blk_put_request(struct request *req)
1125{
8922e16c 1126 unsigned long flags;
165125e1 1127 struct request_queue *q = req->q;
8922e16c 1128
52a93ba8
FT
1129 spin_lock_irqsave(q->queue_lock, flags);
1130 __blk_put_request(q, req);
1131 spin_unlock_irqrestore(q->queue_lock, flags);
1da177e4 1132}
1da177e4
LT
1133EXPORT_SYMBOL(blk_put_request);
1134
66ac0280
CH
1135/**
1136 * blk_add_request_payload - add a payload to a request
1137 * @rq: request to update
1138 * @page: page backing the payload
1139 * @len: length of the payload.
1140 *
1141 * This allows to later add a payload to an already submitted request by
1142 * a block driver. The driver needs to take care of freeing the payload
1143 * itself.
1144 *
1145 * Note that this is a quite horrible hack and nothing but handling of
1146 * discard requests should ever use it.
1147 */
1148void blk_add_request_payload(struct request *rq, struct page *page,
1149 unsigned int len)
1150{
1151 struct bio *bio = rq->bio;
1152
1153 bio->bi_io_vec->bv_page = page;
1154 bio->bi_io_vec->bv_offset = 0;
1155 bio->bi_io_vec->bv_len = len;
1156
1157 bio->bi_size = len;
1158 bio->bi_vcnt = 1;
1159 bio->bi_phys_segments = 1;
1160
1161 rq->__data_len = rq->resid_len = len;
1162 rq->nr_phys_segments = 1;
1163 rq->buffer = bio_data(bio);
1164}
1165EXPORT_SYMBOL_GPL(blk_add_request_payload);
1166
73c10101
JA
1167static bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1168 struct bio *bio)
1169{
1170 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1171
73c10101
JA
1172 if (!ll_back_merge_fn(q, req, bio))
1173 return false;
1174
1175 trace_block_bio_backmerge(q, bio);
1176
1177 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1178 blk_rq_set_mixed_merge(req);
1179
1180 req->biotail->bi_next = bio;
1181 req->biotail = bio;
1182 req->__data_len += bio->bi_size;
1183 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1184
1185 drive_stat_acct(req, 0);
95cf3dd9 1186 elv_bio_merged(q, req, bio);
73c10101
JA
1187 return true;
1188}
1189
1190static bool bio_attempt_front_merge(struct request_queue *q,
1191 struct request *req, struct bio *bio)
1192{
1193 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
73c10101 1194
73c10101
JA
1195 if (!ll_front_merge_fn(q, req, bio))
1196 return false;
1197
1198 trace_block_bio_frontmerge(q, bio);
1199
1200 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1201 blk_rq_set_mixed_merge(req);
1202
73c10101
JA
1203 bio->bi_next = req->bio;
1204 req->bio = bio;
1205
1206 /*
1207 * may not be valid. if the low level driver said
1208 * it didn't need a bounce buffer then it better
1209 * not touch req->buffer either...
1210 */
1211 req->buffer = bio_data(bio);
1212 req->__sector = bio->bi_sector;
1213 req->__data_len += bio->bi_size;
1214 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1215
1216 drive_stat_acct(req, 0);
95cf3dd9 1217 elv_bio_merged(q, req, bio);
73c10101
JA
1218 return true;
1219}
1220
bd87b589
TH
1221/**
1222 * attempt_plug_merge - try to merge with %current's plugged list
1223 * @q: request_queue new bio is being queued at
1224 * @bio: new bio being queued
1225 * @request_count: out parameter for number of traversed plugged requests
1226 *
1227 * Determine whether @bio being queued on @q can be merged with a request
1228 * on %current's plugged list. Returns %true if merge was successful,
1229 * otherwise %false.
1230 *
1231 * This function is called without @q->queue_lock; however, elevator is
1232 * accessed iff there already are requests on the plugged list which in
1233 * turn guarantees validity of the elevator.
1234 *
1235 * Note that, on successful merge, elevator operation
1236 * elevator_bio_merged_fn() will be called without queue lock. Elevator
1237 * must be ready for this.
73c10101 1238 */
bd87b589
TH
1239static bool attempt_plug_merge(struct request_queue *q, struct bio *bio,
1240 unsigned int *request_count)
73c10101
JA
1241{
1242 struct blk_plug *plug;
1243 struct request *rq;
1244 bool ret = false;
1245
bd87b589 1246 plug = current->plug;
73c10101
JA
1247 if (!plug)
1248 goto out;
56ebdaf2 1249 *request_count = 0;
73c10101
JA
1250
1251 list_for_each_entry_reverse(rq, &plug->list, queuelist) {
1252 int el_ret;
1253
56ebdaf2
SL
1254 (*request_count)++;
1255
73c10101
JA
1256 if (rq->q != q)
1257 continue;
1258
1259 el_ret = elv_try_merge(rq, bio);
1260 if (el_ret == ELEVATOR_BACK_MERGE) {
1261 ret = bio_attempt_back_merge(q, rq, bio);
1262 if (ret)
1263 break;
1264 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1265 ret = bio_attempt_front_merge(q, rq, bio);
1266 if (ret)
1267 break;
1268 }
1269 }
1270out:
1271 return ret;
1272}
1273
86db1e29 1274void init_request_from_bio(struct request *req, struct bio *bio)
52d9e675 1275{
4aff5e23 1276 req->cmd_type = REQ_TYPE_FS;
52d9e675 1277
7b6d91da
CH
1278 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1279 if (bio->bi_rw & REQ_RAHEAD)
a82afdfc 1280 req->cmd_flags |= REQ_FAILFAST_MASK;
b31dc66a 1281
52d9e675 1282 req->errors = 0;
a2dec7b3 1283 req->__sector = bio->bi_sector;
52d9e675 1284 req->ioprio = bio_prio(bio);
bc1c56fd 1285 blk_rq_bio_prep(req->q, req, bio);
52d9e675
TH
1286}
1287
5a7bbad2 1288void blk_queue_bio(struct request_queue *q, struct bio *bio)
1da177e4 1289{
5e00d1b5 1290 const bool sync = !!(bio->bi_rw & REQ_SYNC);
73c10101
JA
1291 struct blk_plug *plug;
1292 int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1293 struct request *req;
56ebdaf2 1294 unsigned int request_count = 0;
1da177e4 1295
1da177e4
LT
1296 /*
1297 * low level driver can indicate that it wants pages above a
1298 * certain limit bounced to low memory (ie for highmem, or even
1299 * ISA dma in theory)
1300 */
1301 blk_queue_bounce(q, &bio);
1302
4fed947c 1303 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
73c10101 1304 spin_lock_irq(q->queue_lock);
ae1b1539 1305 where = ELEVATOR_INSERT_FLUSH;
28e7d184
TH
1306 goto get_rq;
1307 }
1308
73c10101
JA
1309 /*
1310 * Check if we can merge with the plugged list before grabbing
1311 * any locks.
1312 */
bd87b589 1313 if (attempt_plug_merge(q, bio, &request_count))
5a7bbad2 1314 return;
1da177e4 1315
73c10101 1316 spin_lock_irq(q->queue_lock);
2056a782 1317
73c10101
JA
1318 el_ret = elv_merge(q, &req, bio);
1319 if (el_ret == ELEVATOR_BACK_MERGE) {
73c10101
JA
1320 if (bio_attempt_back_merge(q, req, bio)) {
1321 if (!attempt_back_merge(q, req))
1322 elv_merged_request(q, req, el_ret);
1323 goto out_unlock;
1324 }
1325 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
73c10101
JA
1326 if (bio_attempt_front_merge(q, req, bio)) {
1327 if (!attempt_front_merge(q, req))
1328 elv_merged_request(q, req, el_ret);
1329 goto out_unlock;
80a761fd 1330 }
1da177e4
LT
1331 }
1332
450991bc 1333get_rq:
7749a8d4
JA
1334 /*
1335 * This sync check and mask will be re-done in init_request_from_bio(),
1336 * but we need to set it earlier to expose the sync flag to the
1337 * rq allocator and io schedulers.
1338 */
1339 rw_flags = bio_data_dir(bio);
1340 if (sync)
7b6d91da 1341 rw_flags |= REQ_SYNC;
7749a8d4 1342
1da177e4 1343 /*
450991bc 1344 * Grab a free request. This is might sleep but can not fail.
d6344532 1345 * Returns with the queue unlocked.
450991bc 1346 */
7749a8d4 1347 req = get_request_wait(q, rw_flags, bio);
da8303c6
TH
1348 if (unlikely(!req)) {
1349 bio_endio(bio, -ENODEV); /* @q is dead */
1350 goto out_unlock;
1351 }
d6344532 1352
450991bc
NP
1353 /*
1354 * After dropping the lock and possibly sleeping here, our request
1355 * may now be mergeable after it had proven unmergeable (above).
1356 * We don't worry about that case for efficiency. It won't happen
1357 * often, and the elevators are able to handle it.
1da177e4 1358 */
52d9e675 1359 init_request_from_bio(req, bio);
1da177e4 1360
9562ad9a 1361 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
11ccf116 1362 req->cpu = raw_smp_processor_id();
73c10101
JA
1363
1364 plug = current->plug;
721a9602 1365 if (plug) {
dc6d36c9
JA
1366 /*
1367 * If this is the first request added after a plug, fire
1368 * of a plug trace. If others have been added before, check
1369 * if we have multiple devices in this plug. If so, make a
1370 * note to sort the list before dispatch.
1371 */
1372 if (list_empty(&plug->list))
1373 trace_block_plug(q);
3540d5e8
SL
1374 else {
1375 if (!plug->should_sort) {
1376 struct request *__rq;
73c10101 1377
3540d5e8
SL
1378 __rq = list_entry_rq(plug->list.prev);
1379 if (__rq->q != q)
1380 plug->should_sort = 1;
1381 }
019ceb7d 1382 if (request_count >= BLK_MAX_REQUEST_COUNT) {
3540d5e8 1383 blk_flush_plug_list(plug, false);
019ceb7d
SL
1384 trace_block_plug(q);
1385 }
73c10101 1386 }
73c10101
JA
1387 list_add_tail(&req->queuelist, &plug->list);
1388 drive_stat_acct(req, 1);
1389 } else {
1390 spin_lock_irq(q->queue_lock);
1391 add_acct_request(q, req, where);
24ecfbe2 1392 __blk_run_queue(q);
73c10101
JA
1393out_unlock:
1394 spin_unlock_irq(q->queue_lock);
1395 }
1da177e4 1396}
c20e8de2 1397EXPORT_SYMBOL_GPL(blk_queue_bio); /* for device mapper only */
1da177e4
LT
1398
1399/*
1400 * If bio->bi_dev is a partition, remap the location
1401 */
1402static inline void blk_partition_remap(struct bio *bio)
1403{
1404 struct block_device *bdev = bio->bi_bdev;
1405
bf2de6f5 1406 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1da177e4
LT
1407 struct hd_struct *p = bdev->bd_part;
1408
1da177e4
LT
1409 bio->bi_sector += p->start_sect;
1410 bio->bi_bdev = bdev->bd_contains;
c7149d6b 1411
d07335e5
MS
1412 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1413 bdev->bd_dev,
1414 bio->bi_sector - p->start_sect);
1da177e4
LT
1415 }
1416}
1417
1da177e4
LT
1418static void handle_bad_sector(struct bio *bio)
1419{
1420 char b[BDEVNAME_SIZE];
1421
1422 printk(KERN_INFO "attempt to access beyond end of device\n");
1423 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1424 bdevname(bio->bi_bdev, b),
1425 bio->bi_rw,
1426 (unsigned long long)bio->bi_sector + bio_sectors(bio),
77304d2a 1427 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1da177e4
LT
1428
1429 set_bit(BIO_EOF, &bio->bi_flags);
1430}
1431
c17bb495
AM
1432#ifdef CONFIG_FAIL_MAKE_REQUEST
1433
1434static DECLARE_FAULT_ATTR(fail_make_request);
1435
1436static int __init setup_fail_make_request(char *str)
1437{
1438 return setup_fault_attr(&fail_make_request, str);
1439}
1440__setup("fail_make_request=", setup_fail_make_request);
1441
b2c9cd37 1442static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
c17bb495 1443{
b2c9cd37 1444 return part->make_it_fail && should_fail(&fail_make_request, bytes);
c17bb495
AM
1445}
1446
1447static int __init fail_make_request_debugfs(void)
1448{
dd48c085
AM
1449 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1450 NULL, &fail_make_request);
1451
1452 return IS_ERR(dir) ? PTR_ERR(dir) : 0;
c17bb495
AM
1453}
1454
1455late_initcall(fail_make_request_debugfs);
1456
1457#else /* CONFIG_FAIL_MAKE_REQUEST */
1458
b2c9cd37
AM
1459static inline bool should_fail_request(struct hd_struct *part,
1460 unsigned int bytes)
c17bb495 1461{
b2c9cd37 1462 return false;
c17bb495
AM
1463}
1464
1465#endif /* CONFIG_FAIL_MAKE_REQUEST */
1466
c07e2b41
JA
1467/*
1468 * Check whether this bio extends beyond the end of the device.
1469 */
1470static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1471{
1472 sector_t maxsector;
1473
1474 if (!nr_sectors)
1475 return 0;
1476
1477 /* Test device or partition size, when known. */
77304d2a 1478 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
c07e2b41
JA
1479 if (maxsector) {
1480 sector_t sector = bio->bi_sector;
1481
1482 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1483 /*
1484 * This may well happen - the kernel calls bread()
1485 * without checking the size of the device, e.g., when
1486 * mounting a device.
1487 */
1488 handle_bad_sector(bio);
1489 return 1;
1490 }
1491 }
1492
1493 return 0;
1494}
1495
27a84d54
CH
1496static noinline_for_stack bool
1497generic_make_request_checks(struct bio *bio)
1da177e4 1498{
165125e1 1499 struct request_queue *q;
5a7bbad2 1500 int nr_sectors = bio_sectors(bio);
51fd77bd 1501 int err = -EIO;
5a7bbad2
CH
1502 char b[BDEVNAME_SIZE];
1503 struct hd_struct *part;
1da177e4
LT
1504
1505 might_sleep();
1da177e4 1506
c07e2b41
JA
1507 if (bio_check_eod(bio, nr_sectors))
1508 goto end_io;
1da177e4 1509
5a7bbad2
CH
1510 q = bdev_get_queue(bio->bi_bdev);
1511 if (unlikely(!q)) {
1512 printk(KERN_ERR
1513 "generic_make_request: Trying to access "
1514 "nonexistent block-device %s (%Lu)\n",
1515 bdevname(bio->bi_bdev, b),
1516 (long long) bio->bi_sector);
1517 goto end_io;
1518 }
c17bb495 1519
5a7bbad2
CH
1520 if (unlikely(!(bio->bi_rw & REQ_DISCARD) &&
1521 nr_sectors > queue_max_hw_sectors(q))) {
1522 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1523 bdevname(bio->bi_bdev, b),
1524 bio_sectors(bio),
1525 queue_max_hw_sectors(q));
1526 goto end_io;
1527 }
1da177e4 1528
5a7bbad2
CH
1529 part = bio->bi_bdev->bd_part;
1530 if (should_fail_request(part, bio->bi_size) ||
1531 should_fail_request(&part_to_disk(part)->part0,
1532 bio->bi_size))
1533 goto end_io;
2056a782 1534
5a7bbad2
CH
1535 /*
1536 * If this device has partitions, remap block n
1537 * of partition p to block n+start(p) of the disk.
1538 */
1539 blk_partition_remap(bio);
2056a782 1540
5a7bbad2
CH
1541 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio))
1542 goto end_io;
a7384677 1543
5a7bbad2
CH
1544 if (bio_check_eod(bio, nr_sectors))
1545 goto end_io;
1e87901e 1546
5a7bbad2
CH
1547 /*
1548 * Filter flush bio's early so that make_request based
1549 * drivers without flush support don't have to worry
1550 * about them.
1551 */
1552 if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1553 bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1554 if (!nr_sectors) {
1555 err = 0;
51fd77bd
JA
1556 goto end_io;
1557 }
5a7bbad2 1558 }
5ddfe969 1559
5a7bbad2
CH
1560 if ((bio->bi_rw & REQ_DISCARD) &&
1561 (!blk_queue_discard(q) ||
1562 ((bio->bi_rw & REQ_SECURE) &&
1563 !blk_queue_secdiscard(q)))) {
1564 err = -EOPNOTSUPP;
1565 goto end_io;
1566 }
01edede4 1567
bc16a4f9
TH
1568 if (blk_throtl_bio(q, bio))
1569 return false; /* throttled, will be resubmitted later */
27a84d54 1570
5a7bbad2 1571 trace_block_bio_queue(q, bio);
27a84d54 1572 return true;
a7384677
TH
1573
1574end_io:
1575 bio_endio(bio, err);
27a84d54 1576 return false;
1da177e4
LT
1577}
1578
27a84d54
CH
1579/**
1580 * generic_make_request - hand a buffer to its device driver for I/O
1581 * @bio: The bio describing the location in memory and on the device.
1582 *
1583 * generic_make_request() is used to make I/O requests of block
1584 * devices. It is passed a &struct bio, which describes the I/O that needs
1585 * to be done.
1586 *
1587 * generic_make_request() does not return any status. The
1588 * success/failure status of the request, along with notification of
1589 * completion, is delivered asynchronously through the bio->bi_end_io
1590 * function described (one day) else where.
1591 *
1592 * The caller of generic_make_request must make sure that bi_io_vec
1593 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1594 * set to describe the device address, and the
1595 * bi_end_io and optionally bi_private are set to describe how
1596 * completion notification should be signaled.
1597 *
1598 * generic_make_request and the drivers it calls may use bi_next if this
1599 * bio happens to be merged with someone else, and may resubmit the bio to
1600 * a lower device by calling into generic_make_request recursively, which
1601 * means the bio should NOT be touched after the call to ->make_request_fn.
d89d8796
NB
1602 */
1603void generic_make_request(struct bio *bio)
1604{
bddd87c7
AM
1605 struct bio_list bio_list_on_stack;
1606
27a84d54
CH
1607 if (!generic_make_request_checks(bio))
1608 return;
1609
1610 /*
1611 * We only want one ->make_request_fn to be active at a time, else
1612 * stack usage with stacked devices could be a problem. So use
1613 * current->bio_list to keep a list of requests submited by a
1614 * make_request_fn function. current->bio_list is also used as a
1615 * flag to say if generic_make_request is currently active in this
1616 * task or not. If it is NULL, then no make_request is active. If
1617 * it is non-NULL, then a make_request is active, and new requests
1618 * should be added at the tail
1619 */
bddd87c7 1620 if (current->bio_list) {
bddd87c7 1621 bio_list_add(current->bio_list, bio);
d89d8796
NB
1622 return;
1623 }
27a84d54 1624
d89d8796
NB
1625 /* following loop may be a bit non-obvious, and so deserves some
1626 * explanation.
1627 * Before entering the loop, bio->bi_next is NULL (as all callers
1628 * ensure that) so we have a list with a single bio.
1629 * We pretend that we have just taken it off a longer list, so
bddd87c7
AM
1630 * we assign bio_list to a pointer to the bio_list_on_stack,
1631 * thus initialising the bio_list of new bios to be
27a84d54 1632 * added. ->make_request() may indeed add some more bios
d89d8796
NB
1633 * through a recursive call to generic_make_request. If it
1634 * did, we find a non-NULL value in bio_list and re-enter the loop
1635 * from the top. In this case we really did just take the bio
bddd87c7 1636 * of the top of the list (no pretending) and so remove it from
27a84d54 1637 * bio_list, and call into ->make_request() again.
d89d8796
NB
1638 */
1639 BUG_ON(bio->bi_next);
bddd87c7
AM
1640 bio_list_init(&bio_list_on_stack);
1641 current->bio_list = &bio_list_on_stack;
d89d8796 1642 do {
27a84d54
CH
1643 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1644
1645 q->make_request_fn(q, bio);
1646
bddd87c7 1647 bio = bio_list_pop(current->bio_list);
d89d8796 1648 } while (bio);
bddd87c7 1649 current->bio_list = NULL; /* deactivate */
d89d8796 1650}
1da177e4
LT
1651EXPORT_SYMBOL(generic_make_request);
1652
1653/**
710027a4 1654 * submit_bio - submit a bio to the block device layer for I/O
1da177e4
LT
1655 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1656 * @bio: The &struct bio which describes the I/O
1657 *
1658 * submit_bio() is very similar in purpose to generic_make_request(), and
1659 * uses that function to do most of the work. Both are fairly rough
710027a4 1660 * interfaces; @bio must be presetup and ready for I/O.
1da177e4
LT
1661 *
1662 */
1663void submit_bio(int rw, struct bio *bio)
1664{
1665 int count = bio_sectors(bio);
1666
22e2c507 1667 bio->bi_rw |= rw;
1da177e4 1668
bf2de6f5
JA
1669 /*
1670 * If it's a regular read/write or a barrier with data attached,
1671 * go through the normal accounting stuff before submission.
1672 */
3ffb52e7 1673 if (bio_has_data(bio) && !(rw & REQ_DISCARD)) {
bf2de6f5
JA
1674 if (rw & WRITE) {
1675 count_vm_events(PGPGOUT, count);
1676 } else {
1677 task_io_account_read(bio->bi_size);
1678 count_vm_events(PGPGIN, count);
1679 }
1680
1681 if (unlikely(block_dump)) {
1682 char b[BDEVNAME_SIZE];
8dcbdc74 1683 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
ba25f9dc 1684 current->comm, task_pid_nr(current),
bf2de6f5
JA
1685 (rw & WRITE) ? "WRITE" : "READ",
1686 (unsigned long long)bio->bi_sector,
8dcbdc74
SM
1687 bdevname(bio->bi_bdev, b),
1688 count);
bf2de6f5 1689 }
1da177e4
LT
1690 }
1691
1692 generic_make_request(bio);
1693}
1da177e4
LT
1694EXPORT_SYMBOL(submit_bio);
1695
82124d60
KU
1696/**
1697 * blk_rq_check_limits - Helper function to check a request for the queue limit
1698 * @q: the queue
1699 * @rq: the request being checked
1700 *
1701 * Description:
1702 * @rq may have been made based on weaker limitations of upper-level queues
1703 * in request stacking drivers, and it may violate the limitation of @q.
1704 * Since the block layer and the underlying device driver trust @rq
1705 * after it is inserted to @q, it should be checked against @q before
1706 * the insertion using this generic function.
1707 *
1708 * This function should also be useful for request stacking drivers
eef35c2d 1709 * in some cases below, so export this function.
82124d60
KU
1710 * Request stacking drivers like request-based dm may change the queue
1711 * limits while requests are in the queue (e.g. dm's table swapping).
1712 * Such request stacking drivers should check those requests agaist
1713 * the new queue limits again when they dispatch those requests,
1714 * although such checkings are also done against the old queue limits
1715 * when submitting requests.
1716 */
1717int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1718{
3383977f
S
1719 if (rq->cmd_flags & REQ_DISCARD)
1720 return 0;
1721
ae03bf63
MP
1722 if (blk_rq_sectors(rq) > queue_max_sectors(q) ||
1723 blk_rq_bytes(rq) > queue_max_hw_sectors(q) << 9) {
82124d60
KU
1724 printk(KERN_ERR "%s: over max size limit.\n", __func__);
1725 return -EIO;
1726 }
1727
1728 /*
1729 * queue's settings related to segment counting like q->bounce_pfn
1730 * may differ from that of other stacking queues.
1731 * Recalculate it to check the request correctly on this queue's
1732 * limitation.
1733 */
1734 blk_recalc_rq_segments(rq);
8a78362c 1735 if (rq->nr_phys_segments > queue_max_segments(q)) {
82124d60
KU
1736 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1737 return -EIO;
1738 }
1739
1740 return 0;
1741}
1742EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1743
1744/**
1745 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1746 * @q: the queue to submit the request
1747 * @rq: the request being queued
1748 */
1749int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1750{
1751 unsigned long flags;
4853abaa 1752 int where = ELEVATOR_INSERT_BACK;
82124d60
KU
1753
1754 if (blk_rq_check_limits(q, rq))
1755 return -EIO;
1756
b2c9cd37
AM
1757 if (rq->rq_disk &&
1758 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
82124d60 1759 return -EIO;
82124d60
KU
1760
1761 spin_lock_irqsave(q->queue_lock, flags);
1762
1763 /*
1764 * Submitting request must be dequeued before calling this function
1765 * because it will be linked to another request_queue
1766 */
1767 BUG_ON(blk_queued_rq(rq));
1768
4853abaa
JM
1769 if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA))
1770 where = ELEVATOR_INSERT_FLUSH;
1771
1772 add_acct_request(q, rq, where);
e67b77c7
JM
1773 if (where == ELEVATOR_INSERT_FLUSH)
1774 __blk_run_queue(q);
82124d60
KU
1775 spin_unlock_irqrestore(q->queue_lock, flags);
1776
1777 return 0;
1778}
1779EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1780
80a761fd
TH
1781/**
1782 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1783 * @rq: request to examine
1784 *
1785 * Description:
1786 * A request could be merge of IOs which require different failure
1787 * handling. This function determines the number of bytes which
1788 * can be failed from the beginning of the request without
1789 * crossing into area which need to be retried further.
1790 *
1791 * Return:
1792 * The number of bytes to fail.
1793 *
1794 * Context:
1795 * queue_lock must be held.
1796 */
1797unsigned int blk_rq_err_bytes(const struct request *rq)
1798{
1799 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1800 unsigned int bytes = 0;
1801 struct bio *bio;
1802
1803 if (!(rq->cmd_flags & REQ_MIXED_MERGE))
1804 return blk_rq_bytes(rq);
1805
1806 /*
1807 * Currently the only 'mixing' which can happen is between
1808 * different fastfail types. We can safely fail portions
1809 * which have all the failfast bits that the first one has -
1810 * the ones which are at least as eager to fail as the first
1811 * one.
1812 */
1813 for (bio = rq->bio; bio; bio = bio->bi_next) {
1814 if ((bio->bi_rw & ff) != ff)
1815 break;
1816 bytes += bio->bi_size;
1817 }
1818
1819 /* this could lead to infinite loop */
1820 BUG_ON(blk_rq_bytes(rq) && !bytes);
1821 return bytes;
1822}
1823EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1824
bc58ba94
JA
1825static void blk_account_io_completion(struct request *req, unsigned int bytes)
1826{
c2553b58 1827 if (blk_do_io_stat(req)) {
bc58ba94
JA
1828 const int rw = rq_data_dir(req);
1829 struct hd_struct *part;
1830 int cpu;
1831
1832 cpu = part_stat_lock();
09e099d4 1833 part = req->part;
bc58ba94
JA
1834 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
1835 part_stat_unlock();
1836 }
1837}
1838
1839static void blk_account_io_done(struct request *req)
1840{
bc58ba94 1841 /*
dd4c133f
TH
1842 * Account IO completion. flush_rq isn't accounted as a
1843 * normal IO on queueing nor completion. Accounting the
1844 * containing request is enough.
bc58ba94 1845 */
414b4ff5 1846 if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
bc58ba94
JA
1847 unsigned long duration = jiffies - req->start_time;
1848 const int rw = rq_data_dir(req);
1849 struct hd_struct *part;
1850 int cpu;
1851
1852 cpu = part_stat_lock();
09e099d4 1853 part = req->part;
bc58ba94
JA
1854
1855 part_stat_inc(cpu, part, ios[rw]);
1856 part_stat_add(cpu, part, ticks[rw], duration);
1857 part_round_stats(cpu, part);
316d315b 1858 part_dec_in_flight(part, rw);
bc58ba94 1859
6c23a968 1860 hd_struct_put(part);
bc58ba94
JA
1861 part_stat_unlock();
1862 }
1863}
1864
3bcddeac 1865/**
9934c8c0
TH
1866 * blk_peek_request - peek at the top of a request queue
1867 * @q: request queue to peek at
1868 *
1869 * Description:
1870 * Return the request at the top of @q. The returned request
1871 * should be started using blk_start_request() before LLD starts
1872 * processing it.
1873 *
1874 * Return:
1875 * Pointer to the request at the top of @q if available. Null
1876 * otherwise.
1877 *
1878 * Context:
1879 * queue_lock must be held.
1880 */
1881struct request *blk_peek_request(struct request_queue *q)
158dbda0
TH
1882{
1883 struct request *rq;
1884 int ret;
1885
1886 while ((rq = __elv_next_request(q)) != NULL) {
1887 if (!(rq->cmd_flags & REQ_STARTED)) {
1888 /*
1889 * This is the first time the device driver
1890 * sees this request (possibly after
1891 * requeueing). Notify IO scheduler.
1892 */
33659ebb 1893 if (rq->cmd_flags & REQ_SORTED)
158dbda0
TH
1894 elv_activate_rq(q, rq);
1895
1896 /*
1897 * just mark as started even if we don't start
1898 * it, a request that has been delayed should
1899 * not be passed by new incoming requests
1900 */
1901 rq->cmd_flags |= REQ_STARTED;
1902 trace_block_rq_issue(q, rq);
1903 }
1904
1905 if (!q->boundary_rq || q->boundary_rq == rq) {
1906 q->end_sector = rq_end_sector(rq);
1907 q->boundary_rq = NULL;
1908 }
1909
1910 if (rq->cmd_flags & REQ_DONTPREP)
1911 break;
1912
2e46e8b2 1913 if (q->dma_drain_size && blk_rq_bytes(rq)) {
158dbda0
TH
1914 /*
1915 * make sure space for the drain appears we
1916 * know we can do this because max_hw_segments
1917 * has been adjusted to be one fewer than the
1918 * device can handle
1919 */
1920 rq->nr_phys_segments++;
1921 }
1922
1923 if (!q->prep_rq_fn)
1924 break;
1925
1926 ret = q->prep_rq_fn(q, rq);
1927 if (ret == BLKPREP_OK) {
1928 break;
1929 } else if (ret == BLKPREP_DEFER) {
1930 /*
1931 * the request may have been (partially) prepped.
1932 * we need to keep this request in the front to
1933 * avoid resource deadlock. REQ_STARTED will
1934 * prevent other fs requests from passing this one.
1935 */
2e46e8b2 1936 if (q->dma_drain_size && blk_rq_bytes(rq) &&
158dbda0
TH
1937 !(rq->cmd_flags & REQ_DONTPREP)) {
1938 /*
1939 * remove the space for the drain we added
1940 * so that we don't add it again
1941 */
1942 --rq->nr_phys_segments;
1943 }
1944
1945 rq = NULL;
1946 break;
1947 } else if (ret == BLKPREP_KILL) {
1948 rq->cmd_flags |= REQ_QUIET;
c143dc90
JB
1949 /*
1950 * Mark this request as started so we don't trigger
1951 * any debug logic in the end I/O path.
1952 */
1953 blk_start_request(rq);
40cbbb78 1954 __blk_end_request_all(rq, -EIO);
158dbda0
TH
1955 } else {
1956 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
1957 break;
1958 }
1959 }
1960
1961 return rq;
1962}
9934c8c0 1963EXPORT_SYMBOL(blk_peek_request);
158dbda0 1964
9934c8c0 1965void blk_dequeue_request(struct request *rq)
158dbda0 1966{
9934c8c0
TH
1967 struct request_queue *q = rq->q;
1968
158dbda0
TH
1969 BUG_ON(list_empty(&rq->queuelist));
1970 BUG_ON(ELV_ON_HASH(rq));
1971
1972 list_del_init(&rq->queuelist);
1973
1974 /*
1975 * the time frame between a request being removed from the lists
1976 * and to it is freed is accounted as io that is in progress at
1977 * the driver side.
1978 */
9195291e 1979 if (blk_account_rq(rq)) {
0a7ae2ff 1980 q->in_flight[rq_is_sync(rq)]++;
9195291e
DS
1981 set_io_start_time_ns(rq);
1982 }
158dbda0
TH
1983}
1984
9934c8c0
TH
1985/**
1986 * blk_start_request - start request processing on the driver
1987 * @req: request to dequeue
1988 *
1989 * Description:
1990 * Dequeue @req and start timeout timer on it. This hands off the
1991 * request to the driver.
1992 *
1993 * Block internal functions which don't want to start timer should
1994 * call blk_dequeue_request().
1995 *
1996 * Context:
1997 * queue_lock must be held.
1998 */
1999void blk_start_request(struct request *req)
2000{
2001 blk_dequeue_request(req);
2002
2003 /*
5f49f631
TH
2004 * We are now handing the request to the hardware, initialize
2005 * resid_len to full count and add the timeout handler.
9934c8c0 2006 */
5f49f631 2007 req->resid_len = blk_rq_bytes(req);
dbb66c4b
FT
2008 if (unlikely(blk_bidi_rq(req)))
2009 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
2010
9934c8c0
TH
2011 blk_add_timer(req);
2012}
2013EXPORT_SYMBOL(blk_start_request);
2014
2015/**
2016 * blk_fetch_request - fetch a request from a request queue
2017 * @q: request queue to fetch a request from
2018 *
2019 * Description:
2020 * Return the request at the top of @q. The request is started on
2021 * return and LLD can start processing it immediately.
2022 *
2023 * Return:
2024 * Pointer to the request at the top of @q if available. Null
2025 * otherwise.
2026 *
2027 * Context:
2028 * queue_lock must be held.
2029 */
2030struct request *blk_fetch_request(struct request_queue *q)
2031{
2032 struct request *rq;
2033
2034 rq = blk_peek_request(q);
2035 if (rq)
2036 blk_start_request(rq);
2037 return rq;
2038}
2039EXPORT_SYMBOL(blk_fetch_request);
2040
3bcddeac 2041/**
2e60e022 2042 * blk_update_request - Special helper function for request stacking drivers
8ebf9756 2043 * @req: the request being processed
710027a4 2044 * @error: %0 for success, < %0 for error
8ebf9756 2045 * @nr_bytes: number of bytes to complete @req
3bcddeac
KU
2046 *
2047 * Description:
8ebf9756
RD
2048 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2049 * the request structure even if @req doesn't have leftover.
2050 * If @req has leftover, sets it up for the next range of segments.
2e60e022
TH
2051 *
2052 * This special helper function is only for request stacking drivers
2053 * (e.g. request-based dm) so that they can handle partial completion.
2054 * Actual device drivers should use blk_end_request instead.
2055 *
2056 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2057 * %false return from this function.
3bcddeac
KU
2058 *
2059 * Return:
2e60e022
TH
2060 * %false - this request doesn't have any more data
2061 * %true - this request has more data
3bcddeac 2062 **/
2e60e022 2063bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
1da177e4 2064{
5450d3e1 2065 int total_bytes, bio_nbytes, next_idx = 0;
1da177e4
LT
2066 struct bio *bio;
2067
2e60e022
TH
2068 if (!req->bio)
2069 return false;
2070
5f3ea37c 2071 trace_block_rq_complete(req->q, req);
2056a782 2072
1da177e4 2073 /*
6f41469c
TH
2074 * For fs requests, rq is just carrier of independent bio's
2075 * and each partial completion should be handled separately.
2076 * Reset per-request error on each partial completion.
2077 *
2078 * TODO: tj: This is too subtle. It would be better to let
2079 * low level drivers do what they see fit.
1da177e4 2080 */
33659ebb 2081 if (req->cmd_type == REQ_TYPE_FS)
1da177e4
LT
2082 req->errors = 0;
2083
33659ebb
CH
2084 if (error && req->cmd_type == REQ_TYPE_FS &&
2085 !(req->cmd_flags & REQ_QUIET)) {
79775567
HR
2086 char *error_type;
2087
2088 switch (error) {
2089 case -ENOLINK:
2090 error_type = "recoverable transport";
2091 break;
2092 case -EREMOTEIO:
2093 error_type = "critical target";
2094 break;
2095 case -EBADE:
2096 error_type = "critical nexus";
2097 break;
2098 case -EIO:
2099 default:
2100 error_type = "I/O";
2101 break;
2102 }
2103 printk(KERN_ERR "end_request: %s error, dev %s, sector %llu\n",
2104 error_type, req->rq_disk ? req->rq_disk->disk_name : "?",
2105 (unsigned long long)blk_rq_pos(req));
1da177e4
LT
2106 }
2107
bc58ba94 2108 blk_account_io_completion(req, nr_bytes);
d72d904a 2109
1da177e4
LT
2110 total_bytes = bio_nbytes = 0;
2111 while ((bio = req->bio) != NULL) {
2112 int nbytes;
2113
2114 if (nr_bytes >= bio->bi_size) {
2115 req->bio = bio->bi_next;
2116 nbytes = bio->bi_size;
5bb23a68 2117 req_bio_endio(req, bio, nbytes, error);
1da177e4
LT
2118 next_idx = 0;
2119 bio_nbytes = 0;
2120 } else {
2121 int idx = bio->bi_idx + next_idx;
2122
af498d7f 2123 if (unlikely(idx >= bio->bi_vcnt)) {
1da177e4 2124 blk_dump_rq_flags(req, "__end_that");
6728cb0e 2125 printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
af498d7f 2126 __func__, idx, bio->bi_vcnt);
1da177e4
LT
2127 break;
2128 }
2129
2130 nbytes = bio_iovec_idx(bio, idx)->bv_len;
2131 BIO_BUG_ON(nbytes > bio->bi_size);
2132
2133 /*
2134 * not a complete bvec done
2135 */
2136 if (unlikely(nbytes > nr_bytes)) {
2137 bio_nbytes += nr_bytes;
2138 total_bytes += nr_bytes;
2139 break;
2140 }
2141
2142 /*
2143 * advance to the next vector
2144 */
2145 next_idx++;
2146 bio_nbytes += nbytes;
2147 }
2148
2149 total_bytes += nbytes;
2150 nr_bytes -= nbytes;
2151
6728cb0e
JA
2152 bio = req->bio;
2153 if (bio) {
1da177e4
LT
2154 /*
2155 * end more in this run, or just return 'not-done'
2156 */
2157 if (unlikely(nr_bytes <= 0))
2158 break;
2159 }
2160 }
2161
2162 /*
2163 * completely done
2164 */
2e60e022
TH
2165 if (!req->bio) {
2166 /*
2167 * Reset counters so that the request stacking driver
2168 * can find how many bytes remain in the request
2169 * later.
2170 */
a2dec7b3 2171 req->__data_len = 0;
2e60e022
TH
2172 return false;
2173 }
1da177e4
LT
2174
2175 /*
2176 * if the request wasn't completed, update state
2177 */
2178 if (bio_nbytes) {
5bb23a68 2179 req_bio_endio(req, bio, bio_nbytes, error);
1da177e4
LT
2180 bio->bi_idx += next_idx;
2181 bio_iovec(bio)->bv_offset += nr_bytes;
2182 bio_iovec(bio)->bv_len -= nr_bytes;
2183 }
2184
a2dec7b3 2185 req->__data_len -= total_bytes;
2e46e8b2
TH
2186 req->buffer = bio_data(req->bio);
2187
2188 /* update sector only for requests with clear definition of sector */
33659ebb 2189 if (req->cmd_type == REQ_TYPE_FS || (req->cmd_flags & REQ_DISCARD))
a2dec7b3 2190 req->__sector += total_bytes >> 9;
2e46e8b2 2191
80a761fd
TH
2192 /* mixed attributes always follow the first bio */
2193 if (req->cmd_flags & REQ_MIXED_MERGE) {
2194 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2195 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2196 }
2197
2e46e8b2
TH
2198 /*
2199 * If total number of sectors is less than the first segment
2200 * size, something has gone terribly wrong.
2201 */
2202 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
8182924b 2203 blk_dump_rq_flags(req, "request botched");
a2dec7b3 2204 req->__data_len = blk_rq_cur_bytes(req);
2e46e8b2
TH
2205 }
2206
2207 /* recalculate the number of segments */
1da177e4 2208 blk_recalc_rq_segments(req);
2e46e8b2 2209
2e60e022 2210 return true;
1da177e4 2211}
2e60e022 2212EXPORT_SYMBOL_GPL(blk_update_request);
1da177e4 2213
2e60e022
TH
2214static bool blk_update_bidi_request(struct request *rq, int error,
2215 unsigned int nr_bytes,
2216 unsigned int bidi_bytes)
5efccd17 2217{
2e60e022
TH
2218 if (blk_update_request(rq, error, nr_bytes))
2219 return true;
5efccd17 2220
2e60e022
TH
2221 /* Bidi request must be completed as a whole */
2222 if (unlikely(blk_bidi_rq(rq)) &&
2223 blk_update_request(rq->next_rq, error, bidi_bytes))
2224 return true;
5efccd17 2225
e2e1a148
JA
2226 if (blk_queue_add_random(rq->q))
2227 add_disk_randomness(rq->rq_disk);
2e60e022
TH
2228
2229 return false;
1da177e4
LT
2230}
2231
28018c24
JB
2232/**
2233 * blk_unprep_request - unprepare a request
2234 * @req: the request
2235 *
2236 * This function makes a request ready for complete resubmission (or
2237 * completion). It happens only after all error handling is complete,
2238 * so represents the appropriate moment to deallocate any resources
2239 * that were allocated to the request in the prep_rq_fn. The queue
2240 * lock is held when calling this.
2241 */
2242void blk_unprep_request(struct request *req)
2243{
2244 struct request_queue *q = req->q;
2245
2246 req->cmd_flags &= ~REQ_DONTPREP;
2247 if (q->unprep_rq_fn)
2248 q->unprep_rq_fn(q, req);
2249}
2250EXPORT_SYMBOL_GPL(blk_unprep_request);
2251
1da177e4
LT
2252/*
2253 * queue lock must be held
2254 */
2e60e022 2255static void blk_finish_request(struct request *req, int error)
1da177e4 2256{
b8286239
KU
2257 if (blk_rq_tagged(req))
2258 blk_queue_end_tag(req->q, req);
2259
ba396a6c 2260 BUG_ON(blk_queued_rq(req));
1da177e4 2261
33659ebb 2262 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
31373d09 2263 laptop_io_completion(&req->q->backing_dev_info);
1da177e4 2264
e78042e5
MA
2265 blk_delete_timer(req);
2266
28018c24
JB
2267 if (req->cmd_flags & REQ_DONTPREP)
2268 blk_unprep_request(req);
2269
2270
bc58ba94 2271 blk_account_io_done(req);
b8286239 2272
1da177e4 2273 if (req->end_io)
8ffdc655 2274 req->end_io(req, error);
b8286239
KU
2275 else {
2276 if (blk_bidi_rq(req))
2277 __blk_put_request(req->next_rq->q, req->next_rq);
2278
1da177e4 2279 __blk_put_request(req->q, req);
b8286239 2280 }
1da177e4
LT
2281}
2282
3b11313a 2283/**
2e60e022
TH
2284 * blk_end_bidi_request - Complete a bidi request
2285 * @rq: the request to complete
2286 * @error: %0 for success, < %0 for error
2287 * @nr_bytes: number of bytes to complete @rq
2288 * @bidi_bytes: number of bytes to complete @rq->next_rq
a0cd1285
JA
2289 *
2290 * Description:
e3a04fe3 2291 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2e60e022
TH
2292 * Drivers that supports bidi can safely call this member for any
2293 * type of request, bidi or uni. In the later case @bidi_bytes is
2294 * just ignored.
336cdb40
KU
2295 *
2296 * Return:
2e60e022
TH
2297 * %false - we are done with this request
2298 * %true - still buffers pending for this request
a0cd1285 2299 **/
b1f74493 2300static bool blk_end_bidi_request(struct request *rq, int error,
32fab448
KU
2301 unsigned int nr_bytes, unsigned int bidi_bytes)
2302{
336cdb40 2303 struct request_queue *q = rq->q;
2e60e022 2304 unsigned long flags;
32fab448 2305
2e60e022
TH
2306 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2307 return true;
32fab448 2308
336cdb40 2309 spin_lock_irqsave(q->queue_lock, flags);
2e60e022 2310 blk_finish_request(rq, error);
336cdb40
KU
2311 spin_unlock_irqrestore(q->queue_lock, flags);
2312
2e60e022 2313 return false;
32fab448
KU
2314}
2315
336cdb40 2316/**
2e60e022
TH
2317 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2318 * @rq: the request to complete
710027a4 2319 * @error: %0 for success, < %0 for error
e3a04fe3
KU
2320 * @nr_bytes: number of bytes to complete @rq
2321 * @bidi_bytes: number of bytes to complete @rq->next_rq
336cdb40
KU
2322 *
2323 * Description:
2e60e022
TH
2324 * Identical to blk_end_bidi_request() except that queue lock is
2325 * assumed to be locked on entry and remains so on return.
336cdb40
KU
2326 *
2327 * Return:
2e60e022
TH
2328 * %false - we are done with this request
2329 * %true - still buffers pending for this request
336cdb40 2330 **/
4853abaa 2331bool __blk_end_bidi_request(struct request *rq, int error,
b1f74493 2332 unsigned int nr_bytes, unsigned int bidi_bytes)
336cdb40 2333{
2e60e022
TH
2334 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2335 return true;
336cdb40 2336
2e60e022 2337 blk_finish_request(rq, error);
336cdb40 2338
2e60e022 2339 return false;
336cdb40 2340}
e19a3ab0
KU
2341
2342/**
2343 * blk_end_request - Helper function for drivers to complete the request.
2344 * @rq: the request being processed
710027a4 2345 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2346 * @nr_bytes: number of bytes to complete
2347 *
2348 * Description:
2349 * Ends I/O on a number of bytes attached to @rq.
2350 * If @rq has leftover, sets it up for the next range of segments.
2351 *
2352 * Return:
b1f74493
FT
2353 * %false - we are done with this request
2354 * %true - still buffers pending for this request
e19a3ab0 2355 **/
b1f74493 2356bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e19a3ab0 2357{
b1f74493 2358 return blk_end_bidi_request(rq, error, nr_bytes, 0);
e19a3ab0 2359}
56ad1740 2360EXPORT_SYMBOL(blk_end_request);
336cdb40
KU
2361
2362/**
b1f74493
FT
2363 * blk_end_request_all - Helper function for drives to finish the request.
2364 * @rq: the request to finish
8ebf9756 2365 * @error: %0 for success, < %0 for error
336cdb40
KU
2366 *
2367 * Description:
b1f74493
FT
2368 * Completely finish @rq.
2369 */
2370void blk_end_request_all(struct request *rq, int error)
336cdb40 2371{
b1f74493
FT
2372 bool pending;
2373 unsigned int bidi_bytes = 0;
336cdb40 2374
b1f74493
FT
2375 if (unlikely(blk_bidi_rq(rq)))
2376 bidi_bytes = blk_rq_bytes(rq->next_rq);
336cdb40 2377
b1f74493
FT
2378 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2379 BUG_ON(pending);
2380}
56ad1740 2381EXPORT_SYMBOL(blk_end_request_all);
336cdb40 2382
b1f74493
FT
2383/**
2384 * blk_end_request_cur - Helper function to finish the current request chunk.
2385 * @rq: the request to finish the current chunk for
8ebf9756 2386 * @error: %0 for success, < %0 for error
b1f74493
FT
2387 *
2388 * Description:
2389 * Complete the current consecutively mapped chunk from @rq.
2390 *
2391 * Return:
2392 * %false - we are done with this request
2393 * %true - still buffers pending for this request
2394 */
2395bool blk_end_request_cur(struct request *rq, int error)
2396{
2397 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
336cdb40 2398}
56ad1740 2399EXPORT_SYMBOL(blk_end_request_cur);
336cdb40 2400
80a761fd
TH
2401/**
2402 * blk_end_request_err - Finish a request till the next failure boundary.
2403 * @rq: the request to finish till the next failure boundary for
2404 * @error: must be negative errno
2405 *
2406 * Description:
2407 * Complete @rq till the next failure boundary.
2408 *
2409 * Return:
2410 * %false - we are done with this request
2411 * %true - still buffers pending for this request
2412 */
2413bool blk_end_request_err(struct request *rq, int error)
2414{
2415 WARN_ON(error >= 0);
2416 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2417}
2418EXPORT_SYMBOL_GPL(blk_end_request_err);
2419
e3a04fe3 2420/**
b1f74493
FT
2421 * __blk_end_request - Helper function for drivers to complete the request.
2422 * @rq: the request being processed
2423 * @error: %0 for success, < %0 for error
2424 * @nr_bytes: number of bytes to complete
e3a04fe3
KU
2425 *
2426 * Description:
b1f74493 2427 * Must be called with queue lock held unlike blk_end_request().
e3a04fe3
KU
2428 *
2429 * Return:
b1f74493
FT
2430 * %false - we are done with this request
2431 * %true - still buffers pending for this request
e3a04fe3 2432 **/
b1f74493 2433bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e3a04fe3 2434{
b1f74493 2435 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
e3a04fe3 2436}
56ad1740 2437EXPORT_SYMBOL(__blk_end_request);
e3a04fe3 2438
32fab448 2439/**
b1f74493
FT
2440 * __blk_end_request_all - Helper function for drives to finish the request.
2441 * @rq: the request to finish
8ebf9756 2442 * @error: %0 for success, < %0 for error
32fab448
KU
2443 *
2444 * Description:
b1f74493 2445 * Completely finish @rq. Must be called with queue lock held.
32fab448 2446 */
b1f74493 2447void __blk_end_request_all(struct request *rq, int error)
32fab448 2448{
b1f74493
FT
2449 bool pending;
2450 unsigned int bidi_bytes = 0;
2451
2452 if (unlikely(blk_bidi_rq(rq)))
2453 bidi_bytes = blk_rq_bytes(rq->next_rq);
2454
2455 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2456 BUG_ON(pending);
32fab448 2457}
56ad1740 2458EXPORT_SYMBOL(__blk_end_request_all);
32fab448 2459
e19a3ab0 2460/**
b1f74493
FT
2461 * __blk_end_request_cur - Helper function to finish the current request chunk.
2462 * @rq: the request to finish the current chunk for
8ebf9756 2463 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2464 *
2465 * Description:
b1f74493
FT
2466 * Complete the current consecutively mapped chunk from @rq. Must
2467 * be called with queue lock held.
e19a3ab0
KU
2468 *
2469 * Return:
b1f74493
FT
2470 * %false - we are done with this request
2471 * %true - still buffers pending for this request
2472 */
2473bool __blk_end_request_cur(struct request *rq, int error)
e19a3ab0 2474{
b1f74493 2475 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
e19a3ab0 2476}
56ad1740 2477EXPORT_SYMBOL(__blk_end_request_cur);
e19a3ab0 2478
80a761fd
TH
2479/**
2480 * __blk_end_request_err - Finish a request till the next failure boundary.
2481 * @rq: the request to finish till the next failure boundary for
2482 * @error: must be negative errno
2483 *
2484 * Description:
2485 * Complete @rq till the next failure boundary. Must be called
2486 * with queue lock held.
2487 *
2488 * Return:
2489 * %false - we are done with this request
2490 * %true - still buffers pending for this request
2491 */
2492bool __blk_end_request_err(struct request *rq, int error)
2493{
2494 WARN_ON(error >= 0);
2495 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2496}
2497EXPORT_SYMBOL_GPL(__blk_end_request_err);
2498
86db1e29
JA
2499void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2500 struct bio *bio)
1da177e4 2501{
a82afdfc 2502 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
7b6d91da 2503 rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
1da177e4 2504
fb2dce86
DW
2505 if (bio_has_data(bio)) {
2506 rq->nr_phys_segments = bio_phys_segments(q, bio);
fb2dce86
DW
2507 rq->buffer = bio_data(bio);
2508 }
a2dec7b3 2509 rq->__data_len = bio->bi_size;
1da177e4 2510 rq->bio = rq->biotail = bio;
1da177e4 2511
66846572
N
2512 if (bio->bi_bdev)
2513 rq->rq_disk = bio->bi_bdev->bd_disk;
2514}
1da177e4 2515
2d4dc890
IL
2516#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2517/**
2518 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2519 * @rq: the request to be flushed
2520 *
2521 * Description:
2522 * Flush all pages in @rq.
2523 */
2524void rq_flush_dcache_pages(struct request *rq)
2525{
2526 struct req_iterator iter;
2527 struct bio_vec *bvec;
2528
2529 rq_for_each_segment(bvec, rq, iter)
2530 flush_dcache_page(bvec->bv_page);
2531}
2532EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2533#endif
2534
ef9e3fac
KU
2535/**
2536 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2537 * @q : the queue of the device being checked
2538 *
2539 * Description:
2540 * Check if underlying low-level drivers of a device are busy.
2541 * If the drivers want to export their busy state, they must set own
2542 * exporting function using blk_queue_lld_busy() first.
2543 *
2544 * Basically, this function is used only by request stacking drivers
2545 * to stop dispatching requests to underlying devices when underlying
2546 * devices are busy. This behavior helps more I/O merging on the queue
2547 * of the request stacking driver and prevents I/O throughput regression
2548 * on burst I/O load.
2549 *
2550 * Return:
2551 * 0 - Not busy (The request stacking driver should dispatch request)
2552 * 1 - Busy (The request stacking driver should stop dispatching request)
2553 */
2554int blk_lld_busy(struct request_queue *q)
2555{
2556 if (q->lld_busy_fn)
2557 return q->lld_busy_fn(q);
2558
2559 return 0;
2560}
2561EXPORT_SYMBOL_GPL(blk_lld_busy);
2562
b0fd271d
KU
2563/**
2564 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2565 * @rq: the clone request to be cleaned up
2566 *
2567 * Description:
2568 * Free all bios in @rq for a cloned request.
2569 */
2570void blk_rq_unprep_clone(struct request *rq)
2571{
2572 struct bio *bio;
2573
2574 while ((bio = rq->bio) != NULL) {
2575 rq->bio = bio->bi_next;
2576
2577 bio_put(bio);
2578 }
2579}
2580EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2581
2582/*
2583 * Copy attributes of the original request to the clone request.
2584 * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied.
2585 */
2586static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2587{
2588 dst->cpu = src->cpu;
3a2edd0d 2589 dst->cmd_flags = (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
b0fd271d
KU
2590 dst->cmd_type = src->cmd_type;
2591 dst->__sector = blk_rq_pos(src);
2592 dst->__data_len = blk_rq_bytes(src);
2593 dst->nr_phys_segments = src->nr_phys_segments;
2594 dst->ioprio = src->ioprio;
2595 dst->extra_len = src->extra_len;
2596}
2597
2598/**
2599 * blk_rq_prep_clone - Helper function to setup clone request
2600 * @rq: the request to be setup
2601 * @rq_src: original request to be cloned
2602 * @bs: bio_set that bios for clone are allocated from
2603 * @gfp_mask: memory allocation mask for bio
2604 * @bio_ctr: setup function to be called for each clone bio.
2605 * Returns %0 for success, non %0 for failure.
2606 * @data: private data to be passed to @bio_ctr
2607 *
2608 * Description:
2609 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2610 * The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense)
2611 * are not copied, and copying such parts is the caller's responsibility.
2612 * Also, pages which the original bios are pointing to are not copied
2613 * and the cloned bios just point same pages.
2614 * So cloned bios must be completed before original bios, which means
2615 * the caller must complete @rq before @rq_src.
2616 */
2617int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2618 struct bio_set *bs, gfp_t gfp_mask,
2619 int (*bio_ctr)(struct bio *, struct bio *, void *),
2620 void *data)
2621{
2622 struct bio *bio, *bio_src;
2623
2624 if (!bs)
2625 bs = fs_bio_set;
2626
2627 blk_rq_init(NULL, rq);
2628
2629 __rq_for_each_bio(bio_src, rq_src) {
2630 bio = bio_alloc_bioset(gfp_mask, bio_src->bi_max_vecs, bs);
2631 if (!bio)
2632 goto free_and_out;
2633
2634 __bio_clone(bio, bio_src);
2635
2636 if (bio_integrity(bio_src) &&
7878cba9 2637 bio_integrity_clone(bio, bio_src, gfp_mask, bs))
b0fd271d
KU
2638 goto free_and_out;
2639
2640 if (bio_ctr && bio_ctr(bio, bio_src, data))
2641 goto free_and_out;
2642
2643 if (rq->bio) {
2644 rq->biotail->bi_next = bio;
2645 rq->biotail = bio;
2646 } else
2647 rq->bio = rq->biotail = bio;
2648 }
2649
2650 __blk_rq_prep_clone(rq, rq_src);
2651
2652 return 0;
2653
2654free_and_out:
2655 if (bio)
2656 bio_free(bio, bs);
2657 blk_rq_unprep_clone(rq);
2658
2659 return -ENOMEM;
2660}
2661EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2662
18887ad9 2663int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
1da177e4
LT
2664{
2665 return queue_work(kblockd_workqueue, work);
2666}
1da177e4
LT
2667EXPORT_SYMBOL(kblockd_schedule_work);
2668
e43473b7
VG
2669int kblockd_schedule_delayed_work(struct request_queue *q,
2670 struct delayed_work *dwork, unsigned long delay)
2671{
2672 return queue_delayed_work(kblockd_workqueue, dwork, delay);
2673}
2674EXPORT_SYMBOL(kblockd_schedule_delayed_work);
2675
73c10101
JA
2676#define PLUG_MAGIC 0x91827364
2677
75df7136
SJ
2678/**
2679 * blk_start_plug - initialize blk_plug and track it inside the task_struct
2680 * @plug: The &struct blk_plug that needs to be initialized
2681 *
2682 * Description:
2683 * Tracking blk_plug inside the task_struct will help with auto-flushing the
2684 * pending I/O should the task end up blocking between blk_start_plug() and
2685 * blk_finish_plug(). This is important from a performance perspective, but
2686 * also ensures that we don't deadlock. For instance, if the task is blocking
2687 * for a memory allocation, memory reclaim could end up wanting to free a
2688 * page belonging to that request that is currently residing in our private
2689 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
2690 * this kind of deadlock.
2691 */
73c10101
JA
2692void blk_start_plug(struct blk_plug *plug)
2693{
2694 struct task_struct *tsk = current;
2695
2696 plug->magic = PLUG_MAGIC;
2697 INIT_LIST_HEAD(&plug->list);
048c9374 2698 INIT_LIST_HEAD(&plug->cb_list);
73c10101
JA
2699 plug->should_sort = 0;
2700
2701 /*
2702 * If this is a nested plug, don't actually assign it. It will be
2703 * flushed on its own.
2704 */
2705 if (!tsk->plug) {
2706 /*
2707 * Store ordering should not be needed here, since a potential
2708 * preempt will imply a full memory barrier
2709 */
2710 tsk->plug = plug;
2711 }
2712}
2713EXPORT_SYMBOL(blk_start_plug);
2714
2715static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
2716{
2717 struct request *rqa = container_of(a, struct request, queuelist);
2718 struct request *rqb = container_of(b, struct request, queuelist);
2719
f83e8261 2720 return !(rqa->q <= rqb->q);
73c10101
JA
2721}
2722
49cac01e
JA
2723/*
2724 * If 'from_schedule' is true, then postpone the dispatch of requests
2725 * until a safe kblockd context. We due this to avoid accidental big
2726 * additional stack usage in driver dispatch, in places where the originally
2727 * plugger did not intend it.
2728 */
f6603783 2729static void queue_unplugged(struct request_queue *q, unsigned int depth,
49cac01e 2730 bool from_schedule)
99e22598 2731 __releases(q->queue_lock)
94b5eb28 2732{
49cac01e 2733 trace_block_unplug(q, depth, !from_schedule);
99e22598
JA
2734
2735 /*
2736 * If we are punting this to kblockd, then we can safely drop
2737 * the queue_lock before waking kblockd (which needs to take
2738 * this lock).
2739 */
2740 if (from_schedule) {
2741 spin_unlock(q->queue_lock);
24ecfbe2 2742 blk_run_queue_async(q);
99e22598 2743 } else {
24ecfbe2 2744 __blk_run_queue(q);
99e22598
JA
2745 spin_unlock(q->queue_lock);
2746 }
2747
94b5eb28
JA
2748}
2749
048c9374
N
2750static void flush_plug_callbacks(struct blk_plug *plug)
2751{
2752 LIST_HEAD(callbacks);
2753
2754 if (list_empty(&plug->cb_list))
2755 return;
2756
2757 list_splice_init(&plug->cb_list, &callbacks);
2758
2759 while (!list_empty(&callbacks)) {
2760 struct blk_plug_cb *cb = list_first_entry(&callbacks,
2761 struct blk_plug_cb,
2762 list);
2763 list_del(&cb->list);
2764 cb->callback(cb);
2765 }
2766}
2767
49cac01e 2768void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
73c10101
JA
2769{
2770 struct request_queue *q;
2771 unsigned long flags;
2772 struct request *rq;
109b8129 2773 LIST_HEAD(list);
94b5eb28 2774 unsigned int depth;
73c10101
JA
2775
2776 BUG_ON(plug->magic != PLUG_MAGIC);
2777
048c9374 2778 flush_plug_callbacks(plug);
73c10101
JA
2779 if (list_empty(&plug->list))
2780 return;
2781
109b8129
N
2782 list_splice_init(&plug->list, &list);
2783
2784 if (plug->should_sort) {
2785 list_sort(NULL, &list, plug_rq_cmp);
2786 plug->should_sort = 0;
2787 }
73c10101
JA
2788
2789 q = NULL;
94b5eb28 2790 depth = 0;
18811272
JA
2791
2792 /*
2793 * Save and disable interrupts here, to avoid doing it for every
2794 * queue lock we have to take.
2795 */
73c10101 2796 local_irq_save(flags);
109b8129
N
2797 while (!list_empty(&list)) {
2798 rq = list_entry_rq(list.next);
73c10101 2799 list_del_init(&rq->queuelist);
73c10101
JA
2800 BUG_ON(!rq->q);
2801 if (rq->q != q) {
99e22598
JA
2802 /*
2803 * This drops the queue lock
2804 */
2805 if (q)
49cac01e 2806 queue_unplugged(q, depth, from_schedule);
73c10101 2807 q = rq->q;
94b5eb28 2808 depth = 0;
73c10101
JA
2809 spin_lock(q->queue_lock);
2810 }
73c10101
JA
2811 /*
2812 * rq is already accounted, so use raw insert
2813 */
401a18e9
JA
2814 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
2815 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
2816 else
2817 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
94b5eb28
JA
2818
2819 depth++;
73c10101
JA
2820 }
2821
99e22598
JA
2822 /*
2823 * This drops the queue lock
2824 */
2825 if (q)
49cac01e 2826 queue_unplugged(q, depth, from_schedule);
73c10101 2827
73c10101
JA
2828 local_irq_restore(flags);
2829}
73c10101
JA
2830
2831void blk_finish_plug(struct blk_plug *plug)
2832{
f6603783 2833 blk_flush_plug_list(plug, false);
73c10101 2834
88b996cd
CH
2835 if (plug == current->plug)
2836 current->plug = NULL;
73c10101 2837}
88b996cd 2838EXPORT_SYMBOL(blk_finish_plug);
73c10101 2839
1da177e4
LT
2840int __init blk_dev_init(void)
2841{
9eb55b03
NK
2842 BUILD_BUG_ON(__REQ_NR_BITS > 8 *
2843 sizeof(((struct request *)0)->cmd_flags));
2844
89b90be2
TH
2845 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
2846 kblockd_workqueue = alloc_workqueue("kblockd",
2847 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1da177e4
LT
2848 if (!kblockd_workqueue)
2849 panic("Failed to create kblockd\n");
2850
2851 request_cachep = kmem_cache_create("blkdev_requests",
20c2df83 2852 sizeof(struct request), 0, SLAB_PANIC, NULL);
1da177e4 2853
8324aa91 2854 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
165125e1 2855 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1da177e4 2856
d38ecf93 2857 return 0;
1da177e4 2858}