cfq-iosched: handle failure of cfq group allocation
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / block / blk-core.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6728cb0e
JA
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
1da177e4
LT
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11/*
12 * This handles all read/write requests to block devices
13 */
1da177e4
LT
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/backing-dev.h>
17#include <linux/bio.h>
18#include <linux/blkdev.h>
19#include <linux/highmem.h>
20#include <linux/mm.h>
21#include <linux/kernel_stat.h>
22#include <linux/string.h>
23#include <linux/init.h>
1da177e4
LT
24#include <linux/completion.h>
25#include <linux/slab.h>
26#include <linux/swap.h>
27#include <linux/writeback.h>
faccbd4b 28#include <linux/task_io_accounting_ops.h>
c17bb495 29#include <linux/fault-inject.h>
73c10101 30#include <linux/list_sort.h>
e3c78ca5 31#include <linux/delay.h>
aaf7c680 32#include <linux/ratelimit.h>
6c954667 33#include <linux/pm_runtime.h>
55782138
LZ
34
35#define CREATE_TRACE_POINTS
36#include <trace/events/block.h>
1da177e4 37
8324aa91 38#include "blk.h"
5efd6113 39#include "blk-cgroup.h"
8324aa91 40
d07335e5 41EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
b0da3f0d 42EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
0a82a8d1 43EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
cbae8d45 44EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
0bfc2455 45
a73f730d
TH
46DEFINE_IDA(blk_queue_ida);
47
1da177e4
LT
48/*
49 * For the allocated request tables
50 */
5ece6c52 51static struct kmem_cache *request_cachep;
1da177e4
LT
52
53/*
54 * For queue allocation
55 */
6728cb0e 56struct kmem_cache *blk_requestq_cachep;
1da177e4 57
1da177e4
LT
58/*
59 * Controlling structure to kblockd
60 */
ff856bad 61static struct workqueue_struct *kblockd_workqueue;
1da177e4 62
26b8256e
JA
63static void drive_stat_acct(struct request *rq, int new_io)
64{
28f13702 65 struct hd_struct *part;
26b8256e 66 int rw = rq_data_dir(rq);
c9959059 67 int cpu;
26b8256e 68
c2553b58 69 if (!blk_do_io_stat(rq))
26b8256e
JA
70 return;
71
074a7aca 72 cpu = part_stat_lock();
c9959059 73
09e099d4
JM
74 if (!new_io) {
75 part = rq->part;
074a7aca 76 part_stat_inc(cpu, part, merges[rw]);
09e099d4
JM
77 } else {
78 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
6c23a968 79 if (!hd_struct_try_get(part)) {
09e099d4
JM
80 /*
81 * The partition is already being removed,
82 * the request will be accounted on the disk only
83 *
84 * We take a reference on disk->part0 although that
85 * partition will never be deleted, so we can treat
86 * it as any other partition.
87 */
88 part = &rq->rq_disk->part0;
6c23a968 89 hd_struct_get(part);
09e099d4 90 }
074a7aca 91 part_round_stats(cpu, part);
316d315b 92 part_inc_in_flight(part, rw);
09e099d4 93 rq->part = part;
26b8256e 94 }
e71bf0d0 95
074a7aca 96 part_stat_unlock();
26b8256e
JA
97}
98
8324aa91 99void blk_queue_congestion_threshold(struct request_queue *q)
1da177e4
LT
100{
101 int nr;
102
103 nr = q->nr_requests - (q->nr_requests / 8) + 1;
104 if (nr > q->nr_requests)
105 nr = q->nr_requests;
106 q->nr_congestion_on = nr;
107
108 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
109 if (nr < 1)
110 nr = 1;
111 q->nr_congestion_off = nr;
112}
113
1da177e4
LT
114/**
115 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
116 * @bdev: device
117 *
118 * Locates the passed device's request queue and returns the address of its
119 * backing_dev_info
120 *
121 * Will return NULL if the request queue cannot be located.
122 */
123struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
124{
125 struct backing_dev_info *ret = NULL;
165125e1 126 struct request_queue *q = bdev_get_queue(bdev);
1da177e4
LT
127
128 if (q)
129 ret = &q->backing_dev_info;
130 return ret;
131}
1da177e4
LT
132EXPORT_SYMBOL(blk_get_backing_dev_info);
133
2a4aa30c 134void blk_rq_init(struct request_queue *q, struct request *rq)
1da177e4 135{
1afb20f3
FT
136 memset(rq, 0, sizeof(*rq));
137
1da177e4 138 INIT_LIST_HEAD(&rq->queuelist);
242f9dcb 139 INIT_LIST_HEAD(&rq->timeout_list);
c7c22e4d 140 rq->cpu = -1;
63a71386 141 rq->q = q;
a2dec7b3 142 rq->__sector = (sector_t) -1;
2e662b65
JA
143 INIT_HLIST_NODE(&rq->hash);
144 RB_CLEAR_NODE(&rq->rb_node);
d7e3c324 145 rq->cmd = rq->__cmd;
e2494e1b 146 rq->cmd_len = BLK_MAX_CDB;
63a71386 147 rq->tag = -1;
1da177e4 148 rq->ref_count = 1;
b243ddcb 149 rq->start_time = jiffies;
9195291e 150 set_start_time_ns(rq);
09e099d4 151 rq->part = NULL;
1da177e4 152}
2a4aa30c 153EXPORT_SYMBOL(blk_rq_init);
1da177e4 154
5bb23a68
N
155static void req_bio_endio(struct request *rq, struct bio *bio,
156 unsigned int nbytes, int error)
1da177e4 157{
143a87f4
TH
158 if (error)
159 clear_bit(BIO_UPTODATE, &bio->bi_flags);
160 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
161 error = -EIO;
797e7dbb 162
143a87f4
TH
163 if (unlikely(rq->cmd_flags & REQ_QUIET))
164 set_bit(BIO_QUIET, &bio->bi_flags);
08bafc03 165
f79ea416 166 bio_advance(bio, nbytes);
7ba1ba12 167
143a87f4
TH
168 /* don't actually finish bio if it's part of flush sequence */
169 if (bio->bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
170 bio_endio(bio, error);
1da177e4 171}
1da177e4 172
1da177e4
LT
173void blk_dump_rq_flags(struct request *rq, char *msg)
174{
175 int bit;
176
6728cb0e 177 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
4aff5e23
JA
178 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
179 rq->cmd_flags);
1da177e4 180
83096ebf
TH
181 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
182 (unsigned long long)blk_rq_pos(rq),
183 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
731ec497 184 printk(KERN_INFO " bio %p, biotail %p, buffer %p, len %u\n",
2e46e8b2 185 rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq));
1da177e4 186
33659ebb 187 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
6728cb0e 188 printk(KERN_INFO " cdb: ");
d34c87e4 189 for (bit = 0; bit < BLK_MAX_CDB; bit++)
1da177e4
LT
190 printk("%02x ", rq->cmd[bit]);
191 printk("\n");
192 }
193}
1da177e4
LT
194EXPORT_SYMBOL(blk_dump_rq_flags);
195
3cca6dc1 196static void blk_delay_work(struct work_struct *work)
1da177e4 197{
3cca6dc1 198 struct request_queue *q;
1da177e4 199
3cca6dc1
JA
200 q = container_of(work, struct request_queue, delay_work.work);
201 spin_lock_irq(q->queue_lock);
24ecfbe2 202 __blk_run_queue(q);
3cca6dc1 203 spin_unlock_irq(q->queue_lock);
1da177e4 204}
1da177e4
LT
205
206/**
3cca6dc1
JA
207 * blk_delay_queue - restart queueing after defined interval
208 * @q: The &struct request_queue in question
209 * @msecs: Delay in msecs
1da177e4
LT
210 *
211 * Description:
3cca6dc1
JA
212 * Sometimes queueing needs to be postponed for a little while, to allow
213 * resources to come back. This function will make sure that queueing is
70460571 214 * restarted around the specified time. Queue lock must be held.
3cca6dc1
JA
215 */
216void blk_delay_queue(struct request_queue *q, unsigned long msecs)
2ad8b1ef 217{
70460571
BVA
218 if (likely(!blk_queue_dead(q)))
219 queue_delayed_work(kblockd_workqueue, &q->delay_work,
220 msecs_to_jiffies(msecs));
2ad8b1ef 221}
3cca6dc1 222EXPORT_SYMBOL(blk_delay_queue);
2ad8b1ef 223
1da177e4
LT
224/**
225 * blk_start_queue - restart a previously stopped queue
165125e1 226 * @q: The &struct request_queue in question
1da177e4
LT
227 *
228 * Description:
229 * blk_start_queue() will clear the stop flag on the queue, and call
230 * the request_fn for the queue if it was in a stopped state when
231 * entered. Also see blk_stop_queue(). Queue lock must be held.
232 **/
165125e1 233void blk_start_queue(struct request_queue *q)
1da177e4 234{
a038e253
PBG
235 WARN_ON(!irqs_disabled());
236
75ad23bc 237 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
24ecfbe2 238 __blk_run_queue(q);
1da177e4 239}
1da177e4
LT
240EXPORT_SYMBOL(blk_start_queue);
241
242/**
243 * blk_stop_queue - stop a queue
165125e1 244 * @q: The &struct request_queue in question
1da177e4
LT
245 *
246 * Description:
247 * The Linux block layer assumes that a block driver will consume all
248 * entries on the request queue when the request_fn strategy is called.
249 * Often this will not happen, because of hardware limitations (queue
250 * depth settings). If a device driver gets a 'queue full' response,
251 * or if it simply chooses not to queue more I/O at one point, it can
252 * call this function to prevent the request_fn from being called until
253 * the driver has signalled it's ready to go again. This happens by calling
254 * blk_start_queue() to restart queue operations. Queue lock must be held.
255 **/
165125e1 256void blk_stop_queue(struct request_queue *q)
1da177e4 257{
136b5721 258 cancel_delayed_work(&q->delay_work);
75ad23bc 259 queue_flag_set(QUEUE_FLAG_STOPPED, q);
1da177e4
LT
260}
261EXPORT_SYMBOL(blk_stop_queue);
262
263/**
264 * blk_sync_queue - cancel any pending callbacks on a queue
265 * @q: the queue
266 *
267 * Description:
268 * The block layer may perform asynchronous callback activity
269 * on a queue, such as calling the unplug function after a timeout.
270 * A block device may call blk_sync_queue to ensure that any
271 * such activity is cancelled, thus allowing it to release resources
59c51591 272 * that the callbacks might use. The caller must already have made sure
1da177e4
LT
273 * that its ->make_request_fn will not re-add plugging prior to calling
274 * this function.
275 *
da527770
VG
276 * This function does not cancel any asynchronous activity arising
277 * out of elevator or throttling code. That would require elevaotor_exit()
5efd6113 278 * and blkcg_exit_queue() to be called with queue lock initialized.
da527770 279 *
1da177e4
LT
280 */
281void blk_sync_queue(struct request_queue *q)
282{
70ed28b9 283 del_timer_sync(&q->timeout);
3cca6dc1 284 cancel_delayed_work_sync(&q->delay_work);
1da177e4
LT
285}
286EXPORT_SYMBOL(blk_sync_queue);
287
c246e80d
BVA
288/**
289 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
290 * @q: The queue to run
291 *
292 * Description:
293 * Invoke request handling on a queue if there are any pending requests.
294 * May be used to restart request handling after a request has completed.
295 * This variant runs the queue whether or not the queue has been
296 * stopped. Must be called with the queue lock held and interrupts
297 * disabled. See also @blk_run_queue.
298 */
299inline void __blk_run_queue_uncond(struct request_queue *q)
300{
301 if (unlikely(blk_queue_dead(q)))
302 return;
303
24faf6f6
BVA
304 /*
305 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
306 * the queue lock internally. As a result multiple threads may be
307 * running such a request function concurrently. Keep track of the
308 * number of active request_fn invocations such that blk_drain_queue()
309 * can wait until all these request_fn calls have finished.
310 */
311 q->request_fn_active++;
c246e80d 312 q->request_fn(q);
24faf6f6 313 q->request_fn_active--;
c246e80d
BVA
314}
315
1da177e4 316/**
80a4b58e 317 * __blk_run_queue - run a single device queue
1da177e4 318 * @q: The queue to run
80a4b58e
JA
319 *
320 * Description:
321 * See @blk_run_queue. This variant must be called with the queue lock
24ecfbe2 322 * held and interrupts disabled.
1da177e4 323 */
24ecfbe2 324void __blk_run_queue(struct request_queue *q)
1da177e4 325{
a538cd03
TH
326 if (unlikely(blk_queue_stopped(q)))
327 return;
328
c246e80d 329 __blk_run_queue_uncond(q);
75ad23bc
NP
330}
331EXPORT_SYMBOL(__blk_run_queue);
dac07ec1 332
24ecfbe2
CH
333/**
334 * blk_run_queue_async - run a single device queue in workqueue context
335 * @q: The queue to run
336 *
337 * Description:
338 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
70460571 339 * of us. The caller must hold the queue lock.
24ecfbe2
CH
340 */
341void blk_run_queue_async(struct request_queue *q)
342{
70460571 343 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
e7c2f967 344 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
24ecfbe2 345}
c21e6beb 346EXPORT_SYMBOL(blk_run_queue_async);
24ecfbe2 347
75ad23bc
NP
348/**
349 * blk_run_queue - run a single device queue
350 * @q: The queue to run
80a4b58e
JA
351 *
352 * Description:
353 * Invoke request handling on this queue, if it has pending work to do.
a7f55792 354 * May be used to restart queueing when a request has completed.
75ad23bc
NP
355 */
356void blk_run_queue(struct request_queue *q)
357{
358 unsigned long flags;
359
360 spin_lock_irqsave(q->queue_lock, flags);
24ecfbe2 361 __blk_run_queue(q);
1da177e4
LT
362 spin_unlock_irqrestore(q->queue_lock, flags);
363}
364EXPORT_SYMBOL(blk_run_queue);
365
165125e1 366void blk_put_queue(struct request_queue *q)
483f4afc
AV
367{
368 kobject_put(&q->kobj);
369}
d86e0e83 370EXPORT_SYMBOL(blk_put_queue);
483f4afc 371
e3c78ca5 372/**
807592a4 373 * __blk_drain_queue - drain requests from request_queue
e3c78ca5 374 * @q: queue to drain
c9a929dd 375 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
e3c78ca5 376 *
c9a929dd
TH
377 * Drain requests from @q. If @drain_all is set, all requests are drained.
378 * If not, only ELVPRIV requests are drained. The caller is responsible
379 * for ensuring that no new requests which need to be drained are queued.
e3c78ca5 380 */
807592a4
BVA
381static void __blk_drain_queue(struct request_queue *q, bool drain_all)
382 __releases(q->queue_lock)
383 __acquires(q->queue_lock)
e3c78ca5 384{
458f27a9
AH
385 int i;
386
807592a4
BVA
387 lockdep_assert_held(q->queue_lock);
388
e3c78ca5 389 while (true) {
481a7d64 390 bool drain = false;
e3c78ca5 391
b855b04a
TH
392 /*
393 * The caller might be trying to drain @q before its
394 * elevator is initialized.
395 */
396 if (q->elevator)
397 elv_drain_elevator(q);
398
5efd6113 399 blkcg_drain_queue(q);
e3c78ca5 400
4eabc941
TH
401 /*
402 * This function might be called on a queue which failed
b855b04a
TH
403 * driver init after queue creation or is not yet fully
404 * active yet. Some drivers (e.g. fd and loop) get unhappy
405 * in such cases. Kick queue iff dispatch queue has
406 * something on it and @q has request_fn set.
4eabc941 407 */
b855b04a 408 if (!list_empty(&q->queue_head) && q->request_fn)
4eabc941 409 __blk_run_queue(q);
c9a929dd 410
8a5ecdd4 411 drain |= q->nr_rqs_elvpriv;
24faf6f6 412 drain |= q->request_fn_active;
481a7d64
TH
413
414 /*
415 * Unfortunately, requests are queued at and tracked from
416 * multiple places and there's no single counter which can
417 * be drained. Check all the queues and counters.
418 */
419 if (drain_all) {
420 drain |= !list_empty(&q->queue_head);
421 for (i = 0; i < 2; i++) {
8a5ecdd4 422 drain |= q->nr_rqs[i];
481a7d64
TH
423 drain |= q->in_flight[i];
424 drain |= !list_empty(&q->flush_queue[i]);
425 }
426 }
e3c78ca5 427
481a7d64 428 if (!drain)
e3c78ca5 429 break;
807592a4
BVA
430
431 spin_unlock_irq(q->queue_lock);
432
e3c78ca5 433 msleep(10);
807592a4
BVA
434
435 spin_lock_irq(q->queue_lock);
e3c78ca5 436 }
458f27a9
AH
437
438 /*
439 * With queue marked dead, any woken up waiter will fail the
440 * allocation path, so the wakeup chaining is lost and we're
441 * left with hung waiters. We need to wake up those waiters.
442 */
443 if (q->request_fn) {
a051661c
TH
444 struct request_list *rl;
445
a051661c
TH
446 blk_queue_for_each_rl(rl, q)
447 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
448 wake_up_all(&rl->wait[i]);
458f27a9 449 }
e3c78ca5
TH
450}
451
d732580b
TH
452/**
453 * blk_queue_bypass_start - enter queue bypass mode
454 * @q: queue of interest
455 *
456 * In bypass mode, only the dispatch FIFO queue of @q is used. This
457 * function makes @q enter bypass mode and drains all requests which were
6ecf23af 458 * throttled or issued before. On return, it's guaranteed that no request
80fd9979
TH
459 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
460 * inside queue or RCU read lock.
d732580b
TH
461 */
462void blk_queue_bypass_start(struct request_queue *q)
463{
b82d4b19
TH
464 bool drain;
465
d732580b 466 spin_lock_irq(q->queue_lock);
b82d4b19 467 drain = !q->bypass_depth++;
d732580b
TH
468 queue_flag_set(QUEUE_FLAG_BYPASS, q);
469 spin_unlock_irq(q->queue_lock);
470
b82d4b19 471 if (drain) {
807592a4
BVA
472 spin_lock_irq(q->queue_lock);
473 __blk_drain_queue(q, false);
474 spin_unlock_irq(q->queue_lock);
475
b82d4b19
TH
476 /* ensure blk_queue_bypass() is %true inside RCU read lock */
477 synchronize_rcu();
478 }
d732580b
TH
479}
480EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
481
482/**
483 * blk_queue_bypass_end - leave queue bypass mode
484 * @q: queue of interest
485 *
486 * Leave bypass mode and restore the normal queueing behavior.
487 */
488void blk_queue_bypass_end(struct request_queue *q)
489{
490 spin_lock_irq(q->queue_lock);
491 if (!--q->bypass_depth)
492 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
493 WARN_ON_ONCE(q->bypass_depth < 0);
494 spin_unlock_irq(q->queue_lock);
495}
496EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
497
c9a929dd
TH
498/**
499 * blk_cleanup_queue - shutdown a request queue
500 * @q: request queue to shutdown
501 *
c246e80d
BVA
502 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
503 * put it. All future requests will be failed immediately with -ENODEV.
c94a96ac 504 */
6728cb0e 505void blk_cleanup_queue(struct request_queue *q)
483f4afc 506{
c9a929dd 507 spinlock_t *lock = q->queue_lock;
e3335de9 508
3f3299d5 509 /* mark @q DYING, no new request or merges will be allowed afterwards */
483f4afc 510 mutex_lock(&q->sysfs_lock);
3f3299d5 511 queue_flag_set_unlocked(QUEUE_FLAG_DYING, q);
c9a929dd 512 spin_lock_irq(lock);
6ecf23af 513
80fd9979 514 /*
3f3299d5 515 * A dying queue is permanently in bypass mode till released. Note
80fd9979
TH
516 * that, unlike blk_queue_bypass_start(), we aren't performing
517 * synchronize_rcu() after entering bypass mode to avoid the delay
518 * as some drivers create and destroy a lot of queues while
519 * probing. This is still safe because blk_release_queue() will be
520 * called only after the queue refcnt drops to zero and nothing,
521 * RCU or not, would be traversing the queue by then.
522 */
6ecf23af
TH
523 q->bypass_depth++;
524 queue_flag_set(QUEUE_FLAG_BYPASS, q);
525
c9a929dd
TH
526 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
527 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
3f3299d5 528 queue_flag_set(QUEUE_FLAG_DYING, q);
c9a929dd
TH
529 spin_unlock_irq(lock);
530 mutex_unlock(&q->sysfs_lock);
531
c246e80d
BVA
532 /*
533 * Drain all requests queued before DYING marking. Set DEAD flag to
534 * prevent that q->request_fn() gets invoked after draining finished.
535 */
807592a4
BVA
536 spin_lock_irq(lock);
537 __blk_drain_queue(q, true);
c246e80d 538 queue_flag_set(QUEUE_FLAG_DEAD, q);
807592a4 539 spin_unlock_irq(lock);
c9a929dd
TH
540
541 /* @q won't process any more request, flush async actions */
542 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
543 blk_sync_queue(q);
544
5e5cfac0
AH
545 spin_lock_irq(lock);
546 if (q->queue_lock != &q->__queue_lock)
547 q->queue_lock = &q->__queue_lock;
548 spin_unlock_irq(lock);
549
c9a929dd 550 /* @q is and will stay empty, shutdown and put */
483f4afc
AV
551 blk_put_queue(q);
552}
1da177e4
LT
553EXPORT_SYMBOL(blk_cleanup_queue);
554
5b788ce3
TH
555int blk_init_rl(struct request_list *rl, struct request_queue *q,
556 gfp_t gfp_mask)
1da177e4 557{
1abec4fd
MS
558 if (unlikely(rl->rq_pool))
559 return 0;
560
5b788ce3 561 rl->q = q;
1faa16d2
JA
562 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
563 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
1faa16d2
JA
564 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
565 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
1da177e4 566
1946089a 567 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
a91a5ac6 568 mempool_free_slab, request_cachep,
5b788ce3 569 gfp_mask, q->node);
1da177e4
LT
570 if (!rl->rq_pool)
571 return -ENOMEM;
572
573 return 0;
574}
575
5b788ce3
TH
576void blk_exit_rl(struct request_list *rl)
577{
578 if (rl->rq_pool)
579 mempool_destroy(rl->rq_pool);
580}
581
165125e1 582struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
1da177e4 583{
c304a51b 584 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
1946089a
CL
585}
586EXPORT_SYMBOL(blk_alloc_queue);
1da177e4 587
165125e1 588struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1946089a 589{
165125e1 590 struct request_queue *q;
e0bf68dd 591 int err;
1946089a 592
8324aa91 593 q = kmem_cache_alloc_node(blk_requestq_cachep,
94f6030c 594 gfp_mask | __GFP_ZERO, node_id);
1da177e4
LT
595 if (!q)
596 return NULL;
597
00380a40 598 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
a73f730d
TH
599 if (q->id < 0)
600 goto fail_q;
601
0989a025
JA
602 q->backing_dev_info.ra_pages =
603 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
604 q->backing_dev_info.state = 0;
605 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
d993831f 606 q->backing_dev_info.name = "block";
5151412d 607 q->node = node_id;
0989a025 608
e0bf68dd 609 err = bdi_init(&q->backing_dev_info);
a73f730d
TH
610 if (err)
611 goto fail_id;
e0bf68dd 612
31373d09
MG
613 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
614 laptop_mode_timer_fn, (unsigned long) q);
242f9dcb 615 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
b855b04a 616 INIT_LIST_HEAD(&q->queue_head);
242f9dcb 617 INIT_LIST_HEAD(&q->timeout_list);
a612fddf 618 INIT_LIST_HEAD(&q->icq_list);
4eef3049 619#ifdef CONFIG_BLK_CGROUP
e8989fae 620 INIT_LIST_HEAD(&q->blkg_list);
4eef3049 621#endif
ae1b1539
TH
622 INIT_LIST_HEAD(&q->flush_queue[0]);
623 INIT_LIST_HEAD(&q->flush_queue[1]);
624 INIT_LIST_HEAD(&q->flush_data_in_flight);
3cca6dc1 625 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
483f4afc 626
8324aa91 627 kobject_init(&q->kobj, &blk_queue_ktype);
1da177e4 628
483f4afc 629 mutex_init(&q->sysfs_lock);
e7e72bf6 630 spin_lock_init(&q->__queue_lock);
483f4afc 631
c94a96ac
VG
632 /*
633 * By default initialize queue_lock to internal lock and driver can
634 * override it later if need be.
635 */
636 q->queue_lock = &q->__queue_lock;
637
b82d4b19
TH
638 /*
639 * A queue starts its life with bypass turned on to avoid
640 * unnecessary bypass on/off overhead and nasty surprises during
749fefe6
TH
641 * init. The initial bypass will be finished when the queue is
642 * registered by blk_register_queue().
b82d4b19
TH
643 */
644 q->bypass_depth = 1;
645 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
646
5efd6113 647 if (blkcg_init_queue(q))
d8db1a5f 648 goto fail_bdi;
f51b802c 649
1da177e4 650 return q;
a73f730d 651
d8db1a5f
MP
652fail_bdi:
653 bdi_destroy(&q->backing_dev_info);
a73f730d
TH
654fail_id:
655 ida_simple_remove(&blk_queue_ida, q->id);
656fail_q:
657 kmem_cache_free(blk_requestq_cachep, q);
658 return NULL;
1da177e4 659}
1946089a 660EXPORT_SYMBOL(blk_alloc_queue_node);
1da177e4
LT
661
662/**
663 * blk_init_queue - prepare a request queue for use with a block device
664 * @rfn: The function to be called to process requests that have been
665 * placed on the queue.
666 * @lock: Request queue spin lock
667 *
668 * Description:
669 * If a block device wishes to use the standard request handling procedures,
670 * which sorts requests and coalesces adjacent requests, then it must
671 * call blk_init_queue(). The function @rfn will be called when there
672 * are requests on the queue that need to be processed. If the device
673 * supports plugging, then @rfn may not be called immediately when requests
674 * are available on the queue, but may be called at some time later instead.
675 * Plugged queues are generally unplugged when a buffer belonging to one
676 * of the requests on the queue is needed, or due to memory pressure.
677 *
678 * @rfn is not required, or even expected, to remove all requests off the
679 * queue, but only as many as it can handle at a time. If it does leave
680 * requests on the queue, it is responsible for arranging that the requests
681 * get dealt with eventually.
682 *
683 * The queue spin lock must be held while manipulating the requests on the
a038e253
PBG
684 * request queue; this lock will be taken also from interrupt context, so irq
685 * disabling is needed for it.
1da177e4 686 *
710027a4 687 * Function returns a pointer to the initialized request queue, or %NULL if
1da177e4
LT
688 * it didn't succeed.
689 *
690 * Note:
691 * blk_init_queue() must be paired with a blk_cleanup_queue() call
692 * when the block device is deactivated (such as at module unload).
693 **/
1946089a 694
165125e1 695struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1da177e4 696{
c304a51b 697 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
1946089a
CL
698}
699EXPORT_SYMBOL(blk_init_queue);
700
165125e1 701struct request_queue *
1946089a
CL
702blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
703{
c86d1b8a 704 struct request_queue *uninit_q, *q;
1da177e4 705
c86d1b8a
MS
706 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
707 if (!uninit_q)
708 return NULL;
709
5151412d 710 q = blk_init_allocated_queue(uninit_q, rfn, lock);
c86d1b8a
MS
711 if (!q)
712 blk_cleanup_queue(uninit_q);
713
714 return q;
01effb0d
MS
715}
716EXPORT_SYMBOL(blk_init_queue_node);
717
718struct request_queue *
719blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
720 spinlock_t *lock)
01effb0d 721{
1da177e4
LT
722 if (!q)
723 return NULL;
724
a051661c 725 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
8669aafd 726 return NULL;
1da177e4
LT
727
728 q->request_fn = rfn;
1da177e4 729 q->prep_rq_fn = NULL;
28018c24 730 q->unprep_rq_fn = NULL;
60ea8226 731 q->queue_flags |= QUEUE_FLAG_DEFAULT;
c94a96ac
VG
732
733 /* Override internal queue lock with supplied lock pointer */
734 if (lock)
735 q->queue_lock = lock;
1da177e4 736
f3b144aa
JA
737 /*
738 * This also sets hw/phys segments, boundary and size
739 */
c20e8de2 740 blk_queue_make_request(q, blk_queue_bio);
1da177e4 741
44ec9542
AS
742 q->sg_reserved_size = INT_MAX;
743
6d53d392
TS
744 /* Protect q->elevator from elevator_change */
745 mutex_lock(&q->sysfs_lock);
746
b82d4b19 747 /* init elevator */
6d53d392
TS
748 if (elevator_init(q, NULL)) {
749 mutex_unlock(&q->sysfs_lock);
b82d4b19 750 return NULL;
6d53d392
TS
751 }
752
753 mutex_unlock(&q->sysfs_lock);
754
b82d4b19 755 return q;
1da177e4 756}
5151412d 757EXPORT_SYMBOL(blk_init_allocated_queue);
1da177e4 758
09ac46c4 759bool blk_get_queue(struct request_queue *q)
1da177e4 760{
3f3299d5 761 if (likely(!blk_queue_dying(q))) {
09ac46c4
TH
762 __blk_get_queue(q);
763 return true;
1da177e4
LT
764 }
765
09ac46c4 766 return false;
1da177e4 767}
d86e0e83 768EXPORT_SYMBOL(blk_get_queue);
1da177e4 769
5b788ce3 770static inline void blk_free_request(struct request_list *rl, struct request *rq)
1da177e4 771{
f1f8cc94 772 if (rq->cmd_flags & REQ_ELVPRIV) {
5b788ce3 773 elv_put_request(rl->q, rq);
f1f8cc94 774 if (rq->elv.icq)
11a3122f 775 put_io_context(rq->elv.icq->ioc);
f1f8cc94
TH
776 }
777
5b788ce3 778 mempool_free(rq, rl->rq_pool);
1da177e4
LT
779}
780
1da177e4
LT
781/*
782 * ioc_batching returns true if the ioc is a valid batching request and
783 * should be given priority access to a request.
784 */
165125e1 785static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
786{
787 if (!ioc)
788 return 0;
789
790 /*
791 * Make sure the process is able to allocate at least 1 request
792 * even if the batch times out, otherwise we could theoretically
793 * lose wakeups.
794 */
795 return ioc->nr_batch_requests == q->nr_batching ||
796 (ioc->nr_batch_requests > 0
797 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
798}
799
800/*
801 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
802 * will cause the process to be a "batcher" on all queues in the system. This
803 * is the behaviour we want though - once it gets a wakeup it should be given
804 * a nice run.
805 */
165125e1 806static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
807{
808 if (!ioc || ioc_batching(q, ioc))
809 return;
810
811 ioc->nr_batch_requests = q->nr_batching;
812 ioc->last_waited = jiffies;
813}
814
5b788ce3 815static void __freed_request(struct request_list *rl, int sync)
1da177e4 816{
5b788ce3 817 struct request_queue *q = rl->q;
1da177e4 818
a051661c
TH
819 /*
820 * bdi isn't aware of blkcg yet. As all async IOs end up root
821 * blkcg anyway, just use root blkcg state.
822 */
823 if (rl == &q->root_rl &&
824 rl->count[sync] < queue_congestion_off_threshold(q))
1faa16d2 825 blk_clear_queue_congested(q, sync);
1da177e4 826
1faa16d2
JA
827 if (rl->count[sync] + 1 <= q->nr_requests) {
828 if (waitqueue_active(&rl->wait[sync]))
829 wake_up(&rl->wait[sync]);
1da177e4 830
5b788ce3 831 blk_clear_rl_full(rl, sync);
1da177e4
LT
832 }
833}
834
835/*
836 * A request has just been released. Account for it, update the full and
837 * congestion status, wake up any waiters. Called under q->queue_lock.
838 */
5b788ce3 839static void freed_request(struct request_list *rl, unsigned int flags)
1da177e4 840{
5b788ce3 841 struct request_queue *q = rl->q;
75eb6c37 842 int sync = rw_is_sync(flags);
1da177e4 843
8a5ecdd4 844 q->nr_rqs[sync]--;
1faa16d2 845 rl->count[sync]--;
75eb6c37 846 if (flags & REQ_ELVPRIV)
8a5ecdd4 847 q->nr_rqs_elvpriv--;
1da177e4 848
5b788ce3 849 __freed_request(rl, sync);
1da177e4 850
1faa16d2 851 if (unlikely(rl->starved[sync ^ 1]))
5b788ce3 852 __freed_request(rl, sync ^ 1);
1da177e4
LT
853}
854
9d5a4e94
MS
855/*
856 * Determine if elevator data should be initialized when allocating the
857 * request associated with @bio.
858 */
859static bool blk_rq_should_init_elevator(struct bio *bio)
860{
861 if (!bio)
862 return true;
863
864 /*
865 * Flush requests do not use the elevator so skip initialization.
866 * This allows a request to share the flush and elevator data.
867 */
868 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
869 return false;
870
871 return true;
872}
873
852c788f
TH
874/**
875 * rq_ioc - determine io_context for request allocation
876 * @bio: request being allocated is for this bio (can be %NULL)
877 *
878 * Determine io_context to use for request allocation for @bio. May return
879 * %NULL if %current->io_context doesn't exist.
880 */
881static struct io_context *rq_ioc(struct bio *bio)
882{
883#ifdef CONFIG_BLK_CGROUP
884 if (bio && bio->bi_ioc)
885 return bio->bi_ioc;
886#endif
887 return current->io_context;
888}
889
da8303c6 890/**
a06e05e6 891 * __get_request - get a free request
5b788ce3 892 * @rl: request list to allocate from
da8303c6
TH
893 * @rw_flags: RW and SYNC flags
894 * @bio: bio to allocate request for (can be %NULL)
895 * @gfp_mask: allocation mask
896 *
897 * Get a free request from @q. This function may fail under memory
898 * pressure or if @q is dead.
899 *
900 * Must be callled with @q->queue_lock held and,
901 * Returns %NULL on failure, with @q->queue_lock held.
902 * Returns !%NULL on success, with @q->queue_lock *not held*.
1da177e4 903 */
5b788ce3 904static struct request *__get_request(struct request_list *rl, int rw_flags,
a06e05e6 905 struct bio *bio, gfp_t gfp_mask)
1da177e4 906{
5b788ce3 907 struct request_queue *q = rl->q;
b679281a 908 struct request *rq;
7f4b35d1
TH
909 struct elevator_type *et = q->elevator->type;
910 struct io_context *ioc = rq_ioc(bio);
f1f8cc94 911 struct io_cq *icq = NULL;
1faa16d2 912 const bool is_sync = rw_is_sync(rw_flags) != 0;
75eb6c37 913 int may_queue;
88ee5ef1 914
3f3299d5 915 if (unlikely(blk_queue_dying(q)))
da8303c6
TH
916 return NULL;
917
7749a8d4 918 may_queue = elv_may_queue(q, rw_flags);
88ee5ef1
JA
919 if (may_queue == ELV_MQUEUE_NO)
920 goto rq_starved;
921
1faa16d2
JA
922 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
923 if (rl->count[is_sync]+1 >= q->nr_requests) {
88ee5ef1
JA
924 /*
925 * The queue will fill after this allocation, so set
926 * it as full, and mark this process as "batching".
927 * This process will be allowed to complete a batch of
928 * requests, others will be blocked.
929 */
5b788ce3 930 if (!blk_rl_full(rl, is_sync)) {
88ee5ef1 931 ioc_set_batching(q, ioc);
5b788ce3 932 blk_set_rl_full(rl, is_sync);
88ee5ef1
JA
933 } else {
934 if (may_queue != ELV_MQUEUE_MUST
935 && !ioc_batching(q, ioc)) {
936 /*
937 * The queue is full and the allocating
938 * process is not a "batcher", and not
939 * exempted by the IO scheduler
940 */
b679281a 941 return NULL;
88ee5ef1
JA
942 }
943 }
1da177e4 944 }
a051661c
TH
945 /*
946 * bdi isn't aware of blkcg yet. As all async IOs end up
947 * root blkcg anyway, just use root blkcg state.
948 */
949 if (rl == &q->root_rl)
950 blk_set_queue_congested(q, is_sync);
1da177e4
LT
951 }
952
082cf69e
JA
953 /*
954 * Only allow batching queuers to allocate up to 50% over the defined
955 * limit of requests, otherwise we could have thousands of requests
956 * allocated with any setting of ->nr_requests
957 */
1faa16d2 958 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
b679281a 959 return NULL;
fd782a4a 960
8a5ecdd4 961 q->nr_rqs[is_sync]++;
1faa16d2
JA
962 rl->count[is_sync]++;
963 rl->starved[is_sync] = 0;
cb98fc8b 964
f1f8cc94
TH
965 /*
966 * Decide whether the new request will be managed by elevator. If
967 * so, mark @rw_flags and increment elvpriv. Non-zero elvpriv will
968 * prevent the current elevator from being destroyed until the new
969 * request is freed. This guarantees icq's won't be destroyed and
970 * makes creating new ones safe.
971 *
972 * Also, lookup icq while holding queue_lock. If it doesn't exist,
973 * it will be created after releasing queue_lock.
974 */
d732580b 975 if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) {
75eb6c37 976 rw_flags |= REQ_ELVPRIV;
8a5ecdd4 977 q->nr_rqs_elvpriv++;
f1f8cc94
TH
978 if (et->icq_cache && ioc)
979 icq = ioc_lookup_icq(ioc, q);
9d5a4e94 980 }
cb98fc8b 981
f253b86b
JA
982 if (blk_queue_io_stat(q))
983 rw_flags |= REQ_IO_STAT;
1da177e4
LT
984 spin_unlock_irq(q->queue_lock);
985
29e2b09a 986 /* allocate and init request */
5b788ce3 987 rq = mempool_alloc(rl->rq_pool, gfp_mask);
29e2b09a 988 if (!rq)
b679281a 989 goto fail_alloc;
1da177e4 990
29e2b09a 991 blk_rq_init(q, rq);
a051661c 992 blk_rq_set_rl(rq, rl);
29e2b09a
TH
993 rq->cmd_flags = rw_flags | REQ_ALLOCED;
994
aaf7c680 995 /* init elvpriv */
29e2b09a 996 if (rw_flags & REQ_ELVPRIV) {
aaf7c680 997 if (unlikely(et->icq_cache && !icq)) {
7f4b35d1
TH
998 if (ioc)
999 icq = ioc_create_icq(ioc, q, gfp_mask);
aaf7c680
TH
1000 if (!icq)
1001 goto fail_elvpriv;
29e2b09a 1002 }
aaf7c680
TH
1003
1004 rq->elv.icq = icq;
1005 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
1006 goto fail_elvpriv;
1007
1008 /* @rq->elv.icq holds io_context until @rq is freed */
29e2b09a
TH
1009 if (icq)
1010 get_io_context(icq->ioc);
1011 }
aaf7c680 1012out:
88ee5ef1
JA
1013 /*
1014 * ioc may be NULL here, and ioc_batching will be false. That's
1015 * OK, if the queue is under the request limit then requests need
1016 * not count toward the nr_batch_requests limit. There will always
1017 * be some limit enforced by BLK_BATCH_TIME.
1018 */
1da177e4
LT
1019 if (ioc_batching(q, ioc))
1020 ioc->nr_batch_requests--;
6728cb0e 1021
1faa16d2 1022 trace_block_getrq(q, bio, rw_flags & 1);
1da177e4 1023 return rq;
b679281a 1024
aaf7c680
TH
1025fail_elvpriv:
1026 /*
1027 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1028 * and may fail indefinitely under memory pressure and thus
1029 * shouldn't stall IO. Treat this request as !elvpriv. This will
1030 * disturb iosched and blkcg but weird is bettern than dead.
1031 */
1032 printk_ratelimited(KERN_WARNING "%s: request aux data allocation failed, iosched may be disturbed\n",
1033 dev_name(q->backing_dev_info.dev));
1034
1035 rq->cmd_flags &= ~REQ_ELVPRIV;
1036 rq->elv.icq = NULL;
1037
1038 spin_lock_irq(q->queue_lock);
8a5ecdd4 1039 q->nr_rqs_elvpriv--;
aaf7c680
TH
1040 spin_unlock_irq(q->queue_lock);
1041 goto out;
1042
b679281a
TH
1043fail_alloc:
1044 /*
1045 * Allocation failed presumably due to memory. Undo anything we
1046 * might have messed up.
1047 *
1048 * Allocating task should really be put onto the front of the wait
1049 * queue, but this is pretty rare.
1050 */
1051 spin_lock_irq(q->queue_lock);
5b788ce3 1052 freed_request(rl, rw_flags);
b679281a
TH
1053
1054 /*
1055 * in the very unlikely event that allocation failed and no
1056 * requests for this direction was pending, mark us starved so that
1057 * freeing of a request in the other direction will notice
1058 * us. another possible fix would be to split the rq mempool into
1059 * READ and WRITE
1060 */
1061rq_starved:
1062 if (unlikely(rl->count[is_sync] == 0))
1063 rl->starved[is_sync] = 1;
1064 return NULL;
1da177e4
LT
1065}
1066
da8303c6 1067/**
a06e05e6 1068 * get_request - get a free request
da8303c6
TH
1069 * @q: request_queue to allocate request from
1070 * @rw_flags: RW and SYNC flags
1071 * @bio: bio to allocate request for (can be %NULL)
a06e05e6 1072 * @gfp_mask: allocation mask
da8303c6 1073 *
a06e05e6
TH
1074 * Get a free request from @q. If %__GFP_WAIT is set in @gfp_mask, this
1075 * function keeps retrying under memory pressure and fails iff @q is dead.
d6344532 1076 *
da8303c6
TH
1077 * Must be callled with @q->queue_lock held and,
1078 * Returns %NULL on failure, with @q->queue_lock held.
1079 * Returns !%NULL on success, with @q->queue_lock *not held*.
1da177e4 1080 */
a06e05e6
TH
1081static struct request *get_request(struct request_queue *q, int rw_flags,
1082 struct bio *bio, gfp_t gfp_mask)
1da177e4 1083{
1faa16d2 1084 const bool is_sync = rw_is_sync(rw_flags) != 0;
a06e05e6 1085 DEFINE_WAIT(wait);
a051661c 1086 struct request_list *rl;
1da177e4 1087 struct request *rq;
a051661c
TH
1088
1089 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
a06e05e6 1090retry:
a051661c 1091 rq = __get_request(rl, rw_flags, bio, gfp_mask);
a06e05e6
TH
1092 if (rq)
1093 return rq;
1da177e4 1094
3f3299d5 1095 if (!(gfp_mask & __GFP_WAIT) || unlikely(blk_queue_dying(q))) {
a051661c 1096 blk_put_rl(rl);
a06e05e6 1097 return NULL;
a051661c 1098 }
1da177e4 1099
a06e05e6
TH
1100 /* wait on @rl and retry */
1101 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1102 TASK_UNINTERRUPTIBLE);
1da177e4 1103
a06e05e6 1104 trace_block_sleeprq(q, bio, rw_flags & 1);
1da177e4 1105
a06e05e6
TH
1106 spin_unlock_irq(q->queue_lock);
1107 io_schedule();
d6344532 1108
a06e05e6
TH
1109 /*
1110 * After sleeping, we become a "batching" process and will be able
1111 * to allocate at least one request, and up to a big batch of them
1112 * for a small period time. See ioc_batching, ioc_set_batching
1113 */
a06e05e6 1114 ioc_set_batching(q, current->io_context);
05caf8db 1115
a06e05e6
TH
1116 spin_lock_irq(q->queue_lock);
1117 finish_wait(&rl->wait[is_sync], &wait);
1da177e4 1118
a06e05e6 1119 goto retry;
1da177e4
LT
1120}
1121
165125e1 1122struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1da177e4
LT
1123{
1124 struct request *rq;
1125
1126 BUG_ON(rw != READ && rw != WRITE);
1127
7f4b35d1
TH
1128 /* create ioc upfront */
1129 create_io_context(gfp_mask, q->node);
1130
d6344532 1131 spin_lock_irq(q->queue_lock);
a06e05e6 1132 rq = get_request(q, rw, NULL, gfp_mask);
da8303c6
TH
1133 if (!rq)
1134 spin_unlock_irq(q->queue_lock);
d6344532 1135 /* q->queue_lock is unlocked at this point */
1da177e4
LT
1136
1137 return rq;
1138}
1da177e4
LT
1139EXPORT_SYMBOL(blk_get_request);
1140
dc72ef4a 1141/**
79eb63e9 1142 * blk_make_request - given a bio, allocate a corresponding struct request.
8ebf9756 1143 * @q: target request queue
79eb63e9
BH
1144 * @bio: The bio describing the memory mappings that will be submitted for IO.
1145 * It may be a chained-bio properly constructed by block/bio layer.
8ebf9756 1146 * @gfp_mask: gfp flags to be used for memory allocation
dc72ef4a 1147 *
79eb63e9
BH
1148 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
1149 * type commands. Where the struct request needs to be farther initialized by
1150 * the caller. It is passed a &struct bio, which describes the memory info of
1151 * the I/O transfer.
dc72ef4a 1152 *
79eb63e9
BH
1153 * The caller of blk_make_request must make sure that bi_io_vec
1154 * are set to describe the memory buffers. That bio_data_dir() will return
1155 * the needed direction of the request. (And all bio's in the passed bio-chain
1156 * are properly set accordingly)
1157 *
1158 * If called under none-sleepable conditions, mapped bio buffers must not
1159 * need bouncing, by calling the appropriate masked or flagged allocator,
1160 * suitable for the target device. Otherwise the call to blk_queue_bounce will
1161 * BUG.
53674ac5
JA
1162 *
1163 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
1164 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
1165 * anything but the first bio in the chain. Otherwise you risk waiting for IO
1166 * completion of a bio that hasn't been submitted yet, thus resulting in a
1167 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
1168 * of bio_alloc(), as that avoids the mempool deadlock.
1169 * If possible a big IO should be split into smaller parts when allocation
1170 * fails. Partial allocation should not be an error, or you risk a live-lock.
dc72ef4a 1171 */
79eb63e9
BH
1172struct request *blk_make_request(struct request_queue *q, struct bio *bio,
1173 gfp_t gfp_mask)
dc72ef4a 1174{
79eb63e9
BH
1175 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
1176
1177 if (unlikely(!rq))
1178 return ERR_PTR(-ENOMEM);
1179
1180 for_each_bio(bio) {
1181 struct bio *bounce_bio = bio;
1182 int ret;
1183
1184 blk_queue_bounce(q, &bounce_bio);
1185 ret = blk_rq_append_bio(q, rq, bounce_bio);
1186 if (unlikely(ret)) {
1187 blk_put_request(rq);
1188 return ERR_PTR(ret);
1189 }
1190 }
1191
1192 return rq;
dc72ef4a 1193}
79eb63e9 1194EXPORT_SYMBOL(blk_make_request);
dc72ef4a 1195
1da177e4
LT
1196/**
1197 * blk_requeue_request - put a request back on queue
1198 * @q: request queue where request should be inserted
1199 * @rq: request to be inserted
1200 *
1201 * Description:
1202 * Drivers often keep queueing requests until the hardware cannot accept
1203 * more, when that condition happens we need to put the request back
1204 * on the queue. Must be called with queue lock held.
1205 */
165125e1 1206void blk_requeue_request(struct request_queue *q, struct request *rq)
1da177e4 1207{
242f9dcb
JA
1208 blk_delete_timer(rq);
1209 blk_clear_rq_complete(rq);
5f3ea37c 1210 trace_block_rq_requeue(q, rq);
2056a782 1211
1da177e4
LT
1212 if (blk_rq_tagged(rq))
1213 blk_queue_end_tag(q, rq);
1214
ba396a6c
JB
1215 BUG_ON(blk_queued_rq(rq));
1216
1da177e4
LT
1217 elv_requeue_request(q, rq);
1218}
1da177e4
LT
1219EXPORT_SYMBOL(blk_requeue_request);
1220
73c10101
JA
1221static void add_acct_request(struct request_queue *q, struct request *rq,
1222 int where)
1223{
1224 drive_stat_acct(rq, 1);
7eaceacc 1225 __elv_add_request(q, rq, where);
73c10101
JA
1226}
1227
074a7aca
TH
1228static void part_round_stats_single(int cpu, struct hd_struct *part,
1229 unsigned long now)
1230{
1231 if (now == part->stamp)
1232 return;
1233
316d315b 1234 if (part_in_flight(part)) {
074a7aca 1235 __part_stat_add(cpu, part, time_in_queue,
316d315b 1236 part_in_flight(part) * (now - part->stamp));
074a7aca
TH
1237 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1238 }
1239 part->stamp = now;
1240}
1241
1242/**
496aa8a9
RD
1243 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1244 * @cpu: cpu number for stats access
1245 * @part: target partition
1da177e4
LT
1246 *
1247 * The average IO queue length and utilisation statistics are maintained
1248 * by observing the current state of the queue length and the amount of
1249 * time it has been in this state for.
1250 *
1251 * Normally, that accounting is done on IO completion, but that can result
1252 * in more than a second's worth of IO being accounted for within any one
1253 * second, leading to >100% utilisation. To deal with that, we call this
1254 * function to do a round-off before returning the results when reading
1255 * /proc/diskstats. This accounts immediately for all queue usage up to
1256 * the current jiffies and restarts the counters again.
1257 */
c9959059 1258void part_round_stats(int cpu, struct hd_struct *part)
6f2576af
JM
1259{
1260 unsigned long now = jiffies;
1261
074a7aca
TH
1262 if (part->partno)
1263 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1264 part_round_stats_single(cpu, part, now);
6f2576af 1265}
074a7aca 1266EXPORT_SYMBOL_GPL(part_round_stats);
6f2576af 1267
c8158819
LM
1268#ifdef CONFIG_PM_RUNTIME
1269static void blk_pm_put_request(struct request *rq)
1270{
1271 if (rq->q->dev && !(rq->cmd_flags & REQ_PM) && !--rq->q->nr_pending)
1272 pm_runtime_mark_last_busy(rq->q->dev);
1273}
1274#else
1275static inline void blk_pm_put_request(struct request *rq) {}
1276#endif
1277
1da177e4
LT
1278/*
1279 * queue lock must be held
1280 */
165125e1 1281void __blk_put_request(struct request_queue *q, struct request *req)
1da177e4 1282{
1da177e4
LT
1283 if (unlikely(!q))
1284 return;
1285 if (unlikely(--req->ref_count))
1286 return;
1287
c8158819
LM
1288 blk_pm_put_request(req);
1289
8922e16c
TH
1290 elv_completed_request(q, req);
1291
1cd96c24
BH
1292 /* this is a bio leak */
1293 WARN_ON(req->bio != NULL);
1294
1da177e4
LT
1295 /*
1296 * Request may not have originated from ll_rw_blk. if not,
1297 * it didn't come out of our reserved rq pools
1298 */
49171e5c 1299 if (req->cmd_flags & REQ_ALLOCED) {
75eb6c37 1300 unsigned int flags = req->cmd_flags;
a051661c 1301 struct request_list *rl = blk_rq_rl(req);
1da177e4 1302
1da177e4 1303 BUG_ON(!list_empty(&req->queuelist));
9817064b 1304 BUG_ON(!hlist_unhashed(&req->hash));
1da177e4 1305
a051661c
TH
1306 blk_free_request(rl, req);
1307 freed_request(rl, flags);
1308 blk_put_rl(rl);
1da177e4
LT
1309 }
1310}
6e39b69e
MC
1311EXPORT_SYMBOL_GPL(__blk_put_request);
1312
1da177e4
LT
1313void blk_put_request(struct request *req)
1314{
8922e16c 1315 unsigned long flags;
165125e1 1316 struct request_queue *q = req->q;
8922e16c 1317
52a93ba8
FT
1318 spin_lock_irqsave(q->queue_lock, flags);
1319 __blk_put_request(q, req);
1320 spin_unlock_irqrestore(q->queue_lock, flags);
1da177e4 1321}
1da177e4
LT
1322EXPORT_SYMBOL(blk_put_request);
1323
66ac0280
CH
1324/**
1325 * blk_add_request_payload - add a payload to a request
1326 * @rq: request to update
1327 * @page: page backing the payload
1328 * @len: length of the payload.
1329 *
1330 * This allows to later add a payload to an already submitted request by
1331 * a block driver. The driver needs to take care of freeing the payload
1332 * itself.
1333 *
1334 * Note that this is a quite horrible hack and nothing but handling of
1335 * discard requests should ever use it.
1336 */
1337void blk_add_request_payload(struct request *rq, struct page *page,
1338 unsigned int len)
1339{
1340 struct bio *bio = rq->bio;
1341
1342 bio->bi_io_vec->bv_page = page;
1343 bio->bi_io_vec->bv_offset = 0;
1344 bio->bi_io_vec->bv_len = len;
1345
1346 bio->bi_size = len;
1347 bio->bi_vcnt = 1;
1348 bio->bi_phys_segments = 1;
1349
1350 rq->__data_len = rq->resid_len = len;
1351 rq->nr_phys_segments = 1;
1352 rq->buffer = bio_data(bio);
1353}
1354EXPORT_SYMBOL_GPL(blk_add_request_payload);
1355
73c10101
JA
1356static bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1357 struct bio *bio)
1358{
1359 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1360
73c10101
JA
1361 if (!ll_back_merge_fn(q, req, bio))
1362 return false;
1363
8c1cf6bb 1364 trace_block_bio_backmerge(q, req, bio);
73c10101
JA
1365
1366 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1367 blk_rq_set_mixed_merge(req);
1368
1369 req->biotail->bi_next = bio;
1370 req->biotail = bio;
1371 req->__data_len += bio->bi_size;
1372 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1373
1374 drive_stat_acct(req, 0);
1375 return true;
1376}
1377
1378static bool bio_attempt_front_merge(struct request_queue *q,
1379 struct request *req, struct bio *bio)
1380{
1381 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
73c10101 1382
73c10101
JA
1383 if (!ll_front_merge_fn(q, req, bio))
1384 return false;
1385
8c1cf6bb 1386 trace_block_bio_frontmerge(q, req, bio);
73c10101
JA
1387
1388 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1389 blk_rq_set_mixed_merge(req);
1390
73c10101
JA
1391 bio->bi_next = req->bio;
1392 req->bio = bio;
1393
1394 /*
1395 * may not be valid. if the low level driver said
1396 * it didn't need a bounce buffer then it better
1397 * not touch req->buffer either...
1398 */
1399 req->buffer = bio_data(bio);
1400 req->__sector = bio->bi_sector;
1401 req->__data_len += bio->bi_size;
1402 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1403
1404 drive_stat_acct(req, 0);
1405 return true;
1406}
1407
bd87b589
TH
1408/**
1409 * attempt_plug_merge - try to merge with %current's plugged list
1410 * @q: request_queue new bio is being queued at
1411 * @bio: new bio being queued
1412 * @request_count: out parameter for number of traversed plugged requests
1413 *
1414 * Determine whether @bio being queued on @q can be merged with a request
1415 * on %current's plugged list. Returns %true if merge was successful,
1416 * otherwise %false.
1417 *
07c2bd37
TH
1418 * Plugging coalesces IOs from the same issuer for the same purpose without
1419 * going through @q->queue_lock. As such it's more of an issuing mechanism
1420 * than scheduling, and the request, while may have elvpriv data, is not
1421 * added on the elevator at this point. In addition, we don't have
1422 * reliable access to the elevator outside queue lock. Only check basic
1423 * merging parameters without querying the elevator.
73c10101 1424 */
bd87b589
TH
1425static bool attempt_plug_merge(struct request_queue *q, struct bio *bio,
1426 unsigned int *request_count)
73c10101
JA
1427{
1428 struct blk_plug *plug;
1429 struct request *rq;
1430 bool ret = false;
1431
bd87b589 1432 plug = current->plug;
73c10101
JA
1433 if (!plug)
1434 goto out;
56ebdaf2 1435 *request_count = 0;
73c10101
JA
1436
1437 list_for_each_entry_reverse(rq, &plug->list, queuelist) {
1438 int el_ret;
1439
1b2e19f1
SL
1440 if (rq->q == q)
1441 (*request_count)++;
56ebdaf2 1442
07c2bd37 1443 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
73c10101
JA
1444 continue;
1445
050c8ea8 1446 el_ret = blk_try_merge(rq, bio);
73c10101
JA
1447 if (el_ret == ELEVATOR_BACK_MERGE) {
1448 ret = bio_attempt_back_merge(q, rq, bio);
1449 if (ret)
1450 break;
1451 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1452 ret = bio_attempt_front_merge(q, rq, bio);
1453 if (ret)
1454 break;
1455 }
1456 }
1457out:
1458 return ret;
1459}
1460
86db1e29 1461void init_request_from_bio(struct request *req, struct bio *bio)
52d9e675 1462{
4aff5e23 1463 req->cmd_type = REQ_TYPE_FS;
52d9e675 1464
7b6d91da
CH
1465 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1466 if (bio->bi_rw & REQ_RAHEAD)
a82afdfc 1467 req->cmd_flags |= REQ_FAILFAST_MASK;
b31dc66a 1468
52d9e675 1469 req->errors = 0;
a2dec7b3 1470 req->__sector = bio->bi_sector;
52d9e675 1471 req->ioprio = bio_prio(bio);
bc1c56fd 1472 blk_rq_bio_prep(req->q, req, bio);
52d9e675
TH
1473}
1474
5a7bbad2 1475void blk_queue_bio(struct request_queue *q, struct bio *bio)
1da177e4 1476{
5e00d1b5 1477 const bool sync = !!(bio->bi_rw & REQ_SYNC);
73c10101
JA
1478 struct blk_plug *plug;
1479 int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1480 struct request *req;
56ebdaf2 1481 unsigned int request_count = 0;
1da177e4 1482
1da177e4
LT
1483 /*
1484 * low level driver can indicate that it wants pages above a
1485 * certain limit bounced to low memory (ie for highmem, or even
1486 * ISA dma in theory)
1487 */
1488 blk_queue_bounce(q, &bio);
1489
ffecfd1a
DW
1490 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1491 bio_endio(bio, -EIO);
1492 return;
1493 }
1494
4fed947c 1495 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
73c10101 1496 spin_lock_irq(q->queue_lock);
ae1b1539 1497 where = ELEVATOR_INSERT_FLUSH;
28e7d184
TH
1498 goto get_rq;
1499 }
1500
73c10101
JA
1501 /*
1502 * Check if we can merge with the plugged list before grabbing
1503 * any locks.
1504 */
bd87b589 1505 if (attempt_plug_merge(q, bio, &request_count))
5a7bbad2 1506 return;
1da177e4 1507
73c10101 1508 spin_lock_irq(q->queue_lock);
2056a782 1509
73c10101
JA
1510 el_ret = elv_merge(q, &req, bio);
1511 if (el_ret == ELEVATOR_BACK_MERGE) {
73c10101 1512 if (bio_attempt_back_merge(q, req, bio)) {
07c2bd37 1513 elv_bio_merged(q, req, bio);
73c10101
JA
1514 if (!attempt_back_merge(q, req))
1515 elv_merged_request(q, req, el_ret);
1516 goto out_unlock;
1517 }
1518 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
73c10101 1519 if (bio_attempt_front_merge(q, req, bio)) {
07c2bd37 1520 elv_bio_merged(q, req, bio);
73c10101
JA
1521 if (!attempt_front_merge(q, req))
1522 elv_merged_request(q, req, el_ret);
1523 goto out_unlock;
80a761fd 1524 }
1da177e4
LT
1525 }
1526
450991bc 1527get_rq:
7749a8d4
JA
1528 /*
1529 * This sync check and mask will be re-done in init_request_from_bio(),
1530 * but we need to set it earlier to expose the sync flag to the
1531 * rq allocator and io schedulers.
1532 */
1533 rw_flags = bio_data_dir(bio);
1534 if (sync)
7b6d91da 1535 rw_flags |= REQ_SYNC;
7749a8d4 1536
1da177e4 1537 /*
450991bc 1538 * Grab a free request. This is might sleep but can not fail.
d6344532 1539 * Returns with the queue unlocked.
450991bc 1540 */
a06e05e6 1541 req = get_request(q, rw_flags, bio, GFP_NOIO);
da8303c6
TH
1542 if (unlikely(!req)) {
1543 bio_endio(bio, -ENODEV); /* @q is dead */
1544 goto out_unlock;
1545 }
d6344532 1546
450991bc
NP
1547 /*
1548 * After dropping the lock and possibly sleeping here, our request
1549 * may now be mergeable after it had proven unmergeable (above).
1550 * We don't worry about that case for efficiency. It won't happen
1551 * often, and the elevators are able to handle it.
1da177e4 1552 */
52d9e675 1553 init_request_from_bio(req, bio);
1da177e4 1554
9562ad9a 1555 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
11ccf116 1556 req->cpu = raw_smp_processor_id();
73c10101
JA
1557
1558 plug = current->plug;
721a9602 1559 if (plug) {
dc6d36c9
JA
1560 /*
1561 * If this is the first request added after a plug, fire
1562 * of a plug trace. If others have been added before, check
1563 * if we have multiple devices in this plug. If so, make a
1564 * note to sort the list before dispatch.
1565 */
1566 if (list_empty(&plug->list))
1567 trace_block_plug(q);
3540d5e8 1568 else {
019ceb7d 1569 if (request_count >= BLK_MAX_REQUEST_COUNT) {
3540d5e8 1570 blk_flush_plug_list(plug, false);
019ceb7d
SL
1571 trace_block_plug(q);
1572 }
73c10101 1573 }
73c10101
JA
1574 list_add_tail(&req->queuelist, &plug->list);
1575 drive_stat_acct(req, 1);
1576 } else {
1577 spin_lock_irq(q->queue_lock);
1578 add_acct_request(q, req, where);
24ecfbe2 1579 __blk_run_queue(q);
73c10101
JA
1580out_unlock:
1581 spin_unlock_irq(q->queue_lock);
1582 }
1da177e4 1583}
c20e8de2 1584EXPORT_SYMBOL_GPL(blk_queue_bio); /* for device mapper only */
1da177e4
LT
1585
1586/*
1587 * If bio->bi_dev is a partition, remap the location
1588 */
1589static inline void blk_partition_remap(struct bio *bio)
1590{
1591 struct block_device *bdev = bio->bi_bdev;
1592
bf2de6f5 1593 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1da177e4
LT
1594 struct hd_struct *p = bdev->bd_part;
1595
1da177e4
LT
1596 bio->bi_sector += p->start_sect;
1597 bio->bi_bdev = bdev->bd_contains;
c7149d6b 1598
d07335e5
MS
1599 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1600 bdev->bd_dev,
1601 bio->bi_sector - p->start_sect);
1da177e4
LT
1602 }
1603}
1604
1da177e4
LT
1605static void handle_bad_sector(struct bio *bio)
1606{
1607 char b[BDEVNAME_SIZE];
1608
1609 printk(KERN_INFO "attempt to access beyond end of device\n");
1610 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1611 bdevname(bio->bi_bdev, b),
1612 bio->bi_rw,
f73a1c7d 1613 (unsigned long long)bio_end_sector(bio),
77304d2a 1614 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1da177e4
LT
1615
1616 set_bit(BIO_EOF, &bio->bi_flags);
1617}
1618
c17bb495
AM
1619#ifdef CONFIG_FAIL_MAKE_REQUEST
1620
1621static DECLARE_FAULT_ATTR(fail_make_request);
1622
1623static int __init setup_fail_make_request(char *str)
1624{
1625 return setup_fault_attr(&fail_make_request, str);
1626}
1627__setup("fail_make_request=", setup_fail_make_request);
1628
b2c9cd37 1629static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
c17bb495 1630{
b2c9cd37 1631 return part->make_it_fail && should_fail(&fail_make_request, bytes);
c17bb495
AM
1632}
1633
1634static int __init fail_make_request_debugfs(void)
1635{
dd48c085
AM
1636 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1637 NULL, &fail_make_request);
1638
1639 return IS_ERR(dir) ? PTR_ERR(dir) : 0;
c17bb495
AM
1640}
1641
1642late_initcall(fail_make_request_debugfs);
1643
1644#else /* CONFIG_FAIL_MAKE_REQUEST */
1645
b2c9cd37
AM
1646static inline bool should_fail_request(struct hd_struct *part,
1647 unsigned int bytes)
c17bb495 1648{
b2c9cd37 1649 return false;
c17bb495
AM
1650}
1651
1652#endif /* CONFIG_FAIL_MAKE_REQUEST */
1653
c07e2b41
JA
1654/*
1655 * Check whether this bio extends beyond the end of the device.
1656 */
1657static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1658{
1659 sector_t maxsector;
1660
1661 if (!nr_sectors)
1662 return 0;
1663
1664 /* Test device or partition size, when known. */
77304d2a 1665 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
c07e2b41
JA
1666 if (maxsector) {
1667 sector_t sector = bio->bi_sector;
1668
1669 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1670 /*
1671 * This may well happen - the kernel calls bread()
1672 * without checking the size of the device, e.g., when
1673 * mounting a device.
1674 */
1675 handle_bad_sector(bio);
1676 return 1;
1677 }
1678 }
1679
1680 return 0;
1681}
1682
27a84d54
CH
1683static noinline_for_stack bool
1684generic_make_request_checks(struct bio *bio)
1da177e4 1685{
165125e1 1686 struct request_queue *q;
5a7bbad2 1687 int nr_sectors = bio_sectors(bio);
51fd77bd 1688 int err = -EIO;
5a7bbad2
CH
1689 char b[BDEVNAME_SIZE];
1690 struct hd_struct *part;
1da177e4
LT
1691
1692 might_sleep();
1da177e4 1693
c07e2b41
JA
1694 if (bio_check_eod(bio, nr_sectors))
1695 goto end_io;
1da177e4 1696
5a7bbad2
CH
1697 q = bdev_get_queue(bio->bi_bdev);
1698 if (unlikely(!q)) {
1699 printk(KERN_ERR
1700 "generic_make_request: Trying to access "
1701 "nonexistent block-device %s (%Lu)\n",
1702 bdevname(bio->bi_bdev, b),
1703 (long long) bio->bi_sector);
1704 goto end_io;
1705 }
c17bb495 1706
e2a60da7
MP
1707 if (likely(bio_is_rw(bio) &&
1708 nr_sectors > queue_max_hw_sectors(q))) {
5a7bbad2
CH
1709 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1710 bdevname(bio->bi_bdev, b),
1711 bio_sectors(bio),
1712 queue_max_hw_sectors(q));
1713 goto end_io;
1714 }
1da177e4 1715
5a7bbad2
CH
1716 part = bio->bi_bdev->bd_part;
1717 if (should_fail_request(part, bio->bi_size) ||
1718 should_fail_request(&part_to_disk(part)->part0,
1719 bio->bi_size))
1720 goto end_io;
2056a782 1721
5a7bbad2
CH
1722 /*
1723 * If this device has partitions, remap block n
1724 * of partition p to block n+start(p) of the disk.
1725 */
1726 blk_partition_remap(bio);
2056a782 1727
5a7bbad2
CH
1728 if (bio_check_eod(bio, nr_sectors))
1729 goto end_io;
1e87901e 1730
5a7bbad2
CH
1731 /*
1732 * Filter flush bio's early so that make_request based
1733 * drivers without flush support don't have to worry
1734 * about them.
1735 */
1736 if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1737 bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1738 if (!nr_sectors) {
1739 err = 0;
51fd77bd
JA
1740 goto end_io;
1741 }
5a7bbad2 1742 }
5ddfe969 1743
5a7bbad2
CH
1744 if ((bio->bi_rw & REQ_DISCARD) &&
1745 (!blk_queue_discard(q) ||
e2a60da7 1746 ((bio->bi_rw & REQ_SECURE) && !blk_queue_secdiscard(q)))) {
5a7bbad2
CH
1747 err = -EOPNOTSUPP;
1748 goto end_io;
1749 }
01edede4 1750
4363ac7c 1751 if (bio->bi_rw & REQ_WRITE_SAME && !bdev_write_same(bio->bi_bdev)) {
5a7bbad2
CH
1752 err = -EOPNOTSUPP;
1753 goto end_io;
1754 }
01edede4 1755
7f4b35d1
TH
1756 /*
1757 * Various block parts want %current->io_context and lazy ioc
1758 * allocation ends up trading a lot of pain for a small amount of
1759 * memory. Just allocate it upfront. This may fail and block
1760 * layer knows how to live with it.
1761 */
1762 create_io_context(GFP_ATOMIC, q->node);
1763
bc16a4f9
TH
1764 if (blk_throtl_bio(q, bio))
1765 return false; /* throttled, will be resubmitted later */
27a84d54 1766
5a7bbad2 1767 trace_block_bio_queue(q, bio);
27a84d54 1768 return true;
a7384677
TH
1769
1770end_io:
1771 bio_endio(bio, err);
27a84d54 1772 return false;
1da177e4
LT
1773}
1774
27a84d54
CH
1775/**
1776 * generic_make_request - hand a buffer to its device driver for I/O
1777 * @bio: The bio describing the location in memory and on the device.
1778 *
1779 * generic_make_request() is used to make I/O requests of block
1780 * devices. It is passed a &struct bio, which describes the I/O that needs
1781 * to be done.
1782 *
1783 * generic_make_request() does not return any status. The
1784 * success/failure status of the request, along with notification of
1785 * completion, is delivered asynchronously through the bio->bi_end_io
1786 * function described (one day) else where.
1787 *
1788 * The caller of generic_make_request must make sure that bi_io_vec
1789 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1790 * set to describe the device address, and the
1791 * bi_end_io and optionally bi_private are set to describe how
1792 * completion notification should be signaled.
1793 *
1794 * generic_make_request and the drivers it calls may use bi_next if this
1795 * bio happens to be merged with someone else, and may resubmit the bio to
1796 * a lower device by calling into generic_make_request recursively, which
1797 * means the bio should NOT be touched after the call to ->make_request_fn.
d89d8796
NB
1798 */
1799void generic_make_request(struct bio *bio)
1800{
bddd87c7
AM
1801 struct bio_list bio_list_on_stack;
1802
27a84d54
CH
1803 if (!generic_make_request_checks(bio))
1804 return;
1805
1806 /*
1807 * We only want one ->make_request_fn to be active at a time, else
1808 * stack usage with stacked devices could be a problem. So use
1809 * current->bio_list to keep a list of requests submited by a
1810 * make_request_fn function. current->bio_list is also used as a
1811 * flag to say if generic_make_request is currently active in this
1812 * task or not. If it is NULL, then no make_request is active. If
1813 * it is non-NULL, then a make_request is active, and new requests
1814 * should be added at the tail
1815 */
bddd87c7 1816 if (current->bio_list) {
bddd87c7 1817 bio_list_add(current->bio_list, bio);
d89d8796
NB
1818 return;
1819 }
27a84d54 1820
d89d8796
NB
1821 /* following loop may be a bit non-obvious, and so deserves some
1822 * explanation.
1823 * Before entering the loop, bio->bi_next is NULL (as all callers
1824 * ensure that) so we have a list with a single bio.
1825 * We pretend that we have just taken it off a longer list, so
bddd87c7
AM
1826 * we assign bio_list to a pointer to the bio_list_on_stack,
1827 * thus initialising the bio_list of new bios to be
27a84d54 1828 * added. ->make_request() may indeed add some more bios
d89d8796
NB
1829 * through a recursive call to generic_make_request. If it
1830 * did, we find a non-NULL value in bio_list and re-enter the loop
1831 * from the top. In this case we really did just take the bio
bddd87c7 1832 * of the top of the list (no pretending) and so remove it from
27a84d54 1833 * bio_list, and call into ->make_request() again.
d89d8796
NB
1834 */
1835 BUG_ON(bio->bi_next);
bddd87c7
AM
1836 bio_list_init(&bio_list_on_stack);
1837 current->bio_list = &bio_list_on_stack;
d89d8796 1838 do {
27a84d54
CH
1839 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1840
1841 q->make_request_fn(q, bio);
1842
bddd87c7 1843 bio = bio_list_pop(current->bio_list);
d89d8796 1844 } while (bio);
bddd87c7 1845 current->bio_list = NULL; /* deactivate */
d89d8796 1846}
1da177e4
LT
1847EXPORT_SYMBOL(generic_make_request);
1848
1849/**
710027a4 1850 * submit_bio - submit a bio to the block device layer for I/O
1da177e4
LT
1851 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1852 * @bio: The &struct bio which describes the I/O
1853 *
1854 * submit_bio() is very similar in purpose to generic_make_request(), and
1855 * uses that function to do most of the work. Both are fairly rough
710027a4 1856 * interfaces; @bio must be presetup and ready for I/O.
1da177e4
LT
1857 *
1858 */
1859void submit_bio(int rw, struct bio *bio)
1860{
22e2c507 1861 bio->bi_rw |= rw;
1da177e4 1862
bf2de6f5
JA
1863 /*
1864 * If it's a regular read/write or a barrier with data attached,
1865 * go through the normal accounting stuff before submission.
1866 */
e2a60da7 1867 if (bio_has_data(bio)) {
4363ac7c
MP
1868 unsigned int count;
1869
1870 if (unlikely(rw & REQ_WRITE_SAME))
1871 count = bdev_logical_block_size(bio->bi_bdev) >> 9;
1872 else
1873 count = bio_sectors(bio);
1874
bf2de6f5
JA
1875 if (rw & WRITE) {
1876 count_vm_events(PGPGOUT, count);
1877 } else {
1878 task_io_account_read(bio->bi_size);
1879 count_vm_events(PGPGIN, count);
1880 }
1881
1882 if (unlikely(block_dump)) {
1883 char b[BDEVNAME_SIZE];
8dcbdc74 1884 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
ba25f9dc 1885 current->comm, task_pid_nr(current),
bf2de6f5
JA
1886 (rw & WRITE) ? "WRITE" : "READ",
1887 (unsigned long long)bio->bi_sector,
8dcbdc74
SM
1888 bdevname(bio->bi_bdev, b),
1889 count);
bf2de6f5 1890 }
1da177e4
LT
1891 }
1892
1893 generic_make_request(bio);
1894}
1da177e4
LT
1895EXPORT_SYMBOL(submit_bio);
1896
82124d60
KU
1897/**
1898 * blk_rq_check_limits - Helper function to check a request for the queue limit
1899 * @q: the queue
1900 * @rq: the request being checked
1901 *
1902 * Description:
1903 * @rq may have been made based on weaker limitations of upper-level queues
1904 * in request stacking drivers, and it may violate the limitation of @q.
1905 * Since the block layer and the underlying device driver trust @rq
1906 * after it is inserted to @q, it should be checked against @q before
1907 * the insertion using this generic function.
1908 *
1909 * This function should also be useful for request stacking drivers
eef35c2d 1910 * in some cases below, so export this function.
82124d60
KU
1911 * Request stacking drivers like request-based dm may change the queue
1912 * limits while requests are in the queue (e.g. dm's table swapping).
1913 * Such request stacking drivers should check those requests agaist
1914 * the new queue limits again when they dispatch those requests,
1915 * although such checkings are also done against the old queue limits
1916 * when submitting requests.
1917 */
1918int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1919{
e2a60da7 1920 if (!rq_mergeable(rq))
3383977f
S
1921 return 0;
1922
f31dc1cd 1923 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, rq->cmd_flags)) {
82124d60
KU
1924 printk(KERN_ERR "%s: over max size limit.\n", __func__);
1925 return -EIO;
1926 }
1927
1928 /*
1929 * queue's settings related to segment counting like q->bounce_pfn
1930 * may differ from that of other stacking queues.
1931 * Recalculate it to check the request correctly on this queue's
1932 * limitation.
1933 */
1934 blk_recalc_rq_segments(rq);
8a78362c 1935 if (rq->nr_phys_segments > queue_max_segments(q)) {
82124d60
KU
1936 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1937 return -EIO;
1938 }
1939
1940 return 0;
1941}
1942EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1943
1944/**
1945 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1946 * @q: the queue to submit the request
1947 * @rq: the request being queued
1948 */
1949int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1950{
1951 unsigned long flags;
4853abaa 1952 int where = ELEVATOR_INSERT_BACK;
82124d60
KU
1953
1954 if (blk_rq_check_limits(q, rq))
1955 return -EIO;
1956
b2c9cd37
AM
1957 if (rq->rq_disk &&
1958 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
82124d60 1959 return -EIO;
82124d60
KU
1960
1961 spin_lock_irqsave(q->queue_lock, flags);
3f3299d5 1962 if (unlikely(blk_queue_dying(q))) {
8ba61435
TH
1963 spin_unlock_irqrestore(q->queue_lock, flags);
1964 return -ENODEV;
1965 }
82124d60
KU
1966
1967 /*
1968 * Submitting request must be dequeued before calling this function
1969 * because it will be linked to another request_queue
1970 */
1971 BUG_ON(blk_queued_rq(rq));
1972
4853abaa
JM
1973 if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA))
1974 where = ELEVATOR_INSERT_FLUSH;
1975
1976 add_acct_request(q, rq, where);
e67b77c7
JM
1977 if (where == ELEVATOR_INSERT_FLUSH)
1978 __blk_run_queue(q);
82124d60
KU
1979 spin_unlock_irqrestore(q->queue_lock, flags);
1980
1981 return 0;
1982}
1983EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1984
80a761fd
TH
1985/**
1986 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1987 * @rq: request to examine
1988 *
1989 * Description:
1990 * A request could be merge of IOs which require different failure
1991 * handling. This function determines the number of bytes which
1992 * can be failed from the beginning of the request without
1993 * crossing into area which need to be retried further.
1994 *
1995 * Return:
1996 * The number of bytes to fail.
1997 *
1998 * Context:
1999 * queue_lock must be held.
2000 */
2001unsigned int blk_rq_err_bytes(const struct request *rq)
2002{
2003 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
2004 unsigned int bytes = 0;
2005 struct bio *bio;
2006
2007 if (!(rq->cmd_flags & REQ_MIXED_MERGE))
2008 return blk_rq_bytes(rq);
2009
2010 /*
2011 * Currently the only 'mixing' which can happen is between
2012 * different fastfail types. We can safely fail portions
2013 * which have all the failfast bits that the first one has -
2014 * the ones which are at least as eager to fail as the first
2015 * one.
2016 */
2017 for (bio = rq->bio; bio; bio = bio->bi_next) {
2018 if ((bio->bi_rw & ff) != ff)
2019 break;
2020 bytes += bio->bi_size;
2021 }
2022
2023 /* this could lead to infinite loop */
2024 BUG_ON(blk_rq_bytes(rq) && !bytes);
2025 return bytes;
2026}
2027EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
2028
bc58ba94
JA
2029static void blk_account_io_completion(struct request *req, unsigned int bytes)
2030{
c2553b58 2031 if (blk_do_io_stat(req)) {
bc58ba94
JA
2032 const int rw = rq_data_dir(req);
2033 struct hd_struct *part;
2034 int cpu;
2035
2036 cpu = part_stat_lock();
09e099d4 2037 part = req->part;
bc58ba94
JA
2038 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2039 part_stat_unlock();
2040 }
2041}
2042
2043static void blk_account_io_done(struct request *req)
2044{
bc58ba94 2045 /*
dd4c133f
TH
2046 * Account IO completion. flush_rq isn't accounted as a
2047 * normal IO on queueing nor completion. Accounting the
2048 * containing request is enough.
bc58ba94 2049 */
414b4ff5 2050 if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
bc58ba94
JA
2051 unsigned long duration = jiffies - req->start_time;
2052 const int rw = rq_data_dir(req);
2053 struct hd_struct *part;
2054 int cpu;
2055
2056 cpu = part_stat_lock();
09e099d4 2057 part = req->part;
bc58ba94
JA
2058
2059 part_stat_inc(cpu, part, ios[rw]);
2060 part_stat_add(cpu, part, ticks[rw], duration);
2061 part_round_stats(cpu, part);
316d315b 2062 part_dec_in_flight(part, rw);
bc58ba94 2063
6c23a968 2064 hd_struct_put(part);
bc58ba94
JA
2065 part_stat_unlock();
2066 }
2067}
2068
c8158819
LM
2069#ifdef CONFIG_PM_RUNTIME
2070/*
2071 * Don't process normal requests when queue is suspended
2072 * or in the process of suspending/resuming
2073 */
2074static struct request *blk_pm_peek_request(struct request_queue *q,
2075 struct request *rq)
2076{
2077 if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
2078 (q->rpm_status != RPM_ACTIVE && !(rq->cmd_flags & REQ_PM))))
2079 return NULL;
2080 else
2081 return rq;
2082}
2083#else
2084static inline struct request *blk_pm_peek_request(struct request_queue *q,
2085 struct request *rq)
2086{
2087 return rq;
2088}
2089#endif
2090
3bcddeac 2091/**
9934c8c0
TH
2092 * blk_peek_request - peek at the top of a request queue
2093 * @q: request queue to peek at
2094 *
2095 * Description:
2096 * Return the request at the top of @q. The returned request
2097 * should be started using blk_start_request() before LLD starts
2098 * processing it.
2099 *
2100 * Return:
2101 * Pointer to the request at the top of @q if available. Null
2102 * otherwise.
2103 *
2104 * Context:
2105 * queue_lock must be held.
2106 */
2107struct request *blk_peek_request(struct request_queue *q)
158dbda0
TH
2108{
2109 struct request *rq;
2110 int ret;
2111
2112 while ((rq = __elv_next_request(q)) != NULL) {
c8158819
LM
2113
2114 rq = blk_pm_peek_request(q, rq);
2115 if (!rq)
2116 break;
2117
158dbda0
TH
2118 if (!(rq->cmd_flags & REQ_STARTED)) {
2119 /*
2120 * This is the first time the device driver
2121 * sees this request (possibly after
2122 * requeueing). Notify IO scheduler.
2123 */
33659ebb 2124 if (rq->cmd_flags & REQ_SORTED)
158dbda0
TH
2125 elv_activate_rq(q, rq);
2126
2127 /*
2128 * just mark as started even if we don't start
2129 * it, a request that has been delayed should
2130 * not be passed by new incoming requests
2131 */
2132 rq->cmd_flags |= REQ_STARTED;
2133 trace_block_rq_issue(q, rq);
2134 }
2135
2136 if (!q->boundary_rq || q->boundary_rq == rq) {
2137 q->end_sector = rq_end_sector(rq);
2138 q->boundary_rq = NULL;
2139 }
2140
2141 if (rq->cmd_flags & REQ_DONTPREP)
2142 break;
2143
2e46e8b2 2144 if (q->dma_drain_size && blk_rq_bytes(rq)) {
158dbda0
TH
2145 /*
2146 * make sure space for the drain appears we
2147 * know we can do this because max_hw_segments
2148 * has been adjusted to be one fewer than the
2149 * device can handle
2150 */
2151 rq->nr_phys_segments++;
2152 }
2153
2154 if (!q->prep_rq_fn)
2155 break;
2156
2157 ret = q->prep_rq_fn(q, rq);
2158 if (ret == BLKPREP_OK) {
2159 break;
2160 } else if (ret == BLKPREP_DEFER) {
2161 /*
2162 * the request may have been (partially) prepped.
2163 * we need to keep this request in the front to
2164 * avoid resource deadlock. REQ_STARTED will
2165 * prevent other fs requests from passing this one.
2166 */
2e46e8b2 2167 if (q->dma_drain_size && blk_rq_bytes(rq) &&
158dbda0
TH
2168 !(rq->cmd_flags & REQ_DONTPREP)) {
2169 /*
2170 * remove the space for the drain we added
2171 * so that we don't add it again
2172 */
2173 --rq->nr_phys_segments;
2174 }
2175
2176 rq = NULL;
2177 break;
2178 } else if (ret == BLKPREP_KILL) {
2179 rq->cmd_flags |= REQ_QUIET;
c143dc90
JB
2180 /*
2181 * Mark this request as started so we don't trigger
2182 * any debug logic in the end I/O path.
2183 */
2184 blk_start_request(rq);
40cbbb78 2185 __blk_end_request_all(rq, -EIO);
158dbda0
TH
2186 } else {
2187 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2188 break;
2189 }
2190 }
2191
2192 return rq;
2193}
9934c8c0 2194EXPORT_SYMBOL(blk_peek_request);
158dbda0 2195
9934c8c0 2196void blk_dequeue_request(struct request *rq)
158dbda0 2197{
9934c8c0
TH
2198 struct request_queue *q = rq->q;
2199
158dbda0
TH
2200 BUG_ON(list_empty(&rq->queuelist));
2201 BUG_ON(ELV_ON_HASH(rq));
2202
2203 list_del_init(&rq->queuelist);
2204
2205 /*
2206 * the time frame between a request being removed from the lists
2207 * and to it is freed is accounted as io that is in progress at
2208 * the driver side.
2209 */
9195291e 2210 if (blk_account_rq(rq)) {
0a7ae2ff 2211 q->in_flight[rq_is_sync(rq)]++;
9195291e
DS
2212 set_io_start_time_ns(rq);
2213 }
158dbda0
TH
2214}
2215
9934c8c0
TH
2216/**
2217 * blk_start_request - start request processing on the driver
2218 * @req: request to dequeue
2219 *
2220 * Description:
2221 * Dequeue @req and start timeout timer on it. This hands off the
2222 * request to the driver.
2223 *
2224 * Block internal functions which don't want to start timer should
2225 * call blk_dequeue_request().
2226 *
2227 * Context:
2228 * queue_lock must be held.
2229 */
2230void blk_start_request(struct request *req)
2231{
2232 blk_dequeue_request(req);
2233
2234 /*
5f49f631
TH
2235 * We are now handing the request to the hardware, initialize
2236 * resid_len to full count and add the timeout handler.
9934c8c0 2237 */
5f49f631 2238 req->resid_len = blk_rq_bytes(req);
dbb66c4b
FT
2239 if (unlikely(blk_bidi_rq(req)))
2240 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
2241
869d4e7f 2242 BUG_ON(test_bit(REQ_ATOM_COMPLETE, &req->atomic_flags));
9934c8c0
TH
2243 blk_add_timer(req);
2244}
2245EXPORT_SYMBOL(blk_start_request);
2246
2247/**
2248 * blk_fetch_request - fetch a request from a request queue
2249 * @q: request queue to fetch a request from
2250 *
2251 * Description:
2252 * Return the request at the top of @q. The request is started on
2253 * return and LLD can start processing it immediately.
2254 *
2255 * Return:
2256 * Pointer to the request at the top of @q if available. Null
2257 * otherwise.
2258 *
2259 * Context:
2260 * queue_lock must be held.
2261 */
2262struct request *blk_fetch_request(struct request_queue *q)
2263{
2264 struct request *rq;
2265
2266 rq = blk_peek_request(q);
2267 if (rq)
2268 blk_start_request(rq);
2269 return rq;
2270}
2271EXPORT_SYMBOL(blk_fetch_request);
2272
3bcddeac 2273/**
2e60e022 2274 * blk_update_request - Special helper function for request stacking drivers
8ebf9756 2275 * @req: the request being processed
710027a4 2276 * @error: %0 for success, < %0 for error
8ebf9756 2277 * @nr_bytes: number of bytes to complete @req
3bcddeac
KU
2278 *
2279 * Description:
8ebf9756
RD
2280 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2281 * the request structure even if @req doesn't have leftover.
2282 * If @req has leftover, sets it up for the next range of segments.
2e60e022
TH
2283 *
2284 * This special helper function is only for request stacking drivers
2285 * (e.g. request-based dm) so that they can handle partial completion.
2286 * Actual device drivers should use blk_end_request instead.
2287 *
2288 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2289 * %false return from this function.
3bcddeac
KU
2290 *
2291 * Return:
2e60e022
TH
2292 * %false - this request doesn't have any more data
2293 * %true - this request has more data
3bcddeac 2294 **/
2e60e022 2295bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
1da177e4 2296{
f79ea416 2297 int total_bytes;
1da177e4 2298
2e60e022
TH
2299 if (!req->bio)
2300 return false;
2301
e9d93394 2302 trace_block_rq_complete(req->q, req, nr_bytes);
2056a782 2303
1da177e4 2304 /*
6f41469c
TH
2305 * For fs requests, rq is just carrier of independent bio's
2306 * and each partial completion should be handled separately.
2307 * Reset per-request error on each partial completion.
2308 *
2309 * TODO: tj: This is too subtle. It would be better to let
2310 * low level drivers do what they see fit.
1da177e4 2311 */
33659ebb 2312 if (req->cmd_type == REQ_TYPE_FS)
1da177e4
LT
2313 req->errors = 0;
2314
33659ebb
CH
2315 if (error && req->cmd_type == REQ_TYPE_FS &&
2316 !(req->cmd_flags & REQ_QUIET)) {
79775567
HR
2317 char *error_type;
2318
2319 switch (error) {
2320 case -ENOLINK:
2321 error_type = "recoverable transport";
2322 break;
2323 case -EREMOTEIO:
2324 error_type = "critical target";
2325 break;
2326 case -EBADE:
2327 error_type = "critical nexus";
2328 break;
2329 case -EIO:
2330 default:
2331 error_type = "I/O";
2332 break;
2333 }
37d7b34f
YZ
2334 printk_ratelimited(KERN_ERR "end_request: %s error, dev %s, sector %llu\n",
2335 error_type, req->rq_disk ?
2336 req->rq_disk->disk_name : "?",
2337 (unsigned long long)blk_rq_pos(req));
2338
1da177e4
LT
2339 }
2340
bc58ba94 2341 blk_account_io_completion(req, nr_bytes);
d72d904a 2342
f79ea416
KO
2343 total_bytes = 0;
2344 while (req->bio) {
2345 struct bio *bio = req->bio;
2346 unsigned bio_bytes = min(bio->bi_size, nr_bytes);
1da177e4 2347
f79ea416 2348 if (bio_bytes == bio->bi_size)
1da177e4 2349 req->bio = bio->bi_next;
1da177e4 2350
f79ea416 2351 req_bio_endio(req, bio, bio_bytes, error);
1da177e4 2352
f79ea416
KO
2353 total_bytes += bio_bytes;
2354 nr_bytes -= bio_bytes;
1da177e4 2355
f79ea416
KO
2356 if (!nr_bytes)
2357 break;
1da177e4
LT
2358 }
2359
2360 /*
2361 * completely done
2362 */
2e60e022
TH
2363 if (!req->bio) {
2364 /*
2365 * Reset counters so that the request stacking driver
2366 * can find how many bytes remain in the request
2367 * later.
2368 */
a2dec7b3 2369 req->__data_len = 0;
2e60e022
TH
2370 return false;
2371 }
1da177e4 2372
a2dec7b3 2373 req->__data_len -= total_bytes;
2e46e8b2
TH
2374 req->buffer = bio_data(req->bio);
2375
2376 /* update sector only for requests with clear definition of sector */
e2a60da7 2377 if (req->cmd_type == REQ_TYPE_FS)
a2dec7b3 2378 req->__sector += total_bytes >> 9;
2e46e8b2 2379
80a761fd
TH
2380 /* mixed attributes always follow the first bio */
2381 if (req->cmd_flags & REQ_MIXED_MERGE) {
2382 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2383 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2384 }
2385
2e46e8b2
TH
2386 /*
2387 * If total number of sectors is less than the first segment
2388 * size, something has gone terribly wrong.
2389 */
2390 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
8182924b 2391 blk_dump_rq_flags(req, "request botched");
a2dec7b3 2392 req->__data_len = blk_rq_cur_bytes(req);
2e46e8b2
TH
2393 }
2394
2395 /* recalculate the number of segments */
1da177e4 2396 blk_recalc_rq_segments(req);
2e46e8b2 2397
2e60e022 2398 return true;
1da177e4 2399}
2e60e022 2400EXPORT_SYMBOL_GPL(blk_update_request);
1da177e4 2401
2e60e022
TH
2402static bool blk_update_bidi_request(struct request *rq, int error,
2403 unsigned int nr_bytes,
2404 unsigned int bidi_bytes)
5efccd17 2405{
2e60e022
TH
2406 if (blk_update_request(rq, error, nr_bytes))
2407 return true;
5efccd17 2408
2e60e022
TH
2409 /* Bidi request must be completed as a whole */
2410 if (unlikely(blk_bidi_rq(rq)) &&
2411 blk_update_request(rq->next_rq, error, bidi_bytes))
2412 return true;
5efccd17 2413
e2e1a148
JA
2414 if (blk_queue_add_random(rq->q))
2415 add_disk_randomness(rq->rq_disk);
2e60e022
TH
2416
2417 return false;
1da177e4
LT
2418}
2419
28018c24
JB
2420/**
2421 * blk_unprep_request - unprepare a request
2422 * @req: the request
2423 *
2424 * This function makes a request ready for complete resubmission (or
2425 * completion). It happens only after all error handling is complete,
2426 * so represents the appropriate moment to deallocate any resources
2427 * that were allocated to the request in the prep_rq_fn. The queue
2428 * lock is held when calling this.
2429 */
2430void blk_unprep_request(struct request *req)
2431{
2432 struct request_queue *q = req->q;
2433
2434 req->cmd_flags &= ~REQ_DONTPREP;
2435 if (q->unprep_rq_fn)
2436 q->unprep_rq_fn(q, req);
2437}
2438EXPORT_SYMBOL_GPL(blk_unprep_request);
2439
1da177e4
LT
2440/*
2441 * queue lock must be held
2442 */
2e60e022 2443static void blk_finish_request(struct request *req, int error)
1da177e4 2444{
b8286239
KU
2445 if (blk_rq_tagged(req))
2446 blk_queue_end_tag(req->q, req);
2447
ba396a6c 2448 BUG_ON(blk_queued_rq(req));
1da177e4 2449
33659ebb 2450 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
31373d09 2451 laptop_io_completion(&req->q->backing_dev_info);
1da177e4 2452
e78042e5
MA
2453 blk_delete_timer(req);
2454
28018c24
JB
2455 if (req->cmd_flags & REQ_DONTPREP)
2456 blk_unprep_request(req);
2457
2458
bc58ba94 2459 blk_account_io_done(req);
b8286239 2460
1da177e4 2461 if (req->end_io)
8ffdc655 2462 req->end_io(req, error);
b8286239
KU
2463 else {
2464 if (blk_bidi_rq(req))
2465 __blk_put_request(req->next_rq->q, req->next_rq);
2466
1da177e4 2467 __blk_put_request(req->q, req);
b8286239 2468 }
1da177e4
LT
2469}
2470
3b11313a 2471/**
2e60e022
TH
2472 * blk_end_bidi_request - Complete a bidi request
2473 * @rq: the request to complete
2474 * @error: %0 for success, < %0 for error
2475 * @nr_bytes: number of bytes to complete @rq
2476 * @bidi_bytes: number of bytes to complete @rq->next_rq
a0cd1285
JA
2477 *
2478 * Description:
e3a04fe3 2479 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2e60e022
TH
2480 * Drivers that supports bidi can safely call this member for any
2481 * type of request, bidi or uni. In the later case @bidi_bytes is
2482 * just ignored.
336cdb40
KU
2483 *
2484 * Return:
2e60e022
TH
2485 * %false - we are done with this request
2486 * %true - still buffers pending for this request
a0cd1285 2487 **/
b1f74493 2488static bool blk_end_bidi_request(struct request *rq, int error,
32fab448
KU
2489 unsigned int nr_bytes, unsigned int bidi_bytes)
2490{
336cdb40 2491 struct request_queue *q = rq->q;
2e60e022 2492 unsigned long flags;
32fab448 2493
2e60e022
TH
2494 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2495 return true;
32fab448 2496
336cdb40 2497 spin_lock_irqsave(q->queue_lock, flags);
2e60e022 2498 blk_finish_request(rq, error);
336cdb40
KU
2499 spin_unlock_irqrestore(q->queue_lock, flags);
2500
2e60e022 2501 return false;
32fab448
KU
2502}
2503
336cdb40 2504/**
2e60e022
TH
2505 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2506 * @rq: the request to complete
710027a4 2507 * @error: %0 for success, < %0 for error
e3a04fe3
KU
2508 * @nr_bytes: number of bytes to complete @rq
2509 * @bidi_bytes: number of bytes to complete @rq->next_rq
336cdb40
KU
2510 *
2511 * Description:
2e60e022
TH
2512 * Identical to blk_end_bidi_request() except that queue lock is
2513 * assumed to be locked on entry and remains so on return.
336cdb40
KU
2514 *
2515 * Return:
2e60e022
TH
2516 * %false - we are done with this request
2517 * %true - still buffers pending for this request
336cdb40 2518 **/
4853abaa 2519bool __blk_end_bidi_request(struct request *rq, int error,
b1f74493 2520 unsigned int nr_bytes, unsigned int bidi_bytes)
336cdb40 2521{
2e60e022
TH
2522 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2523 return true;
336cdb40 2524
2e60e022 2525 blk_finish_request(rq, error);
336cdb40 2526
2e60e022 2527 return false;
336cdb40 2528}
e19a3ab0
KU
2529
2530/**
2531 * blk_end_request - Helper function for drivers to complete the request.
2532 * @rq: the request being processed
710027a4 2533 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2534 * @nr_bytes: number of bytes to complete
2535 *
2536 * Description:
2537 * Ends I/O on a number of bytes attached to @rq.
2538 * If @rq has leftover, sets it up for the next range of segments.
2539 *
2540 * Return:
b1f74493
FT
2541 * %false - we are done with this request
2542 * %true - still buffers pending for this request
e19a3ab0 2543 **/
b1f74493 2544bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e19a3ab0 2545{
b1f74493 2546 return blk_end_bidi_request(rq, error, nr_bytes, 0);
e19a3ab0 2547}
56ad1740 2548EXPORT_SYMBOL(blk_end_request);
336cdb40
KU
2549
2550/**
b1f74493
FT
2551 * blk_end_request_all - Helper function for drives to finish the request.
2552 * @rq: the request to finish
8ebf9756 2553 * @error: %0 for success, < %0 for error
336cdb40
KU
2554 *
2555 * Description:
b1f74493
FT
2556 * Completely finish @rq.
2557 */
2558void blk_end_request_all(struct request *rq, int error)
336cdb40 2559{
b1f74493
FT
2560 bool pending;
2561 unsigned int bidi_bytes = 0;
336cdb40 2562
b1f74493
FT
2563 if (unlikely(blk_bidi_rq(rq)))
2564 bidi_bytes = blk_rq_bytes(rq->next_rq);
336cdb40 2565
b1f74493
FT
2566 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2567 BUG_ON(pending);
2568}
56ad1740 2569EXPORT_SYMBOL(blk_end_request_all);
336cdb40 2570
b1f74493
FT
2571/**
2572 * blk_end_request_cur - Helper function to finish the current request chunk.
2573 * @rq: the request to finish the current chunk for
8ebf9756 2574 * @error: %0 for success, < %0 for error
b1f74493
FT
2575 *
2576 * Description:
2577 * Complete the current consecutively mapped chunk from @rq.
2578 *
2579 * Return:
2580 * %false - we are done with this request
2581 * %true - still buffers pending for this request
2582 */
2583bool blk_end_request_cur(struct request *rq, int error)
2584{
2585 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
336cdb40 2586}
56ad1740 2587EXPORT_SYMBOL(blk_end_request_cur);
336cdb40 2588
80a761fd
TH
2589/**
2590 * blk_end_request_err - Finish a request till the next failure boundary.
2591 * @rq: the request to finish till the next failure boundary for
2592 * @error: must be negative errno
2593 *
2594 * Description:
2595 * Complete @rq till the next failure boundary.
2596 *
2597 * Return:
2598 * %false - we are done with this request
2599 * %true - still buffers pending for this request
2600 */
2601bool blk_end_request_err(struct request *rq, int error)
2602{
2603 WARN_ON(error >= 0);
2604 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2605}
2606EXPORT_SYMBOL_GPL(blk_end_request_err);
2607
e3a04fe3 2608/**
b1f74493
FT
2609 * __blk_end_request - Helper function for drivers to complete the request.
2610 * @rq: the request being processed
2611 * @error: %0 for success, < %0 for error
2612 * @nr_bytes: number of bytes to complete
e3a04fe3
KU
2613 *
2614 * Description:
b1f74493 2615 * Must be called with queue lock held unlike blk_end_request().
e3a04fe3
KU
2616 *
2617 * Return:
b1f74493
FT
2618 * %false - we are done with this request
2619 * %true - still buffers pending for this request
e3a04fe3 2620 **/
b1f74493 2621bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e3a04fe3 2622{
b1f74493 2623 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
e3a04fe3 2624}
56ad1740 2625EXPORT_SYMBOL(__blk_end_request);
e3a04fe3 2626
32fab448 2627/**
b1f74493
FT
2628 * __blk_end_request_all - Helper function for drives to finish the request.
2629 * @rq: the request to finish
8ebf9756 2630 * @error: %0 for success, < %0 for error
32fab448
KU
2631 *
2632 * Description:
b1f74493 2633 * Completely finish @rq. Must be called with queue lock held.
32fab448 2634 */
b1f74493 2635void __blk_end_request_all(struct request *rq, int error)
32fab448 2636{
b1f74493
FT
2637 bool pending;
2638 unsigned int bidi_bytes = 0;
2639
2640 if (unlikely(blk_bidi_rq(rq)))
2641 bidi_bytes = blk_rq_bytes(rq->next_rq);
2642
2643 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2644 BUG_ON(pending);
32fab448 2645}
56ad1740 2646EXPORT_SYMBOL(__blk_end_request_all);
32fab448 2647
e19a3ab0 2648/**
b1f74493
FT
2649 * __blk_end_request_cur - Helper function to finish the current request chunk.
2650 * @rq: the request to finish the current chunk for
8ebf9756 2651 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2652 *
2653 * Description:
b1f74493
FT
2654 * Complete the current consecutively mapped chunk from @rq. Must
2655 * be called with queue lock held.
e19a3ab0
KU
2656 *
2657 * Return:
b1f74493
FT
2658 * %false - we are done with this request
2659 * %true - still buffers pending for this request
2660 */
2661bool __blk_end_request_cur(struct request *rq, int error)
e19a3ab0 2662{
b1f74493 2663 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
e19a3ab0 2664}
56ad1740 2665EXPORT_SYMBOL(__blk_end_request_cur);
e19a3ab0 2666
80a761fd
TH
2667/**
2668 * __blk_end_request_err - Finish a request till the next failure boundary.
2669 * @rq: the request to finish till the next failure boundary for
2670 * @error: must be negative errno
2671 *
2672 * Description:
2673 * Complete @rq till the next failure boundary. Must be called
2674 * with queue lock held.
2675 *
2676 * Return:
2677 * %false - we are done with this request
2678 * %true - still buffers pending for this request
2679 */
2680bool __blk_end_request_err(struct request *rq, int error)
2681{
2682 WARN_ON(error >= 0);
2683 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2684}
2685EXPORT_SYMBOL_GPL(__blk_end_request_err);
2686
86db1e29
JA
2687void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2688 struct bio *bio)
1da177e4 2689{
a82afdfc 2690 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
7b6d91da 2691 rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
1da177e4 2692
fb2dce86
DW
2693 if (bio_has_data(bio)) {
2694 rq->nr_phys_segments = bio_phys_segments(q, bio);
fb2dce86
DW
2695 rq->buffer = bio_data(bio);
2696 }
a2dec7b3 2697 rq->__data_len = bio->bi_size;
1da177e4 2698 rq->bio = rq->biotail = bio;
1da177e4 2699
66846572
N
2700 if (bio->bi_bdev)
2701 rq->rq_disk = bio->bi_bdev->bd_disk;
2702}
1da177e4 2703
2d4dc890
IL
2704#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2705/**
2706 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2707 * @rq: the request to be flushed
2708 *
2709 * Description:
2710 * Flush all pages in @rq.
2711 */
2712void rq_flush_dcache_pages(struct request *rq)
2713{
2714 struct req_iterator iter;
2715 struct bio_vec *bvec;
2716
2717 rq_for_each_segment(bvec, rq, iter)
2718 flush_dcache_page(bvec->bv_page);
2719}
2720EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2721#endif
2722
ef9e3fac
KU
2723/**
2724 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2725 * @q : the queue of the device being checked
2726 *
2727 * Description:
2728 * Check if underlying low-level drivers of a device are busy.
2729 * If the drivers want to export their busy state, they must set own
2730 * exporting function using blk_queue_lld_busy() first.
2731 *
2732 * Basically, this function is used only by request stacking drivers
2733 * to stop dispatching requests to underlying devices when underlying
2734 * devices are busy. This behavior helps more I/O merging on the queue
2735 * of the request stacking driver and prevents I/O throughput regression
2736 * on burst I/O load.
2737 *
2738 * Return:
2739 * 0 - Not busy (The request stacking driver should dispatch request)
2740 * 1 - Busy (The request stacking driver should stop dispatching request)
2741 */
2742int blk_lld_busy(struct request_queue *q)
2743{
2744 if (q->lld_busy_fn)
2745 return q->lld_busy_fn(q);
2746
2747 return 0;
2748}
2749EXPORT_SYMBOL_GPL(blk_lld_busy);
2750
b0fd271d
KU
2751/**
2752 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2753 * @rq: the clone request to be cleaned up
2754 *
2755 * Description:
2756 * Free all bios in @rq for a cloned request.
2757 */
2758void blk_rq_unprep_clone(struct request *rq)
2759{
2760 struct bio *bio;
2761
2762 while ((bio = rq->bio) != NULL) {
2763 rq->bio = bio->bi_next;
2764
2765 bio_put(bio);
2766 }
2767}
2768EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2769
2770/*
2771 * Copy attributes of the original request to the clone request.
2772 * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied.
2773 */
2774static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2775{
2776 dst->cpu = src->cpu;
3a2edd0d 2777 dst->cmd_flags = (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
b0fd271d
KU
2778 dst->cmd_type = src->cmd_type;
2779 dst->__sector = blk_rq_pos(src);
2780 dst->__data_len = blk_rq_bytes(src);
2781 dst->nr_phys_segments = src->nr_phys_segments;
2782 dst->ioprio = src->ioprio;
2783 dst->extra_len = src->extra_len;
2784}
2785
2786/**
2787 * blk_rq_prep_clone - Helper function to setup clone request
2788 * @rq: the request to be setup
2789 * @rq_src: original request to be cloned
2790 * @bs: bio_set that bios for clone are allocated from
2791 * @gfp_mask: memory allocation mask for bio
2792 * @bio_ctr: setup function to be called for each clone bio.
2793 * Returns %0 for success, non %0 for failure.
2794 * @data: private data to be passed to @bio_ctr
2795 *
2796 * Description:
2797 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2798 * The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense)
2799 * are not copied, and copying such parts is the caller's responsibility.
2800 * Also, pages which the original bios are pointing to are not copied
2801 * and the cloned bios just point same pages.
2802 * So cloned bios must be completed before original bios, which means
2803 * the caller must complete @rq before @rq_src.
2804 */
2805int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2806 struct bio_set *bs, gfp_t gfp_mask,
2807 int (*bio_ctr)(struct bio *, struct bio *, void *),
2808 void *data)
2809{
2810 struct bio *bio, *bio_src;
2811
2812 if (!bs)
2813 bs = fs_bio_set;
2814
2815 blk_rq_init(NULL, rq);
2816
2817 __rq_for_each_bio(bio_src, rq_src) {
bf800ef1 2818 bio = bio_clone_bioset(bio_src, gfp_mask, bs);
b0fd271d
KU
2819 if (!bio)
2820 goto free_and_out;
2821
b0fd271d
KU
2822 if (bio_ctr && bio_ctr(bio, bio_src, data))
2823 goto free_and_out;
2824
2825 if (rq->bio) {
2826 rq->biotail->bi_next = bio;
2827 rq->biotail = bio;
2828 } else
2829 rq->bio = rq->biotail = bio;
2830 }
2831
2832 __blk_rq_prep_clone(rq, rq_src);
2833
2834 return 0;
2835
2836free_and_out:
2837 if (bio)
4254bba1 2838 bio_put(bio);
b0fd271d
KU
2839 blk_rq_unprep_clone(rq);
2840
2841 return -ENOMEM;
2842}
2843EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2844
18887ad9 2845int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
1da177e4
LT
2846{
2847 return queue_work(kblockd_workqueue, work);
2848}
1da177e4
LT
2849EXPORT_SYMBOL(kblockd_schedule_work);
2850
e43473b7
VG
2851int kblockd_schedule_delayed_work(struct request_queue *q,
2852 struct delayed_work *dwork, unsigned long delay)
2853{
2854 return queue_delayed_work(kblockd_workqueue, dwork, delay);
2855}
2856EXPORT_SYMBOL(kblockd_schedule_delayed_work);
2857
73c10101
JA
2858#define PLUG_MAGIC 0x91827364
2859
75df7136
SJ
2860/**
2861 * blk_start_plug - initialize blk_plug and track it inside the task_struct
2862 * @plug: The &struct blk_plug that needs to be initialized
2863 *
2864 * Description:
2865 * Tracking blk_plug inside the task_struct will help with auto-flushing the
2866 * pending I/O should the task end up blocking between blk_start_plug() and
2867 * blk_finish_plug(). This is important from a performance perspective, but
2868 * also ensures that we don't deadlock. For instance, if the task is blocking
2869 * for a memory allocation, memory reclaim could end up wanting to free a
2870 * page belonging to that request that is currently residing in our private
2871 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
2872 * this kind of deadlock.
2873 */
73c10101
JA
2874void blk_start_plug(struct blk_plug *plug)
2875{
2876 struct task_struct *tsk = current;
2877
2878 plug->magic = PLUG_MAGIC;
2879 INIT_LIST_HEAD(&plug->list);
048c9374 2880 INIT_LIST_HEAD(&plug->cb_list);
73c10101
JA
2881
2882 /*
2883 * If this is a nested plug, don't actually assign it. It will be
2884 * flushed on its own.
2885 */
2886 if (!tsk->plug) {
2887 /*
2888 * Store ordering should not be needed here, since a potential
2889 * preempt will imply a full memory barrier
2890 */
2891 tsk->plug = plug;
2892 }
2893}
2894EXPORT_SYMBOL(blk_start_plug);
2895
2896static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
2897{
2898 struct request *rqa = container_of(a, struct request, queuelist);
2899 struct request *rqb = container_of(b, struct request, queuelist);
2900
975927b9
JM
2901 return !(rqa->q < rqb->q ||
2902 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
73c10101
JA
2903}
2904
49cac01e
JA
2905/*
2906 * If 'from_schedule' is true, then postpone the dispatch of requests
2907 * until a safe kblockd context. We due this to avoid accidental big
2908 * additional stack usage in driver dispatch, in places where the originally
2909 * plugger did not intend it.
2910 */
f6603783 2911static void queue_unplugged(struct request_queue *q, unsigned int depth,
49cac01e 2912 bool from_schedule)
99e22598 2913 __releases(q->queue_lock)
94b5eb28 2914{
49cac01e 2915 trace_block_unplug(q, depth, !from_schedule);
99e22598 2916
70460571 2917 if (from_schedule)
24ecfbe2 2918 blk_run_queue_async(q);
70460571 2919 else
24ecfbe2 2920 __blk_run_queue(q);
70460571 2921 spin_unlock(q->queue_lock);
94b5eb28
JA
2922}
2923
74018dc3 2924static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
048c9374
N
2925{
2926 LIST_HEAD(callbacks);
2927
2a7d5559
SL
2928 while (!list_empty(&plug->cb_list)) {
2929 list_splice_init(&plug->cb_list, &callbacks);
048c9374 2930
2a7d5559
SL
2931 while (!list_empty(&callbacks)) {
2932 struct blk_plug_cb *cb = list_first_entry(&callbacks,
048c9374
N
2933 struct blk_plug_cb,
2934 list);
2a7d5559 2935 list_del(&cb->list);
74018dc3 2936 cb->callback(cb, from_schedule);
2a7d5559 2937 }
048c9374
N
2938 }
2939}
2940
9cbb1750
N
2941struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
2942 int size)
2943{
2944 struct blk_plug *plug = current->plug;
2945 struct blk_plug_cb *cb;
2946
2947 if (!plug)
2948 return NULL;
2949
2950 list_for_each_entry(cb, &plug->cb_list, list)
2951 if (cb->callback == unplug && cb->data == data)
2952 return cb;
2953
2954 /* Not currently on the callback list */
2955 BUG_ON(size < sizeof(*cb));
2956 cb = kzalloc(size, GFP_ATOMIC);
2957 if (cb) {
2958 cb->data = data;
2959 cb->callback = unplug;
2960 list_add(&cb->list, &plug->cb_list);
2961 }
2962 return cb;
2963}
2964EXPORT_SYMBOL(blk_check_plugged);
2965
49cac01e 2966void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
73c10101
JA
2967{
2968 struct request_queue *q;
2969 unsigned long flags;
2970 struct request *rq;
109b8129 2971 LIST_HEAD(list);
94b5eb28 2972 unsigned int depth;
73c10101
JA
2973
2974 BUG_ON(plug->magic != PLUG_MAGIC);
2975
74018dc3 2976 flush_plug_callbacks(plug, from_schedule);
73c10101
JA
2977 if (list_empty(&plug->list))
2978 return;
2979
109b8129
N
2980 list_splice_init(&plug->list, &list);
2981
422765c2 2982 list_sort(NULL, &list, plug_rq_cmp);
73c10101
JA
2983
2984 q = NULL;
94b5eb28 2985 depth = 0;
18811272
JA
2986
2987 /*
2988 * Save and disable interrupts here, to avoid doing it for every
2989 * queue lock we have to take.
2990 */
73c10101 2991 local_irq_save(flags);
109b8129
N
2992 while (!list_empty(&list)) {
2993 rq = list_entry_rq(list.next);
73c10101 2994 list_del_init(&rq->queuelist);
73c10101
JA
2995 BUG_ON(!rq->q);
2996 if (rq->q != q) {
99e22598
JA
2997 /*
2998 * This drops the queue lock
2999 */
3000 if (q)
49cac01e 3001 queue_unplugged(q, depth, from_schedule);
73c10101 3002 q = rq->q;
94b5eb28 3003 depth = 0;
73c10101
JA
3004 spin_lock(q->queue_lock);
3005 }
8ba61435
TH
3006
3007 /*
3008 * Short-circuit if @q is dead
3009 */
3f3299d5 3010 if (unlikely(blk_queue_dying(q))) {
8ba61435
TH
3011 __blk_end_request_all(rq, -ENODEV);
3012 continue;
3013 }
3014
73c10101
JA
3015 /*
3016 * rq is already accounted, so use raw insert
3017 */
401a18e9
JA
3018 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
3019 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3020 else
3021 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
94b5eb28
JA
3022
3023 depth++;
73c10101
JA
3024 }
3025
99e22598
JA
3026 /*
3027 * This drops the queue lock
3028 */
3029 if (q)
49cac01e 3030 queue_unplugged(q, depth, from_schedule);
73c10101 3031
73c10101
JA
3032 local_irq_restore(flags);
3033}
73c10101
JA
3034
3035void blk_finish_plug(struct blk_plug *plug)
3036{
f6603783 3037 blk_flush_plug_list(plug, false);
73c10101 3038
88b996cd
CH
3039 if (plug == current->plug)
3040 current->plug = NULL;
73c10101 3041}
88b996cd 3042EXPORT_SYMBOL(blk_finish_plug);
73c10101 3043
6c954667
LM
3044#ifdef CONFIG_PM_RUNTIME
3045/**
3046 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3047 * @q: the queue of the device
3048 * @dev: the device the queue belongs to
3049 *
3050 * Description:
3051 * Initialize runtime-PM-related fields for @q and start auto suspend for
3052 * @dev. Drivers that want to take advantage of request-based runtime PM
3053 * should call this function after @dev has been initialized, and its
3054 * request queue @q has been allocated, and runtime PM for it can not happen
3055 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3056 * cases, driver should call this function before any I/O has taken place.
3057 *
3058 * This function takes care of setting up using auto suspend for the device,
3059 * the autosuspend delay is set to -1 to make runtime suspend impossible
3060 * until an updated value is either set by user or by driver. Drivers do
3061 * not need to touch other autosuspend settings.
3062 *
3063 * The block layer runtime PM is request based, so only works for drivers
3064 * that use request as their IO unit instead of those directly use bio's.
3065 */
3066void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3067{
3068 q->dev = dev;
3069 q->rpm_status = RPM_ACTIVE;
3070 pm_runtime_set_autosuspend_delay(q->dev, -1);
3071 pm_runtime_use_autosuspend(q->dev);
3072}
3073EXPORT_SYMBOL(blk_pm_runtime_init);
3074
3075/**
3076 * blk_pre_runtime_suspend - Pre runtime suspend check
3077 * @q: the queue of the device
3078 *
3079 * Description:
3080 * This function will check if runtime suspend is allowed for the device
3081 * by examining if there are any requests pending in the queue. If there
3082 * are requests pending, the device can not be runtime suspended; otherwise,
3083 * the queue's status will be updated to SUSPENDING and the driver can
3084 * proceed to suspend the device.
3085 *
3086 * For the not allowed case, we mark last busy for the device so that
3087 * runtime PM core will try to autosuspend it some time later.
3088 *
3089 * This function should be called near the start of the device's
3090 * runtime_suspend callback.
3091 *
3092 * Return:
3093 * 0 - OK to runtime suspend the device
3094 * -EBUSY - Device should not be runtime suspended
3095 */
3096int blk_pre_runtime_suspend(struct request_queue *q)
3097{
3098 int ret = 0;
3099
3100 spin_lock_irq(q->queue_lock);
3101 if (q->nr_pending) {
3102 ret = -EBUSY;
3103 pm_runtime_mark_last_busy(q->dev);
3104 } else {
3105 q->rpm_status = RPM_SUSPENDING;
3106 }
3107 spin_unlock_irq(q->queue_lock);
3108 return ret;
3109}
3110EXPORT_SYMBOL(blk_pre_runtime_suspend);
3111
3112/**
3113 * blk_post_runtime_suspend - Post runtime suspend processing
3114 * @q: the queue of the device
3115 * @err: return value of the device's runtime_suspend function
3116 *
3117 * Description:
3118 * Update the queue's runtime status according to the return value of the
3119 * device's runtime suspend function and mark last busy for the device so
3120 * that PM core will try to auto suspend the device at a later time.
3121 *
3122 * This function should be called near the end of the device's
3123 * runtime_suspend callback.
3124 */
3125void blk_post_runtime_suspend(struct request_queue *q, int err)
3126{
3127 spin_lock_irq(q->queue_lock);
3128 if (!err) {
3129 q->rpm_status = RPM_SUSPENDED;
3130 } else {
3131 q->rpm_status = RPM_ACTIVE;
3132 pm_runtime_mark_last_busy(q->dev);
3133 }
3134 spin_unlock_irq(q->queue_lock);
3135}
3136EXPORT_SYMBOL(blk_post_runtime_suspend);
3137
3138/**
3139 * blk_pre_runtime_resume - Pre runtime resume processing
3140 * @q: the queue of the device
3141 *
3142 * Description:
3143 * Update the queue's runtime status to RESUMING in preparation for the
3144 * runtime resume of the device.
3145 *
3146 * This function should be called near the start of the device's
3147 * runtime_resume callback.
3148 */
3149void blk_pre_runtime_resume(struct request_queue *q)
3150{
3151 spin_lock_irq(q->queue_lock);
3152 q->rpm_status = RPM_RESUMING;
3153 spin_unlock_irq(q->queue_lock);
3154}
3155EXPORT_SYMBOL(blk_pre_runtime_resume);
3156
3157/**
3158 * blk_post_runtime_resume - Post runtime resume processing
3159 * @q: the queue of the device
3160 * @err: return value of the device's runtime_resume function
3161 *
3162 * Description:
3163 * Update the queue's runtime status according to the return value of the
3164 * device's runtime_resume function. If it is successfully resumed, process
3165 * the requests that are queued into the device's queue when it is resuming
3166 * and then mark last busy and initiate autosuspend for it.
3167 *
3168 * This function should be called near the end of the device's
3169 * runtime_resume callback.
3170 */
3171void blk_post_runtime_resume(struct request_queue *q, int err)
3172{
3173 spin_lock_irq(q->queue_lock);
3174 if (!err) {
3175 q->rpm_status = RPM_ACTIVE;
3176 __blk_run_queue(q);
3177 pm_runtime_mark_last_busy(q->dev);
c60855cd 3178 pm_request_autosuspend(q->dev);
6c954667
LM
3179 } else {
3180 q->rpm_status = RPM_SUSPENDED;
3181 }
3182 spin_unlock_irq(q->queue_lock);
3183}
3184EXPORT_SYMBOL(blk_post_runtime_resume);
3185#endif
3186
1da177e4
LT
3187int __init blk_dev_init(void)
3188{
9eb55b03
NK
3189 BUILD_BUG_ON(__REQ_NR_BITS > 8 *
3190 sizeof(((struct request *)0)->cmd_flags));
3191
89b90be2
TH
3192 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3193 kblockd_workqueue = alloc_workqueue("kblockd",
3194 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
1da177e4
LT
3195 if (!kblockd_workqueue)
3196 panic("Failed to create kblockd\n");
3197
3198 request_cachep = kmem_cache_create("blkdev_requests",
20c2df83 3199 sizeof(struct request), 0, SLAB_PANIC, NULL);
1da177e4 3200
8324aa91 3201 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
165125e1 3202 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1da177e4 3203
d38ecf93 3204 return 0;
1da177e4 3205}