timers: Consolidate base->next_timer update
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / timer.c
CommitLineData
1da177e4
LT
1/*
2 * linux/kernel/timer.c
3 *
8524070b 4 * Kernel internal timers, basic process system calls
1da177e4
LT
5 *
6 * Copyright (C) 1991, 1992 Linus Torvalds
7 *
8 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
9 *
10 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
11 * "A Kernel Model for Precision Timekeeping" by Dave Mills
12 * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
13 * serialize accesses to xtime/lost_ticks).
14 * Copyright (C) 1998 Andrea Arcangeli
15 * 1999-03-10 Improved NTP compatibility by Ulrich Windl
16 * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love
17 * 2000-10-05 Implemented scalable SMP per-CPU timer handling.
18 * Copyright (C) 2000, 2001, 2002 Ingo Molnar
19 * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
20 */
21
22#include <linux/kernel_stat.h>
9984de1a 23#include <linux/export.h>
1da177e4
LT
24#include <linux/interrupt.h>
25#include <linux/percpu.h>
26#include <linux/init.h>
27#include <linux/mm.h>
28#include <linux/swap.h>
b488893a 29#include <linux/pid_namespace.h>
1da177e4
LT
30#include <linux/notifier.h>
31#include <linux/thread_info.h>
32#include <linux/time.h>
33#include <linux/jiffies.h>
34#include <linux/posix-timers.h>
35#include <linux/cpu.h>
36#include <linux/syscalls.h>
97a41e26 37#include <linux/delay.h>
79bf2bb3 38#include <linux/tick.h>
82f67cd9 39#include <linux/kallsyms.h>
e360adbe 40#include <linux/irq_work.h>
eea08f32 41#include <linux/sched.h>
5a0e3ad6 42#include <linux/slab.h>
1da177e4
LT
43
44#include <asm/uaccess.h>
45#include <asm/unistd.h>
46#include <asm/div64.h>
47#include <asm/timex.h>
48#include <asm/io.h>
49
2b022e3d
XG
50#define CREATE_TRACE_POINTS
51#include <trace/events/timer.h>
52
ecea8d19
TG
53u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
54
55EXPORT_SYMBOL(jiffies_64);
56
1da177e4
LT
57/*
58 * per-CPU timer vector definitions:
59 */
1da177e4
LT
60#define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
61#define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
62#define TVN_SIZE (1 << TVN_BITS)
63#define TVR_SIZE (1 << TVR_BITS)
64#define TVN_MASK (TVN_SIZE - 1)
65#define TVR_MASK (TVR_SIZE - 1)
66
a6fa8e5a 67struct tvec {
1da177e4 68 struct list_head vec[TVN_SIZE];
a6fa8e5a 69};
1da177e4 70
a6fa8e5a 71struct tvec_root {
1da177e4 72 struct list_head vec[TVR_SIZE];
a6fa8e5a 73};
1da177e4 74
a6fa8e5a 75struct tvec_base {
3691c519
ON
76 spinlock_t lock;
77 struct timer_list *running_timer;
1da177e4 78 unsigned long timer_jiffies;
97fd9ed4 79 unsigned long next_timer;
a6fa8e5a
PM
80 struct tvec_root tv1;
81 struct tvec tv2;
82 struct tvec tv3;
83 struct tvec tv4;
84 struct tvec tv5;
6e453a67 85} ____cacheline_aligned;
1da177e4 86
a6fa8e5a 87struct tvec_base boot_tvec_bases;
3691c519 88EXPORT_SYMBOL(boot_tvec_bases);
a6fa8e5a 89static DEFINE_PER_CPU(struct tvec_base *, tvec_bases) = &boot_tvec_bases;
1da177e4 90
6e453a67 91/* Functions below help us manage 'deferrable' flag */
a6fa8e5a 92static inline unsigned int tbase_get_deferrable(struct tvec_base *base)
6e453a67 93{
e9910846 94 return ((unsigned int)(unsigned long)base & TBASE_DEFERRABLE_FLAG);
6e453a67
VP
95}
96
a6fa8e5a 97static inline struct tvec_base *tbase_get_base(struct tvec_base *base)
6e453a67 98{
a6fa8e5a 99 return ((struct tvec_base *)((unsigned long)base & ~TBASE_DEFERRABLE_FLAG));
6e453a67
VP
100}
101
102static inline void timer_set_deferrable(struct timer_list *timer)
103{
dd6414b5 104 timer->base = TBASE_MAKE_DEFERRED(timer->base);
6e453a67
VP
105}
106
107static inline void
a6fa8e5a 108timer_set_base(struct timer_list *timer, struct tvec_base *new_base)
6e453a67 109{
a6fa8e5a 110 timer->base = (struct tvec_base *)((unsigned long)(new_base) |
6819457d 111 tbase_get_deferrable(timer->base));
6e453a67
VP
112}
113
9c133c46
AS
114static unsigned long round_jiffies_common(unsigned long j, int cpu,
115 bool force_up)
4c36a5de
AV
116{
117 int rem;
118 unsigned long original = j;
119
120 /*
121 * We don't want all cpus firing their timers at once hitting the
122 * same lock or cachelines, so we skew each extra cpu with an extra
123 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
124 * already did this.
125 * The skew is done by adding 3*cpunr, then round, then subtract this
126 * extra offset again.
127 */
128 j += cpu * 3;
129
130 rem = j % HZ;
131
132 /*
133 * If the target jiffie is just after a whole second (which can happen
134 * due to delays of the timer irq, long irq off times etc etc) then
135 * we should round down to the whole second, not up. Use 1/4th second
136 * as cutoff for this rounding as an extreme upper bound for this.
9c133c46 137 * But never round down if @force_up is set.
4c36a5de 138 */
9c133c46 139 if (rem < HZ/4 && !force_up) /* round down */
4c36a5de
AV
140 j = j - rem;
141 else /* round up */
142 j = j - rem + HZ;
143
144 /* now that we have rounded, subtract the extra skew again */
145 j -= cpu * 3;
146
147 if (j <= jiffies) /* rounding ate our timeout entirely; */
148 return original;
149 return j;
150}
9c133c46
AS
151
152/**
153 * __round_jiffies - function to round jiffies to a full second
154 * @j: the time in (absolute) jiffies that should be rounded
155 * @cpu: the processor number on which the timeout will happen
156 *
157 * __round_jiffies() rounds an absolute time in the future (in jiffies)
158 * up or down to (approximately) full seconds. This is useful for timers
159 * for which the exact time they fire does not matter too much, as long as
160 * they fire approximately every X seconds.
161 *
162 * By rounding these timers to whole seconds, all such timers will fire
163 * at the same time, rather than at various times spread out. The goal
164 * of this is to have the CPU wake up less, which saves power.
165 *
166 * The exact rounding is skewed for each processor to avoid all
167 * processors firing at the exact same time, which could lead
168 * to lock contention or spurious cache line bouncing.
169 *
170 * The return value is the rounded version of the @j parameter.
171 */
172unsigned long __round_jiffies(unsigned long j, int cpu)
173{
174 return round_jiffies_common(j, cpu, false);
175}
4c36a5de
AV
176EXPORT_SYMBOL_GPL(__round_jiffies);
177
178/**
179 * __round_jiffies_relative - function to round jiffies to a full second
180 * @j: the time in (relative) jiffies that should be rounded
181 * @cpu: the processor number on which the timeout will happen
182 *
72fd4a35 183 * __round_jiffies_relative() rounds a time delta in the future (in jiffies)
4c36a5de
AV
184 * up or down to (approximately) full seconds. This is useful for timers
185 * for which the exact time they fire does not matter too much, as long as
186 * they fire approximately every X seconds.
187 *
188 * By rounding these timers to whole seconds, all such timers will fire
189 * at the same time, rather than at various times spread out. The goal
190 * of this is to have the CPU wake up less, which saves power.
191 *
192 * The exact rounding is skewed for each processor to avoid all
193 * processors firing at the exact same time, which could lead
194 * to lock contention or spurious cache line bouncing.
195 *
72fd4a35 196 * The return value is the rounded version of the @j parameter.
4c36a5de
AV
197 */
198unsigned long __round_jiffies_relative(unsigned long j, int cpu)
199{
9c133c46
AS
200 unsigned long j0 = jiffies;
201
202 /* Use j0 because jiffies might change while we run */
203 return round_jiffies_common(j + j0, cpu, false) - j0;
4c36a5de
AV
204}
205EXPORT_SYMBOL_GPL(__round_jiffies_relative);
206
207/**
208 * round_jiffies - function to round jiffies to a full second
209 * @j: the time in (absolute) jiffies that should be rounded
210 *
72fd4a35 211 * round_jiffies() rounds an absolute time in the future (in jiffies)
4c36a5de
AV
212 * up or down to (approximately) full seconds. This is useful for timers
213 * for which the exact time they fire does not matter too much, as long as
214 * they fire approximately every X seconds.
215 *
216 * By rounding these timers to whole seconds, all such timers will fire
217 * at the same time, rather than at various times spread out. The goal
218 * of this is to have the CPU wake up less, which saves power.
219 *
72fd4a35 220 * The return value is the rounded version of the @j parameter.
4c36a5de
AV
221 */
222unsigned long round_jiffies(unsigned long j)
223{
9c133c46 224 return round_jiffies_common(j, raw_smp_processor_id(), false);
4c36a5de
AV
225}
226EXPORT_SYMBOL_GPL(round_jiffies);
227
228/**
229 * round_jiffies_relative - function to round jiffies to a full second
230 * @j: the time in (relative) jiffies that should be rounded
231 *
72fd4a35 232 * round_jiffies_relative() rounds a time delta in the future (in jiffies)
4c36a5de
AV
233 * up or down to (approximately) full seconds. This is useful for timers
234 * for which the exact time they fire does not matter too much, as long as
235 * they fire approximately every X seconds.
236 *
237 * By rounding these timers to whole seconds, all such timers will fire
238 * at the same time, rather than at various times spread out. The goal
239 * of this is to have the CPU wake up less, which saves power.
240 *
72fd4a35 241 * The return value is the rounded version of the @j parameter.
4c36a5de
AV
242 */
243unsigned long round_jiffies_relative(unsigned long j)
244{
245 return __round_jiffies_relative(j, raw_smp_processor_id());
246}
247EXPORT_SYMBOL_GPL(round_jiffies_relative);
248
9c133c46
AS
249/**
250 * __round_jiffies_up - function to round jiffies up to a full second
251 * @j: the time in (absolute) jiffies that should be rounded
252 * @cpu: the processor number on which the timeout will happen
253 *
254 * This is the same as __round_jiffies() except that it will never
255 * round down. This is useful for timeouts for which the exact time
256 * of firing does not matter too much, as long as they don't fire too
257 * early.
258 */
259unsigned long __round_jiffies_up(unsigned long j, int cpu)
260{
261 return round_jiffies_common(j, cpu, true);
262}
263EXPORT_SYMBOL_GPL(__round_jiffies_up);
264
265/**
266 * __round_jiffies_up_relative - function to round jiffies up to a full second
267 * @j: the time in (relative) jiffies that should be rounded
268 * @cpu: the processor number on which the timeout will happen
269 *
270 * This is the same as __round_jiffies_relative() except that it will never
271 * round down. This is useful for timeouts for which the exact time
272 * of firing does not matter too much, as long as they don't fire too
273 * early.
274 */
275unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
276{
277 unsigned long j0 = jiffies;
278
279 /* Use j0 because jiffies might change while we run */
280 return round_jiffies_common(j + j0, cpu, true) - j0;
281}
282EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);
283
284/**
285 * round_jiffies_up - function to round jiffies up to a full second
286 * @j: the time in (absolute) jiffies that should be rounded
287 *
288 * This is the same as round_jiffies() except that it will never
289 * round down. This is useful for timeouts for which the exact time
290 * of firing does not matter too much, as long as they don't fire too
291 * early.
292 */
293unsigned long round_jiffies_up(unsigned long j)
294{
295 return round_jiffies_common(j, raw_smp_processor_id(), true);
296}
297EXPORT_SYMBOL_GPL(round_jiffies_up);
298
299/**
300 * round_jiffies_up_relative - function to round jiffies up to a full second
301 * @j: the time in (relative) jiffies that should be rounded
302 *
303 * This is the same as round_jiffies_relative() except that it will never
304 * round down. This is useful for timeouts for which the exact time
305 * of firing does not matter too much, as long as they don't fire too
306 * early.
307 */
308unsigned long round_jiffies_up_relative(unsigned long j)
309{
310 return __round_jiffies_up_relative(j, raw_smp_processor_id());
311}
312EXPORT_SYMBOL_GPL(round_jiffies_up_relative);
313
3bbb9ec9
AV
314/**
315 * set_timer_slack - set the allowed slack for a timer
0caa6210 316 * @timer: the timer to be modified
3bbb9ec9
AV
317 * @slack_hz: the amount of time (in jiffies) allowed for rounding
318 *
319 * Set the amount of time, in jiffies, that a certain timer has
320 * in terms of slack. By setting this value, the timer subsystem
321 * will schedule the actual timer somewhere between
322 * the time mod_timer() asks for, and that time plus the slack.
323 *
324 * By setting the slack to -1, a percentage of the delay is used
325 * instead.
326 */
327void set_timer_slack(struct timer_list *timer, int slack_hz)
328{
329 timer->slack = slack_hz;
330}
331EXPORT_SYMBOL_GPL(set_timer_slack);
332
facbb4a7
TG
333static void
334__internal_add_timer(struct tvec_base *base, struct timer_list *timer)
1da177e4
LT
335{
336 unsigned long expires = timer->expires;
337 unsigned long idx = expires - base->timer_jiffies;
338 struct list_head *vec;
339
340 if (idx < TVR_SIZE) {
341 int i = expires & TVR_MASK;
342 vec = base->tv1.vec + i;
343 } else if (idx < 1 << (TVR_BITS + TVN_BITS)) {
344 int i = (expires >> TVR_BITS) & TVN_MASK;
345 vec = base->tv2.vec + i;
346 } else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) {
347 int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK;
348 vec = base->tv3.vec + i;
349 } else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) {
350 int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK;
351 vec = base->tv4.vec + i;
352 } else if ((signed long) idx < 0) {
353 /*
354 * Can happen if you add a timer with expires == jiffies,
355 * or you set a timer to go off in the past
356 */
357 vec = base->tv1.vec + (base->timer_jiffies & TVR_MASK);
358 } else {
359 int i;
360 /* If the timeout is larger than 0xffffffff on 64-bit
361 * architectures then we use the maximum timeout:
362 */
363 if (idx > 0xffffffffUL) {
364 idx = 0xffffffffUL;
365 expires = idx + base->timer_jiffies;
366 }
367 i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK;
368 vec = base->tv5.vec + i;
369 }
370 /*
371 * Timers are FIFO:
372 */
373 list_add_tail(&timer->entry, vec);
374}
375
facbb4a7
TG
376static void internal_add_timer(struct tvec_base *base, struct timer_list *timer)
377{
378 __internal_add_timer(base, timer);
379 /*
380 * Update base->next_timer if this is the earliest one.
381 */
382 if (time_before(timer->expires, base->next_timer) &&
383 !tbase_get_deferrable(timer->base))
384 base->next_timer = timer->expires;
385}
386
82f67cd9
IM
387#ifdef CONFIG_TIMER_STATS
388void __timer_stats_timer_set_start_info(struct timer_list *timer, void *addr)
389{
390 if (timer->start_site)
391 return;
392
393 timer->start_site = addr;
394 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
395 timer->start_pid = current->pid;
396}
c5c061b8
VP
397
398static void timer_stats_account_timer(struct timer_list *timer)
399{
400 unsigned int flag = 0;
401
507e1231
HC
402 if (likely(!timer->start_site))
403 return;
c5c061b8
VP
404 if (unlikely(tbase_get_deferrable(timer->base)))
405 flag |= TIMER_STATS_FLAG_DEFERRABLE;
406
407 timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
408 timer->function, timer->start_comm, flag);
409}
410
411#else
412static void timer_stats_account_timer(struct timer_list *timer) {}
82f67cd9
IM
413#endif
414
c6f3a97f
TG
415#ifdef CONFIG_DEBUG_OBJECTS_TIMERS
416
417static struct debug_obj_descr timer_debug_descr;
418
99777288
SG
419static void *timer_debug_hint(void *addr)
420{
421 return ((struct timer_list *) addr)->function;
422}
423
c6f3a97f
TG
424/*
425 * fixup_init is called when:
426 * - an active object is initialized
55c888d6 427 */
c6f3a97f
TG
428static int timer_fixup_init(void *addr, enum debug_obj_state state)
429{
430 struct timer_list *timer = addr;
431
432 switch (state) {
433 case ODEBUG_STATE_ACTIVE:
434 del_timer_sync(timer);
435 debug_object_init(timer, &timer_debug_descr);
436 return 1;
437 default:
438 return 0;
439 }
440}
441
fb16b8cf
SB
442/* Stub timer callback for improperly used timers. */
443static void stub_timer(unsigned long data)
444{
445 WARN_ON(1);
446}
447
c6f3a97f
TG
448/*
449 * fixup_activate is called when:
450 * - an active object is activated
451 * - an unknown object is activated (might be a statically initialized object)
452 */
453static int timer_fixup_activate(void *addr, enum debug_obj_state state)
454{
455 struct timer_list *timer = addr;
456
457 switch (state) {
458
459 case ODEBUG_STATE_NOTAVAILABLE:
460 /*
461 * This is not really a fixup. The timer was
462 * statically initialized. We just make sure that it
463 * is tracked in the object tracker.
464 */
465 if (timer->entry.next == NULL &&
466 timer->entry.prev == TIMER_ENTRY_STATIC) {
467 debug_object_init(timer, &timer_debug_descr);
468 debug_object_activate(timer, &timer_debug_descr);
469 return 0;
470 } else {
fb16b8cf
SB
471 setup_timer(timer, stub_timer, 0);
472 return 1;
c6f3a97f
TG
473 }
474 return 0;
475
476 case ODEBUG_STATE_ACTIVE:
477 WARN_ON(1);
478
479 default:
480 return 0;
481 }
482}
483
484/*
485 * fixup_free is called when:
486 * - an active object is freed
487 */
488static int timer_fixup_free(void *addr, enum debug_obj_state state)
489{
490 struct timer_list *timer = addr;
491
492 switch (state) {
493 case ODEBUG_STATE_ACTIVE:
494 del_timer_sync(timer);
495 debug_object_free(timer, &timer_debug_descr);
496 return 1;
497 default:
498 return 0;
499 }
500}
501
dc4218bd
CC
502/*
503 * fixup_assert_init is called when:
504 * - an untracked/uninit-ed object is found
505 */
506static int timer_fixup_assert_init(void *addr, enum debug_obj_state state)
507{
508 struct timer_list *timer = addr;
509
510 switch (state) {
511 case ODEBUG_STATE_NOTAVAILABLE:
512 if (timer->entry.prev == TIMER_ENTRY_STATIC) {
513 /*
514 * This is not really a fixup. The timer was
515 * statically initialized. We just make sure that it
516 * is tracked in the object tracker.
517 */
518 debug_object_init(timer, &timer_debug_descr);
519 return 0;
520 } else {
521 setup_timer(timer, stub_timer, 0);
522 return 1;
523 }
524 default:
525 return 0;
526 }
527}
528
c6f3a97f 529static struct debug_obj_descr timer_debug_descr = {
dc4218bd
CC
530 .name = "timer_list",
531 .debug_hint = timer_debug_hint,
532 .fixup_init = timer_fixup_init,
533 .fixup_activate = timer_fixup_activate,
534 .fixup_free = timer_fixup_free,
535 .fixup_assert_init = timer_fixup_assert_init,
c6f3a97f
TG
536};
537
538static inline void debug_timer_init(struct timer_list *timer)
539{
540 debug_object_init(timer, &timer_debug_descr);
541}
542
543static inline void debug_timer_activate(struct timer_list *timer)
544{
545 debug_object_activate(timer, &timer_debug_descr);
546}
547
548static inline void debug_timer_deactivate(struct timer_list *timer)
549{
550 debug_object_deactivate(timer, &timer_debug_descr);
551}
552
553static inline void debug_timer_free(struct timer_list *timer)
554{
555 debug_object_free(timer, &timer_debug_descr);
556}
557
dc4218bd
CC
558static inline void debug_timer_assert_init(struct timer_list *timer)
559{
560 debug_object_assert_init(timer, &timer_debug_descr);
561}
562
6f2b9b9a
JB
563static void __init_timer(struct timer_list *timer,
564 const char *name,
565 struct lock_class_key *key);
c6f3a97f 566
6f2b9b9a
JB
567void init_timer_on_stack_key(struct timer_list *timer,
568 const char *name,
569 struct lock_class_key *key)
c6f3a97f
TG
570{
571 debug_object_init_on_stack(timer, &timer_debug_descr);
6f2b9b9a 572 __init_timer(timer, name, key);
c6f3a97f 573}
6f2b9b9a 574EXPORT_SYMBOL_GPL(init_timer_on_stack_key);
c6f3a97f
TG
575
576void destroy_timer_on_stack(struct timer_list *timer)
577{
578 debug_object_free(timer, &timer_debug_descr);
579}
580EXPORT_SYMBOL_GPL(destroy_timer_on_stack);
581
582#else
583static inline void debug_timer_init(struct timer_list *timer) { }
584static inline void debug_timer_activate(struct timer_list *timer) { }
585static inline void debug_timer_deactivate(struct timer_list *timer) { }
dc4218bd 586static inline void debug_timer_assert_init(struct timer_list *timer) { }
c6f3a97f
TG
587#endif
588
2b022e3d
XG
589static inline void debug_init(struct timer_list *timer)
590{
591 debug_timer_init(timer);
592 trace_timer_init(timer);
593}
594
595static inline void
596debug_activate(struct timer_list *timer, unsigned long expires)
597{
598 debug_timer_activate(timer);
599 trace_timer_start(timer, expires);
600}
601
602static inline void debug_deactivate(struct timer_list *timer)
603{
604 debug_timer_deactivate(timer);
605 trace_timer_cancel(timer);
606}
607
dc4218bd
CC
608static inline void debug_assert_init(struct timer_list *timer)
609{
610 debug_timer_assert_init(timer);
611}
612
6f2b9b9a
JB
613static void __init_timer(struct timer_list *timer,
614 const char *name,
615 struct lock_class_key *key)
55c888d6
ON
616{
617 timer->entry.next = NULL;
bfe5d834 618 timer->base = __raw_get_cpu_var(tvec_bases);
3bbb9ec9 619 timer->slack = -1;
82f67cd9
IM
620#ifdef CONFIG_TIMER_STATS
621 timer->start_site = NULL;
622 timer->start_pid = -1;
623 memset(timer->start_comm, 0, TASK_COMM_LEN);
624#endif
6f2b9b9a 625 lockdep_init_map(&timer->lockdep_map, name, key, 0);
55c888d6 626}
c6f3a97f 627
8cadd283
JB
628void setup_deferrable_timer_on_stack_key(struct timer_list *timer,
629 const char *name,
630 struct lock_class_key *key,
631 void (*function)(unsigned long),
632 unsigned long data)
633{
634 timer->function = function;
635 timer->data = data;
636 init_timer_on_stack_key(timer, name, key);
637 timer_set_deferrable(timer);
638}
639EXPORT_SYMBOL_GPL(setup_deferrable_timer_on_stack_key);
640
c6f3a97f 641/**
633fe795 642 * init_timer_key - initialize a timer
c6f3a97f 643 * @timer: the timer to be initialized
633fe795
RD
644 * @name: name of the timer
645 * @key: lockdep class key of the fake lock used for tracking timer
646 * sync lock dependencies
c6f3a97f 647 *
633fe795 648 * init_timer_key() must be done to a timer prior calling *any* of the
c6f3a97f
TG
649 * other timer functions.
650 */
6f2b9b9a
JB
651void init_timer_key(struct timer_list *timer,
652 const char *name,
653 struct lock_class_key *key)
c6f3a97f 654{
2b022e3d 655 debug_init(timer);
6f2b9b9a 656 __init_timer(timer, name, key);
c6f3a97f 657}
6f2b9b9a 658EXPORT_SYMBOL(init_timer_key);
55c888d6 659
6f2b9b9a
JB
660void init_timer_deferrable_key(struct timer_list *timer,
661 const char *name,
662 struct lock_class_key *key)
6e453a67 663{
6f2b9b9a 664 init_timer_key(timer, name, key);
6e453a67
VP
665 timer_set_deferrable(timer);
666}
6f2b9b9a 667EXPORT_SYMBOL(init_timer_deferrable_key);
6e453a67 668
ec44bc7a 669static inline void detach_timer(struct timer_list *timer, bool clear_pending)
55c888d6
ON
670{
671 struct list_head *entry = &timer->entry;
672
2b022e3d 673 debug_deactivate(timer);
c6f3a97f 674
55c888d6
ON
675 __list_del(entry->prev, entry->next);
676 if (clear_pending)
677 entry->next = NULL;
678 entry->prev = LIST_POISON2;
679}
680
ec44bc7a
TG
681static int detach_if_pending(struct timer_list *timer, struct tvec_base *base,
682 bool clear_pending)
683{
684 if (!timer_pending(timer))
685 return 0;
686
687 detach_timer(timer, clear_pending);
688 if (timer->expires == base->next_timer &&
689 !tbase_get_deferrable(timer->base))
690 base->next_timer = base->timer_jiffies;
691 return 1;
692}
693
55c888d6 694/*
3691c519 695 * We are using hashed locking: holding per_cpu(tvec_bases).lock
55c888d6
ON
696 * means that all timers which are tied to this base via timer->base are
697 * locked, and the base itself is locked too.
698 *
699 * So __run_timers/migrate_timers can safely modify all timers which could
700 * be found on ->tvX lists.
701 *
702 * When the timer's base is locked, and the timer removed from list, it is
703 * possible to set timer->base = NULL and drop the lock: the timer remains
704 * locked.
705 */
a6fa8e5a 706static struct tvec_base *lock_timer_base(struct timer_list *timer,
55c888d6 707 unsigned long *flags)
89e7e374 708 __acquires(timer->base->lock)
55c888d6 709{
a6fa8e5a 710 struct tvec_base *base;
55c888d6
ON
711
712 for (;;) {
a6fa8e5a 713 struct tvec_base *prelock_base = timer->base;
6e453a67 714 base = tbase_get_base(prelock_base);
55c888d6
ON
715 if (likely(base != NULL)) {
716 spin_lock_irqsave(&base->lock, *flags);
6e453a67 717 if (likely(prelock_base == timer->base))
55c888d6
ON
718 return base;
719 /* The timer has migrated to another CPU */
720 spin_unlock_irqrestore(&base->lock, *flags);
721 }
722 cpu_relax();
723 }
724}
725
74019224 726static inline int
597d0275
AB
727__mod_timer(struct timer_list *timer, unsigned long expires,
728 bool pending_only, int pinned)
1da177e4 729{
a6fa8e5a 730 struct tvec_base *base, *new_base;
1da177e4 731 unsigned long flags;
eea08f32 732 int ret = 0 , cpu;
1da177e4 733
82f67cd9 734 timer_stats_timer_set_start_info(timer);
1da177e4 735 BUG_ON(!timer->function);
1da177e4 736
55c888d6
ON
737 base = lock_timer_base(timer, &flags);
738
ec44bc7a
TG
739 ret = detach_if_pending(timer, base, false);
740 if (!ret && pending_only)
741 goto out_unlock;
55c888d6 742
2b022e3d 743 debug_activate(timer, expires);
c6f3a97f 744
eea08f32
AB
745 cpu = smp_processor_id();
746
747#if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
83cd4fe2
VP
748 if (!pinned && get_sysctl_timer_migration() && idle_cpu(cpu))
749 cpu = get_nohz_timer_target();
eea08f32
AB
750#endif
751 new_base = per_cpu(tvec_bases, cpu);
752
3691c519 753 if (base != new_base) {
1da177e4 754 /*
55c888d6
ON
755 * We are trying to schedule the timer on the local CPU.
756 * However we can't change timer's base while it is running,
757 * otherwise del_timer_sync() can't detect that the timer's
758 * handler yet has not finished. This also guarantees that
759 * the timer is serialized wrt itself.
1da177e4 760 */
a2c348fe 761 if (likely(base->running_timer != timer)) {
55c888d6 762 /* See the comment in lock_timer_base() */
6e453a67 763 timer_set_base(timer, NULL);
55c888d6 764 spin_unlock(&base->lock);
a2c348fe
ON
765 base = new_base;
766 spin_lock(&base->lock);
6e453a67 767 timer_set_base(timer, base);
1da177e4
LT
768 }
769 }
770
1da177e4 771 timer->expires = expires;
a2c348fe 772 internal_add_timer(base, timer);
74019224
IM
773
774out_unlock:
a2c348fe 775 spin_unlock_irqrestore(&base->lock, flags);
1da177e4
LT
776
777 return ret;
778}
779
2aae4a10 780/**
74019224
IM
781 * mod_timer_pending - modify a pending timer's timeout
782 * @timer: the pending timer to be modified
783 * @expires: new timeout in jiffies
1da177e4 784 *
74019224
IM
785 * mod_timer_pending() is the same for pending timers as mod_timer(),
786 * but will not re-activate and modify already deleted timers.
787 *
788 * It is useful for unserialized use of timers.
1da177e4 789 */
74019224 790int mod_timer_pending(struct timer_list *timer, unsigned long expires)
1da177e4 791{
597d0275 792 return __mod_timer(timer, expires, true, TIMER_NOT_PINNED);
1da177e4 793}
74019224 794EXPORT_SYMBOL(mod_timer_pending);
1da177e4 795
3bbb9ec9
AV
796/*
797 * Decide where to put the timer while taking the slack into account
798 *
799 * Algorithm:
800 * 1) calculate the maximum (absolute) time
801 * 2) calculate the highest bit where the expires and new max are different
802 * 3) use this bit to make a mask
803 * 4) use the bitmask to round down the maximum time, so that all last
804 * bits are zeros
805 */
806static inline
807unsigned long apply_slack(struct timer_list *timer, unsigned long expires)
808{
809 unsigned long expires_limit, mask;
810 int bit;
811
8e63d779 812 if (timer->slack >= 0) {
f00e047e 813 expires_limit = expires + timer->slack;
8e63d779 814 } else {
1c3cc116
SAS
815 long delta = expires - jiffies;
816
817 if (delta < 256)
818 return expires;
3bbb9ec9 819
1c3cc116 820 expires_limit = expires + delta / 256;
8e63d779 821 }
3bbb9ec9 822 mask = expires ^ expires_limit;
3bbb9ec9
AV
823 if (mask == 0)
824 return expires;
825
826 bit = find_last_bit(&mask, BITS_PER_LONG);
827
828 mask = (1 << bit) - 1;
829
830 expires_limit = expires_limit & ~(mask);
831
832 return expires_limit;
833}
834
2aae4a10 835/**
1da177e4
LT
836 * mod_timer - modify a timer's timeout
837 * @timer: the timer to be modified
2aae4a10 838 * @expires: new timeout in jiffies
1da177e4 839 *
72fd4a35 840 * mod_timer() is a more efficient way to update the expire field of an
1da177e4
LT
841 * active timer (if the timer is inactive it will be activated)
842 *
843 * mod_timer(timer, expires) is equivalent to:
844 *
845 * del_timer(timer); timer->expires = expires; add_timer(timer);
846 *
847 * Note that if there are multiple unserialized concurrent users of the
848 * same timer, then mod_timer() is the only safe way to modify the timeout,
849 * since add_timer() cannot modify an already running timer.
850 *
851 * The function returns whether it has modified a pending timer or not.
852 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
853 * active timer returns 1.)
854 */
855int mod_timer(struct timer_list *timer, unsigned long expires)
856{
1c3cc116
SAS
857 expires = apply_slack(timer, expires);
858
1da177e4
LT
859 /*
860 * This is a common optimization triggered by the
861 * networking code - if the timer is re-modified
862 * to be the same thing then just return:
863 */
4841158b 864 if (timer_pending(timer) && timer->expires == expires)
1da177e4
LT
865 return 1;
866
597d0275 867 return __mod_timer(timer, expires, false, TIMER_NOT_PINNED);
1da177e4 868}
1da177e4
LT
869EXPORT_SYMBOL(mod_timer);
870
597d0275
AB
871/**
872 * mod_timer_pinned - modify a timer's timeout
873 * @timer: the timer to be modified
874 * @expires: new timeout in jiffies
875 *
876 * mod_timer_pinned() is a way to update the expire field of an
877 * active timer (if the timer is inactive it will be activated)
048a0e8f
PM
878 * and to ensure that the timer is scheduled on the current CPU.
879 *
880 * Note that this does not prevent the timer from being migrated
881 * when the current CPU goes offline. If this is a problem for
882 * you, use CPU-hotplug notifiers to handle it correctly, for
883 * example, cancelling the timer when the corresponding CPU goes
884 * offline.
597d0275
AB
885 *
886 * mod_timer_pinned(timer, expires) is equivalent to:
887 *
888 * del_timer(timer); timer->expires = expires; add_timer(timer);
889 */
890int mod_timer_pinned(struct timer_list *timer, unsigned long expires)
891{
892 if (timer->expires == expires && timer_pending(timer))
893 return 1;
894
895 return __mod_timer(timer, expires, false, TIMER_PINNED);
896}
897EXPORT_SYMBOL(mod_timer_pinned);
898
74019224
IM
899/**
900 * add_timer - start a timer
901 * @timer: the timer to be added
902 *
903 * The kernel will do a ->function(->data) callback from the
904 * timer interrupt at the ->expires point in the future. The
905 * current time is 'jiffies'.
906 *
907 * The timer's ->expires, ->function (and if the handler uses it, ->data)
908 * fields must be set prior calling this function.
909 *
910 * Timers with an ->expires field in the past will be executed in the next
911 * timer tick.
912 */
913void add_timer(struct timer_list *timer)
914{
915 BUG_ON(timer_pending(timer));
916 mod_timer(timer, timer->expires);
917}
918EXPORT_SYMBOL(add_timer);
919
920/**
921 * add_timer_on - start a timer on a particular CPU
922 * @timer: the timer to be added
923 * @cpu: the CPU to start it on
924 *
925 * This is not very scalable on SMP. Double adds are not possible.
926 */
927void add_timer_on(struct timer_list *timer, int cpu)
928{
929 struct tvec_base *base = per_cpu(tvec_bases, cpu);
930 unsigned long flags;
931
932 timer_stats_timer_set_start_info(timer);
933 BUG_ON(timer_pending(timer) || !timer->function);
934 spin_lock_irqsave(&base->lock, flags);
935 timer_set_base(timer, base);
2b022e3d 936 debug_activate(timer, timer->expires);
74019224
IM
937 internal_add_timer(base, timer);
938 /*
939 * Check whether the other CPU is idle and needs to be
940 * triggered to reevaluate the timer wheel when nohz is
941 * active. We are protected against the other CPU fiddling
942 * with the timer by holding the timer base lock. This also
943 * makes sure that a CPU on the way to idle can not evaluate
944 * the timer wheel.
945 */
946 wake_up_idle_cpu(cpu);
947 spin_unlock_irqrestore(&base->lock, flags);
948}
a9862e05 949EXPORT_SYMBOL_GPL(add_timer_on);
74019224 950
2aae4a10 951/**
1da177e4
LT
952 * del_timer - deactive a timer.
953 * @timer: the timer to be deactivated
954 *
955 * del_timer() deactivates a timer - this works on both active and inactive
956 * timers.
957 *
958 * The function returns whether it has deactivated a pending timer or not.
959 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
960 * active timer returns 1.)
961 */
962int del_timer(struct timer_list *timer)
963{
a6fa8e5a 964 struct tvec_base *base;
1da177e4 965 unsigned long flags;
55c888d6 966 int ret = 0;
1da177e4 967
dc4218bd
CC
968 debug_assert_init(timer);
969
82f67cd9 970 timer_stats_timer_clear_start_info(timer);
55c888d6
ON
971 if (timer_pending(timer)) {
972 base = lock_timer_base(timer, &flags);
ec44bc7a 973 ret = detach_if_pending(timer, base, true);
1da177e4 974 spin_unlock_irqrestore(&base->lock, flags);
1da177e4 975 }
1da177e4 976
55c888d6 977 return ret;
1da177e4 978}
1da177e4
LT
979EXPORT_SYMBOL(del_timer);
980
2aae4a10
REB
981/**
982 * try_to_del_timer_sync - Try to deactivate a timer
983 * @timer: timer do del
984 *
fd450b73
ON
985 * This function tries to deactivate a timer. Upon successful (ret >= 0)
986 * exit the timer is not queued and the handler is not running on any CPU.
fd450b73
ON
987 */
988int try_to_del_timer_sync(struct timer_list *timer)
989{
a6fa8e5a 990 struct tvec_base *base;
fd450b73
ON
991 unsigned long flags;
992 int ret = -1;
993
dc4218bd
CC
994 debug_assert_init(timer);
995
fd450b73
ON
996 base = lock_timer_base(timer, &flags);
997
ec44bc7a
TG
998 if (base->running_timer != timer) {
999 timer_stats_timer_clear_start_info(timer);
1000 ret = detach_if_pending(timer, base, true);
fd450b73 1001 }
fd450b73
ON
1002 spin_unlock_irqrestore(&base->lock, flags);
1003
1004 return ret;
1005}
e19dff1f
DH
1006EXPORT_SYMBOL(try_to_del_timer_sync);
1007
6f1bc451 1008#ifdef CONFIG_SMP
2aae4a10 1009/**
1da177e4
LT
1010 * del_timer_sync - deactivate a timer and wait for the handler to finish.
1011 * @timer: the timer to be deactivated
1012 *
1013 * This function only differs from del_timer() on SMP: besides deactivating
1014 * the timer it also makes sure the handler has finished executing on other
1015 * CPUs.
1016 *
72fd4a35 1017 * Synchronization rules: Callers must prevent restarting of the timer,
1da177e4 1018 * otherwise this function is meaningless. It must not be called from
7ff20792 1019 * interrupt contexts. The caller must not hold locks which would prevent
55c888d6
ON
1020 * completion of the timer's handler. The timer's handler must not call
1021 * add_timer_on(). Upon exit the timer is not queued and the handler is
1022 * not running on any CPU.
1da177e4 1023 *
48228f7b
SR
1024 * Note: You must not hold locks that are held in interrupt context
1025 * while calling this function. Even if the lock has nothing to do
1026 * with the timer in question. Here's why:
1027 *
1028 * CPU0 CPU1
1029 * ---- ----
1030 * <SOFTIRQ>
1031 * call_timer_fn();
1032 * base->running_timer = mytimer;
1033 * spin_lock_irq(somelock);
1034 * <IRQ>
1035 * spin_lock(somelock);
1036 * del_timer_sync(mytimer);
1037 * while (base->running_timer == mytimer);
1038 *
1039 * Now del_timer_sync() will never return and never release somelock.
1040 * The interrupt on the other CPU is waiting to grab somelock but
1041 * it has interrupted the softirq that CPU0 is waiting to finish.
1042 *
1da177e4 1043 * The function returns whether it has deactivated a pending timer or not.
1da177e4
LT
1044 */
1045int del_timer_sync(struct timer_list *timer)
1046{
6f2b9b9a 1047#ifdef CONFIG_LOCKDEP
f266a511
PZ
1048 unsigned long flags;
1049
48228f7b
SR
1050 /*
1051 * If lockdep gives a backtrace here, please reference
1052 * the synchronization rules above.
1053 */
7ff20792 1054 local_irq_save(flags);
6f2b9b9a
JB
1055 lock_map_acquire(&timer->lockdep_map);
1056 lock_map_release(&timer->lockdep_map);
7ff20792 1057 local_irq_restore(flags);
6f2b9b9a 1058#endif
466bd303
YZ
1059 /*
1060 * don't use it in hardirq context, because it
1061 * could lead to deadlock.
1062 */
1063 WARN_ON(in_irq());
fd450b73
ON
1064 for (;;) {
1065 int ret = try_to_del_timer_sync(timer);
1066 if (ret >= 0)
1067 return ret;
a0009652 1068 cpu_relax();
fd450b73 1069 }
1da177e4 1070}
55c888d6 1071EXPORT_SYMBOL(del_timer_sync);
1da177e4
LT
1072#endif
1073
a6fa8e5a 1074static int cascade(struct tvec_base *base, struct tvec *tv, int index)
1da177e4
LT
1075{
1076 /* cascade all the timers from tv up one level */
3439dd86
P
1077 struct timer_list *timer, *tmp;
1078 struct list_head tv_list;
1079
1080 list_replace_init(tv->vec + index, &tv_list);
1da177e4 1081
1da177e4 1082 /*
3439dd86
P
1083 * We are removing _all_ timers from the list, so we
1084 * don't have to detach them individually.
1da177e4 1085 */
3439dd86 1086 list_for_each_entry_safe(timer, tmp, &tv_list, entry) {
6e453a67 1087 BUG_ON(tbase_get_base(timer->base) != base);
facbb4a7
TG
1088 /* No accounting, while moving them */
1089 __internal_add_timer(base, timer);
1da177e4 1090 }
1da177e4
LT
1091
1092 return index;
1093}
1094
576da126
TG
1095static void call_timer_fn(struct timer_list *timer, void (*fn)(unsigned long),
1096 unsigned long data)
1097{
1098 int preempt_count = preempt_count();
1099
1100#ifdef CONFIG_LOCKDEP
1101 /*
1102 * It is permissible to free the timer from inside the
1103 * function that is called from it, this we need to take into
1104 * account for lockdep too. To avoid bogus "held lock freed"
1105 * warnings as well as problems when looking into
1106 * timer->lockdep_map, make a copy and use that here.
1107 */
4d82a1de
PZ
1108 struct lockdep_map lockdep_map;
1109
1110 lockdep_copy_map(&lockdep_map, &timer->lockdep_map);
576da126
TG
1111#endif
1112 /*
1113 * Couple the lock chain with the lock chain at
1114 * del_timer_sync() by acquiring the lock_map around the fn()
1115 * call here and in del_timer_sync().
1116 */
1117 lock_map_acquire(&lockdep_map);
1118
1119 trace_timer_expire_entry(timer);
1120 fn(data);
1121 trace_timer_expire_exit(timer);
1122
1123 lock_map_release(&lockdep_map);
1124
1125 if (preempt_count != preempt_count()) {
802702e0
TG
1126 WARN_ONCE(1, "timer: %pF preempt leak: %08x -> %08x\n",
1127 fn, preempt_count, preempt_count());
1128 /*
1129 * Restore the preempt count. That gives us a decent
1130 * chance to survive and extract information. If the
1131 * callback kept a lock held, bad luck, but not worse
1132 * than the BUG() we had.
1133 */
1134 preempt_count() = preempt_count;
576da126
TG
1135 }
1136}
1137
2aae4a10
REB
1138#define INDEX(N) ((base->timer_jiffies >> (TVR_BITS + (N) * TVN_BITS)) & TVN_MASK)
1139
1140/**
1da177e4
LT
1141 * __run_timers - run all expired timers (if any) on this CPU.
1142 * @base: the timer vector to be processed.
1143 *
1144 * This function cascades all vectors and executes all expired timer
1145 * vectors.
1146 */
a6fa8e5a 1147static inline void __run_timers(struct tvec_base *base)
1da177e4
LT
1148{
1149 struct timer_list *timer;
1150
3691c519 1151 spin_lock_irq(&base->lock);
1da177e4 1152 while (time_after_eq(jiffies, base->timer_jiffies)) {
626ab0e6 1153 struct list_head work_list;
1da177e4 1154 struct list_head *head = &work_list;
6819457d 1155 int index = base->timer_jiffies & TVR_MASK;
626ab0e6 1156
1da177e4
LT
1157 /*
1158 * Cascade timers:
1159 */
1160 if (!index &&
1161 (!cascade(base, &base->tv2, INDEX(0))) &&
1162 (!cascade(base, &base->tv3, INDEX(1))) &&
1163 !cascade(base, &base->tv4, INDEX(2)))
1164 cascade(base, &base->tv5, INDEX(3));
626ab0e6
ON
1165 ++base->timer_jiffies;
1166 list_replace_init(base->tv1.vec + index, &work_list);
55c888d6 1167 while (!list_empty(head)) {
1da177e4
LT
1168 void (*fn)(unsigned long);
1169 unsigned long data;
1170
b5e61818 1171 timer = list_first_entry(head, struct timer_list,entry);
6819457d
TG
1172 fn = timer->function;
1173 data = timer->data;
1da177e4 1174
82f67cd9
IM
1175 timer_stats_account_timer(timer);
1176
6f1bc451 1177 base->running_timer = timer;
ec44bc7a 1178 detach_timer(timer, true);
6f2b9b9a 1179
3691c519 1180 spin_unlock_irq(&base->lock);
576da126 1181 call_timer_fn(timer, fn, data);
3691c519 1182 spin_lock_irq(&base->lock);
1da177e4
LT
1183 }
1184 }
6f1bc451 1185 base->running_timer = NULL;
3691c519 1186 spin_unlock_irq(&base->lock);
1da177e4
LT
1187}
1188
ee9c5785 1189#ifdef CONFIG_NO_HZ
1da177e4
LT
1190/*
1191 * Find out when the next timer event is due to happen. This
90cba64a
RD
1192 * is used on S/390 to stop all activity when a CPU is idle.
1193 * This function needs to be called with interrupts disabled.
1da177e4 1194 */
a6fa8e5a 1195static unsigned long __next_timer_interrupt(struct tvec_base *base)
1da177e4 1196{
1cfd6849 1197 unsigned long timer_jiffies = base->timer_jiffies;
eaad084b 1198 unsigned long expires = timer_jiffies + NEXT_TIMER_MAX_DELTA;
1cfd6849 1199 int index, slot, array, found = 0;
1da177e4 1200 struct timer_list *nte;
a6fa8e5a 1201 struct tvec *varray[4];
1da177e4
LT
1202
1203 /* Look for timer events in tv1. */
1cfd6849 1204 index = slot = timer_jiffies & TVR_MASK;
1da177e4 1205 do {
1cfd6849 1206 list_for_each_entry(nte, base->tv1.vec + slot, entry) {
6819457d
TG
1207 if (tbase_get_deferrable(nte->base))
1208 continue;
6e453a67 1209
1cfd6849 1210 found = 1;
1da177e4 1211 expires = nte->expires;
1cfd6849
TG
1212 /* Look at the cascade bucket(s)? */
1213 if (!index || slot < index)
1214 goto cascade;
1215 return expires;
1da177e4 1216 }
1cfd6849
TG
1217 slot = (slot + 1) & TVR_MASK;
1218 } while (slot != index);
1219
1220cascade:
1221 /* Calculate the next cascade event */
1222 if (index)
1223 timer_jiffies += TVR_SIZE - index;
1224 timer_jiffies >>= TVR_BITS;
1da177e4
LT
1225
1226 /* Check tv2-tv5. */
1227 varray[0] = &base->tv2;
1228 varray[1] = &base->tv3;
1229 varray[2] = &base->tv4;
1230 varray[3] = &base->tv5;
1cfd6849
TG
1231
1232 for (array = 0; array < 4; array++) {
a6fa8e5a 1233 struct tvec *varp = varray[array];
1cfd6849
TG
1234
1235 index = slot = timer_jiffies & TVN_MASK;
1da177e4 1236 do {
1cfd6849 1237 list_for_each_entry(nte, varp->vec + slot, entry) {
a0419888
JH
1238 if (tbase_get_deferrable(nte->base))
1239 continue;
1240
1cfd6849 1241 found = 1;
1da177e4
LT
1242 if (time_before(nte->expires, expires))
1243 expires = nte->expires;
1cfd6849
TG
1244 }
1245 /*
1246 * Do we still search for the first timer or are
1247 * we looking up the cascade buckets ?
1248 */
1249 if (found) {
1250 /* Look at the cascade bucket(s)? */
1251 if (!index || slot < index)
1252 break;
1253 return expires;
1254 }
1255 slot = (slot + 1) & TVN_MASK;
1256 } while (slot != index);
1257
1258 if (index)
1259 timer_jiffies += TVN_SIZE - index;
1260 timer_jiffies >>= TVN_BITS;
1da177e4 1261 }
1cfd6849
TG
1262 return expires;
1263}
69239749 1264
1cfd6849
TG
1265/*
1266 * Check, if the next hrtimer event is before the next timer wheel
1267 * event:
1268 */
1269static unsigned long cmp_next_hrtimer_event(unsigned long now,
1270 unsigned long expires)
1271{
1272 ktime_t hr_delta = hrtimer_get_next_event();
1273 struct timespec tsdelta;
9501b6cf 1274 unsigned long delta;
1cfd6849
TG
1275
1276 if (hr_delta.tv64 == KTIME_MAX)
1277 return expires;
0662b713 1278
9501b6cf
TG
1279 /*
1280 * Expired timer available, let it expire in the next tick
1281 */
1282 if (hr_delta.tv64 <= 0)
1283 return now + 1;
69239749 1284
1cfd6849 1285 tsdelta = ktime_to_timespec(hr_delta);
9501b6cf 1286 delta = timespec_to_jiffies(&tsdelta);
eaad084b
TG
1287
1288 /*
1289 * Limit the delta to the max value, which is checked in
1290 * tick_nohz_stop_sched_tick():
1291 */
1292 if (delta > NEXT_TIMER_MAX_DELTA)
1293 delta = NEXT_TIMER_MAX_DELTA;
1294
9501b6cf
TG
1295 /*
1296 * Take rounding errors in to account and make sure, that it
1297 * expires in the next tick. Otherwise we go into an endless
1298 * ping pong due to tick_nohz_stop_sched_tick() retriggering
1299 * the timer softirq
1300 */
1301 if (delta < 1)
1302 delta = 1;
1303 now += delta;
1cfd6849
TG
1304 if (time_before(now, expires))
1305 return now;
1da177e4
LT
1306 return expires;
1307}
1cfd6849
TG
1308
1309/**
8dce39c2 1310 * get_next_timer_interrupt - return the jiffy of the next pending timer
05fb6bf0 1311 * @now: current time (in jiffies)
1cfd6849 1312 */
fd064b9b 1313unsigned long get_next_timer_interrupt(unsigned long now)
1cfd6849 1314{
7496351a 1315 struct tvec_base *base = __this_cpu_read(tvec_bases);
fd064b9b 1316 unsigned long expires;
1cfd6849 1317
dbd87b5a
HC
1318 /*
1319 * Pretend that there is no timer pending if the cpu is offline.
1320 * Possible pending timers will be migrated later to an active cpu.
1321 */
1322 if (cpu_is_offline(smp_processor_id()))
1323 return now + NEXT_TIMER_MAX_DELTA;
1cfd6849 1324 spin_lock(&base->lock);
97fd9ed4
MS
1325 if (time_before_eq(base->next_timer, base->timer_jiffies))
1326 base->next_timer = __next_timer_interrupt(base);
1327 expires = base->next_timer;
1cfd6849
TG
1328 spin_unlock(&base->lock);
1329
1330 if (time_before_eq(expires, now))
1331 return now;
1332
1333 return cmp_next_hrtimer_event(now, expires);
1334}
1da177e4
LT
1335#endif
1336
1da177e4 1337/*
5b4db0c2 1338 * Called from the timer interrupt handler to charge one tick to the current
1da177e4
LT
1339 * process. user_tick is 1 if the tick is user time, 0 for system.
1340 */
1341void update_process_times(int user_tick)
1342{
1343 struct task_struct *p = current;
1344 int cpu = smp_processor_id();
1345
1346 /* Note: this timer irq context must be accounted for as well. */
fa13a5a1 1347 account_process_tick(p, user_tick);
1da177e4 1348 run_local_timers();
a157229c 1349 rcu_check_callbacks(cpu, user_tick);
b845b517 1350 printk_tick();
e360adbe
PZ
1351#ifdef CONFIG_IRQ_WORK
1352 if (in_irq())
1353 irq_work_run();
1354#endif
1da177e4 1355 scheduler_tick();
6819457d 1356 run_posix_cpu_timers(p);
1da177e4
LT
1357}
1358
1da177e4
LT
1359/*
1360 * This function runs timers and the timer-tq in bottom half context.
1361 */
1362static void run_timer_softirq(struct softirq_action *h)
1363{
7496351a 1364 struct tvec_base *base = __this_cpu_read(tvec_bases);
1da177e4 1365
d3d74453 1366 hrtimer_run_pending();
82f67cd9 1367
1da177e4
LT
1368 if (time_after_eq(jiffies, base->timer_jiffies))
1369 __run_timers(base);
1370}
1371
1372/*
1373 * Called by the local, per-CPU timer interrupt on SMP.
1374 */
1375void run_local_timers(void)
1376{
d3d74453 1377 hrtimer_run_queues();
1da177e4
LT
1378 raise_softirq(TIMER_SOFTIRQ);
1379}
1380
1da177e4
LT
1381#ifdef __ARCH_WANT_SYS_ALARM
1382
1383/*
1384 * For backwards compatibility? This can be done in libc so Alpha
1385 * and all newer ports shouldn't need it.
1386 */
58fd3aa2 1387SYSCALL_DEFINE1(alarm, unsigned int, seconds)
1da177e4 1388{
c08b8a49 1389 return alarm_setitimer(seconds);
1da177e4
LT
1390}
1391
1392#endif
1393
1394#ifndef __alpha__
1395
1396/*
1397 * The Alpha uses getxpid, getxuid, and getxgid instead. Maybe this
1398 * should be moved into arch/i386 instead?
1399 */
1400
1401/**
1402 * sys_getpid - return the thread group id of the current process
1403 *
1404 * Note, despite the name, this returns the tgid not the pid. The tgid and
1405 * the pid are identical unless CLONE_THREAD was specified on clone() in
1406 * which case the tgid is the same in all threads of the same group.
1407 *
1408 * This is SMP safe as current->tgid does not change.
1409 */
58fd3aa2 1410SYSCALL_DEFINE0(getpid)
1da177e4 1411{
b488893a 1412 return task_tgid_vnr(current);
1da177e4
LT
1413}
1414
1415/*
6997a6fa
KK
1416 * Accessing ->real_parent is not SMP-safe, it could
1417 * change from under us. However, we can use a stale
1418 * value of ->real_parent under rcu_read_lock(), see
1419 * release_task()->call_rcu(delayed_put_task_struct).
1da177e4 1420 */
dbf040d9 1421SYSCALL_DEFINE0(getppid)
1da177e4
LT
1422{
1423 int pid;
1da177e4 1424
6997a6fa 1425 rcu_read_lock();
031af165 1426 pid = task_tgid_vnr(rcu_dereference(current->real_parent));
6997a6fa 1427 rcu_read_unlock();
1da177e4 1428
1da177e4
LT
1429 return pid;
1430}
1431
dbf040d9 1432SYSCALL_DEFINE0(getuid)
1da177e4
LT
1433{
1434 /* Only we change this so SMP safe */
a29c33f4 1435 return from_kuid_munged(current_user_ns(), current_uid());
1da177e4
LT
1436}
1437
dbf040d9 1438SYSCALL_DEFINE0(geteuid)
1da177e4
LT
1439{
1440 /* Only we change this so SMP safe */
a29c33f4 1441 return from_kuid_munged(current_user_ns(), current_euid());
1da177e4
LT
1442}
1443
dbf040d9 1444SYSCALL_DEFINE0(getgid)
1da177e4
LT
1445{
1446 /* Only we change this so SMP safe */
a29c33f4 1447 return from_kgid_munged(current_user_ns(), current_gid());
1da177e4
LT
1448}
1449
dbf040d9 1450SYSCALL_DEFINE0(getegid)
1da177e4
LT
1451{
1452 /* Only we change this so SMP safe */
a29c33f4 1453 return from_kgid_munged(current_user_ns(), current_egid());
1da177e4
LT
1454}
1455
1456#endif
1457
1458static void process_timeout(unsigned long __data)
1459{
36c8b586 1460 wake_up_process((struct task_struct *)__data);
1da177e4
LT
1461}
1462
1463/**
1464 * schedule_timeout - sleep until timeout
1465 * @timeout: timeout value in jiffies
1466 *
1467 * Make the current task sleep until @timeout jiffies have
1468 * elapsed. The routine will return immediately unless
1469 * the current task state has been set (see set_current_state()).
1470 *
1471 * You can set the task state as follows -
1472 *
1473 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1474 * pass before the routine returns. The routine will return 0
1475 *
1476 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1477 * delivered to the current task. In this case the remaining time
1478 * in jiffies will be returned, or 0 if the timer expired in time
1479 *
1480 * The current task state is guaranteed to be TASK_RUNNING when this
1481 * routine returns.
1482 *
1483 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1484 * the CPU away without a bound on the timeout. In this case the return
1485 * value will be %MAX_SCHEDULE_TIMEOUT.
1486 *
1487 * In all cases the return value is guaranteed to be non-negative.
1488 */
7ad5b3a5 1489signed long __sched schedule_timeout(signed long timeout)
1da177e4
LT
1490{
1491 struct timer_list timer;
1492 unsigned long expire;
1493
1494 switch (timeout)
1495 {
1496 case MAX_SCHEDULE_TIMEOUT:
1497 /*
1498 * These two special cases are useful to be comfortable
1499 * in the caller. Nothing more. We could take
1500 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1501 * but I' d like to return a valid offset (>=0) to allow
1502 * the caller to do everything it want with the retval.
1503 */
1504 schedule();
1505 goto out;
1506 default:
1507 /*
1508 * Another bit of PARANOID. Note that the retval will be
1509 * 0 since no piece of kernel is supposed to do a check
1510 * for a negative retval of schedule_timeout() (since it
1511 * should never happens anyway). You just have the printk()
1512 * that will tell you if something is gone wrong and where.
1513 */
5b149bcc 1514 if (timeout < 0) {
1da177e4 1515 printk(KERN_ERR "schedule_timeout: wrong timeout "
5b149bcc
AM
1516 "value %lx\n", timeout);
1517 dump_stack();
1da177e4
LT
1518 current->state = TASK_RUNNING;
1519 goto out;
1520 }
1521 }
1522
1523 expire = timeout + jiffies;
1524
c6f3a97f 1525 setup_timer_on_stack(&timer, process_timeout, (unsigned long)current);
597d0275 1526 __mod_timer(&timer, expire, false, TIMER_NOT_PINNED);
1da177e4
LT
1527 schedule();
1528 del_singleshot_timer_sync(&timer);
1529
c6f3a97f
TG
1530 /* Remove the timer from the object tracker */
1531 destroy_timer_on_stack(&timer);
1532
1da177e4
LT
1533 timeout = expire - jiffies;
1534
1535 out:
1536 return timeout < 0 ? 0 : timeout;
1537}
1da177e4
LT
1538EXPORT_SYMBOL(schedule_timeout);
1539
8a1c1757
AM
1540/*
1541 * We can use __set_current_state() here because schedule_timeout() calls
1542 * schedule() unconditionally.
1543 */
64ed93a2
NA
1544signed long __sched schedule_timeout_interruptible(signed long timeout)
1545{
a5a0d52c
AM
1546 __set_current_state(TASK_INTERRUPTIBLE);
1547 return schedule_timeout(timeout);
64ed93a2
NA
1548}
1549EXPORT_SYMBOL(schedule_timeout_interruptible);
1550
294d5cc2
MW
1551signed long __sched schedule_timeout_killable(signed long timeout)
1552{
1553 __set_current_state(TASK_KILLABLE);
1554 return schedule_timeout(timeout);
1555}
1556EXPORT_SYMBOL(schedule_timeout_killable);
1557
64ed93a2
NA
1558signed long __sched schedule_timeout_uninterruptible(signed long timeout)
1559{
a5a0d52c
AM
1560 __set_current_state(TASK_UNINTERRUPTIBLE);
1561 return schedule_timeout(timeout);
64ed93a2
NA
1562}
1563EXPORT_SYMBOL(schedule_timeout_uninterruptible);
1564
1da177e4 1565/* Thread ID - the internal kernel "pid" */
58fd3aa2 1566SYSCALL_DEFINE0(gettid)
1da177e4 1567{
b488893a 1568 return task_pid_vnr(current);
1da177e4
LT
1569}
1570
2aae4a10 1571/**
d4d23add 1572 * do_sysinfo - fill in sysinfo struct
2aae4a10 1573 * @info: pointer to buffer to fill
6819457d 1574 */
d4d23add 1575int do_sysinfo(struct sysinfo *info)
1da177e4 1576{
1da177e4
LT
1577 unsigned long mem_total, sav_total;
1578 unsigned int mem_unit, bitcount;
2d02494f 1579 struct timespec tp;
1da177e4 1580
d4d23add 1581 memset(info, 0, sizeof(struct sysinfo));
1da177e4 1582
2d02494f
TG
1583 ktime_get_ts(&tp);
1584 monotonic_to_bootbased(&tp);
1585 info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
1da177e4 1586
2d02494f 1587 get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT);
1da177e4 1588
2d02494f 1589 info->procs = nr_threads;
1da177e4 1590
d4d23add
KM
1591 si_meminfo(info);
1592 si_swapinfo(info);
1da177e4
LT
1593
1594 /*
1595 * If the sum of all the available memory (i.e. ram + swap)
1596 * is less than can be stored in a 32 bit unsigned long then
1597 * we can be binary compatible with 2.2.x kernels. If not,
1598 * well, in that case 2.2.x was broken anyways...
1599 *
1600 * -Erik Andersen <andersee@debian.org>
1601 */
1602
d4d23add
KM
1603 mem_total = info->totalram + info->totalswap;
1604 if (mem_total < info->totalram || mem_total < info->totalswap)
1da177e4
LT
1605 goto out;
1606 bitcount = 0;
d4d23add 1607 mem_unit = info->mem_unit;
1da177e4
LT
1608 while (mem_unit > 1) {
1609 bitcount++;
1610 mem_unit >>= 1;
1611 sav_total = mem_total;
1612 mem_total <<= 1;
1613 if (mem_total < sav_total)
1614 goto out;
1615 }
1616
1617 /*
1618 * If mem_total did not overflow, multiply all memory values by
d4d23add 1619 * info->mem_unit and set it to 1. This leaves things compatible
1da177e4
LT
1620 * with 2.2.x, and also retains compatibility with earlier 2.4.x
1621 * kernels...
1622 */
1623
d4d23add
KM
1624 info->mem_unit = 1;
1625 info->totalram <<= bitcount;
1626 info->freeram <<= bitcount;
1627 info->sharedram <<= bitcount;
1628 info->bufferram <<= bitcount;
1629 info->totalswap <<= bitcount;
1630 info->freeswap <<= bitcount;
1631 info->totalhigh <<= bitcount;
1632 info->freehigh <<= bitcount;
1633
1634out:
1635 return 0;
1636}
1637
1e7bfb21 1638SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
d4d23add
KM
1639{
1640 struct sysinfo val;
1641
1642 do_sysinfo(&val);
1da177e4 1643
1da177e4
LT
1644 if (copy_to_user(info, &val, sizeof(struct sysinfo)))
1645 return -EFAULT;
1646
1647 return 0;
1648}
1649
b4be6258 1650static int __cpuinit init_timers_cpu(int cpu)
1da177e4
LT
1651{
1652 int j;
a6fa8e5a 1653 struct tvec_base *base;
b4be6258 1654 static char __cpuinitdata tvec_base_done[NR_CPUS];
55c888d6 1655
ba6edfcd 1656 if (!tvec_base_done[cpu]) {
a4a6198b
JB
1657 static char boot_done;
1658
a4a6198b 1659 if (boot_done) {
ba6edfcd
AM
1660 /*
1661 * The APs use this path later in boot
1662 */
94f6030c
CL
1663 base = kmalloc_node(sizeof(*base),
1664 GFP_KERNEL | __GFP_ZERO,
a4a6198b
JB
1665 cpu_to_node(cpu));
1666 if (!base)
1667 return -ENOMEM;
6e453a67
VP
1668
1669 /* Make sure that tvec_base is 2 byte aligned */
1670 if (tbase_get_deferrable(base)) {
1671 WARN_ON(1);
1672 kfree(base);
1673 return -ENOMEM;
1674 }
ba6edfcd 1675 per_cpu(tvec_bases, cpu) = base;
a4a6198b 1676 } else {
ba6edfcd
AM
1677 /*
1678 * This is for the boot CPU - we use compile-time
1679 * static initialisation because per-cpu memory isn't
1680 * ready yet and because the memory allocators are not
1681 * initialised either.
1682 */
a4a6198b 1683 boot_done = 1;
ba6edfcd 1684 base = &boot_tvec_bases;
a4a6198b 1685 }
ba6edfcd
AM
1686 tvec_base_done[cpu] = 1;
1687 } else {
1688 base = per_cpu(tvec_bases, cpu);
a4a6198b 1689 }
ba6edfcd 1690
3691c519 1691 spin_lock_init(&base->lock);
d730e882 1692
1da177e4
LT
1693 for (j = 0; j < TVN_SIZE; j++) {
1694 INIT_LIST_HEAD(base->tv5.vec + j);
1695 INIT_LIST_HEAD(base->tv4.vec + j);
1696 INIT_LIST_HEAD(base->tv3.vec + j);
1697 INIT_LIST_HEAD(base->tv2.vec + j);
1698 }
1699 for (j = 0; j < TVR_SIZE; j++)
1700 INIT_LIST_HEAD(base->tv1.vec + j);
1701
1702 base->timer_jiffies = jiffies;
97fd9ed4 1703 base->next_timer = base->timer_jiffies;
a4a6198b 1704 return 0;
1da177e4
LT
1705}
1706
1707#ifdef CONFIG_HOTPLUG_CPU
a6fa8e5a 1708static void migrate_timer_list(struct tvec_base *new_base, struct list_head *head)
1da177e4
LT
1709{
1710 struct timer_list *timer;
1711
1712 while (!list_empty(head)) {
b5e61818 1713 timer = list_first_entry(head, struct timer_list, entry);
ec44bc7a 1714 detach_timer(timer, false);
6e453a67 1715 timer_set_base(timer, new_base);
1da177e4 1716 internal_add_timer(new_base, timer);
1da177e4 1717 }
1da177e4
LT
1718}
1719
48ccf3da 1720static void __cpuinit migrate_timers(int cpu)
1da177e4 1721{
a6fa8e5a
PM
1722 struct tvec_base *old_base;
1723 struct tvec_base *new_base;
1da177e4
LT
1724 int i;
1725
1726 BUG_ON(cpu_online(cpu));
a4a6198b
JB
1727 old_base = per_cpu(tvec_bases, cpu);
1728 new_base = get_cpu_var(tvec_bases);
d82f0b0f
ON
1729 /*
1730 * The caller is globally serialized and nobody else
1731 * takes two locks at once, deadlock is not possible.
1732 */
1733 spin_lock_irq(&new_base->lock);
0d180406 1734 spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
3691c519
ON
1735
1736 BUG_ON(old_base->running_timer);
1da177e4 1737
1da177e4 1738 for (i = 0; i < TVR_SIZE; i++)
55c888d6
ON
1739 migrate_timer_list(new_base, old_base->tv1.vec + i);
1740 for (i = 0; i < TVN_SIZE; i++) {
1741 migrate_timer_list(new_base, old_base->tv2.vec + i);
1742 migrate_timer_list(new_base, old_base->tv3.vec + i);
1743 migrate_timer_list(new_base, old_base->tv4.vec + i);
1744 migrate_timer_list(new_base, old_base->tv5.vec + i);
1745 }
1746
0d180406 1747 spin_unlock(&old_base->lock);
d82f0b0f 1748 spin_unlock_irq(&new_base->lock);
1da177e4 1749 put_cpu_var(tvec_bases);
1da177e4
LT
1750}
1751#endif /* CONFIG_HOTPLUG_CPU */
1752
8c78f307 1753static int __cpuinit timer_cpu_notify(struct notifier_block *self,
1da177e4
LT
1754 unsigned long action, void *hcpu)
1755{
1756 long cpu = (long)hcpu;
80b5184c
AM
1757 int err;
1758
1da177e4
LT
1759 switch(action) {
1760 case CPU_UP_PREPARE:
8bb78442 1761 case CPU_UP_PREPARE_FROZEN:
80b5184c
AM
1762 err = init_timers_cpu(cpu);
1763 if (err < 0)
1764 return notifier_from_errno(err);
1da177e4
LT
1765 break;
1766#ifdef CONFIG_HOTPLUG_CPU
1767 case CPU_DEAD:
8bb78442 1768 case CPU_DEAD_FROZEN:
1da177e4
LT
1769 migrate_timers(cpu);
1770 break;
1771#endif
1772 default:
1773 break;
1774 }
1775 return NOTIFY_OK;
1776}
1777
8c78f307 1778static struct notifier_block __cpuinitdata timers_nb = {
1da177e4
LT
1779 .notifier_call = timer_cpu_notify,
1780};
1781
1782
1783void __init init_timers(void)
1784{
07dccf33 1785 int err = timer_cpu_notify(&timers_nb, (unsigned long)CPU_UP_PREPARE,
1da177e4 1786 (void *)(long)smp_processor_id());
07dccf33 1787
82f67cd9
IM
1788 init_timer_stats();
1789
9e506f7a 1790 BUG_ON(err != NOTIFY_OK);
1da177e4 1791 register_cpu_notifier(&timers_nb);
962cf36c 1792 open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
1da177e4
LT
1793}
1794
1da177e4
LT
1795/**
1796 * msleep - sleep safely even with waitqueue interruptions
1797 * @msecs: Time in milliseconds to sleep for
1798 */
1799void msleep(unsigned int msecs)
1800{
1801 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1802
75bcc8c5
NA
1803 while (timeout)
1804 timeout = schedule_timeout_uninterruptible(timeout);
1da177e4
LT
1805}
1806
1807EXPORT_SYMBOL(msleep);
1808
1809/**
96ec3efd 1810 * msleep_interruptible - sleep waiting for signals
1da177e4
LT
1811 * @msecs: Time in milliseconds to sleep for
1812 */
1813unsigned long msleep_interruptible(unsigned int msecs)
1814{
1815 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1816
75bcc8c5
NA
1817 while (timeout && !signal_pending(current))
1818 timeout = schedule_timeout_interruptible(timeout);
1da177e4
LT
1819 return jiffies_to_msecs(timeout);
1820}
1821
1822EXPORT_SYMBOL(msleep_interruptible);
5e7f5a17
PP
1823
1824static int __sched do_usleep_range(unsigned long min, unsigned long max)
1825{
1826 ktime_t kmin;
1827 unsigned long delta;
1828
1829 kmin = ktime_set(0, min * NSEC_PER_USEC);
1830 delta = (max - min) * NSEC_PER_USEC;
1831 return schedule_hrtimeout_range(&kmin, delta, HRTIMER_MODE_REL);
1832}
1833
1834/**
1835 * usleep_range - Drop in replacement for udelay where wakeup is flexible
1836 * @min: Minimum time in usecs to sleep
1837 * @max: Maximum time in usecs to sleep
1838 */
1839void usleep_range(unsigned long min, unsigned long max)
1840{
1841 __set_current_state(TASK_UNINTERRUPTIBLE);
1842 do_usleep_range(min, max);
1843}
1844EXPORT_SYMBOL(usleep_range);