Bluetooth: Use __constant modifier for RFCOMM PSM
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / timer.c
CommitLineData
1da177e4
LT
1/*
2 * linux/kernel/timer.c
3 *
8524070b 4 * Kernel internal timers, basic process system calls
1da177e4
LT
5 *
6 * Copyright (C) 1991, 1992 Linus Torvalds
7 *
8 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
9 *
10 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
11 * "A Kernel Model for Precision Timekeeping" by Dave Mills
12 * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
13 * serialize accesses to xtime/lost_ticks).
14 * Copyright (C) 1998 Andrea Arcangeli
15 * 1999-03-10 Improved NTP compatibility by Ulrich Windl
16 * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love
17 * 2000-10-05 Implemented scalable SMP per-CPU timer handling.
18 * Copyright (C) 2000, 2001, 2002 Ingo Molnar
19 * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
20 */
21
22#include <linux/kernel_stat.h>
9984de1a 23#include <linux/export.h>
1da177e4
LT
24#include <linux/interrupt.h>
25#include <linux/percpu.h>
26#include <linux/init.h>
27#include <linux/mm.h>
28#include <linux/swap.h>
b488893a 29#include <linux/pid_namespace.h>
1da177e4
LT
30#include <linux/notifier.h>
31#include <linux/thread_info.h>
32#include <linux/time.h>
33#include <linux/jiffies.h>
34#include <linux/posix-timers.h>
35#include <linux/cpu.h>
36#include <linux/syscalls.h>
97a41e26 37#include <linux/delay.h>
79bf2bb3 38#include <linux/tick.h>
82f67cd9 39#include <linux/kallsyms.h>
e360adbe 40#include <linux/irq_work.h>
eea08f32 41#include <linux/sched.h>
5a0e3ad6 42#include <linux/slab.h>
1da177e4
LT
43
44#include <asm/uaccess.h>
45#include <asm/unistd.h>
46#include <asm/div64.h>
47#include <asm/timex.h>
48#include <asm/io.h>
49
2b022e3d
XG
50#define CREATE_TRACE_POINTS
51#include <trace/events/timer.h>
52
ecea8d19
TG
53u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
54
55EXPORT_SYMBOL(jiffies_64);
56
1da177e4
LT
57/*
58 * per-CPU timer vector definitions:
59 */
1da177e4
LT
60#define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
61#define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
62#define TVN_SIZE (1 << TVN_BITS)
63#define TVR_SIZE (1 << TVR_BITS)
64#define TVN_MASK (TVN_SIZE - 1)
65#define TVR_MASK (TVR_SIZE - 1)
66
a6fa8e5a 67struct tvec {
1da177e4 68 struct list_head vec[TVN_SIZE];
a6fa8e5a 69};
1da177e4 70
a6fa8e5a 71struct tvec_root {
1da177e4 72 struct list_head vec[TVR_SIZE];
a6fa8e5a 73};
1da177e4 74
a6fa8e5a 75struct tvec_base {
3691c519
ON
76 spinlock_t lock;
77 struct timer_list *running_timer;
1da177e4 78 unsigned long timer_jiffies;
97fd9ed4 79 unsigned long next_timer;
99d5f3aa 80 unsigned long active_timers;
a6fa8e5a
PM
81 struct tvec_root tv1;
82 struct tvec tv2;
83 struct tvec tv3;
84 struct tvec tv4;
85 struct tvec tv5;
6e453a67 86} ____cacheline_aligned;
1da177e4 87
a6fa8e5a 88struct tvec_base boot_tvec_bases;
3691c519 89EXPORT_SYMBOL(boot_tvec_bases);
a6fa8e5a 90static DEFINE_PER_CPU(struct tvec_base *, tvec_bases) = &boot_tvec_bases;
1da177e4 91
6e453a67 92/* Functions below help us manage 'deferrable' flag */
a6fa8e5a 93static inline unsigned int tbase_get_deferrable(struct tvec_base *base)
6e453a67 94{
e9910846 95 return ((unsigned int)(unsigned long)base & TBASE_DEFERRABLE_FLAG);
6e453a67
VP
96}
97
a6fa8e5a 98static inline struct tvec_base *tbase_get_base(struct tvec_base *base)
6e453a67 99{
a6fa8e5a 100 return ((struct tvec_base *)((unsigned long)base & ~TBASE_DEFERRABLE_FLAG));
6e453a67
VP
101}
102
103static inline void timer_set_deferrable(struct timer_list *timer)
104{
dd6414b5 105 timer->base = TBASE_MAKE_DEFERRED(timer->base);
6e453a67
VP
106}
107
108static inline void
a6fa8e5a 109timer_set_base(struct timer_list *timer, struct tvec_base *new_base)
6e453a67 110{
a6fa8e5a 111 timer->base = (struct tvec_base *)((unsigned long)(new_base) |
6819457d 112 tbase_get_deferrable(timer->base));
6e453a67
VP
113}
114
9c133c46
AS
115static unsigned long round_jiffies_common(unsigned long j, int cpu,
116 bool force_up)
4c36a5de
AV
117{
118 int rem;
119 unsigned long original = j;
120
121 /*
122 * We don't want all cpus firing their timers at once hitting the
123 * same lock or cachelines, so we skew each extra cpu with an extra
124 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
125 * already did this.
126 * The skew is done by adding 3*cpunr, then round, then subtract this
127 * extra offset again.
128 */
129 j += cpu * 3;
130
131 rem = j % HZ;
132
133 /*
134 * If the target jiffie is just after a whole second (which can happen
135 * due to delays of the timer irq, long irq off times etc etc) then
136 * we should round down to the whole second, not up. Use 1/4th second
137 * as cutoff for this rounding as an extreme upper bound for this.
9c133c46 138 * But never round down if @force_up is set.
4c36a5de 139 */
9c133c46 140 if (rem < HZ/4 && !force_up) /* round down */
4c36a5de
AV
141 j = j - rem;
142 else /* round up */
143 j = j - rem + HZ;
144
145 /* now that we have rounded, subtract the extra skew again */
146 j -= cpu * 3;
147
148 if (j <= jiffies) /* rounding ate our timeout entirely; */
149 return original;
150 return j;
151}
9c133c46
AS
152
153/**
154 * __round_jiffies - function to round jiffies to a full second
155 * @j: the time in (absolute) jiffies that should be rounded
156 * @cpu: the processor number on which the timeout will happen
157 *
158 * __round_jiffies() rounds an absolute time in the future (in jiffies)
159 * up or down to (approximately) full seconds. This is useful for timers
160 * for which the exact time they fire does not matter too much, as long as
161 * they fire approximately every X seconds.
162 *
163 * By rounding these timers to whole seconds, all such timers will fire
164 * at the same time, rather than at various times spread out. The goal
165 * of this is to have the CPU wake up less, which saves power.
166 *
167 * The exact rounding is skewed for each processor to avoid all
168 * processors firing at the exact same time, which could lead
169 * to lock contention or spurious cache line bouncing.
170 *
171 * The return value is the rounded version of the @j parameter.
172 */
173unsigned long __round_jiffies(unsigned long j, int cpu)
174{
175 return round_jiffies_common(j, cpu, false);
176}
4c36a5de
AV
177EXPORT_SYMBOL_GPL(__round_jiffies);
178
179/**
180 * __round_jiffies_relative - function to round jiffies to a full second
181 * @j: the time in (relative) jiffies that should be rounded
182 * @cpu: the processor number on which the timeout will happen
183 *
72fd4a35 184 * __round_jiffies_relative() rounds a time delta in the future (in jiffies)
4c36a5de
AV
185 * up or down to (approximately) full seconds. This is useful for timers
186 * for which the exact time they fire does not matter too much, as long as
187 * they fire approximately every X seconds.
188 *
189 * By rounding these timers to whole seconds, all such timers will fire
190 * at the same time, rather than at various times spread out. The goal
191 * of this is to have the CPU wake up less, which saves power.
192 *
193 * The exact rounding is skewed for each processor to avoid all
194 * processors firing at the exact same time, which could lead
195 * to lock contention or spurious cache line bouncing.
196 *
72fd4a35 197 * The return value is the rounded version of the @j parameter.
4c36a5de
AV
198 */
199unsigned long __round_jiffies_relative(unsigned long j, int cpu)
200{
9c133c46
AS
201 unsigned long j0 = jiffies;
202
203 /* Use j0 because jiffies might change while we run */
204 return round_jiffies_common(j + j0, cpu, false) - j0;
4c36a5de
AV
205}
206EXPORT_SYMBOL_GPL(__round_jiffies_relative);
207
208/**
209 * round_jiffies - function to round jiffies to a full second
210 * @j: the time in (absolute) jiffies that should be rounded
211 *
72fd4a35 212 * round_jiffies() rounds an absolute time in the future (in jiffies)
4c36a5de
AV
213 * up or down to (approximately) full seconds. This is useful for timers
214 * for which the exact time they fire does not matter too much, as long as
215 * they fire approximately every X seconds.
216 *
217 * By rounding these timers to whole seconds, all such timers will fire
218 * at the same time, rather than at various times spread out. The goal
219 * of this is to have the CPU wake up less, which saves power.
220 *
72fd4a35 221 * The return value is the rounded version of the @j parameter.
4c36a5de
AV
222 */
223unsigned long round_jiffies(unsigned long j)
224{
9c133c46 225 return round_jiffies_common(j, raw_smp_processor_id(), false);
4c36a5de
AV
226}
227EXPORT_SYMBOL_GPL(round_jiffies);
228
229/**
230 * round_jiffies_relative - function to round jiffies to a full second
231 * @j: the time in (relative) jiffies that should be rounded
232 *
72fd4a35 233 * round_jiffies_relative() rounds a time delta in the future (in jiffies)
4c36a5de
AV
234 * up or down to (approximately) full seconds. This is useful for timers
235 * for which the exact time they fire does not matter too much, as long as
236 * they fire approximately every X seconds.
237 *
238 * By rounding these timers to whole seconds, all such timers will fire
239 * at the same time, rather than at various times spread out. The goal
240 * of this is to have the CPU wake up less, which saves power.
241 *
72fd4a35 242 * The return value is the rounded version of the @j parameter.
4c36a5de
AV
243 */
244unsigned long round_jiffies_relative(unsigned long j)
245{
246 return __round_jiffies_relative(j, raw_smp_processor_id());
247}
248EXPORT_SYMBOL_GPL(round_jiffies_relative);
249
9c133c46
AS
250/**
251 * __round_jiffies_up - function to round jiffies up to a full second
252 * @j: the time in (absolute) jiffies that should be rounded
253 * @cpu: the processor number on which the timeout will happen
254 *
255 * This is the same as __round_jiffies() except that it will never
256 * round down. This is useful for timeouts for which the exact time
257 * of firing does not matter too much, as long as they don't fire too
258 * early.
259 */
260unsigned long __round_jiffies_up(unsigned long j, int cpu)
261{
262 return round_jiffies_common(j, cpu, true);
263}
264EXPORT_SYMBOL_GPL(__round_jiffies_up);
265
266/**
267 * __round_jiffies_up_relative - function to round jiffies up to a full second
268 * @j: the time in (relative) jiffies that should be rounded
269 * @cpu: the processor number on which the timeout will happen
270 *
271 * This is the same as __round_jiffies_relative() except that it will never
272 * round down. This is useful for timeouts for which the exact time
273 * of firing does not matter too much, as long as they don't fire too
274 * early.
275 */
276unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
277{
278 unsigned long j0 = jiffies;
279
280 /* Use j0 because jiffies might change while we run */
281 return round_jiffies_common(j + j0, cpu, true) - j0;
282}
283EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);
284
285/**
286 * round_jiffies_up - function to round jiffies up to a full second
287 * @j: the time in (absolute) jiffies that should be rounded
288 *
289 * This is the same as round_jiffies() except that it will never
290 * round down. This is useful for timeouts for which the exact time
291 * of firing does not matter too much, as long as they don't fire too
292 * early.
293 */
294unsigned long round_jiffies_up(unsigned long j)
295{
296 return round_jiffies_common(j, raw_smp_processor_id(), true);
297}
298EXPORT_SYMBOL_GPL(round_jiffies_up);
299
300/**
301 * round_jiffies_up_relative - function to round jiffies up to a full second
302 * @j: the time in (relative) jiffies that should be rounded
303 *
304 * This is the same as round_jiffies_relative() except that it will never
305 * round down. This is useful for timeouts for which the exact time
306 * of firing does not matter too much, as long as they don't fire too
307 * early.
308 */
309unsigned long round_jiffies_up_relative(unsigned long j)
310{
311 return __round_jiffies_up_relative(j, raw_smp_processor_id());
312}
313EXPORT_SYMBOL_GPL(round_jiffies_up_relative);
314
3bbb9ec9
AV
315/**
316 * set_timer_slack - set the allowed slack for a timer
0caa6210 317 * @timer: the timer to be modified
3bbb9ec9
AV
318 * @slack_hz: the amount of time (in jiffies) allowed for rounding
319 *
320 * Set the amount of time, in jiffies, that a certain timer has
321 * in terms of slack. By setting this value, the timer subsystem
322 * will schedule the actual timer somewhere between
323 * the time mod_timer() asks for, and that time plus the slack.
324 *
325 * By setting the slack to -1, a percentage of the delay is used
326 * instead.
327 */
328void set_timer_slack(struct timer_list *timer, int slack_hz)
329{
330 timer->slack = slack_hz;
331}
332EXPORT_SYMBOL_GPL(set_timer_slack);
333
facbb4a7
TG
334static void
335__internal_add_timer(struct tvec_base *base, struct timer_list *timer)
1da177e4
LT
336{
337 unsigned long expires = timer->expires;
338 unsigned long idx = expires - base->timer_jiffies;
339 struct list_head *vec;
340
341 if (idx < TVR_SIZE) {
342 int i = expires & TVR_MASK;
343 vec = base->tv1.vec + i;
344 } else if (idx < 1 << (TVR_BITS + TVN_BITS)) {
345 int i = (expires >> TVR_BITS) & TVN_MASK;
346 vec = base->tv2.vec + i;
347 } else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) {
348 int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK;
349 vec = base->tv3.vec + i;
350 } else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) {
351 int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK;
352 vec = base->tv4.vec + i;
353 } else if ((signed long) idx < 0) {
354 /*
355 * Can happen if you add a timer with expires == jiffies,
356 * or you set a timer to go off in the past
357 */
358 vec = base->tv1.vec + (base->timer_jiffies & TVR_MASK);
359 } else {
360 int i;
361 /* If the timeout is larger than 0xffffffff on 64-bit
362 * architectures then we use the maximum timeout:
363 */
364 if (idx > 0xffffffffUL) {
365 idx = 0xffffffffUL;
366 expires = idx + base->timer_jiffies;
367 }
368 i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK;
369 vec = base->tv5.vec + i;
370 }
371 /*
372 * Timers are FIFO:
373 */
374 list_add_tail(&timer->entry, vec);
375}
376
facbb4a7
TG
377static void internal_add_timer(struct tvec_base *base, struct timer_list *timer)
378{
379 __internal_add_timer(base, timer);
380 /*
99d5f3aa 381 * Update base->active_timers and base->next_timer
facbb4a7 382 */
99d5f3aa
TG
383 if (!tbase_get_deferrable(timer->base)) {
384 if (time_before(timer->expires, base->next_timer))
385 base->next_timer = timer->expires;
386 base->active_timers++;
387 }
facbb4a7
TG
388}
389
82f67cd9
IM
390#ifdef CONFIG_TIMER_STATS
391void __timer_stats_timer_set_start_info(struct timer_list *timer, void *addr)
392{
393 if (timer->start_site)
394 return;
395
396 timer->start_site = addr;
397 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
398 timer->start_pid = current->pid;
399}
c5c061b8
VP
400
401static void timer_stats_account_timer(struct timer_list *timer)
402{
403 unsigned int flag = 0;
404
507e1231
HC
405 if (likely(!timer->start_site))
406 return;
c5c061b8
VP
407 if (unlikely(tbase_get_deferrable(timer->base)))
408 flag |= TIMER_STATS_FLAG_DEFERRABLE;
409
410 timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
411 timer->function, timer->start_comm, flag);
412}
413
414#else
415static void timer_stats_account_timer(struct timer_list *timer) {}
82f67cd9
IM
416#endif
417
c6f3a97f
TG
418#ifdef CONFIG_DEBUG_OBJECTS_TIMERS
419
420static struct debug_obj_descr timer_debug_descr;
421
99777288
SG
422static void *timer_debug_hint(void *addr)
423{
424 return ((struct timer_list *) addr)->function;
425}
426
c6f3a97f
TG
427/*
428 * fixup_init is called when:
429 * - an active object is initialized
55c888d6 430 */
c6f3a97f
TG
431static int timer_fixup_init(void *addr, enum debug_obj_state state)
432{
433 struct timer_list *timer = addr;
434
435 switch (state) {
436 case ODEBUG_STATE_ACTIVE:
437 del_timer_sync(timer);
438 debug_object_init(timer, &timer_debug_descr);
439 return 1;
440 default:
441 return 0;
442 }
443}
444
fb16b8cf
SB
445/* Stub timer callback for improperly used timers. */
446static void stub_timer(unsigned long data)
447{
448 WARN_ON(1);
449}
450
c6f3a97f
TG
451/*
452 * fixup_activate is called when:
453 * - an active object is activated
454 * - an unknown object is activated (might be a statically initialized object)
455 */
456static int timer_fixup_activate(void *addr, enum debug_obj_state state)
457{
458 struct timer_list *timer = addr;
459
460 switch (state) {
461
462 case ODEBUG_STATE_NOTAVAILABLE:
463 /*
464 * This is not really a fixup. The timer was
465 * statically initialized. We just make sure that it
466 * is tracked in the object tracker.
467 */
468 if (timer->entry.next == NULL &&
469 timer->entry.prev == TIMER_ENTRY_STATIC) {
470 debug_object_init(timer, &timer_debug_descr);
471 debug_object_activate(timer, &timer_debug_descr);
472 return 0;
473 } else {
fb16b8cf
SB
474 setup_timer(timer, stub_timer, 0);
475 return 1;
c6f3a97f
TG
476 }
477 return 0;
478
479 case ODEBUG_STATE_ACTIVE:
480 WARN_ON(1);
481
482 default:
483 return 0;
484 }
485}
486
487/*
488 * fixup_free is called when:
489 * - an active object is freed
490 */
491static int timer_fixup_free(void *addr, enum debug_obj_state state)
492{
493 struct timer_list *timer = addr;
494
495 switch (state) {
496 case ODEBUG_STATE_ACTIVE:
497 del_timer_sync(timer);
498 debug_object_free(timer, &timer_debug_descr);
499 return 1;
500 default:
501 return 0;
502 }
503}
504
dc4218bd
CC
505/*
506 * fixup_assert_init is called when:
507 * - an untracked/uninit-ed object is found
508 */
509static int timer_fixup_assert_init(void *addr, enum debug_obj_state state)
510{
511 struct timer_list *timer = addr;
512
513 switch (state) {
514 case ODEBUG_STATE_NOTAVAILABLE:
515 if (timer->entry.prev == TIMER_ENTRY_STATIC) {
516 /*
517 * This is not really a fixup. The timer was
518 * statically initialized. We just make sure that it
519 * is tracked in the object tracker.
520 */
521 debug_object_init(timer, &timer_debug_descr);
522 return 0;
523 } else {
524 setup_timer(timer, stub_timer, 0);
525 return 1;
526 }
527 default:
528 return 0;
529 }
530}
531
c6f3a97f 532static struct debug_obj_descr timer_debug_descr = {
dc4218bd
CC
533 .name = "timer_list",
534 .debug_hint = timer_debug_hint,
535 .fixup_init = timer_fixup_init,
536 .fixup_activate = timer_fixup_activate,
537 .fixup_free = timer_fixup_free,
538 .fixup_assert_init = timer_fixup_assert_init,
c6f3a97f
TG
539};
540
541static inline void debug_timer_init(struct timer_list *timer)
542{
543 debug_object_init(timer, &timer_debug_descr);
544}
545
546static inline void debug_timer_activate(struct timer_list *timer)
547{
548 debug_object_activate(timer, &timer_debug_descr);
549}
550
551static inline void debug_timer_deactivate(struct timer_list *timer)
552{
553 debug_object_deactivate(timer, &timer_debug_descr);
554}
555
556static inline void debug_timer_free(struct timer_list *timer)
557{
558 debug_object_free(timer, &timer_debug_descr);
559}
560
dc4218bd
CC
561static inline void debug_timer_assert_init(struct timer_list *timer)
562{
563 debug_object_assert_init(timer, &timer_debug_descr);
564}
565
6f2b9b9a
JB
566static void __init_timer(struct timer_list *timer,
567 const char *name,
568 struct lock_class_key *key);
c6f3a97f 569
6f2b9b9a
JB
570void init_timer_on_stack_key(struct timer_list *timer,
571 const char *name,
572 struct lock_class_key *key)
c6f3a97f
TG
573{
574 debug_object_init_on_stack(timer, &timer_debug_descr);
6f2b9b9a 575 __init_timer(timer, name, key);
c6f3a97f 576}
6f2b9b9a 577EXPORT_SYMBOL_GPL(init_timer_on_stack_key);
c6f3a97f
TG
578
579void destroy_timer_on_stack(struct timer_list *timer)
580{
581 debug_object_free(timer, &timer_debug_descr);
582}
583EXPORT_SYMBOL_GPL(destroy_timer_on_stack);
584
585#else
586static inline void debug_timer_init(struct timer_list *timer) { }
587static inline void debug_timer_activate(struct timer_list *timer) { }
588static inline void debug_timer_deactivate(struct timer_list *timer) { }
dc4218bd 589static inline void debug_timer_assert_init(struct timer_list *timer) { }
c6f3a97f
TG
590#endif
591
2b022e3d
XG
592static inline void debug_init(struct timer_list *timer)
593{
594 debug_timer_init(timer);
595 trace_timer_init(timer);
596}
597
598static inline void
599debug_activate(struct timer_list *timer, unsigned long expires)
600{
601 debug_timer_activate(timer);
602 trace_timer_start(timer, expires);
603}
604
605static inline void debug_deactivate(struct timer_list *timer)
606{
607 debug_timer_deactivate(timer);
608 trace_timer_cancel(timer);
609}
610
dc4218bd
CC
611static inline void debug_assert_init(struct timer_list *timer)
612{
613 debug_timer_assert_init(timer);
614}
615
6f2b9b9a
JB
616static void __init_timer(struct timer_list *timer,
617 const char *name,
618 struct lock_class_key *key)
55c888d6
ON
619{
620 timer->entry.next = NULL;
bfe5d834 621 timer->base = __raw_get_cpu_var(tvec_bases);
3bbb9ec9 622 timer->slack = -1;
82f67cd9
IM
623#ifdef CONFIG_TIMER_STATS
624 timer->start_site = NULL;
625 timer->start_pid = -1;
626 memset(timer->start_comm, 0, TASK_COMM_LEN);
627#endif
6f2b9b9a 628 lockdep_init_map(&timer->lockdep_map, name, key, 0);
55c888d6 629}
c6f3a97f 630
8cadd283
JB
631void setup_deferrable_timer_on_stack_key(struct timer_list *timer,
632 const char *name,
633 struct lock_class_key *key,
634 void (*function)(unsigned long),
635 unsigned long data)
636{
637 timer->function = function;
638 timer->data = data;
639 init_timer_on_stack_key(timer, name, key);
640 timer_set_deferrable(timer);
641}
642EXPORT_SYMBOL_GPL(setup_deferrable_timer_on_stack_key);
643
c6f3a97f 644/**
633fe795 645 * init_timer_key - initialize a timer
c6f3a97f 646 * @timer: the timer to be initialized
633fe795
RD
647 * @name: name of the timer
648 * @key: lockdep class key of the fake lock used for tracking timer
649 * sync lock dependencies
c6f3a97f 650 *
633fe795 651 * init_timer_key() must be done to a timer prior calling *any* of the
c6f3a97f
TG
652 * other timer functions.
653 */
6f2b9b9a
JB
654void init_timer_key(struct timer_list *timer,
655 const char *name,
656 struct lock_class_key *key)
c6f3a97f 657{
2b022e3d 658 debug_init(timer);
6f2b9b9a 659 __init_timer(timer, name, key);
c6f3a97f 660}
6f2b9b9a 661EXPORT_SYMBOL(init_timer_key);
55c888d6 662
6f2b9b9a
JB
663void init_timer_deferrable_key(struct timer_list *timer,
664 const char *name,
665 struct lock_class_key *key)
6e453a67 666{
6f2b9b9a 667 init_timer_key(timer, name, key);
6e453a67
VP
668 timer_set_deferrable(timer);
669}
6f2b9b9a 670EXPORT_SYMBOL(init_timer_deferrable_key);
6e453a67 671
ec44bc7a 672static inline void detach_timer(struct timer_list *timer, bool clear_pending)
55c888d6
ON
673{
674 struct list_head *entry = &timer->entry;
675
2b022e3d 676 debug_deactivate(timer);
c6f3a97f 677
55c888d6
ON
678 __list_del(entry->prev, entry->next);
679 if (clear_pending)
680 entry->next = NULL;
681 entry->prev = LIST_POISON2;
682}
683
99d5f3aa
TG
684static inline void
685detach_expired_timer(struct timer_list *timer, struct tvec_base *base)
686{
687 detach_timer(timer, true);
688 if (!tbase_get_deferrable(timer->base))
689 timer->base->active_timers--;
690}
691
ec44bc7a
TG
692static int detach_if_pending(struct timer_list *timer, struct tvec_base *base,
693 bool clear_pending)
694{
695 if (!timer_pending(timer))
696 return 0;
697
698 detach_timer(timer, clear_pending);
99d5f3aa
TG
699 if (!tbase_get_deferrable(timer->base)) {
700 timer->base->active_timers--;
701 if (timer->expires == base->next_timer)
702 base->next_timer = base->timer_jiffies;
703 }
ec44bc7a
TG
704 return 1;
705}
706
55c888d6 707/*
3691c519 708 * We are using hashed locking: holding per_cpu(tvec_bases).lock
55c888d6
ON
709 * means that all timers which are tied to this base via timer->base are
710 * locked, and the base itself is locked too.
711 *
712 * So __run_timers/migrate_timers can safely modify all timers which could
713 * be found on ->tvX lists.
714 *
715 * When the timer's base is locked, and the timer removed from list, it is
716 * possible to set timer->base = NULL and drop the lock: the timer remains
717 * locked.
718 */
a6fa8e5a 719static struct tvec_base *lock_timer_base(struct timer_list *timer,
55c888d6 720 unsigned long *flags)
89e7e374 721 __acquires(timer->base->lock)
55c888d6 722{
a6fa8e5a 723 struct tvec_base *base;
55c888d6
ON
724
725 for (;;) {
a6fa8e5a 726 struct tvec_base *prelock_base = timer->base;
6e453a67 727 base = tbase_get_base(prelock_base);
55c888d6
ON
728 if (likely(base != NULL)) {
729 spin_lock_irqsave(&base->lock, *flags);
6e453a67 730 if (likely(prelock_base == timer->base))
55c888d6
ON
731 return base;
732 /* The timer has migrated to another CPU */
733 spin_unlock_irqrestore(&base->lock, *flags);
734 }
735 cpu_relax();
736 }
737}
738
74019224 739static inline int
597d0275
AB
740__mod_timer(struct timer_list *timer, unsigned long expires,
741 bool pending_only, int pinned)
1da177e4 742{
a6fa8e5a 743 struct tvec_base *base, *new_base;
1da177e4 744 unsigned long flags;
eea08f32 745 int ret = 0 , cpu;
1da177e4 746
82f67cd9 747 timer_stats_timer_set_start_info(timer);
1da177e4 748 BUG_ON(!timer->function);
1da177e4 749
55c888d6
ON
750 base = lock_timer_base(timer, &flags);
751
ec44bc7a
TG
752 ret = detach_if_pending(timer, base, false);
753 if (!ret && pending_only)
754 goto out_unlock;
55c888d6 755
2b022e3d 756 debug_activate(timer, expires);
c6f3a97f 757
eea08f32
AB
758 cpu = smp_processor_id();
759
760#if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
83cd4fe2
VP
761 if (!pinned && get_sysctl_timer_migration() && idle_cpu(cpu))
762 cpu = get_nohz_timer_target();
eea08f32
AB
763#endif
764 new_base = per_cpu(tvec_bases, cpu);
765
3691c519 766 if (base != new_base) {
1da177e4 767 /*
55c888d6
ON
768 * We are trying to schedule the timer on the local CPU.
769 * However we can't change timer's base while it is running,
770 * otherwise del_timer_sync() can't detect that the timer's
771 * handler yet has not finished. This also guarantees that
772 * the timer is serialized wrt itself.
1da177e4 773 */
a2c348fe 774 if (likely(base->running_timer != timer)) {
55c888d6 775 /* See the comment in lock_timer_base() */
6e453a67 776 timer_set_base(timer, NULL);
55c888d6 777 spin_unlock(&base->lock);
a2c348fe
ON
778 base = new_base;
779 spin_lock(&base->lock);
6e453a67 780 timer_set_base(timer, base);
1da177e4
LT
781 }
782 }
783
1da177e4 784 timer->expires = expires;
a2c348fe 785 internal_add_timer(base, timer);
74019224
IM
786
787out_unlock:
a2c348fe 788 spin_unlock_irqrestore(&base->lock, flags);
1da177e4
LT
789
790 return ret;
791}
792
2aae4a10 793/**
74019224
IM
794 * mod_timer_pending - modify a pending timer's timeout
795 * @timer: the pending timer to be modified
796 * @expires: new timeout in jiffies
1da177e4 797 *
74019224
IM
798 * mod_timer_pending() is the same for pending timers as mod_timer(),
799 * but will not re-activate and modify already deleted timers.
800 *
801 * It is useful for unserialized use of timers.
1da177e4 802 */
74019224 803int mod_timer_pending(struct timer_list *timer, unsigned long expires)
1da177e4 804{
597d0275 805 return __mod_timer(timer, expires, true, TIMER_NOT_PINNED);
1da177e4 806}
74019224 807EXPORT_SYMBOL(mod_timer_pending);
1da177e4 808
3bbb9ec9
AV
809/*
810 * Decide where to put the timer while taking the slack into account
811 *
812 * Algorithm:
813 * 1) calculate the maximum (absolute) time
814 * 2) calculate the highest bit where the expires and new max are different
815 * 3) use this bit to make a mask
816 * 4) use the bitmask to round down the maximum time, so that all last
817 * bits are zeros
818 */
819static inline
820unsigned long apply_slack(struct timer_list *timer, unsigned long expires)
821{
822 unsigned long expires_limit, mask;
823 int bit;
824
8e63d779 825 if (timer->slack >= 0) {
f00e047e 826 expires_limit = expires + timer->slack;
8e63d779 827 } else {
1c3cc116
SAS
828 long delta = expires - jiffies;
829
830 if (delta < 256)
831 return expires;
3bbb9ec9 832
1c3cc116 833 expires_limit = expires + delta / 256;
8e63d779 834 }
3bbb9ec9 835 mask = expires ^ expires_limit;
3bbb9ec9
AV
836 if (mask == 0)
837 return expires;
838
839 bit = find_last_bit(&mask, BITS_PER_LONG);
840
841 mask = (1 << bit) - 1;
842
843 expires_limit = expires_limit & ~(mask);
844
845 return expires_limit;
846}
847
2aae4a10 848/**
1da177e4
LT
849 * mod_timer - modify a timer's timeout
850 * @timer: the timer to be modified
2aae4a10 851 * @expires: new timeout in jiffies
1da177e4 852 *
72fd4a35 853 * mod_timer() is a more efficient way to update the expire field of an
1da177e4
LT
854 * active timer (if the timer is inactive it will be activated)
855 *
856 * mod_timer(timer, expires) is equivalent to:
857 *
858 * del_timer(timer); timer->expires = expires; add_timer(timer);
859 *
860 * Note that if there are multiple unserialized concurrent users of the
861 * same timer, then mod_timer() is the only safe way to modify the timeout,
862 * since add_timer() cannot modify an already running timer.
863 *
864 * The function returns whether it has modified a pending timer or not.
865 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
866 * active timer returns 1.)
867 */
868int mod_timer(struct timer_list *timer, unsigned long expires)
869{
1c3cc116
SAS
870 expires = apply_slack(timer, expires);
871
1da177e4
LT
872 /*
873 * This is a common optimization triggered by the
874 * networking code - if the timer is re-modified
875 * to be the same thing then just return:
876 */
4841158b 877 if (timer_pending(timer) && timer->expires == expires)
1da177e4
LT
878 return 1;
879
597d0275 880 return __mod_timer(timer, expires, false, TIMER_NOT_PINNED);
1da177e4 881}
1da177e4
LT
882EXPORT_SYMBOL(mod_timer);
883
597d0275
AB
884/**
885 * mod_timer_pinned - modify a timer's timeout
886 * @timer: the timer to be modified
887 * @expires: new timeout in jiffies
888 *
889 * mod_timer_pinned() is a way to update the expire field of an
890 * active timer (if the timer is inactive it will be activated)
048a0e8f
PM
891 * and to ensure that the timer is scheduled on the current CPU.
892 *
893 * Note that this does not prevent the timer from being migrated
894 * when the current CPU goes offline. If this is a problem for
895 * you, use CPU-hotplug notifiers to handle it correctly, for
896 * example, cancelling the timer when the corresponding CPU goes
897 * offline.
597d0275
AB
898 *
899 * mod_timer_pinned(timer, expires) is equivalent to:
900 *
901 * del_timer(timer); timer->expires = expires; add_timer(timer);
902 */
903int mod_timer_pinned(struct timer_list *timer, unsigned long expires)
904{
905 if (timer->expires == expires && timer_pending(timer))
906 return 1;
907
908 return __mod_timer(timer, expires, false, TIMER_PINNED);
909}
910EXPORT_SYMBOL(mod_timer_pinned);
911
74019224
IM
912/**
913 * add_timer - start a timer
914 * @timer: the timer to be added
915 *
916 * The kernel will do a ->function(->data) callback from the
917 * timer interrupt at the ->expires point in the future. The
918 * current time is 'jiffies'.
919 *
920 * The timer's ->expires, ->function (and if the handler uses it, ->data)
921 * fields must be set prior calling this function.
922 *
923 * Timers with an ->expires field in the past will be executed in the next
924 * timer tick.
925 */
926void add_timer(struct timer_list *timer)
927{
928 BUG_ON(timer_pending(timer));
929 mod_timer(timer, timer->expires);
930}
931EXPORT_SYMBOL(add_timer);
932
933/**
934 * add_timer_on - start a timer on a particular CPU
935 * @timer: the timer to be added
936 * @cpu: the CPU to start it on
937 *
938 * This is not very scalable on SMP. Double adds are not possible.
939 */
940void add_timer_on(struct timer_list *timer, int cpu)
941{
942 struct tvec_base *base = per_cpu(tvec_bases, cpu);
943 unsigned long flags;
944
945 timer_stats_timer_set_start_info(timer);
946 BUG_ON(timer_pending(timer) || !timer->function);
947 spin_lock_irqsave(&base->lock, flags);
948 timer_set_base(timer, base);
2b022e3d 949 debug_activate(timer, timer->expires);
74019224
IM
950 internal_add_timer(base, timer);
951 /*
952 * Check whether the other CPU is idle and needs to be
953 * triggered to reevaluate the timer wheel when nohz is
954 * active. We are protected against the other CPU fiddling
955 * with the timer by holding the timer base lock. This also
956 * makes sure that a CPU on the way to idle can not evaluate
957 * the timer wheel.
958 */
959 wake_up_idle_cpu(cpu);
960 spin_unlock_irqrestore(&base->lock, flags);
961}
a9862e05 962EXPORT_SYMBOL_GPL(add_timer_on);
74019224 963
2aae4a10 964/**
1da177e4
LT
965 * del_timer - deactive a timer.
966 * @timer: the timer to be deactivated
967 *
968 * del_timer() deactivates a timer - this works on both active and inactive
969 * timers.
970 *
971 * The function returns whether it has deactivated a pending timer or not.
972 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
973 * active timer returns 1.)
974 */
975int del_timer(struct timer_list *timer)
976{
a6fa8e5a 977 struct tvec_base *base;
1da177e4 978 unsigned long flags;
55c888d6 979 int ret = 0;
1da177e4 980
dc4218bd
CC
981 debug_assert_init(timer);
982
82f67cd9 983 timer_stats_timer_clear_start_info(timer);
55c888d6
ON
984 if (timer_pending(timer)) {
985 base = lock_timer_base(timer, &flags);
ec44bc7a 986 ret = detach_if_pending(timer, base, true);
1da177e4 987 spin_unlock_irqrestore(&base->lock, flags);
1da177e4 988 }
1da177e4 989
55c888d6 990 return ret;
1da177e4 991}
1da177e4
LT
992EXPORT_SYMBOL(del_timer);
993
2aae4a10
REB
994/**
995 * try_to_del_timer_sync - Try to deactivate a timer
996 * @timer: timer do del
997 *
fd450b73
ON
998 * This function tries to deactivate a timer. Upon successful (ret >= 0)
999 * exit the timer is not queued and the handler is not running on any CPU.
fd450b73
ON
1000 */
1001int try_to_del_timer_sync(struct timer_list *timer)
1002{
a6fa8e5a 1003 struct tvec_base *base;
fd450b73
ON
1004 unsigned long flags;
1005 int ret = -1;
1006
dc4218bd
CC
1007 debug_assert_init(timer);
1008
fd450b73
ON
1009 base = lock_timer_base(timer, &flags);
1010
ec44bc7a
TG
1011 if (base->running_timer != timer) {
1012 timer_stats_timer_clear_start_info(timer);
1013 ret = detach_if_pending(timer, base, true);
fd450b73 1014 }
fd450b73
ON
1015 spin_unlock_irqrestore(&base->lock, flags);
1016
1017 return ret;
1018}
e19dff1f
DH
1019EXPORT_SYMBOL(try_to_del_timer_sync);
1020
6f1bc451 1021#ifdef CONFIG_SMP
2aae4a10 1022/**
1da177e4
LT
1023 * del_timer_sync - deactivate a timer and wait for the handler to finish.
1024 * @timer: the timer to be deactivated
1025 *
1026 * This function only differs from del_timer() on SMP: besides deactivating
1027 * the timer it also makes sure the handler has finished executing on other
1028 * CPUs.
1029 *
72fd4a35 1030 * Synchronization rules: Callers must prevent restarting of the timer,
1da177e4 1031 * otherwise this function is meaningless. It must not be called from
7ff20792 1032 * interrupt contexts. The caller must not hold locks which would prevent
55c888d6
ON
1033 * completion of the timer's handler. The timer's handler must not call
1034 * add_timer_on(). Upon exit the timer is not queued and the handler is
1035 * not running on any CPU.
1da177e4 1036 *
48228f7b
SR
1037 * Note: You must not hold locks that are held in interrupt context
1038 * while calling this function. Even if the lock has nothing to do
1039 * with the timer in question. Here's why:
1040 *
1041 * CPU0 CPU1
1042 * ---- ----
1043 * <SOFTIRQ>
1044 * call_timer_fn();
1045 * base->running_timer = mytimer;
1046 * spin_lock_irq(somelock);
1047 * <IRQ>
1048 * spin_lock(somelock);
1049 * del_timer_sync(mytimer);
1050 * while (base->running_timer == mytimer);
1051 *
1052 * Now del_timer_sync() will never return and never release somelock.
1053 * The interrupt on the other CPU is waiting to grab somelock but
1054 * it has interrupted the softirq that CPU0 is waiting to finish.
1055 *
1da177e4 1056 * The function returns whether it has deactivated a pending timer or not.
1da177e4
LT
1057 */
1058int del_timer_sync(struct timer_list *timer)
1059{
6f2b9b9a 1060#ifdef CONFIG_LOCKDEP
f266a511
PZ
1061 unsigned long flags;
1062
48228f7b
SR
1063 /*
1064 * If lockdep gives a backtrace here, please reference
1065 * the synchronization rules above.
1066 */
7ff20792 1067 local_irq_save(flags);
6f2b9b9a
JB
1068 lock_map_acquire(&timer->lockdep_map);
1069 lock_map_release(&timer->lockdep_map);
7ff20792 1070 local_irq_restore(flags);
6f2b9b9a 1071#endif
466bd303
YZ
1072 /*
1073 * don't use it in hardirq context, because it
1074 * could lead to deadlock.
1075 */
1076 WARN_ON(in_irq());
fd450b73
ON
1077 for (;;) {
1078 int ret = try_to_del_timer_sync(timer);
1079 if (ret >= 0)
1080 return ret;
a0009652 1081 cpu_relax();
fd450b73 1082 }
1da177e4 1083}
55c888d6 1084EXPORT_SYMBOL(del_timer_sync);
1da177e4
LT
1085#endif
1086
a6fa8e5a 1087static int cascade(struct tvec_base *base, struct tvec *tv, int index)
1da177e4
LT
1088{
1089 /* cascade all the timers from tv up one level */
3439dd86
P
1090 struct timer_list *timer, *tmp;
1091 struct list_head tv_list;
1092
1093 list_replace_init(tv->vec + index, &tv_list);
1da177e4 1094
1da177e4 1095 /*
3439dd86
P
1096 * We are removing _all_ timers from the list, so we
1097 * don't have to detach them individually.
1da177e4 1098 */
3439dd86 1099 list_for_each_entry_safe(timer, tmp, &tv_list, entry) {
6e453a67 1100 BUG_ON(tbase_get_base(timer->base) != base);
facbb4a7
TG
1101 /* No accounting, while moving them */
1102 __internal_add_timer(base, timer);
1da177e4 1103 }
1da177e4
LT
1104
1105 return index;
1106}
1107
576da126
TG
1108static void call_timer_fn(struct timer_list *timer, void (*fn)(unsigned long),
1109 unsigned long data)
1110{
1111 int preempt_count = preempt_count();
1112
1113#ifdef CONFIG_LOCKDEP
1114 /*
1115 * It is permissible to free the timer from inside the
1116 * function that is called from it, this we need to take into
1117 * account for lockdep too. To avoid bogus "held lock freed"
1118 * warnings as well as problems when looking into
1119 * timer->lockdep_map, make a copy and use that here.
1120 */
4d82a1de
PZ
1121 struct lockdep_map lockdep_map;
1122
1123 lockdep_copy_map(&lockdep_map, &timer->lockdep_map);
576da126
TG
1124#endif
1125 /*
1126 * Couple the lock chain with the lock chain at
1127 * del_timer_sync() by acquiring the lock_map around the fn()
1128 * call here and in del_timer_sync().
1129 */
1130 lock_map_acquire(&lockdep_map);
1131
1132 trace_timer_expire_entry(timer);
1133 fn(data);
1134 trace_timer_expire_exit(timer);
1135
1136 lock_map_release(&lockdep_map);
1137
1138 if (preempt_count != preempt_count()) {
802702e0
TG
1139 WARN_ONCE(1, "timer: %pF preempt leak: %08x -> %08x\n",
1140 fn, preempt_count, preempt_count());
1141 /*
1142 * Restore the preempt count. That gives us a decent
1143 * chance to survive and extract information. If the
1144 * callback kept a lock held, bad luck, but not worse
1145 * than the BUG() we had.
1146 */
1147 preempt_count() = preempt_count;
576da126
TG
1148 }
1149}
1150
2aae4a10
REB
1151#define INDEX(N) ((base->timer_jiffies >> (TVR_BITS + (N) * TVN_BITS)) & TVN_MASK)
1152
1153/**
1da177e4
LT
1154 * __run_timers - run all expired timers (if any) on this CPU.
1155 * @base: the timer vector to be processed.
1156 *
1157 * This function cascades all vectors and executes all expired timer
1158 * vectors.
1159 */
a6fa8e5a 1160static inline void __run_timers(struct tvec_base *base)
1da177e4
LT
1161{
1162 struct timer_list *timer;
1163
3691c519 1164 spin_lock_irq(&base->lock);
1da177e4 1165 while (time_after_eq(jiffies, base->timer_jiffies)) {
626ab0e6 1166 struct list_head work_list;
1da177e4 1167 struct list_head *head = &work_list;
6819457d 1168 int index = base->timer_jiffies & TVR_MASK;
626ab0e6 1169
1da177e4
LT
1170 /*
1171 * Cascade timers:
1172 */
1173 if (!index &&
1174 (!cascade(base, &base->tv2, INDEX(0))) &&
1175 (!cascade(base, &base->tv3, INDEX(1))) &&
1176 !cascade(base, &base->tv4, INDEX(2)))
1177 cascade(base, &base->tv5, INDEX(3));
626ab0e6
ON
1178 ++base->timer_jiffies;
1179 list_replace_init(base->tv1.vec + index, &work_list);
55c888d6 1180 while (!list_empty(head)) {
1da177e4
LT
1181 void (*fn)(unsigned long);
1182 unsigned long data;
1183
b5e61818 1184 timer = list_first_entry(head, struct timer_list,entry);
6819457d
TG
1185 fn = timer->function;
1186 data = timer->data;
1da177e4 1187
82f67cd9
IM
1188 timer_stats_account_timer(timer);
1189
6f1bc451 1190 base->running_timer = timer;
99d5f3aa 1191 detach_expired_timer(timer, base);
6f2b9b9a 1192
3691c519 1193 spin_unlock_irq(&base->lock);
576da126 1194 call_timer_fn(timer, fn, data);
3691c519 1195 spin_lock_irq(&base->lock);
1da177e4
LT
1196 }
1197 }
6f1bc451 1198 base->running_timer = NULL;
3691c519 1199 spin_unlock_irq(&base->lock);
1da177e4
LT
1200}
1201
ee9c5785 1202#ifdef CONFIG_NO_HZ
1da177e4
LT
1203/*
1204 * Find out when the next timer event is due to happen. This
90cba64a
RD
1205 * is used on S/390 to stop all activity when a CPU is idle.
1206 * This function needs to be called with interrupts disabled.
1da177e4 1207 */
a6fa8e5a 1208static unsigned long __next_timer_interrupt(struct tvec_base *base)
1da177e4 1209{
1cfd6849 1210 unsigned long timer_jiffies = base->timer_jiffies;
eaad084b 1211 unsigned long expires = timer_jiffies + NEXT_TIMER_MAX_DELTA;
1cfd6849 1212 int index, slot, array, found = 0;
1da177e4 1213 struct timer_list *nte;
a6fa8e5a 1214 struct tvec *varray[4];
1da177e4
LT
1215
1216 /* Look for timer events in tv1. */
1cfd6849 1217 index = slot = timer_jiffies & TVR_MASK;
1da177e4 1218 do {
1cfd6849 1219 list_for_each_entry(nte, base->tv1.vec + slot, entry) {
6819457d
TG
1220 if (tbase_get_deferrable(nte->base))
1221 continue;
6e453a67 1222
1cfd6849 1223 found = 1;
1da177e4 1224 expires = nte->expires;
1cfd6849
TG
1225 /* Look at the cascade bucket(s)? */
1226 if (!index || slot < index)
1227 goto cascade;
1228 return expires;
1da177e4 1229 }
1cfd6849
TG
1230 slot = (slot + 1) & TVR_MASK;
1231 } while (slot != index);
1232
1233cascade:
1234 /* Calculate the next cascade event */
1235 if (index)
1236 timer_jiffies += TVR_SIZE - index;
1237 timer_jiffies >>= TVR_BITS;
1da177e4
LT
1238
1239 /* Check tv2-tv5. */
1240 varray[0] = &base->tv2;
1241 varray[1] = &base->tv3;
1242 varray[2] = &base->tv4;
1243 varray[3] = &base->tv5;
1cfd6849
TG
1244
1245 for (array = 0; array < 4; array++) {
a6fa8e5a 1246 struct tvec *varp = varray[array];
1cfd6849
TG
1247
1248 index = slot = timer_jiffies & TVN_MASK;
1da177e4 1249 do {
1cfd6849 1250 list_for_each_entry(nte, varp->vec + slot, entry) {
a0419888
JH
1251 if (tbase_get_deferrable(nte->base))
1252 continue;
1253
1cfd6849 1254 found = 1;
1da177e4
LT
1255 if (time_before(nte->expires, expires))
1256 expires = nte->expires;
1cfd6849
TG
1257 }
1258 /*
1259 * Do we still search for the first timer or are
1260 * we looking up the cascade buckets ?
1261 */
1262 if (found) {
1263 /* Look at the cascade bucket(s)? */
1264 if (!index || slot < index)
1265 break;
1266 return expires;
1267 }
1268 slot = (slot + 1) & TVN_MASK;
1269 } while (slot != index);
1270
1271 if (index)
1272 timer_jiffies += TVN_SIZE - index;
1273 timer_jiffies >>= TVN_BITS;
1da177e4 1274 }
1cfd6849
TG
1275 return expires;
1276}
69239749 1277
1cfd6849
TG
1278/*
1279 * Check, if the next hrtimer event is before the next timer wheel
1280 * event:
1281 */
1282static unsigned long cmp_next_hrtimer_event(unsigned long now,
1283 unsigned long expires)
1284{
1285 ktime_t hr_delta = hrtimer_get_next_event();
1286 struct timespec tsdelta;
9501b6cf 1287 unsigned long delta;
1cfd6849
TG
1288
1289 if (hr_delta.tv64 == KTIME_MAX)
1290 return expires;
0662b713 1291
9501b6cf
TG
1292 /*
1293 * Expired timer available, let it expire in the next tick
1294 */
1295 if (hr_delta.tv64 <= 0)
1296 return now + 1;
69239749 1297
1cfd6849 1298 tsdelta = ktime_to_timespec(hr_delta);
9501b6cf 1299 delta = timespec_to_jiffies(&tsdelta);
eaad084b
TG
1300
1301 /*
1302 * Limit the delta to the max value, which is checked in
1303 * tick_nohz_stop_sched_tick():
1304 */
1305 if (delta > NEXT_TIMER_MAX_DELTA)
1306 delta = NEXT_TIMER_MAX_DELTA;
1307
9501b6cf
TG
1308 /*
1309 * Take rounding errors in to account and make sure, that it
1310 * expires in the next tick. Otherwise we go into an endless
1311 * ping pong due to tick_nohz_stop_sched_tick() retriggering
1312 * the timer softirq
1313 */
1314 if (delta < 1)
1315 delta = 1;
1316 now += delta;
1cfd6849
TG
1317 if (time_before(now, expires))
1318 return now;
1da177e4
LT
1319 return expires;
1320}
1cfd6849
TG
1321
1322/**
8dce39c2 1323 * get_next_timer_interrupt - return the jiffy of the next pending timer
05fb6bf0 1324 * @now: current time (in jiffies)
1cfd6849 1325 */
fd064b9b 1326unsigned long get_next_timer_interrupt(unsigned long now)
1cfd6849 1327{
7496351a 1328 struct tvec_base *base = __this_cpu_read(tvec_bases);
e40468a5 1329 unsigned long expires = now + NEXT_TIMER_MAX_DELTA;
1cfd6849 1330
dbd87b5a
HC
1331 /*
1332 * Pretend that there is no timer pending if the cpu is offline.
1333 * Possible pending timers will be migrated later to an active cpu.
1334 */
1335 if (cpu_is_offline(smp_processor_id()))
e40468a5
TG
1336 return expires;
1337
1cfd6849 1338 spin_lock(&base->lock);
e40468a5
TG
1339 if (base->active_timers) {
1340 if (time_before_eq(base->next_timer, base->timer_jiffies))
1341 base->next_timer = __next_timer_interrupt(base);
1342 expires = base->next_timer;
1343 }
1cfd6849
TG
1344 spin_unlock(&base->lock);
1345
1346 if (time_before_eq(expires, now))
1347 return now;
1348
1349 return cmp_next_hrtimer_event(now, expires);
1350}
1da177e4
LT
1351#endif
1352
1da177e4 1353/*
5b4db0c2 1354 * Called from the timer interrupt handler to charge one tick to the current
1da177e4
LT
1355 * process. user_tick is 1 if the tick is user time, 0 for system.
1356 */
1357void update_process_times(int user_tick)
1358{
1359 struct task_struct *p = current;
1360 int cpu = smp_processor_id();
1361
1362 /* Note: this timer irq context must be accounted for as well. */
fa13a5a1 1363 account_process_tick(p, user_tick);
1da177e4 1364 run_local_timers();
a157229c 1365 rcu_check_callbacks(cpu, user_tick);
b845b517 1366 printk_tick();
e360adbe
PZ
1367#ifdef CONFIG_IRQ_WORK
1368 if (in_irq())
1369 irq_work_run();
1370#endif
1da177e4 1371 scheduler_tick();
6819457d 1372 run_posix_cpu_timers(p);
1da177e4
LT
1373}
1374
1da177e4
LT
1375/*
1376 * This function runs timers and the timer-tq in bottom half context.
1377 */
1378static void run_timer_softirq(struct softirq_action *h)
1379{
7496351a 1380 struct tvec_base *base = __this_cpu_read(tvec_bases);
1da177e4 1381
d3d74453 1382 hrtimer_run_pending();
82f67cd9 1383
1da177e4
LT
1384 if (time_after_eq(jiffies, base->timer_jiffies))
1385 __run_timers(base);
1386}
1387
1388/*
1389 * Called by the local, per-CPU timer interrupt on SMP.
1390 */
1391void run_local_timers(void)
1392{
d3d74453 1393 hrtimer_run_queues();
1da177e4
LT
1394 raise_softirq(TIMER_SOFTIRQ);
1395}
1396
1da177e4
LT
1397#ifdef __ARCH_WANT_SYS_ALARM
1398
1399/*
1400 * For backwards compatibility? This can be done in libc so Alpha
1401 * and all newer ports shouldn't need it.
1402 */
58fd3aa2 1403SYSCALL_DEFINE1(alarm, unsigned int, seconds)
1da177e4 1404{
c08b8a49 1405 return alarm_setitimer(seconds);
1da177e4
LT
1406}
1407
1408#endif
1409
1410#ifndef __alpha__
1411
1412/*
1413 * The Alpha uses getxpid, getxuid, and getxgid instead. Maybe this
1414 * should be moved into arch/i386 instead?
1415 */
1416
1417/**
1418 * sys_getpid - return the thread group id of the current process
1419 *
1420 * Note, despite the name, this returns the tgid not the pid. The tgid and
1421 * the pid are identical unless CLONE_THREAD was specified on clone() in
1422 * which case the tgid is the same in all threads of the same group.
1423 *
1424 * This is SMP safe as current->tgid does not change.
1425 */
58fd3aa2 1426SYSCALL_DEFINE0(getpid)
1da177e4 1427{
b488893a 1428 return task_tgid_vnr(current);
1da177e4
LT
1429}
1430
1431/*
6997a6fa
KK
1432 * Accessing ->real_parent is not SMP-safe, it could
1433 * change from under us. However, we can use a stale
1434 * value of ->real_parent under rcu_read_lock(), see
1435 * release_task()->call_rcu(delayed_put_task_struct).
1da177e4 1436 */
dbf040d9 1437SYSCALL_DEFINE0(getppid)
1da177e4
LT
1438{
1439 int pid;
1da177e4 1440
6997a6fa 1441 rcu_read_lock();
031af165 1442 pid = task_tgid_vnr(rcu_dereference(current->real_parent));
6997a6fa 1443 rcu_read_unlock();
1da177e4 1444
1da177e4
LT
1445 return pid;
1446}
1447
dbf040d9 1448SYSCALL_DEFINE0(getuid)
1da177e4
LT
1449{
1450 /* Only we change this so SMP safe */
a29c33f4 1451 return from_kuid_munged(current_user_ns(), current_uid());
1da177e4
LT
1452}
1453
dbf040d9 1454SYSCALL_DEFINE0(geteuid)
1da177e4
LT
1455{
1456 /* Only we change this so SMP safe */
a29c33f4 1457 return from_kuid_munged(current_user_ns(), current_euid());
1da177e4
LT
1458}
1459
dbf040d9 1460SYSCALL_DEFINE0(getgid)
1da177e4
LT
1461{
1462 /* Only we change this so SMP safe */
a29c33f4 1463 return from_kgid_munged(current_user_ns(), current_gid());
1da177e4
LT
1464}
1465
dbf040d9 1466SYSCALL_DEFINE0(getegid)
1da177e4
LT
1467{
1468 /* Only we change this so SMP safe */
a29c33f4 1469 return from_kgid_munged(current_user_ns(), current_egid());
1da177e4
LT
1470}
1471
1472#endif
1473
1474static void process_timeout(unsigned long __data)
1475{
36c8b586 1476 wake_up_process((struct task_struct *)__data);
1da177e4
LT
1477}
1478
1479/**
1480 * schedule_timeout - sleep until timeout
1481 * @timeout: timeout value in jiffies
1482 *
1483 * Make the current task sleep until @timeout jiffies have
1484 * elapsed. The routine will return immediately unless
1485 * the current task state has been set (see set_current_state()).
1486 *
1487 * You can set the task state as follows -
1488 *
1489 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1490 * pass before the routine returns. The routine will return 0
1491 *
1492 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1493 * delivered to the current task. In this case the remaining time
1494 * in jiffies will be returned, or 0 if the timer expired in time
1495 *
1496 * The current task state is guaranteed to be TASK_RUNNING when this
1497 * routine returns.
1498 *
1499 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1500 * the CPU away without a bound on the timeout. In this case the return
1501 * value will be %MAX_SCHEDULE_TIMEOUT.
1502 *
1503 * In all cases the return value is guaranteed to be non-negative.
1504 */
7ad5b3a5 1505signed long __sched schedule_timeout(signed long timeout)
1da177e4
LT
1506{
1507 struct timer_list timer;
1508 unsigned long expire;
1509
1510 switch (timeout)
1511 {
1512 case MAX_SCHEDULE_TIMEOUT:
1513 /*
1514 * These two special cases are useful to be comfortable
1515 * in the caller. Nothing more. We could take
1516 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1517 * but I' d like to return a valid offset (>=0) to allow
1518 * the caller to do everything it want with the retval.
1519 */
1520 schedule();
1521 goto out;
1522 default:
1523 /*
1524 * Another bit of PARANOID. Note that the retval will be
1525 * 0 since no piece of kernel is supposed to do a check
1526 * for a negative retval of schedule_timeout() (since it
1527 * should never happens anyway). You just have the printk()
1528 * that will tell you if something is gone wrong and where.
1529 */
5b149bcc 1530 if (timeout < 0) {
1da177e4 1531 printk(KERN_ERR "schedule_timeout: wrong timeout "
5b149bcc
AM
1532 "value %lx\n", timeout);
1533 dump_stack();
1da177e4
LT
1534 current->state = TASK_RUNNING;
1535 goto out;
1536 }
1537 }
1538
1539 expire = timeout + jiffies;
1540
c6f3a97f 1541 setup_timer_on_stack(&timer, process_timeout, (unsigned long)current);
597d0275 1542 __mod_timer(&timer, expire, false, TIMER_NOT_PINNED);
1da177e4
LT
1543 schedule();
1544 del_singleshot_timer_sync(&timer);
1545
c6f3a97f
TG
1546 /* Remove the timer from the object tracker */
1547 destroy_timer_on_stack(&timer);
1548
1da177e4
LT
1549 timeout = expire - jiffies;
1550
1551 out:
1552 return timeout < 0 ? 0 : timeout;
1553}
1da177e4
LT
1554EXPORT_SYMBOL(schedule_timeout);
1555
8a1c1757
AM
1556/*
1557 * We can use __set_current_state() here because schedule_timeout() calls
1558 * schedule() unconditionally.
1559 */
64ed93a2
NA
1560signed long __sched schedule_timeout_interruptible(signed long timeout)
1561{
a5a0d52c
AM
1562 __set_current_state(TASK_INTERRUPTIBLE);
1563 return schedule_timeout(timeout);
64ed93a2
NA
1564}
1565EXPORT_SYMBOL(schedule_timeout_interruptible);
1566
294d5cc2
MW
1567signed long __sched schedule_timeout_killable(signed long timeout)
1568{
1569 __set_current_state(TASK_KILLABLE);
1570 return schedule_timeout(timeout);
1571}
1572EXPORT_SYMBOL(schedule_timeout_killable);
1573
64ed93a2
NA
1574signed long __sched schedule_timeout_uninterruptible(signed long timeout)
1575{
a5a0d52c
AM
1576 __set_current_state(TASK_UNINTERRUPTIBLE);
1577 return schedule_timeout(timeout);
64ed93a2
NA
1578}
1579EXPORT_SYMBOL(schedule_timeout_uninterruptible);
1580
1da177e4 1581/* Thread ID - the internal kernel "pid" */
58fd3aa2 1582SYSCALL_DEFINE0(gettid)
1da177e4 1583{
b488893a 1584 return task_pid_vnr(current);
1da177e4
LT
1585}
1586
2aae4a10 1587/**
d4d23add 1588 * do_sysinfo - fill in sysinfo struct
2aae4a10 1589 * @info: pointer to buffer to fill
6819457d 1590 */
d4d23add 1591int do_sysinfo(struct sysinfo *info)
1da177e4 1592{
1da177e4
LT
1593 unsigned long mem_total, sav_total;
1594 unsigned int mem_unit, bitcount;
2d02494f 1595 struct timespec tp;
1da177e4 1596
d4d23add 1597 memset(info, 0, sizeof(struct sysinfo));
1da177e4 1598
2d02494f
TG
1599 ktime_get_ts(&tp);
1600 monotonic_to_bootbased(&tp);
1601 info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
1da177e4 1602
2d02494f 1603 get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT);
1da177e4 1604
2d02494f 1605 info->procs = nr_threads;
1da177e4 1606
d4d23add
KM
1607 si_meminfo(info);
1608 si_swapinfo(info);
1da177e4
LT
1609
1610 /*
1611 * If the sum of all the available memory (i.e. ram + swap)
1612 * is less than can be stored in a 32 bit unsigned long then
1613 * we can be binary compatible with 2.2.x kernels. If not,
1614 * well, in that case 2.2.x was broken anyways...
1615 *
1616 * -Erik Andersen <andersee@debian.org>
1617 */
1618
d4d23add
KM
1619 mem_total = info->totalram + info->totalswap;
1620 if (mem_total < info->totalram || mem_total < info->totalswap)
1da177e4
LT
1621 goto out;
1622 bitcount = 0;
d4d23add 1623 mem_unit = info->mem_unit;
1da177e4
LT
1624 while (mem_unit > 1) {
1625 bitcount++;
1626 mem_unit >>= 1;
1627 sav_total = mem_total;
1628 mem_total <<= 1;
1629 if (mem_total < sav_total)
1630 goto out;
1631 }
1632
1633 /*
1634 * If mem_total did not overflow, multiply all memory values by
d4d23add 1635 * info->mem_unit and set it to 1. This leaves things compatible
1da177e4
LT
1636 * with 2.2.x, and also retains compatibility with earlier 2.4.x
1637 * kernels...
1638 */
1639
d4d23add
KM
1640 info->mem_unit = 1;
1641 info->totalram <<= bitcount;
1642 info->freeram <<= bitcount;
1643 info->sharedram <<= bitcount;
1644 info->bufferram <<= bitcount;
1645 info->totalswap <<= bitcount;
1646 info->freeswap <<= bitcount;
1647 info->totalhigh <<= bitcount;
1648 info->freehigh <<= bitcount;
1649
1650out:
1651 return 0;
1652}
1653
1e7bfb21 1654SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
d4d23add
KM
1655{
1656 struct sysinfo val;
1657
1658 do_sysinfo(&val);
1da177e4 1659
1da177e4
LT
1660 if (copy_to_user(info, &val, sizeof(struct sysinfo)))
1661 return -EFAULT;
1662
1663 return 0;
1664}
1665
b4be6258 1666static int __cpuinit init_timers_cpu(int cpu)
1da177e4
LT
1667{
1668 int j;
a6fa8e5a 1669 struct tvec_base *base;
b4be6258 1670 static char __cpuinitdata tvec_base_done[NR_CPUS];
55c888d6 1671
ba6edfcd 1672 if (!tvec_base_done[cpu]) {
a4a6198b
JB
1673 static char boot_done;
1674
a4a6198b 1675 if (boot_done) {
ba6edfcd
AM
1676 /*
1677 * The APs use this path later in boot
1678 */
94f6030c
CL
1679 base = kmalloc_node(sizeof(*base),
1680 GFP_KERNEL | __GFP_ZERO,
a4a6198b
JB
1681 cpu_to_node(cpu));
1682 if (!base)
1683 return -ENOMEM;
6e453a67
VP
1684
1685 /* Make sure that tvec_base is 2 byte aligned */
1686 if (tbase_get_deferrable(base)) {
1687 WARN_ON(1);
1688 kfree(base);
1689 return -ENOMEM;
1690 }
ba6edfcd 1691 per_cpu(tvec_bases, cpu) = base;
a4a6198b 1692 } else {
ba6edfcd
AM
1693 /*
1694 * This is for the boot CPU - we use compile-time
1695 * static initialisation because per-cpu memory isn't
1696 * ready yet and because the memory allocators are not
1697 * initialised either.
1698 */
a4a6198b 1699 boot_done = 1;
ba6edfcd 1700 base = &boot_tvec_bases;
a4a6198b 1701 }
ba6edfcd
AM
1702 tvec_base_done[cpu] = 1;
1703 } else {
1704 base = per_cpu(tvec_bases, cpu);
a4a6198b 1705 }
ba6edfcd 1706
3691c519 1707 spin_lock_init(&base->lock);
d730e882 1708
1da177e4
LT
1709 for (j = 0; j < TVN_SIZE; j++) {
1710 INIT_LIST_HEAD(base->tv5.vec + j);
1711 INIT_LIST_HEAD(base->tv4.vec + j);
1712 INIT_LIST_HEAD(base->tv3.vec + j);
1713 INIT_LIST_HEAD(base->tv2.vec + j);
1714 }
1715 for (j = 0; j < TVR_SIZE; j++)
1716 INIT_LIST_HEAD(base->tv1.vec + j);
1717
1718 base->timer_jiffies = jiffies;
97fd9ed4 1719 base->next_timer = base->timer_jiffies;
99d5f3aa 1720 base->active_timers = 0;
a4a6198b 1721 return 0;
1da177e4
LT
1722}
1723
1724#ifdef CONFIG_HOTPLUG_CPU
a6fa8e5a 1725static void migrate_timer_list(struct tvec_base *new_base, struct list_head *head)
1da177e4
LT
1726{
1727 struct timer_list *timer;
1728
1729 while (!list_empty(head)) {
b5e61818 1730 timer = list_first_entry(head, struct timer_list, entry);
99d5f3aa 1731 /* We ignore the accounting on the dying cpu */
ec44bc7a 1732 detach_timer(timer, false);
6e453a67 1733 timer_set_base(timer, new_base);
1da177e4 1734 internal_add_timer(new_base, timer);
1da177e4 1735 }
1da177e4
LT
1736}
1737
48ccf3da 1738static void __cpuinit migrate_timers(int cpu)
1da177e4 1739{
a6fa8e5a
PM
1740 struct tvec_base *old_base;
1741 struct tvec_base *new_base;
1da177e4
LT
1742 int i;
1743
1744 BUG_ON(cpu_online(cpu));
a4a6198b
JB
1745 old_base = per_cpu(tvec_bases, cpu);
1746 new_base = get_cpu_var(tvec_bases);
d82f0b0f
ON
1747 /*
1748 * The caller is globally serialized and nobody else
1749 * takes two locks at once, deadlock is not possible.
1750 */
1751 spin_lock_irq(&new_base->lock);
0d180406 1752 spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
3691c519
ON
1753
1754 BUG_ON(old_base->running_timer);
1da177e4 1755
1da177e4 1756 for (i = 0; i < TVR_SIZE; i++)
55c888d6
ON
1757 migrate_timer_list(new_base, old_base->tv1.vec + i);
1758 for (i = 0; i < TVN_SIZE; i++) {
1759 migrate_timer_list(new_base, old_base->tv2.vec + i);
1760 migrate_timer_list(new_base, old_base->tv3.vec + i);
1761 migrate_timer_list(new_base, old_base->tv4.vec + i);
1762 migrate_timer_list(new_base, old_base->tv5.vec + i);
1763 }
1764
0d180406 1765 spin_unlock(&old_base->lock);
d82f0b0f 1766 spin_unlock_irq(&new_base->lock);
1da177e4 1767 put_cpu_var(tvec_bases);
1da177e4
LT
1768}
1769#endif /* CONFIG_HOTPLUG_CPU */
1770
8c78f307 1771static int __cpuinit timer_cpu_notify(struct notifier_block *self,
1da177e4
LT
1772 unsigned long action, void *hcpu)
1773{
1774 long cpu = (long)hcpu;
80b5184c
AM
1775 int err;
1776
1da177e4
LT
1777 switch(action) {
1778 case CPU_UP_PREPARE:
8bb78442 1779 case CPU_UP_PREPARE_FROZEN:
80b5184c
AM
1780 err = init_timers_cpu(cpu);
1781 if (err < 0)
1782 return notifier_from_errno(err);
1da177e4
LT
1783 break;
1784#ifdef CONFIG_HOTPLUG_CPU
1785 case CPU_DEAD:
8bb78442 1786 case CPU_DEAD_FROZEN:
1da177e4
LT
1787 migrate_timers(cpu);
1788 break;
1789#endif
1790 default:
1791 break;
1792 }
1793 return NOTIFY_OK;
1794}
1795
8c78f307 1796static struct notifier_block __cpuinitdata timers_nb = {
1da177e4
LT
1797 .notifier_call = timer_cpu_notify,
1798};
1799
1800
1801void __init init_timers(void)
1802{
07dccf33 1803 int err = timer_cpu_notify(&timers_nb, (unsigned long)CPU_UP_PREPARE,
1da177e4 1804 (void *)(long)smp_processor_id());
07dccf33 1805
82f67cd9
IM
1806 init_timer_stats();
1807
9e506f7a 1808 BUG_ON(err != NOTIFY_OK);
1da177e4 1809 register_cpu_notifier(&timers_nb);
962cf36c 1810 open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
1da177e4
LT
1811}
1812
1da177e4
LT
1813/**
1814 * msleep - sleep safely even with waitqueue interruptions
1815 * @msecs: Time in milliseconds to sleep for
1816 */
1817void msleep(unsigned int msecs)
1818{
1819 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1820
75bcc8c5
NA
1821 while (timeout)
1822 timeout = schedule_timeout_uninterruptible(timeout);
1da177e4
LT
1823}
1824
1825EXPORT_SYMBOL(msleep);
1826
1827/**
96ec3efd 1828 * msleep_interruptible - sleep waiting for signals
1da177e4
LT
1829 * @msecs: Time in milliseconds to sleep for
1830 */
1831unsigned long msleep_interruptible(unsigned int msecs)
1832{
1833 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1834
75bcc8c5
NA
1835 while (timeout && !signal_pending(current))
1836 timeout = schedule_timeout_interruptible(timeout);
1da177e4
LT
1837 return jiffies_to_msecs(timeout);
1838}
1839
1840EXPORT_SYMBOL(msleep_interruptible);
5e7f5a17
PP
1841
1842static int __sched do_usleep_range(unsigned long min, unsigned long max)
1843{
1844 ktime_t kmin;
1845 unsigned long delta;
1846
1847 kmin = ktime_set(0, min * NSEC_PER_USEC);
1848 delta = (max - min) * NSEC_PER_USEC;
1849 return schedule_hrtimeout_range(&kmin, delta, HRTIMER_MODE_REL);
1850}
1851
1852/**
1853 * usleep_range - Drop in replacement for udelay where wakeup is flexible
1854 * @min: Minimum time in usecs to sleep
1855 * @max: Maximum time in usecs to sleep
1856 */
1857void usleep_range(unsigned long min, unsigned long max)
1858{
1859 __set_current_state(TASK_UNINTERRUPTIBLE);
1860 do_usleep_range(min, max);
1861}
1862EXPORT_SYMBOL(usleep_range);