x86/amd-iommu: Simplify get_device_resources()
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / x86 / kernel / amd_iommu.c
CommitLineData
b6c02715 1/*
bf3118c1 2 * Copyright (C) 2007-2009 Advanced Micro Devices, Inc.
b6c02715
JR
3 * Author: Joerg Roedel <joerg.roedel@amd.com>
4 * Leo Duran <leo.duran@amd.com>
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19
20#include <linux/pci.h>
21#include <linux/gfp.h>
22#include <linux/bitops.h>
7f26508b 23#include <linux/debugfs.h>
b6c02715 24#include <linux/scatterlist.h>
51491367 25#include <linux/dma-mapping.h>
b6c02715 26#include <linux/iommu-helper.h>
c156e347 27#include <linux/iommu.h>
b6c02715 28#include <asm/proto.h>
46a7fa27 29#include <asm/iommu.h>
1d9b16d1 30#include <asm/gart.h>
6a9401a7 31#include <asm/amd_iommu_proto.h>
b6c02715 32#include <asm/amd_iommu_types.h>
c6da992e 33#include <asm/amd_iommu.h>
b6c02715
JR
34
35#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
36
136f78a1
JR
37#define EXIT_LOOP_COUNT 10000000
38
b6c02715
JR
39static DEFINE_RWLOCK(amd_iommu_devtable_lock);
40
bd60b735
JR
41/* A list of preallocated protection domains */
42static LIST_HEAD(iommu_pd_list);
43static DEFINE_SPINLOCK(iommu_pd_list_lock);
44
0feae533
JR
45/*
46 * Domain for untranslated devices - only allocated
47 * if iommu=pt passed on kernel cmd line.
48 */
49static struct protection_domain *pt_domain;
50
26961efe 51static struct iommu_ops amd_iommu_ops;
26961efe 52
431b2a20
JR
53/*
54 * general struct to manage commands send to an IOMMU
55 */
d6449536 56struct iommu_cmd {
b6c02715
JR
57 u32 data[4];
58};
59
bd0e5211
JR
60static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
61 struct unity_map_entry *e);
e275a2a0 62static struct dma_ops_domain *find_protection_domain(u16 devid);
8bc3e127 63static u64 *alloc_pte(struct protection_domain *domain,
abdc5eb3
JR
64 unsigned long address, int end_lvl,
65 u64 **pte_page, gfp_t gfp);
00cd122a
JR
66static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
67 unsigned long start_page,
68 unsigned int pages);
a345b23b 69static void reset_iommu_command_buffer(struct amd_iommu *iommu);
9355a081 70static u64 *fetch_pte(struct protection_domain *domain,
a6b256b4 71 unsigned long address, int map_size);
04bfdd84 72static void update_domain(struct protection_domain *domain);
c1eee67b 73
15898bbc
JR
74/****************************************************************************
75 *
76 * Helper functions
77 *
78 ****************************************************************************/
79
80static inline u16 get_device_id(struct device *dev)
81{
82 struct pci_dev *pdev = to_pci_dev(dev);
83
84 return calc_devid(pdev->bus->number, pdev->devfn);
85}
86
7f26508b
JR
87#ifdef CONFIG_AMD_IOMMU_STATS
88
89/*
90 * Initialization code for statistics collection
91 */
92
da49f6df 93DECLARE_STATS_COUNTER(compl_wait);
0f2a86f2 94DECLARE_STATS_COUNTER(cnt_map_single);
146a6917 95DECLARE_STATS_COUNTER(cnt_unmap_single);
d03f067a 96DECLARE_STATS_COUNTER(cnt_map_sg);
55877a6b 97DECLARE_STATS_COUNTER(cnt_unmap_sg);
c8f0fb36 98DECLARE_STATS_COUNTER(cnt_alloc_coherent);
5d31ee7e 99DECLARE_STATS_COUNTER(cnt_free_coherent);
c1858976 100DECLARE_STATS_COUNTER(cross_page);
f57d98ae 101DECLARE_STATS_COUNTER(domain_flush_single);
18811f55 102DECLARE_STATS_COUNTER(domain_flush_all);
5774f7c5 103DECLARE_STATS_COUNTER(alloced_io_mem);
8ecaf8f1 104DECLARE_STATS_COUNTER(total_map_requests);
da49f6df 105
7f26508b
JR
106static struct dentry *stats_dir;
107static struct dentry *de_isolate;
108static struct dentry *de_fflush;
109
110static void amd_iommu_stats_add(struct __iommu_counter *cnt)
111{
112 if (stats_dir == NULL)
113 return;
114
115 cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
116 &cnt->value);
117}
118
119static void amd_iommu_stats_init(void)
120{
121 stats_dir = debugfs_create_dir("amd-iommu", NULL);
122 if (stats_dir == NULL)
123 return;
124
125 de_isolate = debugfs_create_bool("isolation", 0444, stats_dir,
126 (u32 *)&amd_iommu_isolate);
127
128 de_fflush = debugfs_create_bool("fullflush", 0444, stats_dir,
129 (u32 *)&amd_iommu_unmap_flush);
da49f6df
JR
130
131 amd_iommu_stats_add(&compl_wait);
0f2a86f2 132 amd_iommu_stats_add(&cnt_map_single);
146a6917 133 amd_iommu_stats_add(&cnt_unmap_single);
d03f067a 134 amd_iommu_stats_add(&cnt_map_sg);
55877a6b 135 amd_iommu_stats_add(&cnt_unmap_sg);
c8f0fb36 136 amd_iommu_stats_add(&cnt_alloc_coherent);
5d31ee7e 137 amd_iommu_stats_add(&cnt_free_coherent);
c1858976 138 amd_iommu_stats_add(&cross_page);
f57d98ae 139 amd_iommu_stats_add(&domain_flush_single);
18811f55 140 amd_iommu_stats_add(&domain_flush_all);
5774f7c5 141 amd_iommu_stats_add(&alloced_io_mem);
8ecaf8f1 142 amd_iommu_stats_add(&total_map_requests);
7f26508b
JR
143}
144
145#endif
146
a80dc3e0
JR
147/****************************************************************************
148 *
149 * Interrupt handling functions
150 *
151 ****************************************************************************/
152
e3e59876
JR
153static void dump_dte_entry(u16 devid)
154{
155 int i;
156
157 for (i = 0; i < 8; ++i)
158 pr_err("AMD-Vi: DTE[%d]: %08x\n", i,
159 amd_iommu_dev_table[devid].data[i]);
160}
161
945b4ac4
JR
162static void dump_command(unsigned long phys_addr)
163{
164 struct iommu_cmd *cmd = phys_to_virt(phys_addr);
165 int i;
166
167 for (i = 0; i < 4; ++i)
168 pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
169}
170
a345b23b 171static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
90008ee4
JR
172{
173 u32 *event = __evt;
174 int type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
175 int devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
176 int domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
177 int flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
178 u64 address = (u64)(((u64)event[3]) << 32) | event[2];
179
4c6f40d4 180 printk(KERN_ERR "AMD-Vi: Event logged [");
90008ee4
JR
181
182 switch (type) {
183 case EVENT_TYPE_ILL_DEV:
184 printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
185 "address=0x%016llx flags=0x%04x]\n",
186 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
187 address, flags);
e3e59876 188 dump_dte_entry(devid);
90008ee4
JR
189 break;
190 case EVENT_TYPE_IO_FAULT:
191 printk("IO_PAGE_FAULT device=%02x:%02x.%x "
192 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
193 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
194 domid, address, flags);
195 break;
196 case EVENT_TYPE_DEV_TAB_ERR:
197 printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
198 "address=0x%016llx flags=0x%04x]\n",
199 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
200 address, flags);
201 break;
202 case EVENT_TYPE_PAGE_TAB_ERR:
203 printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
204 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
205 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
206 domid, address, flags);
207 break;
208 case EVENT_TYPE_ILL_CMD:
209 printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
a345b23b 210 reset_iommu_command_buffer(iommu);
945b4ac4 211 dump_command(address);
90008ee4
JR
212 break;
213 case EVENT_TYPE_CMD_HARD_ERR:
214 printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
215 "flags=0x%04x]\n", address, flags);
216 break;
217 case EVENT_TYPE_IOTLB_INV_TO:
218 printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
219 "address=0x%016llx]\n",
220 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
221 address);
222 break;
223 case EVENT_TYPE_INV_DEV_REQ:
224 printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
225 "address=0x%016llx flags=0x%04x]\n",
226 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
227 address, flags);
228 break;
229 default:
230 printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
231 }
232}
233
234static void iommu_poll_events(struct amd_iommu *iommu)
235{
236 u32 head, tail;
237 unsigned long flags;
238
239 spin_lock_irqsave(&iommu->lock, flags);
240
241 head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
242 tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
243
244 while (head != tail) {
a345b23b 245 iommu_print_event(iommu, iommu->evt_buf + head);
90008ee4
JR
246 head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
247 }
248
249 writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
250
251 spin_unlock_irqrestore(&iommu->lock, flags);
252}
253
a80dc3e0
JR
254irqreturn_t amd_iommu_int_handler(int irq, void *data)
255{
90008ee4
JR
256 struct amd_iommu *iommu;
257
3bd22172 258 for_each_iommu(iommu)
90008ee4
JR
259 iommu_poll_events(iommu);
260
261 return IRQ_HANDLED;
a80dc3e0
JR
262}
263
431b2a20
JR
264/****************************************************************************
265 *
266 * IOMMU command queuing functions
267 *
268 ****************************************************************************/
269
270/*
271 * Writes the command to the IOMMUs command buffer and informs the
272 * hardware about the new command. Must be called with iommu->lock held.
273 */
d6449536 274static int __iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
a19ae1ec
JR
275{
276 u32 tail, head;
277 u8 *target;
278
279 tail = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
8a7c5ef3 280 target = iommu->cmd_buf + tail;
a19ae1ec
JR
281 memcpy_toio(target, cmd, sizeof(*cmd));
282 tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
283 head = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
284 if (tail == head)
285 return -ENOMEM;
286 writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
287
288 return 0;
289}
290
431b2a20
JR
291/*
292 * General queuing function for commands. Takes iommu->lock and calls
293 * __iommu_queue_command().
294 */
d6449536 295static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
a19ae1ec
JR
296{
297 unsigned long flags;
298 int ret;
299
300 spin_lock_irqsave(&iommu->lock, flags);
301 ret = __iommu_queue_command(iommu, cmd);
09ee17eb 302 if (!ret)
0cfd7aa9 303 iommu->need_sync = true;
a19ae1ec
JR
304 spin_unlock_irqrestore(&iommu->lock, flags);
305
306 return ret;
307}
308
8d201968
JR
309/*
310 * This function waits until an IOMMU has completed a completion
311 * wait command
312 */
313static void __iommu_wait_for_completion(struct amd_iommu *iommu)
314{
315 int ready = 0;
316 unsigned status = 0;
317 unsigned long i = 0;
318
da49f6df
JR
319 INC_STATS_COUNTER(compl_wait);
320
8d201968
JR
321 while (!ready && (i < EXIT_LOOP_COUNT)) {
322 ++i;
323 /* wait for the bit to become one */
324 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
325 ready = status & MMIO_STATUS_COM_WAIT_INT_MASK;
326 }
327
328 /* set bit back to zero */
329 status &= ~MMIO_STATUS_COM_WAIT_INT_MASK;
330 writel(status, iommu->mmio_base + MMIO_STATUS_OFFSET);
331
6a1eddd2
JR
332 if (unlikely(i == EXIT_LOOP_COUNT)) {
333 spin_unlock(&iommu->lock);
334 reset_iommu_command_buffer(iommu);
335 spin_lock(&iommu->lock);
336 }
8d201968
JR
337}
338
339/*
340 * This function queues a completion wait command into the command
341 * buffer of an IOMMU
342 */
343static int __iommu_completion_wait(struct amd_iommu *iommu)
344{
345 struct iommu_cmd cmd;
346
347 memset(&cmd, 0, sizeof(cmd));
348 cmd.data[0] = CMD_COMPL_WAIT_INT_MASK;
349 CMD_SET_TYPE(&cmd, CMD_COMPL_WAIT);
350
351 return __iommu_queue_command(iommu, &cmd);
352}
353
431b2a20
JR
354/*
355 * This function is called whenever we need to ensure that the IOMMU has
356 * completed execution of all commands we sent. It sends a
357 * COMPLETION_WAIT command and waits for it to finish. The IOMMU informs
358 * us about that by writing a value to a physical address we pass with
359 * the command.
360 */
a19ae1ec
JR
361static int iommu_completion_wait(struct amd_iommu *iommu)
362{
8d201968
JR
363 int ret = 0;
364 unsigned long flags;
a19ae1ec 365
7e4f88da
JR
366 spin_lock_irqsave(&iommu->lock, flags);
367
09ee17eb
JR
368 if (!iommu->need_sync)
369 goto out;
370
8d201968 371 ret = __iommu_completion_wait(iommu);
09ee17eb 372
0cfd7aa9 373 iommu->need_sync = false;
a19ae1ec
JR
374
375 if (ret)
7e4f88da 376 goto out;
a19ae1ec 377
8d201968 378 __iommu_wait_for_completion(iommu);
84df8175 379
7e4f88da
JR
380out:
381 spin_unlock_irqrestore(&iommu->lock, flags);
a19ae1ec
JR
382
383 return 0;
384}
385
0518a3a4
JR
386static void iommu_flush_complete(struct protection_domain *domain)
387{
388 int i;
389
390 for (i = 0; i < amd_iommus_present; ++i) {
391 if (!domain->dev_iommu[i])
392 continue;
393
394 /*
395 * Devices of this domain are behind this IOMMU
396 * We need to wait for completion of all commands.
397 */
398 iommu_completion_wait(amd_iommus[i]);
399 }
400}
401
431b2a20
JR
402/*
403 * Command send function for invalidating a device table entry
404 */
a19ae1ec
JR
405static int iommu_queue_inv_dev_entry(struct amd_iommu *iommu, u16 devid)
406{
d6449536 407 struct iommu_cmd cmd;
ee2fa743 408 int ret;
a19ae1ec
JR
409
410 BUG_ON(iommu == NULL);
411
412 memset(&cmd, 0, sizeof(cmd));
413 CMD_SET_TYPE(&cmd, CMD_INV_DEV_ENTRY);
414 cmd.data[0] = devid;
415
ee2fa743
JR
416 ret = iommu_queue_command(iommu, &cmd);
417
ee2fa743 418 return ret;
a19ae1ec
JR
419}
420
237b6f33
JR
421static void __iommu_build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
422 u16 domid, int pde, int s)
423{
424 memset(cmd, 0, sizeof(*cmd));
425 address &= PAGE_MASK;
426 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
427 cmd->data[1] |= domid;
428 cmd->data[2] = lower_32_bits(address);
429 cmd->data[3] = upper_32_bits(address);
430 if (s) /* size bit - we flush more than one 4kb page */
431 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
432 if (pde) /* PDE bit - we wan't flush everything not only the PTEs */
433 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
434}
435
431b2a20
JR
436/*
437 * Generic command send function for invalidaing TLB entries
438 */
a19ae1ec
JR
439static int iommu_queue_inv_iommu_pages(struct amd_iommu *iommu,
440 u64 address, u16 domid, int pde, int s)
441{
d6449536 442 struct iommu_cmd cmd;
ee2fa743 443 int ret;
a19ae1ec 444
237b6f33 445 __iommu_build_inv_iommu_pages(&cmd, address, domid, pde, s);
a19ae1ec 446
ee2fa743
JR
447 ret = iommu_queue_command(iommu, &cmd);
448
ee2fa743 449 return ret;
a19ae1ec
JR
450}
451
431b2a20
JR
452/*
453 * TLB invalidation function which is called from the mapping functions.
454 * It invalidates a single PTE if the range to flush is within a single
455 * page. Otherwise it flushes the whole TLB of the IOMMU.
456 */
6de8ad9b
JR
457static void __iommu_flush_pages(struct protection_domain *domain,
458 u64 address, size_t size, int pde)
a19ae1ec 459{
6de8ad9b 460 int s = 0, i;
dcd1e92e 461 unsigned long pages = iommu_num_pages(address, size, PAGE_SIZE);
a19ae1ec
JR
462
463 address &= PAGE_MASK;
464
999ba417
JR
465 if (pages > 1) {
466 /*
467 * If we have to flush more than one page, flush all
468 * TLB entries for this domain
469 */
470 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
471 s = 1;
a19ae1ec
JR
472 }
473
999ba417 474
6de8ad9b
JR
475 for (i = 0; i < amd_iommus_present; ++i) {
476 if (!domain->dev_iommu[i])
477 continue;
478
479 /*
480 * Devices of this domain are behind this IOMMU
481 * We need a TLB flush
482 */
483 iommu_queue_inv_iommu_pages(amd_iommus[i], address,
484 domain->id, pde, s);
485 }
486
487 return;
488}
489
490static void iommu_flush_pages(struct protection_domain *domain,
491 u64 address, size_t size)
492{
493 __iommu_flush_pages(domain, address, size, 0);
a19ae1ec 494}
b6c02715 495
1c655773 496/* Flush the whole IO/TLB for a given protection domain */
dcd1e92e 497static void iommu_flush_tlb(struct protection_domain *domain)
1c655773 498{
dcd1e92e 499 __iommu_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
1c655773
JR
500}
501
42a49f96 502/* Flush the whole IO/TLB for a given protection domain - including PDE */
dcd1e92e 503static void iommu_flush_tlb_pde(struct protection_domain *domain)
42a49f96 504{
dcd1e92e 505 __iommu_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
42a49f96
CW
506}
507
43f49609 508/*
09b42804 509 * This function flushes all domains that have devices on the given IOMMU
43f49609 510 */
09b42804 511static void flush_all_domains_on_iommu(struct amd_iommu *iommu)
43f49609 512{
09b42804
JR
513 u64 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
514 struct protection_domain *domain;
e394d72a 515 unsigned long flags;
18811f55 516
09b42804 517 spin_lock_irqsave(&amd_iommu_pd_lock, flags);
bfd1be18 518
09b42804
JR
519 list_for_each_entry(domain, &amd_iommu_pd_list, list) {
520 if (domain->dev_iommu[iommu->index] == 0)
bfd1be18 521 continue;
09b42804
JR
522
523 spin_lock(&domain->lock);
524 iommu_queue_inv_iommu_pages(iommu, address, domain->id, 1, 1);
525 iommu_flush_complete(domain);
526 spin_unlock(&domain->lock);
bfd1be18 527 }
e394d72a 528
09b42804 529 spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
e394d72a
JR
530}
531
09b42804
JR
532/*
533 * This function uses heavy locking and may disable irqs for some time. But
534 * this is no issue because it is only called during resume.
535 */
bfd1be18 536void amd_iommu_flush_all_domains(void)
e394d72a 537{
e3306664 538 struct protection_domain *domain;
09b42804
JR
539 unsigned long flags;
540
541 spin_lock_irqsave(&amd_iommu_pd_lock, flags);
e394d72a 542
e3306664 543 list_for_each_entry(domain, &amd_iommu_pd_list, list) {
09b42804 544 spin_lock(&domain->lock);
e3306664
JR
545 iommu_flush_tlb_pde(domain);
546 iommu_flush_complete(domain);
09b42804 547 spin_unlock(&domain->lock);
e3306664 548 }
09b42804
JR
549
550 spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
bfd1be18
JR
551}
552
d586d785 553static void flush_all_devices_for_iommu(struct amd_iommu *iommu)
bfd1be18
JR
554{
555 int i;
556
d586d785
JR
557 for (i = 0; i <= amd_iommu_last_bdf; ++i) {
558 if (iommu != amd_iommu_rlookup_table[i])
bfd1be18 559 continue;
d586d785
JR
560
561 iommu_queue_inv_dev_entry(iommu, i);
562 iommu_completion_wait(iommu);
bfd1be18
JR
563 }
564}
565
6a0dbcbe 566static void flush_devices_by_domain(struct protection_domain *domain)
7d7a110c
JR
567{
568 struct amd_iommu *iommu;
569 int i;
570
571 for (i = 0; i <= amd_iommu_last_bdf; ++i) {
6a0dbcbe
JR
572 if ((domain == NULL && amd_iommu_pd_table[i] == NULL) ||
573 (amd_iommu_pd_table[i] != domain))
7d7a110c
JR
574 continue;
575
576 iommu = amd_iommu_rlookup_table[i];
577 if (!iommu)
578 continue;
579
580 iommu_queue_inv_dev_entry(iommu, i);
581 iommu_completion_wait(iommu);
582 }
583}
584
a345b23b
JR
585static void reset_iommu_command_buffer(struct amd_iommu *iommu)
586{
587 pr_err("AMD-Vi: Resetting IOMMU command buffer\n");
588
b26e81b8
JR
589 if (iommu->reset_in_progress)
590 panic("AMD-Vi: ILLEGAL_COMMAND_ERROR while resetting command buffer\n");
591
592 iommu->reset_in_progress = true;
593
a345b23b
JR
594 amd_iommu_reset_cmd_buffer(iommu);
595 flush_all_devices_for_iommu(iommu);
596 flush_all_domains_on_iommu(iommu);
b26e81b8
JR
597
598 iommu->reset_in_progress = false;
a345b23b
JR
599}
600
6a0dbcbe
JR
601void amd_iommu_flush_all_devices(void)
602{
603 flush_devices_by_domain(NULL);
604}
605
431b2a20
JR
606/****************************************************************************
607 *
608 * The functions below are used the create the page table mappings for
609 * unity mapped regions.
610 *
611 ****************************************************************************/
612
613/*
614 * Generic mapping functions. It maps a physical address into a DMA
615 * address space. It allocates the page table pages if necessary.
616 * In the future it can be extended to a generic mapping function
617 * supporting all features of AMD IOMMU page tables like level skipping
618 * and full 64 bit address spaces.
619 */
38e817fe
JR
620static int iommu_map_page(struct protection_domain *dom,
621 unsigned long bus_addr,
622 unsigned long phys_addr,
abdc5eb3
JR
623 int prot,
624 int map_size)
bd0e5211 625{
8bda3092 626 u64 __pte, *pte;
bd0e5211
JR
627
628 bus_addr = PAGE_ALIGN(bus_addr);
bb9d4ff8 629 phys_addr = PAGE_ALIGN(phys_addr);
bd0e5211 630
abdc5eb3
JR
631 BUG_ON(!PM_ALIGNED(map_size, bus_addr));
632 BUG_ON(!PM_ALIGNED(map_size, phys_addr));
633
bad1cac2 634 if (!(prot & IOMMU_PROT_MASK))
bd0e5211
JR
635 return -EINVAL;
636
abdc5eb3 637 pte = alloc_pte(dom, bus_addr, map_size, NULL, GFP_KERNEL);
bd0e5211
JR
638
639 if (IOMMU_PTE_PRESENT(*pte))
640 return -EBUSY;
641
642 __pte = phys_addr | IOMMU_PTE_P;
643 if (prot & IOMMU_PROT_IR)
644 __pte |= IOMMU_PTE_IR;
645 if (prot & IOMMU_PROT_IW)
646 __pte |= IOMMU_PTE_IW;
647
648 *pte = __pte;
649
04bfdd84
JR
650 update_domain(dom);
651
bd0e5211
JR
652 return 0;
653}
654
eb74ff6c 655static void iommu_unmap_page(struct protection_domain *dom,
a6b256b4 656 unsigned long bus_addr, int map_size)
eb74ff6c 657{
a6b256b4 658 u64 *pte = fetch_pte(dom, bus_addr, map_size);
eb74ff6c 659
38a76eee
JR
660 if (pte)
661 *pte = 0;
eb74ff6c 662}
eb74ff6c 663
431b2a20
JR
664/*
665 * This function checks if a specific unity mapping entry is needed for
666 * this specific IOMMU.
667 */
bd0e5211
JR
668static int iommu_for_unity_map(struct amd_iommu *iommu,
669 struct unity_map_entry *entry)
670{
671 u16 bdf, i;
672
673 for (i = entry->devid_start; i <= entry->devid_end; ++i) {
674 bdf = amd_iommu_alias_table[i];
675 if (amd_iommu_rlookup_table[bdf] == iommu)
676 return 1;
677 }
678
679 return 0;
680}
681
431b2a20
JR
682/*
683 * Init the unity mappings for a specific IOMMU in the system
684 *
685 * Basically iterates over all unity mapping entries and applies them to
686 * the default domain DMA of that IOMMU if necessary.
687 */
bd0e5211
JR
688static int iommu_init_unity_mappings(struct amd_iommu *iommu)
689{
690 struct unity_map_entry *entry;
691 int ret;
692
693 list_for_each_entry(entry, &amd_iommu_unity_map, list) {
694 if (!iommu_for_unity_map(iommu, entry))
695 continue;
696 ret = dma_ops_unity_map(iommu->default_dom, entry);
697 if (ret)
698 return ret;
699 }
700
701 return 0;
702}
703
431b2a20
JR
704/*
705 * This function actually applies the mapping to the page table of the
706 * dma_ops domain.
707 */
bd0e5211
JR
708static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
709 struct unity_map_entry *e)
710{
711 u64 addr;
712 int ret;
713
714 for (addr = e->address_start; addr < e->address_end;
715 addr += PAGE_SIZE) {
abdc5eb3
JR
716 ret = iommu_map_page(&dma_dom->domain, addr, addr, e->prot,
717 PM_MAP_4k);
bd0e5211
JR
718 if (ret)
719 return ret;
720 /*
721 * if unity mapping is in aperture range mark the page
722 * as allocated in the aperture
723 */
724 if (addr < dma_dom->aperture_size)
c3239567 725 __set_bit(addr >> PAGE_SHIFT,
384de729 726 dma_dom->aperture[0]->bitmap);
bd0e5211
JR
727 }
728
729 return 0;
730}
731
431b2a20
JR
732/*
733 * Inits the unity mappings required for a specific device
734 */
bd0e5211
JR
735static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
736 u16 devid)
737{
738 struct unity_map_entry *e;
739 int ret;
740
741 list_for_each_entry(e, &amd_iommu_unity_map, list) {
742 if (!(devid >= e->devid_start && devid <= e->devid_end))
743 continue;
744 ret = dma_ops_unity_map(dma_dom, e);
745 if (ret)
746 return ret;
747 }
748
749 return 0;
750}
751
431b2a20
JR
752/****************************************************************************
753 *
754 * The next functions belong to the address allocator for the dma_ops
755 * interface functions. They work like the allocators in the other IOMMU
756 * drivers. Its basically a bitmap which marks the allocated pages in
757 * the aperture. Maybe it could be enhanced in the future to a more
758 * efficient allocator.
759 *
760 ****************************************************************************/
d3086444 761
431b2a20 762/*
384de729 763 * The address allocator core functions.
431b2a20
JR
764 *
765 * called with domain->lock held
766 */
384de729 767
00cd122a
JR
768/*
769 * This function checks if there is a PTE for a given dma address. If
770 * there is one, it returns the pointer to it.
771 */
9355a081 772static u64 *fetch_pte(struct protection_domain *domain,
a6b256b4 773 unsigned long address, int map_size)
00cd122a 774{
9355a081 775 int level;
00cd122a
JR
776 u64 *pte;
777
9355a081
JR
778 level = domain->mode - 1;
779 pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
00cd122a 780
a6b256b4 781 while (level > map_size) {
9355a081
JR
782 if (!IOMMU_PTE_PRESENT(*pte))
783 return NULL;
00cd122a 784
9355a081 785 level -= 1;
00cd122a 786
9355a081
JR
787 pte = IOMMU_PTE_PAGE(*pte);
788 pte = &pte[PM_LEVEL_INDEX(level, address)];
00cd122a 789
a6b256b4
JR
790 if ((PM_PTE_LEVEL(*pte) == 0) && level != map_size) {
791 pte = NULL;
792 break;
793 }
9355a081 794 }
00cd122a
JR
795
796 return pte;
797}
798
9cabe89b
JR
799/*
800 * This function is used to add a new aperture range to an existing
801 * aperture in case of dma_ops domain allocation or address allocation
802 * failure.
803 */
576175c2 804static int alloc_new_range(struct dma_ops_domain *dma_dom,
9cabe89b
JR
805 bool populate, gfp_t gfp)
806{
807 int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
576175c2 808 struct amd_iommu *iommu;
00cd122a 809 int i;
9cabe89b 810
f5e9705c
JR
811#ifdef CONFIG_IOMMU_STRESS
812 populate = false;
813#endif
814
9cabe89b
JR
815 if (index >= APERTURE_MAX_RANGES)
816 return -ENOMEM;
817
818 dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp);
819 if (!dma_dom->aperture[index])
820 return -ENOMEM;
821
822 dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp);
823 if (!dma_dom->aperture[index]->bitmap)
824 goto out_free;
825
826 dma_dom->aperture[index]->offset = dma_dom->aperture_size;
827
828 if (populate) {
829 unsigned long address = dma_dom->aperture_size;
830 int i, num_ptes = APERTURE_RANGE_PAGES / 512;
831 u64 *pte, *pte_page;
832
833 for (i = 0; i < num_ptes; ++i) {
abdc5eb3 834 pte = alloc_pte(&dma_dom->domain, address, PM_MAP_4k,
9cabe89b
JR
835 &pte_page, gfp);
836 if (!pte)
837 goto out_free;
838
839 dma_dom->aperture[index]->pte_pages[i] = pte_page;
840
841 address += APERTURE_RANGE_SIZE / 64;
842 }
843 }
844
845 dma_dom->aperture_size += APERTURE_RANGE_SIZE;
846
00cd122a 847 /* Intialize the exclusion range if necessary */
576175c2
JR
848 for_each_iommu(iommu) {
849 if (iommu->exclusion_start &&
850 iommu->exclusion_start >= dma_dom->aperture[index]->offset
851 && iommu->exclusion_start < dma_dom->aperture_size) {
852 unsigned long startpage;
853 int pages = iommu_num_pages(iommu->exclusion_start,
854 iommu->exclusion_length,
855 PAGE_SIZE);
856 startpage = iommu->exclusion_start >> PAGE_SHIFT;
857 dma_ops_reserve_addresses(dma_dom, startpage, pages);
858 }
00cd122a
JR
859 }
860
861 /*
862 * Check for areas already mapped as present in the new aperture
863 * range and mark those pages as reserved in the allocator. Such
864 * mappings may already exist as a result of requested unity
865 * mappings for devices.
866 */
867 for (i = dma_dom->aperture[index]->offset;
868 i < dma_dom->aperture_size;
869 i += PAGE_SIZE) {
a6b256b4 870 u64 *pte = fetch_pte(&dma_dom->domain, i, PM_MAP_4k);
00cd122a
JR
871 if (!pte || !IOMMU_PTE_PRESENT(*pte))
872 continue;
873
874 dma_ops_reserve_addresses(dma_dom, i << PAGE_SHIFT, 1);
875 }
876
04bfdd84
JR
877 update_domain(&dma_dom->domain);
878
9cabe89b
JR
879 return 0;
880
881out_free:
04bfdd84
JR
882 update_domain(&dma_dom->domain);
883
9cabe89b
JR
884 free_page((unsigned long)dma_dom->aperture[index]->bitmap);
885
886 kfree(dma_dom->aperture[index]);
887 dma_dom->aperture[index] = NULL;
888
889 return -ENOMEM;
890}
891
384de729
JR
892static unsigned long dma_ops_area_alloc(struct device *dev,
893 struct dma_ops_domain *dom,
894 unsigned int pages,
895 unsigned long align_mask,
896 u64 dma_mask,
897 unsigned long start)
898{
803b8cb4 899 unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE;
384de729
JR
900 int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT;
901 int i = start >> APERTURE_RANGE_SHIFT;
902 unsigned long boundary_size;
903 unsigned long address = -1;
904 unsigned long limit;
905
803b8cb4
JR
906 next_bit >>= PAGE_SHIFT;
907
384de729
JR
908 boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
909 PAGE_SIZE) >> PAGE_SHIFT;
910
911 for (;i < max_index; ++i) {
912 unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT;
913
914 if (dom->aperture[i]->offset >= dma_mask)
915 break;
916
917 limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
918 dma_mask >> PAGE_SHIFT);
919
920 address = iommu_area_alloc(dom->aperture[i]->bitmap,
921 limit, next_bit, pages, 0,
922 boundary_size, align_mask);
923 if (address != -1) {
924 address = dom->aperture[i]->offset +
925 (address << PAGE_SHIFT);
803b8cb4 926 dom->next_address = address + (pages << PAGE_SHIFT);
384de729
JR
927 break;
928 }
929
930 next_bit = 0;
931 }
932
933 return address;
934}
935
d3086444
JR
936static unsigned long dma_ops_alloc_addresses(struct device *dev,
937 struct dma_ops_domain *dom,
6d4f343f 938 unsigned int pages,
832a90c3
JR
939 unsigned long align_mask,
940 u64 dma_mask)
d3086444 941{
d3086444 942 unsigned long address;
d3086444 943
fe16f088
JR
944#ifdef CONFIG_IOMMU_STRESS
945 dom->next_address = 0;
946 dom->need_flush = true;
947#endif
d3086444 948
384de729 949 address = dma_ops_area_alloc(dev, dom, pages, align_mask,
803b8cb4 950 dma_mask, dom->next_address);
d3086444 951
1c655773 952 if (address == -1) {
803b8cb4 953 dom->next_address = 0;
384de729
JR
954 address = dma_ops_area_alloc(dev, dom, pages, align_mask,
955 dma_mask, 0);
1c655773
JR
956 dom->need_flush = true;
957 }
d3086444 958
384de729 959 if (unlikely(address == -1))
8fd524b3 960 address = DMA_ERROR_CODE;
d3086444
JR
961
962 WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);
963
964 return address;
965}
966
431b2a20
JR
967/*
968 * The address free function.
969 *
970 * called with domain->lock held
971 */
d3086444
JR
972static void dma_ops_free_addresses(struct dma_ops_domain *dom,
973 unsigned long address,
974 unsigned int pages)
975{
384de729
JR
976 unsigned i = address >> APERTURE_RANGE_SHIFT;
977 struct aperture_range *range = dom->aperture[i];
80be308d 978
384de729
JR
979 BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);
980
47bccd6b
JR
981#ifdef CONFIG_IOMMU_STRESS
982 if (i < 4)
983 return;
984#endif
80be308d 985
803b8cb4 986 if (address >= dom->next_address)
80be308d 987 dom->need_flush = true;
384de729
JR
988
989 address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
803b8cb4 990
384de729
JR
991 iommu_area_free(range->bitmap, address, pages);
992
d3086444
JR
993}
994
431b2a20
JR
995/****************************************************************************
996 *
997 * The next functions belong to the domain allocation. A domain is
998 * allocated for every IOMMU as the default domain. If device isolation
999 * is enabled, every device get its own domain. The most important thing
1000 * about domains is the page table mapping the DMA address space they
1001 * contain.
1002 *
1003 ****************************************************************************/
1004
aeb26f55
JR
1005/*
1006 * This function adds a protection domain to the global protection domain list
1007 */
1008static void add_domain_to_list(struct protection_domain *domain)
1009{
1010 unsigned long flags;
1011
1012 spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1013 list_add(&domain->list, &amd_iommu_pd_list);
1014 spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1015}
1016
1017/*
1018 * This function removes a protection domain to the global
1019 * protection domain list
1020 */
1021static void del_domain_from_list(struct protection_domain *domain)
1022{
1023 unsigned long flags;
1024
1025 spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1026 list_del(&domain->list);
1027 spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1028}
1029
ec487d1a
JR
1030static u16 domain_id_alloc(void)
1031{
1032 unsigned long flags;
1033 int id;
1034
1035 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1036 id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
1037 BUG_ON(id == 0);
1038 if (id > 0 && id < MAX_DOMAIN_ID)
1039 __set_bit(id, amd_iommu_pd_alloc_bitmap);
1040 else
1041 id = 0;
1042 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1043
1044 return id;
1045}
1046
a2acfb75
JR
1047static void domain_id_free(int id)
1048{
1049 unsigned long flags;
1050
1051 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1052 if (id > 0 && id < MAX_DOMAIN_ID)
1053 __clear_bit(id, amd_iommu_pd_alloc_bitmap);
1054 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1055}
a2acfb75 1056
431b2a20
JR
1057/*
1058 * Used to reserve address ranges in the aperture (e.g. for exclusion
1059 * ranges.
1060 */
ec487d1a
JR
1061static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
1062 unsigned long start_page,
1063 unsigned int pages)
1064{
384de729 1065 unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;
ec487d1a
JR
1066
1067 if (start_page + pages > last_page)
1068 pages = last_page - start_page;
1069
384de729
JR
1070 for (i = start_page; i < start_page + pages; ++i) {
1071 int index = i / APERTURE_RANGE_PAGES;
1072 int page = i % APERTURE_RANGE_PAGES;
1073 __set_bit(page, dom->aperture[index]->bitmap);
1074 }
ec487d1a
JR
1075}
1076
86db2e5d 1077static void free_pagetable(struct protection_domain *domain)
ec487d1a
JR
1078{
1079 int i, j;
1080 u64 *p1, *p2, *p3;
1081
86db2e5d 1082 p1 = domain->pt_root;
ec487d1a
JR
1083
1084 if (!p1)
1085 return;
1086
1087 for (i = 0; i < 512; ++i) {
1088 if (!IOMMU_PTE_PRESENT(p1[i]))
1089 continue;
1090
1091 p2 = IOMMU_PTE_PAGE(p1[i]);
3cc3d84b 1092 for (j = 0; j < 512; ++j) {
ec487d1a
JR
1093 if (!IOMMU_PTE_PRESENT(p2[j]))
1094 continue;
1095 p3 = IOMMU_PTE_PAGE(p2[j]);
1096 free_page((unsigned long)p3);
1097 }
1098
1099 free_page((unsigned long)p2);
1100 }
1101
1102 free_page((unsigned long)p1);
86db2e5d
JR
1103
1104 domain->pt_root = NULL;
ec487d1a
JR
1105}
1106
431b2a20
JR
1107/*
1108 * Free a domain, only used if something went wrong in the
1109 * allocation path and we need to free an already allocated page table
1110 */
ec487d1a
JR
1111static void dma_ops_domain_free(struct dma_ops_domain *dom)
1112{
384de729
JR
1113 int i;
1114
ec487d1a
JR
1115 if (!dom)
1116 return;
1117
aeb26f55
JR
1118 del_domain_from_list(&dom->domain);
1119
86db2e5d 1120 free_pagetable(&dom->domain);
ec487d1a 1121
384de729
JR
1122 for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
1123 if (!dom->aperture[i])
1124 continue;
1125 free_page((unsigned long)dom->aperture[i]->bitmap);
1126 kfree(dom->aperture[i]);
1127 }
ec487d1a
JR
1128
1129 kfree(dom);
1130}
1131
431b2a20
JR
1132/*
1133 * Allocates a new protection domain usable for the dma_ops functions.
1134 * It also intializes the page table and the address allocator data
1135 * structures required for the dma_ops interface
1136 */
d9cfed92 1137static struct dma_ops_domain *dma_ops_domain_alloc(struct amd_iommu *iommu)
ec487d1a
JR
1138{
1139 struct dma_ops_domain *dma_dom;
ec487d1a
JR
1140
1141 dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
1142 if (!dma_dom)
1143 return NULL;
1144
1145 spin_lock_init(&dma_dom->domain.lock);
1146
1147 dma_dom->domain.id = domain_id_alloc();
1148 if (dma_dom->domain.id == 0)
1149 goto free_dma_dom;
8f7a017c 1150 dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
ec487d1a 1151 dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
9fdb19d6 1152 dma_dom->domain.flags = PD_DMA_OPS_MASK;
ec487d1a
JR
1153 dma_dom->domain.priv = dma_dom;
1154 if (!dma_dom->domain.pt_root)
1155 goto free_dma_dom;
ec487d1a 1156
1c655773 1157 dma_dom->need_flush = false;
bd60b735 1158 dma_dom->target_dev = 0xffff;
1c655773 1159
aeb26f55
JR
1160 add_domain_to_list(&dma_dom->domain);
1161
576175c2 1162 if (alloc_new_range(dma_dom, true, GFP_KERNEL))
ec487d1a 1163 goto free_dma_dom;
ec487d1a 1164
431b2a20 1165 /*
ec487d1a
JR
1166 * mark the first page as allocated so we never return 0 as
1167 * a valid dma-address. So we can use 0 as error value
431b2a20 1168 */
384de729 1169 dma_dom->aperture[0]->bitmap[0] = 1;
803b8cb4 1170 dma_dom->next_address = 0;
ec487d1a 1171
ec487d1a
JR
1172
1173 return dma_dom;
1174
1175free_dma_dom:
1176 dma_ops_domain_free(dma_dom);
1177
1178 return NULL;
1179}
1180
5b28df6f
JR
1181/*
1182 * little helper function to check whether a given protection domain is a
1183 * dma_ops domain
1184 */
1185static bool dma_ops_domain(struct protection_domain *domain)
1186{
1187 return domain->flags & PD_DMA_OPS_MASK;
1188}
1189
407d733e 1190static void set_dte_entry(u16 devid, struct protection_domain *domain)
b20ac0d4 1191{
15898bbc 1192 struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
b20ac0d4 1193 u64 pte_root = virt_to_phys(domain->pt_root);
863c74eb 1194
15898bbc
JR
1195 BUG_ON(amd_iommu_pd_table[devid] != NULL);
1196
38ddf41b
JR
1197 pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
1198 << DEV_ENTRY_MODE_SHIFT;
1199 pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
b20ac0d4 1200
b20ac0d4 1201 amd_iommu_dev_table[devid].data[2] = domain->id;
aa879fff
JR
1202 amd_iommu_dev_table[devid].data[1] = upper_32_bits(pte_root);
1203 amd_iommu_dev_table[devid].data[0] = lower_32_bits(pte_root);
b20ac0d4
JR
1204
1205 amd_iommu_pd_table[devid] = domain;
15898bbc
JR
1206
1207 /* Do reference counting */
1208 domain->dev_iommu[iommu->index] += 1;
1209 domain->dev_cnt += 1;
1210
1211 /* Flush the changes DTE entry */
1212 iommu_queue_inv_dev_entry(iommu, devid);
1213}
1214
1215static void clear_dte_entry(u16 devid)
1216{
1217 struct protection_domain *domain = amd_iommu_pd_table[devid];
1218 struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
1219
1220 BUG_ON(domain == NULL);
1221
1222 /* remove domain from the lookup table */
1223 amd_iommu_pd_table[devid] = NULL;
1224
1225 /* remove entry from the device table seen by the hardware */
1226 amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
1227 amd_iommu_dev_table[devid].data[1] = 0;
1228 amd_iommu_dev_table[devid].data[2] = 0;
1229
1230 amd_iommu_apply_erratum_63(devid);
1231
1232 /* decrease reference counters */
1233 domain->dev_iommu[iommu->index] -= 1;
1234 domain->dev_cnt -= 1;
1235
1236 iommu_queue_inv_dev_entry(iommu, devid);
2b681faf
JR
1237}
1238
1239/*
1240 * If a device is not yet associated with a domain, this function does
1241 * assigns it visible for the hardware
1242 */
15898bbc
JR
1243static int __attach_device(struct device *dev,
1244 struct protection_domain *domain)
2b681faf 1245{
15898bbc
JR
1246 u16 devid = get_device_id(dev);
1247 u16 alias = amd_iommu_alias_table[devid];
1248
2b681faf
JR
1249 /* lock domain */
1250 spin_lock(&domain->lock);
1251
15898bbc
JR
1252 /* Some sanity checks */
1253 if (amd_iommu_pd_table[alias] != NULL &&
1254 amd_iommu_pd_table[alias] != domain)
1255 return -EBUSY;
eba6ac60 1256
15898bbc
JR
1257 if (amd_iommu_pd_table[devid] != NULL &&
1258 amd_iommu_pd_table[devid] != domain)
1259 return -EBUSY;
1260
1261 /* Do real assignment */
1262 if (alias != devid &&
1263 amd_iommu_pd_table[alias] == NULL)
1264 set_dte_entry(alias, domain);
1265
1266 if (amd_iommu_pd_table[devid] == NULL)
1267 set_dte_entry(devid, domain);
eba6ac60
JR
1268
1269 /* ready */
1270 spin_unlock(&domain->lock);
15898bbc
JR
1271
1272 return 0;
0feae533 1273}
b20ac0d4 1274
407d733e
JR
1275/*
1276 * If a device is not yet associated with a domain, this function does
1277 * assigns it visible for the hardware
1278 */
15898bbc
JR
1279static int attach_device(struct device *dev,
1280 struct protection_domain *domain)
0feae533 1281{
eba6ac60 1282 unsigned long flags;
15898bbc 1283 int ret;
eba6ac60
JR
1284
1285 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
15898bbc 1286 ret = __attach_device(dev, domain);
b20ac0d4
JR
1287 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1288
0feae533
JR
1289 /*
1290 * We might boot into a crash-kernel here. The crashed kernel
1291 * left the caches in the IOMMU dirty. So we have to flush
1292 * here to evict all dirty stuff.
1293 */
dcd1e92e 1294 iommu_flush_tlb_pde(domain);
15898bbc
JR
1295
1296 return ret;
b20ac0d4
JR
1297}
1298
355bf553
JR
1299/*
1300 * Removes a device from a protection domain (unlocked)
1301 */
15898bbc 1302static void __detach_device(struct device *dev)
355bf553 1303{
15898bbc 1304 u16 devid = get_device_id(dev);
c4596114
JR
1305 struct amd_iommu *iommu = amd_iommu_rlookup_table[devid];
1306
1307 BUG_ON(!iommu);
355bf553 1308
15898bbc 1309 clear_dte_entry(devid);
21129f78
JR
1310
1311 /*
1312 * If we run in passthrough mode the device must be assigned to the
1313 * passthrough domain if it is detached from any other domain
1314 */
15898bbc
JR
1315 if (iommu_pass_through)
1316 __attach_device(dev, pt_domain);
355bf553
JR
1317}
1318
1319/*
1320 * Removes a device from a protection domain (with devtable_lock held)
1321 */
15898bbc 1322static void detach_device(struct device *dev)
355bf553
JR
1323{
1324 unsigned long flags;
1325
1326 /* lock device table */
1327 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
15898bbc 1328 __detach_device(dev);
355bf553
JR
1329 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1330}
e275a2a0 1331
15898bbc
JR
1332/*
1333 * Find out the protection domain structure for a given PCI device. This
1334 * will give us the pointer to the page table root for example.
1335 */
1336static struct protection_domain *domain_for_device(struct device *dev)
1337{
1338 struct protection_domain *dom;
1339 unsigned long flags;
1340 u16 devid, alias;
1341
1342 devid = get_device_id(dev);
1343 alias = amd_iommu_alias_table[devid];
1344
1345 read_lock_irqsave(&amd_iommu_devtable_lock, flags);
1346 dom = amd_iommu_pd_table[devid];
1347 if (dom == NULL &&
1348 amd_iommu_pd_table[alias] != NULL) {
1349 __attach_device(dev, amd_iommu_pd_table[alias]);
1350 dom = amd_iommu_pd_table[devid];
1351 }
1352
1353 read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1354
1355 return dom;
1356}
1357
e275a2a0
JR
1358static int device_change_notifier(struct notifier_block *nb,
1359 unsigned long action, void *data)
1360{
1361 struct device *dev = data;
1362 struct pci_dev *pdev = to_pci_dev(dev);
1363 u16 devid = calc_devid(pdev->bus->number, pdev->devfn);
1364 struct protection_domain *domain;
1365 struct dma_ops_domain *dma_domain;
1366 struct amd_iommu *iommu;
1ac4cbbc 1367 unsigned long flags;
e275a2a0
JR
1368
1369 if (devid > amd_iommu_last_bdf)
1370 goto out;
1371
1372 devid = amd_iommu_alias_table[devid];
1373
1374 iommu = amd_iommu_rlookup_table[devid];
1375 if (iommu == NULL)
1376 goto out;
1377
15898bbc 1378 domain = domain_for_device(dev);
e275a2a0
JR
1379
1380 if (domain && !dma_ops_domain(domain))
1381 WARN_ONCE(1, "AMD IOMMU WARNING: device %s already bound "
1382 "to a non-dma-ops domain\n", dev_name(dev));
1383
1384 switch (action) {
c1eee67b 1385 case BUS_NOTIFY_UNBOUND_DRIVER:
e275a2a0
JR
1386 if (!domain)
1387 goto out;
a1ca331c
JR
1388 if (iommu_pass_through)
1389 break;
15898bbc 1390 detach_device(dev);
1ac4cbbc
JR
1391 break;
1392 case BUS_NOTIFY_ADD_DEVICE:
1393 /* allocate a protection domain if a device is added */
1394 dma_domain = find_protection_domain(devid);
1395 if (dma_domain)
1396 goto out;
d9cfed92 1397 dma_domain = dma_ops_domain_alloc(iommu);
1ac4cbbc
JR
1398 if (!dma_domain)
1399 goto out;
1400 dma_domain->target_dev = devid;
1401
1402 spin_lock_irqsave(&iommu_pd_list_lock, flags);
1403 list_add_tail(&dma_domain->list, &iommu_pd_list);
1404 spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
1405
e275a2a0
JR
1406 break;
1407 default:
1408 goto out;
1409 }
1410
1411 iommu_queue_inv_dev_entry(iommu, devid);
1412 iommu_completion_wait(iommu);
1413
1414out:
1415 return 0;
1416}
1417
b25ae679 1418static struct notifier_block device_nb = {
e275a2a0
JR
1419 .notifier_call = device_change_notifier,
1420};
355bf553 1421
431b2a20
JR
1422/*****************************************************************************
1423 *
1424 * The next functions belong to the dma_ops mapping/unmapping code.
1425 *
1426 *****************************************************************************/
1427
dbcc112e
JR
1428/*
1429 * This function checks if the driver got a valid device from the caller to
1430 * avoid dereferencing invalid pointers.
1431 */
1432static bool check_device(struct device *dev)
1433{
420aef8a
JR
1434 u16 bdf;
1435 struct pci_dev *pcidev;
1436
dbcc112e
JR
1437 if (!dev || !dev->dma_mask)
1438 return false;
1439
420aef8a
JR
1440 /* No device or no PCI device */
1441 if (!dev || dev->bus != &pci_bus_type)
1442 return false;
1443
1444 pcidev = to_pci_dev(dev);
1445
1446 bdf = calc_devid(pcidev->bus->number, pcidev->devfn);
1447
1448 /* Out of our scope? */
1449 if (bdf > amd_iommu_last_bdf)
1450 return false;
1451
1452 if (amd_iommu_rlookup_table[bdf] == NULL)
1453 return false;
1454
dbcc112e
JR
1455 return true;
1456}
1457
bd60b735
JR
1458/*
1459 * In this function the list of preallocated protection domains is traversed to
1460 * find the domain for a specific device
1461 */
1462static struct dma_ops_domain *find_protection_domain(u16 devid)
1463{
1464 struct dma_ops_domain *entry, *ret = NULL;
1465 unsigned long flags;
94f6d190 1466 u16 alias = amd_iommu_alias_table[devid];
bd60b735
JR
1467
1468 if (list_empty(&iommu_pd_list))
1469 return NULL;
1470
1471 spin_lock_irqsave(&iommu_pd_list_lock, flags);
1472
1473 list_for_each_entry(entry, &iommu_pd_list, list) {
94f6d190
JR
1474 if (entry->target_dev == devid ||
1475 entry->target_dev == alias) {
bd60b735 1476 ret = entry;
bd60b735
JR
1477 break;
1478 }
1479 }
1480
1481 spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
1482
1483 return ret;
1484}
1485
431b2a20
JR
1486/*
1487 * In the dma_ops path we only have the struct device. This function
1488 * finds the corresponding IOMMU, the protection domain and the
1489 * requestor id for a given device.
1490 * If the device is not yet associated with a domain this is also done
1491 * in this function.
1492 */
94f6d190 1493static struct protection_domain *get_domain(struct device *dev)
b20ac0d4 1494{
94f6d190 1495 struct protection_domain *domain;
b20ac0d4 1496 struct dma_ops_domain *dma_dom;
94f6d190 1497 u16 devid = get_device_id(dev);
b20ac0d4 1498
f99c0f1c 1499 if (!check_device(dev))
94f6d190 1500 return ERR_PTR(-EINVAL);
b20ac0d4 1501
94f6d190
JR
1502 domain = domain_for_device(dev);
1503 if (domain != NULL && !dma_ops_domain(domain))
1504 return ERR_PTR(-EBUSY);
f99c0f1c 1505
94f6d190
JR
1506 if (domain != NULL)
1507 return domain;
b20ac0d4 1508
15898bbc 1509 /* Device not bount yet - bind it */
94f6d190 1510 dma_dom = find_protection_domain(devid);
15898bbc 1511 if (!dma_dom)
94f6d190
JR
1512 dma_dom = amd_iommu_rlookup_table[devid]->default_dom;
1513 attach_device(dev, &dma_dom->domain);
15898bbc 1514 DUMP_printk("Using protection domain %d for device %s\n",
94f6d190 1515 dma_dom->domain.id, dev_name(dev));
f91ba190 1516
94f6d190 1517 return &dma_dom->domain;
b20ac0d4
JR
1518}
1519
04bfdd84
JR
1520static void update_device_table(struct protection_domain *domain)
1521{
2b681faf 1522 unsigned long flags;
04bfdd84
JR
1523 int i;
1524
1525 for (i = 0; i <= amd_iommu_last_bdf; ++i) {
1526 if (amd_iommu_pd_table[i] != domain)
1527 continue;
2b681faf 1528 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
04bfdd84 1529 set_dte_entry(i, domain);
2b681faf 1530 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
04bfdd84
JR
1531 }
1532}
1533
1534static void update_domain(struct protection_domain *domain)
1535{
1536 if (!domain->updated)
1537 return;
1538
1539 update_device_table(domain);
1540 flush_devices_by_domain(domain);
601367d7 1541 iommu_flush_tlb_pde(domain);
04bfdd84
JR
1542
1543 domain->updated = false;
1544}
1545
8bda3092 1546/*
50020fb6
JR
1547 * This function is used to add another level to an IO page table. Adding
1548 * another level increases the size of the address space by 9 bits to a size up
1549 * to 64 bits.
8bda3092 1550 */
50020fb6
JR
1551static bool increase_address_space(struct protection_domain *domain,
1552 gfp_t gfp)
1553{
1554 u64 *pte;
1555
1556 if (domain->mode == PAGE_MODE_6_LEVEL)
1557 /* address space already 64 bit large */
1558 return false;
1559
1560 pte = (void *)get_zeroed_page(gfp);
1561 if (!pte)
1562 return false;
1563
1564 *pte = PM_LEVEL_PDE(domain->mode,
1565 virt_to_phys(domain->pt_root));
1566 domain->pt_root = pte;
1567 domain->mode += 1;
1568 domain->updated = true;
1569
1570 return true;
1571}
1572
8bc3e127 1573static u64 *alloc_pte(struct protection_domain *domain,
abdc5eb3
JR
1574 unsigned long address,
1575 int end_lvl,
1576 u64 **pte_page,
1577 gfp_t gfp)
8bda3092
JR
1578{
1579 u64 *pte, *page;
8bc3e127 1580 int level;
8bda3092 1581
8bc3e127
JR
1582 while (address > PM_LEVEL_SIZE(domain->mode))
1583 increase_address_space(domain, gfp);
8bda3092 1584
8bc3e127
JR
1585 level = domain->mode - 1;
1586 pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
8bda3092 1587
abdc5eb3 1588 while (level > end_lvl) {
8bc3e127
JR
1589 if (!IOMMU_PTE_PRESENT(*pte)) {
1590 page = (u64 *)get_zeroed_page(gfp);
1591 if (!page)
1592 return NULL;
1593 *pte = PM_LEVEL_PDE(level, virt_to_phys(page));
1594 }
8bda3092 1595
8bc3e127 1596 level -= 1;
8bda3092 1597
8bc3e127 1598 pte = IOMMU_PTE_PAGE(*pte);
8bda3092 1599
abdc5eb3 1600 if (pte_page && level == end_lvl)
8bc3e127 1601 *pte_page = pte;
8bda3092 1602
8bc3e127
JR
1603 pte = &pte[PM_LEVEL_INDEX(level, address)];
1604 }
8bda3092
JR
1605
1606 return pte;
1607}
1608
1609/*
1610 * This function fetches the PTE for a given address in the aperture
1611 */
1612static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
1613 unsigned long address)
1614{
384de729 1615 struct aperture_range *aperture;
8bda3092
JR
1616 u64 *pte, *pte_page;
1617
384de729
JR
1618 aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
1619 if (!aperture)
1620 return NULL;
1621
1622 pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
8bda3092 1623 if (!pte) {
abdc5eb3
JR
1624 pte = alloc_pte(&dom->domain, address, PM_MAP_4k, &pte_page,
1625 GFP_ATOMIC);
384de729
JR
1626 aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
1627 } else
8c8c143c 1628 pte += PM_LEVEL_INDEX(0, address);
8bda3092 1629
04bfdd84 1630 update_domain(&dom->domain);
8bda3092
JR
1631
1632 return pte;
1633}
1634
431b2a20
JR
1635/*
1636 * This is the generic map function. It maps one 4kb page at paddr to
1637 * the given address in the DMA address space for the domain.
1638 */
680525e0 1639static dma_addr_t dma_ops_domain_map(struct dma_ops_domain *dom,
cb76c322
JR
1640 unsigned long address,
1641 phys_addr_t paddr,
1642 int direction)
1643{
1644 u64 *pte, __pte;
1645
1646 WARN_ON(address > dom->aperture_size);
1647
1648 paddr &= PAGE_MASK;
1649
8bda3092 1650 pte = dma_ops_get_pte(dom, address);
53812c11 1651 if (!pte)
8fd524b3 1652 return DMA_ERROR_CODE;
cb76c322
JR
1653
1654 __pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;
1655
1656 if (direction == DMA_TO_DEVICE)
1657 __pte |= IOMMU_PTE_IR;
1658 else if (direction == DMA_FROM_DEVICE)
1659 __pte |= IOMMU_PTE_IW;
1660 else if (direction == DMA_BIDIRECTIONAL)
1661 __pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;
1662
1663 WARN_ON(*pte);
1664
1665 *pte = __pte;
1666
1667 return (dma_addr_t)address;
1668}
1669
431b2a20
JR
1670/*
1671 * The generic unmapping function for on page in the DMA address space.
1672 */
680525e0 1673static void dma_ops_domain_unmap(struct dma_ops_domain *dom,
cb76c322
JR
1674 unsigned long address)
1675{
384de729 1676 struct aperture_range *aperture;
cb76c322
JR
1677 u64 *pte;
1678
1679 if (address >= dom->aperture_size)
1680 return;
1681
384de729
JR
1682 aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
1683 if (!aperture)
1684 return;
1685
1686 pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
1687 if (!pte)
1688 return;
cb76c322 1689
8c8c143c 1690 pte += PM_LEVEL_INDEX(0, address);
cb76c322
JR
1691
1692 WARN_ON(!*pte);
1693
1694 *pte = 0ULL;
1695}
1696
431b2a20
JR
1697/*
1698 * This function contains common code for mapping of a physically
24f81160
JR
1699 * contiguous memory region into DMA address space. It is used by all
1700 * mapping functions provided with this IOMMU driver.
431b2a20
JR
1701 * Must be called with the domain lock held.
1702 */
cb76c322 1703static dma_addr_t __map_single(struct device *dev,
cb76c322
JR
1704 struct dma_ops_domain *dma_dom,
1705 phys_addr_t paddr,
1706 size_t size,
6d4f343f 1707 int dir,
832a90c3
JR
1708 bool align,
1709 u64 dma_mask)
cb76c322
JR
1710{
1711 dma_addr_t offset = paddr & ~PAGE_MASK;
53812c11 1712 dma_addr_t address, start, ret;
cb76c322 1713 unsigned int pages;
6d4f343f 1714 unsigned long align_mask = 0;
cb76c322
JR
1715 int i;
1716
e3c449f5 1717 pages = iommu_num_pages(paddr, size, PAGE_SIZE);
cb76c322
JR
1718 paddr &= PAGE_MASK;
1719
8ecaf8f1
JR
1720 INC_STATS_COUNTER(total_map_requests);
1721
c1858976
JR
1722 if (pages > 1)
1723 INC_STATS_COUNTER(cross_page);
1724
6d4f343f
JR
1725 if (align)
1726 align_mask = (1UL << get_order(size)) - 1;
1727
11b83888 1728retry:
832a90c3
JR
1729 address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
1730 dma_mask);
8fd524b3 1731 if (unlikely(address == DMA_ERROR_CODE)) {
11b83888
JR
1732 /*
1733 * setting next_address here will let the address
1734 * allocator only scan the new allocated range in the
1735 * first run. This is a small optimization.
1736 */
1737 dma_dom->next_address = dma_dom->aperture_size;
1738
576175c2 1739 if (alloc_new_range(dma_dom, false, GFP_ATOMIC))
11b83888
JR
1740 goto out;
1741
1742 /*
1743 * aperture was sucessfully enlarged by 128 MB, try
1744 * allocation again
1745 */
1746 goto retry;
1747 }
cb76c322
JR
1748
1749 start = address;
1750 for (i = 0; i < pages; ++i) {
680525e0 1751 ret = dma_ops_domain_map(dma_dom, start, paddr, dir);
8fd524b3 1752 if (ret == DMA_ERROR_CODE)
53812c11
JR
1753 goto out_unmap;
1754
cb76c322
JR
1755 paddr += PAGE_SIZE;
1756 start += PAGE_SIZE;
1757 }
1758 address += offset;
1759
5774f7c5
JR
1760 ADD_STATS_COUNTER(alloced_io_mem, size);
1761
afa9fdc2 1762 if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
dcd1e92e 1763 iommu_flush_tlb(&dma_dom->domain);
1c655773 1764 dma_dom->need_flush = false;
318afd41 1765 } else if (unlikely(amd_iommu_np_cache))
6de8ad9b 1766 iommu_flush_pages(&dma_dom->domain, address, size);
270cab24 1767
cb76c322
JR
1768out:
1769 return address;
53812c11
JR
1770
1771out_unmap:
1772
1773 for (--i; i >= 0; --i) {
1774 start -= PAGE_SIZE;
680525e0 1775 dma_ops_domain_unmap(dma_dom, start);
53812c11
JR
1776 }
1777
1778 dma_ops_free_addresses(dma_dom, address, pages);
1779
8fd524b3 1780 return DMA_ERROR_CODE;
cb76c322
JR
1781}
1782
431b2a20
JR
1783/*
1784 * Does the reverse of the __map_single function. Must be called with
1785 * the domain lock held too
1786 */
cd8c82e8 1787static void __unmap_single(struct dma_ops_domain *dma_dom,
cb76c322
JR
1788 dma_addr_t dma_addr,
1789 size_t size,
1790 int dir)
1791{
1792 dma_addr_t i, start;
1793 unsigned int pages;
1794
8fd524b3 1795 if ((dma_addr == DMA_ERROR_CODE) ||
b8d9905d 1796 (dma_addr + size > dma_dom->aperture_size))
cb76c322
JR
1797 return;
1798
e3c449f5 1799 pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
cb76c322
JR
1800 dma_addr &= PAGE_MASK;
1801 start = dma_addr;
1802
1803 for (i = 0; i < pages; ++i) {
680525e0 1804 dma_ops_domain_unmap(dma_dom, start);
cb76c322
JR
1805 start += PAGE_SIZE;
1806 }
1807
5774f7c5
JR
1808 SUB_STATS_COUNTER(alloced_io_mem, size);
1809
cb76c322 1810 dma_ops_free_addresses(dma_dom, dma_addr, pages);
270cab24 1811
80be308d 1812 if (amd_iommu_unmap_flush || dma_dom->need_flush) {
6de8ad9b 1813 iommu_flush_pages(&dma_dom->domain, dma_addr, size);
80be308d
JR
1814 dma_dom->need_flush = false;
1815 }
cb76c322
JR
1816}
1817
431b2a20
JR
1818/*
1819 * The exported map_single function for dma_ops.
1820 */
51491367
FT
1821static dma_addr_t map_page(struct device *dev, struct page *page,
1822 unsigned long offset, size_t size,
1823 enum dma_data_direction dir,
1824 struct dma_attrs *attrs)
4da70b9e
JR
1825{
1826 unsigned long flags;
4da70b9e 1827 struct protection_domain *domain;
4da70b9e 1828 dma_addr_t addr;
832a90c3 1829 u64 dma_mask;
51491367 1830 phys_addr_t paddr = page_to_phys(page) + offset;
4da70b9e 1831
0f2a86f2
JR
1832 INC_STATS_COUNTER(cnt_map_single);
1833
94f6d190
JR
1834 domain = get_domain(dev);
1835 if (PTR_ERR(domain) == -EINVAL)
4da70b9e 1836 return (dma_addr_t)paddr;
94f6d190
JR
1837 else if (IS_ERR(domain))
1838 return DMA_ERROR_CODE;
4da70b9e 1839
f99c0f1c
JR
1840 dma_mask = *dev->dma_mask;
1841
4da70b9e 1842 spin_lock_irqsave(&domain->lock, flags);
94f6d190 1843
cd8c82e8 1844 addr = __map_single(dev, domain->priv, paddr, size, dir, false,
832a90c3 1845 dma_mask);
8fd524b3 1846 if (addr == DMA_ERROR_CODE)
4da70b9e
JR
1847 goto out;
1848
0518a3a4 1849 iommu_flush_complete(domain);
4da70b9e
JR
1850
1851out:
1852 spin_unlock_irqrestore(&domain->lock, flags);
1853
1854 return addr;
1855}
1856
431b2a20
JR
1857/*
1858 * The exported unmap_single function for dma_ops.
1859 */
51491367
FT
1860static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
1861 enum dma_data_direction dir, struct dma_attrs *attrs)
4da70b9e
JR
1862{
1863 unsigned long flags;
4da70b9e 1864 struct protection_domain *domain;
4da70b9e 1865
146a6917
JR
1866 INC_STATS_COUNTER(cnt_unmap_single);
1867
94f6d190
JR
1868 domain = get_domain(dev);
1869 if (IS_ERR(domain))
5b28df6f
JR
1870 return;
1871
4da70b9e
JR
1872 spin_lock_irqsave(&domain->lock, flags);
1873
cd8c82e8 1874 __unmap_single(domain->priv, dma_addr, size, dir);
4da70b9e 1875
0518a3a4 1876 iommu_flush_complete(domain);
4da70b9e
JR
1877
1878 spin_unlock_irqrestore(&domain->lock, flags);
1879}
1880
431b2a20
JR
1881/*
1882 * This is a special map_sg function which is used if we should map a
1883 * device which is not handled by an AMD IOMMU in the system.
1884 */
65b050ad
JR
1885static int map_sg_no_iommu(struct device *dev, struct scatterlist *sglist,
1886 int nelems, int dir)
1887{
1888 struct scatterlist *s;
1889 int i;
1890
1891 for_each_sg(sglist, s, nelems, i) {
1892 s->dma_address = (dma_addr_t)sg_phys(s);
1893 s->dma_length = s->length;
1894 }
1895
1896 return nelems;
1897}
1898
431b2a20
JR
1899/*
1900 * The exported map_sg function for dma_ops (handles scatter-gather
1901 * lists).
1902 */
65b050ad 1903static int map_sg(struct device *dev, struct scatterlist *sglist,
160c1d8e
FT
1904 int nelems, enum dma_data_direction dir,
1905 struct dma_attrs *attrs)
65b050ad
JR
1906{
1907 unsigned long flags;
65b050ad 1908 struct protection_domain *domain;
65b050ad
JR
1909 int i;
1910 struct scatterlist *s;
1911 phys_addr_t paddr;
1912 int mapped_elems = 0;
832a90c3 1913 u64 dma_mask;
65b050ad 1914
d03f067a
JR
1915 INC_STATS_COUNTER(cnt_map_sg);
1916
94f6d190
JR
1917 domain = get_domain(dev);
1918 if (PTR_ERR(domain) == -EINVAL)
f99c0f1c 1919 return map_sg_no_iommu(dev, sglist, nelems, dir);
94f6d190
JR
1920 else if (IS_ERR(domain))
1921 return 0;
dbcc112e 1922
832a90c3 1923 dma_mask = *dev->dma_mask;
65b050ad 1924
65b050ad
JR
1925 spin_lock_irqsave(&domain->lock, flags);
1926
1927 for_each_sg(sglist, s, nelems, i) {
1928 paddr = sg_phys(s);
1929
cd8c82e8 1930 s->dma_address = __map_single(dev, domain->priv,
832a90c3
JR
1931 paddr, s->length, dir, false,
1932 dma_mask);
65b050ad
JR
1933
1934 if (s->dma_address) {
1935 s->dma_length = s->length;
1936 mapped_elems++;
1937 } else
1938 goto unmap;
65b050ad
JR
1939 }
1940
0518a3a4 1941 iommu_flush_complete(domain);
65b050ad
JR
1942
1943out:
1944 spin_unlock_irqrestore(&domain->lock, flags);
1945
1946 return mapped_elems;
1947unmap:
1948 for_each_sg(sglist, s, mapped_elems, i) {
1949 if (s->dma_address)
cd8c82e8 1950 __unmap_single(domain->priv, s->dma_address,
65b050ad
JR
1951 s->dma_length, dir);
1952 s->dma_address = s->dma_length = 0;
1953 }
1954
1955 mapped_elems = 0;
1956
1957 goto out;
1958}
1959
431b2a20
JR
1960/*
1961 * The exported map_sg function for dma_ops (handles scatter-gather
1962 * lists).
1963 */
65b050ad 1964static void unmap_sg(struct device *dev, struct scatterlist *sglist,
160c1d8e
FT
1965 int nelems, enum dma_data_direction dir,
1966 struct dma_attrs *attrs)
65b050ad
JR
1967{
1968 unsigned long flags;
65b050ad
JR
1969 struct protection_domain *domain;
1970 struct scatterlist *s;
65b050ad
JR
1971 int i;
1972
55877a6b
JR
1973 INC_STATS_COUNTER(cnt_unmap_sg);
1974
94f6d190
JR
1975 domain = get_domain(dev);
1976 if (IS_ERR(domain))
5b28df6f
JR
1977 return;
1978
65b050ad
JR
1979 spin_lock_irqsave(&domain->lock, flags);
1980
1981 for_each_sg(sglist, s, nelems, i) {
cd8c82e8 1982 __unmap_single(domain->priv, s->dma_address,
65b050ad 1983 s->dma_length, dir);
65b050ad
JR
1984 s->dma_address = s->dma_length = 0;
1985 }
1986
0518a3a4 1987 iommu_flush_complete(domain);
65b050ad
JR
1988
1989 spin_unlock_irqrestore(&domain->lock, flags);
1990}
1991
431b2a20
JR
1992/*
1993 * The exported alloc_coherent function for dma_ops.
1994 */
5d8b53cf
JR
1995static void *alloc_coherent(struct device *dev, size_t size,
1996 dma_addr_t *dma_addr, gfp_t flag)
1997{
1998 unsigned long flags;
1999 void *virt_addr;
5d8b53cf 2000 struct protection_domain *domain;
5d8b53cf 2001 phys_addr_t paddr;
832a90c3 2002 u64 dma_mask = dev->coherent_dma_mask;
5d8b53cf 2003
c8f0fb36
JR
2004 INC_STATS_COUNTER(cnt_alloc_coherent);
2005
94f6d190
JR
2006 domain = get_domain(dev);
2007 if (PTR_ERR(domain) == -EINVAL) {
f99c0f1c
JR
2008 virt_addr = (void *)__get_free_pages(flag, get_order(size));
2009 *dma_addr = __pa(virt_addr);
2010 return virt_addr;
94f6d190
JR
2011 } else if (IS_ERR(domain))
2012 return NULL;
5d8b53cf 2013
f99c0f1c
JR
2014 dma_mask = dev->coherent_dma_mask;
2015 flag &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
2016 flag |= __GFP_ZERO;
5d8b53cf
JR
2017
2018 virt_addr = (void *)__get_free_pages(flag, get_order(size));
2019 if (!virt_addr)
b25ae679 2020 return NULL;
5d8b53cf 2021
5d8b53cf
JR
2022 paddr = virt_to_phys(virt_addr);
2023
832a90c3
JR
2024 if (!dma_mask)
2025 dma_mask = *dev->dma_mask;
2026
5d8b53cf
JR
2027 spin_lock_irqsave(&domain->lock, flags);
2028
cd8c82e8 2029 *dma_addr = __map_single(dev, domain->priv, paddr,
832a90c3 2030 size, DMA_BIDIRECTIONAL, true, dma_mask);
5d8b53cf 2031
8fd524b3 2032 if (*dma_addr == DMA_ERROR_CODE) {
367d04c4 2033 spin_unlock_irqrestore(&domain->lock, flags);
5b28df6f 2034 goto out_free;
367d04c4 2035 }
5d8b53cf 2036
0518a3a4 2037 iommu_flush_complete(domain);
5d8b53cf 2038
5d8b53cf
JR
2039 spin_unlock_irqrestore(&domain->lock, flags);
2040
2041 return virt_addr;
5b28df6f
JR
2042
2043out_free:
2044
2045 free_pages((unsigned long)virt_addr, get_order(size));
2046
2047 return NULL;
5d8b53cf
JR
2048}
2049
431b2a20
JR
2050/*
2051 * The exported free_coherent function for dma_ops.
431b2a20 2052 */
5d8b53cf
JR
2053static void free_coherent(struct device *dev, size_t size,
2054 void *virt_addr, dma_addr_t dma_addr)
2055{
2056 unsigned long flags;
5d8b53cf 2057 struct protection_domain *domain;
5d8b53cf 2058
5d31ee7e
JR
2059 INC_STATS_COUNTER(cnt_free_coherent);
2060
94f6d190
JR
2061 domain = get_domain(dev);
2062 if (IS_ERR(domain))
5b28df6f
JR
2063 goto free_mem;
2064
5d8b53cf
JR
2065 spin_lock_irqsave(&domain->lock, flags);
2066
cd8c82e8 2067 __unmap_single(domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
5d8b53cf 2068
0518a3a4 2069 iommu_flush_complete(domain);
5d8b53cf
JR
2070
2071 spin_unlock_irqrestore(&domain->lock, flags);
2072
2073free_mem:
2074 free_pages((unsigned long)virt_addr, get_order(size));
2075}
2076
b39ba6ad
JR
2077/*
2078 * This function is called by the DMA layer to find out if we can handle a
2079 * particular device. It is part of the dma_ops.
2080 */
2081static int amd_iommu_dma_supported(struct device *dev, u64 mask)
2082{
420aef8a 2083 return check_device(dev);
b39ba6ad
JR
2084}
2085
c432f3df 2086/*
431b2a20
JR
2087 * The function for pre-allocating protection domains.
2088 *
c432f3df
JR
2089 * If the driver core informs the DMA layer if a driver grabs a device
2090 * we don't need to preallocate the protection domains anymore.
2091 * For now we have to.
2092 */
0e93dd88 2093static void prealloc_protection_domains(void)
c432f3df
JR
2094{
2095 struct pci_dev *dev = NULL;
2096 struct dma_ops_domain *dma_dom;
2097 struct amd_iommu *iommu;
be831297 2098 u16 devid, __devid;
c432f3df
JR
2099
2100 while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
be831297 2101 __devid = devid = calc_devid(dev->bus->number, dev->devfn);
3a61ec38 2102 if (devid > amd_iommu_last_bdf)
c432f3df
JR
2103 continue;
2104 devid = amd_iommu_alias_table[devid];
15898bbc 2105 if (domain_for_device(&dev->dev))
c432f3df
JR
2106 continue;
2107 iommu = amd_iommu_rlookup_table[devid];
2108 if (!iommu)
2109 continue;
d9cfed92 2110 dma_dom = dma_ops_domain_alloc(iommu);
c432f3df
JR
2111 if (!dma_dom)
2112 continue;
2113 init_unity_mappings_for_device(dma_dom, devid);
bd60b735
JR
2114 dma_dom->target_dev = devid;
2115
15898bbc 2116 attach_device(&dev->dev, &dma_dom->domain);
be831297 2117
bd60b735 2118 list_add_tail(&dma_dom->list, &iommu_pd_list);
c432f3df
JR
2119 }
2120}
2121
160c1d8e 2122static struct dma_map_ops amd_iommu_dma_ops = {
6631ee9d
JR
2123 .alloc_coherent = alloc_coherent,
2124 .free_coherent = free_coherent,
51491367
FT
2125 .map_page = map_page,
2126 .unmap_page = unmap_page,
6631ee9d
JR
2127 .map_sg = map_sg,
2128 .unmap_sg = unmap_sg,
b39ba6ad 2129 .dma_supported = amd_iommu_dma_supported,
6631ee9d
JR
2130};
2131
431b2a20
JR
2132/*
2133 * The function which clues the AMD IOMMU driver into dma_ops.
2134 */
6631ee9d
JR
2135int __init amd_iommu_init_dma_ops(void)
2136{
2137 struct amd_iommu *iommu;
6631ee9d
JR
2138 int ret;
2139
431b2a20
JR
2140 /*
2141 * first allocate a default protection domain for every IOMMU we
2142 * found in the system. Devices not assigned to any other
2143 * protection domain will be assigned to the default one.
2144 */
3bd22172 2145 for_each_iommu(iommu) {
d9cfed92 2146 iommu->default_dom = dma_ops_domain_alloc(iommu);
6631ee9d
JR
2147 if (iommu->default_dom == NULL)
2148 return -ENOMEM;
e2dc14a2 2149 iommu->default_dom->domain.flags |= PD_DEFAULT_MASK;
6631ee9d
JR
2150 ret = iommu_init_unity_mappings(iommu);
2151 if (ret)
2152 goto free_domains;
2153 }
2154
431b2a20
JR
2155 /*
2156 * If device isolation is enabled, pre-allocate the protection
2157 * domains for each device.
2158 */
6631ee9d
JR
2159 if (amd_iommu_isolate)
2160 prealloc_protection_domains();
2161
2162 iommu_detected = 1;
75f1cdf1 2163 swiotlb = 0;
92af4e29 2164#ifdef CONFIG_GART_IOMMU
6631ee9d
JR
2165 gart_iommu_aperture_disabled = 1;
2166 gart_iommu_aperture = 0;
92af4e29 2167#endif
6631ee9d 2168
431b2a20 2169 /* Make the driver finally visible to the drivers */
6631ee9d
JR
2170 dma_ops = &amd_iommu_dma_ops;
2171
26961efe 2172 register_iommu(&amd_iommu_ops);
26961efe 2173
e275a2a0
JR
2174 bus_register_notifier(&pci_bus_type, &device_nb);
2175
7f26508b
JR
2176 amd_iommu_stats_init();
2177
6631ee9d
JR
2178 return 0;
2179
2180free_domains:
2181
3bd22172 2182 for_each_iommu(iommu) {
6631ee9d
JR
2183 if (iommu->default_dom)
2184 dma_ops_domain_free(iommu->default_dom);
2185 }
2186
2187 return ret;
2188}
6d98cd80
JR
2189
2190/*****************************************************************************
2191 *
2192 * The following functions belong to the exported interface of AMD IOMMU
2193 *
2194 * This interface allows access to lower level functions of the IOMMU
2195 * like protection domain handling and assignement of devices to domains
2196 * which is not possible with the dma_ops interface.
2197 *
2198 *****************************************************************************/
2199
6d98cd80
JR
2200static void cleanup_domain(struct protection_domain *domain)
2201{
2202 unsigned long flags;
2203 u16 devid;
2204
2205 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2206
2207 for (devid = 0; devid <= amd_iommu_last_bdf; ++devid)
2208 if (amd_iommu_pd_table[devid] == domain)
15898bbc 2209 clear_dte_entry(devid);
6d98cd80
JR
2210
2211 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2212}
2213
2650815f
JR
2214static void protection_domain_free(struct protection_domain *domain)
2215{
2216 if (!domain)
2217 return;
2218
aeb26f55
JR
2219 del_domain_from_list(domain);
2220
2650815f
JR
2221 if (domain->id)
2222 domain_id_free(domain->id);
2223
2224 kfree(domain);
2225}
2226
2227static struct protection_domain *protection_domain_alloc(void)
c156e347
JR
2228{
2229 struct protection_domain *domain;
2230
2231 domain = kzalloc(sizeof(*domain), GFP_KERNEL);
2232 if (!domain)
2650815f 2233 return NULL;
c156e347
JR
2234
2235 spin_lock_init(&domain->lock);
c156e347
JR
2236 domain->id = domain_id_alloc();
2237 if (!domain->id)
2650815f
JR
2238 goto out_err;
2239
aeb26f55
JR
2240 add_domain_to_list(domain);
2241
2650815f
JR
2242 return domain;
2243
2244out_err:
2245 kfree(domain);
2246
2247 return NULL;
2248}
2249
2250static int amd_iommu_domain_init(struct iommu_domain *dom)
2251{
2252 struct protection_domain *domain;
2253
2254 domain = protection_domain_alloc();
2255 if (!domain)
c156e347 2256 goto out_free;
2650815f
JR
2257
2258 domain->mode = PAGE_MODE_3_LEVEL;
c156e347
JR
2259 domain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
2260 if (!domain->pt_root)
2261 goto out_free;
2262
2263 dom->priv = domain;
2264
2265 return 0;
2266
2267out_free:
2650815f 2268 protection_domain_free(domain);
c156e347
JR
2269
2270 return -ENOMEM;
2271}
2272
98383fc3
JR
2273static void amd_iommu_domain_destroy(struct iommu_domain *dom)
2274{
2275 struct protection_domain *domain = dom->priv;
2276
2277 if (!domain)
2278 return;
2279
2280 if (domain->dev_cnt > 0)
2281 cleanup_domain(domain);
2282
2283 BUG_ON(domain->dev_cnt != 0);
2284
2285 free_pagetable(domain);
2286
2287 domain_id_free(domain->id);
2288
2289 kfree(domain);
2290
2291 dom->priv = NULL;
2292}
2293
684f2888
JR
2294static void amd_iommu_detach_device(struct iommu_domain *dom,
2295 struct device *dev)
2296{
684f2888
JR
2297 struct amd_iommu *iommu;
2298 struct pci_dev *pdev;
2299 u16 devid;
2300
2301 if (dev->bus != &pci_bus_type)
2302 return;
2303
2304 pdev = to_pci_dev(dev);
2305
2306 devid = calc_devid(pdev->bus->number, pdev->devfn);
2307
2308 if (devid > 0)
15898bbc 2309 detach_device(dev);
684f2888
JR
2310
2311 iommu = amd_iommu_rlookup_table[devid];
2312 if (!iommu)
2313 return;
2314
2315 iommu_queue_inv_dev_entry(iommu, devid);
2316 iommu_completion_wait(iommu);
2317}
2318
01106066
JR
2319static int amd_iommu_attach_device(struct iommu_domain *dom,
2320 struct device *dev)
2321{
2322 struct protection_domain *domain = dom->priv;
2323 struct protection_domain *old_domain;
2324 struct amd_iommu *iommu;
2325 struct pci_dev *pdev;
15898bbc 2326 int ret;
01106066
JR
2327 u16 devid;
2328
2329 if (dev->bus != &pci_bus_type)
2330 return -EINVAL;
2331
2332 pdev = to_pci_dev(dev);
2333
2334 devid = calc_devid(pdev->bus->number, pdev->devfn);
2335
2336 if (devid >= amd_iommu_last_bdf ||
2337 devid != amd_iommu_alias_table[devid])
2338 return -EINVAL;
2339
2340 iommu = amd_iommu_rlookup_table[devid];
2341 if (!iommu)
2342 return -EINVAL;
2343
15898bbc 2344 old_domain = amd_iommu_pd_table[devid];
01106066 2345 if (old_domain)
15898bbc 2346 detach_device(dev);
01106066 2347
15898bbc 2348 ret = attach_device(dev, domain);
01106066
JR
2349
2350 iommu_completion_wait(iommu);
2351
15898bbc 2352 return ret;
01106066
JR
2353}
2354
c6229ca6
JR
2355static int amd_iommu_map_range(struct iommu_domain *dom,
2356 unsigned long iova, phys_addr_t paddr,
2357 size_t size, int iommu_prot)
2358{
2359 struct protection_domain *domain = dom->priv;
2360 unsigned long i, npages = iommu_num_pages(paddr, size, PAGE_SIZE);
2361 int prot = 0;
2362 int ret;
2363
2364 if (iommu_prot & IOMMU_READ)
2365 prot |= IOMMU_PROT_IR;
2366 if (iommu_prot & IOMMU_WRITE)
2367 prot |= IOMMU_PROT_IW;
2368
2369 iova &= PAGE_MASK;
2370 paddr &= PAGE_MASK;
2371
2372 for (i = 0; i < npages; ++i) {
abdc5eb3 2373 ret = iommu_map_page(domain, iova, paddr, prot, PM_MAP_4k);
c6229ca6
JR
2374 if (ret)
2375 return ret;
2376
2377 iova += PAGE_SIZE;
2378 paddr += PAGE_SIZE;
2379 }
2380
2381 return 0;
2382}
2383
eb74ff6c
JR
2384static void amd_iommu_unmap_range(struct iommu_domain *dom,
2385 unsigned long iova, size_t size)
2386{
2387
2388 struct protection_domain *domain = dom->priv;
2389 unsigned long i, npages = iommu_num_pages(iova, size, PAGE_SIZE);
2390
2391 iova &= PAGE_MASK;
2392
2393 for (i = 0; i < npages; ++i) {
a6b256b4 2394 iommu_unmap_page(domain, iova, PM_MAP_4k);
eb74ff6c
JR
2395 iova += PAGE_SIZE;
2396 }
2397
601367d7 2398 iommu_flush_tlb_pde(domain);
eb74ff6c
JR
2399}
2400
645c4c8d
JR
2401static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
2402 unsigned long iova)
2403{
2404 struct protection_domain *domain = dom->priv;
2405 unsigned long offset = iova & ~PAGE_MASK;
2406 phys_addr_t paddr;
2407 u64 *pte;
2408
a6b256b4 2409 pte = fetch_pte(domain, iova, PM_MAP_4k);
645c4c8d 2410
a6d41a40 2411 if (!pte || !IOMMU_PTE_PRESENT(*pte))
645c4c8d
JR
2412 return 0;
2413
2414 paddr = *pte & IOMMU_PAGE_MASK;
2415 paddr |= offset;
2416
2417 return paddr;
2418}
2419
dbb9fd86
SY
2420static int amd_iommu_domain_has_cap(struct iommu_domain *domain,
2421 unsigned long cap)
2422{
2423 return 0;
2424}
2425
26961efe
JR
2426static struct iommu_ops amd_iommu_ops = {
2427 .domain_init = amd_iommu_domain_init,
2428 .domain_destroy = amd_iommu_domain_destroy,
2429 .attach_dev = amd_iommu_attach_device,
2430 .detach_dev = amd_iommu_detach_device,
2431 .map = amd_iommu_map_range,
2432 .unmap = amd_iommu_unmap_range,
2433 .iova_to_phys = amd_iommu_iova_to_phys,
dbb9fd86 2434 .domain_has_cap = amd_iommu_domain_has_cap,
26961efe
JR
2435};
2436
0feae533
JR
2437/*****************************************************************************
2438 *
2439 * The next functions do a basic initialization of IOMMU for pass through
2440 * mode
2441 *
2442 * In passthrough mode the IOMMU is initialized and enabled but not used for
2443 * DMA-API translation.
2444 *
2445 *****************************************************************************/
2446
2447int __init amd_iommu_init_passthrough(void)
2448{
15898bbc 2449 struct amd_iommu *iommu;
0feae533 2450 struct pci_dev *dev = NULL;
15898bbc 2451 u16 devid;
0feae533
JR
2452
2453 /* allocate passthroug domain */
2454 pt_domain = protection_domain_alloc();
2455 if (!pt_domain)
2456 return -ENOMEM;
2457
2458 pt_domain->mode |= PAGE_MODE_NONE;
2459
2460 while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
0feae533
JR
2461
2462 devid = calc_devid(dev->bus->number, dev->devfn);
2463 if (devid > amd_iommu_last_bdf)
2464 continue;
2465
15898bbc 2466 iommu = amd_iommu_rlookup_table[devid];
0feae533
JR
2467 if (!iommu)
2468 continue;
2469
15898bbc 2470 attach_device(&dev->dev, pt_domain);
0feae533
JR
2471 }
2472
2473 pr_info("AMD-Vi: Initialized for Passthrough Mode\n");
2474
2475 return 0;
2476}