Merge tag 'v3.10.95' into update
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / filemap.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/filemap.c
3 *
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
6
7/*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
11 */
b95f1b31 12#include <linux/export.h>
1da177e4
LT
13#include <linux/compiler.h>
14#include <linux/fs.h>
c22ce143 15#include <linux/uaccess.h>
1da177e4 16#include <linux/aio.h>
c59ede7b 17#include <linux/capability.h>
1da177e4 18#include <linux/kernel_stat.h>
5a0e3ad6 19#include <linux/gfp.h>
1da177e4
LT
20#include <linux/mm.h>
21#include <linux/swap.h>
22#include <linux/mman.h>
23#include <linux/pagemap.h>
24#include <linux/file.h>
25#include <linux/uio.h>
26#include <linux/hash.h>
27#include <linux/writeback.h>
53253383 28#include <linux/backing-dev.h>
1da177e4
LT
29#include <linux/pagevec.h>
30#include <linux/blkdev.h>
31#include <linux/security.h>
44110fe3 32#include <linux/cpuset.h>
2f718ffc 33#include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
8a9f3ccd 34#include <linux/memcontrol.h>
c515e1fd 35#include <linux/cleancache.h>
0f8053a5
NP
36#include "internal.h"
37
fe0bfaaf
RJ
38#define CREATE_TRACE_POINTS
39#include <trace/events/filemap.h>
40
1da177e4 41/*
1da177e4
LT
42 * FIXME: remove all knowledge of the buffer layer from the core VM
43 */
148f948b 44#include <linux/buffer_head.h> /* for try_to_free_buffers */
1da177e4 45
1da177e4
LT
46#include <asm/mman.h>
47
48/*
49 * Shared mappings implemented 30.11.1994. It's not fully working yet,
50 * though.
51 *
52 * Shared mappings now work. 15.8.1995 Bruno.
53 *
54 * finished 'unifying' the page and buffer cache and SMP-threaded the
55 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
56 *
57 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
58 */
59
60/*
61 * Lock ordering:
62 *
3d48ae45 63 * ->i_mmap_mutex (truncate_pagecache)
1da177e4 64 * ->private_lock (__free_pte->__set_page_dirty_buffers)
5d337b91
HD
65 * ->swap_lock (exclusive_swap_page, others)
66 * ->mapping->tree_lock
1da177e4 67 *
1b1dcc1b 68 * ->i_mutex
3d48ae45 69 * ->i_mmap_mutex (truncate->unmap_mapping_range)
1da177e4
LT
70 *
71 * ->mmap_sem
3d48ae45 72 * ->i_mmap_mutex
b8072f09 73 * ->page_table_lock or pte_lock (various, mainly in memory.c)
1da177e4
LT
74 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
75 *
76 * ->mmap_sem
77 * ->lock_page (access_process_vm)
78 *
82591e6e
NP
79 * ->i_mutex (generic_file_buffered_write)
80 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
1da177e4 81 *
f758eeab 82 * bdi->wb.list_lock
a66979ab 83 * sb_lock (fs/fs-writeback.c)
1da177e4
LT
84 * ->mapping->tree_lock (__sync_single_inode)
85 *
3d48ae45 86 * ->i_mmap_mutex
1da177e4
LT
87 * ->anon_vma.lock (vma_adjust)
88 *
89 * ->anon_vma.lock
b8072f09 90 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
1da177e4 91 *
b8072f09 92 * ->page_table_lock or pte_lock
5d337b91 93 * ->swap_lock (try_to_unmap_one)
1da177e4
LT
94 * ->private_lock (try_to_unmap_one)
95 * ->tree_lock (try_to_unmap_one)
96 * ->zone.lru_lock (follow_page->mark_page_accessed)
053837fc 97 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
1da177e4
LT
98 * ->private_lock (page_remove_rmap->set_page_dirty)
99 * ->tree_lock (page_remove_rmap->set_page_dirty)
f758eeab 100 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
250df6ed 101 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
f758eeab 102 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
250df6ed 103 * ->inode->i_lock (zap_pte_range->set_page_dirty)
1da177e4
LT
104 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
105 *
9a3c531d
AK
106 * ->i_mmap_mutex
107 * ->tasklist_lock (memory_failure, collect_procs_ao)
1da177e4
LT
108 */
109
110/*
e64a782f 111 * Delete a page from the page cache and free it. Caller has to make
1da177e4 112 * sure the page is locked and that nobody else uses it - or that usage
19fd6231 113 * is safe. The caller must hold the mapping's tree_lock.
1da177e4 114 */
e64a782f 115void __delete_from_page_cache(struct page *page)
1da177e4
LT
116{
117 struct address_space *mapping = page->mapping;
118
fe0bfaaf 119 trace_mm_filemap_delete_from_page_cache(page);
c515e1fd
DM
120 /*
121 * if we're uptodate, flush out into the cleancache, otherwise
122 * invalidate any existing cleancache entries. We can't leave
123 * stale data around in the cleancache once our page is gone
124 */
125 if (PageUptodate(page) && PageMappedToDisk(page))
126 cleancache_put_page(page);
127 else
3167760f 128 cleancache_invalidate_page(mapping, page);
c515e1fd 129
1da177e4
LT
130 radix_tree_delete(&mapping->page_tree, page->index);
131 page->mapping = NULL;
b85e0eff 132 /* Leave page->index set: truncation lookup relies upon it */
1da177e4 133 mapping->nrpages--;
347ce434 134 __dec_zone_page_state(page, NR_FILE_PAGES);
4b02108a
KM
135 if (PageSwapBacked(page))
136 __dec_zone_page_state(page, NR_SHMEM);
45426812 137 BUG_ON(page_mapped(page));
3a692790
LT
138
139 /*
140 * Some filesystems seem to re-dirty the page even after
141 * the VM has canceled the dirty bit (eg ext3 journaling).
142 *
143 * Fix it up by doing a final dirty accounting check after
144 * having removed the page entirely.
145 */
146 if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
147 dec_zone_page_state(page, NR_FILE_DIRTY);
148 dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
149 }
1da177e4
LT
150}
151
702cfbf9
MK
152/**
153 * delete_from_page_cache - delete page from page cache
154 * @page: the page which the kernel is trying to remove from page cache
155 *
156 * This must be called only on pages that have been verified to be in the page
157 * cache and locked. It will never put the page into the free list, the caller
158 * has a reference on the page.
159 */
160void delete_from_page_cache(struct page *page)
1da177e4
LT
161{
162 struct address_space *mapping = page->mapping;
6072d13c 163 void (*freepage)(struct page *);
1da177e4 164
cd7619d6 165 BUG_ON(!PageLocked(page));
1da177e4 166
6072d13c 167 freepage = mapping->a_ops->freepage;
19fd6231 168 spin_lock_irq(&mapping->tree_lock);
e64a782f 169 __delete_from_page_cache(page);
19fd6231 170 spin_unlock_irq(&mapping->tree_lock);
e767e056 171 mem_cgroup_uncharge_cache_page(page);
6072d13c
LT
172
173 if (freepage)
174 freepage(page);
97cecb5a
MK
175 page_cache_release(page);
176}
177EXPORT_SYMBOL(delete_from_page_cache);
178
7eaceacc 179static int sleep_on_page(void *word)
1da177e4 180{
1da177e4
LT
181 io_schedule();
182 return 0;
183}
184
7eaceacc 185static int sleep_on_page_killable(void *word)
2687a356 186{
7eaceacc 187 sleep_on_page(word);
2687a356
MW
188 return fatal_signal_pending(current) ? -EINTR : 0;
189}
190
865ffef3
DM
191static int filemap_check_errors(struct address_space *mapping)
192{
193 int ret = 0;
194 /* Check for outstanding write errors */
195 if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
196 ret = -ENOSPC;
197 if (test_and_clear_bit(AS_EIO, &mapping->flags))
198 ret = -EIO;
199 return ret;
200}
201
1da177e4 202/**
485bb99b 203 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
67be2dd1
MW
204 * @mapping: address space structure to write
205 * @start: offset in bytes where the range starts
469eb4d0 206 * @end: offset in bytes where the range ends (inclusive)
67be2dd1 207 * @sync_mode: enable synchronous operation
1da177e4 208 *
485bb99b
RD
209 * Start writeback against all of a mapping's dirty pages that lie
210 * within the byte offsets <start, end> inclusive.
211 *
1da177e4 212 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
485bb99b 213 * opposed to a regular memory cleansing writeback. The difference between
1da177e4
LT
214 * these two operations is that if a dirty page/buffer is encountered, it must
215 * be waited upon, and not just skipped over.
216 */
ebcf28e1
AM
217int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
218 loff_t end, int sync_mode)
1da177e4
LT
219{
220 int ret;
221 struct writeback_control wbc = {
222 .sync_mode = sync_mode,
05fe478d 223 .nr_to_write = LONG_MAX,
111ebb6e
OH
224 .range_start = start,
225 .range_end = end,
1da177e4
LT
226 };
227
228 if (!mapping_cap_writeback_dirty(mapping))
229 return 0;
230
231 ret = do_writepages(mapping, &wbc);
232 return ret;
233}
234
235static inline int __filemap_fdatawrite(struct address_space *mapping,
236 int sync_mode)
237{
111ebb6e 238 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
1da177e4
LT
239}
240
241int filemap_fdatawrite(struct address_space *mapping)
242{
243 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
244}
245EXPORT_SYMBOL(filemap_fdatawrite);
246
f4c0a0fd 247int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
ebcf28e1 248 loff_t end)
1da177e4
LT
249{
250 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
251}
f4c0a0fd 252EXPORT_SYMBOL(filemap_fdatawrite_range);
1da177e4 253
485bb99b
RD
254/**
255 * filemap_flush - mostly a non-blocking flush
256 * @mapping: target address_space
257 *
1da177e4
LT
258 * This is a mostly non-blocking flush. Not suitable for data-integrity
259 * purposes - I/O may not be started against all dirty pages.
260 */
261int filemap_flush(struct address_space *mapping)
262{
263 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
264}
265EXPORT_SYMBOL(filemap_flush);
266
485bb99b 267/**
94004ed7
CH
268 * filemap_fdatawait_range - wait for writeback to complete
269 * @mapping: address space structure to wait for
270 * @start_byte: offset in bytes where the range starts
271 * @end_byte: offset in bytes where the range ends (inclusive)
485bb99b 272 *
94004ed7
CH
273 * Walk the list of under-writeback pages of the given address space
274 * in the given range and wait for all of them.
1da177e4 275 */
94004ed7
CH
276int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
277 loff_t end_byte)
1da177e4 278{
94004ed7
CH
279 pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
280 pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
1da177e4
LT
281 struct pagevec pvec;
282 int nr_pages;
865ffef3 283 int ret2, ret = 0;
1da177e4 284
94004ed7 285 if (end_byte < start_byte)
865ffef3 286 goto out;
1da177e4
LT
287
288 pagevec_init(&pvec, 0);
1da177e4
LT
289 while ((index <= end) &&
290 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
291 PAGECACHE_TAG_WRITEBACK,
292 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
293 unsigned i;
294
295 for (i = 0; i < nr_pages; i++) {
296 struct page *page = pvec.pages[i];
297
298 /* until radix tree lookup accepts end_index */
299 if (page->index > end)
300 continue;
301
302 wait_on_page_writeback(page);
212260aa 303 if (TestClearPageError(page))
1da177e4
LT
304 ret = -EIO;
305 }
306 pagevec_release(&pvec);
307 cond_resched();
308 }
865ffef3
DM
309out:
310 ret2 = filemap_check_errors(mapping);
311 if (!ret)
312 ret = ret2;
1da177e4
LT
313
314 return ret;
315}
d3bccb6f
JK
316EXPORT_SYMBOL(filemap_fdatawait_range);
317
1da177e4 318/**
485bb99b 319 * filemap_fdatawait - wait for all under-writeback pages to complete
1da177e4 320 * @mapping: address space structure to wait for
485bb99b
RD
321 *
322 * Walk the list of under-writeback pages of the given address space
323 * and wait for all of them.
1da177e4
LT
324 */
325int filemap_fdatawait(struct address_space *mapping)
326{
327 loff_t i_size = i_size_read(mapping->host);
328
329 if (i_size == 0)
330 return 0;
331
94004ed7 332 return filemap_fdatawait_range(mapping, 0, i_size - 1);
1da177e4
LT
333}
334EXPORT_SYMBOL(filemap_fdatawait);
335
336int filemap_write_and_wait(struct address_space *mapping)
337{
28fd1298 338 int err = 0;
1da177e4
LT
339
340 if (mapping->nrpages) {
28fd1298
OH
341 err = filemap_fdatawrite(mapping);
342 /*
343 * Even if the above returned error, the pages may be
344 * written partially (e.g. -ENOSPC), so we wait for it.
345 * But the -EIO is special case, it may indicate the worst
346 * thing (e.g. bug) happened, so we avoid waiting for it.
347 */
348 if (err != -EIO) {
349 int err2 = filemap_fdatawait(mapping);
350 if (!err)
351 err = err2;
352 }
865ffef3
DM
353 } else {
354 err = filemap_check_errors(mapping);
1da177e4 355 }
28fd1298 356 return err;
1da177e4 357}
28fd1298 358EXPORT_SYMBOL(filemap_write_and_wait);
1da177e4 359
485bb99b
RD
360/**
361 * filemap_write_and_wait_range - write out & wait on a file range
362 * @mapping: the address_space for the pages
363 * @lstart: offset in bytes where the range starts
364 * @lend: offset in bytes where the range ends (inclusive)
365 *
469eb4d0
AM
366 * Write out and wait upon file offsets lstart->lend, inclusive.
367 *
368 * Note that `lend' is inclusive (describes the last byte to be written) so
369 * that this function can be used to write to the very end-of-file (end = -1).
370 */
1da177e4
LT
371int filemap_write_and_wait_range(struct address_space *mapping,
372 loff_t lstart, loff_t lend)
373{
28fd1298 374 int err = 0;
1da177e4
LT
375
376 if (mapping->nrpages) {
28fd1298
OH
377 err = __filemap_fdatawrite_range(mapping, lstart, lend,
378 WB_SYNC_ALL);
379 /* See comment of filemap_write_and_wait() */
380 if (err != -EIO) {
94004ed7
CH
381 int err2 = filemap_fdatawait_range(mapping,
382 lstart, lend);
28fd1298
OH
383 if (!err)
384 err = err2;
385 }
865ffef3
DM
386 } else {
387 err = filemap_check_errors(mapping);
1da177e4 388 }
28fd1298 389 return err;
1da177e4 390}
f6995585 391EXPORT_SYMBOL(filemap_write_and_wait_range);
1da177e4 392
ef6a3c63
MS
393/**
394 * replace_page_cache_page - replace a pagecache page with a new one
395 * @old: page to be replaced
396 * @new: page to replace with
397 * @gfp_mask: allocation mode
398 *
399 * This function replaces a page in the pagecache with a new one. On
400 * success it acquires the pagecache reference for the new page and
401 * drops it for the old page. Both the old and new pages must be
402 * locked. This function does not add the new page to the LRU, the
403 * caller must do that.
404 *
405 * The remove + add is atomic. The only way this function can fail is
406 * memory allocation failure.
407 */
408int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
409{
410 int error;
ef6a3c63
MS
411
412 VM_BUG_ON(!PageLocked(old));
413 VM_BUG_ON(!PageLocked(new));
414 VM_BUG_ON(new->mapping);
415
ef6a3c63
MS
416 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
417 if (!error) {
418 struct address_space *mapping = old->mapping;
419 void (*freepage)(struct page *);
420
421 pgoff_t offset = old->index;
422 freepage = mapping->a_ops->freepage;
423
424 page_cache_get(new);
425 new->mapping = mapping;
426 new->index = offset;
427
428 spin_lock_irq(&mapping->tree_lock);
e64a782f 429 __delete_from_page_cache(old);
ef6a3c63
MS
430 error = radix_tree_insert(&mapping->page_tree, offset, new);
431 BUG_ON(error);
432 mapping->nrpages++;
433 __inc_zone_page_state(new, NR_FILE_PAGES);
434 if (PageSwapBacked(new))
435 __inc_zone_page_state(new, NR_SHMEM);
436 spin_unlock_irq(&mapping->tree_lock);
ab936cbc
KH
437 /* mem_cgroup codes must not be called under tree_lock */
438 mem_cgroup_replace_page_cache(old, new);
ef6a3c63
MS
439 radix_tree_preload_end();
440 if (freepage)
441 freepage(old);
442 page_cache_release(old);
ef6a3c63
MS
443 }
444
445 return error;
446}
447EXPORT_SYMBOL_GPL(replace_page_cache_page);
448
485bb99b 449/**
e286781d 450 * add_to_page_cache_locked - add a locked page to the pagecache
485bb99b
RD
451 * @page: page to add
452 * @mapping: the page's address_space
453 * @offset: page index
454 * @gfp_mask: page allocation mode
455 *
e286781d 456 * This function is used to add a page to the pagecache. It must be locked.
1da177e4
LT
457 * This function does not add the page to the LRU. The caller must do that.
458 */
e286781d 459int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
6daa0e28 460 pgoff_t offset, gfp_t gfp_mask)
1da177e4 461{
e286781d
NP
462 int error;
463
464 VM_BUG_ON(!PageLocked(page));
31475dd6 465 VM_BUG_ON(PageSwapBacked(page));
e286781d
NP
466
467 error = mem_cgroup_cache_charge(page, current->mm,
2c26fdd7 468 gfp_mask & GFP_RECLAIM_MASK);
35c754d7
BS
469 if (error)
470 goto out;
1da177e4 471
35c754d7 472 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
1da177e4 473 if (error == 0) {
e286781d
NP
474 page_cache_get(page);
475 page->mapping = mapping;
476 page->index = offset;
477
19fd6231 478 spin_lock_irq(&mapping->tree_lock);
1da177e4 479 error = radix_tree_insert(&mapping->page_tree, offset, page);
e286781d 480 if (likely(!error)) {
1da177e4 481 mapping->nrpages++;
347ce434 482 __inc_zone_page_state(page, NR_FILE_PAGES);
e767e056 483 spin_unlock_irq(&mapping->tree_lock);
fe0bfaaf 484 trace_mm_filemap_add_to_page_cache(page);
e286781d
NP
485 } else {
486 page->mapping = NULL;
b85e0eff 487 /* Leave page->index set: truncation relies upon it */
e767e056 488 spin_unlock_irq(&mapping->tree_lock);
69029cd5 489 mem_cgroup_uncharge_cache_page(page);
e286781d
NP
490 page_cache_release(page);
491 }
1da177e4 492 radix_tree_preload_end();
35c754d7 493 } else
69029cd5 494 mem_cgroup_uncharge_cache_page(page);
8a9f3ccd 495out:
1da177e4
LT
496 return error;
497}
e286781d 498EXPORT_SYMBOL(add_to_page_cache_locked);
1da177e4
LT
499
500int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
6daa0e28 501 pgoff_t offset, gfp_t gfp_mask)
1da177e4 502{
4f98a2fe
RR
503 int ret;
504
4f98a2fe 505 ret = add_to_page_cache(page, mapping, offset, gfp_mask);
31475dd6
HD
506 if (ret == 0)
507 lru_cache_add_file(page);
1da177e4
LT
508 return ret;
509}
18bc0bbd 510EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
1da177e4 511
44110fe3 512#ifdef CONFIG_NUMA
2ae88149 513struct page *__page_cache_alloc(gfp_t gfp)
44110fe3 514{
c0ff7453
MX
515 int n;
516 struct page *page;
517
44110fe3 518 if (cpuset_do_page_mem_spread()) {
cc9a6c87
MG
519 unsigned int cpuset_mems_cookie;
520 do {
521 cpuset_mems_cookie = get_mems_allowed();
522 n = cpuset_mem_spread_node();
523 page = alloc_pages_exact_node(n, gfp, 0);
524 } while (!put_mems_allowed(cpuset_mems_cookie) && !page);
525
c0ff7453 526 return page;
44110fe3 527 }
2ae88149 528 return alloc_pages(gfp, 0);
44110fe3 529}
2ae88149 530EXPORT_SYMBOL(__page_cache_alloc);
44110fe3
PJ
531#endif
532
1da177e4
LT
533/*
534 * In order to wait for pages to become available there must be
535 * waitqueues associated with pages. By using a hash table of
536 * waitqueues where the bucket discipline is to maintain all
537 * waiters on the same queue and wake all when any of the pages
538 * become available, and for the woken contexts to check to be
539 * sure the appropriate page became available, this saves space
540 * at a cost of "thundering herd" phenomena during rare hash
541 * collisions.
542 */
543static wait_queue_head_t *page_waitqueue(struct page *page)
544{
545 const struct zone *zone = page_zone(page);
546
547 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
548}
549
550static inline void wake_up_page(struct page *page, int bit)
551{
552 __wake_up_bit(page_waitqueue(page), &page->flags, bit);
553}
554
920c7a5d 555void wait_on_page_bit(struct page *page, int bit_nr)
1da177e4
LT
556{
557 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
558
559 if (test_bit(bit_nr, &page->flags))
7eaceacc 560 __wait_on_bit(page_waitqueue(page), &wait, sleep_on_page,
1da177e4
LT
561 TASK_UNINTERRUPTIBLE);
562}
563EXPORT_SYMBOL(wait_on_page_bit);
564
f62e00cc
KM
565int wait_on_page_bit_killable(struct page *page, int bit_nr)
566{
567 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
568
569 if (!test_bit(bit_nr, &page->flags))
570 return 0;
571
572 return __wait_on_bit(page_waitqueue(page), &wait,
573 sleep_on_page_killable, TASK_KILLABLE);
574}
575
385e1ca5
DH
576/**
577 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
697f619f
RD
578 * @page: Page defining the wait queue of interest
579 * @waiter: Waiter to add to the queue
385e1ca5
DH
580 *
581 * Add an arbitrary @waiter to the wait queue for the nominated @page.
582 */
583void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
584{
585 wait_queue_head_t *q = page_waitqueue(page);
586 unsigned long flags;
587
588 spin_lock_irqsave(&q->lock, flags);
589 __add_wait_queue(q, waiter);
590 spin_unlock_irqrestore(&q->lock, flags);
591}
592EXPORT_SYMBOL_GPL(add_page_wait_queue);
593
1da177e4 594/**
485bb99b 595 * unlock_page - unlock a locked page
1da177e4
LT
596 * @page: the page
597 *
598 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
599 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
600 * mechananism between PageLocked pages and PageWriteback pages is shared.
601 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
602 *
8413ac9d
NP
603 * The mb is necessary to enforce ordering between the clear_bit and the read
604 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
1da177e4 605 */
920c7a5d 606void unlock_page(struct page *page)
1da177e4 607{
8413ac9d
NP
608 VM_BUG_ON(!PageLocked(page));
609 clear_bit_unlock(PG_locked, &page->flags);
610 smp_mb__after_clear_bit();
1da177e4
LT
611 wake_up_page(page, PG_locked);
612}
613EXPORT_SYMBOL(unlock_page);
614
485bb99b
RD
615/**
616 * end_page_writeback - end writeback against a page
617 * @page: the page
1da177e4
LT
618 */
619void end_page_writeback(struct page *page)
620{
ac6aadb2
MS
621 if (TestClearPageReclaim(page))
622 rotate_reclaimable_page(page);
623
624 if (!test_clear_page_writeback(page))
625 BUG();
626
1da177e4
LT
627 smp_mb__after_clear_bit();
628 wake_up_page(page, PG_writeback);
629}
630EXPORT_SYMBOL(end_page_writeback);
631
485bb99b
RD
632/**
633 * __lock_page - get a lock on the page, assuming we need to sleep to get it
634 * @page: the page to lock
1da177e4 635 */
920c7a5d 636void __lock_page(struct page *page)
1da177e4
LT
637{
638 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
639
7eaceacc 640 __wait_on_bit_lock(page_waitqueue(page), &wait, sleep_on_page,
1da177e4
LT
641 TASK_UNINTERRUPTIBLE);
642}
643EXPORT_SYMBOL(__lock_page);
644
b5606c2d 645int __lock_page_killable(struct page *page)
2687a356
MW
646{
647 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
648
649 return __wait_on_bit_lock(page_waitqueue(page), &wait,
7eaceacc 650 sleep_on_page_killable, TASK_KILLABLE);
2687a356 651}
18bc0bbd 652EXPORT_SYMBOL_GPL(__lock_page_killable);
2687a356 653
d065bd81
ML
654int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
655 unsigned int flags)
656{
37b23e05
KM
657 if (flags & FAULT_FLAG_ALLOW_RETRY) {
658 /*
659 * CAUTION! In this case, mmap_sem is not released
660 * even though return 0.
661 */
662 if (flags & FAULT_FLAG_RETRY_NOWAIT)
663 return 0;
664
665 up_read(&mm->mmap_sem);
666 if (flags & FAULT_FLAG_KILLABLE)
667 wait_on_page_locked_killable(page);
668 else
318b275f 669 wait_on_page_locked(page);
d065bd81 670 return 0;
37b23e05
KM
671 } else {
672 if (flags & FAULT_FLAG_KILLABLE) {
673 int ret;
674
675 ret = __lock_page_killable(page);
676 if (ret) {
677 up_read(&mm->mmap_sem);
678 return 0;
679 }
680 } else
681 __lock_page(page);
682 return 1;
d065bd81
ML
683 }
684}
685
485bb99b
RD
686/**
687 * find_get_page - find and get a page reference
688 * @mapping: the address_space to search
689 * @offset: the page index
690 *
da6052f7
NP
691 * Is there a pagecache struct page at the given (mapping, offset) tuple?
692 * If yes, increment its refcount and return it; if no, return NULL.
1da177e4 693 */
a60637c8 694struct page *find_get_page(struct address_space *mapping, pgoff_t offset)
1da177e4 695{
a60637c8 696 void **pagep;
1da177e4
LT
697 struct page *page;
698
a60637c8
NP
699 rcu_read_lock();
700repeat:
701 page = NULL;
702 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
703 if (pagep) {
704 page = radix_tree_deref_slot(pagep);
27d20fdd
NP
705 if (unlikely(!page))
706 goto out;
a2c16d6c 707 if (radix_tree_exception(page)) {
8079b1c8
HD
708 if (radix_tree_deref_retry(page))
709 goto repeat;
710 /*
711 * Otherwise, shmem/tmpfs must be storing a swap entry
712 * here as an exceptional entry: so return it without
713 * attempting to raise page count.
714 */
715 goto out;
a2c16d6c 716 }
a60637c8
NP
717 if (!page_cache_get_speculative(page))
718 goto repeat;
719
720 /*
721 * Has the page moved?
722 * This is part of the lockless pagecache protocol. See
723 * include/linux/pagemap.h for details.
724 */
725 if (unlikely(page != *pagep)) {
726 page_cache_release(page);
727 goto repeat;
728 }
729 }
27d20fdd 730out:
a60637c8
NP
731 rcu_read_unlock();
732
1da177e4
LT
733 return page;
734}
1da177e4
LT
735EXPORT_SYMBOL(find_get_page);
736
1da177e4
LT
737/**
738 * find_lock_page - locate, pin and lock a pagecache page
67be2dd1
MW
739 * @mapping: the address_space to search
740 * @offset: the page index
1da177e4
LT
741 *
742 * Locates the desired pagecache page, locks it, increments its reference
743 * count and returns its address.
744 *
745 * Returns zero if the page was not present. find_lock_page() may sleep.
746 */
a60637c8 747struct page *find_lock_page(struct address_space *mapping, pgoff_t offset)
1da177e4
LT
748{
749 struct page *page;
750
1da177e4 751repeat:
a60637c8 752 page = find_get_page(mapping, offset);
a2c16d6c 753 if (page && !radix_tree_exception(page)) {
a60637c8
NP
754 lock_page(page);
755 /* Has the page been truncated? */
756 if (unlikely(page->mapping != mapping)) {
757 unlock_page(page);
758 page_cache_release(page);
759 goto repeat;
1da177e4 760 }
a60637c8 761 VM_BUG_ON(page->index != offset);
1da177e4 762 }
1da177e4
LT
763 return page;
764}
1da177e4
LT
765EXPORT_SYMBOL(find_lock_page);
766
767/**
768 * find_or_create_page - locate or add a pagecache page
67be2dd1
MW
769 * @mapping: the page's address_space
770 * @index: the page's index into the mapping
771 * @gfp_mask: page allocation mode
1da177e4
LT
772 *
773 * Locates a page in the pagecache. If the page is not present, a new page
774 * is allocated using @gfp_mask and is added to the pagecache and to the VM's
775 * LRU list. The returned page is locked and has its reference count
776 * incremented.
777 *
778 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
779 * allocation!
780 *
781 * find_or_create_page() returns the desired page's address, or zero on
782 * memory exhaustion.
783 */
784struct page *find_or_create_page(struct address_space *mapping,
57f6b96c 785 pgoff_t index, gfp_t gfp_mask)
1da177e4 786{
eb2be189 787 struct page *page;
1da177e4
LT
788 int err;
789repeat:
790 page = find_lock_page(mapping, index);
791 if (!page) {
eb2be189
NP
792 page = __page_cache_alloc(gfp_mask);
793 if (!page)
794 return NULL;
67d58ac4
NP
795 /*
796 * We want a regular kernel memory (not highmem or DMA etc)
797 * allocation for the radix tree nodes, but we need to honour
798 * the context-specific requirements the caller has asked for.
799 * GFP_RECLAIM_MASK collects those requirements.
800 */
801 err = add_to_page_cache_lru(page, mapping, index,
802 (gfp_mask & GFP_RECLAIM_MASK));
eb2be189
NP
803 if (unlikely(err)) {
804 page_cache_release(page);
805 page = NULL;
806 if (err == -EEXIST)
807 goto repeat;
1da177e4 808 }
1da177e4 809 }
1da177e4
LT
810 return page;
811}
1da177e4
LT
812EXPORT_SYMBOL(find_or_create_page);
813
814/**
815 * find_get_pages - gang pagecache lookup
816 * @mapping: The address_space to search
817 * @start: The starting page index
818 * @nr_pages: The maximum number of pages
819 * @pages: Where the resulting pages are placed
820 *
821 * find_get_pages() will search for and return a group of up to
822 * @nr_pages pages in the mapping. The pages are placed at @pages.
823 * find_get_pages() takes a reference against the returned pages.
824 *
825 * The search returns a group of mapping-contiguous pages with ascending
826 * indexes. There may be holes in the indices due to not-present pages.
827 *
828 * find_get_pages() returns the number of pages which were found.
829 */
830unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
831 unsigned int nr_pages, struct page **pages)
832{
0fc9d104
KK
833 struct radix_tree_iter iter;
834 void **slot;
835 unsigned ret = 0;
836
837 if (unlikely(!nr_pages))
838 return 0;
a60637c8
NP
839
840 rcu_read_lock();
841restart:
0fc9d104 842 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
a60637c8
NP
843 struct page *page;
844repeat:
0fc9d104 845 page = radix_tree_deref_slot(slot);
a60637c8
NP
846 if (unlikely(!page))
847 continue;
9d8aa4ea 848
a2c16d6c 849 if (radix_tree_exception(page)) {
8079b1c8
HD
850 if (radix_tree_deref_retry(page)) {
851 /*
852 * Transient condition which can only trigger
853 * when entry at index 0 moves out of or back
854 * to root: none yet gotten, safe to restart.
855 */
0fc9d104 856 WARN_ON(iter.index);
8079b1c8
HD
857 goto restart;
858 }
a2c16d6c 859 /*
8079b1c8
HD
860 * Otherwise, shmem/tmpfs must be storing a swap entry
861 * here as an exceptional entry: so skip over it -
862 * we only reach this from invalidate_mapping_pages().
a2c16d6c 863 */
8079b1c8 864 continue;
27d20fdd 865 }
a60637c8
NP
866
867 if (!page_cache_get_speculative(page))
868 goto repeat;
869
870 /* Has the page moved? */
0fc9d104 871 if (unlikely(page != *slot)) {
a60637c8
NP
872 page_cache_release(page);
873 goto repeat;
874 }
1da177e4 875
a60637c8 876 pages[ret] = page;
0fc9d104
KK
877 if (++ret == nr_pages)
878 break;
a60637c8 879 }
5b280c0c 880
a60637c8 881 rcu_read_unlock();
1da177e4
LT
882 return ret;
883}
884
ebf43500
JA
885/**
886 * find_get_pages_contig - gang contiguous pagecache lookup
887 * @mapping: The address_space to search
888 * @index: The starting page index
889 * @nr_pages: The maximum number of pages
890 * @pages: Where the resulting pages are placed
891 *
892 * find_get_pages_contig() works exactly like find_get_pages(), except
893 * that the returned number of pages are guaranteed to be contiguous.
894 *
895 * find_get_pages_contig() returns the number of pages which were found.
896 */
897unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
898 unsigned int nr_pages, struct page **pages)
899{
0fc9d104
KK
900 struct radix_tree_iter iter;
901 void **slot;
902 unsigned int ret = 0;
903
904 if (unlikely(!nr_pages))
905 return 0;
a60637c8
NP
906
907 rcu_read_lock();
908restart:
0fc9d104 909 radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
a60637c8
NP
910 struct page *page;
911repeat:
0fc9d104
KK
912 page = radix_tree_deref_slot(slot);
913 /* The hole, there no reason to continue */
a60637c8 914 if (unlikely(!page))
0fc9d104 915 break;
9d8aa4ea 916
a2c16d6c 917 if (radix_tree_exception(page)) {
8079b1c8
HD
918 if (radix_tree_deref_retry(page)) {
919 /*
920 * Transient condition which can only trigger
921 * when entry at index 0 moves out of or back
922 * to root: none yet gotten, safe to restart.
923 */
924 goto restart;
925 }
a2c16d6c 926 /*
8079b1c8
HD
927 * Otherwise, shmem/tmpfs must be storing a swap entry
928 * here as an exceptional entry: so stop looking for
929 * contiguous pages.
a2c16d6c 930 */
8079b1c8 931 break;
a2c16d6c 932 }
ebf43500 933
a60637c8
NP
934 if (!page_cache_get_speculative(page))
935 goto repeat;
936
937 /* Has the page moved? */
0fc9d104 938 if (unlikely(page != *slot)) {
a60637c8
NP
939 page_cache_release(page);
940 goto repeat;
941 }
942
9cbb4cb2
NP
943 /*
944 * must check mapping and index after taking the ref.
945 * otherwise we can get both false positives and false
946 * negatives, which is just confusing to the caller.
947 */
0fc9d104 948 if (page->mapping == NULL || page->index != iter.index) {
9cbb4cb2
NP
949 page_cache_release(page);
950 break;
951 }
952
a60637c8 953 pages[ret] = page;
0fc9d104
KK
954 if (++ret == nr_pages)
955 break;
ebf43500 956 }
a60637c8
NP
957 rcu_read_unlock();
958 return ret;
ebf43500 959}
ef71c15c 960EXPORT_SYMBOL(find_get_pages_contig);
ebf43500 961
485bb99b
RD
962/**
963 * find_get_pages_tag - find and return pages that match @tag
964 * @mapping: the address_space to search
965 * @index: the starting page index
966 * @tag: the tag index
967 * @nr_pages: the maximum number of pages
968 * @pages: where the resulting pages are placed
969 *
1da177e4 970 * Like find_get_pages, except we only return pages which are tagged with
485bb99b 971 * @tag. We update @index to index the next page for the traversal.
1da177e4
LT
972 */
973unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
974 int tag, unsigned int nr_pages, struct page **pages)
975{
0fc9d104
KK
976 struct radix_tree_iter iter;
977 void **slot;
978 unsigned ret = 0;
979
980 if (unlikely(!nr_pages))
981 return 0;
a60637c8
NP
982
983 rcu_read_lock();
984restart:
0fc9d104
KK
985 radix_tree_for_each_tagged(slot, &mapping->page_tree,
986 &iter, *index, tag) {
a60637c8
NP
987 struct page *page;
988repeat:
0fc9d104 989 page = radix_tree_deref_slot(slot);
a60637c8
NP
990 if (unlikely(!page))
991 continue;
9d8aa4ea 992
a2c16d6c 993 if (radix_tree_exception(page)) {
8079b1c8
HD
994 if (radix_tree_deref_retry(page)) {
995 /*
996 * Transient condition which can only trigger
997 * when entry at index 0 moves out of or back
998 * to root: none yet gotten, safe to restart.
999 */
1000 goto restart;
1001 }
a2c16d6c 1002 /*
8079b1c8
HD
1003 * This function is never used on a shmem/tmpfs
1004 * mapping, so a swap entry won't be found here.
a2c16d6c 1005 */
8079b1c8 1006 BUG();
a2c16d6c 1007 }
a60637c8
NP
1008
1009 if (!page_cache_get_speculative(page))
1010 goto repeat;
1011
1012 /* Has the page moved? */
0fc9d104 1013 if (unlikely(page != *slot)) {
a60637c8
NP
1014 page_cache_release(page);
1015 goto repeat;
1016 }
1017
1018 pages[ret] = page;
0fc9d104
KK
1019 if (++ret == nr_pages)
1020 break;
a60637c8 1021 }
5b280c0c 1022
a60637c8 1023 rcu_read_unlock();
1da177e4 1024
1da177e4
LT
1025 if (ret)
1026 *index = pages[ret - 1]->index + 1;
a60637c8 1027
1da177e4
LT
1028 return ret;
1029}
ef71c15c 1030EXPORT_SYMBOL(find_get_pages_tag);
1da177e4 1031
485bb99b
RD
1032/**
1033 * grab_cache_page_nowait - returns locked page at given index in given cache
1034 * @mapping: target address_space
1035 * @index: the page index
1036 *
72fd4a35 1037 * Same as grab_cache_page(), but do not wait if the page is unavailable.
1da177e4
LT
1038 * This is intended for speculative data generators, where the data can
1039 * be regenerated if the page couldn't be grabbed. This routine should
1040 * be safe to call while holding the lock for another page.
1041 *
1042 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
1043 * and deadlock against the caller's locked page.
1044 */
1045struct page *
57f6b96c 1046grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
1da177e4
LT
1047{
1048 struct page *page = find_get_page(mapping, index);
1da177e4
LT
1049
1050 if (page) {
529ae9aa 1051 if (trylock_page(page))
1da177e4
LT
1052 return page;
1053 page_cache_release(page);
1054 return NULL;
1055 }
2ae88149 1056 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
67d58ac4 1057 if (page && add_to_page_cache_lru(page, mapping, index, GFP_NOFS)) {
1da177e4
LT
1058 page_cache_release(page);
1059 page = NULL;
1060 }
1061 return page;
1062}
1da177e4
LT
1063EXPORT_SYMBOL(grab_cache_page_nowait);
1064
76d42bd9
WF
1065/*
1066 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1067 * a _large_ part of the i/o request. Imagine the worst scenario:
1068 *
1069 * ---R__________________________________________B__________
1070 * ^ reading here ^ bad block(assume 4k)
1071 *
1072 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1073 * => failing the whole request => read(R) => read(R+1) =>
1074 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1075 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1076 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1077 *
1078 * It is going insane. Fix it by quickly scaling down the readahead size.
1079 */
1080static void shrink_readahead_size_eio(struct file *filp,
1081 struct file_ra_state *ra)
1082{
76d42bd9 1083 ra->ra_pages /= 4;
76d42bd9
WF
1084}
1085
485bb99b 1086/**
36e78914 1087 * do_generic_file_read - generic file read routine
485bb99b
RD
1088 * @filp: the file to read
1089 * @ppos: current file position
1090 * @desc: read_descriptor
1091 * @actor: read method
1092 *
1da177e4 1093 * This is a generic file read routine, and uses the
485bb99b 1094 * mapping->a_ops->readpage() function for the actual low-level stuff.
1da177e4
LT
1095 *
1096 * This is really ugly. But the goto's actually try to clarify some
1097 * of the logic when it comes to error handling etc.
1da177e4 1098 */
36e78914
CH
1099static void do_generic_file_read(struct file *filp, loff_t *ppos,
1100 read_descriptor_t *desc, read_actor_t actor)
1da177e4 1101{
36e78914 1102 struct address_space *mapping = filp->f_mapping;
1da177e4 1103 struct inode *inode = mapping->host;
36e78914 1104 struct file_ra_state *ra = &filp->f_ra;
57f6b96c
FW
1105 pgoff_t index;
1106 pgoff_t last_index;
1107 pgoff_t prev_index;
1108 unsigned long offset; /* offset into pagecache page */
ec0f1637 1109 unsigned int prev_offset;
1da177e4 1110 int error;
1da177e4 1111
1da177e4 1112 index = *ppos >> PAGE_CACHE_SHIFT;
7ff81078
FW
1113 prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1114 prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1da177e4
LT
1115 last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1116 offset = *ppos & ~PAGE_CACHE_MASK;
1117
1da177e4
LT
1118 for (;;) {
1119 struct page *page;
57f6b96c 1120 pgoff_t end_index;
a32ea1e1 1121 loff_t isize;
1da177e4
LT
1122 unsigned long nr, ret;
1123
1da177e4 1124 cond_resched();
1da177e4
LT
1125find_page:
1126 page = find_get_page(mapping, index);
3ea89ee8 1127 if (!page) {
cf914a7d 1128 page_cache_sync_readahead(mapping,
7ff81078 1129 ra, filp,
3ea89ee8
FW
1130 index, last_index - index);
1131 page = find_get_page(mapping, index);
1132 if (unlikely(page == NULL))
1133 goto no_cached_page;
1134 }
1135 if (PageReadahead(page)) {
cf914a7d 1136 page_cache_async_readahead(mapping,
7ff81078 1137 ra, filp, page,
3ea89ee8 1138 index, last_index - index);
1da177e4 1139 }
8ab22b9a
HH
1140 if (!PageUptodate(page)) {
1141 if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1142 !mapping->a_ops->is_partially_uptodate)
1143 goto page_not_up_to_date;
529ae9aa 1144 if (!trylock_page(page))
8ab22b9a 1145 goto page_not_up_to_date;
8d056cb9
DH
1146 /* Did it get truncated before we got the lock? */
1147 if (!page->mapping)
1148 goto page_not_up_to_date_locked;
8ab22b9a
HH
1149 if (!mapping->a_ops->is_partially_uptodate(page,
1150 desc, offset))
1151 goto page_not_up_to_date_locked;
1152 unlock_page(page);
1153 }
1da177e4 1154page_ok:
a32ea1e1
N
1155 /*
1156 * i_size must be checked after we know the page is Uptodate.
1157 *
1158 * Checking i_size after the check allows us to calculate
1159 * the correct value for "nr", which means the zero-filled
1160 * part of the page is not copied back to userspace (unless
1161 * another truncate extends the file - this is desired though).
1162 */
1163
1164 isize = i_size_read(inode);
1165 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1166 if (unlikely(!isize || index > end_index)) {
1167 page_cache_release(page);
1168 goto out;
1169 }
1170
1171 /* nr is the maximum number of bytes to copy from this page */
1172 nr = PAGE_CACHE_SIZE;
1173 if (index == end_index) {
1174 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1175 if (nr <= offset) {
1176 page_cache_release(page);
1177 goto out;
1178 }
1179 }
1180 nr = nr - offset;
1da177e4
LT
1181
1182 /* If users can be writing to this page using arbitrary
1183 * virtual addresses, take care about potential aliasing
1184 * before reading the page on the kernel side.
1185 */
1186 if (mapping_writably_mapped(mapping))
1187 flush_dcache_page(page);
1188
1189 /*
ec0f1637
JK
1190 * When a sequential read accesses a page several times,
1191 * only mark it as accessed the first time.
1da177e4 1192 */
ec0f1637 1193 if (prev_index != index || offset != prev_offset)
1da177e4
LT
1194 mark_page_accessed(page);
1195 prev_index = index;
1196
1197 /*
1198 * Ok, we have the page, and it's up-to-date, so
1199 * now we can copy it to user space...
1200 *
1201 * The actor routine returns how many bytes were actually used..
1202 * NOTE! This may not be the same as how much of a user buffer
1203 * we filled up (we may be padding etc), so we can only update
1204 * "pos" here (the actor routine has to update the user buffer
1205 * pointers and the remaining count).
1206 */
1207 ret = actor(desc, page, offset, nr);
1208 offset += ret;
1209 index += offset >> PAGE_CACHE_SHIFT;
1210 offset &= ~PAGE_CACHE_MASK;
6ce745ed 1211 prev_offset = offset;
1da177e4
LT
1212
1213 page_cache_release(page);
1214 if (ret == nr && desc->count)
1215 continue;
1216 goto out;
1217
1218page_not_up_to_date:
1219 /* Get exclusive access to the page ... */
85462323
ON
1220 error = lock_page_killable(page);
1221 if (unlikely(error))
1222 goto readpage_error;
1da177e4 1223
8ab22b9a 1224page_not_up_to_date_locked:
da6052f7 1225 /* Did it get truncated before we got the lock? */
1da177e4
LT
1226 if (!page->mapping) {
1227 unlock_page(page);
1228 page_cache_release(page);
1229 continue;
1230 }
1231
1232 /* Did somebody else fill it already? */
1233 if (PageUptodate(page)) {
1234 unlock_page(page);
1235 goto page_ok;
1236 }
1237
1238readpage:
91803b49
JM
1239 /*
1240 * A previous I/O error may have been due to temporary
1241 * failures, eg. multipath errors.
1242 * PG_error will be set again if readpage fails.
1243 */
1244 ClearPageError(page);
1da177e4
LT
1245 /* Start the actual read. The read will unlock the page. */
1246 error = mapping->a_ops->readpage(filp, page);
1247
994fc28c
ZB
1248 if (unlikely(error)) {
1249 if (error == AOP_TRUNCATED_PAGE) {
1250 page_cache_release(page);
1251 goto find_page;
1252 }
1da177e4 1253 goto readpage_error;
994fc28c 1254 }
1da177e4
LT
1255
1256 if (!PageUptodate(page)) {
85462323
ON
1257 error = lock_page_killable(page);
1258 if (unlikely(error))
1259 goto readpage_error;
1da177e4
LT
1260 if (!PageUptodate(page)) {
1261 if (page->mapping == NULL) {
1262 /*
2ecdc82e 1263 * invalidate_mapping_pages got it
1da177e4
LT
1264 */
1265 unlock_page(page);
1266 page_cache_release(page);
1267 goto find_page;
1268 }
1269 unlock_page(page);
7ff81078 1270 shrink_readahead_size_eio(filp, ra);
85462323
ON
1271 error = -EIO;
1272 goto readpage_error;
1da177e4
LT
1273 }
1274 unlock_page(page);
1275 }
1276
1da177e4
LT
1277 goto page_ok;
1278
1279readpage_error:
1280 /* UHHUH! A synchronous read error occurred. Report it */
1281 desc->error = error;
1282 page_cache_release(page);
1283 goto out;
1284
1285no_cached_page:
1286 /*
1287 * Ok, it wasn't cached, so we need to create a new
1288 * page..
1289 */
eb2be189
NP
1290 page = page_cache_alloc_cold(mapping);
1291 if (!page) {
1292 desc->error = -ENOMEM;
1293 goto out;
1da177e4 1294 }
eb2be189 1295 error = add_to_page_cache_lru(page, mapping,
1da177e4
LT
1296 index, GFP_KERNEL);
1297 if (error) {
eb2be189 1298 page_cache_release(page);
1da177e4
LT
1299 if (error == -EEXIST)
1300 goto find_page;
1301 desc->error = error;
1302 goto out;
1303 }
1da177e4
LT
1304 goto readpage;
1305 }
1306
1307out:
7ff81078
FW
1308 ra->prev_pos = prev_index;
1309 ra->prev_pos <<= PAGE_CACHE_SHIFT;
1310 ra->prev_pos |= prev_offset;
1da177e4 1311
f4e6b498 1312 *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
0c6aa263 1313 file_accessed(filp);
1da177e4 1314}
1da177e4
LT
1315
1316int file_read_actor(read_descriptor_t *desc, struct page *page,
1317 unsigned long offset, unsigned long size)
1318{
1319 char *kaddr;
1320 unsigned long left, count = desc->count;
1321
1322 if (size > count)
1323 size = count;
1324
1325 /*
1326 * Faults on the destination of a read are common, so do it before
1327 * taking the kmap.
1328 */
1329 if (!fault_in_pages_writeable(desc->arg.buf, size)) {
9b04c5fe 1330 kaddr = kmap_atomic(page);
1da177e4
LT
1331 left = __copy_to_user_inatomic(desc->arg.buf,
1332 kaddr + offset, size);
9b04c5fe 1333 kunmap_atomic(kaddr);
1da177e4
LT
1334 if (left == 0)
1335 goto success;
1336 }
1337
1338 /* Do it the slow way */
1339 kaddr = kmap(page);
1340 left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1341 kunmap(page);
1342
1343 if (left) {
1344 size -= left;
1345 desc->error = -EFAULT;
1346 }
1347success:
1348 desc->count = count - size;
1349 desc->written += size;
1350 desc->arg.buf += size;
1351 return size;
1352}
1353
0ceb3314
DM
1354/*
1355 * Performs necessary checks before doing a write
1356 * @iov: io vector request
1357 * @nr_segs: number of segments in the iovec
1358 * @count: number of bytes to write
1359 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1360 *
1361 * Adjust number of segments and amount of bytes to write (nr_segs should be
1362 * properly initialized first). Returns appropriate error code that caller
1363 * should return or zero in case that write should be allowed.
1364 */
1365int generic_segment_checks(const struct iovec *iov,
1366 unsigned long *nr_segs, size_t *count, int access_flags)
1367{
1368 unsigned long seg;
1369 size_t cnt = 0;
1370 for (seg = 0; seg < *nr_segs; seg++) {
1371 const struct iovec *iv = &iov[seg];
1372
1373 /*
1374 * If any segment has a negative length, or the cumulative
1375 * length ever wraps negative then return -EINVAL.
1376 */
1377 cnt += iv->iov_len;
1378 if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1379 return -EINVAL;
1380 if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1381 continue;
1382 if (seg == 0)
1383 return -EFAULT;
1384 *nr_segs = seg;
1385 cnt -= iv->iov_len; /* This segment is no good */
1386 break;
1387 }
1388 *count = cnt;
1389 return 0;
1390}
1391EXPORT_SYMBOL(generic_segment_checks);
1392
485bb99b 1393/**
b2abacf3 1394 * generic_file_aio_read - generic filesystem read routine
485bb99b
RD
1395 * @iocb: kernel I/O control block
1396 * @iov: io vector request
1397 * @nr_segs: number of segments in the iovec
b2abacf3 1398 * @pos: current file position
485bb99b 1399 *
1da177e4
LT
1400 * This is the "read()" routine for all filesystems
1401 * that can use the page cache directly.
1402 */
1403ssize_t
543ade1f
BP
1404generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1405 unsigned long nr_segs, loff_t pos)
1da177e4
LT
1406{
1407 struct file *filp = iocb->ki_filp;
1408 ssize_t retval;
66f998f6 1409 unsigned long seg = 0;
1da177e4 1410 size_t count;
543ade1f 1411 loff_t *ppos = &iocb->ki_pos;
1da177e4
LT
1412
1413 count = 0;
0ceb3314
DM
1414 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1415 if (retval)
1416 return retval;
1da177e4
LT
1417
1418 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1419 if (filp->f_flags & O_DIRECT) {
543ade1f 1420 loff_t size;
1da177e4
LT
1421 struct address_space *mapping;
1422 struct inode *inode;
1423
1424 mapping = filp->f_mapping;
1425 inode = mapping->host;
1da177e4
LT
1426 if (!count)
1427 goto out; /* skip atime */
1428 size = i_size_read(inode);
1429 if (pos < size) {
48b47c56
NP
1430 retval = filemap_write_and_wait_range(mapping, pos,
1431 pos + iov_length(iov, nr_segs) - 1);
a969e903
CH
1432 if (!retval) {
1433 retval = mapping->a_ops->direct_IO(READ, iocb,
1434 iov, pos, nr_segs);
1435 }
66f998f6 1436 if (retval > 0) {
1da177e4 1437 *ppos = pos + retval;
66f998f6
JB
1438 count -= retval;
1439 }
1440
1441 /*
1442 * Btrfs can have a short DIO read if we encounter
1443 * compressed extents, so if there was an error, or if
1444 * we've already read everything we wanted to, or if
1445 * there was a short read because we hit EOF, go ahead
1446 * and return. Otherwise fallthrough to buffered io for
1447 * the rest of the read.
1448 */
1449 if (retval < 0 || !count || *ppos >= size) {
11fa977e
HD
1450 file_accessed(filp);
1451 goto out;
1452 }
0e0bcae3 1453 }
1da177e4
LT
1454 }
1455
66f998f6 1456 count = retval;
11fa977e
HD
1457 for (seg = 0; seg < nr_segs; seg++) {
1458 read_descriptor_t desc;
66f998f6
JB
1459 loff_t offset = 0;
1460
1461 /*
1462 * If we did a short DIO read we need to skip the section of the
1463 * iov that we've already read data into.
1464 */
1465 if (count) {
1466 if (count > iov[seg].iov_len) {
1467 count -= iov[seg].iov_len;
1468 continue;
1469 }
1470 offset = count;
1471 count = 0;
1472 }
1da177e4 1473
11fa977e 1474 desc.written = 0;
66f998f6
JB
1475 desc.arg.buf = iov[seg].iov_base + offset;
1476 desc.count = iov[seg].iov_len - offset;
11fa977e
HD
1477 if (desc.count == 0)
1478 continue;
1479 desc.error = 0;
1480 do_generic_file_read(filp, ppos, &desc, file_read_actor);
1481 retval += desc.written;
1482 if (desc.error) {
1483 retval = retval ?: desc.error;
1484 break;
1da177e4 1485 }
11fa977e
HD
1486 if (desc.count > 0)
1487 break;
1da177e4
LT
1488 }
1489out:
1490 return retval;
1491}
1da177e4
LT
1492EXPORT_SYMBOL(generic_file_aio_read);
1493
1da177e4 1494#ifdef CONFIG_MMU
485bb99b
RD
1495/**
1496 * page_cache_read - adds requested page to the page cache if not already there
1497 * @file: file to read
1498 * @offset: page index
1499 *
1da177e4
LT
1500 * This adds the requested page to the page cache if it isn't already there,
1501 * and schedules an I/O to read in its contents from disk.
1502 */
920c7a5d 1503static int page_cache_read(struct file *file, pgoff_t offset)
1da177e4
LT
1504{
1505 struct address_space *mapping = file->f_mapping;
1506 struct page *page;
994fc28c 1507 int ret;
1da177e4 1508
994fc28c
ZB
1509 do {
1510 page = page_cache_alloc_cold(mapping);
1511 if (!page)
1512 return -ENOMEM;
1513
1514 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1515 if (ret == 0)
1516 ret = mapping->a_ops->readpage(file, page);
1517 else if (ret == -EEXIST)
1518 ret = 0; /* losing race to add is OK */
1da177e4 1519
1da177e4 1520 page_cache_release(page);
1da177e4 1521
994fc28c
ZB
1522 } while (ret == AOP_TRUNCATED_PAGE);
1523
1524 return ret;
1da177e4
LT
1525}
1526
1527#define MMAP_LOTSAMISS (100)
1528
ef00e08e
LT
1529/*
1530 * Synchronous readahead happens when we don't even find
1531 * a page in the page cache at all.
1532 */
1533static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1534 struct file_ra_state *ra,
1535 struct file *file,
1536 pgoff_t offset)
1537{
1538 unsigned long ra_pages;
1539 struct address_space *mapping = file->f_mapping;
1540
1541 /* If we don't want any read-ahead, don't bother */
1542 if (VM_RandomReadHint(vma))
1543 return;
275b12bf
WF
1544 if (!ra->ra_pages)
1545 return;
ef00e08e 1546
2cbea1d3 1547 if (VM_SequentialReadHint(vma)) {
7ffc59b4
WF
1548 page_cache_sync_readahead(mapping, ra, file, offset,
1549 ra->ra_pages);
ef00e08e
LT
1550 return;
1551 }
1552
207d04ba
AK
1553 /* Avoid banging the cache line if not needed */
1554 if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
ef00e08e
LT
1555 ra->mmap_miss++;
1556
1557 /*
1558 * Do we miss much more than hit in this file? If so,
1559 * stop bothering with read-ahead. It will only hurt.
1560 */
1561 if (ra->mmap_miss > MMAP_LOTSAMISS)
1562 return;
1563
d30a1100
WF
1564 /*
1565 * mmap read-around
1566 */
ef00e08e 1567 ra_pages = max_sane_readahead(ra->ra_pages);
275b12bf
WF
1568 ra->start = max_t(long, 0, offset - ra_pages / 2);
1569 ra->size = ra_pages;
2cbea1d3 1570 ra->async_size = ra_pages / 4;
275b12bf 1571 ra_submit(ra, mapping, file);
ef00e08e
LT
1572}
1573
1574/*
1575 * Asynchronous readahead happens when we find the page and PG_readahead,
1576 * so we want to possibly extend the readahead further..
1577 */
1578static void do_async_mmap_readahead(struct vm_area_struct *vma,
1579 struct file_ra_state *ra,
1580 struct file *file,
1581 struct page *page,
1582 pgoff_t offset)
1583{
1584 struct address_space *mapping = file->f_mapping;
1585
1586 /* If we don't want any read-ahead, don't bother */
1587 if (VM_RandomReadHint(vma))
1588 return;
1589 if (ra->mmap_miss > 0)
1590 ra->mmap_miss--;
1591 if (PageReadahead(page))
2fad6f5d
WF
1592 page_cache_async_readahead(mapping, ra, file,
1593 page, offset, ra->ra_pages);
ef00e08e
LT
1594}
1595
485bb99b 1596/**
54cb8821 1597 * filemap_fault - read in file data for page fault handling
d0217ac0
NP
1598 * @vma: vma in which the fault was taken
1599 * @vmf: struct vm_fault containing details of the fault
485bb99b 1600 *
54cb8821 1601 * filemap_fault() is invoked via the vma operations vector for a
1da177e4
LT
1602 * mapped memory region to read in file data during a page fault.
1603 *
1604 * The goto's are kind of ugly, but this streamlines the normal case of having
1605 * it in the page cache, and handles the special cases reasonably without
1606 * having a lot of duplicated code.
1607 */
d0217ac0 1608int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1da177e4
LT
1609{
1610 int error;
54cb8821 1611 struct file *file = vma->vm_file;
1da177e4
LT
1612 struct address_space *mapping = file->f_mapping;
1613 struct file_ra_state *ra = &file->f_ra;
1614 struct inode *inode = mapping->host;
ef00e08e 1615 pgoff_t offset = vmf->pgoff;
1da177e4 1616 struct page *page;
2004dc8e 1617 pgoff_t size;
83c54070 1618 int ret = 0;
1da177e4 1619
1da177e4 1620 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
ef00e08e 1621 if (offset >= size)
5307cc1a 1622 return VM_FAULT_SIGBUS;
1da177e4 1623
1da177e4
LT
1624 /*
1625 * Do we have something in the page cache already?
1626 */
ef00e08e 1627 page = find_get_page(mapping, offset);
45cac65b 1628 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
1da177e4 1629 /*
ef00e08e
LT
1630 * We found the page, so try async readahead before
1631 * waiting for the lock.
1da177e4 1632 */
ef00e08e 1633 do_async_mmap_readahead(vma, ra, file, page, offset);
45cac65b 1634 } else if (!page) {
ef00e08e
LT
1635 /* No page in the page cache at all */
1636 do_sync_mmap_readahead(vma, ra, file, offset);
6fa3eb70
S
1637#ifdef CONFIG_ZRAM
1638 current->fm_flt++;
1639#endif
1640 count_vm_event(PGFMFAULT);
ef00e08e 1641 count_vm_event(PGMAJFAULT);
456f998e 1642 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
ef00e08e
LT
1643 ret = VM_FAULT_MAJOR;
1644retry_find:
b522c94d 1645 page = find_get_page(mapping, offset);
1da177e4
LT
1646 if (!page)
1647 goto no_cached_page;
1648 }
1649
d88c0922
ML
1650 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
1651 page_cache_release(page);
d065bd81 1652 return ret | VM_FAULT_RETRY;
d88c0922 1653 }
b522c94d
ML
1654
1655 /* Did it get truncated? */
1656 if (unlikely(page->mapping != mapping)) {
1657 unlock_page(page);
1658 put_page(page);
1659 goto retry_find;
1660 }
1661 VM_BUG_ON(page->index != offset);
1662
1da177e4 1663 /*
d00806b1
NP
1664 * We have a locked page in the page cache, now we need to check
1665 * that it's up-to-date. If not, it is going to be due to an error.
1da177e4 1666 */
d00806b1 1667 if (unlikely(!PageUptodate(page)))
1da177e4
LT
1668 goto page_not_uptodate;
1669
ef00e08e
LT
1670 /*
1671 * Found the page and have a reference on it.
1672 * We must recheck i_size under page lock.
1673 */
d00806b1 1674 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
ef00e08e 1675 if (unlikely(offset >= size)) {
d00806b1 1676 unlock_page(page);
745ad48e 1677 page_cache_release(page);
5307cc1a 1678 return VM_FAULT_SIGBUS;
d00806b1
NP
1679 }
1680
d0217ac0 1681 vmf->page = page;
83c54070 1682 return ret | VM_FAULT_LOCKED;
1da177e4 1683
1da177e4
LT
1684no_cached_page:
1685 /*
1686 * We're only likely to ever get here if MADV_RANDOM is in
1687 * effect.
1688 */
ef00e08e 1689 error = page_cache_read(file, offset);
1da177e4
LT
1690
1691 /*
1692 * The page we want has now been added to the page cache.
1693 * In the unlikely event that someone removed it in the
1694 * meantime, we'll just come back here and read it again.
1695 */
1696 if (error >= 0)
1697 goto retry_find;
1698
1699 /*
1700 * An error return from page_cache_read can result if the
1701 * system is low on memory, or a problem occurs while trying
1702 * to schedule I/O.
1703 */
1704 if (error == -ENOMEM)
d0217ac0
NP
1705 return VM_FAULT_OOM;
1706 return VM_FAULT_SIGBUS;
1da177e4
LT
1707
1708page_not_uptodate:
1da177e4
LT
1709 /*
1710 * Umm, take care of errors if the page isn't up-to-date.
1711 * Try to re-read it _once_. We do this synchronously,
1712 * because there really aren't any performance issues here
1713 * and we need to check for errors.
1714 */
1da177e4 1715 ClearPageError(page);
994fc28c 1716 error = mapping->a_ops->readpage(file, page);
3ef0f720
MS
1717 if (!error) {
1718 wait_on_page_locked(page);
1719 if (!PageUptodate(page))
1720 error = -EIO;
1721 }
d00806b1
NP
1722 page_cache_release(page);
1723
1724 if (!error || error == AOP_TRUNCATED_PAGE)
994fc28c 1725 goto retry_find;
1da177e4 1726
d00806b1 1727 /* Things didn't work out. Return zero to tell the mm layer so. */
76d42bd9 1728 shrink_readahead_size_eio(file, ra);
d0217ac0 1729 return VM_FAULT_SIGBUS;
54cb8821
NP
1730}
1731EXPORT_SYMBOL(filemap_fault);
1732
4fcf1c62
JK
1733int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
1734{
1735 struct page *page = vmf->page;
496ad9aa 1736 struct inode *inode = file_inode(vma->vm_file);
4fcf1c62
JK
1737 int ret = VM_FAULT_LOCKED;
1738
14da9200 1739 sb_start_pagefault(inode->i_sb);
4fcf1c62
JK
1740 file_update_time(vma->vm_file);
1741 lock_page(page);
1742 if (page->mapping != inode->i_mapping) {
1743 unlock_page(page);
1744 ret = VM_FAULT_NOPAGE;
1745 goto out;
1746 }
14da9200
JK
1747 /*
1748 * We mark the page dirty already here so that when freeze is in
1749 * progress, we are guaranteed that writeback during freezing will
1750 * see the dirty page and writeprotect it again.
1751 */
1752 set_page_dirty(page);
1d1d1a76 1753 wait_for_stable_page(page);
4fcf1c62 1754out:
14da9200 1755 sb_end_pagefault(inode->i_sb);
4fcf1c62
JK
1756 return ret;
1757}
1758EXPORT_SYMBOL(filemap_page_mkwrite);
1759
f0f37e2f 1760const struct vm_operations_struct generic_file_vm_ops = {
54cb8821 1761 .fault = filemap_fault,
4fcf1c62 1762 .page_mkwrite = filemap_page_mkwrite,
0b173bc4 1763 .remap_pages = generic_file_remap_pages,
1da177e4
LT
1764};
1765
1766/* This is used for a general mmap of a disk file */
1767
1768int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1769{
1770 struct address_space *mapping = file->f_mapping;
1771
1772 if (!mapping->a_ops->readpage)
1773 return -ENOEXEC;
1774 file_accessed(file);
1775 vma->vm_ops = &generic_file_vm_ops;
1776 return 0;
1777}
1da177e4
LT
1778
1779/*
1780 * This is for filesystems which do not implement ->writepage.
1781 */
1782int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1783{
1784 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1785 return -EINVAL;
1786 return generic_file_mmap(file, vma);
1787}
1788#else
1789int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1790{
1791 return -ENOSYS;
1792}
1793int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1794{
1795 return -ENOSYS;
1796}
1797#endif /* CONFIG_MMU */
1798
1799EXPORT_SYMBOL(generic_file_mmap);
1800EXPORT_SYMBOL(generic_file_readonly_mmap);
1801
6fe6900e 1802static struct page *__read_cache_page(struct address_space *mapping,
57f6b96c 1803 pgoff_t index,
5e5358e7 1804 int (*filler)(void *, struct page *),
0531b2aa
LT
1805 void *data,
1806 gfp_t gfp)
1da177e4 1807{
eb2be189 1808 struct page *page;
1da177e4
LT
1809 int err;
1810repeat:
1811 page = find_get_page(mapping, index);
1812 if (!page) {
0531b2aa 1813 page = __page_cache_alloc(gfp | __GFP_COLD);
eb2be189
NP
1814 if (!page)
1815 return ERR_PTR(-ENOMEM);
e6f67b8c 1816 err = add_to_page_cache_lru(page, mapping, index, gfp);
eb2be189
NP
1817 if (unlikely(err)) {
1818 page_cache_release(page);
1819 if (err == -EEXIST)
1820 goto repeat;
1da177e4 1821 /* Presumably ENOMEM for radix tree node */
1da177e4
LT
1822 return ERR_PTR(err);
1823 }
1da177e4
LT
1824 err = filler(data, page);
1825 if (err < 0) {
1826 page_cache_release(page);
1827 page = ERR_PTR(err);
1828 }
1829 }
1da177e4
LT
1830 return page;
1831}
1832
0531b2aa 1833static struct page *do_read_cache_page(struct address_space *mapping,
57f6b96c 1834 pgoff_t index,
5e5358e7 1835 int (*filler)(void *, struct page *),
0531b2aa
LT
1836 void *data,
1837 gfp_t gfp)
1838
1da177e4
LT
1839{
1840 struct page *page;
1841 int err;
1842
1843retry:
0531b2aa 1844 page = __read_cache_page(mapping, index, filler, data, gfp);
1da177e4 1845 if (IS_ERR(page))
c855ff37 1846 return page;
1da177e4
LT
1847 if (PageUptodate(page))
1848 goto out;
1849
1850 lock_page(page);
1851 if (!page->mapping) {
1852 unlock_page(page);
1853 page_cache_release(page);
1854 goto retry;
1855 }
1856 if (PageUptodate(page)) {
1857 unlock_page(page);
1858 goto out;
1859 }
1860 err = filler(data, page);
1861 if (err < 0) {
1862 page_cache_release(page);
c855ff37 1863 return ERR_PTR(err);
1da177e4 1864 }
c855ff37 1865out:
6fe6900e
NP
1866 mark_page_accessed(page);
1867 return page;
1868}
0531b2aa
LT
1869
1870/**
1871 * read_cache_page_async - read into page cache, fill it if needed
1872 * @mapping: the page's address_space
1873 * @index: the page index
1874 * @filler: function to perform the read
5e5358e7 1875 * @data: first arg to filler(data, page) function, often left as NULL
0531b2aa
LT
1876 *
1877 * Same as read_cache_page, but don't wait for page to become unlocked
1878 * after submitting it to the filler.
1879 *
1880 * Read into the page cache. If a page already exists, and PageUptodate() is
1881 * not set, try to fill the page but don't wait for it to become unlocked.
1882 *
1883 * If the page does not get brought uptodate, return -EIO.
1884 */
1885struct page *read_cache_page_async(struct address_space *mapping,
1886 pgoff_t index,
5e5358e7 1887 int (*filler)(void *, struct page *),
0531b2aa
LT
1888 void *data)
1889{
1890 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
1891}
6fe6900e
NP
1892EXPORT_SYMBOL(read_cache_page_async);
1893
0531b2aa
LT
1894static struct page *wait_on_page_read(struct page *page)
1895{
1896 if (!IS_ERR(page)) {
1897 wait_on_page_locked(page);
1898 if (!PageUptodate(page)) {
1899 page_cache_release(page);
1900 page = ERR_PTR(-EIO);
1901 }
1902 }
1903 return page;
1904}
1905
1906/**
1907 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
1908 * @mapping: the page's address_space
1909 * @index: the page index
1910 * @gfp: the page allocator flags to use if allocating
1911 *
1912 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
e6f67b8c 1913 * any new page allocations done using the specified allocation flags.
0531b2aa
LT
1914 *
1915 * If the page does not get brought uptodate, return -EIO.
1916 */
1917struct page *read_cache_page_gfp(struct address_space *mapping,
1918 pgoff_t index,
1919 gfp_t gfp)
1920{
1921 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
1922
1923 return wait_on_page_read(do_read_cache_page(mapping, index, filler, NULL, gfp));
1924}
1925EXPORT_SYMBOL(read_cache_page_gfp);
1926
6fe6900e
NP
1927/**
1928 * read_cache_page - read into page cache, fill it if needed
1929 * @mapping: the page's address_space
1930 * @index: the page index
1931 * @filler: function to perform the read
5e5358e7 1932 * @data: first arg to filler(data, page) function, often left as NULL
6fe6900e
NP
1933 *
1934 * Read into the page cache. If a page already exists, and PageUptodate() is
1935 * not set, try to fill the page then wait for it to become unlocked.
1936 *
1937 * If the page does not get brought uptodate, return -EIO.
1938 */
1939struct page *read_cache_page(struct address_space *mapping,
57f6b96c 1940 pgoff_t index,
5e5358e7 1941 int (*filler)(void *, struct page *),
6fe6900e
NP
1942 void *data)
1943{
0531b2aa 1944 return wait_on_page_read(read_cache_page_async(mapping, index, filler, data));
1da177e4 1945}
1da177e4
LT
1946EXPORT_SYMBOL(read_cache_page);
1947
2f718ffc 1948static size_t __iovec_copy_from_user_inatomic(char *vaddr,
1da177e4
LT
1949 const struct iovec *iov, size_t base, size_t bytes)
1950{
f1800536 1951 size_t copied = 0, left = 0;
1da177e4
LT
1952
1953 while (bytes) {
1954 char __user *buf = iov->iov_base + base;
1955 int copy = min(bytes, iov->iov_len - base);
1956
1957 base = 0;
f1800536 1958 left = __copy_from_user_inatomic(vaddr, buf, copy);
1da177e4
LT
1959 copied += copy;
1960 bytes -= copy;
1961 vaddr += copy;
1962 iov++;
1963
01408c49 1964 if (unlikely(left))
1da177e4 1965 break;
1da177e4
LT
1966 }
1967 return copied - left;
1968}
1969
2f718ffc
NP
1970/*
1971 * Copy as much as we can into the page and return the number of bytes which
af901ca1 1972 * were successfully copied. If a fault is encountered then return the number of
2f718ffc
NP
1973 * bytes which were copied.
1974 */
1975size_t iov_iter_copy_from_user_atomic(struct page *page,
1976 struct iov_iter *i, unsigned long offset, size_t bytes)
1977{
1978 char *kaddr;
1979 size_t copied;
1980
1981 BUG_ON(!in_atomic());
9b04c5fe 1982 kaddr = kmap_atomic(page);
2f718ffc
NP
1983 if (likely(i->nr_segs == 1)) {
1984 int left;
1985 char __user *buf = i->iov->iov_base + i->iov_offset;
f1800536 1986 left = __copy_from_user_inatomic(kaddr + offset, buf, bytes);
2f718ffc
NP
1987 copied = bytes - left;
1988 } else {
1989 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1990 i->iov, i->iov_offset, bytes);
1991 }
9b04c5fe 1992 kunmap_atomic(kaddr);
2f718ffc
NP
1993
1994 return copied;
1995}
89e10787 1996EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
2f718ffc
NP
1997
1998/*
1999 * This has the same sideeffects and return value as
2000 * iov_iter_copy_from_user_atomic().
2001 * The difference is that it attempts to resolve faults.
2002 * Page must not be locked.
2003 */
2004size_t iov_iter_copy_from_user(struct page *page,
2005 struct iov_iter *i, unsigned long offset, size_t bytes)
2006{
2007 char *kaddr;
2008 size_t copied;
2009
2010 kaddr = kmap(page);
2011 if (likely(i->nr_segs == 1)) {
2012 int left;
2013 char __user *buf = i->iov->iov_base + i->iov_offset;
f1800536 2014 left = __copy_from_user(kaddr + offset, buf, bytes);
2f718ffc
NP
2015 copied = bytes - left;
2016 } else {
2017 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
2018 i->iov, i->iov_offset, bytes);
2019 }
2020 kunmap(page);
2021 return copied;
2022}
89e10787 2023EXPORT_SYMBOL(iov_iter_copy_from_user);
2f718ffc 2024
f7009264 2025void iov_iter_advance(struct iov_iter *i, size_t bytes)
2f718ffc 2026{
f7009264
NP
2027 BUG_ON(i->count < bytes);
2028
2f718ffc
NP
2029 if (likely(i->nr_segs == 1)) {
2030 i->iov_offset += bytes;
f7009264 2031 i->count -= bytes;
2f718ffc
NP
2032 } else {
2033 const struct iovec *iov = i->iov;
2034 size_t base = i->iov_offset;
39be79c1 2035 unsigned long nr_segs = i->nr_segs;
2f718ffc 2036
124d3b70
NP
2037 /*
2038 * The !iov->iov_len check ensures we skip over unlikely
f7009264 2039 * zero-length segments (without overruning the iovec).
124d3b70 2040 */
94ad374a 2041 while (bytes || unlikely(i->count && !iov->iov_len)) {
f7009264 2042 int copy;
2f718ffc 2043
f7009264
NP
2044 copy = min(bytes, iov->iov_len - base);
2045 BUG_ON(!i->count || i->count < copy);
2046 i->count -= copy;
2f718ffc
NP
2047 bytes -= copy;
2048 base += copy;
2049 if (iov->iov_len == base) {
2050 iov++;
39be79c1 2051 nr_segs--;
2f718ffc
NP
2052 base = 0;
2053 }
2054 }
2055 i->iov = iov;
2056 i->iov_offset = base;
39be79c1 2057 i->nr_segs = nr_segs;
2f718ffc
NP
2058 }
2059}
89e10787 2060EXPORT_SYMBOL(iov_iter_advance);
2f718ffc 2061
afddba49
NP
2062/*
2063 * Fault in the first iovec of the given iov_iter, to a maximum length
2064 * of bytes. Returns 0 on success, or non-zero if the memory could not be
2065 * accessed (ie. because it is an invalid address).
2066 *
2067 * writev-intensive code may want this to prefault several iovecs -- that
2068 * would be possible (callers must not rely on the fact that _only_ the
2069 * first iovec will be faulted with the current implementation).
2070 */
2071int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
2f718ffc 2072{
2f718ffc 2073 char __user *buf = i->iov->iov_base + i->iov_offset;
afddba49
NP
2074 bytes = min(bytes, i->iov->iov_len - i->iov_offset);
2075 return fault_in_pages_readable(buf, bytes);
2f718ffc 2076}
89e10787 2077EXPORT_SYMBOL(iov_iter_fault_in_readable);
2f718ffc
NP
2078
2079/*
2080 * Return the count of just the current iov_iter segment.
2081 */
d28574e0 2082size_t iov_iter_single_seg_count(const struct iov_iter *i)
2f718ffc
NP
2083{
2084 const struct iovec *iov = i->iov;
2085 if (i->nr_segs == 1)
2086 return i->count;
2087 else
2088 return min(i->count, iov->iov_len - i->iov_offset);
2089}
89e10787 2090EXPORT_SYMBOL(iov_iter_single_seg_count);
2f718ffc 2091
1da177e4
LT
2092/*
2093 * Performs necessary checks before doing a write
2094 *
485bb99b 2095 * Can adjust writing position or amount of bytes to write.
1da177e4
LT
2096 * Returns appropriate error code that caller should return or
2097 * zero in case that write should be allowed.
2098 */
2099inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
2100{
2101 struct inode *inode = file->f_mapping->host;
59e99e5b 2102 unsigned long limit = rlimit(RLIMIT_FSIZE);
1da177e4
LT
2103
2104 if (unlikely(*pos < 0))
2105 return -EINVAL;
2106
1da177e4
LT
2107 if (!isblk) {
2108 /* FIXME: this is for backwards compatibility with 2.4 */
2109 if (file->f_flags & O_APPEND)
2110 *pos = i_size_read(inode);
2111
2112 if (limit != RLIM_INFINITY) {
2113 if (*pos >= limit) {
2114 send_sig(SIGXFSZ, current, 0);
2115 return -EFBIG;
2116 }
2117 if (*count > limit - (typeof(limit))*pos) {
2118 *count = limit - (typeof(limit))*pos;
2119 }
2120 }
2121 }
2122
2123 /*
2124 * LFS rule
2125 */
2126 if (unlikely(*pos + *count > MAX_NON_LFS &&
2127 !(file->f_flags & O_LARGEFILE))) {
2128 if (*pos >= MAX_NON_LFS) {
1da177e4
LT
2129 return -EFBIG;
2130 }
2131 if (*count > MAX_NON_LFS - (unsigned long)*pos) {
2132 *count = MAX_NON_LFS - (unsigned long)*pos;
2133 }
2134 }
2135
2136 /*
2137 * Are we about to exceed the fs block limit ?
2138 *
2139 * If we have written data it becomes a short write. If we have
2140 * exceeded without writing data we send a signal and return EFBIG.
2141 * Linus frestrict idea will clean these up nicely..
2142 */
2143 if (likely(!isblk)) {
2144 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
2145 if (*count || *pos > inode->i_sb->s_maxbytes) {
1da177e4
LT
2146 return -EFBIG;
2147 }
2148 /* zero-length writes at ->s_maxbytes are OK */
2149 }
2150
2151 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2152 *count = inode->i_sb->s_maxbytes - *pos;
2153 } else {
9361401e 2154#ifdef CONFIG_BLOCK
1da177e4
LT
2155 loff_t isize;
2156 if (bdev_read_only(I_BDEV(inode)))
2157 return -EPERM;
2158 isize = i_size_read(inode);
2159 if (*pos >= isize) {
2160 if (*count || *pos > isize)
2161 return -ENOSPC;
2162 }
2163
2164 if (*pos + *count > isize)
2165 *count = isize - *pos;
9361401e
DH
2166#else
2167 return -EPERM;
2168#endif
1da177e4
LT
2169 }
2170 return 0;
2171}
2172EXPORT_SYMBOL(generic_write_checks);
2173
afddba49
NP
2174int pagecache_write_begin(struct file *file, struct address_space *mapping,
2175 loff_t pos, unsigned len, unsigned flags,
2176 struct page **pagep, void **fsdata)
2177{
2178 const struct address_space_operations *aops = mapping->a_ops;
2179
4e02ed4b 2180 return aops->write_begin(file, mapping, pos, len, flags,
afddba49 2181 pagep, fsdata);
afddba49
NP
2182}
2183EXPORT_SYMBOL(pagecache_write_begin);
2184
2185int pagecache_write_end(struct file *file, struct address_space *mapping,
2186 loff_t pos, unsigned len, unsigned copied,
2187 struct page *page, void *fsdata)
2188{
2189 const struct address_space_operations *aops = mapping->a_ops;
afddba49 2190
4e02ed4b
NP
2191 mark_page_accessed(page);
2192 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
afddba49
NP
2193}
2194EXPORT_SYMBOL(pagecache_write_end);
2195
1da177e4
LT
2196ssize_t
2197generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
2198 unsigned long *nr_segs, loff_t pos, loff_t *ppos,
2199 size_t count, size_t ocount)
2200{
2201 struct file *file = iocb->ki_filp;
2202 struct address_space *mapping = file->f_mapping;
2203 struct inode *inode = mapping->host;
2204 ssize_t written;
a969e903
CH
2205 size_t write_len;
2206 pgoff_t end;
1da177e4
LT
2207
2208 if (count != ocount)
2209 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2210
a969e903
CH
2211 write_len = iov_length(iov, *nr_segs);
2212 end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
a969e903 2213
48b47c56 2214 written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
a969e903
CH
2215 if (written)
2216 goto out;
2217
2218 /*
2219 * After a write we want buffered reads to be sure to go to disk to get
2220 * the new data. We invalidate clean cached page from the region we're
2221 * about to write. We do this *before* the write so that we can return
6ccfa806 2222 * without clobbering -EIOCBQUEUED from ->direct_IO().
a969e903
CH
2223 */
2224 if (mapping->nrpages) {
2225 written = invalidate_inode_pages2_range(mapping,
2226 pos >> PAGE_CACHE_SHIFT, end);
6ccfa806
HH
2227 /*
2228 * If a page can not be invalidated, return 0 to fall back
2229 * to buffered write.
2230 */
2231 if (written) {
2232 if (written == -EBUSY)
2233 return 0;
a969e903 2234 goto out;
6ccfa806 2235 }
a969e903
CH
2236 }
2237
2238 written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2239
2240 /*
2241 * Finally, try again to invalidate clean pages which might have been
2242 * cached by non-direct readahead, or faulted in by get_user_pages()
2243 * if the source of the write was an mmap'ed region of the file
2244 * we're writing. Either one is a pretty crazy thing to do,
2245 * so we don't support it 100%. If this invalidation
2246 * fails, tough, the write still worked...
2247 */
2248 if (mapping->nrpages) {
2249 invalidate_inode_pages2_range(mapping,
2250 pos >> PAGE_CACHE_SHIFT, end);
2251 }
2252
1da177e4 2253 if (written > 0) {
0116651c
NK
2254 pos += written;
2255 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2256 i_size_write(inode, pos);
1da177e4
LT
2257 mark_inode_dirty(inode);
2258 }
0116651c 2259 *ppos = pos;
1da177e4 2260 }
a969e903 2261out:
1da177e4
LT
2262 return written;
2263}
2264EXPORT_SYMBOL(generic_file_direct_write);
2265
eb2be189
NP
2266/*
2267 * Find or create a page at the given pagecache position. Return the locked
2268 * page. This function is specifically for buffered writes.
2269 */
54566b2c
NP
2270struct page *grab_cache_page_write_begin(struct address_space *mapping,
2271 pgoff_t index, unsigned flags)
eb2be189
NP
2272{
2273 int status;
0faa70cb 2274 gfp_t gfp_mask;
eb2be189 2275 struct page *page;
54566b2c 2276 gfp_t gfp_notmask = 0;
0faa70cb 2277
1010bb1b
FW
2278 gfp_mask = mapping_gfp_mask(mapping);
2279 if (mapping_cap_account_dirty(mapping))
2280 gfp_mask |= __GFP_WRITE;
54566b2c
NP
2281 if (flags & AOP_FLAG_NOFS)
2282 gfp_notmask = __GFP_FS;
eb2be189
NP
2283repeat:
2284 page = find_lock_page(mapping, index);
c585a267 2285 if (page)
3d08bcc8 2286 goto found;
eb2be189 2287
0faa70cb 2288 page = __page_cache_alloc(gfp_mask & ~gfp_notmask);
eb2be189
NP
2289 if (!page)
2290 return NULL;
54566b2c
NP
2291 status = add_to_page_cache_lru(page, mapping, index,
2292 GFP_KERNEL & ~gfp_notmask);
eb2be189
NP
2293 if (unlikely(status)) {
2294 page_cache_release(page);
2295 if (status == -EEXIST)
2296 goto repeat;
2297 return NULL;
2298 }
3d08bcc8 2299found:
1d1d1a76 2300 wait_for_stable_page(page);
eb2be189
NP
2301 return page;
2302}
54566b2c 2303EXPORT_SYMBOL(grab_cache_page_write_begin);
eb2be189 2304
afddba49
NP
2305static ssize_t generic_perform_write(struct file *file,
2306 struct iov_iter *i, loff_t pos)
2307{
2308 struct address_space *mapping = file->f_mapping;
2309 const struct address_space_operations *a_ops = mapping->a_ops;
2310 long status = 0;
2311 ssize_t written = 0;
674b892e
NP
2312 unsigned int flags = 0;
2313
2314 /*
2315 * Copies from kernel address space cannot fail (NFSD is a big user).
2316 */
2317 if (segment_eq(get_fs(), KERNEL_DS))
2318 flags |= AOP_FLAG_UNINTERRUPTIBLE;
afddba49
NP
2319
2320 do {
2321 struct page *page;
afddba49
NP
2322 unsigned long offset; /* Offset into pagecache page */
2323 unsigned long bytes; /* Bytes to write to page */
2324 size_t copied; /* Bytes copied from user */
2325 void *fsdata;
2326
2327 offset = (pos & (PAGE_CACHE_SIZE - 1));
afddba49
NP
2328 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2329 iov_iter_count(i));
2330
2331again:
afddba49
NP
2332 /*
2333 * Bring in the user page that we will copy from _first_.
2334 * Otherwise there's a nasty deadlock on copying from the
2335 * same page as we're writing to, without it being marked
2336 * up-to-date.
2337 *
2338 * Not only is this an optimisation, but it is also required
2339 * to check that the address is actually valid, when atomic
2340 * usercopies are used, below.
2341 */
2342 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2343 status = -EFAULT;
2344 break;
2345 }
2346
07d6db92
JK
2347 if (fatal_signal_pending(current)) {
2348 status = -EINTR;
2349 break;
2350 }
2351
674b892e 2352 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
afddba49
NP
2353 &page, &fsdata);
2354 if (unlikely(status))
2355 break;
2356
931e80e4 2357 if (mapping_writably_mapped(mapping))
2358 flush_dcache_page(page);
2359
afddba49
NP
2360 pagefault_disable();
2361 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2362 pagefault_enable();
2363 flush_dcache_page(page);
2364
c8236db9 2365 mark_page_accessed(page);
afddba49
NP
2366 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2367 page, fsdata);
2368 if (unlikely(status < 0))
2369 break;
2370 copied = status;
2371
2372 cond_resched();
2373
124d3b70 2374 iov_iter_advance(i, copied);
afddba49
NP
2375 if (unlikely(copied == 0)) {
2376 /*
2377 * If we were unable to copy any data at all, we must
2378 * fall back to a single segment length write.
2379 *
2380 * If we didn't fallback here, we could livelock
2381 * because not all segments in the iov can be copied at
2382 * once without a pagefault.
2383 */
2384 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2385 iov_iter_single_seg_count(i));
2386 goto again;
2387 }
afddba49
NP
2388 pos += copied;
2389 written += copied;
2390
2391 balance_dirty_pages_ratelimited(mapping);
afddba49
NP
2392 } while (iov_iter_count(i));
2393
2394 return written ? written : status;
2395}
2396
2397ssize_t
2398generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2399 unsigned long nr_segs, loff_t pos, loff_t *ppos,
2400 size_t count, ssize_t written)
2401{
2402 struct file *file = iocb->ki_filp;
afddba49
NP
2403 ssize_t status;
2404 struct iov_iter i;
2405
2406 iov_iter_init(&i, iov, nr_segs, count, written);
4e02ed4b 2407 status = generic_perform_write(file, &i, pos);
1da177e4 2408
1da177e4 2409 if (likely(status >= 0)) {
afddba49
NP
2410 written += status;
2411 *ppos = pos + status;
1da177e4
LT
2412 }
2413
1da177e4
LT
2414 return written ? written : status;
2415}
2416EXPORT_SYMBOL(generic_file_buffered_write);
2417
e4dd9de3
JK
2418/**
2419 * __generic_file_aio_write - write data to a file
2420 * @iocb: IO state structure (file, offset, etc.)
2421 * @iov: vector with data to write
2422 * @nr_segs: number of segments in the vector
2423 * @ppos: position where to write
2424 *
2425 * This function does all the work needed for actually writing data to a
2426 * file. It does all basic checks, removes SUID from the file, updates
2427 * modification times and calls proper subroutines depending on whether we
2428 * do direct IO or a standard buffered write.
2429 *
2430 * It expects i_mutex to be grabbed unless we work on a block device or similar
2431 * object which does not need locking at all.
2432 *
2433 * This function does *not* take care of syncing data in case of O_SYNC write.
2434 * A caller has to handle it. This is mainly due to the fact that we want to
2435 * avoid syncing under i_mutex.
2436 */
2437ssize_t __generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2438 unsigned long nr_segs, loff_t *ppos)
1da177e4
LT
2439{
2440 struct file *file = iocb->ki_filp;
fb5527e6 2441 struct address_space * mapping = file->f_mapping;
1da177e4
LT
2442 size_t ocount; /* original count */
2443 size_t count; /* after file limit checks */
2444 struct inode *inode = mapping->host;
1da177e4
LT
2445 loff_t pos;
2446 ssize_t written;
2447 ssize_t err;
2448
2449 ocount = 0;
0ceb3314
DM
2450 err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2451 if (err)
2452 return err;
1da177e4
LT
2453
2454 count = ocount;
2455 pos = *ppos;
2456
1da177e4
LT
2457 /* We can write back this queue in page reclaim */
2458 current->backing_dev_info = mapping->backing_dev_info;
2459 written = 0;
2460
2461 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2462 if (err)
2463 goto out;
2464
2465 if (count == 0)
2466 goto out;
2467
2f1936b8 2468 err = file_remove_suid(file);
1da177e4
LT
2469 if (err)
2470 goto out;
2471
c3b2da31
JB
2472 err = file_update_time(file);
2473 if (err)
2474 goto out;
1da177e4
LT
2475
2476 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2477 if (unlikely(file->f_flags & O_DIRECT)) {
fb5527e6
JM
2478 loff_t endbyte;
2479 ssize_t written_buffered;
2480
2481 written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2482 ppos, count, ocount);
1da177e4
LT
2483 if (written < 0 || written == count)
2484 goto out;
2485 /*
2486 * direct-io write to a hole: fall through to buffered I/O
2487 * for completing the rest of the request.
2488 */
2489 pos += written;
2490 count -= written;
fb5527e6
JM
2491 written_buffered = generic_file_buffered_write(iocb, iov,
2492 nr_segs, pos, ppos, count,
2493 written);
2494 /*
2495 * If generic_file_buffered_write() retuned a synchronous error
2496 * then we want to return the number of bytes which were
2497 * direct-written, or the error code if that was zero. Note
2498 * that this differs from normal direct-io semantics, which
2499 * will return -EFOO even if some bytes were written.
2500 */
2501 if (written_buffered < 0) {
2502 err = written_buffered;
2503 goto out;
2504 }
1da177e4 2505
fb5527e6
JM
2506 /*
2507 * We need to ensure that the page cache pages are written to
2508 * disk and invalidated to preserve the expected O_DIRECT
2509 * semantics.
2510 */
2511 endbyte = pos + written_buffered - written - 1;
c05c4edd 2512 err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
fb5527e6
JM
2513 if (err == 0) {
2514 written = written_buffered;
2515 invalidate_mapping_pages(mapping,
2516 pos >> PAGE_CACHE_SHIFT,
2517 endbyte >> PAGE_CACHE_SHIFT);
2518 } else {
2519 /*
2520 * We don't know how much we wrote, so just return
2521 * the number of bytes which were direct-written
2522 */
2523 }
2524 } else {
2525 written = generic_file_buffered_write(iocb, iov, nr_segs,
2526 pos, ppos, count, written);
2527 }
1da177e4
LT
2528out:
2529 current->backing_dev_info = NULL;
2530 return written ? written : err;
2531}
e4dd9de3
JK
2532EXPORT_SYMBOL(__generic_file_aio_write);
2533
e4dd9de3
JK
2534/**
2535 * generic_file_aio_write - write data to a file
2536 * @iocb: IO state structure
2537 * @iov: vector with data to write
2538 * @nr_segs: number of segments in the vector
2539 * @pos: position in file where to write
2540 *
2541 * This is a wrapper around __generic_file_aio_write() to be used by most
2542 * filesystems. It takes care of syncing the file in case of O_SYNC file
2543 * and acquires i_mutex as needed.
2544 */
027445c3
BP
2545ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2546 unsigned long nr_segs, loff_t pos)
1da177e4
LT
2547{
2548 struct file *file = iocb->ki_filp;
148f948b 2549 struct inode *inode = file->f_mapping->host;
1da177e4 2550 ssize_t ret;
1da177e4
LT
2551
2552 BUG_ON(iocb->ki_pos != pos);
2553
1b1dcc1b 2554 mutex_lock(&inode->i_mutex);
e4dd9de3 2555 ret = __generic_file_aio_write(iocb, iov, nr_segs, &iocb->ki_pos);
1b1dcc1b 2556 mutex_unlock(&inode->i_mutex);
1da177e4 2557
148f948b 2558 if (ret > 0 || ret == -EIOCBQUEUED) {
1da177e4
LT
2559 ssize_t err;
2560
148f948b 2561 err = generic_write_sync(file, pos, ret);
c7b50db2 2562 if (err < 0 && ret > 0)
1da177e4
LT
2563 ret = err;
2564 }
2565 return ret;
2566}
2567EXPORT_SYMBOL(generic_file_aio_write);
2568
cf9a2ae8
DH
2569/**
2570 * try_to_release_page() - release old fs-specific metadata on a page
2571 *
2572 * @page: the page which the kernel is trying to free
2573 * @gfp_mask: memory allocation flags (and I/O mode)
2574 *
2575 * The address_space is to try to release any data against the page
2576 * (presumably at page->private). If the release was successful, return `1'.
2577 * Otherwise return zero.
2578 *
266cf658
DH
2579 * This may also be called if PG_fscache is set on a page, indicating that the
2580 * page is known to the local caching routines.
2581 *
cf9a2ae8 2582 * The @gfp_mask argument specifies whether I/O may be performed to release
3f31fddf 2583 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
cf9a2ae8 2584 *
cf9a2ae8
DH
2585 */
2586int try_to_release_page(struct page *page, gfp_t gfp_mask)
2587{
2588 struct address_space * const mapping = page->mapping;
2589
2590 BUG_ON(!PageLocked(page));
2591 if (PageWriteback(page))
2592 return 0;
2593
2594 if (mapping && mapping->a_ops->releasepage)
2595 return mapping->a_ops->releasepage(page, gfp_mask);
2596 return try_to_free_buffers(page);
2597}
2598
2599EXPORT_SYMBOL(try_to_release_page);