tmpfs: use kmemdup for short symlinks
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / filemap.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/filemap.c
3 *
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
6
7/*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
11 */
1da177e4 12#include <linux/module.h>
1da177e4
LT
13#include <linux/compiler.h>
14#include <linux/fs.h>
c22ce143 15#include <linux/uaccess.h>
1da177e4 16#include <linux/aio.h>
c59ede7b 17#include <linux/capability.h>
1da177e4 18#include <linux/kernel_stat.h>
5a0e3ad6 19#include <linux/gfp.h>
1da177e4
LT
20#include <linux/mm.h>
21#include <linux/swap.h>
22#include <linux/mman.h>
23#include <linux/pagemap.h>
24#include <linux/file.h>
25#include <linux/uio.h>
26#include <linux/hash.h>
27#include <linux/writeback.h>
53253383 28#include <linux/backing-dev.h>
1da177e4
LT
29#include <linux/pagevec.h>
30#include <linux/blkdev.h>
31#include <linux/security.h>
32#include <linux/syscalls.h>
44110fe3 33#include <linux/cpuset.h>
2f718ffc 34#include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
8a9f3ccd 35#include <linux/memcontrol.h>
4f98a2fe 36#include <linux/mm_inline.h> /* for page_is_file_cache() */
c515e1fd 37#include <linux/cleancache.h>
0f8053a5
NP
38#include "internal.h"
39
1da177e4 40/*
1da177e4
LT
41 * FIXME: remove all knowledge of the buffer layer from the core VM
42 */
148f948b 43#include <linux/buffer_head.h> /* for try_to_free_buffers */
1da177e4 44
1da177e4
LT
45#include <asm/mman.h>
46
47/*
48 * Shared mappings implemented 30.11.1994. It's not fully working yet,
49 * though.
50 *
51 * Shared mappings now work. 15.8.1995 Bruno.
52 *
53 * finished 'unifying' the page and buffer cache and SMP-threaded the
54 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
55 *
56 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
57 */
58
59/*
60 * Lock ordering:
61 *
3d48ae45 62 * ->i_mmap_mutex (truncate_pagecache)
1da177e4 63 * ->private_lock (__free_pte->__set_page_dirty_buffers)
5d337b91
HD
64 * ->swap_lock (exclusive_swap_page, others)
65 * ->mapping->tree_lock
1da177e4 66 *
1b1dcc1b 67 * ->i_mutex
3d48ae45 68 * ->i_mmap_mutex (truncate->unmap_mapping_range)
1da177e4
LT
69 *
70 * ->mmap_sem
3d48ae45 71 * ->i_mmap_mutex
b8072f09 72 * ->page_table_lock or pte_lock (various, mainly in memory.c)
1da177e4
LT
73 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
74 *
75 * ->mmap_sem
76 * ->lock_page (access_process_vm)
77 *
82591e6e
NP
78 * ->i_mutex (generic_file_buffered_write)
79 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
1da177e4 80 *
f758eeab 81 * bdi->wb.list_lock
a66979ab 82 * sb_lock (fs/fs-writeback.c)
1da177e4
LT
83 * ->mapping->tree_lock (__sync_single_inode)
84 *
3d48ae45 85 * ->i_mmap_mutex
1da177e4
LT
86 * ->anon_vma.lock (vma_adjust)
87 *
88 * ->anon_vma.lock
b8072f09 89 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
1da177e4 90 *
b8072f09 91 * ->page_table_lock or pte_lock
5d337b91 92 * ->swap_lock (try_to_unmap_one)
1da177e4
LT
93 * ->private_lock (try_to_unmap_one)
94 * ->tree_lock (try_to_unmap_one)
95 * ->zone.lru_lock (follow_page->mark_page_accessed)
053837fc 96 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
1da177e4
LT
97 * ->private_lock (page_remove_rmap->set_page_dirty)
98 * ->tree_lock (page_remove_rmap->set_page_dirty)
f758eeab 99 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
250df6ed 100 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
f758eeab 101 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
250df6ed 102 * ->inode->i_lock (zap_pte_range->set_page_dirty)
1da177e4
LT
103 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
104 *
6a46079c
AK
105 * (code doesn't rely on that order, so you could switch it around)
106 * ->tasklist_lock (memory_failure, collect_procs_ao)
3d48ae45 107 * ->i_mmap_mutex
1da177e4
LT
108 */
109
110/*
e64a782f 111 * Delete a page from the page cache and free it. Caller has to make
1da177e4 112 * sure the page is locked and that nobody else uses it - or that usage
19fd6231 113 * is safe. The caller must hold the mapping's tree_lock.
1da177e4 114 */
e64a782f 115void __delete_from_page_cache(struct page *page)
1da177e4
LT
116{
117 struct address_space *mapping = page->mapping;
118
c515e1fd
DM
119 /*
120 * if we're uptodate, flush out into the cleancache, otherwise
121 * invalidate any existing cleancache entries. We can't leave
122 * stale data around in the cleancache once our page is gone
123 */
124 if (PageUptodate(page) && PageMappedToDisk(page))
125 cleancache_put_page(page);
126 else
127 cleancache_flush_page(mapping, page);
128
1da177e4
LT
129 radix_tree_delete(&mapping->page_tree, page->index);
130 page->mapping = NULL;
b85e0eff 131 /* Leave page->index set: truncation lookup relies upon it */
1da177e4 132 mapping->nrpages--;
347ce434 133 __dec_zone_page_state(page, NR_FILE_PAGES);
4b02108a
KM
134 if (PageSwapBacked(page))
135 __dec_zone_page_state(page, NR_SHMEM);
45426812 136 BUG_ON(page_mapped(page));
3a692790
LT
137
138 /*
139 * Some filesystems seem to re-dirty the page even after
140 * the VM has canceled the dirty bit (eg ext3 journaling).
141 *
142 * Fix it up by doing a final dirty accounting check after
143 * having removed the page entirely.
144 */
145 if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
146 dec_zone_page_state(page, NR_FILE_DIRTY);
147 dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
148 }
1da177e4
LT
149}
150
702cfbf9
MK
151/**
152 * delete_from_page_cache - delete page from page cache
153 * @page: the page which the kernel is trying to remove from page cache
154 *
155 * This must be called only on pages that have been verified to be in the page
156 * cache and locked. It will never put the page into the free list, the caller
157 * has a reference on the page.
158 */
159void delete_from_page_cache(struct page *page)
1da177e4
LT
160{
161 struct address_space *mapping = page->mapping;
6072d13c 162 void (*freepage)(struct page *);
1da177e4 163
cd7619d6 164 BUG_ON(!PageLocked(page));
1da177e4 165
6072d13c 166 freepage = mapping->a_ops->freepage;
19fd6231 167 spin_lock_irq(&mapping->tree_lock);
e64a782f 168 __delete_from_page_cache(page);
19fd6231 169 spin_unlock_irq(&mapping->tree_lock);
e767e056 170 mem_cgroup_uncharge_cache_page(page);
6072d13c
LT
171
172 if (freepage)
173 freepage(page);
97cecb5a
MK
174 page_cache_release(page);
175}
176EXPORT_SYMBOL(delete_from_page_cache);
177
7eaceacc 178static int sleep_on_page(void *word)
1da177e4 179{
1da177e4
LT
180 io_schedule();
181 return 0;
182}
183
7eaceacc 184static int sleep_on_page_killable(void *word)
2687a356 185{
7eaceacc 186 sleep_on_page(word);
2687a356
MW
187 return fatal_signal_pending(current) ? -EINTR : 0;
188}
189
1da177e4 190/**
485bb99b 191 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
67be2dd1
MW
192 * @mapping: address space structure to write
193 * @start: offset in bytes where the range starts
469eb4d0 194 * @end: offset in bytes where the range ends (inclusive)
67be2dd1 195 * @sync_mode: enable synchronous operation
1da177e4 196 *
485bb99b
RD
197 * Start writeback against all of a mapping's dirty pages that lie
198 * within the byte offsets <start, end> inclusive.
199 *
1da177e4 200 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
485bb99b 201 * opposed to a regular memory cleansing writeback. The difference between
1da177e4
LT
202 * these two operations is that if a dirty page/buffer is encountered, it must
203 * be waited upon, and not just skipped over.
204 */
ebcf28e1
AM
205int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
206 loff_t end, int sync_mode)
1da177e4
LT
207{
208 int ret;
209 struct writeback_control wbc = {
210 .sync_mode = sync_mode,
05fe478d 211 .nr_to_write = LONG_MAX,
111ebb6e
OH
212 .range_start = start,
213 .range_end = end,
1da177e4
LT
214 };
215
216 if (!mapping_cap_writeback_dirty(mapping))
217 return 0;
218
219 ret = do_writepages(mapping, &wbc);
220 return ret;
221}
222
223static inline int __filemap_fdatawrite(struct address_space *mapping,
224 int sync_mode)
225{
111ebb6e 226 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
1da177e4
LT
227}
228
229int filemap_fdatawrite(struct address_space *mapping)
230{
231 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
232}
233EXPORT_SYMBOL(filemap_fdatawrite);
234
f4c0a0fd 235int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
ebcf28e1 236 loff_t end)
1da177e4
LT
237{
238 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
239}
f4c0a0fd 240EXPORT_SYMBOL(filemap_fdatawrite_range);
1da177e4 241
485bb99b
RD
242/**
243 * filemap_flush - mostly a non-blocking flush
244 * @mapping: target address_space
245 *
1da177e4
LT
246 * This is a mostly non-blocking flush. Not suitable for data-integrity
247 * purposes - I/O may not be started against all dirty pages.
248 */
249int filemap_flush(struct address_space *mapping)
250{
251 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
252}
253EXPORT_SYMBOL(filemap_flush);
254
485bb99b 255/**
94004ed7
CH
256 * filemap_fdatawait_range - wait for writeback to complete
257 * @mapping: address space structure to wait for
258 * @start_byte: offset in bytes where the range starts
259 * @end_byte: offset in bytes where the range ends (inclusive)
485bb99b 260 *
94004ed7
CH
261 * Walk the list of under-writeback pages of the given address space
262 * in the given range and wait for all of them.
1da177e4 263 */
94004ed7
CH
264int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
265 loff_t end_byte)
1da177e4 266{
94004ed7
CH
267 pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
268 pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
1da177e4
LT
269 struct pagevec pvec;
270 int nr_pages;
271 int ret = 0;
1da177e4 272
94004ed7 273 if (end_byte < start_byte)
1da177e4
LT
274 return 0;
275
276 pagevec_init(&pvec, 0);
1da177e4
LT
277 while ((index <= end) &&
278 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
279 PAGECACHE_TAG_WRITEBACK,
280 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
281 unsigned i;
282
283 for (i = 0; i < nr_pages; i++) {
284 struct page *page = pvec.pages[i];
285
286 /* until radix tree lookup accepts end_index */
287 if (page->index > end)
288 continue;
289
290 wait_on_page_writeback(page);
212260aa 291 if (TestClearPageError(page))
1da177e4
LT
292 ret = -EIO;
293 }
294 pagevec_release(&pvec);
295 cond_resched();
296 }
297
298 /* Check for outstanding write errors */
299 if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
300 ret = -ENOSPC;
301 if (test_and_clear_bit(AS_EIO, &mapping->flags))
302 ret = -EIO;
303
304 return ret;
305}
d3bccb6f
JK
306EXPORT_SYMBOL(filemap_fdatawait_range);
307
1da177e4 308/**
485bb99b 309 * filemap_fdatawait - wait for all under-writeback pages to complete
1da177e4 310 * @mapping: address space structure to wait for
485bb99b
RD
311 *
312 * Walk the list of under-writeback pages of the given address space
313 * and wait for all of them.
1da177e4
LT
314 */
315int filemap_fdatawait(struct address_space *mapping)
316{
317 loff_t i_size = i_size_read(mapping->host);
318
319 if (i_size == 0)
320 return 0;
321
94004ed7 322 return filemap_fdatawait_range(mapping, 0, i_size - 1);
1da177e4
LT
323}
324EXPORT_SYMBOL(filemap_fdatawait);
325
326int filemap_write_and_wait(struct address_space *mapping)
327{
28fd1298 328 int err = 0;
1da177e4
LT
329
330 if (mapping->nrpages) {
28fd1298
OH
331 err = filemap_fdatawrite(mapping);
332 /*
333 * Even if the above returned error, the pages may be
334 * written partially (e.g. -ENOSPC), so we wait for it.
335 * But the -EIO is special case, it may indicate the worst
336 * thing (e.g. bug) happened, so we avoid waiting for it.
337 */
338 if (err != -EIO) {
339 int err2 = filemap_fdatawait(mapping);
340 if (!err)
341 err = err2;
342 }
1da177e4 343 }
28fd1298 344 return err;
1da177e4 345}
28fd1298 346EXPORT_SYMBOL(filemap_write_and_wait);
1da177e4 347
485bb99b
RD
348/**
349 * filemap_write_and_wait_range - write out & wait on a file range
350 * @mapping: the address_space for the pages
351 * @lstart: offset in bytes where the range starts
352 * @lend: offset in bytes where the range ends (inclusive)
353 *
469eb4d0
AM
354 * Write out and wait upon file offsets lstart->lend, inclusive.
355 *
356 * Note that `lend' is inclusive (describes the last byte to be written) so
357 * that this function can be used to write to the very end-of-file (end = -1).
358 */
1da177e4
LT
359int filemap_write_and_wait_range(struct address_space *mapping,
360 loff_t lstart, loff_t lend)
361{
28fd1298 362 int err = 0;
1da177e4
LT
363
364 if (mapping->nrpages) {
28fd1298
OH
365 err = __filemap_fdatawrite_range(mapping, lstart, lend,
366 WB_SYNC_ALL);
367 /* See comment of filemap_write_and_wait() */
368 if (err != -EIO) {
94004ed7
CH
369 int err2 = filemap_fdatawait_range(mapping,
370 lstart, lend);
28fd1298
OH
371 if (!err)
372 err = err2;
373 }
1da177e4 374 }
28fd1298 375 return err;
1da177e4 376}
f6995585 377EXPORT_SYMBOL(filemap_write_and_wait_range);
1da177e4 378
ef6a3c63
MS
379/**
380 * replace_page_cache_page - replace a pagecache page with a new one
381 * @old: page to be replaced
382 * @new: page to replace with
383 * @gfp_mask: allocation mode
384 *
385 * This function replaces a page in the pagecache with a new one. On
386 * success it acquires the pagecache reference for the new page and
387 * drops it for the old page. Both the old and new pages must be
388 * locked. This function does not add the new page to the LRU, the
389 * caller must do that.
390 *
391 * The remove + add is atomic. The only way this function can fail is
392 * memory allocation failure.
393 */
394int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
395{
396 int error;
397 struct mem_cgroup *memcg = NULL;
398
399 VM_BUG_ON(!PageLocked(old));
400 VM_BUG_ON(!PageLocked(new));
401 VM_BUG_ON(new->mapping);
402
403 /*
404 * This is not page migration, but prepare_migration and
405 * end_migration does enough work for charge replacement.
406 *
407 * In the longer term we probably want a specialized function
408 * for moving the charge from old to new in a more efficient
409 * manner.
410 */
411 error = mem_cgroup_prepare_migration(old, new, &memcg, gfp_mask);
412 if (error)
413 return error;
414
415 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
416 if (!error) {
417 struct address_space *mapping = old->mapping;
418 void (*freepage)(struct page *);
419
420 pgoff_t offset = old->index;
421 freepage = mapping->a_ops->freepage;
422
423 page_cache_get(new);
424 new->mapping = mapping;
425 new->index = offset;
426
427 spin_lock_irq(&mapping->tree_lock);
e64a782f 428 __delete_from_page_cache(old);
ef6a3c63
MS
429 error = radix_tree_insert(&mapping->page_tree, offset, new);
430 BUG_ON(error);
431 mapping->nrpages++;
432 __inc_zone_page_state(new, NR_FILE_PAGES);
433 if (PageSwapBacked(new))
434 __inc_zone_page_state(new, NR_SHMEM);
435 spin_unlock_irq(&mapping->tree_lock);
436 radix_tree_preload_end();
437 if (freepage)
438 freepage(old);
439 page_cache_release(old);
440 mem_cgroup_end_migration(memcg, old, new, true);
441 } else {
442 mem_cgroup_end_migration(memcg, old, new, false);
443 }
444
445 return error;
446}
447EXPORT_SYMBOL_GPL(replace_page_cache_page);
448
485bb99b 449/**
e286781d 450 * add_to_page_cache_locked - add a locked page to the pagecache
485bb99b
RD
451 * @page: page to add
452 * @mapping: the page's address_space
453 * @offset: page index
454 * @gfp_mask: page allocation mode
455 *
e286781d 456 * This function is used to add a page to the pagecache. It must be locked.
1da177e4
LT
457 * This function does not add the page to the LRU. The caller must do that.
458 */
e286781d 459int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
6daa0e28 460 pgoff_t offset, gfp_t gfp_mask)
1da177e4 461{
e286781d
NP
462 int error;
463
464 VM_BUG_ON(!PageLocked(page));
465
466 error = mem_cgroup_cache_charge(page, current->mm,
2c26fdd7 467 gfp_mask & GFP_RECLAIM_MASK);
35c754d7
BS
468 if (error)
469 goto out;
1da177e4 470
35c754d7 471 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
1da177e4 472 if (error == 0) {
e286781d
NP
473 page_cache_get(page);
474 page->mapping = mapping;
475 page->index = offset;
476
19fd6231 477 spin_lock_irq(&mapping->tree_lock);
1da177e4 478 error = radix_tree_insert(&mapping->page_tree, offset, page);
e286781d 479 if (likely(!error)) {
1da177e4 480 mapping->nrpages++;
347ce434 481 __inc_zone_page_state(page, NR_FILE_PAGES);
4b02108a
KM
482 if (PageSwapBacked(page))
483 __inc_zone_page_state(page, NR_SHMEM);
e767e056 484 spin_unlock_irq(&mapping->tree_lock);
e286781d
NP
485 } else {
486 page->mapping = NULL;
b85e0eff 487 /* Leave page->index set: truncation relies upon it */
e767e056 488 spin_unlock_irq(&mapping->tree_lock);
69029cd5 489 mem_cgroup_uncharge_cache_page(page);
e286781d
NP
490 page_cache_release(page);
491 }
1da177e4 492 radix_tree_preload_end();
35c754d7 493 } else
69029cd5 494 mem_cgroup_uncharge_cache_page(page);
8a9f3ccd 495out:
1da177e4
LT
496 return error;
497}
e286781d 498EXPORT_SYMBOL(add_to_page_cache_locked);
1da177e4
LT
499
500int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
6daa0e28 501 pgoff_t offset, gfp_t gfp_mask)
1da177e4 502{
4f98a2fe
RR
503 int ret;
504
505 /*
506 * Splice_read and readahead add shmem/tmpfs pages into the page cache
507 * before shmem_readpage has a chance to mark them as SwapBacked: they
e9d6c157 508 * need to go on the anon lru below, and mem_cgroup_cache_charge
4f98a2fe
RR
509 * (called in add_to_page_cache) needs to know where they're going too.
510 */
511 if (mapping_cap_swap_backed(mapping))
512 SetPageSwapBacked(page);
513
514 ret = add_to_page_cache(page, mapping, offset, gfp_mask);
515 if (ret == 0) {
516 if (page_is_file_cache(page))
517 lru_cache_add_file(page);
518 else
e9d6c157 519 lru_cache_add_anon(page);
4f98a2fe 520 }
1da177e4
LT
521 return ret;
522}
18bc0bbd 523EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
1da177e4 524
44110fe3 525#ifdef CONFIG_NUMA
2ae88149 526struct page *__page_cache_alloc(gfp_t gfp)
44110fe3 527{
c0ff7453
MX
528 int n;
529 struct page *page;
530
44110fe3 531 if (cpuset_do_page_mem_spread()) {
c0ff7453
MX
532 get_mems_allowed();
533 n = cpuset_mem_spread_node();
534 page = alloc_pages_exact_node(n, gfp, 0);
535 put_mems_allowed();
536 return page;
44110fe3 537 }
2ae88149 538 return alloc_pages(gfp, 0);
44110fe3 539}
2ae88149 540EXPORT_SYMBOL(__page_cache_alloc);
44110fe3
PJ
541#endif
542
1da177e4
LT
543/*
544 * In order to wait for pages to become available there must be
545 * waitqueues associated with pages. By using a hash table of
546 * waitqueues where the bucket discipline is to maintain all
547 * waiters on the same queue and wake all when any of the pages
548 * become available, and for the woken contexts to check to be
549 * sure the appropriate page became available, this saves space
550 * at a cost of "thundering herd" phenomena during rare hash
551 * collisions.
552 */
553static wait_queue_head_t *page_waitqueue(struct page *page)
554{
555 const struct zone *zone = page_zone(page);
556
557 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
558}
559
560static inline void wake_up_page(struct page *page, int bit)
561{
562 __wake_up_bit(page_waitqueue(page), &page->flags, bit);
563}
564
920c7a5d 565void wait_on_page_bit(struct page *page, int bit_nr)
1da177e4
LT
566{
567 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
568
569 if (test_bit(bit_nr, &page->flags))
7eaceacc 570 __wait_on_bit(page_waitqueue(page), &wait, sleep_on_page,
1da177e4
LT
571 TASK_UNINTERRUPTIBLE);
572}
573EXPORT_SYMBOL(wait_on_page_bit);
574
f62e00cc
KM
575int wait_on_page_bit_killable(struct page *page, int bit_nr)
576{
577 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
578
579 if (!test_bit(bit_nr, &page->flags))
580 return 0;
581
582 return __wait_on_bit(page_waitqueue(page), &wait,
583 sleep_on_page_killable, TASK_KILLABLE);
584}
585
385e1ca5
DH
586/**
587 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
697f619f
RD
588 * @page: Page defining the wait queue of interest
589 * @waiter: Waiter to add to the queue
385e1ca5
DH
590 *
591 * Add an arbitrary @waiter to the wait queue for the nominated @page.
592 */
593void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
594{
595 wait_queue_head_t *q = page_waitqueue(page);
596 unsigned long flags;
597
598 spin_lock_irqsave(&q->lock, flags);
599 __add_wait_queue(q, waiter);
600 spin_unlock_irqrestore(&q->lock, flags);
601}
602EXPORT_SYMBOL_GPL(add_page_wait_queue);
603
1da177e4 604/**
485bb99b 605 * unlock_page - unlock a locked page
1da177e4
LT
606 * @page: the page
607 *
608 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
609 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
610 * mechananism between PageLocked pages and PageWriteback pages is shared.
611 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
612 *
8413ac9d
NP
613 * The mb is necessary to enforce ordering between the clear_bit and the read
614 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
1da177e4 615 */
920c7a5d 616void unlock_page(struct page *page)
1da177e4 617{
8413ac9d
NP
618 VM_BUG_ON(!PageLocked(page));
619 clear_bit_unlock(PG_locked, &page->flags);
620 smp_mb__after_clear_bit();
1da177e4
LT
621 wake_up_page(page, PG_locked);
622}
623EXPORT_SYMBOL(unlock_page);
624
485bb99b
RD
625/**
626 * end_page_writeback - end writeback against a page
627 * @page: the page
1da177e4
LT
628 */
629void end_page_writeback(struct page *page)
630{
ac6aadb2
MS
631 if (TestClearPageReclaim(page))
632 rotate_reclaimable_page(page);
633
634 if (!test_clear_page_writeback(page))
635 BUG();
636
1da177e4
LT
637 smp_mb__after_clear_bit();
638 wake_up_page(page, PG_writeback);
639}
640EXPORT_SYMBOL(end_page_writeback);
641
485bb99b
RD
642/**
643 * __lock_page - get a lock on the page, assuming we need to sleep to get it
644 * @page: the page to lock
1da177e4 645 */
920c7a5d 646void __lock_page(struct page *page)
1da177e4
LT
647{
648 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
649
7eaceacc 650 __wait_on_bit_lock(page_waitqueue(page), &wait, sleep_on_page,
1da177e4
LT
651 TASK_UNINTERRUPTIBLE);
652}
653EXPORT_SYMBOL(__lock_page);
654
b5606c2d 655int __lock_page_killable(struct page *page)
2687a356
MW
656{
657 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
658
659 return __wait_on_bit_lock(page_waitqueue(page), &wait,
7eaceacc 660 sleep_on_page_killable, TASK_KILLABLE);
2687a356 661}
18bc0bbd 662EXPORT_SYMBOL_GPL(__lock_page_killable);
2687a356 663
d065bd81
ML
664int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
665 unsigned int flags)
666{
37b23e05
KM
667 if (flags & FAULT_FLAG_ALLOW_RETRY) {
668 /*
669 * CAUTION! In this case, mmap_sem is not released
670 * even though return 0.
671 */
672 if (flags & FAULT_FLAG_RETRY_NOWAIT)
673 return 0;
674
675 up_read(&mm->mmap_sem);
676 if (flags & FAULT_FLAG_KILLABLE)
677 wait_on_page_locked_killable(page);
678 else
318b275f 679 wait_on_page_locked(page);
d065bd81 680 return 0;
37b23e05
KM
681 } else {
682 if (flags & FAULT_FLAG_KILLABLE) {
683 int ret;
684
685 ret = __lock_page_killable(page);
686 if (ret) {
687 up_read(&mm->mmap_sem);
688 return 0;
689 }
690 } else
691 __lock_page(page);
692 return 1;
d065bd81
ML
693 }
694}
695
485bb99b
RD
696/**
697 * find_get_page - find and get a page reference
698 * @mapping: the address_space to search
699 * @offset: the page index
700 *
da6052f7
NP
701 * Is there a pagecache struct page at the given (mapping, offset) tuple?
702 * If yes, increment its refcount and return it; if no, return NULL.
1da177e4 703 */
a60637c8 704struct page *find_get_page(struct address_space *mapping, pgoff_t offset)
1da177e4 705{
a60637c8 706 void **pagep;
1da177e4
LT
707 struct page *page;
708
a60637c8
NP
709 rcu_read_lock();
710repeat:
711 page = NULL;
712 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
713 if (pagep) {
714 page = radix_tree_deref_slot(pagep);
27d20fdd
NP
715 if (unlikely(!page))
716 goto out;
a2c16d6c
HD
717 if (radix_tree_exception(page)) {
718 if (radix_tree_exceptional_entry(page))
719 goto out;
720 /* radix_tree_deref_retry(page) */
a60637c8 721 goto repeat;
a2c16d6c 722 }
a60637c8
NP
723 if (!page_cache_get_speculative(page))
724 goto repeat;
725
726 /*
727 * Has the page moved?
728 * This is part of the lockless pagecache protocol. See
729 * include/linux/pagemap.h for details.
730 */
731 if (unlikely(page != *pagep)) {
732 page_cache_release(page);
733 goto repeat;
734 }
735 }
27d20fdd 736out:
a60637c8
NP
737 rcu_read_unlock();
738
1da177e4
LT
739 return page;
740}
1da177e4
LT
741EXPORT_SYMBOL(find_get_page);
742
1da177e4
LT
743/**
744 * find_lock_page - locate, pin and lock a pagecache page
67be2dd1
MW
745 * @mapping: the address_space to search
746 * @offset: the page index
1da177e4
LT
747 *
748 * Locates the desired pagecache page, locks it, increments its reference
749 * count and returns its address.
750 *
751 * Returns zero if the page was not present. find_lock_page() may sleep.
752 */
a60637c8 753struct page *find_lock_page(struct address_space *mapping, pgoff_t offset)
1da177e4
LT
754{
755 struct page *page;
756
1da177e4 757repeat:
a60637c8 758 page = find_get_page(mapping, offset);
a2c16d6c 759 if (page && !radix_tree_exception(page)) {
a60637c8
NP
760 lock_page(page);
761 /* Has the page been truncated? */
762 if (unlikely(page->mapping != mapping)) {
763 unlock_page(page);
764 page_cache_release(page);
765 goto repeat;
1da177e4 766 }
a60637c8 767 VM_BUG_ON(page->index != offset);
1da177e4 768 }
1da177e4
LT
769 return page;
770}
1da177e4
LT
771EXPORT_SYMBOL(find_lock_page);
772
773/**
774 * find_or_create_page - locate or add a pagecache page
67be2dd1
MW
775 * @mapping: the page's address_space
776 * @index: the page's index into the mapping
777 * @gfp_mask: page allocation mode
1da177e4
LT
778 *
779 * Locates a page in the pagecache. If the page is not present, a new page
780 * is allocated using @gfp_mask and is added to the pagecache and to the VM's
781 * LRU list. The returned page is locked and has its reference count
782 * incremented.
783 *
784 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
785 * allocation!
786 *
787 * find_or_create_page() returns the desired page's address, or zero on
788 * memory exhaustion.
789 */
790struct page *find_or_create_page(struct address_space *mapping,
57f6b96c 791 pgoff_t index, gfp_t gfp_mask)
1da177e4 792{
eb2be189 793 struct page *page;
1da177e4
LT
794 int err;
795repeat:
796 page = find_lock_page(mapping, index);
797 if (!page) {
eb2be189
NP
798 page = __page_cache_alloc(gfp_mask);
799 if (!page)
800 return NULL;
67d58ac4
NP
801 /*
802 * We want a regular kernel memory (not highmem or DMA etc)
803 * allocation for the radix tree nodes, but we need to honour
804 * the context-specific requirements the caller has asked for.
805 * GFP_RECLAIM_MASK collects those requirements.
806 */
807 err = add_to_page_cache_lru(page, mapping, index,
808 (gfp_mask & GFP_RECLAIM_MASK));
eb2be189
NP
809 if (unlikely(err)) {
810 page_cache_release(page);
811 page = NULL;
812 if (err == -EEXIST)
813 goto repeat;
1da177e4 814 }
1da177e4 815 }
1da177e4
LT
816 return page;
817}
1da177e4
LT
818EXPORT_SYMBOL(find_or_create_page);
819
820/**
821 * find_get_pages - gang pagecache lookup
822 * @mapping: The address_space to search
823 * @start: The starting page index
824 * @nr_pages: The maximum number of pages
825 * @pages: Where the resulting pages are placed
826 *
827 * find_get_pages() will search for and return a group of up to
828 * @nr_pages pages in the mapping. The pages are placed at @pages.
829 * find_get_pages() takes a reference against the returned pages.
830 *
831 * The search returns a group of mapping-contiguous pages with ascending
832 * indexes. There may be holes in the indices due to not-present pages.
833 *
834 * find_get_pages() returns the number of pages which were found.
835 */
836unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
837 unsigned int nr_pages, struct page **pages)
838{
839 unsigned int i;
840 unsigned int ret;
a60637c8
NP
841 unsigned int nr_found;
842
843 rcu_read_lock();
844restart:
845 nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
6328650b 846 (void ***)pages, NULL, start, nr_pages);
a60637c8
NP
847 ret = 0;
848 for (i = 0; i < nr_found; i++) {
849 struct page *page;
850repeat:
851 page = radix_tree_deref_slot((void **)pages[i]);
852 if (unlikely(!page))
853 continue;
9d8aa4ea 854
a2c16d6c
HD
855 if (radix_tree_exception(page)) {
856 if (radix_tree_exceptional_entry(page))
857 continue;
858 /*
859 * radix_tree_deref_retry(page):
860 * can only trigger when entry at index 0 moves out of
861 * or back to root: none yet gotten, safe to restart.
862 */
9d8aa4ea 863 WARN_ON(start | i);
a60637c8 864 goto restart;
27d20fdd 865 }
a60637c8
NP
866
867 if (!page_cache_get_speculative(page))
868 goto repeat;
869
870 /* Has the page moved? */
871 if (unlikely(page != *((void **)pages[i]))) {
872 page_cache_release(page);
873 goto repeat;
874 }
1da177e4 875
a60637c8
NP
876 pages[ret] = page;
877 ret++;
878 }
5b280c0c
HD
879
880 /*
881 * If all entries were removed before we could secure them,
882 * try again, because callers stop trying once 0 is returned.
883 */
884 if (unlikely(!ret && nr_found))
885 goto restart;
a60637c8 886 rcu_read_unlock();
1da177e4
LT
887 return ret;
888}
889
ebf43500
JA
890/**
891 * find_get_pages_contig - gang contiguous pagecache lookup
892 * @mapping: The address_space to search
893 * @index: The starting page index
894 * @nr_pages: The maximum number of pages
895 * @pages: Where the resulting pages are placed
896 *
897 * find_get_pages_contig() works exactly like find_get_pages(), except
898 * that the returned number of pages are guaranteed to be contiguous.
899 *
900 * find_get_pages_contig() returns the number of pages which were found.
901 */
902unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
903 unsigned int nr_pages, struct page **pages)
904{
905 unsigned int i;
906 unsigned int ret;
a60637c8
NP
907 unsigned int nr_found;
908
909 rcu_read_lock();
910restart:
911 nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
6328650b 912 (void ***)pages, NULL, index, nr_pages);
a60637c8
NP
913 ret = 0;
914 for (i = 0; i < nr_found; i++) {
915 struct page *page;
916repeat:
917 page = radix_tree_deref_slot((void **)pages[i]);
918 if (unlikely(!page))
919 continue;
9d8aa4ea 920
a2c16d6c
HD
921 if (radix_tree_exception(page)) {
922 if (radix_tree_exceptional_entry(page))
923 break;
924 /*
925 * radix_tree_deref_retry(page):
926 * can only trigger when entry at index 0 moves out of
927 * or back to root: none yet gotten, safe to restart.
928 */
a60637c8 929 goto restart;
a2c16d6c 930 }
ebf43500 931
a60637c8
NP
932 if (!page_cache_get_speculative(page))
933 goto repeat;
934
935 /* Has the page moved? */
936 if (unlikely(page != *((void **)pages[i]))) {
937 page_cache_release(page);
938 goto repeat;
939 }
940
9cbb4cb2
NP
941 /*
942 * must check mapping and index after taking the ref.
943 * otherwise we can get both false positives and false
944 * negatives, which is just confusing to the caller.
945 */
946 if (page->mapping == NULL || page->index != index) {
947 page_cache_release(page);
948 break;
949 }
950
a60637c8
NP
951 pages[ret] = page;
952 ret++;
ebf43500
JA
953 index++;
954 }
a60637c8
NP
955 rcu_read_unlock();
956 return ret;
ebf43500 957}
ef71c15c 958EXPORT_SYMBOL(find_get_pages_contig);
ebf43500 959
485bb99b
RD
960/**
961 * find_get_pages_tag - find and return pages that match @tag
962 * @mapping: the address_space to search
963 * @index: the starting page index
964 * @tag: the tag index
965 * @nr_pages: the maximum number of pages
966 * @pages: where the resulting pages are placed
967 *
1da177e4 968 * Like find_get_pages, except we only return pages which are tagged with
485bb99b 969 * @tag. We update @index to index the next page for the traversal.
1da177e4
LT
970 */
971unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
972 int tag, unsigned int nr_pages, struct page **pages)
973{
974 unsigned int i;
975 unsigned int ret;
a60637c8
NP
976 unsigned int nr_found;
977
978 rcu_read_lock();
979restart:
980 nr_found = radix_tree_gang_lookup_tag_slot(&mapping->page_tree,
981 (void ***)pages, *index, nr_pages, tag);
982 ret = 0;
983 for (i = 0; i < nr_found; i++) {
984 struct page *page;
985repeat:
986 page = radix_tree_deref_slot((void **)pages[i]);
987 if (unlikely(!page))
988 continue;
9d8aa4ea 989
a2c16d6c
HD
990 if (radix_tree_exception(page)) {
991 BUG_ON(radix_tree_exceptional_entry(page));
992 /*
993 * radix_tree_deref_retry(page):
994 * can only trigger when entry at index 0 moves out of
995 * or back to root: none yet gotten, safe to restart.
996 */
a60637c8 997 goto restart;
a2c16d6c 998 }
a60637c8
NP
999
1000 if (!page_cache_get_speculative(page))
1001 goto repeat;
1002
1003 /* Has the page moved? */
1004 if (unlikely(page != *((void **)pages[i]))) {
1005 page_cache_release(page);
1006 goto repeat;
1007 }
1008
1009 pages[ret] = page;
1010 ret++;
1011 }
5b280c0c
HD
1012
1013 /*
1014 * If all entries were removed before we could secure them,
1015 * try again, because callers stop trying once 0 is returned.
1016 */
1017 if (unlikely(!ret && nr_found))
1018 goto restart;
a60637c8 1019 rcu_read_unlock();
1da177e4 1020
1da177e4
LT
1021 if (ret)
1022 *index = pages[ret - 1]->index + 1;
a60637c8 1023
1da177e4
LT
1024 return ret;
1025}
ef71c15c 1026EXPORT_SYMBOL(find_get_pages_tag);
1da177e4 1027
485bb99b
RD
1028/**
1029 * grab_cache_page_nowait - returns locked page at given index in given cache
1030 * @mapping: target address_space
1031 * @index: the page index
1032 *
72fd4a35 1033 * Same as grab_cache_page(), but do not wait if the page is unavailable.
1da177e4
LT
1034 * This is intended for speculative data generators, where the data can
1035 * be regenerated if the page couldn't be grabbed. This routine should
1036 * be safe to call while holding the lock for another page.
1037 *
1038 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
1039 * and deadlock against the caller's locked page.
1040 */
1041struct page *
57f6b96c 1042grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
1da177e4
LT
1043{
1044 struct page *page = find_get_page(mapping, index);
1da177e4
LT
1045
1046 if (page) {
529ae9aa 1047 if (trylock_page(page))
1da177e4
LT
1048 return page;
1049 page_cache_release(page);
1050 return NULL;
1051 }
2ae88149 1052 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
67d58ac4 1053 if (page && add_to_page_cache_lru(page, mapping, index, GFP_NOFS)) {
1da177e4
LT
1054 page_cache_release(page);
1055 page = NULL;
1056 }
1057 return page;
1058}
1da177e4
LT
1059EXPORT_SYMBOL(grab_cache_page_nowait);
1060
76d42bd9
WF
1061/*
1062 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1063 * a _large_ part of the i/o request. Imagine the worst scenario:
1064 *
1065 * ---R__________________________________________B__________
1066 * ^ reading here ^ bad block(assume 4k)
1067 *
1068 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1069 * => failing the whole request => read(R) => read(R+1) =>
1070 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1071 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1072 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1073 *
1074 * It is going insane. Fix it by quickly scaling down the readahead size.
1075 */
1076static void shrink_readahead_size_eio(struct file *filp,
1077 struct file_ra_state *ra)
1078{
76d42bd9 1079 ra->ra_pages /= 4;
76d42bd9
WF
1080}
1081
485bb99b 1082/**
36e78914 1083 * do_generic_file_read - generic file read routine
485bb99b
RD
1084 * @filp: the file to read
1085 * @ppos: current file position
1086 * @desc: read_descriptor
1087 * @actor: read method
1088 *
1da177e4 1089 * This is a generic file read routine, and uses the
485bb99b 1090 * mapping->a_ops->readpage() function for the actual low-level stuff.
1da177e4
LT
1091 *
1092 * This is really ugly. But the goto's actually try to clarify some
1093 * of the logic when it comes to error handling etc.
1da177e4 1094 */
36e78914
CH
1095static void do_generic_file_read(struct file *filp, loff_t *ppos,
1096 read_descriptor_t *desc, read_actor_t actor)
1da177e4 1097{
36e78914 1098 struct address_space *mapping = filp->f_mapping;
1da177e4 1099 struct inode *inode = mapping->host;
36e78914 1100 struct file_ra_state *ra = &filp->f_ra;
57f6b96c
FW
1101 pgoff_t index;
1102 pgoff_t last_index;
1103 pgoff_t prev_index;
1104 unsigned long offset; /* offset into pagecache page */
ec0f1637 1105 unsigned int prev_offset;
1da177e4 1106 int error;
1da177e4 1107
1da177e4 1108 index = *ppos >> PAGE_CACHE_SHIFT;
7ff81078
FW
1109 prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1110 prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1da177e4
LT
1111 last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1112 offset = *ppos & ~PAGE_CACHE_MASK;
1113
1da177e4
LT
1114 for (;;) {
1115 struct page *page;
57f6b96c 1116 pgoff_t end_index;
a32ea1e1 1117 loff_t isize;
1da177e4
LT
1118 unsigned long nr, ret;
1119
1da177e4 1120 cond_resched();
1da177e4
LT
1121find_page:
1122 page = find_get_page(mapping, index);
3ea89ee8 1123 if (!page) {
cf914a7d 1124 page_cache_sync_readahead(mapping,
7ff81078 1125 ra, filp,
3ea89ee8
FW
1126 index, last_index - index);
1127 page = find_get_page(mapping, index);
1128 if (unlikely(page == NULL))
1129 goto no_cached_page;
1130 }
1131 if (PageReadahead(page)) {
cf914a7d 1132 page_cache_async_readahead(mapping,
7ff81078 1133 ra, filp, page,
3ea89ee8 1134 index, last_index - index);
1da177e4 1135 }
8ab22b9a
HH
1136 if (!PageUptodate(page)) {
1137 if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1138 !mapping->a_ops->is_partially_uptodate)
1139 goto page_not_up_to_date;
529ae9aa 1140 if (!trylock_page(page))
8ab22b9a 1141 goto page_not_up_to_date;
8d056cb9
DH
1142 /* Did it get truncated before we got the lock? */
1143 if (!page->mapping)
1144 goto page_not_up_to_date_locked;
8ab22b9a
HH
1145 if (!mapping->a_ops->is_partially_uptodate(page,
1146 desc, offset))
1147 goto page_not_up_to_date_locked;
1148 unlock_page(page);
1149 }
1da177e4 1150page_ok:
a32ea1e1
N
1151 /*
1152 * i_size must be checked after we know the page is Uptodate.
1153 *
1154 * Checking i_size after the check allows us to calculate
1155 * the correct value for "nr", which means the zero-filled
1156 * part of the page is not copied back to userspace (unless
1157 * another truncate extends the file - this is desired though).
1158 */
1159
1160 isize = i_size_read(inode);
1161 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1162 if (unlikely(!isize || index > end_index)) {
1163 page_cache_release(page);
1164 goto out;
1165 }
1166
1167 /* nr is the maximum number of bytes to copy from this page */
1168 nr = PAGE_CACHE_SIZE;
1169 if (index == end_index) {
1170 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1171 if (nr <= offset) {
1172 page_cache_release(page);
1173 goto out;
1174 }
1175 }
1176 nr = nr - offset;
1da177e4
LT
1177
1178 /* If users can be writing to this page using arbitrary
1179 * virtual addresses, take care about potential aliasing
1180 * before reading the page on the kernel side.
1181 */
1182 if (mapping_writably_mapped(mapping))
1183 flush_dcache_page(page);
1184
1185 /*
ec0f1637
JK
1186 * When a sequential read accesses a page several times,
1187 * only mark it as accessed the first time.
1da177e4 1188 */
ec0f1637 1189 if (prev_index != index || offset != prev_offset)
1da177e4
LT
1190 mark_page_accessed(page);
1191 prev_index = index;
1192
1193 /*
1194 * Ok, we have the page, and it's up-to-date, so
1195 * now we can copy it to user space...
1196 *
1197 * The actor routine returns how many bytes were actually used..
1198 * NOTE! This may not be the same as how much of a user buffer
1199 * we filled up (we may be padding etc), so we can only update
1200 * "pos" here (the actor routine has to update the user buffer
1201 * pointers and the remaining count).
1202 */
1203 ret = actor(desc, page, offset, nr);
1204 offset += ret;
1205 index += offset >> PAGE_CACHE_SHIFT;
1206 offset &= ~PAGE_CACHE_MASK;
6ce745ed 1207 prev_offset = offset;
1da177e4
LT
1208
1209 page_cache_release(page);
1210 if (ret == nr && desc->count)
1211 continue;
1212 goto out;
1213
1214page_not_up_to_date:
1215 /* Get exclusive access to the page ... */
85462323
ON
1216 error = lock_page_killable(page);
1217 if (unlikely(error))
1218 goto readpage_error;
1da177e4 1219
8ab22b9a 1220page_not_up_to_date_locked:
da6052f7 1221 /* Did it get truncated before we got the lock? */
1da177e4
LT
1222 if (!page->mapping) {
1223 unlock_page(page);
1224 page_cache_release(page);
1225 continue;
1226 }
1227
1228 /* Did somebody else fill it already? */
1229 if (PageUptodate(page)) {
1230 unlock_page(page);
1231 goto page_ok;
1232 }
1233
1234readpage:
91803b49
JM
1235 /*
1236 * A previous I/O error may have been due to temporary
1237 * failures, eg. multipath errors.
1238 * PG_error will be set again if readpage fails.
1239 */
1240 ClearPageError(page);
1da177e4
LT
1241 /* Start the actual read. The read will unlock the page. */
1242 error = mapping->a_ops->readpage(filp, page);
1243
994fc28c
ZB
1244 if (unlikely(error)) {
1245 if (error == AOP_TRUNCATED_PAGE) {
1246 page_cache_release(page);
1247 goto find_page;
1248 }
1da177e4 1249 goto readpage_error;
994fc28c 1250 }
1da177e4
LT
1251
1252 if (!PageUptodate(page)) {
85462323
ON
1253 error = lock_page_killable(page);
1254 if (unlikely(error))
1255 goto readpage_error;
1da177e4
LT
1256 if (!PageUptodate(page)) {
1257 if (page->mapping == NULL) {
1258 /*
2ecdc82e 1259 * invalidate_mapping_pages got it
1da177e4
LT
1260 */
1261 unlock_page(page);
1262 page_cache_release(page);
1263 goto find_page;
1264 }
1265 unlock_page(page);
7ff81078 1266 shrink_readahead_size_eio(filp, ra);
85462323
ON
1267 error = -EIO;
1268 goto readpage_error;
1da177e4
LT
1269 }
1270 unlock_page(page);
1271 }
1272
1da177e4
LT
1273 goto page_ok;
1274
1275readpage_error:
1276 /* UHHUH! A synchronous read error occurred. Report it */
1277 desc->error = error;
1278 page_cache_release(page);
1279 goto out;
1280
1281no_cached_page:
1282 /*
1283 * Ok, it wasn't cached, so we need to create a new
1284 * page..
1285 */
eb2be189
NP
1286 page = page_cache_alloc_cold(mapping);
1287 if (!page) {
1288 desc->error = -ENOMEM;
1289 goto out;
1da177e4 1290 }
eb2be189 1291 error = add_to_page_cache_lru(page, mapping,
1da177e4
LT
1292 index, GFP_KERNEL);
1293 if (error) {
eb2be189 1294 page_cache_release(page);
1da177e4
LT
1295 if (error == -EEXIST)
1296 goto find_page;
1297 desc->error = error;
1298 goto out;
1299 }
1da177e4
LT
1300 goto readpage;
1301 }
1302
1303out:
7ff81078
FW
1304 ra->prev_pos = prev_index;
1305 ra->prev_pos <<= PAGE_CACHE_SHIFT;
1306 ra->prev_pos |= prev_offset;
1da177e4 1307
f4e6b498 1308 *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
0c6aa263 1309 file_accessed(filp);
1da177e4 1310}
1da177e4
LT
1311
1312int file_read_actor(read_descriptor_t *desc, struct page *page,
1313 unsigned long offset, unsigned long size)
1314{
1315 char *kaddr;
1316 unsigned long left, count = desc->count;
1317
1318 if (size > count)
1319 size = count;
1320
1321 /*
1322 * Faults on the destination of a read are common, so do it before
1323 * taking the kmap.
1324 */
1325 if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1326 kaddr = kmap_atomic(page, KM_USER0);
1327 left = __copy_to_user_inatomic(desc->arg.buf,
1328 kaddr + offset, size);
1329 kunmap_atomic(kaddr, KM_USER0);
1330 if (left == 0)
1331 goto success;
1332 }
1333
1334 /* Do it the slow way */
1335 kaddr = kmap(page);
1336 left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1337 kunmap(page);
1338
1339 if (left) {
1340 size -= left;
1341 desc->error = -EFAULT;
1342 }
1343success:
1344 desc->count = count - size;
1345 desc->written += size;
1346 desc->arg.buf += size;
1347 return size;
1348}
1349
0ceb3314
DM
1350/*
1351 * Performs necessary checks before doing a write
1352 * @iov: io vector request
1353 * @nr_segs: number of segments in the iovec
1354 * @count: number of bytes to write
1355 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1356 *
1357 * Adjust number of segments and amount of bytes to write (nr_segs should be
1358 * properly initialized first). Returns appropriate error code that caller
1359 * should return or zero in case that write should be allowed.
1360 */
1361int generic_segment_checks(const struct iovec *iov,
1362 unsigned long *nr_segs, size_t *count, int access_flags)
1363{
1364 unsigned long seg;
1365 size_t cnt = 0;
1366 for (seg = 0; seg < *nr_segs; seg++) {
1367 const struct iovec *iv = &iov[seg];
1368
1369 /*
1370 * If any segment has a negative length, or the cumulative
1371 * length ever wraps negative then return -EINVAL.
1372 */
1373 cnt += iv->iov_len;
1374 if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1375 return -EINVAL;
1376 if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1377 continue;
1378 if (seg == 0)
1379 return -EFAULT;
1380 *nr_segs = seg;
1381 cnt -= iv->iov_len; /* This segment is no good */
1382 break;
1383 }
1384 *count = cnt;
1385 return 0;
1386}
1387EXPORT_SYMBOL(generic_segment_checks);
1388
485bb99b 1389/**
b2abacf3 1390 * generic_file_aio_read - generic filesystem read routine
485bb99b
RD
1391 * @iocb: kernel I/O control block
1392 * @iov: io vector request
1393 * @nr_segs: number of segments in the iovec
b2abacf3 1394 * @pos: current file position
485bb99b 1395 *
1da177e4
LT
1396 * This is the "read()" routine for all filesystems
1397 * that can use the page cache directly.
1398 */
1399ssize_t
543ade1f
BP
1400generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1401 unsigned long nr_segs, loff_t pos)
1da177e4
LT
1402{
1403 struct file *filp = iocb->ki_filp;
1404 ssize_t retval;
66f998f6 1405 unsigned long seg = 0;
1da177e4 1406 size_t count;
543ade1f 1407 loff_t *ppos = &iocb->ki_pos;
55602dd6 1408 struct blk_plug plug;
1da177e4
LT
1409
1410 count = 0;
0ceb3314
DM
1411 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1412 if (retval)
1413 return retval;
1da177e4 1414
55602dd6
JA
1415 blk_start_plug(&plug);
1416
1da177e4
LT
1417 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1418 if (filp->f_flags & O_DIRECT) {
543ade1f 1419 loff_t size;
1da177e4
LT
1420 struct address_space *mapping;
1421 struct inode *inode;
1422
1423 mapping = filp->f_mapping;
1424 inode = mapping->host;
1da177e4
LT
1425 if (!count)
1426 goto out; /* skip atime */
1427 size = i_size_read(inode);
1428 if (pos < size) {
48b47c56
NP
1429 retval = filemap_write_and_wait_range(mapping, pos,
1430 pos + iov_length(iov, nr_segs) - 1);
a969e903
CH
1431 if (!retval) {
1432 retval = mapping->a_ops->direct_IO(READ, iocb,
1433 iov, pos, nr_segs);
1434 }
66f998f6 1435 if (retval > 0) {
1da177e4 1436 *ppos = pos + retval;
66f998f6
JB
1437 count -= retval;
1438 }
1439
1440 /*
1441 * Btrfs can have a short DIO read if we encounter
1442 * compressed extents, so if there was an error, or if
1443 * we've already read everything we wanted to, or if
1444 * there was a short read because we hit EOF, go ahead
1445 * and return. Otherwise fallthrough to buffered io for
1446 * the rest of the read.
1447 */
1448 if (retval < 0 || !count || *ppos >= size) {
11fa977e
HD
1449 file_accessed(filp);
1450 goto out;
1451 }
0e0bcae3 1452 }
1da177e4
LT
1453 }
1454
66f998f6 1455 count = retval;
11fa977e
HD
1456 for (seg = 0; seg < nr_segs; seg++) {
1457 read_descriptor_t desc;
66f998f6
JB
1458 loff_t offset = 0;
1459
1460 /*
1461 * If we did a short DIO read we need to skip the section of the
1462 * iov that we've already read data into.
1463 */
1464 if (count) {
1465 if (count > iov[seg].iov_len) {
1466 count -= iov[seg].iov_len;
1467 continue;
1468 }
1469 offset = count;
1470 count = 0;
1471 }
1da177e4 1472
11fa977e 1473 desc.written = 0;
66f998f6
JB
1474 desc.arg.buf = iov[seg].iov_base + offset;
1475 desc.count = iov[seg].iov_len - offset;
11fa977e
HD
1476 if (desc.count == 0)
1477 continue;
1478 desc.error = 0;
1479 do_generic_file_read(filp, ppos, &desc, file_read_actor);
1480 retval += desc.written;
1481 if (desc.error) {
1482 retval = retval ?: desc.error;
1483 break;
1da177e4 1484 }
11fa977e
HD
1485 if (desc.count > 0)
1486 break;
1da177e4
LT
1487 }
1488out:
55602dd6 1489 blk_finish_plug(&plug);
1da177e4
LT
1490 return retval;
1491}
1da177e4
LT
1492EXPORT_SYMBOL(generic_file_aio_read);
1493
1da177e4
LT
1494static ssize_t
1495do_readahead(struct address_space *mapping, struct file *filp,
57f6b96c 1496 pgoff_t index, unsigned long nr)
1da177e4
LT
1497{
1498 if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1499 return -EINVAL;
1500
f7e839dd 1501 force_page_cache_readahead(mapping, filp, index, nr);
1da177e4
LT
1502 return 0;
1503}
1504
6673e0c3 1505SYSCALL_DEFINE(readahead)(int fd, loff_t offset, size_t count)
1da177e4
LT
1506{
1507 ssize_t ret;
1508 struct file *file;
1509
1510 ret = -EBADF;
1511 file = fget(fd);
1512 if (file) {
1513 if (file->f_mode & FMODE_READ) {
1514 struct address_space *mapping = file->f_mapping;
57f6b96c
FW
1515 pgoff_t start = offset >> PAGE_CACHE_SHIFT;
1516 pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1da177e4
LT
1517 unsigned long len = end - start + 1;
1518 ret = do_readahead(mapping, file, start, len);
1519 }
1520 fput(file);
1521 }
1522 return ret;
1523}
6673e0c3
HC
1524#ifdef CONFIG_HAVE_SYSCALL_WRAPPERS
1525asmlinkage long SyS_readahead(long fd, loff_t offset, long count)
1526{
1527 return SYSC_readahead((int) fd, offset, (size_t) count);
1528}
1529SYSCALL_ALIAS(sys_readahead, SyS_readahead);
1530#endif
1da177e4
LT
1531
1532#ifdef CONFIG_MMU
485bb99b
RD
1533/**
1534 * page_cache_read - adds requested page to the page cache if not already there
1535 * @file: file to read
1536 * @offset: page index
1537 *
1da177e4
LT
1538 * This adds the requested page to the page cache if it isn't already there,
1539 * and schedules an I/O to read in its contents from disk.
1540 */
920c7a5d 1541static int page_cache_read(struct file *file, pgoff_t offset)
1da177e4
LT
1542{
1543 struct address_space *mapping = file->f_mapping;
1544 struct page *page;
994fc28c 1545 int ret;
1da177e4 1546
994fc28c
ZB
1547 do {
1548 page = page_cache_alloc_cold(mapping);
1549 if (!page)
1550 return -ENOMEM;
1551
1552 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1553 if (ret == 0)
1554 ret = mapping->a_ops->readpage(file, page);
1555 else if (ret == -EEXIST)
1556 ret = 0; /* losing race to add is OK */
1da177e4 1557
1da177e4 1558 page_cache_release(page);
1da177e4 1559
994fc28c
ZB
1560 } while (ret == AOP_TRUNCATED_PAGE);
1561
1562 return ret;
1da177e4
LT
1563}
1564
1565#define MMAP_LOTSAMISS (100)
1566
ef00e08e
LT
1567/*
1568 * Synchronous readahead happens when we don't even find
1569 * a page in the page cache at all.
1570 */
1571static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1572 struct file_ra_state *ra,
1573 struct file *file,
1574 pgoff_t offset)
1575{
1576 unsigned long ra_pages;
1577 struct address_space *mapping = file->f_mapping;
1578
1579 /* If we don't want any read-ahead, don't bother */
1580 if (VM_RandomReadHint(vma))
1581 return;
275b12bf
WF
1582 if (!ra->ra_pages)
1583 return;
ef00e08e 1584
2cbea1d3 1585 if (VM_SequentialReadHint(vma)) {
7ffc59b4
WF
1586 page_cache_sync_readahead(mapping, ra, file, offset,
1587 ra->ra_pages);
ef00e08e
LT
1588 return;
1589 }
1590
207d04ba
AK
1591 /* Avoid banging the cache line if not needed */
1592 if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
ef00e08e
LT
1593 ra->mmap_miss++;
1594
1595 /*
1596 * Do we miss much more than hit in this file? If so,
1597 * stop bothering with read-ahead. It will only hurt.
1598 */
1599 if (ra->mmap_miss > MMAP_LOTSAMISS)
1600 return;
1601
d30a1100
WF
1602 /*
1603 * mmap read-around
1604 */
ef00e08e 1605 ra_pages = max_sane_readahead(ra->ra_pages);
275b12bf
WF
1606 ra->start = max_t(long, 0, offset - ra_pages / 2);
1607 ra->size = ra_pages;
2cbea1d3 1608 ra->async_size = ra_pages / 4;
275b12bf 1609 ra_submit(ra, mapping, file);
ef00e08e
LT
1610}
1611
1612/*
1613 * Asynchronous readahead happens when we find the page and PG_readahead,
1614 * so we want to possibly extend the readahead further..
1615 */
1616static void do_async_mmap_readahead(struct vm_area_struct *vma,
1617 struct file_ra_state *ra,
1618 struct file *file,
1619 struct page *page,
1620 pgoff_t offset)
1621{
1622 struct address_space *mapping = file->f_mapping;
1623
1624 /* If we don't want any read-ahead, don't bother */
1625 if (VM_RandomReadHint(vma))
1626 return;
1627 if (ra->mmap_miss > 0)
1628 ra->mmap_miss--;
1629 if (PageReadahead(page))
2fad6f5d
WF
1630 page_cache_async_readahead(mapping, ra, file,
1631 page, offset, ra->ra_pages);
ef00e08e
LT
1632}
1633
485bb99b 1634/**
54cb8821 1635 * filemap_fault - read in file data for page fault handling
d0217ac0
NP
1636 * @vma: vma in which the fault was taken
1637 * @vmf: struct vm_fault containing details of the fault
485bb99b 1638 *
54cb8821 1639 * filemap_fault() is invoked via the vma operations vector for a
1da177e4
LT
1640 * mapped memory region to read in file data during a page fault.
1641 *
1642 * The goto's are kind of ugly, but this streamlines the normal case of having
1643 * it in the page cache, and handles the special cases reasonably without
1644 * having a lot of duplicated code.
1645 */
d0217ac0 1646int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1da177e4
LT
1647{
1648 int error;
54cb8821 1649 struct file *file = vma->vm_file;
1da177e4
LT
1650 struct address_space *mapping = file->f_mapping;
1651 struct file_ra_state *ra = &file->f_ra;
1652 struct inode *inode = mapping->host;
ef00e08e 1653 pgoff_t offset = vmf->pgoff;
1da177e4 1654 struct page *page;
2004dc8e 1655 pgoff_t size;
83c54070 1656 int ret = 0;
1da177e4 1657
1da177e4 1658 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
ef00e08e 1659 if (offset >= size)
5307cc1a 1660 return VM_FAULT_SIGBUS;
1da177e4 1661
1da177e4
LT
1662 /*
1663 * Do we have something in the page cache already?
1664 */
ef00e08e
LT
1665 page = find_get_page(mapping, offset);
1666 if (likely(page)) {
1da177e4 1667 /*
ef00e08e
LT
1668 * We found the page, so try async readahead before
1669 * waiting for the lock.
1da177e4 1670 */
ef00e08e 1671 do_async_mmap_readahead(vma, ra, file, page, offset);
ef00e08e
LT
1672 } else {
1673 /* No page in the page cache at all */
1674 do_sync_mmap_readahead(vma, ra, file, offset);
1675 count_vm_event(PGMAJFAULT);
456f998e 1676 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
ef00e08e
LT
1677 ret = VM_FAULT_MAJOR;
1678retry_find:
b522c94d 1679 page = find_get_page(mapping, offset);
1da177e4
LT
1680 if (!page)
1681 goto no_cached_page;
1682 }
1683
d88c0922
ML
1684 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
1685 page_cache_release(page);
d065bd81 1686 return ret | VM_FAULT_RETRY;
d88c0922 1687 }
b522c94d
ML
1688
1689 /* Did it get truncated? */
1690 if (unlikely(page->mapping != mapping)) {
1691 unlock_page(page);
1692 put_page(page);
1693 goto retry_find;
1694 }
1695 VM_BUG_ON(page->index != offset);
1696
1da177e4 1697 /*
d00806b1
NP
1698 * We have a locked page in the page cache, now we need to check
1699 * that it's up-to-date. If not, it is going to be due to an error.
1da177e4 1700 */
d00806b1 1701 if (unlikely(!PageUptodate(page)))
1da177e4
LT
1702 goto page_not_uptodate;
1703
ef00e08e
LT
1704 /*
1705 * Found the page and have a reference on it.
1706 * We must recheck i_size under page lock.
1707 */
d00806b1 1708 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
ef00e08e 1709 if (unlikely(offset >= size)) {
d00806b1 1710 unlock_page(page);
745ad48e 1711 page_cache_release(page);
5307cc1a 1712 return VM_FAULT_SIGBUS;
d00806b1
NP
1713 }
1714
d0217ac0 1715 vmf->page = page;
83c54070 1716 return ret | VM_FAULT_LOCKED;
1da177e4 1717
1da177e4
LT
1718no_cached_page:
1719 /*
1720 * We're only likely to ever get here if MADV_RANDOM is in
1721 * effect.
1722 */
ef00e08e 1723 error = page_cache_read(file, offset);
1da177e4
LT
1724
1725 /*
1726 * The page we want has now been added to the page cache.
1727 * In the unlikely event that someone removed it in the
1728 * meantime, we'll just come back here and read it again.
1729 */
1730 if (error >= 0)
1731 goto retry_find;
1732
1733 /*
1734 * An error return from page_cache_read can result if the
1735 * system is low on memory, or a problem occurs while trying
1736 * to schedule I/O.
1737 */
1738 if (error == -ENOMEM)
d0217ac0
NP
1739 return VM_FAULT_OOM;
1740 return VM_FAULT_SIGBUS;
1da177e4
LT
1741
1742page_not_uptodate:
1da177e4
LT
1743 /*
1744 * Umm, take care of errors if the page isn't up-to-date.
1745 * Try to re-read it _once_. We do this synchronously,
1746 * because there really aren't any performance issues here
1747 * and we need to check for errors.
1748 */
1da177e4 1749 ClearPageError(page);
994fc28c 1750 error = mapping->a_ops->readpage(file, page);
3ef0f720
MS
1751 if (!error) {
1752 wait_on_page_locked(page);
1753 if (!PageUptodate(page))
1754 error = -EIO;
1755 }
d00806b1
NP
1756 page_cache_release(page);
1757
1758 if (!error || error == AOP_TRUNCATED_PAGE)
994fc28c 1759 goto retry_find;
1da177e4 1760
d00806b1 1761 /* Things didn't work out. Return zero to tell the mm layer so. */
76d42bd9 1762 shrink_readahead_size_eio(file, ra);
d0217ac0 1763 return VM_FAULT_SIGBUS;
54cb8821
NP
1764}
1765EXPORT_SYMBOL(filemap_fault);
1766
f0f37e2f 1767const struct vm_operations_struct generic_file_vm_ops = {
54cb8821 1768 .fault = filemap_fault,
1da177e4
LT
1769};
1770
1771/* This is used for a general mmap of a disk file */
1772
1773int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1774{
1775 struct address_space *mapping = file->f_mapping;
1776
1777 if (!mapping->a_ops->readpage)
1778 return -ENOEXEC;
1779 file_accessed(file);
1780 vma->vm_ops = &generic_file_vm_ops;
d0217ac0 1781 vma->vm_flags |= VM_CAN_NONLINEAR;
1da177e4
LT
1782 return 0;
1783}
1da177e4
LT
1784
1785/*
1786 * This is for filesystems which do not implement ->writepage.
1787 */
1788int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1789{
1790 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1791 return -EINVAL;
1792 return generic_file_mmap(file, vma);
1793}
1794#else
1795int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1796{
1797 return -ENOSYS;
1798}
1799int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1800{
1801 return -ENOSYS;
1802}
1803#endif /* CONFIG_MMU */
1804
1805EXPORT_SYMBOL(generic_file_mmap);
1806EXPORT_SYMBOL(generic_file_readonly_mmap);
1807
6fe6900e 1808static struct page *__read_cache_page(struct address_space *mapping,
57f6b96c 1809 pgoff_t index,
5e5358e7 1810 int (*filler)(void *, struct page *),
0531b2aa
LT
1811 void *data,
1812 gfp_t gfp)
1da177e4 1813{
eb2be189 1814 struct page *page;
1da177e4
LT
1815 int err;
1816repeat:
1817 page = find_get_page(mapping, index);
1818 if (!page) {
0531b2aa 1819 page = __page_cache_alloc(gfp | __GFP_COLD);
eb2be189
NP
1820 if (!page)
1821 return ERR_PTR(-ENOMEM);
1822 err = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
1823 if (unlikely(err)) {
1824 page_cache_release(page);
1825 if (err == -EEXIST)
1826 goto repeat;
1da177e4 1827 /* Presumably ENOMEM for radix tree node */
1da177e4
LT
1828 return ERR_PTR(err);
1829 }
1da177e4
LT
1830 err = filler(data, page);
1831 if (err < 0) {
1832 page_cache_release(page);
1833 page = ERR_PTR(err);
1834 }
1835 }
1da177e4
LT
1836 return page;
1837}
1838
0531b2aa 1839static struct page *do_read_cache_page(struct address_space *mapping,
57f6b96c 1840 pgoff_t index,
5e5358e7 1841 int (*filler)(void *, struct page *),
0531b2aa
LT
1842 void *data,
1843 gfp_t gfp)
1844
1da177e4
LT
1845{
1846 struct page *page;
1847 int err;
1848
1849retry:
0531b2aa 1850 page = __read_cache_page(mapping, index, filler, data, gfp);
1da177e4 1851 if (IS_ERR(page))
c855ff37 1852 return page;
1da177e4
LT
1853 if (PageUptodate(page))
1854 goto out;
1855
1856 lock_page(page);
1857 if (!page->mapping) {
1858 unlock_page(page);
1859 page_cache_release(page);
1860 goto retry;
1861 }
1862 if (PageUptodate(page)) {
1863 unlock_page(page);
1864 goto out;
1865 }
1866 err = filler(data, page);
1867 if (err < 0) {
1868 page_cache_release(page);
c855ff37 1869 return ERR_PTR(err);
1da177e4 1870 }
c855ff37 1871out:
6fe6900e
NP
1872 mark_page_accessed(page);
1873 return page;
1874}
0531b2aa
LT
1875
1876/**
1877 * read_cache_page_async - read into page cache, fill it if needed
1878 * @mapping: the page's address_space
1879 * @index: the page index
1880 * @filler: function to perform the read
5e5358e7 1881 * @data: first arg to filler(data, page) function, often left as NULL
0531b2aa
LT
1882 *
1883 * Same as read_cache_page, but don't wait for page to become unlocked
1884 * after submitting it to the filler.
1885 *
1886 * Read into the page cache. If a page already exists, and PageUptodate() is
1887 * not set, try to fill the page but don't wait for it to become unlocked.
1888 *
1889 * If the page does not get brought uptodate, return -EIO.
1890 */
1891struct page *read_cache_page_async(struct address_space *mapping,
1892 pgoff_t index,
5e5358e7 1893 int (*filler)(void *, struct page *),
0531b2aa
LT
1894 void *data)
1895{
1896 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
1897}
6fe6900e
NP
1898EXPORT_SYMBOL(read_cache_page_async);
1899
0531b2aa
LT
1900static struct page *wait_on_page_read(struct page *page)
1901{
1902 if (!IS_ERR(page)) {
1903 wait_on_page_locked(page);
1904 if (!PageUptodate(page)) {
1905 page_cache_release(page);
1906 page = ERR_PTR(-EIO);
1907 }
1908 }
1909 return page;
1910}
1911
1912/**
1913 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
1914 * @mapping: the page's address_space
1915 * @index: the page index
1916 * @gfp: the page allocator flags to use if allocating
1917 *
1918 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
1919 * any new page allocations done using the specified allocation flags. Note
1920 * that the Radix tree operations will still use GFP_KERNEL, so you can't
1921 * expect to do this atomically or anything like that - but you can pass in
1922 * other page requirements.
1923 *
1924 * If the page does not get brought uptodate, return -EIO.
1925 */
1926struct page *read_cache_page_gfp(struct address_space *mapping,
1927 pgoff_t index,
1928 gfp_t gfp)
1929{
1930 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
1931
1932 return wait_on_page_read(do_read_cache_page(mapping, index, filler, NULL, gfp));
1933}
1934EXPORT_SYMBOL(read_cache_page_gfp);
1935
6fe6900e
NP
1936/**
1937 * read_cache_page - read into page cache, fill it if needed
1938 * @mapping: the page's address_space
1939 * @index: the page index
1940 * @filler: function to perform the read
5e5358e7 1941 * @data: first arg to filler(data, page) function, often left as NULL
6fe6900e
NP
1942 *
1943 * Read into the page cache. If a page already exists, and PageUptodate() is
1944 * not set, try to fill the page then wait for it to become unlocked.
1945 *
1946 * If the page does not get brought uptodate, return -EIO.
1947 */
1948struct page *read_cache_page(struct address_space *mapping,
57f6b96c 1949 pgoff_t index,
5e5358e7 1950 int (*filler)(void *, struct page *),
6fe6900e
NP
1951 void *data)
1952{
0531b2aa 1953 return wait_on_page_read(read_cache_page_async(mapping, index, filler, data));
1da177e4 1954}
1da177e4
LT
1955EXPORT_SYMBOL(read_cache_page);
1956
1da177e4
LT
1957/*
1958 * The logic we want is
1959 *
1960 * if suid or (sgid and xgrp)
1961 * remove privs
1962 */
01de85e0 1963int should_remove_suid(struct dentry *dentry)
1da177e4
LT
1964{
1965 mode_t mode = dentry->d_inode->i_mode;
1966 int kill = 0;
1da177e4
LT
1967
1968 /* suid always must be killed */
1969 if (unlikely(mode & S_ISUID))
1970 kill = ATTR_KILL_SUID;
1971
1972 /*
1973 * sgid without any exec bits is just a mandatory locking mark; leave
1974 * it alone. If some exec bits are set, it's a real sgid; kill it.
1975 */
1976 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1977 kill |= ATTR_KILL_SGID;
1978
7f5ff766 1979 if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
01de85e0 1980 return kill;
1da177e4 1981
01de85e0
JA
1982 return 0;
1983}
d23a147b 1984EXPORT_SYMBOL(should_remove_suid);
01de85e0 1985
7f3d4ee1 1986static int __remove_suid(struct dentry *dentry, int kill)
01de85e0
JA
1987{
1988 struct iattr newattrs;
1989
1990 newattrs.ia_valid = ATTR_FORCE | kill;
1991 return notify_change(dentry, &newattrs);
1992}
1993
2f1936b8 1994int file_remove_suid(struct file *file)
01de85e0 1995{
2f1936b8 1996 struct dentry *dentry = file->f_path.dentry;
69b45732
AK
1997 struct inode *inode = dentry->d_inode;
1998 int killsuid;
1999 int killpriv;
b5376771 2000 int error = 0;
01de85e0 2001
69b45732
AK
2002 /* Fast path for nothing security related */
2003 if (IS_NOSEC(inode))
2004 return 0;
2005
2006 killsuid = should_remove_suid(dentry);
2007 killpriv = security_inode_need_killpriv(dentry);
2008
b5376771
SH
2009 if (killpriv < 0)
2010 return killpriv;
2011 if (killpriv)
2012 error = security_inode_killpriv(dentry);
2013 if (!error && killsuid)
2014 error = __remove_suid(dentry, killsuid);
9e1f1de0 2015 if (!error && (inode->i_sb->s_flags & MS_NOSEC))
69b45732 2016 inode->i_flags |= S_NOSEC;
01de85e0 2017
b5376771 2018 return error;
1da177e4 2019}
2f1936b8 2020EXPORT_SYMBOL(file_remove_suid);
1da177e4 2021
2f718ffc 2022static size_t __iovec_copy_from_user_inatomic(char *vaddr,
1da177e4
LT
2023 const struct iovec *iov, size_t base, size_t bytes)
2024{
f1800536 2025 size_t copied = 0, left = 0;
1da177e4
LT
2026
2027 while (bytes) {
2028 char __user *buf = iov->iov_base + base;
2029 int copy = min(bytes, iov->iov_len - base);
2030
2031 base = 0;
f1800536 2032 left = __copy_from_user_inatomic(vaddr, buf, copy);
1da177e4
LT
2033 copied += copy;
2034 bytes -= copy;
2035 vaddr += copy;
2036 iov++;
2037
01408c49 2038 if (unlikely(left))
1da177e4 2039 break;
1da177e4
LT
2040 }
2041 return copied - left;
2042}
2043
2f718ffc
NP
2044/*
2045 * Copy as much as we can into the page and return the number of bytes which
af901ca1 2046 * were successfully copied. If a fault is encountered then return the number of
2f718ffc
NP
2047 * bytes which were copied.
2048 */
2049size_t iov_iter_copy_from_user_atomic(struct page *page,
2050 struct iov_iter *i, unsigned long offset, size_t bytes)
2051{
2052 char *kaddr;
2053 size_t copied;
2054
2055 BUG_ON(!in_atomic());
2056 kaddr = kmap_atomic(page, KM_USER0);
2057 if (likely(i->nr_segs == 1)) {
2058 int left;
2059 char __user *buf = i->iov->iov_base + i->iov_offset;
f1800536 2060 left = __copy_from_user_inatomic(kaddr + offset, buf, bytes);
2f718ffc
NP
2061 copied = bytes - left;
2062 } else {
2063 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
2064 i->iov, i->iov_offset, bytes);
2065 }
2066 kunmap_atomic(kaddr, KM_USER0);
2067
2068 return copied;
2069}
89e10787 2070EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
2f718ffc
NP
2071
2072/*
2073 * This has the same sideeffects and return value as
2074 * iov_iter_copy_from_user_atomic().
2075 * The difference is that it attempts to resolve faults.
2076 * Page must not be locked.
2077 */
2078size_t iov_iter_copy_from_user(struct page *page,
2079 struct iov_iter *i, unsigned long offset, size_t bytes)
2080{
2081 char *kaddr;
2082 size_t copied;
2083
2084 kaddr = kmap(page);
2085 if (likely(i->nr_segs == 1)) {
2086 int left;
2087 char __user *buf = i->iov->iov_base + i->iov_offset;
f1800536 2088 left = __copy_from_user(kaddr + offset, buf, bytes);
2f718ffc
NP
2089 copied = bytes - left;
2090 } else {
2091 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
2092 i->iov, i->iov_offset, bytes);
2093 }
2094 kunmap(page);
2095 return copied;
2096}
89e10787 2097EXPORT_SYMBOL(iov_iter_copy_from_user);
2f718ffc 2098
f7009264 2099void iov_iter_advance(struct iov_iter *i, size_t bytes)
2f718ffc 2100{
f7009264
NP
2101 BUG_ON(i->count < bytes);
2102
2f718ffc
NP
2103 if (likely(i->nr_segs == 1)) {
2104 i->iov_offset += bytes;
f7009264 2105 i->count -= bytes;
2f718ffc
NP
2106 } else {
2107 const struct iovec *iov = i->iov;
2108 size_t base = i->iov_offset;
2109
124d3b70
NP
2110 /*
2111 * The !iov->iov_len check ensures we skip over unlikely
f7009264 2112 * zero-length segments (without overruning the iovec).
124d3b70 2113 */
94ad374a 2114 while (bytes || unlikely(i->count && !iov->iov_len)) {
f7009264 2115 int copy;
2f718ffc 2116
f7009264
NP
2117 copy = min(bytes, iov->iov_len - base);
2118 BUG_ON(!i->count || i->count < copy);
2119 i->count -= copy;
2f718ffc
NP
2120 bytes -= copy;
2121 base += copy;
2122 if (iov->iov_len == base) {
2123 iov++;
2124 base = 0;
2125 }
2126 }
2127 i->iov = iov;
2128 i->iov_offset = base;
2129 }
2130}
89e10787 2131EXPORT_SYMBOL(iov_iter_advance);
2f718ffc 2132
afddba49
NP
2133/*
2134 * Fault in the first iovec of the given iov_iter, to a maximum length
2135 * of bytes. Returns 0 on success, or non-zero if the memory could not be
2136 * accessed (ie. because it is an invalid address).
2137 *
2138 * writev-intensive code may want this to prefault several iovecs -- that
2139 * would be possible (callers must not rely on the fact that _only_ the
2140 * first iovec will be faulted with the current implementation).
2141 */
2142int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
2f718ffc 2143{
2f718ffc 2144 char __user *buf = i->iov->iov_base + i->iov_offset;
afddba49
NP
2145 bytes = min(bytes, i->iov->iov_len - i->iov_offset);
2146 return fault_in_pages_readable(buf, bytes);
2f718ffc 2147}
89e10787 2148EXPORT_SYMBOL(iov_iter_fault_in_readable);
2f718ffc
NP
2149
2150/*
2151 * Return the count of just the current iov_iter segment.
2152 */
2153size_t iov_iter_single_seg_count(struct iov_iter *i)
2154{
2155 const struct iovec *iov = i->iov;
2156 if (i->nr_segs == 1)
2157 return i->count;
2158 else
2159 return min(i->count, iov->iov_len - i->iov_offset);
2160}
89e10787 2161EXPORT_SYMBOL(iov_iter_single_seg_count);
2f718ffc 2162
1da177e4
LT
2163/*
2164 * Performs necessary checks before doing a write
2165 *
485bb99b 2166 * Can adjust writing position or amount of bytes to write.
1da177e4
LT
2167 * Returns appropriate error code that caller should return or
2168 * zero in case that write should be allowed.
2169 */
2170inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
2171{
2172 struct inode *inode = file->f_mapping->host;
59e99e5b 2173 unsigned long limit = rlimit(RLIMIT_FSIZE);
1da177e4
LT
2174
2175 if (unlikely(*pos < 0))
2176 return -EINVAL;
2177
1da177e4
LT
2178 if (!isblk) {
2179 /* FIXME: this is for backwards compatibility with 2.4 */
2180 if (file->f_flags & O_APPEND)
2181 *pos = i_size_read(inode);
2182
2183 if (limit != RLIM_INFINITY) {
2184 if (*pos >= limit) {
2185 send_sig(SIGXFSZ, current, 0);
2186 return -EFBIG;
2187 }
2188 if (*count > limit - (typeof(limit))*pos) {
2189 *count = limit - (typeof(limit))*pos;
2190 }
2191 }
2192 }
2193
2194 /*
2195 * LFS rule
2196 */
2197 if (unlikely(*pos + *count > MAX_NON_LFS &&
2198 !(file->f_flags & O_LARGEFILE))) {
2199 if (*pos >= MAX_NON_LFS) {
1da177e4
LT
2200 return -EFBIG;
2201 }
2202 if (*count > MAX_NON_LFS - (unsigned long)*pos) {
2203 *count = MAX_NON_LFS - (unsigned long)*pos;
2204 }
2205 }
2206
2207 /*
2208 * Are we about to exceed the fs block limit ?
2209 *
2210 * If we have written data it becomes a short write. If we have
2211 * exceeded without writing data we send a signal and return EFBIG.
2212 * Linus frestrict idea will clean these up nicely..
2213 */
2214 if (likely(!isblk)) {
2215 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
2216 if (*count || *pos > inode->i_sb->s_maxbytes) {
1da177e4
LT
2217 return -EFBIG;
2218 }
2219 /* zero-length writes at ->s_maxbytes are OK */
2220 }
2221
2222 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2223 *count = inode->i_sb->s_maxbytes - *pos;
2224 } else {
9361401e 2225#ifdef CONFIG_BLOCK
1da177e4
LT
2226 loff_t isize;
2227 if (bdev_read_only(I_BDEV(inode)))
2228 return -EPERM;
2229 isize = i_size_read(inode);
2230 if (*pos >= isize) {
2231 if (*count || *pos > isize)
2232 return -ENOSPC;
2233 }
2234
2235 if (*pos + *count > isize)
2236 *count = isize - *pos;
9361401e
DH
2237#else
2238 return -EPERM;
2239#endif
1da177e4
LT
2240 }
2241 return 0;
2242}
2243EXPORT_SYMBOL(generic_write_checks);
2244
afddba49
NP
2245int pagecache_write_begin(struct file *file, struct address_space *mapping,
2246 loff_t pos, unsigned len, unsigned flags,
2247 struct page **pagep, void **fsdata)
2248{
2249 const struct address_space_operations *aops = mapping->a_ops;
2250
4e02ed4b 2251 return aops->write_begin(file, mapping, pos, len, flags,
afddba49 2252 pagep, fsdata);
afddba49
NP
2253}
2254EXPORT_SYMBOL(pagecache_write_begin);
2255
2256int pagecache_write_end(struct file *file, struct address_space *mapping,
2257 loff_t pos, unsigned len, unsigned copied,
2258 struct page *page, void *fsdata)
2259{
2260 const struct address_space_operations *aops = mapping->a_ops;
afddba49 2261
4e02ed4b
NP
2262 mark_page_accessed(page);
2263 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
afddba49
NP
2264}
2265EXPORT_SYMBOL(pagecache_write_end);
2266
1da177e4
LT
2267ssize_t
2268generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
2269 unsigned long *nr_segs, loff_t pos, loff_t *ppos,
2270 size_t count, size_t ocount)
2271{
2272 struct file *file = iocb->ki_filp;
2273 struct address_space *mapping = file->f_mapping;
2274 struct inode *inode = mapping->host;
2275 ssize_t written;
a969e903
CH
2276 size_t write_len;
2277 pgoff_t end;
1da177e4
LT
2278
2279 if (count != ocount)
2280 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2281
a969e903
CH
2282 write_len = iov_length(iov, *nr_segs);
2283 end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
a969e903 2284
48b47c56 2285 written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
a969e903
CH
2286 if (written)
2287 goto out;
2288
2289 /*
2290 * After a write we want buffered reads to be sure to go to disk to get
2291 * the new data. We invalidate clean cached page from the region we're
2292 * about to write. We do this *before* the write so that we can return
6ccfa806 2293 * without clobbering -EIOCBQUEUED from ->direct_IO().
a969e903
CH
2294 */
2295 if (mapping->nrpages) {
2296 written = invalidate_inode_pages2_range(mapping,
2297 pos >> PAGE_CACHE_SHIFT, end);
6ccfa806
HH
2298 /*
2299 * If a page can not be invalidated, return 0 to fall back
2300 * to buffered write.
2301 */
2302 if (written) {
2303 if (written == -EBUSY)
2304 return 0;
a969e903 2305 goto out;
6ccfa806 2306 }
a969e903
CH
2307 }
2308
2309 written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2310
2311 /*
2312 * Finally, try again to invalidate clean pages which might have been
2313 * cached by non-direct readahead, or faulted in by get_user_pages()
2314 * if the source of the write was an mmap'ed region of the file
2315 * we're writing. Either one is a pretty crazy thing to do,
2316 * so we don't support it 100%. If this invalidation
2317 * fails, tough, the write still worked...
2318 */
2319 if (mapping->nrpages) {
2320 invalidate_inode_pages2_range(mapping,
2321 pos >> PAGE_CACHE_SHIFT, end);
2322 }
2323
1da177e4 2324 if (written > 0) {
0116651c
NK
2325 pos += written;
2326 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2327 i_size_write(inode, pos);
1da177e4
LT
2328 mark_inode_dirty(inode);
2329 }
0116651c 2330 *ppos = pos;
1da177e4 2331 }
a969e903 2332out:
1da177e4
LT
2333 return written;
2334}
2335EXPORT_SYMBOL(generic_file_direct_write);
2336
eb2be189
NP
2337/*
2338 * Find or create a page at the given pagecache position. Return the locked
2339 * page. This function is specifically for buffered writes.
2340 */
54566b2c
NP
2341struct page *grab_cache_page_write_begin(struct address_space *mapping,
2342 pgoff_t index, unsigned flags)
eb2be189
NP
2343{
2344 int status;
2345 struct page *page;
54566b2c
NP
2346 gfp_t gfp_notmask = 0;
2347 if (flags & AOP_FLAG_NOFS)
2348 gfp_notmask = __GFP_FS;
eb2be189
NP
2349repeat:
2350 page = find_lock_page(mapping, index);
c585a267 2351 if (page)
3d08bcc8 2352 goto found;
eb2be189 2353
54566b2c 2354 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~gfp_notmask);
eb2be189
NP
2355 if (!page)
2356 return NULL;
54566b2c
NP
2357 status = add_to_page_cache_lru(page, mapping, index,
2358 GFP_KERNEL & ~gfp_notmask);
eb2be189
NP
2359 if (unlikely(status)) {
2360 page_cache_release(page);
2361 if (status == -EEXIST)
2362 goto repeat;
2363 return NULL;
2364 }
3d08bcc8
DW
2365found:
2366 wait_on_page_writeback(page);
eb2be189
NP
2367 return page;
2368}
54566b2c 2369EXPORT_SYMBOL(grab_cache_page_write_begin);
eb2be189 2370
afddba49
NP
2371static ssize_t generic_perform_write(struct file *file,
2372 struct iov_iter *i, loff_t pos)
2373{
2374 struct address_space *mapping = file->f_mapping;
2375 const struct address_space_operations *a_ops = mapping->a_ops;
2376 long status = 0;
2377 ssize_t written = 0;
674b892e
NP
2378 unsigned int flags = 0;
2379
2380 /*
2381 * Copies from kernel address space cannot fail (NFSD is a big user).
2382 */
2383 if (segment_eq(get_fs(), KERNEL_DS))
2384 flags |= AOP_FLAG_UNINTERRUPTIBLE;
afddba49
NP
2385
2386 do {
2387 struct page *page;
afddba49
NP
2388 unsigned long offset; /* Offset into pagecache page */
2389 unsigned long bytes; /* Bytes to write to page */
2390 size_t copied; /* Bytes copied from user */
2391 void *fsdata;
2392
2393 offset = (pos & (PAGE_CACHE_SIZE - 1));
afddba49
NP
2394 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2395 iov_iter_count(i));
2396
2397again:
2398
2399 /*
2400 * Bring in the user page that we will copy from _first_.
2401 * Otherwise there's a nasty deadlock on copying from the
2402 * same page as we're writing to, without it being marked
2403 * up-to-date.
2404 *
2405 * Not only is this an optimisation, but it is also required
2406 * to check that the address is actually valid, when atomic
2407 * usercopies are used, below.
2408 */
2409 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2410 status = -EFAULT;
2411 break;
2412 }
2413
674b892e 2414 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
afddba49
NP
2415 &page, &fsdata);
2416 if (unlikely(status))
2417 break;
2418
931e80e4 2419 if (mapping_writably_mapped(mapping))
2420 flush_dcache_page(page);
2421
afddba49
NP
2422 pagefault_disable();
2423 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2424 pagefault_enable();
2425 flush_dcache_page(page);
2426
c8236db9 2427 mark_page_accessed(page);
afddba49
NP
2428 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2429 page, fsdata);
2430 if (unlikely(status < 0))
2431 break;
2432 copied = status;
2433
2434 cond_resched();
2435
124d3b70 2436 iov_iter_advance(i, copied);
afddba49
NP
2437 if (unlikely(copied == 0)) {
2438 /*
2439 * If we were unable to copy any data at all, we must
2440 * fall back to a single segment length write.
2441 *
2442 * If we didn't fallback here, we could livelock
2443 * because not all segments in the iov can be copied at
2444 * once without a pagefault.
2445 */
2446 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2447 iov_iter_single_seg_count(i));
2448 goto again;
2449 }
afddba49
NP
2450 pos += copied;
2451 written += copied;
2452
2453 balance_dirty_pages_ratelimited(mapping);
2454
2455 } while (iov_iter_count(i));
2456
2457 return written ? written : status;
2458}
2459
2460ssize_t
2461generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2462 unsigned long nr_segs, loff_t pos, loff_t *ppos,
2463 size_t count, ssize_t written)
2464{
2465 struct file *file = iocb->ki_filp;
afddba49
NP
2466 ssize_t status;
2467 struct iov_iter i;
2468
2469 iov_iter_init(&i, iov, nr_segs, count, written);
4e02ed4b 2470 status = generic_perform_write(file, &i, pos);
1da177e4 2471
1da177e4 2472 if (likely(status >= 0)) {
afddba49
NP
2473 written += status;
2474 *ppos = pos + status;
1da177e4
LT
2475 }
2476
1da177e4
LT
2477 return written ? written : status;
2478}
2479EXPORT_SYMBOL(generic_file_buffered_write);
2480
e4dd9de3
JK
2481/**
2482 * __generic_file_aio_write - write data to a file
2483 * @iocb: IO state structure (file, offset, etc.)
2484 * @iov: vector with data to write
2485 * @nr_segs: number of segments in the vector
2486 * @ppos: position where to write
2487 *
2488 * This function does all the work needed for actually writing data to a
2489 * file. It does all basic checks, removes SUID from the file, updates
2490 * modification times and calls proper subroutines depending on whether we
2491 * do direct IO or a standard buffered write.
2492 *
2493 * It expects i_mutex to be grabbed unless we work on a block device or similar
2494 * object which does not need locking at all.
2495 *
2496 * This function does *not* take care of syncing data in case of O_SYNC write.
2497 * A caller has to handle it. This is mainly due to the fact that we want to
2498 * avoid syncing under i_mutex.
2499 */
2500ssize_t __generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2501 unsigned long nr_segs, loff_t *ppos)
1da177e4
LT
2502{
2503 struct file *file = iocb->ki_filp;
fb5527e6 2504 struct address_space * mapping = file->f_mapping;
1da177e4
LT
2505 size_t ocount; /* original count */
2506 size_t count; /* after file limit checks */
2507 struct inode *inode = mapping->host;
1da177e4
LT
2508 loff_t pos;
2509 ssize_t written;
2510 ssize_t err;
2511
2512 ocount = 0;
0ceb3314
DM
2513 err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2514 if (err)
2515 return err;
1da177e4
LT
2516
2517 count = ocount;
2518 pos = *ppos;
2519
2520 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2521
2522 /* We can write back this queue in page reclaim */
2523 current->backing_dev_info = mapping->backing_dev_info;
2524 written = 0;
2525
2526 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2527 if (err)
2528 goto out;
2529
2530 if (count == 0)
2531 goto out;
2532
2f1936b8 2533 err = file_remove_suid(file);
1da177e4
LT
2534 if (err)
2535 goto out;
2536
870f4817 2537 file_update_time(file);
1da177e4
LT
2538
2539 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2540 if (unlikely(file->f_flags & O_DIRECT)) {
fb5527e6
JM
2541 loff_t endbyte;
2542 ssize_t written_buffered;
2543
2544 written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2545 ppos, count, ocount);
1da177e4
LT
2546 if (written < 0 || written == count)
2547 goto out;
2548 /*
2549 * direct-io write to a hole: fall through to buffered I/O
2550 * for completing the rest of the request.
2551 */
2552 pos += written;
2553 count -= written;
fb5527e6
JM
2554 written_buffered = generic_file_buffered_write(iocb, iov,
2555 nr_segs, pos, ppos, count,
2556 written);
2557 /*
2558 * If generic_file_buffered_write() retuned a synchronous error
2559 * then we want to return the number of bytes which were
2560 * direct-written, or the error code if that was zero. Note
2561 * that this differs from normal direct-io semantics, which
2562 * will return -EFOO even if some bytes were written.
2563 */
2564 if (written_buffered < 0) {
2565 err = written_buffered;
2566 goto out;
2567 }
1da177e4 2568
fb5527e6
JM
2569 /*
2570 * We need to ensure that the page cache pages are written to
2571 * disk and invalidated to preserve the expected O_DIRECT
2572 * semantics.
2573 */
2574 endbyte = pos + written_buffered - written - 1;
c05c4edd 2575 err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
fb5527e6
JM
2576 if (err == 0) {
2577 written = written_buffered;
2578 invalidate_mapping_pages(mapping,
2579 pos >> PAGE_CACHE_SHIFT,
2580 endbyte >> PAGE_CACHE_SHIFT);
2581 } else {
2582 /*
2583 * We don't know how much we wrote, so just return
2584 * the number of bytes which were direct-written
2585 */
2586 }
2587 } else {
2588 written = generic_file_buffered_write(iocb, iov, nr_segs,
2589 pos, ppos, count, written);
2590 }
1da177e4
LT
2591out:
2592 current->backing_dev_info = NULL;
2593 return written ? written : err;
2594}
e4dd9de3
JK
2595EXPORT_SYMBOL(__generic_file_aio_write);
2596
e4dd9de3
JK
2597/**
2598 * generic_file_aio_write - write data to a file
2599 * @iocb: IO state structure
2600 * @iov: vector with data to write
2601 * @nr_segs: number of segments in the vector
2602 * @pos: position in file where to write
2603 *
2604 * This is a wrapper around __generic_file_aio_write() to be used by most
2605 * filesystems. It takes care of syncing the file in case of O_SYNC file
2606 * and acquires i_mutex as needed.
2607 */
027445c3
BP
2608ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2609 unsigned long nr_segs, loff_t pos)
1da177e4
LT
2610{
2611 struct file *file = iocb->ki_filp;
148f948b 2612 struct inode *inode = file->f_mapping->host;
55602dd6 2613 struct blk_plug plug;
1da177e4 2614 ssize_t ret;
1da177e4
LT
2615
2616 BUG_ON(iocb->ki_pos != pos);
2617
1b1dcc1b 2618 mutex_lock(&inode->i_mutex);
55602dd6 2619 blk_start_plug(&plug);
e4dd9de3 2620 ret = __generic_file_aio_write(iocb, iov, nr_segs, &iocb->ki_pos);
1b1dcc1b 2621 mutex_unlock(&inode->i_mutex);
1da177e4 2622
148f948b 2623 if (ret > 0 || ret == -EIOCBQUEUED) {
1da177e4
LT
2624 ssize_t err;
2625
148f948b 2626 err = generic_write_sync(file, pos, ret);
c7b50db2 2627 if (err < 0 && ret > 0)
1da177e4
LT
2628 ret = err;
2629 }
55602dd6 2630 blk_finish_plug(&plug);
1da177e4
LT
2631 return ret;
2632}
2633EXPORT_SYMBOL(generic_file_aio_write);
2634
cf9a2ae8
DH
2635/**
2636 * try_to_release_page() - release old fs-specific metadata on a page
2637 *
2638 * @page: the page which the kernel is trying to free
2639 * @gfp_mask: memory allocation flags (and I/O mode)
2640 *
2641 * The address_space is to try to release any data against the page
2642 * (presumably at page->private). If the release was successful, return `1'.
2643 * Otherwise return zero.
2644 *
266cf658
DH
2645 * This may also be called if PG_fscache is set on a page, indicating that the
2646 * page is known to the local caching routines.
2647 *
cf9a2ae8 2648 * The @gfp_mask argument specifies whether I/O may be performed to release
3f31fddf 2649 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
cf9a2ae8 2650 *
cf9a2ae8
DH
2651 */
2652int try_to_release_page(struct page *page, gfp_t gfp_mask)
2653{
2654 struct address_space * const mapping = page->mapping;
2655
2656 BUG_ON(!PageLocked(page));
2657 if (PageWriteback(page))
2658 return 0;
2659
2660 if (mapping && mapping->a_ops->releasepage)
2661 return mapping->a_ops->releasepage(page, gfp_mask);
2662 return try_to_free_buffers(page);
2663}
2664
2665EXPORT_SYMBOL(try_to_release_page);