Merge git://git.kernel.org/pub/scm/linux/kernel/git/pkl/squashfs-linus
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / filemap.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/filemap.c
3 *
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
6
7/*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
11 */
1da177e4 12#include <linux/module.h>
1da177e4
LT
13#include <linux/compiler.h>
14#include <linux/fs.h>
c22ce143 15#include <linux/uaccess.h>
1da177e4 16#include <linux/aio.h>
c59ede7b 17#include <linux/capability.h>
1da177e4 18#include <linux/kernel_stat.h>
5a0e3ad6 19#include <linux/gfp.h>
1da177e4
LT
20#include <linux/mm.h>
21#include <linux/swap.h>
22#include <linux/mman.h>
23#include <linux/pagemap.h>
24#include <linux/file.h>
25#include <linux/uio.h>
26#include <linux/hash.h>
27#include <linux/writeback.h>
53253383 28#include <linux/backing-dev.h>
1da177e4
LT
29#include <linux/pagevec.h>
30#include <linux/blkdev.h>
31#include <linux/security.h>
32#include <linux/syscalls.h>
44110fe3 33#include <linux/cpuset.h>
2f718ffc 34#include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
8a9f3ccd 35#include <linux/memcontrol.h>
4f98a2fe 36#include <linux/mm_inline.h> /* for page_is_file_cache() */
0f8053a5
NP
37#include "internal.h"
38
1da177e4 39/*
1da177e4
LT
40 * FIXME: remove all knowledge of the buffer layer from the core VM
41 */
148f948b 42#include <linux/buffer_head.h> /* for try_to_free_buffers */
1da177e4 43
1da177e4
LT
44#include <asm/mman.h>
45
46/*
47 * Shared mappings implemented 30.11.1994. It's not fully working yet,
48 * though.
49 *
50 * Shared mappings now work. 15.8.1995 Bruno.
51 *
52 * finished 'unifying' the page and buffer cache and SMP-threaded the
53 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
54 *
55 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
56 */
57
58/*
59 * Lock ordering:
60 *
25d9e2d1 61 * ->i_mmap_lock (truncate_pagecache)
1da177e4 62 * ->private_lock (__free_pte->__set_page_dirty_buffers)
5d337b91
HD
63 * ->swap_lock (exclusive_swap_page, others)
64 * ->mapping->tree_lock
1da177e4 65 *
1b1dcc1b 66 * ->i_mutex
1da177e4
LT
67 * ->i_mmap_lock (truncate->unmap_mapping_range)
68 *
69 * ->mmap_sem
70 * ->i_mmap_lock
b8072f09 71 * ->page_table_lock or pte_lock (various, mainly in memory.c)
1da177e4
LT
72 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
73 *
74 * ->mmap_sem
75 * ->lock_page (access_process_vm)
76 *
82591e6e
NP
77 * ->i_mutex (generic_file_buffered_write)
78 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
1da177e4 79 *
1b1dcc1b 80 * ->i_mutex
1da177e4
LT
81 * ->i_alloc_sem (various)
82 *
83 * ->inode_lock
84 * ->sb_lock (fs/fs-writeback.c)
85 * ->mapping->tree_lock (__sync_single_inode)
86 *
87 * ->i_mmap_lock
88 * ->anon_vma.lock (vma_adjust)
89 *
90 * ->anon_vma.lock
b8072f09 91 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
1da177e4 92 *
b8072f09 93 * ->page_table_lock or pte_lock
5d337b91 94 * ->swap_lock (try_to_unmap_one)
1da177e4
LT
95 * ->private_lock (try_to_unmap_one)
96 * ->tree_lock (try_to_unmap_one)
97 * ->zone.lru_lock (follow_page->mark_page_accessed)
053837fc 98 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
1da177e4
LT
99 * ->private_lock (page_remove_rmap->set_page_dirty)
100 * ->tree_lock (page_remove_rmap->set_page_dirty)
101 * ->inode_lock (page_remove_rmap->set_page_dirty)
102 * ->inode_lock (zap_pte_range->set_page_dirty)
103 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
104 *
105 * ->task->proc_lock
106 * ->dcache_lock (proc_pid_lookup)
6a46079c
AK
107 *
108 * (code doesn't rely on that order, so you could switch it around)
109 * ->tasklist_lock (memory_failure, collect_procs_ao)
110 * ->i_mmap_lock
1da177e4
LT
111 */
112
113/*
114 * Remove a page from the page cache and free it. Caller has to make
115 * sure the page is locked and that nobody else uses it - or that usage
19fd6231 116 * is safe. The caller must hold the mapping's tree_lock.
1da177e4
LT
117 */
118void __remove_from_page_cache(struct page *page)
119{
120 struct address_space *mapping = page->mapping;
121
122 radix_tree_delete(&mapping->page_tree, page->index);
123 page->mapping = NULL;
124 mapping->nrpages--;
347ce434 125 __dec_zone_page_state(page, NR_FILE_PAGES);
4b02108a
KM
126 if (PageSwapBacked(page))
127 __dec_zone_page_state(page, NR_SHMEM);
45426812 128 BUG_ON(page_mapped(page));
3a692790
LT
129
130 /*
131 * Some filesystems seem to re-dirty the page even after
132 * the VM has canceled the dirty bit (eg ext3 journaling).
133 *
134 * Fix it up by doing a final dirty accounting check after
135 * having removed the page entirely.
136 */
137 if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
138 dec_zone_page_state(page, NR_FILE_DIRTY);
139 dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
140 }
1da177e4
LT
141}
142
143void remove_from_page_cache(struct page *page)
144{
145 struct address_space *mapping = page->mapping;
146
cd7619d6 147 BUG_ON(!PageLocked(page));
1da177e4 148
19fd6231 149 spin_lock_irq(&mapping->tree_lock);
1da177e4 150 __remove_from_page_cache(page);
19fd6231 151 spin_unlock_irq(&mapping->tree_lock);
e767e056 152 mem_cgroup_uncharge_cache_page(page);
1da177e4
LT
153}
154
155static int sync_page(void *word)
156{
157 struct address_space *mapping;
158 struct page *page;
159
07808b74 160 page = container_of((unsigned long *)word, struct page, flags);
1da177e4
LT
161
162 /*
dd1d5afc
WLII
163 * page_mapping() is being called without PG_locked held.
164 * Some knowledge of the state and use of the page is used to
165 * reduce the requirements down to a memory barrier.
166 * The danger here is of a stale page_mapping() return value
167 * indicating a struct address_space different from the one it's
168 * associated with when it is associated with one.
169 * After smp_mb(), it's either the correct page_mapping() for
170 * the page, or an old page_mapping() and the page's own
171 * page_mapping() has gone NULL.
172 * The ->sync_page() address_space operation must tolerate
173 * page_mapping() going NULL. By an amazing coincidence,
174 * this comes about because none of the users of the page
175 * in the ->sync_page() methods make essential use of the
176 * page_mapping(), merely passing the page down to the backing
177 * device's unplug functions when it's non-NULL, which in turn
4c21e2f2 178 * ignore it for all cases but swap, where only page_private(page) is
dd1d5afc
WLII
179 * of interest. When page_mapping() does go NULL, the entire
180 * call stack gracefully ignores the page and returns.
181 * -- wli
1da177e4
LT
182 */
183 smp_mb();
184 mapping = page_mapping(page);
185 if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
186 mapping->a_ops->sync_page(page);
187 io_schedule();
188 return 0;
189}
190
2687a356
MW
191static int sync_page_killable(void *word)
192{
193 sync_page(word);
194 return fatal_signal_pending(current) ? -EINTR : 0;
195}
196
1da177e4 197/**
485bb99b 198 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
67be2dd1
MW
199 * @mapping: address space structure to write
200 * @start: offset in bytes where the range starts
469eb4d0 201 * @end: offset in bytes where the range ends (inclusive)
67be2dd1 202 * @sync_mode: enable synchronous operation
1da177e4 203 *
485bb99b
RD
204 * Start writeback against all of a mapping's dirty pages that lie
205 * within the byte offsets <start, end> inclusive.
206 *
1da177e4 207 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
485bb99b 208 * opposed to a regular memory cleansing writeback. The difference between
1da177e4
LT
209 * these two operations is that if a dirty page/buffer is encountered, it must
210 * be waited upon, and not just skipped over.
211 */
ebcf28e1
AM
212int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
213 loff_t end, int sync_mode)
1da177e4
LT
214{
215 int ret;
216 struct writeback_control wbc = {
217 .sync_mode = sync_mode,
05fe478d 218 .nr_to_write = LONG_MAX,
111ebb6e
OH
219 .range_start = start,
220 .range_end = end,
1da177e4
LT
221 };
222
223 if (!mapping_cap_writeback_dirty(mapping))
224 return 0;
225
226 ret = do_writepages(mapping, &wbc);
227 return ret;
228}
229
230static inline int __filemap_fdatawrite(struct address_space *mapping,
231 int sync_mode)
232{
111ebb6e 233 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
1da177e4
LT
234}
235
236int filemap_fdatawrite(struct address_space *mapping)
237{
238 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
239}
240EXPORT_SYMBOL(filemap_fdatawrite);
241
f4c0a0fd 242int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
ebcf28e1 243 loff_t end)
1da177e4
LT
244{
245 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
246}
f4c0a0fd 247EXPORT_SYMBOL(filemap_fdatawrite_range);
1da177e4 248
485bb99b
RD
249/**
250 * filemap_flush - mostly a non-blocking flush
251 * @mapping: target address_space
252 *
1da177e4
LT
253 * This is a mostly non-blocking flush. Not suitable for data-integrity
254 * purposes - I/O may not be started against all dirty pages.
255 */
256int filemap_flush(struct address_space *mapping)
257{
258 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
259}
260EXPORT_SYMBOL(filemap_flush);
261
485bb99b 262/**
94004ed7
CH
263 * filemap_fdatawait_range - wait for writeback to complete
264 * @mapping: address space structure to wait for
265 * @start_byte: offset in bytes where the range starts
266 * @end_byte: offset in bytes where the range ends (inclusive)
485bb99b 267 *
94004ed7
CH
268 * Walk the list of under-writeback pages of the given address space
269 * in the given range and wait for all of them.
1da177e4 270 */
94004ed7
CH
271int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
272 loff_t end_byte)
1da177e4 273{
94004ed7
CH
274 pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
275 pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
1da177e4
LT
276 struct pagevec pvec;
277 int nr_pages;
278 int ret = 0;
1da177e4 279
94004ed7 280 if (end_byte < start_byte)
1da177e4
LT
281 return 0;
282
283 pagevec_init(&pvec, 0);
1da177e4
LT
284 while ((index <= end) &&
285 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
286 PAGECACHE_TAG_WRITEBACK,
287 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
288 unsigned i;
289
290 for (i = 0; i < nr_pages; i++) {
291 struct page *page = pvec.pages[i];
292
293 /* until radix tree lookup accepts end_index */
294 if (page->index > end)
295 continue;
296
297 wait_on_page_writeback(page);
298 if (PageError(page))
299 ret = -EIO;
300 }
301 pagevec_release(&pvec);
302 cond_resched();
303 }
304
305 /* Check for outstanding write errors */
306 if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
307 ret = -ENOSPC;
308 if (test_and_clear_bit(AS_EIO, &mapping->flags))
309 ret = -EIO;
310
311 return ret;
312}
d3bccb6f
JK
313EXPORT_SYMBOL(filemap_fdatawait_range);
314
1da177e4 315/**
485bb99b 316 * filemap_fdatawait - wait for all under-writeback pages to complete
1da177e4 317 * @mapping: address space structure to wait for
485bb99b
RD
318 *
319 * Walk the list of under-writeback pages of the given address space
320 * and wait for all of them.
1da177e4
LT
321 */
322int filemap_fdatawait(struct address_space *mapping)
323{
324 loff_t i_size = i_size_read(mapping->host);
325
326 if (i_size == 0)
327 return 0;
328
94004ed7 329 return filemap_fdatawait_range(mapping, 0, i_size - 1);
1da177e4
LT
330}
331EXPORT_SYMBOL(filemap_fdatawait);
332
333int filemap_write_and_wait(struct address_space *mapping)
334{
28fd1298 335 int err = 0;
1da177e4
LT
336
337 if (mapping->nrpages) {
28fd1298
OH
338 err = filemap_fdatawrite(mapping);
339 /*
340 * Even if the above returned error, the pages may be
341 * written partially (e.g. -ENOSPC), so we wait for it.
342 * But the -EIO is special case, it may indicate the worst
343 * thing (e.g. bug) happened, so we avoid waiting for it.
344 */
345 if (err != -EIO) {
346 int err2 = filemap_fdatawait(mapping);
347 if (!err)
348 err = err2;
349 }
1da177e4 350 }
28fd1298 351 return err;
1da177e4 352}
28fd1298 353EXPORT_SYMBOL(filemap_write_and_wait);
1da177e4 354
485bb99b
RD
355/**
356 * filemap_write_and_wait_range - write out & wait on a file range
357 * @mapping: the address_space for the pages
358 * @lstart: offset in bytes where the range starts
359 * @lend: offset in bytes where the range ends (inclusive)
360 *
469eb4d0
AM
361 * Write out and wait upon file offsets lstart->lend, inclusive.
362 *
363 * Note that `lend' is inclusive (describes the last byte to be written) so
364 * that this function can be used to write to the very end-of-file (end = -1).
365 */
1da177e4
LT
366int filemap_write_and_wait_range(struct address_space *mapping,
367 loff_t lstart, loff_t lend)
368{
28fd1298 369 int err = 0;
1da177e4
LT
370
371 if (mapping->nrpages) {
28fd1298
OH
372 err = __filemap_fdatawrite_range(mapping, lstart, lend,
373 WB_SYNC_ALL);
374 /* See comment of filemap_write_and_wait() */
375 if (err != -EIO) {
94004ed7
CH
376 int err2 = filemap_fdatawait_range(mapping,
377 lstart, lend);
28fd1298
OH
378 if (!err)
379 err = err2;
380 }
1da177e4 381 }
28fd1298 382 return err;
1da177e4 383}
f6995585 384EXPORT_SYMBOL(filemap_write_and_wait_range);
1da177e4 385
485bb99b 386/**
e286781d 387 * add_to_page_cache_locked - add a locked page to the pagecache
485bb99b
RD
388 * @page: page to add
389 * @mapping: the page's address_space
390 * @offset: page index
391 * @gfp_mask: page allocation mode
392 *
e286781d 393 * This function is used to add a page to the pagecache. It must be locked.
1da177e4
LT
394 * This function does not add the page to the LRU. The caller must do that.
395 */
e286781d 396int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
6daa0e28 397 pgoff_t offset, gfp_t gfp_mask)
1da177e4 398{
e286781d
NP
399 int error;
400
401 VM_BUG_ON(!PageLocked(page));
402
403 error = mem_cgroup_cache_charge(page, current->mm,
2c26fdd7 404 gfp_mask & GFP_RECLAIM_MASK);
35c754d7
BS
405 if (error)
406 goto out;
1da177e4 407
35c754d7 408 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
1da177e4 409 if (error == 0) {
e286781d
NP
410 page_cache_get(page);
411 page->mapping = mapping;
412 page->index = offset;
413
19fd6231 414 spin_lock_irq(&mapping->tree_lock);
1da177e4 415 error = radix_tree_insert(&mapping->page_tree, offset, page);
e286781d 416 if (likely(!error)) {
1da177e4 417 mapping->nrpages++;
347ce434 418 __inc_zone_page_state(page, NR_FILE_PAGES);
4b02108a
KM
419 if (PageSwapBacked(page))
420 __inc_zone_page_state(page, NR_SHMEM);
e767e056 421 spin_unlock_irq(&mapping->tree_lock);
e286781d
NP
422 } else {
423 page->mapping = NULL;
e767e056 424 spin_unlock_irq(&mapping->tree_lock);
69029cd5 425 mem_cgroup_uncharge_cache_page(page);
e286781d
NP
426 page_cache_release(page);
427 }
1da177e4 428 radix_tree_preload_end();
35c754d7 429 } else
69029cd5 430 mem_cgroup_uncharge_cache_page(page);
8a9f3ccd 431out:
1da177e4
LT
432 return error;
433}
e286781d 434EXPORT_SYMBOL(add_to_page_cache_locked);
1da177e4
LT
435
436int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
6daa0e28 437 pgoff_t offset, gfp_t gfp_mask)
1da177e4 438{
4f98a2fe
RR
439 int ret;
440
441 /*
442 * Splice_read and readahead add shmem/tmpfs pages into the page cache
443 * before shmem_readpage has a chance to mark them as SwapBacked: they
e9d6c157 444 * need to go on the anon lru below, and mem_cgroup_cache_charge
4f98a2fe
RR
445 * (called in add_to_page_cache) needs to know where they're going too.
446 */
447 if (mapping_cap_swap_backed(mapping))
448 SetPageSwapBacked(page);
449
450 ret = add_to_page_cache(page, mapping, offset, gfp_mask);
451 if (ret == 0) {
452 if (page_is_file_cache(page))
453 lru_cache_add_file(page);
454 else
e9d6c157 455 lru_cache_add_anon(page);
4f98a2fe 456 }
1da177e4
LT
457 return ret;
458}
18bc0bbd 459EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
1da177e4 460
44110fe3 461#ifdef CONFIG_NUMA
2ae88149 462struct page *__page_cache_alloc(gfp_t gfp)
44110fe3 463{
c0ff7453
MX
464 int n;
465 struct page *page;
466
44110fe3 467 if (cpuset_do_page_mem_spread()) {
c0ff7453
MX
468 get_mems_allowed();
469 n = cpuset_mem_spread_node();
470 page = alloc_pages_exact_node(n, gfp, 0);
471 put_mems_allowed();
472 return page;
44110fe3 473 }
2ae88149 474 return alloc_pages(gfp, 0);
44110fe3 475}
2ae88149 476EXPORT_SYMBOL(__page_cache_alloc);
44110fe3
PJ
477#endif
478
db37648c
NP
479static int __sleep_on_page_lock(void *word)
480{
481 io_schedule();
482 return 0;
483}
484
1da177e4
LT
485/*
486 * In order to wait for pages to become available there must be
487 * waitqueues associated with pages. By using a hash table of
488 * waitqueues where the bucket discipline is to maintain all
489 * waiters on the same queue and wake all when any of the pages
490 * become available, and for the woken contexts to check to be
491 * sure the appropriate page became available, this saves space
492 * at a cost of "thundering herd" phenomena during rare hash
493 * collisions.
494 */
495static wait_queue_head_t *page_waitqueue(struct page *page)
496{
497 const struct zone *zone = page_zone(page);
498
499 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
500}
501
502static inline void wake_up_page(struct page *page, int bit)
503{
504 __wake_up_bit(page_waitqueue(page), &page->flags, bit);
505}
506
920c7a5d 507void wait_on_page_bit(struct page *page, int bit_nr)
1da177e4
LT
508{
509 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
510
511 if (test_bit(bit_nr, &page->flags))
512 __wait_on_bit(page_waitqueue(page), &wait, sync_page,
513 TASK_UNINTERRUPTIBLE);
514}
515EXPORT_SYMBOL(wait_on_page_bit);
516
385e1ca5
DH
517/**
518 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
697f619f
RD
519 * @page: Page defining the wait queue of interest
520 * @waiter: Waiter to add to the queue
385e1ca5
DH
521 *
522 * Add an arbitrary @waiter to the wait queue for the nominated @page.
523 */
524void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
525{
526 wait_queue_head_t *q = page_waitqueue(page);
527 unsigned long flags;
528
529 spin_lock_irqsave(&q->lock, flags);
530 __add_wait_queue(q, waiter);
531 spin_unlock_irqrestore(&q->lock, flags);
532}
533EXPORT_SYMBOL_GPL(add_page_wait_queue);
534
1da177e4 535/**
485bb99b 536 * unlock_page - unlock a locked page
1da177e4
LT
537 * @page: the page
538 *
539 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
540 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
541 * mechananism between PageLocked pages and PageWriteback pages is shared.
542 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
543 *
8413ac9d
NP
544 * The mb is necessary to enforce ordering between the clear_bit and the read
545 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
1da177e4 546 */
920c7a5d 547void unlock_page(struct page *page)
1da177e4 548{
8413ac9d
NP
549 VM_BUG_ON(!PageLocked(page));
550 clear_bit_unlock(PG_locked, &page->flags);
551 smp_mb__after_clear_bit();
1da177e4
LT
552 wake_up_page(page, PG_locked);
553}
554EXPORT_SYMBOL(unlock_page);
555
485bb99b
RD
556/**
557 * end_page_writeback - end writeback against a page
558 * @page: the page
1da177e4
LT
559 */
560void end_page_writeback(struct page *page)
561{
ac6aadb2
MS
562 if (TestClearPageReclaim(page))
563 rotate_reclaimable_page(page);
564
565 if (!test_clear_page_writeback(page))
566 BUG();
567
1da177e4
LT
568 smp_mb__after_clear_bit();
569 wake_up_page(page, PG_writeback);
570}
571EXPORT_SYMBOL(end_page_writeback);
572
485bb99b
RD
573/**
574 * __lock_page - get a lock on the page, assuming we need to sleep to get it
575 * @page: the page to lock
1da177e4 576 *
485bb99b 577 * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary. If some
1da177e4
LT
578 * random driver's requestfn sets TASK_RUNNING, we could busywait. However
579 * chances are that on the second loop, the block layer's plug list is empty,
580 * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
581 */
920c7a5d 582void __lock_page(struct page *page)
1da177e4
LT
583{
584 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
585
586 __wait_on_bit_lock(page_waitqueue(page), &wait, sync_page,
587 TASK_UNINTERRUPTIBLE);
588}
589EXPORT_SYMBOL(__lock_page);
590
b5606c2d 591int __lock_page_killable(struct page *page)
2687a356
MW
592{
593 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
594
595 return __wait_on_bit_lock(page_waitqueue(page), &wait,
596 sync_page_killable, TASK_KILLABLE);
597}
18bc0bbd 598EXPORT_SYMBOL_GPL(__lock_page_killable);
2687a356 599
7682486b
RD
600/**
601 * __lock_page_nosync - get a lock on the page, without calling sync_page()
602 * @page: the page to lock
603 *
db37648c
NP
604 * Variant of lock_page that does not require the caller to hold a reference
605 * on the page's mapping.
606 */
920c7a5d 607void __lock_page_nosync(struct page *page)
db37648c
NP
608{
609 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
610 __wait_on_bit_lock(page_waitqueue(page), &wait, __sleep_on_page_lock,
611 TASK_UNINTERRUPTIBLE);
612}
613
485bb99b
RD
614/**
615 * find_get_page - find and get a page reference
616 * @mapping: the address_space to search
617 * @offset: the page index
618 *
da6052f7
NP
619 * Is there a pagecache struct page at the given (mapping, offset) tuple?
620 * If yes, increment its refcount and return it; if no, return NULL.
1da177e4 621 */
a60637c8 622struct page *find_get_page(struct address_space *mapping, pgoff_t offset)
1da177e4 623{
a60637c8 624 void **pagep;
1da177e4
LT
625 struct page *page;
626
a60637c8
NP
627 rcu_read_lock();
628repeat:
629 page = NULL;
630 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
631 if (pagep) {
632 page = radix_tree_deref_slot(pagep);
633 if (unlikely(!page || page == RADIX_TREE_RETRY))
634 goto repeat;
635
636 if (!page_cache_get_speculative(page))
637 goto repeat;
638
639 /*
640 * Has the page moved?
641 * This is part of the lockless pagecache protocol. See
642 * include/linux/pagemap.h for details.
643 */
644 if (unlikely(page != *pagep)) {
645 page_cache_release(page);
646 goto repeat;
647 }
648 }
649 rcu_read_unlock();
650
1da177e4
LT
651 return page;
652}
1da177e4
LT
653EXPORT_SYMBOL(find_get_page);
654
1da177e4
LT
655/**
656 * find_lock_page - locate, pin and lock a pagecache page
67be2dd1
MW
657 * @mapping: the address_space to search
658 * @offset: the page index
1da177e4
LT
659 *
660 * Locates the desired pagecache page, locks it, increments its reference
661 * count and returns its address.
662 *
663 * Returns zero if the page was not present. find_lock_page() may sleep.
664 */
a60637c8 665struct page *find_lock_page(struct address_space *mapping, pgoff_t offset)
1da177e4
LT
666{
667 struct page *page;
668
1da177e4 669repeat:
a60637c8 670 page = find_get_page(mapping, offset);
1da177e4 671 if (page) {
a60637c8
NP
672 lock_page(page);
673 /* Has the page been truncated? */
674 if (unlikely(page->mapping != mapping)) {
675 unlock_page(page);
676 page_cache_release(page);
677 goto repeat;
1da177e4 678 }
a60637c8 679 VM_BUG_ON(page->index != offset);
1da177e4 680 }
1da177e4
LT
681 return page;
682}
1da177e4
LT
683EXPORT_SYMBOL(find_lock_page);
684
685/**
686 * find_or_create_page - locate or add a pagecache page
67be2dd1
MW
687 * @mapping: the page's address_space
688 * @index: the page's index into the mapping
689 * @gfp_mask: page allocation mode
1da177e4
LT
690 *
691 * Locates a page in the pagecache. If the page is not present, a new page
692 * is allocated using @gfp_mask and is added to the pagecache and to the VM's
693 * LRU list. The returned page is locked and has its reference count
694 * incremented.
695 *
696 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
697 * allocation!
698 *
699 * find_or_create_page() returns the desired page's address, or zero on
700 * memory exhaustion.
701 */
702struct page *find_or_create_page(struct address_space *mapping,
57f6b96c 703 pgoff_t index, gfp_t gfp_mask)
1da177e4 704{
eb2be189 705 struct page *page;
1da177e4
LT
706 int err;
707repeat:
708 page = find_lock_page(mapping, index);
709 if (!page) {
eb2be189
NP
710 page = __page_cache_alloc(gfp_mask);
711 if (!page)
712 return NULL;
67d58ac4
NP
713 /*
714 * We want a regular kernel memory (not highmem or DMA etc)
715 * allocation for the radix tree nodes, but we need to honour
716 * the context-specific requirements the caller has asked for.
717 * GFP_RECLAIM_MASK collects those requirements.
718 */
719 err = add_to_page_cache_lru(page, mapping, index,
720 (gfp_mask & GFP_RECLAIM_MASK));
eb2be189
NP
721 if (unlikely(err)) {
722 page_cache_release(page);
723 page = NULL;
724 if (err == -EEXIST)
725 goto repeat;
1da177e4 726 }
1da177e4 727 }
1da177e4
LT
728 return page;
729}
1da177e4
LT
730EXPORT_SYMBOL(find_or_create_page);
731
732/**
733 * find_get_pages - gang pagecache lookup
734 * @mapping: The address_space to search
735 * @start: The starting page index
736 * @nr_pages: The maximum number of pages
737 * @pages: Where the resulting pages are placed
738 *
739 * find_get_pages() will search for and return a group of up to
740 * @nr_pages pages in the mapping. The pages are placed at @pages.
741 * find_get_pages() takes a reference against the returned pages.
742 *
743 * The search returns a group of mapping-contiguous pages with ascending
744 * indexes. There may be holes in the indices due to not-present pages.
745 *
746 * find_get_pages() returns the number of pages which were found.
747 */
748unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
749 unsigned int nr_pages, struct page **pages)
750{
751 unsigned int i;
752 unsigned int ret;
a60637c8
NP
753 unsigned int nr_found;
754
755 rcu_read_lock();
756restart:
757 nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
758 (void ***)pages, start, nr_pages);
759 ret = 0;
760 for (i = 0; i < nr_found; i++) {
761 struct page *page;
762repeat:
763 page = radix_tree_deref_slot((void **)pages[i]);
764 if (unlikely(!page))
765 continue;
766 /*
767 * this can only trigger if nr_found == 1, making livelock
768 * a non issue.
769 */
770 if (unlikely(page == RADIX_TREE_RETRY))
771 goto restart;
772
773 if (!page_cache_get_speculative(page))
774 goto repeat;
775
776 /* Has the page moved? */
777 if (unlikely(page != *((void **)pages[i]))) {
778 page_cache_release(page);
779 goto repeat;
780 }
1da177e4 781
a60637c8
NP
782 pages[ret] = page;
783 ret++;
784 }
785 rcu_read_unlock();
1da177e4
LT
786 return ret;
787}
788
ebf43500
JA
789/**
790 * find_get_pages_contig - gang contiguous pagecache lookup
791 * @mapping: The address_space to search
792 * @index: The starting page index
793 * @nr_pages: The maximum number of pages
794 * @pages: Where the resulting pages are placed
795 *
796 * find_get_pages_contig() works exactly like find_get_pages(), except
797 * that the returned number of pages are guaranteed to be contiguous.
798 *
799 * find_get_pages_contig() returns the number of pages which were found.
800 */
801unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
802 unsigned int nr_pages, struct page **pages)
803{
804 unsigned int i;
805 unsigned int ret;
a60637c8
NP
806 unsigned int nr_found;
807
808 rcu_read_lock();
809restart:
810 nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
811 (void ***)pages, index, nr_pages);
812 ret = 0;
813 for (i = 0; i < nr_found; i++) {
814 struct page *page;
815repeat:
816 page = radix_tree_deref_slot((void **)pages[i]);
817 if (unlikely(!page))
818 continue;
819 /*
820 * this can only trigger if nr_found == 1, making livelock
821 * a non issue.
822 */
823 if (unlikely(page == RADIX_TREE_RETRY))
824 goto restart;
ebf43500 825
a60637c8 826 if (page->mapping == NULL || page->index != index)
ebf43500
JA
827 break;
828
a60637c8
NP
829 if (!page_cache_get_speculative(page))
830 goto repeat;
831
832 /* Has the page moved? */
833 if (unlikely(page != *((void **)pages[i]))) {
834 page_cache_release(page);
835 goto repeat;
836 }
837
838 pages[ret] = page;
839 ret++;
ebf43500
JA
840 index++;
841 }
a60637c8
NP
842 rcu_read_unlock();
843 return ret;
ebf43500 844}
ef71c15c 845EXPORT_SYMBOL(find_get_pages_contig);
ebf43500 846
485bb99b
RD
847/**
848 * find_get_pages_tag - find and return pages that match @tag
849 * @mapping: the address_space to search
850 * @index: the starting page index
851 * @tag: the tag index
852 * @nr_pages: the maximum number of pages
853 * @pages: where the resulting pages are placed
854 *
1da177e4 855 * Like find_get_pages, except we only return pages which are tagged with
485bb99b 856 * @tag. We update @index to index the next page for the traversal.
1da177e4
LT
857 */
858unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
859 int tag, unsigned int nr_pages, struct page **pages)
860{
861 unsigned int i;
862 unsigned int ret;
a60637c8
NP
863 unsigned int nr_found;
864
865 rcu_read_lock();
866restart:
867 nr_found = radix_tree_gang_lookup_tag_slot(&mapping->page_tree,
868 (void ***)pages, *index, nr_pages, tag);
869 ret = 0;
870 for (i = 0; i < nr_found; i++) {
871 struct page *page;
872repeat:
873 page = radix_tree_deref_slot((void **)pages[i]);
874 if (unlikely(!page))
875 continue;
876 /*
877 * this can only trigger if nr_found == 1, making livelock
878 * a non issue.
879 */
880 if (unlikely(page == RADIX_TREE_RETRY))
881 goto restart;
882
883 if (!page_cache_get_speculative(page))
884 goto repeat;
885
886 /* Has the page moved? */
887 if (unlikely(page != *((void **)pages[i]))) {
888 page_cache_release(page);
889 goto repeat;
890 }
891
892 pages[ret] = page;
893 ret++;
894 }
895 rcu_read_unlock();
1da177e4 896
1da177e4
LT
897 if (ret)
898 *index = pages[ret - 1]->index + 1;
a60637c8 899
1da177e4
LT
900 return ret;
901}
ef71c15c 902EXPORT_SYMBOL(find_get_pages_tag);
1da177e4 903
485bb99b
RD
904/**
905 * grab_cache_page_nowait - returns locked page at given index in given cache
906 * @mapping: target address_space
907 * @index: the page index
908 *
72fd4a35 909 * Same as grab_cache_page(), but do not wait if the page is unavailable.
1da177e4
LT
910 * This is intended for speculative data generators, where the data can
911 * be regenerated if the page couldn't be grabbed. This routine should
912 * be safe to call while holding the lock for another page.
913 *
914 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
915 * and deadlock against the caller's locked page.
916 */
917struct page *
57f6b96c 918grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
1da177e4
LT
919{
920 struct page *page = find_get_page(mapping, index);
1da177e4
LT
921
922 if (page) {
529ae9aa 923 if (trylock_page(page))
1da177e4
LT
924 return page;
925 page_cache_release(page);
926 return NULL;
927 }
2ae88149 928 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
67d58ac4 929 if (page && add_to_page_cache_lru(page, mapping, index, GFP_NOFS)) {
1da177e4
LT
930 page_cache_release(page);
931 page = NULL;
932 }
933 return page;
934}
1da177e4
LT
935EXPORT_SYMBOL(grab_cache_page_nowait);
936
76d42bd9
WF
937/*
938 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
939 * a _large_ part of the i/o request. Imagine the worst scenario:
940 *
941 * ---R__________________________________________B__________
942 * ^ reading here ^ bad block(assume 4k)
943 *
944 * read(R) => miss => readahead(R...B) => media error => frustrating retries
945 * => failing the whole request => read(R) => read(R+1) =>
946 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
947 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
948 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
949 *
950 * It is going insane. Fix it by quickly scaling down the readahead size.
951 */
952static void shrink_readahead_size_eio(struct file *filp,
953 struct file_ra_state *ra)
954{
76d42bd9 955 ra->ra_pages /= 4;
76d42bd9
WF
956}
957
485bb99b 958/**
36e78914 959 * do_generic_file_read - generic file read routine
485bb99b
RD
960 * @filp: the file to read
961 * @ppos: current file position
962 * @desc: read_descriptor
963 * @actor: read method
964 *
1da177e4 965 * This is a generic file read routine, and uses the
485bb99b 966 * mapping->a_ops->readpage() function for the actual low-level stuff.
1da177e4
LT
967 *
968 * This is really ugly. But the goto's actually try to clarify some
969 * of the logic when it comes to error handling etc.
1da177e4 970 */
36e78914
CH
971static void do_generic_file_read(struct file *filp, loff_t *ppos,
972 read_descriptor_t *desc, read_actor_t actor)
1da177e4 973{
36e78914 974 struct address_space *mapping = filp->f_mapping;
1da177e4 975 struct inode *inode = mapping->host;
36e78914 976 struct file_ra_state *ra = &filp->f_ra;
57f6b96c
FW
977 pgoff_t index;
978 pgoff_t last_index;
979 pgoff_t prev_index;
980 unsigned long offset; /* offset into pagecache page */
ec0f1637 981 unsigned int prev_offset;
1da177e4 982 int error;
1da177e4 983
1da177e4 984 index = *ppos >> PAGE_CACHE_SHIFT;
7ff81078
FW
985 prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
986 prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1da177e4
LT
987 last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
988 offset = *ppos & ~PAGE_CACHE_MASK;
989
1da177e4
LT
990 for (;;) {
991 struct page *page;
57f6b96c 992 pgoff_t end_index;
a32ea1e1 993 loff_t isize;
1da177e4
LT
994 unsigned long nr, ret;
995
1da177e4 996 cond_resched();
1da177e4
LT
997find_page:
998 page = find_get_page(mapping, index);
3ea89ee8 999 if (!page) {
cf914a7d 1000 page_cache_sync_readahead(mapping,
7ff81078 1001 ra, filp,
3ea89ee8
FW
1002 index, last_index - index);
1003 page = find_get_page(mapping, index);
1004 if (unlikely(page == NULL))
1005 goto no_cached_page;
1006 }
1007 if (PageReadahead(page)) {
cf914a7d 1008 page_cache_async_readahead(mapping,
7ff81078 1009 ra, filp, page,
3ea89ee8 1010 index, last_index - index);
1da177e4 1011 }
8ab22b9a
HH
1012 if (!PageUptodate(page)) {
1013 if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1014 !mapping->a_ops->is_partially_uptodate)
1015 goto page_not_up_to_date;
529ae9aa 1016 if (!trylock_page(page))
8ab22b9a
HH
1017 goto page_not_up_to_date;
1018 if (!mapping->a_ops->is_partially_uptodate(page,
1019 desc, offset))
1020 goto page_not_up_to_date_locked;
1021 unlock_page(page);
1022 }
1da177e4 1023page_ok:
a32ea1e1
N
1024 /*
1025 * i_size must be checked after we know the page is Uptodate.
1026 *
1027 * Checking i_size after the check allows us to calculate
1028 * the correct value for "nr", which means the zero-filled
1029 * part of the page is not copied back to userspace (unless
1030 * another truncate extends the file - this is desired though).
1031 */
1032
1033 isize = i_size_read(inode);
1034 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1035 if (unlikely(!isize || index > end_index)) {
1036 page_cache_release(page);
1037 goto out;
1038 }
1039
1040 /* nr is the maximum number of bytes to copy from this page */
1041 nr = PAGE_CACHE_SIZE;
1042 if (index == end_index) {
1043 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1044 if (nr <= offset) {
1045 page_cache_release(page);
1046 goto out;
1047 }
1048 }
1049 nr = nr - offset;
1da177e4
LT
1050
1051 /* If users can be writing to this page using arbitrary
1052 * virtual addresses, take care about potential aliasing
1053 * before reading the page on the kernel side.
1054 */
1055 if (mapping_writably_mapped(mapping))
1056 flush_dcache_page(page);
1057
1058 /*
ec0f1637
JK
1059 * When a sequential read accesses a page several times,
1060 * only mark it as accessed the first time.
1da177e4 1061 */
ec0f1637 1062 if (prev_index != index || offset != prev_offset)
1da177e4
LT
1063 mark_page_accessed(page);
1064 prev_index = index;
1065
1066 /*
1067 * Ok, we have the page, and it's up-to-date, so
1068 * now we can copy it to user space...
1069 *
1070 * The actor routine returns how many bytes were actually used..
1071 * NOTE! This may not be the same as how much of a user buffer
1072 * we filled up (we may be padding etc), so we can only update
1073 * "pos" here (the actor routine has to update the user buffer
1074 * pointers and the remaining count).
1075 */
1076 ret = actor(desc, page, offset, nr);
1077 offset += ret;
1078 index += offset >> PAGE_CACHE_SHIFT;
1079 offset &= ~PAGE_CACHE_MASK;
6ce745ed 1080 prev_offset = offset;
1da177e4
LT
1081
1082 page_cache_release(page);
1083 if (ret == nr && desc->count)
1084 continue;
1085 goto out;
1086
1087page_not_up_to_date:
1088 /* Get exclusive access to the page ... */
85462323
ON
1089 error = lock_page_killable(page);
1090 if (unlikely(error))
1091 goto readpage_error;
1da177e4 1092
8ab22b9a 1093page_not_up_to_date_locked:
da6052f7 1094 /* Did it get truncated before we got the lock? */
1da177e4
LT
1095 if (!page->mapping) {
1096 unlock_page(page);
1097 page_cache_release(page);
1098 continue;
1099 }
1100
1101 /* Did somebody else fill it already? */
1102 if (PageUptodate(page)) {
1103 unlock_page(page);
1104 goto page_ok;
1105 }
1106
1107readpage:
1108 /* Start the actual read. The read will unlock the page. */
1109 error = mapping->a_ops->readpage(filp, page);
1110
994fc28c
ZB
1111 if (unlikely(error)) {
1112 if (error == AOP_TRUNCATED_PAGE) {
1113 page_cache_release(page);
1114 goto find_page;
1115 }
1da177e4 1116 goto readpage_error;
994fc28c 1117 }
1da177e4
LT
1118
1119 if (!PageUptodate(page)) {
85462323
ON
1120 error = lock_page_killable(page);
1121 if (unlikely(error))
1122 goto readpage_error;
1da177e4
LT
1123 if (!PageUptodate(page)) {
1124 if (page->mapping == NULL) {
1125 /*
2ecdc82e 1126 * invalidate_mapping_pages got it
1da177e4
LT
1127 */
1128 unlock_page(page);
1129 page_cache_release(page);
1130 goto find_page;
1131 }
1132 unlock_page(page);
7ff81078 1133 shrink_readahead_size_eio(filp, ra);
85462323
ON
1134 error = -EIO;
1135 goto readpage_error;
1da177e4
LT
1136 }
1137 unlock_page(page);
1138 }
1139
1da177e4
LT
1140 goto page_ok;
1141
1142readpage_error:
1143 /* UHHUH! A synchronous read error occurred. Report it */
1144 desc->error = error;
1145 page_cache_release(page);
1146 goto out;
1147
1148no_cached_page:
1149 /*
1150 * Ok, it wasn't cached, so we need to create a new
1151 * page..
1152 */
eb2be189
NP
1153 page = page_cache_alloc_cold(mapping);
1154 if (!page) {
1155 desc->error = -ENOMEM;
1156 goto out;
1da177e4 1157 }
eb2be189 1158 error = add_to_page_cache_lru(page, mapping,
1da177e4
LT
1159 index, GFP_KERNEL);
1160 if (error) {
eb2be189 1161 page_cache_release(page);
1da177e4
LT
1162 if (error == -EEXIST)
1163 goto find_page;
1164 desc->error = error;
1165 goto out;
1166 }
1da177e4
LT
1167 goto readpage;
1168 }
1169
1170out:
7ff81078
FW
1171 ra->prev_pos = prev_index;
1172 ra->prev_pos <<= PAGE_CACHE_SHIFT;
1173 ra->prev_pos |= prev_offset;
1da177e4 1174
f4e6b498 1175 *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
0c6aa263 1176 file_accessed(filp);
1da177e4 1177}
1da177e4
LT
1178
1179int file_read_actor(read_descriptor_t *desc, struct page *page,
1180 unsigned long offset, unsigned long size)
1181{
1182 char *kaddr;
1183 unsigned long left, count = desc->count;
1184
1185 if (size > count)
1186 size = count;
1187
1188 /*
1189 * Faults on the destination of a read are common, so do it before
1190 * taking the kmap.
1191 */
1192 if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1193 kaddr = kmap_atomic(page, KM_USER0);
1194 left = __copy_to_user_inatomic(desc->arg.buf,
1195 kaddr + offset, size);
1196 kunmap_atomic(kaddr, KM_USER0);
1197 if (left == 0)
1198 goto success;
1199 }
1200
1201 /* Do it the slow way */
1202 kaddr = kmap(page);
1203 left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1204 kunmap(page);
1205
1206 if (left) {
1207 size -= left;
1208 desc->error = -EFAULT;
1209 }
1210success:
1211 desc->count = count - size;
1212 desc->written += size;
1213 desc->arg.buf += size;
1214 return size;
1215}
1216
0ceb3314
DM
1217/*
1218 * Performs necessary checks before doing a write
1219 * @iov: io vector request
1220 * @nr_segs: number of segments in the iovec
1221 * @count: number of bytes to write
1222 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1223 *
1224 * Adjust number of segments and amount of bytes to write (nr_segs should be
1225 * properly initialized first). Returns appropriate error code that caller
1226 * should return or zero in case that write should be allowed.
1227 */
1228int generic_segment_checks(const struct iovec *iov,
1229 unsigned long *nr_segs, size_t *count, int access_flags)
1230{
1231 unsigned long seg;
1232 size_t cnt = 0;
1233 for (seg = 0; seg < *nr_segs; seg++) {
1234 const struct iovec *iv = &iov[seg];
1235
1236 /*
1237 * If any segment has a negative length, or the cumulative
1238 * length ever wraps negative then return -EINVAL.
1239 */
1240 cnt += iv->iov_len;
1241 if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1242 return -EINVAL;
1243 if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1244 continue;
1245 if (seg == 0)
1246 return -EFAULT;
1247 *nr_segs = seg;
1248 cnt -= iv->iov_len; /* This segment is no good */
1249 break;
1250 }
1251 *count = cnt;
1252 return 0;
1253}
1254EXPORT_SYMBOL(generic_segment_checks);
1255
485bb99b 1256/**
b2abacf3 1257 * generic_file_aio_read - generic filesystem read routine
485bb99b
RD
1258 * @iocb: kernel I/O control block
1259 * @iov: io vector request
1260 * @nr_segs: number of segments in the iovec
b2abacf3 1261 * @pos: current file position
485bb99b 1262 *
1da177e4
LT
1263 * This is the "read()" routine for all filesystems
1264 * that can use the page cache directly.
1265 */
1266ssize_t
543ade1f
BP
1267generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1268 unsigned long nr_segs, loff_t pos)
1da177e4
LT
1269{
1270 struct file *filp = iocb->ki_filp;
1271 ssize_t retval;
1272 unsigned long seg;
1273 size_t count;
543ade1f 1274 loff_t *ppos = &iocb->ki_pos;
1da177e4
LT
1275
1276 count = 0;
0ceb3314
DM
1277 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1278 if (retval)
1279 return retval;
1da177e4
LT
1280
1281 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1282 if (filp->f_flags & O_DIRECT) {
543ade1f 1283 loff_t size;
1da177e4
LT
1284 struct address_space *mapping;
1285 struct inode *inode;
1286
1287 mapping = filp->f_mapping;
1288 inode = mapping->host;
1da177e4
LT
1289 if (!count)
1290 goto out; /* skip atime */
1291 size = i_size_read(inode);
1292 if (pos < size) {
48b47c56
NP
1293 retval = filemap_write_and_wait_range(mapping, pos,
1294 pos + iov_length(iov, nr_segs) - 1);
a969e903
CH
1295 if (!retval) {
1296 retval = mapping->a_ops->direct_IO(READ, iocb,
1297 iov, pos, nr_segs);
1298 }
1da177e4
LT
1299 if (retval > 0)
1300 *ppos = pos + retval;
11fa977e
HD
1301 if (retval) {
1302 file_accessed(filp);
1303 goto out;
1304 }
0e0bcae3 1305 }
1da177e4
LT
1306 }
1307
11fa977e
HD
1308 for (seg = 0; seg < nr_segs; seg++) {
1309 read_descriptor_t desc;
1da177e4 1310
11fa977e
HD
1311 desc.written = 0;
1312 desc.arg.buf = iov[seg].iov_base;
1313 desc.count = iov[seg].iov_len;
1314 if (desc.count == 0)
1315 continue;
1316 desc.error = 0;
1317 do_generic_file_read(filp, ppos, &desc, file_read_actor);
1318 retval += desc.written;
1319 if (desc.error) {
1320 retval = retval ?: desc.error;
1321 break;
1da177e4 1322 }
11fa977e
HD
1323 if (desc.count > 0)
1324 break;
1da177e4
LT
1325 }
1326out:
1327 return retval;
1328}
1da177e4
LT
1329EXPORT_SYMBOL(generic_file_aio_read);
1330
1da177e4
LT
1331static ssize_t
1332do_readahead(struct address_space *mapping, struct file *filp,
57f6b96c 1333 pgoff_t index, unsigned long nr)
1da177e4
LT
1334{
1335 if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1336 return -EINVAL;
1337
f7e839dd 1338 force_page_cache_readahead(mapping, filp, index, nr);
1da177e4
LT
1339 return 0;
1340}
1341
6673e0c3 1342SYSCALL_DEFINE(readahead)(int fd, loff_t offset, size_t count)
1da177e4
LT
1343{
1344 ssize_t ret;
1345 struct file *file;
1346
1347 ret = -EBADF;
1348 file = fget(fd);
1349 if (file) {
1350 if (file->f_mode & FMODE_READ) {
1351 struct address_space *mapping = file->f_mapping;
57f6b96c
FW
1352 pgoff_t start = offset >> PAGE_CACHE_SHIFT;
1353 pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1da177e4
LT
1354 unsigned long len = end - start + 1;
1355 ret = do_readahead(mapping, file, start, len);
1356 }
1357 fput(file);
1358 }
1359 return ret;
1360}
6673e0c3
HC
1361#ifdef CONFIG_HAVE_SYSCALL_WRAPPERS
1362asmlinkage long SyS_readahead(long fd, loff_t offset, long count)
1363{
1364 return SYSC_readahead((int) fd, offset, (size_t) count);
1365}
1366SYSCALL_ALIAS(sys_readahead, SyS_readahead);
1367#endif
1da177e4
LT
1368
1369#ifdef CONFIG_MMU
485bb99b
RD
1370/**
1371 * page_cache_read - adds requested page to the page cache if not already there
1372 * @file: file to read
1373 * @offset: page index
1374 *
1da177e4
LT
1375 * This adds the requested page to the page cache if it isn't already there,
1376 * and schedules an I/O to read in its contents from disk.
1377 */
920c7a5d 1378static int page_cache_read(struct file *file, pgoff_t offset)
1da177e4
LT
1379{
1380 struct address_space *mapping = file->f_mapping;
1381 struct page *page;
994fc28c 1382 int ret;
1da177e4 1383
994fc28c
ZB
1384 do {
1385 page = page_cache_alloc_cold(mapping);
1386 if (!page)
1387 return -ENOMEM;
1388
1389 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1390 if (ret == 0)
1391 ret = mapping->a_ops->readpage(file, page);
1392 else if (ret == -EEXIST)
1393 ret = 0; /* losing race to add is OK */
1da177e4 1394
1da177e4 1395 page_cache_release(page);
1da177e4 1396
994fc28c
ZB
1397 } while (ret == AOP_TRUNCATED_PAGE);
1398
1399 return ret;
1da177e4
LT
1400}
1401
1402#define MMAP_LOTSAMISS (100)
1403
ef00e08e
LT
1404/*
1405 * Synchronous readahead happens when we don't even find
1406 * a page in the page cache at all.
1407 */
1408static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1409 struct file_ra_state *ra,
1410 struct file *file,
1411 pgoff_t offset)
1412{
1413 unsigned long ra_pages;
1414 struct address_space *mapping = file->f_mapping;
1415
1416 /* If we don't want any read-ahead, don't bother */
1417 if (VM_RandomReadHint(vma))
1418 return;
1419
70ac23cf
WF
1420 if (VM_SequentialReadHint(vma) ||
1421 offset - 1 == (ra->prev_pos >> PAGE_CACHE_SHIFT)) {
7ffc59b4
WF
1422 page_cache_sync_readahead(mapping, ra, file, offset,
1423 ra->ra_pages);
ef00e08e
LT
1424 return;
1425 }
1426
1427 if (ra->mmap_miss < INT_MAX)
1428 ra->mmap_miss++;
1429
1430 /*
1431 * Do we miss much more than hit in this file? If so,
1432 * stop bothering with read-ahead. It will only hurt.
1433 */
1434 if (ra->mmap_miss > MMAP_LOTSAMISS)
1435 return;
1436
d30a1100
WF
1437 /*
1438 * mmap read-around
1439 */
ef00e08e
LT
1440 ra_pages = max_sane_readahead(ra->ra_pages);
1441 if (ra_pages) {
d30a1100
WF
1442 ra->start = max_t(long, 0, offset - ra_pages/2);
1443 ra->size = ra_pages;
1444 ra->async_size = 0;
1445 ra_submit(ra, mapping, file);
ef00e08e
LT
1446 }
1447}
1448
1449/*
1450 * Asynchronous readahead happens when we find the page and PG_readahead,
1451 * so we want to possibly extend the readahead further..
1452 */
1453static void do_async_mmap_readahead(struct vm_area_struct *vma,
1454 struct file_ra_state *ra,
1455 struct file *file,
1456 struct page *page,
1457 pgoff_t offset)
1458{
1459 struct address_space *mapping = file->f_mapping;
1460
1461 /* If we don't want any read-ahead, don't bother */
1462 if (VM_RandomReadHint(vma))
1463 return;
1464 if (ra->mmap_miss > 0)
1465 ra->mmap_miss--;
1466 if (PageReadahead(page))
2fad6f5d
WF
1467 page_cache_async_readahead(mapping, ra, file,
1468 page, offset, ra->ra_pages);
ef00e08e
LT
1469}
1470
485bb99b 1471/**
54cb8821 1472 * filemap_fault - read in file data for page fault handling
d0217ac0
NP
1473 * @vma: vma in which the fault was taken
1474 * @vmf: struct vm_fault containing details of the fault
485bb99b 1475 *
54cb8821 1476 * filemap_fault() is invoked via the vma operations vector for a
1da177e4
LT
1477 * mapped memory region to read in file data during a page fault.
1478 *
1479 * The goto's are kind of ugly, but this streamlines the normal case of having
1480 * it in the page cache, and handles the special cases reasonably without
1481 * having a lot of duplicated code.
1482 */
d0217ac0 1483int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1da177e4
LT
1484{
1485 int error;
54cb8821 1486 struct file *file = vma->vm_file;
1da177e4
LT
1487 struct address_space *mapping = file->f_mapping;
1488 struct file_ra_state *ra = &file->f_ra;
1489 struct inode *inode = mapping->host;
ef00e08e 1490 pgoff_t offset = vmf->pgoff;
1da177e4 1491 struct page *page;
2004dc8e 1492 pgoff_t size;
83c54070 1493 int ret = 0;
1da177e4 1494
1da177e4 1495 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
ef00e08e 1496 if (offset >= size)
5307cc1a 1497 return VM_FAULT_SIGBUS;
1da177e4 1498
1da177e4
LT
1499 /*
1500 * Do we have something in the page cache already?
1501 */
ef00e08e
LT
1502 page = find_get_page(mapping, offset);
1503 if (likely(page)) {
1da177e4 1504 /*
ef00e08e
LT
1505 * We found the page, so try async readahead before
1506 * waiting for the lock.
1da177e4 1507 */
ef00e08e
LT
1508 do_async_mmap_readahead(vma, ra, file, page, offset);
1509 lock_page(page);
1da177e4 1510
ef00e08e
LT
1511 /* Did it get truncated? */
1512 if (unlikely(page->mapping != mapping)) {
1513 unlock_page(page);
1514 put_page(page);
1515 goto no_cached_page;
1da177e4 1516 }
ef00e08e
LT
1517 } else {
1518 /* No page in the page cache at all */
1519 do_sync_mmap_readahead(vma, ra, file, offset);
1520 count_vm_event(PGMAJFAULT);
1521 ret = VM_FAULT_MAJOR;
1522retry_find:
1523 page = find_lock_page(mapping, offset);
1da177e4
LT
1524 if (!page)
1525 goto no_cached_page;
1526 }
1527
1da177e4 1528 /*
d00806b1
NP
1529 * We have a locked page in the page cache, now we need to check
1530 * that it's up-to-date. If not, it is going to be due to an error.
1da177e4 1531 */
d00806b1 1532 if (unlikely(!PageUptodate(page)))
1da177e4
LT
1533 goto page_not_uptodate;
1534
ef00e08e
LT
1535 /*
1536 * Found the page and have a reference on it.
1537 * We must recheck i_size under page lock.
1538 */
d00806b1 1539 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
ef00e08e 1540 if (unlikely(offset >= size)) {
d00806b1 1541 unlock_page(page);
745ad48e 1542 page_cache_release(page);
5307cc1a 1543 return VM_FAULT_SIGBUS;
d00806b1
NP
1544 }
1545
ef00e08e 1546 ra->prev_pos = (loff_t)offset << PAGE_CACHE_SHIFT;
d0217ac0 1547 vmf->page = page;
83c54070 1548 return ret | VM_FAULT_LOCKED;
1da177e4 1549
1da177e4
LT
1550no_cached_page:
1551 /*
1552 * We're only likely to ever get here if MADV_RANDOM is in
1553 * effect.
1554 */
ef00e08e 1555 error = page_cache_read(file, offset);
1da177e4
LT
1556
1557 /*
1558 * The page we want has now been added to the page cache.
1559 * In the unlikely event that someone removed it in the
1560 * meantime, we'll just come back here and read it again.
1561 */
1562 if (error >= 0)
1563 goto retry_find;
1564
1565 /*
1566 * An error return from page_cache_read can result if the
1567 * system is low on memory, or a problem occurs while trying
1568 * to schedule I/O.
1569 */
1570 if (error == -ENOMEM)
d0217ac0
NP
1571 return VM_FAULT_OOM;
1572 return VM_FAULT_SIGBUS;
1da177e4
LT
1573
1574page_not_uptodate:
1da177e4
LT
1575 /*
1576 * Umm, take care of errors if the page isn't up-to-date.
1577 * Try to re-read it _once_. We do this synchronously,
1578 * because there really aren't any performance issues here
1579 * and we need to check for errors.
1580 */
1da177e4 1581 ClearPageError(page);
994fc28c 1582 error = mapping->a_ops->readpage(file, page);
3ef0f720
MS
1583 if (!error) {
1584 wait_on_page_locked(page);
1585 if (!PageUptodate(page))
1586 error = -EIO;
1587 }
d00806b1
NP
1588 page_cache_release(page);
1589
1590 if (!error || error == AOP_TRUNCATED_PAGE)
994fc28c 1591 goto retry_find;
1da177e4 1592
d00806b1 1593 /* Things didn't work out. Return zero to tell the mm layer so. */
76d42bd9 1594 shrink_readahead_size_eio(file, ra);
d0217ac0 1595 return VM_FAULT_SIGBUS;
54cb8821
NP
1596}
1597EXPORT_SYMBOL(filemap_fault);
1598
f0f37e2f 1599const struct vm_operations_struct generic_file_vm_ops = {
54cb8821 1600 .fault = filemap_fault,
1da177e4
LT
1601};
1602
1603/* This is used for a general mmap of a disk file */
1604
1605int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1606{
1607 struct address_space *mapping = file->f_mapping;
1608
1609 if (!mapping->a_ops->readpage)
1610 return -ENOEXEC;
1611 file_accessed(file);
1612 vma->vm_ops = &generic_file_vm_ops;
d0217ac0 1613 vma->vm_flags |= VM_CAN_NONLINEAR;
1da177e4
LT
1614 return 0;
1615}
1da177e4
LT
1616
1617/*
1618 * This is for filesystems which do not implement ->writepage.
1619 */
1620int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1621{
1622 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1623 return -EINVAL;
1624 return generic_file_mmap(file, vma);
1625}
1626#else
1627int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1628{
1629 return -ENOSYS;
1630}
1631int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1632{
1633 return -ENOSYS;
1634}
1635#endif /* CONFIG_MMU */
1636
1637EXPORT_SYMBOL(generic_file_mmap);
1638EXPORT_SYMBOL(generic_file_readonly_mmap);
1639
6fe6900e 1640static struct page *__read_cache_page(struct address_space *mapping,
57f6b96c 1641 pgoff_t index,
1da177e4 1642 int (*filler)(void *,struct page*),
0531b2aa
LT
1643 void *data,
1644 gfp_t gfp)
1da177e4 1645{
eb2be189 1646 struct page *page;
1da177e4
LT
1647 int err;
1648repeat:
1649 page = find_get_page(mapping, index);
1650 if (!page) {
0531b2aa 1651 page = __page_cache_alloc(gfp | __GFP_COLD);
eb2be189
NP
1652 if (!page)
1653 return ERR_PTR(-ENOMEM);
1654 err = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
1655 if (unlikely(err)) {
1656 page_cache_release(page);
1657 if (err == -EEXIST)
1658 goto repeat;
1da177e4 1659 /* Presumably ENOMEM for radix tree node */
1da177e4
LT
1660 return ERR_PTR(err);
1661 }
1da177e4
LT
1662 err = filler(data, page);
1663 if (err < 0) {
1664 page_cache_release(page);
1665 page = ERR_PTR(err);
1666 }
1667 }
1da177e4
LT
1668 return page;
1669}
1670
0531b2aa 1671static struct page *do_read_cache_page(struct address_space *mapping,
57f6b96c 1672 pgoff_t index,
1da177e4 1673 int (*filler)(void *,struct page*),
0531b2aa
LT
1674 void *data,
1675 gfp_t gfp)
1676
1da177e4
LT
1677{
1678 struct page *page;
1679 int err;
1680
1681retry:
0531b2aa 1682 page = __read_cache_page(mapping, index, filler, data, gfp);
1da177e4 1683 if (IS_ERR(page))
c855ff37 1684 return page;
1da177e4
LT
1685 if (PageUptodate(page))
1686 goto out;
1687
1688 lock_page(page);
1689 if (!page->mapping) {
1690 unlock_page(page);
1691 page_cache_release(page);
1692 goto retry;
1693 }
1694 if (PageUptodate(page)) {
1695 unlock_page(page);
1696 goto out;
1697 }
1698 err = filler(data, page);
1699 if (err < 0) {
1700 page_cache_release(page);
c855ff37 1701 return ERR_PTR(err);
1da177e4 1702 }
c855ff37 1703out:
6fe6900e
NP
1704 mark_page_accessed(page);
1705 return page;
1706}
0531b2aa
LT
1707
1708/**
1709 * read_cache_page_async - read into page cache, fill it if needed
1710 * @mapping: the page's address_space
1711 * @index: the page index
1712 * @filler: function to perform the read
1713 * @data: destination for read data
1714 *
1715 * Same as read_cache_page, but don't wait for page to become unlocked
1716 * after submitting it to the filler.
1717 *
1718 * Read into the page cache. If a page already exists, and PageUptodate() is
1719 * not set, try to fill the page but don't wait for it to become unlocked.
1720 *
1721 * If the page does not get brought uptodate, return -EIO.
1722 */
1723struct page *read_cache_page_async(struct address_space *mapping,
1724 pgoff_t index,
1725 int (*filler)(void *,struct page*),
1726 void *data)
1727{
1728 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
1729}
6fe6900e
NP
1730EXPORT_SYMBOL(read_cache_page_async);
1731
0531b2aa
LT
1732static struct page *wait_on_page_read(struct page *page)
1733{
1734 if (!IS_ERR(page)) {
1735 wait_on_page_locked(page);
1736 if (!PageUptodate(page)) {
1737 page_cache_release(page);
1738 page = ERR_PTR(-EIO);
1739 }
1740 }
1741 return page;
1742}
1743
1744/**
1745 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
1746 * @mapping: the page's address_space
1747 * @index: the page index
1748 * @gfp: the page allocator flags to use if allocating
1749 *
1750 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
1751 * any new page allocations done using the specified allocation flags. Note
1752 * that the Radix tree operations will still use GFP_KERNEL, so you can't
1753 * expect to do this atomically or anything like that - but you can pass in
1754 * other page requirements.
1755 *
1756 * If the page does not get brought uptodate, return -EIO.
1757 */
1758struct page *read_cache_page_gfp(struct address_space *mapping,
1759 pgoff_t index,
1760 gfp_t gfp)
1761{
1762 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
1763
1764 return wait_on_page_read(do_read_cache_page(mapping, index, filler, NULL, gfp));
1765}
1766EXPORT_SYMBOL(read_cache_page_gfp);
1767
6fe6900e
NP
1768/**
1769 * read_cache_page - read into page cache, fill it if needed
1770 * @mapping: the page's address_space
1771 * @index: the page index
1772 * @filler: function to perform the read
1773 * @data: destination for read data
1774 *
1775 * Read into the page cache. If a page already exists, and PageUptodate() is
1776 * not set, try to fill the page then wait for it to become unlocked.
1777 *
1778 * If the page does not get brought uptodate, return -EIO.
1779 */
1780struct page *read_cache_page(struct address_space *mapping,
57f6b96c 1781 pgoff_t index,
6fe6900e
NP
1782 int (*filler)(void *,struct page*),
1783 void *data)
1784{
0531b2aa 1785 return wait_on_page_read(read_cache_page_async(mapping, index, filler, data));
1da177e4 1786}
1da177e4
LT
1787EXPORT_SYMBOL(read_cache_page);
1788
1da177e4
LT
1789/*
1790 * The logic we want is
1791 *
1792 * if suid or (sgid and xgrp)
1793 * remove privs
1794 */
01de85e0 1795int should_remove_suid(struct dentry *dentry)
1da177e4
LT
1796{
1797 mode_t mode = dentry->d_inode->i_mode;
1798 int kill = 0;
1da177e4
LT
1799
1800 /* suid always must be killed */
1801 if (unlikely(mode & S_ISUID))
1802 kill = ATTR_KILL_SUID;
1803
1804 /*
1805 * sgid without any exec bits is just a mandatory locking mark; leave
1806 * it alone. If some exec bits are set, it's a real sgid; kill it.
1807 */
1808 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1809 kill |= ATTR_KILL_SGID;
1810
7f5ff766 1811 if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
01de85e0 1812 return kill;
1da177e4 1813
01de85e0
JA
1814 return 0;
1815}
d23a147b 1816EXPORT_SYMBOL(should_remove_suid);
01de85e0 1817
7f3d4ee1 1818static int __remove_suid(struct dentry *dentry, int kill)
01de85e0
JA
1819{
1820 struct iattr newattrs;
1821
1822 newattrs.ia_valid = ATTR_FORCE | kill;
1823 return notify_change(dentry, &newattrs);
1824}
1825
2f1936b8 1826int file_remove_suid(struct file *file)
01de85e0 1827{
2f1936b8 1828 struct dentry *dentry = file->f_path.dentry;
b5376771
SH
1829 int killsuid = should_remove_suid(dentry);
1830 int killpriv = security_inode_need_killpriv(dentry);
1831 int error = 0;
01de85e0 1832
b5376771
SH
1833 if (killpriv < 0)
1834 return killpriv;
1835 if (killpriv)
1836 error = security_inode_killpriv(dentry);
1837 if (!error && killsuid)
1838 error = __remove_suid(dentry, killsuid);
01de85e0 1839
b5376771 1840 return error;
1da177e4 1841}
2f1936b8 1842EXPORT_SYMBOL(file_remove_suid);
1da177e4 1843
2f718ffc 1844static size_t __iovec_copy_from_user_inatomic(char *vaddr,
1da177e4
LT
1845 const struct iovec *iov, size_t base, size_t bytes)
1846{
f1800536 1847 size_t copied = 0, left = 0;
1da177e4
LT
1848
1849 while (bytes) {
1850 char __user *buf = iov->iov_base + base;
1851 int copy = min(bytes, iov->iov_len - base);
1852
1853 base = 0;
f1800536 1854 left = __copy_from_user_inatomic(vaddr, buf, copy);
1da177e4
LT
1855 copied += copy;
1856 bytes -= copy;
1857 vaddr += copy;
1858 iov++;
1859
01408c49 1860 if (unlikely(left))
1da177e4 1861 break;
1da177e4
LT
1862 }
1863 return copied - left;
1864}
1865
2f718ffc
NP
1866/*
1867 * Copy as much as we can into the page and return the number of bytes which
af901ca1 1868 * were successfully copied. If a fault is encountered then return the number of
2f718ffc
NP
1869 * bytes which were copied.
1870 */
1871size_t iov_iter_copy_from_user_atomic(struct page *page,
1872 struct iov_iter *i, unsigned long offset, size_t bytes)
1873{
1874 char *kaddr;
1875 size_t copied;
1876
1877 BUG_ON(!in_atomic());
1878 kaddr = kmap_atomic(page, KM_USER0);
1879 if (likely(i->nr_segs == 1)) {
1880 int left;
1881 char __user *buf = i->iov->iov_base + i->iov_offset;
f1800536 1882 left = __copy_from_user_inatomic(kaddr + offset, buf, bytes);
2f718ffc
NP
1883 copied = bytes - left;
1884 } else {
1885 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1886 i->iov, i->iov_offset, bytes);
1887 }
1888 kunmap_atomic(kaddr, KM_USER0);
1889
1890 return copied;
1891}
89e10787 1892EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
2f718ffc
NP
1893
1894/*
1895 * This has the same sideeffects and return value as
1896 * iov_iter_copy_from_user_atomic().
1897 * The difference is that it attempts to resolve faults.
1898 * Page must not be locked.
1899 */
1900size_t iov_iter_copy_from_user(struct page *page,
1901 struct iov_iter *i, unsigned long offset, size_t bytes)
1902{
1903 char *kaddr;
1904 size_t copied;
1905
1906 kaddr = kmap(page);
1907 if (likely(i->nr_segs == 1)) {
1908 int left;
1909 char __user *buf = i->iov->iov_base + i->iov_offset;
f1800536 1910 left = __copy_from_user(kaddr + offset, buf, bytes);
2f718ffc
NP
1911 copied = bytes - left;
1912 } else {
1913 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1914 i->iov, i->iov_offset, bytes);
1915 }
1916 kunmap(page);
1917 return copied;
1918}
89e10787 1919EXPORT_SYMBOL(iov_iter_copy_from_user);
2f718ffc 1920
f7009264 1921void iov_iter_advance(struct iov_iter *i, size_t bytes)
2f718ffc 1922{
f7009264
NP
1923 BUG_ON(i->count < bytes);
1924
2f718ffc
NP
1925 if (likely(i->nr_segs == 1)) {
1926 i->iov_offset += bytes;
f7009264 1927 i->count -= bytes;
2f718ffc
NP
1928 } else {
1929 const struct iovec *iov = i->iov;
1930 size_t base = i->iov_offset;
1931
124d3b70
NP
1932 /*
1933 * The !iov->iov_len check ensures we skip over unlikely
f7009264 1934 * zero-length segments (without overruning the iovec).
124d3b70 1935 */
94ad374a 1936 while (bytes || unlikely(i->count && !iov->iov_len)) {
f7009264 1937 int copy;
2f718ffc 1938
f7009264
NP
1939 copy = min(bytes, iov->iov_len - base);
1940 BUG_ON(!i->count || i->count < copy);
1941 i->count -= copy;
2f718ffc
NP
1942 bytes -= copy;
1943 base += copy;
1944 if (iov->iov_len == base) {
1945 iov++;
1946 base = 0;
1947 }
1948 }
1949 i->iov = iov;
1950 i->iov_offset = base;
1951 }
1952}
89e10787 1953EXPORT_SYMBOL(iov_iter_advance);
2f718ffc 1954
afddba49
NP
1955/*
1956 * Fault in the first iovec of the given iov_iter, to a maximum length
1957 * of bytes. Returns 0 on success, or non-zero if the memory could not be
1958 * accessed (ie. because it is an invalid address).
1959 *
1960 * writev-intensive code may want this to prefault several iovecs -- that
1961 * would be possible (callers must not rely on the fact that _only_ the
1962 * first iovec will be faulted with the current implementation).
1963 */
1964int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
2f718ffc 1965{
2f718ffc 1966 char __user *buf = i->iov->iov_base + i->iov_offset;
afddba49
NP
1967 bytes = min(bytes, i->iov->iov_len - i->iov_offset);
1968 return fault_in_pages_readable(buf, bytes);
2f718ffc 1969}
89e10787 1970EXPORT_SYMBOL(iov_iter_fault_in_readable);
2f718ffc
NP
1971
1972/*
1973 * Return the count of just the current iov_iter segment.
1974 */
1975size_t iov_iter_single_seg_count(struct iov_iter *i)
1976{
1977 const struct iovec *iov = i->iov;
1978 if (i->nr_segs == 1)
1979 return i->count;
1980 else
1981 return min(i->count, iov->iov_len - i->iov_offset);
1982}
89e10787 1983EXPORT_SYMBOL(iov_iter_single_seg_count);
2f718ffc 1984
1da177e4
LT
1985/*
1986 * Performs necessary checks before doing a write
1987 *
485bb99b 1988 * Can adjust writing position or amount of bytes to write.
1da177e4
LT
1989 * Returns appropriate error code that caller should return or
1990 * zero in case that write should be allowed.
1991 */
1992inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
1993{
1994 struct inode *inode = file->f_mapping->host;
59e99e5b 1995 unsigned long limit = rlimit(RLIMIT_FSIZE);
1da177e4
LT
1996
1997 if (unlikely(*pos < 0))
1998 return -EINVAL;
1999
1da177e4
LT
2000 if (!isblk) {
2001 /* FIXME: this is for backwards compatibility with 2.4 */
2002 if (file->f_flags & O_APPEND)
2003 *pos = i_size_read(inode);
2004
2005 if (limit != RLIM_INFINITY) {
2006 if (*pos >= limit) {
2007 send_sig(SIGXFSZ, current, 0);
2008 return -EFBIG;
2009 }
2010 if (*count > limit - (typeof(limit))*pos) {
2011 *count = limit - (typeof(limit))*pos;
2012 }
2013 }
2014 }
2015
2016 /*
2017 * LFS rule
2018 */
2019 if (unlikely(*pos + *count > MAX_NON_LFS &&
2020 !(file->f_flags & O_LARGEFILE))) {
2021 if (*pos >= MAX_NON_LFS) {
1da177e4
LT
2022 return -EFBIG;
2023 }
2024 if (*count > MAX_NON_LFS - (unsigned long)*pos) {
2025 *count = MAX_NON_LFS - (unsigned long)*pos;
2026 }
2027 }
2028
2029 /*
2030 * Are we about to exceed the fs block limit ?
2031 *
2032 * If we have written data it becomes a short write. If we have
2033 * exceeded without writing data we send a signal and return EFBIG.
2034 * Linus frestrict idea will clean these up nicely..
2035 */
2036 if (likely(!isblk)) {
2037 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
2038 if (*count || *pos > inode->i_sb->s_maxbytes) {
1da177e4
LT
2039 return -EFBIG;
2040 }
2041 /* zero-length writes at ->s_maxbytes are OK */
2042 }
2043
2044 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2045 *count = inode->i_sb->s_maxbytes - *pos;
2046 } else {
9361401e 2047#ifdef CONFIG_BLOCK
1da177e4
LT
2048 loff_t isize;
2049 if (bdev_read_only(I_BDEV(inode)))
2050 return -EPERM;
2051 isize = i_size_read(inode);
2052 if (*pos >= isize) {
2053 if (*count || *pos > isize)
2054 return -ENOSPC;
2055 }
2056
2057 if (*pos + *count > isize)
2058 *count = isize - *pos;
9361401e
DH
2059#else
2060 return -EPERM;
2061#endif
1da177e4
LT
2062 }
2063 return 0;
2064}
2065EXPORT_SYMBOL(generic_write_checks);
2066
afddba49
NP
2067int pagecache_write_begin(struct file *file, struct address_space *mapping,
2068 loff_t pos, unsigned len, unsigned flags,
2069 struct page **pagep, void **fsdata)
2070{
2071 const struct address_space_operations *aops = mapping->a_ops;
2072
4e02ed4b 2073 return aops->write_begin(file, mapping, pos, len, flags,
afddba49 2074 pagep, fsdata);
afddba49
NP
2075}
2076EXPORT_SYMBOL(pagecache_write_begin);
2077
2078int pagecache_write_end(struct file *file, struct address_space *mapping,
2079 loff_t pos, unsigned len, unsigned copied,
2080 struct page *page, void *fsdata)
2081{
2082 const struct address_space_operations *aops = mapping->a_ops;
afddba49 2083
4e02ed4b
NP
2084 mark_page_accessed(page);
2085 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
afddba49
NP
2086}
2087EXPORT_SYMBOL(pagecache_write_end);
2088
1da177e4
LT
2089ssize_t
2090generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
2091 unsigned long *nr_segs, loff_t pos, loff_t *ppos,
2092 size_t count, size_t ocount)
2093{
2094 struct file *file = iocb->ki_filp;
2095 struct address_space *mapping = file->f_mapping;
2096 struct inode *inode = mapping->host;
2097 ssize_t written;
a969e903
CH
2098 size_t write_len;
2099 pgoff_t end;
1da177e4
LT
2100
2101 if (count != ocount)
2102 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2103
a969e903
CH
2104 write_len = iov_length(iov, *nr_segs);
2105 end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
a969e903 2106
48b47c56 2107 written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
a969e903
CH
2108 if (written)
2109 goto out;
2110
2111 /*
2112 * After a write we want buffered reads to be sure to go to disk to get
2113 * the new data. We invalidate clean cached page from the region we're
2114 * about to write. We do this *before* the write so that we can return
6ccfa806 2115 * without clobbering -EIOCBQUEUED from ->direct_IO().
a969e903
CH
2116 */
2117 if (mapping->nrpages) {
2118 written = invalidate_inode_pages2_range(mapping,
2119 pos >> PAGE_CACHE_SHIFT, end);
6ccfa806
HH
2120 /*
2121 * If a page can not be invalidated, return 0 to fall back
2122 * to buffered write.
2123 */
2124 if (written) {
2125 if (written == -EBUSY)
2126 return 0;
a969e903 2127 goto out;
6ccfa806 2128 }
a969e903
CH
2129 }
2130
2131 written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2132
2133 /*
2134 * Finally, try again to invalidate clean pages which might have been
2135 * cached by non-direct readahead, or faulted in by get_user_pages()
2136 * if the source of the write was an mmap'ed region of the file
2137 * we're writing. Either one is a pretty crazy thing to do,
2138 * so we don't support it 100%. If this invalidation
2139 * fails, tough, the write still worked...
2140 */
2141 if (mapping->nrpages) {
2142 invalidate_inode_pages2_range(mapping,
2143 pos >> PAGE_CACHE_SHIFT, end);
2144 }
2145
1da177e4
LT
2146 if (written > 0) {
2147 loff_t end = pos + written;
2148 if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2149 i_size_write(inode, end);
2150 mark_inode_dirty(inode);
2151 }
2152 *ppos = end;
2153 }
a969e903 2154out:
1da177e4
LT
2155 return written;
2156}
2157EXPORT_SYMBOL(generic_file_direct_write);
2158
eb2be189
NP
2159/*
2160 * Find or create a page at the given pagecache position. Return the locked
2161 * page. This function is specifically for buffered writes.
2162 */
54566b2c
NP
2163struct page *grab_cache_page_write_begin(struct address_space *mapping,
2164 pgoff_t index, unsigned flags)
eb2be189
NP
2165{
2166 int status;
2167 struct page *page;
54566b2c
NP
2168 gfp_t gfp_notmask = 0;
2169 if (flags & AOP_FLAG_NOFS)
2170 gfp_notmask = __GFP_FS;
eb2be189
NP
2171repeat:
2172 page = find_lock_page(mapping, index);
2173 if (likely(page))
2174 return page;
2175
54566b2c 2176 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~gfp_notmask);
eb2be189
NP
2177 if (!page)
2178 return NULL;
54566b2c
NP
2179 status = add_to_page_cache_lru(page, mapping, index,
2180 GFP_KERNEL & ~gfp_notmask);
eb2be189
NP
2181 if (unlikely(status)) {
2182 page_cache_release(page);
2183 if (status == -EEXIST)
2184 goto repeat;
2185 return NULL;
2186 }
2187 return page;
2188}
54566b2c 2189EXPORT_SYMBOL(grab_cache_page_write_begin);
eb2be189 2190
afddba49
NP
2191static ssize_t generic_perform_write(struct file *file,
2192 struct iov_iter *i, loff_t pos)
2193{
2194 struct address_space *mapping = file->f_mapping;
2195 const struct address_space_operations *a_ops = mapping->a_ops;
2196 long status = 0;
2197 ssize_t written = 0;
674b892e
NP
2198 unsigned int flags = 0;
2199
2200 /*
2201 * Copies from kernel address space cannot fail (NFSD is a big user).
2202 */
2203 if (segment_eq(get_fs(), KERNEL_DS))
2204 flags |= AOP_FLAG_UNINTERRUPTIBLE;
afddba49
NP
2205
2206 do {
2207 struct page *page;
2208 pgoff_t index; /* Pagecache index for current page */
2209 unsigned long offset; /* Offset into pagecache page */
2210 unsigned long bytes; /* Bytes to write to page */
2211 size_t copied; /* Bytes copied from user */
2212 void *fsdata;
2213
2214 offset = (pos & (PAGE_CACHE_SIZE - 1));
2215 index = pos >> PAGE_CACHE_SHIFT;
2216 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2217 iov_iter_count(i));
2218
2219again:
2220
2221 /*
2222 * Bring in the user page that we will copy from _first_.
2223 * Otherwise there's a nasty deadlock on copying from the
2224 * same page as we're writing to, without it being marked
2225 * up-to-date.
2226 *
2227 * Not only is this an optimisation, but it is also required
2228 * to check that the address is actually valid, when atomic
2229 * usercopies are used, below.
2230 */
2231 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2232 status = -EFAULT;
2233 break;
2234 }
2235
674b892e 2236 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
afddba49
NP
2237 &page, &fsdata);
2238 if (unlikely(status))
2239 break;
2240
931e80e4 2241 if (mapping_writably_mapped(mapping))
2242 flush_dcache_page(page);
2243
afddba49
NP
2244 pagefault_disable();
2245 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2246 pagefault_enable();
2247 flush_dcache_page(page);
2248
c8236db9 2249 mark_page_accessed(page);
afddba49
NP
2250 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2251 page, fsdata);
2252 if (unlikely(status < 0))
2253 break;
2254 copied = status;
2255
2256 cond_resched();
2257
124d3b70 2258 iov_iter_advance(i, copied);
afddba49
NP
2259 if (unlikely(copied == 0)) {
2260 /*
2261 * If we were unable to copy any data at all, we must
2262 * fall back to a single segment length write.
2263 *
2264 * If we didn't fallback here, we could livelock
2265 * because not all segments in the iov can be copied at
2266 * once without a pagefault.
2267 */
2268 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2269 iov_iter_single_seg_count(i));
2270 goto again;
2271 }
afddba49
NP
2272 pos += copied;
2273 written += copied;
2274
2275 balance_dirty_pages_ratelimited(mapping);
2276
2277 } while (iov_iter_count(i));
2278
2279 return written ? written : status;
2280}
2281
2282ssize_t
2283generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2284 unsigned long nr_segs, loff_t pos, loff_t *ppos,
2285 size_t count, ssize_t written)
2286{
2287 struct file *file = iocb->ki_filp;
afddba49
NP
2288 ssize_t status;
2289 struct iov_iter i;
2290
2291 iov_iter_init(&i, iov, nr_segs, count, written);
4e02ed4b 2292 status = generic_perform_write(file, &i, pos);
1da177e4 2293
1da177e4 2294 if (likely(status >= 0)) {
afddba49
NP
2295 written += status;
2296 *ppos = pos + status;
1da177e4
LT
2297 }
2298
1da177e4
LT
2299 return written ? written : status;
2300}
2301EXPORT_SYMBOL(generic_file_buffered_write);
2302
e4dd9de3
JK
2303/**
2304 * __generic_file_aio_write - write data to a file
2305 * @iocb: IO state structure (file, offset, etc.)
2306 * @iov: vector with data to write
2307 * @nr_segs: number of segments in the vector
2308 * @ppos: position where to write
2309 *
2310 * This function does all the work needed for actually writing data to a
2311 * file. It does all basic checks, removes SUID from the file, updates
2312 * modification times and calls proper subroutines depending on whether we
2313 * do direct IO or a standard buffered write.
2314 *
2315 * It expects i_mutex to be grabbed unless we work on a block device or similar
2316 * object which does not need locking at all.
2317 *
2318 * This function does *not* take care of syncing data in case of O_SYNC write.
2319 * A caller has to handle it. This is mainly due to the fact that we want to
2320 * avoid syncing under i_mutex.
2321 */
2322ssize_t __generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2323 unsigned long nr_segs, loff_t *ppos)
1da177e4
LT
2324{
2325 struct file *file = iocb->ki_filp;
fb5527e6 2326 struct address_space * mapping = file->f_mapping;
1da177e4
LT
2327 size_t ocount; /* original count */
2328 size_t count; /* after file limit checks */
2329 struct inode *inode = mapping->host;
1da177e4
LT
2330 loff_t pos;
2331 ssize_t written;
2332 ssize_t err;
2333
2334 ocount = 0;
0ceb3314
DM
2335 err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2336 if (err)
2337 return err;
1da177e4
LT
2338
2339 count = ocount;
2340 pos = *ppos;
2341
2342 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2343
2344 /* We can write back this queue in page reclaim */
2345 current->backing_dev_info = mapping->backing_dev_info;
2346 written = 0;
2347
2348 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2349 if (err)
2350 goto out;
2351
2352 if (count == 0)
2353 goto out;
2354
2f1936b8 2355 err = file_remove_suid(file);
1da177e4
LT
2356 if (err)
2357 goto out;
2358
870f4817 2359 file_update_time(file);
1da177e4
LT
2360
2361 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2362 if (unlikely(file->f_flags & O_DIRECT)) {
fb5527e6
JM
2363 loff_t endbyte;
2364 ssize_t written_buffered;
2365
2366 written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2367 ppos, count, ocount);
1da177e4
LT
2368 if (written < 0 || written == count)
2369 goto out;
2370 /*
2371 * direct-io write to a hole: fall through to buffered I/O
2372 * for completing the rest of the request.
2373 */
2374 pos += written;
2375 count -= written;
fb5527e6
JM
2376 written_buffered = generic_file_buffered_write(iocb, iov,
2377 nr_segs, pos, ppos, count,
2378 written);
2379 /*
2380 * If generic_file_buffered_write() retuned a synchronous error
2381 * then we want to return the number of bytes which were
2382 * direct-written, or the error code if that was zero. Note
2383 * that this differs from normal direct-io semantics, which
2384 * will return -EFOO even if some bytes were written.
2385 */
2386 if (written_buffered < 0) {
2387 err = written_buffered;
2388 goto out;
2389 }
1da177e4 2390
fb5527e6
JM
2391 /*
2392 * We need to ensure that the page cache pages are written to
2393 * disk and invalidated to preserve the expected O_DIRECT
2394 * semantics.
2395 */
2396 endbyte = pos + written_buffered - written - 1;
c05c4edd 2397 err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
fb5527e6
JM
2398 if (err == 0) {
2399 written = written_buffered;
2400 invalidate_mapping_pages(mapping,
2401 pos >> PAGE_CACHE_SHIFT,
2402 endbyte >> PAGE_CACHE_SHIFT);
2403 } else {
2404 /*
2405 * We don't know how much we wrote, so just return
2406 * the number of bytes which were direct-written
2407 */
2408 }
2409 } else {
2410 written = generic_file_buffered_write(iocb, iov, nr_segs,
2411 pos, ppos, count, written);
2412 }
1da177e4
LT
2413out:
2414 current->backing_dev_info = NULL;
2415 return written ? written : err;
2416}
e4dd9de3
JK
2417EXPORT_SYMBOL(__generic_file_aio_write);
2418
e4dd9de3
JK
2419/**
2420 * generic_file_aio_write - write data to a file
2421 * @iocb: IO state structure
2422 * @iov: vector with data to write
2423 * @nr_segs: number of segments in the vector
2424 * @pos: position in file where to write
2425 *
2426 * This is a wrapper around __generic_file_aio_write() to be used by most
2427 * filesystems. It takes care of syncing the file in case of O_SYNC file
2428 * and acquires i_mutex as needed.
2429 */
027445c3
BP
2430ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2431 unsigned long nr_segs, loff_t pos)
1da177e4
LT
2432{
2433 struct file *file = iocb->ki_filp;
148f948b 2434 struct inode *inode = file->f_mapping->host;
1da177e4 2435 ssize_t ret;
1da177e4
LT
2436
2437 BUG_ON(iocb->ki_pos != pos);
2438
1b1dcc1b 2439 mutex_lock(&inode->i_mutex);
e4dd9de3 2440 ret = __generic_file_aio_write(iocb, iov, nr_segs, &iocb->ki_pos);
1b1dcc1b 2441 mutex_unlock(&inode->i_mutex);
1da177e4 2442
148f948b 2443 if (ret > 0 || ret == -EIOCBQUEUED) {
1da177e4
LT
2444 ssize_t err;
2445
148f948b 2446 err = generic_write_sync(file, pos, ret);
c7b50db2 2447 if (err < 0 && ret > 0)
1da177e4
LT
2448 ret = err;
2449 }
2450 return ret;
2451}
2452EXPORT_SYMBOL(generic_file_aio_write);
2453
cf9a2ae8
DH
2454/**
2455 * try_to_release_page() - release old fs-specific metadata on a page
2456 *
2457 * @page: the page which the kernel is trying to free
2458 * @gfp_mask: memory allocation flags (and I/O mode)
2459 *
2460 * The address_space is to try to release any data against the page
2461 * (presumably at page->private). If the release was successful, return `1'.
2462 * Otherwise return zero.
2463 *
266cf658
DH
2464 * This may also be called if PG_fscache is set on a page, indicating that the
2465 * page is known to the local caching routines.
2466 *
cf9a2ae8 2467 * The @gfp_mask argument specifies whether I/O may be performed to release
3f31fddf 2468 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
cf9a2ae8 2469 *
cf9a2ae8
DH
2470 */
2471int try_to_release_page(struct page *page, gfp_t gfp_mask)
2472{
2473 struct address_space * const mapping = page->mapping;
2474
2475 BUG_ON(!PageLocked(page));
2476 if (PageWriteback(page))
2477 return 0;
2478
2479 if (mapping && mapping->a_ops->releasepage)
2480 return mapping->a_ops->releasepage(page, gfp_mask);
2481 return try_to_free_buffers(page);
2482}
2483
2484EXPORT_SYMBOL(try_to_release_page);