fix VM_CAN_NONLINEAR check in sys_remap_file_pages
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / filemap.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/filemap.c
3 *
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
6
7/*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
11 */
1da177e4
LT
12#include <linux/module.h>
13#include <linux/slab.h>
14#include <linux/compiler.h>
15#include <linux/fs.h>
c22ce143 16#include <linux/uaccess.h>
1da177e4 17#include <linux/aio.h>
c59ede7b 18#include <linux/capability.h>
1da177e4
LT
19#include <linux/kernel_stat.h>
20#include <linux/mm.h>
21#include <linux/swap.h>
22#include <linux/mman.h>
23#include <linux/pagemap.h>
24#include <linux/file.h>
25#include <linux/uio.h>
26#include <linux/hash.h>
27#include <linux/writeback.h>
28#include <linux/pagevec.h>
29#include <linux/blkdev.h>
30#include <linux/security.h>
31#include <linux/syscalls.h>
44110fe3 32#include <linux/cpuset.h>
ceffc078 33#include "filemap.h"
0f8053a5
NP
34#include "internal.h"
35
1da177e4 36/*
1da177e4
LT
37 * FIXME: remove all knowledge of the buffer layer from the core VM
38 */
39#include <linux/buffer_head.h> /* for generic_osync_inode */
40
1da177e4
LT
41#include <asm/mman.h>
42
5ce7852c
AB
43static ssize_t
44generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
45 loff_t offset, unsigned long nr_segs);
46
1da177e4
LT
47/*
48 * Shared mappings implemented 30.11.1994. It's not fully working yet,
49 * though.
50 *
51 * Shared mappings now work. 15.8.1995 Bruno.
52 *
53 * finished 'unifying' the page and buffer cache and SMP-threaded the
54 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
55 *
56 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
57 */
58
59/*
60 * Lock ordering:
61 *
62 * ->i_mmap_lock (vmtruncate)
63 * ->private_lock (__free_pte->__set_page_dirty_buffers)
5d337b91
HD
64 * ->swap_lock (exclusive_swap_page, others)
65 * ->mapping->tree_lock
1da177e4 66 *
1b1dcc1b 67 * ->i_mutex
1da177e4
LT
68 * ->i_mmap_lock (truncate->unmap_mapping_range)
69 *
70 * ->mmap_sem
71 * ->i_mmap_lock
b8072f09 72 * ->page_table_lock or pte_lock (various, mainly in memory.c)
1da177e4
LT
73 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
74 *
75 * ->mmap_sem
76 * ->lock_page (access_process_vm)
77 *
82591e6e
NP
78 * ->i_mutex (generic_file_buffered_write)
79 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
1da177e4 80 *
1b1dcc1b 81 * ->i_mutex
1da177e4
LT
82 * ->i_alloc_sem (various)
83 *
84 * ->inode_lock
85 * ->sb_lock (fs/fs-writeback.c)
86 * ->mapping->tree_lock (__sync_single_inode)
87 *
88 * ->i_mmap_lock
89 * ->anon_vma.lock (vma_adjust)
90 *
91 * ->anon_vma.lock
b8072f09 92 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
1da177e4 93 *
b8072f09 94 * ->page_table_lock or pte_lock
5d337b91 95 * ->swap_lock (try_to_unmap_one)
1da177e4
LT
96 * ->private_lock (try_to_unmap_one)
97 * ->tree_lock (try_to_unmap_one)
98 * ->zone.lru_lock (follow_page->mark_page_accessed)
053837fc 99 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
1da177e4
LT
100 * ->private_lock (page_remove_rmap->set_page_dirty)
101 * ->tree_lock (page_remove_rmap->set_page_dirty)
102 * ->inode_lock (page_remove_rmap->set_page_dirty)
103 * ->inode_lock (zap_pte_range->set_page_dirty)
104 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
105 *
106 * ->task->proc_lock
107 * ->dcache_lock (proc_pid_lookup)
108 */
109
110/*
111 * Remove a page from the page cache and free it. Caller has to make
112 * sure the page is locked and that nobody else uses it - or that usage
113 * is safe. The caller must hold a write_lock on the mapping's tree_lock.
114 */
115void __remove_from_page_cache(struct page *page)
116{
117 struct address_space *mapping = page->mapping;
118
119 radix_tree_delete(&mapping->page_tree, page->index);
120 page->mapping = NULL;
121 mapping->nrpages--;
347ce434 122 __dec_zone_page_state(page, NR_FILE_PAGES);
45426812 123 BUG_ON(page_mapped(page));
1da177e4
LT
124}
125
126void remove_from_page_cache(struct page *page)
127{
128 struct address_space *mapping = page->mapping;
129
cd7619d6 130 BUG_ON(!PageLocked(page));
1da177e4
LT
131
132 write_lock_irq(&mapping->tree_lock);
133 __remove_from_page_cache(page);
134 write_unlock_irq(&mapping->tree_lock);
135}
136
137static int sync_page(void *word)
138{
139 struct address_space *mapping;
140 struct page *page;
141
07808b74 142 page = container_of((unsigned long *)word, struct page, flags);
1da177e4
LT
143
144 /*
dd1d5afc
WLII
145 * page_mapping() is being called without PG_locked held.
146 * Some knowledge of the state and use of the page is used to
147 * reduce the requirements down to a memory barrier.
148 * The danger here is of a stale page_mapping() return value
149 * indicating a struct address_space different from the one it's
150 * associated with when it is associated with one.
151 * After smp_mb(), it's either the correct page_mapping() for
152 * the page, or an old page_mapping() and the page's own
153 * page_mapping() has gone NULL.
154 * The ->sync_page() address_space operation must tolerate
155 * page_mapping() going NULL. By an amazing coincidence,
156 * this comes about because none of the users of the page
157 * in the ->sync_page() methods make essential use of the
158 * page_mapping(), merely passing the page down to the backing
159 * device's unplug functions when it's non-NULL, which in turn
4c21e2f2 160 * ignore it for all cases but swap, where only page_private(page) is
dd1d5afc
WLII
161 * of interest. When page_mapping() does go NULL, the entire
162 * call stack gracefully ignores the page and returns.
163 * -- wli
1da177e4
LT
164 */
165 smp_mb();
166 mapping = page_mapping(page);
167 if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
168 mapping->a_ops->sync_page(page);
169 io_schedule();
170 return 0;
171}
172
173/**
485bb99b 174 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
67be2dd1
MW
175 * @mapping: address space structure to write
176 * @start: offset in bytes where the range starts
469eb4d0 177 * @end: offset in bytes where the range ends (inclusive)
67be2dd1 178 * @sync_mode: enable synchronous operation
1da177e4 179 *
485bb99b
RD
180 * Start writeback against all of a mapping's dirty pages that lie
181 * within the byte offsets <start, end> inclusive.
182 *
1da177e4 183 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
485bb99b 184 * opposed to a regular memory cleansing writeback. The difference between
1da177e4
LT
185 * these two operations is that if a dirty page/buffer is encountered, it must
186 * be waited upon, and not just skipped over.
187 */
ebcf28e1
AM
188int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
189 loff_t end, int sync_mode)
1da177e4
LT
190{
191 int ret;
192 struct writeback_control wbc = {
193 .sync_mode = sync_mode,
194 .nr_to_write = mapping->nrpages * 2,
111ebb6e
OH
195 .range_start = start,
196 .range_end = end,
1da177e4
LT
197 };
198
199 if (!mapping_cap_writeback_dirty(mapping))
200 return 0;
201
202 ret = do_writepages(mapping, &wbc);
203 return ret;
204}
205
206static inline int __filemap_fdatawrite(struct address_space *mapping,
207 int sync_mode)
208{
111ebb6e 209 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
1da177e4
LT
210}
211
212int filemap_fdatawrite(struct address_space *mapping)
213{
214 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
215}
216EXPORT_SYMBOL(filemap_fdatawrite);
217
ebcf28e1
AM
218static int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
219 loff_t end)
1da177e4
LT
220{
221 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
222}
223
485bb99b
RD
224/**
225 * filemap_flush - mostly a non-blocking flush
226 * @mapping: target address_space
227 *
1da177e4
LT
228 * This is a mostly non-blocking flush. Not suitable for data-integrity
229 * purposes - I/O may not be started against all dirty pages.
230 */
231int filemap_flush(struct address_space *mapping)
232{
233 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
234}
235EXPORT_SYMBOL(filemap_flush);
236
485bb99b
RD
237/**
238 * wait_on_page_writeback_range - wait for writeback to complete
239 * @mapping: target address_space
240 * @start: beginning page index
241 * @end: ending page index
242 *
1da177e4
LT
243 * Wait for writeback to complete against pages indexed by start->end
244 * inclusive
245 */
ebcf28e1 246int wait_on_page_writeback_range(struct address_space *mapping,
1da177e4
LT
247 pgoff_t start, pgoff_t end)
248{
249 struct pagevec pvec;
250 int nr_pages;
251 int ret = 0;
252 pgoff_t index;
253
254 if (end < start)
255 return 0;
256
257 pagevec_init(&pvec, 0);
258 index = start;
259 while ((index <= end) &&
260 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
261 PAGECACHE_TAG_WRITEBACK,
262 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
263 unsigned i;
264
265 for (i = 0; i < nr_pages; i++) {
266 struct page *page = pvec.pages[i];
267
268 /* until radix tree lookup accepts end_index */
269 if (page->index > end)
270 continue;
271
272 wait_on_page_writeback(page);
273 if (PageError(page))
274 ret = -EIO;
275 }
276 pagevec_release(&pvec);
277 cond_resched();
278 }
279
280 /* Check for outstanding write errors */
281 if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
282 ret = -ENOSPC;
283 if (test_and_clear_bit(AS_EIO, &mapping->flags))
284 ret = -EIO;
285
286 return ret;
287}
288
485bb99b
RD
289/**
290 * sync_page_range - write and wait on all pages in the passed range
291 * @inode: target inode
292 * @mapping: target address_space
293 * @pos: beginning offset in pages to write
294 * @count: number of bytes to write
295 *
1da177e4
LT
296 * Write and wait upon all the pages in the passed range. This is a "data
297 * integrity" operation. It waits upon in-flight writeout before starting and
298 * waiting upon new writeout. If there was an IO error, return it.
299 *
1b1dcc1b 300 * We need to re-take i_mutex during the generic_osync_inode list walk because
1da177e4
LT
301 * it is otherwise livelockable.
302 */
303int sync_page_range(struct inode *inode, struct address_space *mapping,
268fc16e 304 loff_t pos, loff_t count)
1da177e4
LT
305{
306 pgoff_t start = pos >> PAGE_CACHE_SHIFT;
307 pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
308 int ret;
309
310 if (!mapping_cap_writeback_dirty(mapping) || !count)
311 return 0;
312 ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
313 if (ret == 0) {
1b1dcc1b 314 mutex_lock(&inode->i_mutex);
1da177e4 315 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
1b1dcc1b 316 mutex_unlock(&inode->i_mutex);
1da177e4
LT
317 }
318 if (ret == 0)
319 ret = wait_on_page_writeback_range(mapping, start, end);
320 return ret;
321}
322EXPORT_SYMBOL(sync_page_range);
323
485bb99b
RD
324/**
325 * sync_page_range_nolock
326 * @inode: target inode
327 * @mapping: target address_space
328 * @pos: beginning offset in pages to write
329 * @count: number of bytes to write
330 *
72fd4a35 331 * Note: Holding i_mutex across sync_page_range_nolock() is not a good idea
1da177e4
LT
332 * as it forces O_SYNC writers to different parts of the same file
333 * to be serialised right until io completion.
334 */
268fc16e
OH
335int sync_page_range_nolock(struct inode *inode, struct address_space *mapping,
336 loff_t pos, loff_t count)
1da177e4
LT
337{
338 pgoff_t start = pos >> PAGE_CACHE_SHIFT;
339 pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
340 int ret;
341
342 if (!mapping_cap_writeback_dirty(mapping) || !count)
343 return 0;
344 ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
345 if (ret == 0)
346 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
347 if (ret == 0)
348 ret = wait_on_page_writeback_range(mapping, start, end);
349 return ret;
350}
268fc16e 351EXPORT_SYMBOL(sync_page_range_nolock);
1da177e4
LT
352
353/**
485bb99b 354 * filemap_fdatawait - wait for all under-writeback pages to complete
1da177e4 355 * @mapping: address space structure to wait for
485bb99b
RD
356 *
357 * Walk the list of under-writeback pages of the given address space
358 * and wait for all of them.
1da177e4
LT
359 */
360int filemap_fdatawait(struct address_space *mapping)
361{
362 loff_t i_size = i_size_read(mapping->host);
363
364 if (i_size == 0)
365 return 0;
366
367 return wait_on_page_writeback_range(mapping, 0,
368 (i_size - 1) >> PAGE_CACHE_SHIFT);
369}
370EXPORT_SYMBOL(filemap_fdatawait);
371
372int filemap_write_and_wait(struct address_space *mapping)
373{
28fd1298 374 int err = 0;
1da177e4
LT
375
376 if (mapping->nrpages) {
28fd1298
OH
377 err = filemap_fdatawrite(mapping);
378 /*
379 * Even if the above returned error, the pages may be
380 * written partially (e.g. -ENOSPC), so we wait for it.
381 * But the -EIO is special case, it may indicate the worst
382 * thing (e.g. bug) happened, so we avoid waiting for it.
383 */
384 if (err != -EIO) {
385 int err2 = filemap_fdatawait(mapping);
386 if (!err)
387 err = err2;
388 }
1da177e4 389 }
28fd1298 390 return err;
1da177e4 391}
28fd1298 392EXPORT_SYMBOL(filemap_write_and_wait);
1da177e4 393
485bb99b
RD
394/**
395 * filemap_write_and_wait_range - write out & wait on a file range
396 * @mapping: the address_space for the pages
397 * @lstart: offset in bytes where the range starts
398 * @lend: offset in bytes where the range ends (inclusive)
399 *
469eb4d0
AM
400 * Write out and wait upon file offsets lstart->lend, inclusive.
401 *
402 * Note that `lend' is inclusive (describes the last byte to be written) so
403 * that this function can be used to write to the very end-of-file (end = -1).
404 */
1da177e4
LT
405int filemap_write_and_wait_range(struct address_space *mapping,
406 loff_t lstart, loff_t lend)
407{
28fd1298 408 int err = 0;
1da177e4
LT
409
410 if (mapping->nrpages) {
28fd1298
OH
411 err = __filemap_fdatawrite_range(mapping, lstart, lend,
412 WB_SYNC_ALL);
413 /* See comment of filemap_write_and_wait() */
414 if (err != -EIO) {
415 int err2 = wait_on_page_writeback_range(mapping,
416 lstart >> PAGE_CACHE_SHIFT,
417 lend >> PAGE_CACHE_SHIFT);
418 if (!err)
419 err = err2;
420 }
1da177e4 421 }
28fd1298 422 return err;
1da177e4
LT
423}
424
485bb99b
RD
425/**
426 * add_to_page_cache - add newly allocated pagecache pages
427 * @page: page to add
428 * @mapping: the page's address_space
429 * @offset: page index
430 * @gfp_mask: page allocation mode
431 *
432 * This function is used to add newly allocated pagecache pages;
1da177e4
LT
433 * the page is new, so we can just run SetPageLocked() against it.
434 * The other page state flags were set by rmqueue().
435 *
436 * This function does not add the page to the LRU. The caller must do that.
437 */
438int add_to_page_cache(struct page *page, struct address_space *mapping,
6daa0e28 439 pgoff_t offset, gfp_t gfp_mask)
1da177e4
LT
440{
441 int error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
442
443 if (error == 0) {
444 write_lock_irq(&mapping->tree_lock);
445 error = radix_tree_insert(&mapping->page_tree, offset, page);
446 if (!error) {
447 page_cache_get(page);
448 SetPageLocked(page);
449 page->mapping = mapping;
450 page->index = offset;
451 mapping->nrpages++;
347ce434 452 __inc_zone_page_state(page, NR_FILE_PAGES);
1da177e4
LT
453 }
454 write_unlock_irq(&mapping->tree_lock);
455 radix_tree_preload_end();
456 }
457 return error;
458}
1da177e4
LT
459EXPORT_SYMBOL(add_to_page_cache);
460
461int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
6daa0e28 462 pgoff_t offset, gfp_t gfp_mask)
1da177e4
LT
463{
464 int ret = add_to_page_cache(page, mapping, offset, gfp_mask);
465 if (ret == 0)
466 lru_cache_add(page);
467 return ret;
468}
469
44110fe3 470#ifdef CONFIG_NUMA
2ae88149 471struct page *__page_cache_alloc(gfp_t gfp)
44110fe3
PJ
472{
473 if (cpuset_do_page_mem_spread()) {
474 int n = cpuset_mem_spread_node();
2ae88149 475 return alloc_pages_node(n, gfp, 0);
44110fe3 476 }
2ae88149 477 return alloc_pages(gfp, 0);
44110fe3 478}
2ae88149 479EXPORT_SYMBOL(__page_cache_alloc);
44110fe3
PJ
480#endif
481
db37648c
NP
482static int __sleep_on_page_lock(void *word)
483{
484 io_schedule();
485 return 0;
486}
487
1da177e4
LT
488/*
489 * In order to wait for pages to become available there must be
490 * waitqueues associated with pages. By using a hash table of
491 * waitqueues where the bucket discipline is to maintain all
492 * waiters on the same queue and wake all when any of the pages
493 * become available, and for the woken contexts to check to be
494 * sure the appropriate page became available, this saves space
495 * at a cost of "thundering herd" phenomena during rare hash
496 * collisions.
497 */
498static wait_queue_head_t *page_waitqueue(struct page *page)
499{
500 const struct zone *zone = page_zone(page);
501
502 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
503}
504
505static inline void wake_up_page(struct page *page, int bit)
506{
507 __wake_up_bit(page_waitqueue(page), &page->flags, bit);
508}
509
510void fastcall wait_on_page_bit(struct page *page, int bit_nr)
511{
512 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
513
514 if (test_bit(bit_nr, &page->flags))
515 __wait_on_bit(page_waitqueue(page), &wait, sync_page,
516 TASK_UNINTERRUPTIBLE);
517}
518EXPORT_SYMBOL(wait_on_page_bit);
519
520/**
485bb99b 521 * unlock_page - unlock a locked page
1da177e4
LT
522 * @page: the page
523 *
524 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
525 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
526 * mechananism between PageLocked pages and PageWriteback pages is shared.
527 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
528 *
529 * The first mb is necessary to safely close the critical section opened by the
530 * TestSetPageLocked(), the second mb is necessary to enforce ordering between
531 * the clear_bit and the read of the waitqueue (to avoid SMP races with a
532 * parallel wait_on_page_locked()).
533 */
534void fastcall unlock_page(struct page *page)
535{
536 smp_mb__before_clear_bit();
537 if (!TestClearPageLocked(page))
538 BUG();
539 smp_mb__after_clear_bit();
540 wake_up_page(page, PG_locked);
541}
542EXPORT_SYMBOL(unlock_page);
543
485bb99b
RD
544/**
545 * end_page_writeback - end writeback against a page
546 * @page: the page
1da177e4
LT
547 */
548void end_page_writeback(struct page *page)
549{
550 if (!TestClearPageReclaim(page) || rotate_reclaimable_page(page)) {
551 if (!test_clear_page_writeback(page))
552 BUG();
553 }
554 smp_mb__after_clear_bit();
555 wake_up_page(page, PG_writeback);
556}
557EXPORT_SYMBOL(end_page_writeback);
558
485bb99b
RD
559/**
560 * __lock_page - get a lock on the page, assuming we need to sleep to get it
561 * @page: the page to lock
1da177e4 562 *
485bb99b 563 * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary. If some
1da177e4
LT
564 * random driver's requestfn sets TASK_RUNNING, we could busywait. However
565 * chances are that on the second loop, the block layer's plug list is empty,
566 * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
567 */
568void fastcall __lock_page(struct page *page)
569{
570 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
571
572 __wait_on_bit_lock(page_waitqueue(page), &wait, sync_page,
573 TASK_UNINTERRUPTIBLE);
574}
575EXPORT_SYMBOL(__lock_page);
576
db37648c
NP
577/*
578 * Variant of lock_page that does not require the caller to hold a reference
579 * on the page's mapping.
580 */
581void fastcall __lock_page_nosync(struct page *page)
582{
583 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
584 __wait_on_bit_lock(page_waitqueue(page), &wait, __sleep_on_page_lock,
585 TASK_UNINTERRUPTIBLE);
586}
587
485bb99b
RD
588/**
589 * find_get_page - find and get a page reference
590 * @mapping: the address_space to search
591 * @offset: the page index
592 *
da6052f7
NP
593 * Is there a pagecache struct page at the given (mapping, offset) tuple?
594 * If yes, increment its refcount and return it; if no, return NULL.
1da177e4
LT
595 */
596struct page * find_get_page(struct address_space *mapping, unsigned long offset)
597{
598 struct page *page;
599
600 read_lock_irq(&mapping->tree_lock);
601 page = radix_tree_lookup(&mapping->page_tree, offset);
602 if (page)
603 page_cache_get(page);
604 read_unlock_irq(&mapping->tree_lock);
605 return page;
606}
1da177e4
LT
607EXPORT_SYMBOL(find_get_page);
608
1da177e4
LT
609/**
610 * find_lock_page - locate, pin and lock a pagecache page
67be2dd1
MW
611 * @mapping: the address_space to search
612 * @offset: the page index
1da177e4
LT
613 *
614 * Locates the desired pagecache page, locks it, increments its reference
615 * count and returns its address.
616 *
617 * Returns zero if the page was not present. find_lock_page() may sleep.
618 */
619struct page *find_lock_page(struct address_space *mapping,
620 unsigned long offset)
621{
622 struct page *page;
623
624 read_lock_irq(&mapping->tree_lock);
625repeat:
626 page = radix_tree_lookup(&mapping->page_tree, offset);
627 if (page) {
628 page_cache_get(page);
629 if (TestSetPageLocked(page)) {
630 read_unlock_irq(&mapping->tree_lock);
bbfbb7ce 631 __lock_page(page);
1da177e4
LT
632 read_lock_irq(&mapping->tree_lock);
633
634 /* Has the page been truncated while we slept? */
bbfbb7ce
ND
635 if (unlikely(page->mapping != mapping ||
636 page->index != offset)) {
1da177e4
LT
637 unlock_page(page);
638 page_cache_release(page);
639 goto repeat;
640 }
641 }
642 }
643 read_unlock_irq(&mapping->tree_lock);
644 return page;
645}
1da177e4
LT
646EXPORT_SYMBOL(find_lock_page);
647
648/**
649 * find_or_create_page - locate or add a pagecache page
67be2dd1
MW
650 * @mapping: the page's address_space
651 * @index: the page's index into the mapping
652 * @gfp_mask: page allocation mode
1da177e4
LT
653 *
654 * Locates a page in the pagecache. If the page is not present, a new page
655 * is allocated using @gfp_mask and is added to the pagecache and to the VM's
656 * LRU list. The returned page is locked and has its reference count
657 * incremented.
658 *
659 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
660 * allocation!
661 *
662 * find_or_create_page() returns the desired page's address, or zero on
663 * memory exhaustion.
664 */
665struct page *find_or_create_page(struct address_space *mapping,
6daa0e28 666 unsigned long index, gfp_t gfp_mask)
1da177e4
LT
667{
668 struct page *page, *cached_page = NULL;
669 int err;
670repeat:
671 page = find_lock_page(mapping, index);
672 if (!page) {
673 if (!cached_page) {
43c0f3d2
CL
674 cached_page =
675 __page_cache_alloc(gfp_mask);
1da177e4
LT
676 if (!cached_page)
677 return NULL;
678 }
679 err = add_to_page_cache_lru(cached_page, mapping,
680 index, gfp_mask);
681 if (!err) {
682 page = cached_page;
683 cached_page = NULL;
684 } else if (err == -EEXIST)
685 goto repeat;
686 }
687 if (cached_page)
688 page_cache_release(cached_page);
689 return page;
690}
1da177e4
LT
691EXPORT_SYMBOL(find_or_create_page);
692
693/**
694 * find_get_pages - gang pagecache lookup
695 * @mapping: The address_space to search
696 * @start: The starting page index
697 * @nr_pages: The maximum number of pages
698 * @pages: Where the resulting pages are placed
699 *
700 * find_get_pages() will search for and return a group of up to
701 * @nr_pages pages in the mapping. The pages are placed at @pages.
702 * find_get_pages() takes a reference against the returned pages.
703 *
704 * The search returns a group of mapping-contiguous pages with ascending
705 * indexes. There may be holes in the indices due to not-present pages.
706 *
707 * find_get_pages() returns the number of pages which were found.
708 */
709unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
710 unsigned int nr_pages, struct page **pages)
711{
712 unsigned int i;
713 unsigned int ret;
714
715 read_lock_irq(&mapping->tree_lock);
716 ret = radix_tree_gang_lookup(&mapping->page_tree,
717 (void **)pages, start, nr_pages);
718 for (i = 0; i < ret; i++)
719 page_cache_get(pages[i]);
720 read_unlock_irq(&mapping->tree_lock);
721 return ret;
722}
723
ebf43500
JA
724/**
725 * find_get_pages_contig - gang contiguous pagecache lookup
726 * @mapping: The address_space to search
727 * @index: The starting page index
728 * @nr_pages: The maximum number of pages
729 * @pages: Where the resulting pages are placed
730 *
731 * find_get_pages_contig() works exactly like find_get_pages(), except
732 * that the returned number of pages are guaranteed to be contiguous.
733 *
734 * find_get_pages_contig() returns the number of pages which were found.
735 */
736unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
737 unsigned int nr_pages, struct page **pages)
738{
739 unsigned int i;
740 unsigned int ret;
741
742 read_lock_irq(&mapping->tree_lock);
743 ret = radix_tree_gang_lookup(&mapping->page_tree,
744 (void **)pages, index, nr_pages);
745 for (i = 0; i < ret; i++) {
746 if (pages[i]->mapping == NULL || pages[i]->index != index)
747 break;
748
749 page_cache_get(pages[i]);
750 index++;
751 }
752 read_unlock_irq(&mapping->tree_lock);
753 return i;
754}
ef71c15c 755EXPORT_SYMBOL(find_get_pages_contig);
ebf43500 756
485bb99b
RD
757/**
758 * find_get_pages_tag - find and return pages that match @tag
759 * @mapping: the address_space to search
760 * @index: the starting page index
761 * @tag: the tag index
762 * @nr_pages: the maximum number of pages
763 * @pages: where the resulting pages are placed
764 *
1da177e4 765 * Like find_get_pages, except we only return pages which are tagged with
485bb99b 766 * @tag. We update @index to index the next page for the traversal.
1da177e4
LT
767 */
768unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
769 int tag, unsigned int nr_pages, struct page **pages)
770{
771 unsigned int i;
772 unsigned int ret;
773
774 read_lock_irq(&mapping->tree_lock);
775 ret = radix_tree_gang_lookup_tag(&mapping->page_tree,
776 (void **)pages, *index, nr_pages, tag);
777 for (i = 0; i < ret; i++)
778 page_cache_get(pages[i]);
779 if (ret)
780 *index = pages[ret - 1]->index + 1;
781 read_unlock_irq(&mapping->tree_lock);
782 return ret;
783}
ef71c15c 784EXPORT_SYMBOL(find_get_pages_tag);
1da177e4 785
485bb99b
RD
786/**
787 * grab_cache_page_nowait - returns locked page at given index in given cache
788 * @mapping: target address_space
789 * @index: the page index
790 *
72fd4a35 791 * Same as grab_cache_page(), but do not wait if the page is unavailable.
1da177e4
LT
792 * This is intended for speculative data generators, where the data can
793 * be regenerated if the page couldn't be grabbed. This routine should
794 * be safe to call while holding the lock for another page.
795 *
796 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
797 * and deadlock against the caller's locked page.
798 */
799struct page *
800grab_cache_page_nowait(struct address_space *mapping, unsigned long index)
801{
802 struct page *page = find_get_page(mapping, index);
1da177e4
LT
803
804 if (page) {
805 if (!TestSetPageLocked(page))
806 return page;
807 page_cache_release(page);
808 return NULL;
809 }
2ae88149
NP
810 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
811 if (page && add_to_page_cache_lru(page, mapping, index, GFP_KERNEL)) {
1da177e4
LT
812 page_cache_release(page);
813 page = NULL;
814 }
815 return page;
816}
1da177e4
LT
817EXPORT_SYMBOL(grab_cache_page_nowait);
818
76d42bd9
WF
819/*
820 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
821 * a _large_ part of the i/o request. Imagine the worst scenario:
822 *
823 * ---R__________________________________________B__________
824 * ^ reading here ^ bad block(assume 4k)
825 *
826 * read(R) => miss => readahead(R...B) => media error => frustrating retries
827 * => failing the whole request => read(R) => read(R+1) =>
828 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
829 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
830 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
831 *
832 * It is going insane. Fix it by quickly scaling down the readahead size.
833 */
834static void shrink_readahead_size_eio(struct file *filp,
835 struct file_ra_state *ra)
836{
837 if (!ra->ra_pages)
838 return;
839
840 ra->ra_pages /= 4;
76d42bd9
WF
841}
842
485bb99b
RD
843/**
844 * do_generic_mapping_read - generic file read routine
845 * @mapping: address_space to be read
f0b85c0c 846 * @_ra: file's readahead state
485bb99b
RD
847 * @filp: the file to read
848 * @ppos: current file position
849 * @desc: read_descriptor
850 * @actor: read method
851 *
1da177e4 852 * This is a generic file read routine, and uses the
485bb99b 853 * mapping->a_ops->readpage() function for the actual low-level stuff.
1da177e4
LT
854 *
855 * This is really ugly. But the goto's actually try to clarify some
856 * of the logic when it comes to error handling etc.
857 *
485bb99b
RD
858 * Note the struct file* is only passed for the use of readpage.
859 * It may be NULL.
1da177e4
LT
860 */
861void do_generic_mapping_read(struct address_space *mapping,
862 struct file_ra_state *_ra,
863 struct file *filp,
864 loff_t *ppos,
865 read_descriptor_t *desc,
866 read_actor_t actor)
867{
868 struct inode *inode = mapping->host;
869 unsigned long index;
1da177e4
LT
870 unsigned long offset;
871 unsigned long last_index;
872 unsigned long next_index;
873 unsigned long prev_index;
ec0f1637 874 unsigned int prev_offset;
1da177e4
LT
875 struct page *cached_page;
876 int error;
877 struct file_ra_state ra = *_ra;
878
879 cached_page = NULL;
880 index = *ppos >> PAGE_CACHE_SHIFT;
881 next_index = index;
6ce745ed
JK
882 prev_index = ra.prev_index;
883 prev_offset = ra.prev_offset;
1da177e4
LT
884 last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
885 offset = *ppos & ~PAGE_CACHE_MASK;
886
1da177e4
LT
887 for (;;) {
888 struct page *page;
a32ea1e1
N
889 unsigned long end_index;
890 loff_t isize;
1da177e4
LT
891 unsigned long nr, ret;
892
1da177e4 893 cond_resched();
1da177e4
LT
894find_page:
895 page = find_get_page(mapping, index);
3ea89ee8 896 if (!page) {
cf914a7d
RR
897 page_cache_sync_readahead(mapping,
898 &ra, filp,
3ea89ee8
FW
899 index, last_index - index);
900 page = find_get_page(mapping, index);
901 if (unlikely(page == NULL))
902 goto no_cached_page;
903 }
904 if (PageReadahead(page)) {
cf914a7d 905 page_cache_async_readahead(mapping,
3ea89ee8
FW
906 &ra, filp, page,
907 index, last_index - index);
1da177e4
LT
908 }
909 if (!PageUptodate(page))
910 goto page_not_up_to_date;
911page_ok:
a32ea1e1
N
912 /*
913 * i_size must be checked after we know the page is Uptodate.
914 *
915 * Checking i_size after the check allows us to calculate
916 * the correct value for "nr", which means the zero-filled
917 * part of the page is not copied back to userspace (unless
918 * another truncate extends the file - this is desired though).
919 */
920
921 isize = i_size_read(inode);
922 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
923 if (unlikely(!isize || index > end_index)) {
924 page_cache_release(page);
925 goto out;
926 }
927
928 /* nr is the maximum number of bytes to copy from this page */
929 nr = PAGE_CACHE_SIZE;
930 if (index == end_index) {
931 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
932 if (nr <= offset) {
933 page_cache_release(page);
934 goto out;
935 }
936 }
937 nr = nr - offset;
1da177e4
LT
938
939 /* If users can be writing to this page using arbitrary
940 * virtual addresses, take care about potential aliasing
941 * before reading the page on the kernel side.
942 */
943 if (mapping_writably_mapped(mapping))
944 flush_dcache_page(page);
945
946 /*
ec0f1637
JK
947 * When a sequential read accesses a page several times,
948 * only mark it as accessed the first time.
1da177e4 949 */
ec0f1637 950 if (prev_index != index || offset != prev_offset)
1da177e4
LT
951 mark_page_accessed(page);
952 prev_index = index;
953
954 /*
955 * Ok, we have the page, and it's up-to-date, so
956 * now we can copy it to user space...
957 *
958 * The actor routine returns how many bytes were actually used..
959 * NOTE! This may not be the same as how much of a user buffer
960 * we filled up (we may be padding etc), so we can only update
961 * "pos" here (the actor routine has to update the user buffer
962 * pointers and the remaining count).
963 */
964 ret = actor(desc, page, offset, nr);
965 offset += ret;
966 index += offset >> PAGE_CACHE_SHIFT;
967 offset &= ~PAGE_CACHE_MASK;
6ce745ed
JK
968 prev_offset = offset;
969 ra.prev_offset = offset;
1da177e4
LT
970
971 page_cache_release(page);
972 if (ret == nr && desc->count)
973 continue;
974 goto out;
975
976page_not_up_to_date:
977 /* Get exclusive access to the page ... */
978 lock_page(page);
979
da6052f7 980 /* Did it get truncated before we got the lock? */
1da177e4
LT
981 if (!page->mapping) {
982 unlock_page(page);
983 page_cache_release(page);
984 continue;
985 }
986
987 /* Did somebody else fill it already? */
988 if (PageUptodate(page)) {
989 unlock_page(page);
990 goto page_ok;
991 }
992
993readpage:
994 /* Start the actual read. The read will unlock the page. */
995 error = mapping->a_ops->readpage(filp, page);
996
994fc28c
ZB
997 if (unlikely(error)) {
998 if (error == AOP_TRUNCATED_PAGE) {
999 page_cache_release(page);
1000 goto find_page;
1001 }
1da177e4 1002 goto readpage_error;
994fc28c 1003 }
1da177e4
LT
1004
1005 if (!PageUptodate(page)) {
1006 lock_page(page);
1007 if (!PageUptodate(page)) {
1008 if (page->mapping == NULL) {
1009 /*
1010 * invalidate_inode_pages got it
1011 */
1012 unlock_page(page);
1013 page_cache_release(page);
1014 goto find_page;
1015 }
1016 unlock_page(page);
1017 error = -EIO;
76d42bd9 1018 shrink_readahead_size_eio(filp, &ra);
1da177e4
LT
1019 goto readpage_error;
1020 }
1021 unlock_page(page);
1022 }
1023
1da177e4
LT
1024 goto page_ok;
1025
1026readpage_error:
1027 /* UHHUH! A synchronous read error occurred. Report it */
1028 desc->error = error;
1029 page_cache_release(page);
1030 goto out;
1031
1032no_cached_page:
1033 /*
1034 * Ok, it wasn't cached, so we need to create a new
1035 * page..
1036 */
1037 if (!cached_page) {
1038 cached_page = page_cache_alloc_cold(mapping);
1039 if (!cached_page) {
1040 desc->error = -ENOMEM;
1041 goto out;
1042 }
1043 }
1044 error = add_to_page_cache_lru(cached_page, mapping,
1045 index, GFP_KERNEL);
1046 if (error) {
1047 if (error == -EEXIST)
1048 goto find_page;
1049 desc->error = error;
1050 goto out;
1051 }
1052 page = cached_page;
1053 cached_page = NULL;
1054 goto readpage;
1055 }
1056
1057out:
1058 *_ra = ra;
3ea89ee8 1059 _ra->prev_index = prev_index;
1da177e4
LT
1060
1061 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1062 if (cached_page)
1063 page_cache_release(cached_page);
1064 if (filp)
1065 file_accessed(filp);
1066}
1da177e4
LT
1067EXPORT_SYMBOL(do_generic_mapping_read);
1068
1069int file_read_actor(read_descriptor_t *desc, struct page *page,
1070 unsigned long offset, unsigned long size)
1071{
1072 char *kaddr;
1073 unsigned long left, count = desc->count;
1074
1075 if (size > count)
1076 size = count;
1077
1078 /*
1079 * Faults on the destination of a read are common, so do it before
1080 * taking the kmap.
1081 */
1082 if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1083 kaddr = kmap_atomic(page, KM_USER0);
1084 left = __copy_to_user_inatomic(desc->arg.buf,
1085 kaddr + offset, size);
1086 kunmap_atomic(kaddr, KM_USER0);
1087 if (left == 0)
1088 goto success;
1089 }
1090
1091 /* Do it the slow way */
1092 kaddr = kmap(page);
1093 left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1094 kunmap(page);
1095
1096 if (left) {
1097 size -= left;
1098 desc->error = -EFAULT;
1099 }
1100success:
1101 desc->count = count - size;
1102 desc->written += size;
1103 desc->arg.buf += size;
1104 return size;
1105}
1106
0ceb3314
DM
1107/*
1108 * Performs necessary checks before doing a write
1109 * @iov: io vector request
1110 * @nr_segs: number of segments in the iovec
1111 * @count: number of bytes to write
1112 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1113 *
1114 * Adjust number of segments and amount of bytes to write (nr_segs should be
1115 * properly initialized first). Returns appropriate error code that caller
1116 * should return or zero in case that write should be allowed.
1117 */
1118int generic_segment_checks(const struct iovec *iov,
1119 unsigned long *nr_segs, size_t *count, int access_flags)
1120{
1121 unsigned long seg;
1122 size_t cnt = 0;
1123 for (seg = 0; seg < *nr_segs; seg++) {
1124 const struct iovec *iv = &iov[seg];
1125
1126 /*
1127 * If any segment has a negative length, or the cumulative
1128 * length ever wraps negative then return -EINVAL.
1129 */
1130 cnt += iv->iov_len;
1131 if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1132 return -EINVAL;
1133 if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1134 continue;
1135 if (seg == 0)
1136 return -EFAULT;
1137 *nr_segs = seg;
1138 cnt -= iv->iov_len; /* This segment is no good */
1139 break;
1140 }
1141 *count = cnt;
1142 return 0;
1143}
1144EXPORT_SYMBOL(generic_segment_checks);
1145
485bb99b 1146/**
b2abacf3 1147 * generic_file_aio_read - generic filesystem read routine
485bb99b
RD
1148 * @iocb: kernel I/O control block
1149 * @iov: io vector request
1150 * @nr_segs: number of segments in the iovec
b2abacf3 1151 * @pos: current file position
485bb99b 1152 *
1da177e4
LT
1153 * This is the "read()" routine for all filesystems
1154 * that can use the page cache directly.
1155 */
1156ssize_t
543ade1f
BP
1157generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1158 unsigned long nr_segs, loff_t pos)
1da177e4
LT
1159{
1160 struct file *filp = iocb->ki_filp;
1161 ssize_t retval;
1162 unsigned long seg;
1163 size_t count;
543ade1f 1164 loff_t *ppos = &iocb->ki_pos;
1da177e4
LT
1165
1166 count = 0;
0ceb3314
DM
1167 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1168 if (retval)
1169 return retval;
1da177e4
LT
1170
1171 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1172 if (filp->f_flags & O_DIRECT) {
543ade1f 1173 loff_t size;
1da177e4
LT
1174 struct address_space *mapping;
1175 struct inode *inode;
1176
1177 mapping = filp->f_mapping;
1178 inode = mapping->host;
1179 retval = 0;
1180 if (!count)
1181 goto out; /* skip atime */
1182 size = i_size_read(inode);
1183 if (pos < size) {
1184 retval = generic_file_direct_IO(READ, iocb,
1185 iov, pos, nr_segs);
1da177e4
LT
1186 if (retval > 0)
1187 *ppos = pos + retval;
1188 }
0e0bcae3 1189 if (likely(retval != 0)) {
3f1a9aae 1190 file_accessed(filp);
a9e5f4d0 1191 goto out;
0e0bcae3 1192 }
1da177e4
LT
1193 }
1194
1195 retval = 0;
1196 if (count) {
1197 for (seg = 0; seg < nr_segs; seg++) {
1198 read_descriptor_t desc;
1199
1200 desc.written = 0;
1201 desc.arg.buf = iov[seg].iov_base;
1202 desc.count = iov[seg].iov_len;
1203 if (desc.count == 0)
1204 continue;
1205 desc.error = 0;
1206 do_generic_file_read(filp,ppos,&desc,file_read_actor);
1207 retval += desc.written;
39e88ca2
TH
1208 if (desc.error) {
1209 retval = retval ?: desc.error;
1da177e4
LT
1210 break;
1211 }
c44939ec 1212 if (desc.count > 0)
1213 break;
1da177e4
LT
1214 }
1215 }
1216out:
1217 return retval;
1218}
1da177e4
LT
1219EXPORT_SYMBOL(generic_file_aio_read);
1220
1da177e4
LT
1221static ssize_t
1222do_readahead(struct address_space *mapping, struct file *filp,
1223 unsigned long index, unsigned long nr)
1224{
1225 if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1226 return -EINVAL;
1227
1228 force_page_cache_readahead(mapping, filp, index,
1229 max_sane_readahead(nr));
1230 return 0;
1231}
1232
1233asmlinkage ssize_t sys_readahead(int fd, loff_t offset, size_t count)
1234{
1235 ssize_t ret;
1236 struct file *file;
1237
1238 ret = -EBADF;
1239 file = fget(fd);
1240 if (file) {
1241 if (file->f_mode & FMODE_READ) {
1242 struct address_space *mapping = file->f_mapping;
1243 unsigned long start = offset >> PAGE_CACHE_SHIFT;
1244 unsigned long end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1245 unsigned long len = end - start + 1;
1246 ret = do_readahead(mapping, file, start, len);
1247 }
1248 fput(file);
1249 }
1250 return ret;
1251}
1252
1253#ifdef CONFIG_MMU
485bb99b
RD
1254static int FASTCALL(page_cache_read(struct file * file, unsigned long offset));
1255/**
1256 * page_cache_read - adds requested page to the page cache if not already there
1257 * @file: file to read
1258 * @offset: page index
1259 *
1da177e4
LT
1260 * This adds the requested page to the page cache if it isn't already there,
1261 * and schedules an I/O to read in its contents from disk.
1262 */
1da177e4
LT
1263static int fastcall page_cache_read(struct file * file, unsigned long offset)
1264{
1265 struct address_space *mapping = file->f_mapping;
1266 struct page *page;
994fc28c 1267 int ret;
1da177e4 1268
994fc28c
ZB
1269 do {
1270 page = page_cache_alloc_cold(mapping);
1271 if (!page)
1272 return -ENOMEM;
1273
1274 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1275 if (ret == 0)
1276 ret = mapping->a_ops->readpage(file, page);
1277 else if (ret == -EEXIST)
1278 ret = 0; /* losing race to add is OK */
1da177e4 1279
1da177e4 1280 page_cache_release(page);
1da177e4 1281
994fc28c
ZB
1282 } while (ret == AOP_TRUNCATED_PAGE);
1283
1284 return ret;
1da177e4
LT
1285}
1286
1287#define MMAP_LOTSAMISS (100)
1288
485bb99b 1289/**
54cb8821 1290 * filemap_fault - read in file data for page fault handling
d0217ac0
NP
1291 * @vma: vma in which the fault was taken
1292 * @vmf: struct vm_fault containing details of the fault
485bb99b 1293 *
54cb8821 1294 * filemap_fault() is invoked via the vma operations vector for a
1da177e4
LT
1295 * mapped memory region to read in file data during a page fault.
1296 *
1297 * The goto's are kind of ugly, but this streamlines the normal case of having
1298 * it in the page cache, and handles the special cases reasonably without
1299 * having a lot of duplicated code.
1300 */
d0217ac0 1301int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1da177e4
LT
1302{
1303 int error;
54cb8821 1304 struct file *file = vma->vm_file;
1da177e4
LT
1305 struct address_space *mapping = file->f_mapping;
1306 struct file_ra_state *ra = &file->f_ra;
1307 struct inode *inode = mapping->host;
1308 struct page *page;
54cb8821
NP
1309 unsigned long size;
1310 int did_readaround = 0;
83c54070 1311 int ret = 0;
1da177e4 1312
1da177e4 1313 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
d0217ac0 1314 if (vmf->pgoff >= size)
1da177e4
LT
1315 goto outside_data_content;
1316
1317 /* If we don't want any read-ahead, don't bother */
54cb8821 1318 if (VM_RandomReadHint(vma))
1da177e4
LT
1319 goto no_cached_page;
1320
1da177e4
LT
1321 /*
1322 * Do we have something in the page cache already?
1323 */
1324retry_find:
d0217ac0 1325 page = find_lock_page(mapping, vmf->pgoff);
3ea89ee8
FW
1326 /*
1327 * For sequential accesses, we use the generic readahead logic.
1328 */
1329 if (VM_SequentialReadHint(vma)) {
1330 if (!page) {
cf914a7d 1331 page_cache_sync_readahead(mapping, ra, file,
3ea89ee8
FW
1332 vmf->pgoff, 1);
1333 page = find_lock_page(mapping, vmf->pgoff);
1334 if (!page)
1335 goto no_cached_page;
1336 }
1337 if (PageReadahead(page)) {
cf914a7d 1338 page_cache_async_readahead(mapping, ra, file, page,
3ea89ee8
FW
1339 vmf->pgoff, 1);
1340 }
1341 }
1342
1da177e4
LT
1343 if (!page) {
1344 unsigned long ra_pages;
1345
1da177e4
LT
1346 ra->mmap_miss++;
1347
1348 /*
1349 * Do we miss much more than hit in this file? If so,
1350 * stop bothering with read-ahead. It will only hurt.
1351 */
1352 if (ra->mmap_miss > ra->mmap_hit + MMAP_LOTSAMISS)
1353 goto no_cached_page;
1354
1355 /*
1356 * To keep the pgmajfault counter straight, we need to
1357 * check did_readaround, as this is an inner loop.
1358 */
1359 if (!did_readaround) {
d0217ac0 1360 ret = VM_FAULT_MAJOR;
f8891e5e 1361 count_vm_event(PGMAJFAULT);
1da177e4
LT
1362 }
1363 did_readaround = 1;
1364 ra_pages = max_sane_readahead(file->f_ra.ra_pages);
1365 if (ra_pages) {
1366 pgoff_t start = 0;
1367
d0217ac0
NP
1368 if (vmf->pgoff > ra_pages / 2)
1369 start = vmf->pgoff - ra_pages / 2;
1da177e4
LT
1370 do_page_cache_readahead(mapping, file, start, ra_pages);
1371 }
d0217ac0 1372 page = find_lock_page(mapping, vmf->pgoff);
1da177e4
LT
1373 if (!page)
1374 goto no_cached_page;
1375 }
1376
1377 if (!did_readaround)
1378 ra->mmap_hit++;
1379
1380 /*
d00806b1
NP
1381 * We have a locked page in the page cache, now we need to check
1382 * that it's up-to-date. If not, it is going to be due to an error.
1da177e4 1383 */
d00806b1 1384 if (unlikely(!PageUptodate(page)))
1da177e4
LT
1385 goto page_not_uptodate;
1386
d00806b1
NP
1387 /* Must recheck i_size under page lock */
1388 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
d0217ac0 1389 if (unlikely(vmf->pgoff >= size)) {
d00806b1
NP
1390 unlock_page(page);
1391 goto outside_data_content;
1392 }
1393
1da177e4
LT
1394 /*
1395 * Found the page and have a reference on it.
1396 */
1397 mark_page_accessed(page);
3ea89ee8 1398 ra->prev_index = page->index;
d0217ac0 1399 vmf->page = page;
83c54070 1400 return ret | VM_FAULT_LOCKED;
1da177e4
LT
1401
1402outside_data_content:
1403 /*
1404 * An external ptracer can access pages that normally aren't
1405 * accessible..
1406 */
d0217ac0
NP
1407 if (vma->vm_mm == current->mm)
1408 return VM_FAULT_SIGBUS;
1409
1da177e4
LT
1410 /* Fall through to the non-read-ahead case */
1411no_cached_page:
1412 /*
1413 * We're only likely to ever get here if MADV_RANDOM is in
1414 * effect.
1415 */
d0217ac0 1416 error = page_cache_read(file, vmf->pgoff);
1da177e4
LT
1417
1418 /*
1419 * The page we want has now been added to the page cache.
1420 * In the unlikely event that someone removed it in the
1421 * meantime, we'll just come back here and read it again.
1422 */
1423 if (error >= 0)
1424 goto retry_find;
1425
1426 /*
1427 * An error return from page_cache_read can result if the
1428 * system is low on memory, or a problem occurs while trying
1429 * to schedule I/O.
1430 */
1431 if (error == -ENOMEM)
d0217ac0
NP
1432 return VM_FAULT_OOM;
1433 return VM_FAULT_SIGBUS;
1da177e4
LT
1434
1435page_not_uptodate:
d00806b1 1436 /* IO error path */
1da177e4 1437 if (!did_readaround) {
d0217ac0 1438 ret = VM_FAULT_MAJOR;
f8891e5e 1439 count_vm_event(PGMAJFAULT);
1da177e4 1440 }
1da177e4
LT
1441
1442 /*
1443 * Umm, take care of errors if the page isn't up-to-date.
1444 * Try to re-read it _once_. We do this synchronously,
1445 * because there really aren't any performance issues here
1446 * and we need to check for errors.
1447 */
1da177e4 1448 ClearPageError(page);
994fc28c 1449 error = mapping->a_ops->readpage(file, page);
d00806b1
NP
1450 page_cache_release(page);
1451
1452 if (!error || error == AOP_TRUNCATED_PAGE)
994fc28c 1453 goto retry_find;
1da177e4 1454
d00806b1 1455 /* Things didn't work out. Return zero to tell the mm layer so. */
76d42bd9 1456 shrink_readahead_size_eio(file, ra);
d0217ac0 1457 return VM_FAULT_SIGBUS;
54cb8821
NP
1458}
1459EXPORT_SYMBOL(filemap_fault);
1460
1da177e4 1461struct vm_operations_struct generic_file_vm_ops = {
54cb8821 1462 .fault = filemap_fault,
1da177e4
LT
1463};
1464
1465/* This is used for a general mmap of a disk file */
1466
1467int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1468{
1469 struct address_space *mapping = file->f_mapping;
1470
1471 if (!mapping->a_ops->readpage)
1472 return -ENOEXEC;
1473 file_accessed(file);
1474 vma->vm_ops = &generic_file_vm_ops;
d0217ac0 1475 vma->vm_flags |= VM_CAN_NONLINEAR;
1da177e4
LT
1476 return 0;
1477}
1da177e4
LT
1478
1479/*
1480 * This is for filesystems which do not implement ->writepage.
1481 */
1482int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1483{
1484 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1485 return -EINVAL;
1486 return generic_file_mmap(file, vma);
1487}
1488#else
1489int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1490{
1491 return -ENOSYS;
1492}
1493int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1494{
1495 return -ENOSYS;
1496}
1497#endif /* CONFIG_MMU */
1498
1499EXPORT_SYMBOL(generic_file_mmap);
1500EXPORT_SYMBOL(generic_file_readonly_mmap);
1501
6fe6900e 1502static struct page *__read_cache_page(struct address_space *mapping,
1da177e4
LT
1503 unsigned long index,
1504 int (*filler)(void *,struct page*),
1505 void *data)
1506{
1507 struct page *page, *cached_page = NULL;
1508 int err;
1509repeat:
1510 page = find_get_page(mapping, index);
1511 if (!page) {
1512 if (!cached_page) {
1513 cached_page = page_cache_alloc_cold(mapping);
1514 if (!cached_page)
1515 return ERR_PTR(-ENOMEM);
1516 }
1517 err = add_to_page_cache_lru(cached_page, mapping,
1518 index, GFP_KERNEL);
1519 if (err == -EEXIST)
1520 goto repeat;
1521 if (err < 0) {
1522 /* Presumably ENOMEM for radix tree node */
1523 page_cache_release(cached_page);
1524 return ERR_PTR(err);
1525 }
1526 page = cached_page;
1527 cached_page = NULL;
1528 err = filler(data, page);
1529 if (err < 0) {
1530 page_cache_release(page);
1531 page = ERR_PTR(err);
1532 }
1533 }
1534 if (cached_page)
1535 page_cache_release(cached_page);
1536 return page;
1537}
1538
6fe6900e
NP
1539/*
1540 * Same as read_cache_page, but don't wait for page to become unlocked
1541 * after submitting it to the filler.
1da177e4 1542 */
6fe6900e 1543struct page *read_cache_page_async(struct address_space *mapping,
1da177e4
LT
1544 unsigned long index,
1545 int (*filler)(void *,struct page*),
1546 void *data)
1547{
1548 struct page *page;
1549 int err;
1550
1551retry:
1552 page = __read_cache_page(mapping, index, filler, data);
1553 if (IS_ERR(page))
c855ff37 1554 return page;
1da177e4
LT
1555 if (PageUptodate(page))
1556 goto out;
1557
1558 lock_page(page);
1559 if (!page->mapping) {
1560 unlock_page(page);
1561 page_cache_release(page);
1562 goto retry;
1563 }
1564 if (PageUptodate(page)) {
1565 unlock_page(page);
1566 goto out;
1567 }
1568 err = filler(data, page);
1569 if (err < 0) {
1570 page_cache_release(page);
c855ff37 1571 return ERR_PTR(err);
1da177e4 1572 }
c855ff37 1573out:
6fe6900e
NP
1574 mark_page_accessed(page);
1575 return page;
1576}
1577EXPORT_SYMBOL(read_cache_page_async);
1578
1579/**
1580 * read_cache_page - read into page cache, fill it if needed
1581 * @mapping: the page's address_space
1582 * @index: the page index
1583 * @filler: function to perform the read
1584 * @data: destination for read data
1585 *
1586 * Read into the page cache. If a page already exists, and PageUptodate() is
1587 * not set, try to fill the page then wait for it to become unlocked.
1588 *
1589 * If the page does not get brought uptodate, return -EIO.
1590 */
1591struct page *read_cache_page(struct address_space *mapping,
1592 unsigned long index,
1593 int (*filler)(void *,struct page*),
1594 void *data)
1595{
1596 struct page *page;
1597
1598 page = read_cache_page_async(mapping, index, filler, data);
1599 if (IS_ERR(page))
1600 goto out;
1601 wait_on_page_locked(page);
1602 if (!PageUptodate(page)) {
1603 page_cache_release(page);
1604 page = ERR_PTR(-EIO);
1605 }
1da177e4
LT
1606 out:
1607 return page;
1608}
1da177e4
LT
1609EXPORT_SYMBOL(read_cache_page);
1610
1611/*
1612 * If the page was newly created, increment its refcount and add it to the
1613 * caller's lru-buffering pagevec. This function is specifically for
1614 * generic_file_write().
1615 */
1616static inline struct page *
1617__grab_cache_page(struct address_space *mapping, unsigned long index,
1618 struct page **cached_page, struct pagevec *lru_pvec)
1619{
1620 int err;
1621 struct page *page;
1622repeat:
1623 page = find_lock_page(mapping, index);
1624 if (!page) {
1625 if (!*cached_page) {
1626 *cached_page = page_cache_alloc(mapping);
1627 if (!*cached_page)
1628 return NULL;
1629 }
1630 err = add_to_page_cache(*cached_page, mapping,
1631 index, GFP_KERNEL);
1632 if (err == -EEXIST)
1633 goto repeat;
1634 if (err == 0) {
1635 page = *cached_page;
1636 page_cache_get(page);
1637 if (!pagevec_add(lru_pvec, page))
1638 __pagevec_lru_add(lru_pvec);
1639 *cached_page = NULL;
1640 }
1641 }
1642 return page;
1643}
1644
1645/*
1646 * The logic we want is
1647 *
1648 * if suid or (sgid and xgrp)
1649 * remove privs
1650 */
01de85e0 1651int should_remove_suid(struct dentry *dentry)
1da177e4
LT
1652{
1653 mode_t mode = dentry->d_inode->i_mode;
1654 int kill = 0;
1da177e4
LT
1655
1656 /* suid always must be killed */
1657 if (unlikely(mode & S_ISUID))
1658 kill = ATTR_KILL_SUID;
1659
1660 /*
1661 * sgid without any exec bits is just a mandatory locking mark; leave
1662 * it alone. If some exec bits are set, it's a real sgid; kill it.
1663 */
1664 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1665 kill |= ATTR_KILL_SGID;
1666
01de85e0
JA
1667 if (unlikely(kill && !capable(CAP_FSETID)))
1668 return kill;
1da177e4 1669
01de85e0
JA
1670 return 0;
1671}
d23a147b 1672EXPORT_SYMBOL(should_remove_suid);
01de85e0
JA
1673
1674int __remove_suid(struct dentry *dentry, int kill)
1675{
1676 struct iattr newattrs;
1677
1678 newattrs.ia_valid = ATTR_FORCE | kill;
1679 return notify_change(dentry, &newattrs);
1680}
1681
1682int remove_suid(struct dentry *dentry)
1683{
1684 int kill = should_remove_suid(dentry);
1685
1686 if (unlikely(kill))
1687 return __remove_suid(dentry, kill);
1688
1689 return 0;
1da177e4
LT
1690}
1691EXPORT_SYMBOL(remove_suid);
1692
ceffc078 1693size_t
01408c49 1694__filemap_copy_from_user_iovec_inatomic(char *vaddr,
1da177e4
LT
1695 const struct iovec *iov, size_t base, size_t bytes)
1696{
1697 size_t copied = 0, left = 0;
1698
1699 while (bytes) {
1700 char __user *buf = iov->iov_base + base;
1701 int copy = min(bytes, iov->iov_len - base);
1702
1703 base = 0;
c22ce143 1704 left = __copy_from_user_inatomic_nocache(vaddr, buf, copy);
1da177e4
LT
1705 copied += copy;
1706 bytes -= copy;
1707 vaddr += copy;
1708 iov++;
1709
01408c49 1710 if (unlikely(left))
1da177e4 1711 break;
1da177e4
LT
1712 }
1713 return copied - left;
1714}
1715
1da177e4
LT
1716/*
1717 * Performs necessary checks before doing a write
1718 *
485bb99b 1719 * Can adjust writing position or amount of bytes to write.
1da177e4
LT
1720 * Returns appropriate error code that caller should return or
1721 * zero in case that write should be allowed.
1722 */
1723inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
1724{
1725 struct inode *inode = file->f_mapping->host;
1726 unsigned long limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1727
1728 if (unlikely(*pos < 0))
1729 return -EINVAL;
1730
1da177e4
LT
1731 if (!isblk) {
1732 /* FIXME: this is for backwards compatibility with 2.4 */
1733 if (file->f_flags & O_APPEND)
1734 *pos = i_size_read(inode);
1735
1736 if (limit != RLIM_INFINITY) {
1737 if (*pos >= limit) {
1738 send_sig(SIGXFSZ, current, 0);
1739 return -EFBIG;
1740 }
1741 if (*count > limit - (typeof(limit))*pos) {
1742 *count = limit - (typeof(limit))*pos;
1743 }
1744 }
1745 }
1746
1747 /*
1748 * LFS rule
1749 */
1750 if (unlikely(*pos + *count > MAX_NON_LFS &&
1751 !(file->f_flags & O_LARGEFILE))) {
1752 if (*pos >= MAX_NON_LFS) {
1da177e4
LT
1753 return -EFBIG;
1754 }
1755 if (*count > MAX_NON_LFS - (unsigned long)*pos) {
1756 *count = MAX_NON_LFS - (unsigned long)*pos;
1757 }
1758 }
1759
1760 /*
1761 * Are we about to exceed the fs block limit ?
1762 *
1763 * If we have written data it becomes a short write. If we have
1764 * exceeded without writing data we send a signal and return EFBIG.
1765 * Linus frestrict idea will clean these up nicely..
1766 */
1767 if (likely(!isblk)) {
1768 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
1769 if (*count || *pos > inode->i_sb->s_maxbytes) {
1da177e4
LT
1770 return -EFBIG;
1771 }
1772 /* zero-length writes at ->s_maxbytes are OK */
1773 }
1774
1775 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
1776 *count = inode->i_sb->s_maxbytes - *pos;
1777 } else {
9361401e 1778#ifdef CONFIG_BLOCK
1da177e4
LT
1779 loff_t isize;
1780 if (bdev_read_only(I_BDEV(inode)))
1781 return -EPERM;
1782 isize = i_size_read(inode);
1783 if (*pos >= isize) {
1784 if (*count || *pos > isize)
1785 return -ENOSPC;
1786 }
1787
1788 if (*pos + *count > isize)
1789 *count = isize - *pos;
9361401e
DH
1790#else
1791 return -EPERM;
1792#endif
1da177e4
LT
1793 }
1794 return 0;
1795}
1796EXPORT_SYMBOL(generic_write_checks);
1797
1798ssize_t
1799generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
1800 unsigned long *nr_segs, loff_t pos, loff_t *ppos,
1801 size_t count, size_t ocount)
1802{
1803 struct file *file = iocb->ki_filp;
1804 struct address_space *mapping = file->f_mapping;
1805 struct inode *inode = mapping->host;
1806 ssize_t written;
1807
1808 if (count != ocount)
1809 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
1810
1811 written = generic_file_direct_IO(WRITE, iocb, iov, pos, *nr_segs);
1812 if (written > 0) {
1813 loff_t end = pos + written;
1814 if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
1815 i_size_write(inode, end);
1816 mark_inode_dirty(inode);
1817 }
1818 *ppos = end;
1819 }
1820
1821 /*
1822 * Sync the fs metadata but not the minor inode changes and
1823 * of course not the data as we did direct DMA for the IO.
1b1dcc1b 1824 * i_mutex is held, which protects generic_osync_inode() from
8459d86a 1825 * livelocking. AIO O_DIRECT ops attempt to sync metadata here.
1da177e4 1826 */
8459d86a
ZB
1827 if ((written >= 0 || written == -EIOCBQUEUED) &&
1828 ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
1e8a81c5
HH
1829 int err = generic_osync_inode(inode, mapping, OSYNC_METADATA);
1830 if (err < 0)
1831 written = err;
1832 }
1da177e4
LT
1833 return written;
1834}
1835EXPORT_SYMBOL(generic_file_direct_write);
1836
1837ssize_t
1838generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
1839 unsigned long nr_segs, loff_t pos, loff_t *ppos,
1840 size_t count, ssize_t written)
1841{
1842 struct file *file = iocb->ki_filp;
1843 struct address_space * mapping = file->f_mapping;
f5e54d6e 1844 const struct address_space_operations *a_ops = mapping->a_ops;
1da177e4
LT
1845 struct inode *inode = mapping->host;
1846 long status = 0;
1847 struct page *page;
1848 struct page *cached_page = NULL;
1849 size_t bytes;
1850 struct pagevec lru_pvec;
1851 const struct iovec *cur_iov = iov; /* current iovec */
1852 size_t iov_base = 0; /* offset in the current iovec */
1853 char __user *buf;
1854
1855 pagevec_init(&lru_pvec, 0);
1856
1857 /*
1858 * handle partial DIO write. Adjust cur_iov if needed.
1859 */
1860 if (likely(nr_segs == 1))
1861 buf = iov->iov_base + written;
1862 else {
1863 filemap_set_next_iovec(&cur_iov, &iov_base, written);
f021e921 1864 buf = cur_iov->iov_base + iov_base;
1da177e4
LT
1865 }
1866
1867 do {
1868 unsigned long index;
1869 unsigned long offset;
1870 size_t copied;
1871
1872 offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
1873 index = pos >> PAGE_CACHE_SHIFT;
1874 bytes = PAGE_CACHE_SIZE - offset;
6527c2bd
VS
1875
1876 /* Limit the size of the copy to the caller's write size */
1877 bytes = min(bytes, count);
1878
29dbb3fc
N
1879 /* We only need to worry about prefaulting when writes are from
1880 * user-space. NFSd uses vfs_writev with several non-aligned
1881 * segments in the vector, and limiting to one segment a time is
1882 * a noticeable performance for re-write
6527c2bd 1883 */
29dbb3fc
N
1884 if (!segment_eq(get_fs(), KERNEL_DS)) {
1885 /*
1886 * Limit the size of the copy to that of the current
1887 * segment, because fault_in_pages_readable() doesn't
1888 * know how to walk segments.
1889 */
1890 bytes = min(bytes, cur_iov->iov_len - iov_base);
1da177e4 1891
29dbb3fc
N
1892 /*
1893 * Bring in the user page that we will copy from
1894 * _first_. Otherwise there's a nasty deadlock on
1895 * copying from the same page as we're writing to,
1896 * without it being marked up-to-date.
1897 */
1898 fault_in_pages_readable(buf, bytes);
1899 }
1da177e4
LT
1900 page = __grab_cache_page(mapping,index,&cached_page,&lru_pvec);
1901 if (!page) {
1902 status = -ENOMEM;
1903 break;
1904 }
1905
81b0c871
AM
1906 if (unlikely(bytes == 0)) {
1907 status = 0;
1908 copied = 0;
1909 goto zero_length_segment;
1910 }
1911
1da177e4
LT
1912 status = a_ops->prepare_write(file, page, offset, offset+bytes);
1913 if (unlikely(status)) {
1914 loff_t isize = i_size_read(inode);
994fc28c
ZB
1915
1916 if (status != AOP_TRUNCATED_PAGE)
1917 unlock_page(page);
1918 page_cache_release(page);
1919 if (status == AOP_TRUNCATED_PAGE)
1920 continue;
1da177e4
LT
1921 /*
1922 * prepare_write() may have instantiated a few blocks
1923 * outside i_size. Trim these off again.
1924 */
1da177e4
LT
1925 if (pos + bytes > isize)
1926 vmtruncate(inode, isize);
1927 break;
1928 }
1929 if (likely(nr_segs == 1))
1930 copied = filemap_copy_from_user(page, offset,
1931 buf, bytes);
1932 else
1933 copied = filemap_copy_from_user_iovec(page, offset,
1934 cur_iov, iov_base, bytes);
1935 flush_dcache_page(page);
1936 status = a_ops->commit_write(file, page, offset, offset+bytes);
994fc28c
ZB
1937 if (status == AOP_TRUNCATED_PAGE) {
1938 page_cache_release(page);
1939 continue;
1940 }
81b0c871
AM
1941zero_length_segment:
1942 if (likely(copied >= 0)) {
1da177e4
LT
1943 if (!status)
1944 status = copied;
1945
1946 if (status >= 0) {
1947 written += status;
1948 count -= status;
1949 pos += status;
1950 buf += status;
f021e921 1951 if (unlikely(nr_segs > 1)) {
1da177e4
LT
1952 filemap_set_next_iovec(&cur_iov,
1953 &iov_base, status);
b0cfbd99
BP
1954 if (count)
1955 buf = cur_iov->iov_base +
1956 iov_base;
a5117181
MS
1957 } else {
1958 iov_base += status;
f021e921 1959 }
1da177e4
LT
1960 }
1961 }
1962 if (unlikely(copied != bytes))
1963 if (status >= 0)
1964 status = -EFAULT;
1965 unlock_page(page);
1966 mark_page_accessed(page);
1967 page_cache_release(page);
1968 if (status < 0)
1969 break;
1970 balance_dirty_pages_ratelimited(mapping);
1971 cond_resched();
1972 } while (count);
1973 *ppos = pos;
1974
1975 if (cached_page)
1976 page_cache_release(cached_page);
1977
1978 /*
1979 * For now, when the user asks for O_SYNC, we'll actually give O_DSYNC
1980 */
1981 if (likely(status >= 0)) {
1982 if (unlikely((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
1983 if (!a_ops->writepage || !is_sync_kiocb(iocb))
1984 status = generic_osync_inode(inode, mapping,
1985 OSYNC_METADATA|OSYNC_DATA);
1986 }
1987 }
1988
1989 /*
1990 * If we get here for O_DIRECT writes then we must have fallen through
1991 * to buffered writes (block instantiation inside i_size). So we sync
1992 * the file data here, to try to honour O_DIRECT expectations.
1993 */
1994 if (unlikely(file->f_flags & O_DIRECT) && written)
1995 status = filemap_write_and_wait(mapping);
1996
1997 pagevec_lru_add(&lru_pvec);
1998 return written ? written : status;
1999}
2000EXPORT_SYMBOL(generic_file_buffered_write);
2001
5ce7852c 2002static ssize_t
1da177e4
LT
2003__generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov,
2004 unsigned long nr_segs, loff_t *ppos)
2005{
2006 struct file *file = iocb->ki_filp;
fb5527e6 2007 struct address_space * mapping = file->f_mapping;
1da177e4
LT
2008 size_t ocount; /* original count */
2009 size_t count; /* after file limit checks */
2010 struct inode *inode = mapping->host;
1da177e4
LT
2011 loff_t pos;
2012 ssize_t written;
2013 ssize_t err;
2014
2015 ocount = 0;
0ceb3314
DM
2016 err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2017 if (err)
2018 return err;
1da177e4
LT
2019
2020 count = ocount;
2021 pos = *ppos;
2022
2023 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2024
2025 /* We can write back this queue in page reclaim */
2026 current->backing_dev_info = mapping->backing_dev_info;
2027 written = 0;
2028
2029 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2030 if (err)
2031 goto out;
2032
2033 if (count == 0)
2034 goto out;
2035
d3ac7f89 2036 err = remove_suid(file->f_path.dentry);
1da177e4
LT
2037 if (err)
2038 goto out;
2039
870f4817 2040 file_update_time(file);
1da177e4
LT
2041
2042 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2043 if (unlikely(file->f_flags & O_DIRECT)) {
fb5527e6
JM
2044 loff_t endbyte;
2045 ssize_t written_buffered;
2046
2047 written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2048 ppos, count, ocount);
1da177e4
LT
2049 if (written < 0 || written == count)
2050 goto out;
2051 /*
2052 * direct-io write to a hole: fall through to buffered I/O
2053 * for completing the rest of the request.
2054 */
2055 pos += written;
2056 count -= written;
fb5527e6
JM
2057 written_buffered = generic_file_buffered_write(iocb, iov,
2058 nr_segs, pos, ppos, count,
2059 written);
2060 /*
2061 * If generic_file_buffered_write() retuned a synchronous error
2062 * then we want to return the number of bytes which were
2063 * direct-written, or the error code if that was zero. Note
2064 * that this differs from normal direct-io semantics, which
2065 * will return -EFOO even if some bytes were written.
2066 */
2067 if (written_buffered < 0) {
2068 err = written_buffered;
2069 goto out;
2070 }
1da177e4 2071
fb5527e6
JM
2072 /*
2073 * We need to ensure that the page cache pages are written to
2074 * disk and invalidated to preserve the expected O_DIRECT
2075 * semantics.
2076 */
2077 endbyte = pos + written_buffered - written - 1;
ef51c976
MF
2078 err = do_sync_mapping_range(file->f_mapping, pos, endbyte,
2079 SYNC_FILE_RANGE_WAIT_BEFORE|
2080 SYNC_FILE_RANGE_WRITE|
2081 SYNC_FILE_RANGE_WAIT_AFTER);
fb5527e6
JM
2082 if (err == 0) {
2083 written = written_buffered;
2084 invalidate_mapping_pages(mapping,
2085 pos >> PAGE_CACHE_SHIFT,
2086 endbyte >> PAGE_CACHE_SHIFT);
2087 } else {
2088 /*
2089 * We don't know how much we wrote, so just return
2090 * the number of bytes which were direct-written
2091 */
2092 }
2093 } else {
2094 written = generic_file_buffered_write(iocb, iov, nr_segs,
2095 pos, ppos, count, written);
2096 }
1da177e4
LT
2097out:
2098 current->backing_dev_info = NULL;
2099 return written ? written : err;
2100}
1da177e4 2101
027445c3
BP
2102ssize_t generic_file_aio_write_nolock(struct kiocb *iocb,
2103 const struct iovec *iov, unsigned long nr_segs, loff_t pos)
1da177e4
LT
2104{
2105 struct file *file = iocb->ki_filp;
2106 struct address_space *mapping = file->f_mapping;
2107 struct inode *inode = mapping->host;
2108 ssize_t ret;
1da177e4 2109
027445c3
BP
2110 BUG_ON(iocb->ki_pos != pos);
2111
2112 ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2113 &iocb->ki_pos);
1da177e4
LT
2114
2115 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
027445c3 2116 ssize_t err;
1da177e4
LT
2117
2118 err = sync_page_range_nolock(inode, mapping, pos, ret);
2119 if (err < 0)
2120 ret = err;
2121 }
2122 return ret;
2123}
027445c3 2124EXPORT_SYMBOL(generic_file_aio_write_nolock);
1da177e4 2125
027445c3
BP
2126ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2127 unsigned long nr_segs, loff_t pos)
1da177e4
LT
2128{
2129 struct file *file = iocb->ki_filp;
2130 struct address_space *mapping = file->f_mapping;
2131 struct inode *inode = mapping->host;
2132 ssize_t ret;
1da177e4
LT
2133
2134 BUG_ON(iocb->ki_pos != pos);
2135
1b1dcc1b 2136 mutex_lock(&inode->i_mutex);
027445c3
BP
2137 ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2138 &iocb->ki_pos);
1b1dcc1b 2139 mutex_unlock(&inode->i_mutex);
1da177e4
LT
2140
2141 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2142 ssize_t err;
2143
2144 err = sync_page_range(inode, mapping, pos, ret);
2145 if (err < 0)
2146 ret = err;
2147 }
2148 return ret;
2149}
2150EXPORT_SYMBOL(generic_file_aio_write);
2151
1da177e4 2152/*
1b1dcc1b 2153 * Called under i_mutex for writes to S_ISREG files. Returns -EIO if something
1da177e4
LT
2154 * went wrong during pagecache shootdown.
2155 */
5ce7852c 2156static ssize_t
1da177e4
LT
2157generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
2158 loff_t offset, unsigned long nr_segs)
2159{
2160 struct file *file = iocb->ki_filp;
2161 struct address_space *mapping = file->f_mapping;
2162 ssize_t retval;
65b8291c
ZB
2163 size_t write_len;
2164 pgoff_t end = 0; /* silence gcc */
1da177e4
LT
2165
2166 /*
2167 * If it's a write, unmap all mmappings of the file up-front. This
2168 * will cause any pte dirty bits to be propagated into the pageframes
2169 * for the subsequent filemap_write_and_wait().
2170 */
2171 if (rw == WRITE) {
2172 write_len = iov_length(iov, nr_segs);
65b8291c 2173 end = (offset + write_len - 1) >> PAGE_CACHE_SHIFT;
1da177e4
LT
2174 if (mapping_mapped(mapping))
2175 unmap_mapping_range(mapping, offset, write_len, 0);
2176 }
2177
2178 retval = filemap_write_and_wait(mapping);
65b8291c
ZB
2179 if (retval)
2180 goto out;
2181
2182 /*
2183 * After a write we want buffered reads to be sure to go to disk to get
2184 * the new data. We invalidate clean cached page from the region we're
2185 * about to write. We do this *before* the write so that we can return
2186 * -EIO without clobbering -EIOCBQUEUED from ->direct_IO().
2187 */
2188 if (rw == WRITE && mapping->nrpages) {
2189 retval = invalidate_inode_pages2_range(mapping,
1da177e4 2190 offset >> PAGE_CACHE_SHIFT, end);
65b8291c
ZB
2191 if (retval)
2192 goto out;
1da177e4 2193 }
65b8291c
ZB
2194
2195 retval = mapping->a_ops->direct_IO(rw, iocb, iov, offset, nr_segs);
2196 if (retval)
2197 goto out;
2198
2199 /*
2200 * Finally, try again to invalidate clean pages which might have been
2201 * faulted in by get_user_pages() if the source of the write was an
2202 * mmap()ed region of the file we're writing. That's a pretty crazy
2203 * thing to do, so we don't support it 100%. If this invalidation
2204 * fails and we have -EIOCBQUEUED we ignore the failure.
2205 */
2206 if (rw == WRITE && mapping->nrpages) {
2207 int err = invalidate_inode_pages2_range(mapping,
2208 offset >> PAGE_CACHE_SHIFT, end);
2209 if (err && retval >= 0)
2210 retval = err;
2211 }
2212out:
1da177e4
LT
2213 return retval;
2214}
cf9a2ae8
DH
2215
2216/**
2217 * try_to_release_page() - release old fs-specific metadata on a page
2218 *
2219 * @page: the page which the kernel is trying to free
2220 * @gfp_mask: memory allocation flags (and I/O mode)
2221 *
2222 * The address_space is to try to release any data against the page
2223 * (presumably at page->private). If the release was successful, return `1'.
2224 * Otherwise return zero.
2225 *
2226 * The @gfp_mask argument specifies whether I/O may be performed to release
2227 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT).
2228 *
2229 * NOTE: @gfp_mask may go away, and this function may become non-blocking.
2230 */
2231int try_to_release_page(struct page *page, gfp_t gfp_mask)
2232{
2233 struct address_space * const mapping = page->mapping;
2234
2235 BUG_ON(!PageLocked(page));
2236 if (PageWriteback(page))
2237 return 0;
2238
2239 if (mapping && mapping->a_ops->releasepage)
2240 return mapping->a_ops->releasepage(page, gfp_mask);
2241 return try_to_free_buffers(page);
2242}
2243
2244EXPORT_SYMBOL(try_to_release_page);