Merge tag 'v3.10.63' into update
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / workqueue.c
CommitLineData
1da177e4 1/*
c54fce6e 2 * kernel/workqueue.c - generic async execution with shared worker pool
1da177e4 3 *
c54fce6e 4 * Copyright (C) 2002 Ingo Molnar
1da177e4 5 *
c54fce6e
TH
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
1da177e4 11 *
c54fce6e 12 * Made to use alloc_percpu by Christoph Lameter.
1da177e4 13 *
c54fce6e
TH
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
89ada679 16 *
c54fce6e
TH
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
19 * automatically managed. There is one worker pool for each CPU and
20 * one extra for works which are better served by workers which are
21 * not bound to any specific CPU.
22 *
23 * Please read Documentation/workqueue.txt for details.
1da177e4
LT
24 */
25
9984de1a 26#include <linux/export.h>
1da177e4
LT
27#include <linux/kernel.h>
28#include <linux/sched.h>
29#include <linux/init.h>
30#include <linux/signal.h>
31#include <linux/completion.h>
32#include <linux/workqueue.h>
33#include <linux/slab.h>
34#include <linux/cpu.h>
35#include <linux/notifier.h>
36#include <linux/kthread.h>
1fa44eca 37#include <linux/hardirq.h>
46934023 38#include <linux/mempolicy.h>
341a5958 39#include <linux/freezer.h>
d5abe669
PZ
40#include <linux/kallsyms.h>
41#include <linux/debug_locks.h>
4e6045f1 42#include <linux/lockdep.h>
c34056a3 43#include <linux/idr.h>
29c91e99 44#include <linux/jhash.h>
42f8570f 45#include <linux/hashtable.h>
76af4d93 46#include <linux/rculist.h>
bce90380 47#include <linux/nodemask.h>
4c16bd32 48#include <linux/moduleparam.h>
3d1cb205 49#include <linux/uaccess.h>
e22bee78 50
ea138446 51#include "workqueue_internal.h"
1da177e4 52
c8e55f36 53enum {
24647570
TH
54 /*
55 * worker_pool flags
bc2ae0f5 56 *
24647570 57 * A bound pool is either associated or disassociated with its CPU.
bc2ae0f5
TH
58 * While associated (!DISASSOCIATED), all workers are bound to the
59 * CPU and none has %WORKER_UNBOUND set and concurrency management
60 * is in effect.
61 *
62 * While DISASSOCIATED, the cpu may be offline and all workers have
63 * %WORKER_UNBOUND set and concurrency management disabled, and may
24647570 64 * be executing on any CPU. The pool behaves as an unbound one.
bc2ae0f5 65 *
bc3a1afc
TH
66 * Note that DISASSOCIATED should be flipped only while holding
67 * manager_mutex to avoid changing binding state while
24647570 68 * create_worker() is in progress.
bc2ae0f5 69 */
11ebea50 70 POOL_MANAGE_WORKERS = 1 << 0, /* need to manage workers */
24647570 71 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
35b6bb63 72 POOL_FREEZING = 1 << 3, /* freeze in progress */
db7bccf4 73
c8e55f36
TH
74 /* worker flags */
75 WORKER_STARTED = 1 << 0, /* started */
76 WORKER_DIE = 1 << 1, /* die die die */
77 WORKER_IDLE = 1 << 2, /* is idle */
e22bee78 78 WORKER_PREP = 1 << 3, /* preparing to run works */
fb0e7beb 79 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
f3421797 80 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
a9ab775b 81 WORKER_REBOUND = 1 << 8, /* worker was rebound */
e22bee78 82
a9ab775b
TH
83 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
84 WORKER_UNBOUND | WORKER_REBOUND,
db7bccf4 85
e34cdddb 86 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
4ce62e9e 87
29c91e99 88 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
c8e55f36 89 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
db7bccf4 90
e22bee78
TH
91 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
92 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
93
3233cdbd
TH
94 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
95 /* call for help after 10ms
96 (min two ticks) */
e22bee78
TH
97 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
98 CREATE_COOLDOWN = HZ, /* time to breath after fail */
e22bee78
TH
99
100 /*
101 * Rescue workers are used only on emergencies and shared by
102 * all cpus. Give -20.
103 */
104 RESCUER_NICE_LEVEL = -20,
3270476a 105 HIGHPRI_NICE_LEVEL = -20,
ecf6881f
TH
106
107 WQ_NAME_LEN = 24,
c8e55f36 108};
1da177e4
LT
109
110/*
4690c4ab
TH
111 * Structure fields follow one of the following exclusion rules.
112 *
e41e704b
TH
113 * I: Modifiable by initialization/destruction paths and read-only for
114 * everyone else.
4690c4ab 115 *
e22bee78
TH
116 * P: Preemption protected. Disabling preemption is enough and should
117 * only be modified and accessed from the local cpu.
118 *
d565ed63 119 * L: pool->lock protected. Access with pool->lock held.
4690c4ab 120 *
d565ed63
TH
121 * X: During normal operation, modification requires pool->lock and should
122 * be done only from local cpu. Either disabling preemption on local
123 * cpu or grabbing pool->lock is enough for read access. If
124 * POOL_DISASSOCIATED is set, it's identical to L.
e22bee78 125 *
822d8405
TH
126 * MG: pool->manager_mutex and pool->lock protected. Writes require both
127 * locks. Reads can happen under either lock.
128 *
68e13a67 129 * PL: wq_pool_mutex protected.
5bcab335 130 *
68e13a67 131 * PR: wq_pool_mutex protected for writes. Sched-RCU protected for reads.
76af4d93 132 *
3c25a55d
LJ
133 * WQ: wq->mutex protected.
134 *
b5927605 135 * WR: wq->mutex protected for writes. Sched-RCU protected for reads.
2e109a28
TH
136 *
137 * MD: wq_mayday_lock protected.
1da177e4 138 */
1da177e4 139
2eaebdb3 140/* struct worker is defined in workqueue_internal.h */
c34056a3 141
bd7bdd43 142struct worker_pool {
d565ed63 143 spinlock_t lock; /* the pool lock */
d84ff051 144 int cpu; /* I: the associated cpu */
f3f90ad4 145 int node; /* I: the associated node ID */
9daf9e67 146 int id; /* I: pool ID */
11ebea50 147 unsigned int flags; /* X: flags */
bd7bdd43
TH
148
149 struct list_head worklist; /* L: list of pending works */
150 int nr_workers; /* L: total number of workers */
ea1abd61
LJ
151
152 /* nr_idle includes the ones off idle_list for rebinding */
bd7bdd43
TH
153 int nr_idle; /* L: currently idle ones */
154
155 struct list_head idle_list; /* X: list of idle workers */
156 struct timer_list idle_timer; /* L: worker idle timeout */
157 struct timer_list mayday_timer; /* L: SOS timer for workers */
158
c5aa87bb 159 /* a workers is either on busy_hash or idle_list, or the manager */
c9e7cf27
TH
160 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
161 /* L: hash of busy workers */
162
bc3a1afc 163 /* see manage_workers() for details on the two manager mutexes */
34a06bd6 164 struct mutex manager_arb; /* manager arbitration */
bc3a1afc 165 struct mutex manager_mutex; /* manager exclusion */
822d8405 166 struct idr worker_idr; /* MG: worker IDs and iteration */
e19e397a 167
7a4e344c 168 struct workqueue_attrs *attrs; /* I: worker attributes */
68e13a67
LJ
169 struct hlist_node hash_node; /* PL: unbound_pool_hash node */
170 int refcnt; /* PL: refcnt for unbound pools */
7a4e344c 171
e19e397a
TH
172 /*
173 * The current concurrency level. As it's likely to be accessed
174 * from other CPUs during try_to_wake_up(), put it in a separate
175 * cacheline.
176 */
177 atomic_t nr_running ____cacheline_aligned_in_smp;
29c91e99
TH
178
179 /*
180 * Destruction of pool is sched-RCU protected to allow dereferences
181 * from get_work_pool().
182 */
183 struct rcu_head rcu;
8b03ae3c
TH
184} ____cacheline_aligned_in_smp;
185
1da177e4 186/*
112202d9
TH
187 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
188 * of work_struct->data are used for flags and the remaining high bits
189 * point to the pwq; thus, pwqs need to be aligned at two's power of the
190 * number of flag bits.
1da177e4 191 */
112202d9 192struct pool_workqueue {
bd7bdd43 193 struct worker_pool *pool; /* I: the associated pool */
4690c4ab 194 struct workqueue_struct *wq; /* I: the owning workqueue */
73f53c4a
TH
195 int work_color; /* L: current color */
196 int flush_color; /* L: flushing color */
8864b4e5 197 int refcnt; /* L: reference count */
73f53c4a
TH
198 int nr_in_flight[WORK_NR_COLORS];
199 /* L: nr of in_flight works */
1e19ffc6 200 int nr_active; /* L: nr of active works */
a0a1a5fd 201 int max_active; /* L: max active works */
1e19ffc6 202 struct list_head delayed_works; /* L: delayed works */
3c25a55d 203 struct list_head pwqs_node; /* WR: node on wq->pwqs */
2e109a28 204 struct list_head mayday_node; /* MD: node on wq->maydays */
8864b4e5
TH
205
206 /*
207 * Release of unbound pwq is punted to system_wq. See put_pwq()
208 * and pwq_unbound_release_workfn() for details. pool_workqueue
209 * itself is also sched-RCU protected so that the first pwq can be
b09f4fd3 210 * determined without grabbing wq->mutex.
8864b4e5
TH
211 */
212 struct work_struct unbound_release_work;
213 struct rcu_head rcu;
e904e6c2 214} __aligned(1 << WORK_STRUCT_FLAG_BITS);
1da177e4 215
73f53c4a
TH
216/*
217 * Structure used to wait for workqueue flush.
218 */
219struct wq_flusher {
3c25a55d
LJ
220 struct list_head list; /* WQ: list of flushers */
221 int flush_color; /* WQ: flush color waiting for */
73f53c4a
TH
222 struct completion done; /* flush completion */
223};
224
226223ab
TH
225struct wq_device;
226
1da177e4 227/*
c5aa87bb
TH
228 * The externally visible workqueue. It relays the issued work items to
229 * the appropriate worker_pool through its pool_workqueues.
1da177e4
LT
230 */
231struct workqueue_struct {
3c25a55d 232 struct list_head pwqs; /* WR: all pwqs of this wq */
68e13a67 233 struct list_head list; /* PL: list of all workqueues */
73f53c4a 234
3c25a55d
LJ
235 struct mutex mutex; /* protects this wq */
236 int work_color; /* WQ: current work color */
237 int flush_color; /* WQ: current flush color */
112202d9 238 atomic_t nr_pwqs_to_flush; /* flush in progress */
3c25a55d
LJ
239 struct wq_flusher *first_flusher; /* WQ: first flusher */
240 struct list_head flusher_queue; /* WQ: flush waiters */
241 struct list_head flusher_overflow; /* WQ: flush overflow list */
73f53c4a 242
2e109a28 243 struct list_head maydays; /* MD: pwqs requesting rescue */
e22bee78
TH
244 struct worker *rescuer; /* I: rescue worker */
245
87fc741e 246 int nr_drainers; /* WQ: drain in progress */
a357fc03 247 int saved_max_active; /* WQ: saved pwq max_active */
226223ab 248
6029a918 249 struct workqueue_attrs *unbound_attrs; /* WQ: only for unbound wqs */
4c16bd32 250 struct pool_workqueue *dfl_pwq; /* WQ: only for unbound wqs */
6029a918 251
226223ab
TH
252#ifdef CONFIG_SYSFS
253 struct wq_device *wq_dev; /* I: for sysfs interface */
254#endif
4e6045f1 255#ifdef CONFIG_LOCKDEP
4690c4ab 256 struct lockdep_map lockdep_map;
4e6045f1 257#endif
ecf6881f 258 char name[WQ_NAME_LEN]; /* I: workqueue name */
2728fd2f
TH
259
260 /* hot fields used during command issue, aligned to cacheline */
261 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */
262 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
df2d5ae4 263 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* FR: unbound pwqs indexed by node */
1da177e4
LT
264};
265
e904e6c2
TH
266static struct kmem_cache *pwq_cache;
267
bce90380
TH
268static int wq_numa_tbl_len; /* highest possible NUMA node id + 1 */
269static cpumask_var_t *wq_numa_possible_cpumask;
270 /* possible CPUs of each node */
271
d55262c4
TH
272static bool wq_disable_numa;
273module_param_named(disable_numa, wq_disable_numa, bool, 0444);
274
bce90380
TH
275static bool wq_numa_enabled; /* unbound NUMA affinity enabled */
276
4c16bd32
TH
277/* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
278static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
279
68e13a67 280static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
2e109a28 281static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
5bcab335 282
68e13a67
LJ
283static LIST_HEAD(workqueues); /* PL: list of all workqueues */
284static bool workqueue_freezing; /* PL: have wqs started freezing? */
7d19c5ce
TH
285
286/* the per-cpu worker pools */
287static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
288 cpu_worker_pools);
289
68e13a67 290static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
7d19c5ce 291
68e13a67 292/* PL: hash of all unbound pools keyed by pool->attrs */
29c91e99
TH
293static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
294
c5aa87bb 295/* I: attributes used when instantiating standard unbound pools on demand */
29c91e99
TH
296static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
297
ced4ac92
TH
298/* I: attributes used when instantiating ordered pools on demand */
299static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
300
d320c038 301struct workqueue_struct *system_wq __read_mostly;
ad7b1f84 302EXPORT_SYMBOL(system_wq);
044c782c 303struct workqueue_struct *system_highpri_wq __read_mostly;
1aabe902 304EXPORT_SYMBOL_GPL(system_highpri_wq);
044c782c 305struct workqueue_struct *system_long_wq __read_mostly;
d320c038 306EXPORT_SYMBOL_GPL(system_long_wq);
044c782c 307struct workqueue_struct *system_unbound_wq __read_mostly;
f3421797 308EXPORT_SYMBOL_GPL(system_unbound_wq);
044c782c 309struct workqueue_struct *system_freezable_wq __read_mostly;
24d51add 310EXPORT_SYMBOL_GPL(system_freezable_wq);
d320c038 311
7d19c5ce
TH
312static int worker_thread(void *__worker);
313static void copy_workqueue_attrs(struct workqueue_attrs *to,
314 const struct workqueue_attrs *from);
315
97bd2347
TH
316#define CREATE_TRACE_POINTS
317#include <trace/events/workqueue.h>
318
68e13a67 319#define assert_rcu_or_pool_mutex() \
5bcab335 320 rcu_lockdep_assert(rcu_read_lock_sched_held() || \
68e13a67
LJ
321 lockdep_is_held(&wq_pool_mutex), \
322 "sched RCU or wq_pool_mutex should be held")
5bcab335 323
b09f4fd3 324#define assert_rcu_or_wq_mutex(wq) \
76af4d93 325 rcu_lockdep_assert(rcu_read_lock_sched_held() || \
b5927605 326 lockdep_is_held(&wq->mutex), \
b09f4fd3 327 "sched RCU or wq->mutex should be held")
76af4d93 328
822d8405
TH
329#ifdef CONFIG_LOCKDEP
330#define assert_manager_or_pool_lock(pool) \
519e3c11
LJ
331 WARN_ONCE(debug_locks && \
332 !lockdep_is_held(&(pool)->manager_mutex) && \
822d8405
TH
333 !lockdep_is_held(&(pool)->lock), \
334 "pool->manager_mutex or ->lock should be held")
335#else
336#define assert_manager_or_pool_lock(pool) do { } while (0)
337#endif
338
f02ae73a
TH
339#define for_each_cpu_worker_pool(pool, cpu) \
340 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
341 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
7a62c2c8 342 (pool)++)
4ce62e9e 343
17116969
TH
344/**
345 * for_each_pool - iterate through all worker_pools in the system
346 * @pool: iteration cursor
611c92a0 347 * @pi: integer used for iteration
fa1b54e6 348 *
68e13a67
LJ
349 * This must be called either with wq_pool_mutex held or sched RCU read
350 * locked. If the pool needs to be used beyond the locking in effect, the
351 * caller is responsible for guaranteeing that the pool stays online.
fa1b54e6
TH
352 *
353 * The if/else clause exists only for the lockdep assertion and can be
354 * ignored.
17116969 355 */
611c92a0
TH
356#define for_each_pool(pool, pi) \
357 idr_for_each_entry(&worker_pool_idr, pool, pi) \
68e13a67 358 if (({ assert_rcu_or_pool_mutex(); false; })) { } \
fa1b54e6 359 else
17116969 360
822d8405
TH
361/**
362 * for_each_pool_worker - iterate through all workers of a worker_pool
363 * @worker: iteration cursor
364 * @wi: integer used for iteration
365 * @pool: worker_pool to iterate workers of
366 *
367 * This must be called with either @pool->manager_mutex or ->lock held.
368 *
369 * The if/else clause exists only for the lockdep assertion and can be
370 * ignored.
371 */
372#define for_each_pool_worker(worker, wi, pool) \
373 idr_for_each_entry(&(pool)->worker_idr, (worker), (wi)) \
374 if (({ assert_manager_or_pool_lock((pool)); false; })) { } \
375 else
376
49e3cf44
TH
377/**
378 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
379 * @pwq: iteration cursor
380 * @wq: the target workqueue
76af4d93 381 *
b09f4fd3 382 * This must be called either with wq->mutex held or sched RCU read locked.
794b18bc
TH
383 * If the pwq needs to be used beyond the locking in effect, the caller is
384 * responsible for guaranteeing that the pwq stays online.
76af4d93
TH
385 *
386 * The if/else clause exists only for the lockdep assertion and can be
387 * ignored.
49e3cf44
TH
388 */
389#define for_each_pwq(pwq, wq) \
76af4d93 390 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \
b09f4fd3 391 if (({ assert_rcu_or_wq_mutex(wq); false; })) { } \
76af4d93 392 else
f3421797 393
dc186ad7
TG
394#ifdef CONFIG_DEBUG_OBJECTS_WORK
395
396static struct debug_obj_descr work_debug_descr;
397
99777288
SG
398static void *work_debug_hint(void *addr)
399{
400 return ((struct work_struct *) addr)->func;
401}
402
dc186ad7
TG
403/*
404 * fixup_init is called when:
405 * - an active object is initialized
406 */
407static int work_fixup_init(void *addr, enum debug_obj_state state)
408{
409 struct work_struct *work = addr;
410
411 switch (state) {
412 case ODEBUG_STATE_ACTIVE:
413 cancel_work_sync(work);
414 debug_object_init(work, &work_debug_descr);
415 return 1;
416 default:
417 return 0;
418 }
419}
420
421/*
422 * fixup_activate is called when:
423 * - an active object is activated
424 * - an unknown object is activated (might be a statically initialized object)
425 */
426static int work_fixup_activate(void *addr, enum debug_obj_state state)
427{
428 struct work_struct *work = addr;
429
430 switch (state) {
431
432 case ODEBUG_STATE_NOTAVAILABLE:
433 /*
434 * This is not really a fixup. The work struct was
435 * statically initialized. We just make sure that it
436 * is tracked in the object tracker.
437 */
22df02bb 438 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
dc186ad7
TG
439 debug_object_init(work, &work_debug_descr);
440 debug_object_activate(work, &work_debug_descr);
441 return 0;
442 }
443 WARN_ON_ONCE(1);
444 return 0;
445
446 case ODEBUG_STATE_ACTIVE:
447 WARN_ON(1);
448
449 default:
450 return 0;
451 }
452}
453
454/*
455 * fixup_free is called when:
456 * - an active object is freed
457 */
458static int work_fixup_free(void *addr, enum debug_obj_state state)
459{
460 struct work_struct *work = addr;
461
462 switch (state) {
463 case ODEBUG_STATE_ACTIVE:
464 cancel_work_sync(work);
465 debug_object_free(work, &work_debug_descr);
466 return 1;
467 default:
468 return 0;
469 }
470}
471
472static struct debug_obj_descr work_debug_descr = {
473 .name = "work_struct",
99777288 474 .debug_hint = work_debug_hint,
dc186ad7
TG
475 .fixup_init = work_fixup_init,
476 .fixup_activate = work_fixup_activate,
477 .fixup_free = work_fixup_free,
478};
479
480static inline void debug_work_activate(struct work_struct *work)
481{
482 debug_object_activate(work, &work_debug_descr);
483}
484
485static inline void debug_work_deactivate(struct work_struct *work)
486{
487 debug_object_deactivate(work, &work_debug_descr);
488}
489
490void __init_work(struct work_struct *work, int onstack)
491{
492 if (onstack)
493 debug_object_init_on_stack(work, &work_debug_descr);
494 else
495 debug_object_init(work, &work_debug_descr);
496}
497EXPORT_SYMBOL_GPL(__init_work);
498
499void destroy_work_on_stack(struct work_struct *work)
500{
501 debug_object_free(work, &work_debug_descr);
502}
503EXPORT_SYMBOL_GPL(destroy_work_on_stack);
504
505#else
506static inline void debug_work_activate(struct work_struct *work) { }
507static inline void debug_work_deactivate(struct work_struct *work) { }
508#endif
509
6fa3eb70
S
510#ifdef CONFIG_MTK_WQ_DEBUG
511extern void mttrace_workqueue_execute_work(struct work_struct *work);
512extern void mttrace_workqueue_activate_work(struct work_struct *work);
513extern void mttrace_workqueue_queue_work(unsigned int req_cpu, struct work_struct *work);
514extern void mttrace_workqueue_execute_end(struct work_struct *work);
515#endif //CONFIG_MTK_WQ_DEBUG
516
9daf9e67
TH
517/* allocate ID and assign it to @pool */
518static int worker_pool_assign_id(struct worker_pool *pool)
519{
520 int ret;
521
68e13a67 522 lockdep_assert_held(&wq_pool_mutex);
5bcab335 523
e68035fb 524 ret = idr_alloc(&worker_pool_idr, pool, 0, 0, GFP_KERNEL);
229641a6 525 if (ret >= 0) {
e68035fb 526 pool->id = ret;
229641a6
TH
527 return 0;
528 }
fa1b54e6 529 return ret;
7c3eed5c
TH
530}
531
df2d5ae4
TH
532/**
533 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
534 * @wq: the target workqueue
535 * @node: the node ID
536 *
537 * This must be called either with pwq_lock held or sched RCU read locked.
538 * If the pwq needs to be used beyond the locking in effect, the caller is
539 * responsible for guaranteeing that the pwq stays online.
540 */
541static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
542 int node)
543{
544 assert_rcu_or_wq_mutex(wq);
545 return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
546}
547
73f53c4a
TH
548static unsigned int work_color_to_flags(int color)
549{
550 return color << WORK_STRUCT_COLOR_SHIFT;
551}
552
553static int get_work_color(struct work_struct *work)
554{
555 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
556 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
557}
558
559static int work_next_color(int color)
560{
561 return (color + 1) % WORK_NR_COLORS;
562}
1da177e4 563
14441960 564/*
112202d9
TH
565 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
566 * contain the pointer to the queued pwq. Once execution starts, the flag
7c3eed5c 567 * is cleared and the high bits contain OFFQ flags and pool ID.
7a22ad75 568 *
112202d9
TH
569 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
570 * and clear_work_data() can be used to set the pwq, pool or clear
bbb68dfa
TH
571 * work->data. These functions should only be called while the work is
572 * owned - ie. while the PENDING bit is set.
7a22ad75 573 *
112202d9 574 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
7c3eed5c 575 * corresponding to a work. Pool is available once the work has been
112202d9 576 * queued anywhere after initialization until it is sync canceled. pwq is
7c3eed5c 577 * available only while the work item is queued.
7a22ad75 578 *
bbb68dfa
TH
579 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
580 * canceled. While being canceled, a work item may have its PENDING set
581 * but stay off timer and worklist for arbitrarily long and nobody should
582 * try to steal the PENDING bit.
14441960 583 */
7a22ad75
TH
584static inline void set_work_data(struct work_struct *work, unsigned long data,
585 unsigned long flags)
365970a1 586{
6183c009 587 WARN_ON_ONCE(!work_pending(work));
7a22ad75
TH
588 atomic_long_set(&work->data, data | flags | work_static(work));
589}
365970a1 590
112202d9 591static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
7a22ad75
TH
592 unsigned long extra_flags)
593{
112202d9
TH
594 set_work_data(work, (unsigned long)pwq,
595 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
365970a1
DH
596}
597
4468a00f
LJ
598static void set_work_pool_and_keep_pending(struct work_struct *work,
599 int pool_id)
600{
601 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
602 WORK_STRUCT_PENDING);
603}
604
7c3eed5c
TH
605static void set_work_pool_and_clear_pending(struct work_struct *work,
606 int pool_id)
7a22ad75 607{
23657bb1
TH
608 /*
609 * The following wmb is paired with the implied mb in
610 * test_and_set_bit(PENDING) and ensures all updates to @work made
611 * here are visible to and precede any updates by the next PENDING
612 * owner.
613 */
614 smp_wmb();
7c3eed5c 615 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
7a22ad75 616}
f756d5e2 617
7a22ad75 618static void clear_work_data(struct work_struct *work)
1da177e4 619{
7c3eed5c
TH
620 smp_wmb(); /* see set_work_pool_and_clear_pending() */
621 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
1da177e4
LT
622}
623
112202d9 624static struct pool_workqueue *get_work_pwq(struct work_struct *work)
b1f4ec17 625{
e120153d 626 unsigned long data = atomic_long_read(&work->data);
7a22ad75 627
112202d9 628 if (data & WORK_STRUCT_PWQ)
e120153d
TH
629 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
630 else
631 return NULL;
4d707b9f
ON
632}
633
7c3eed5c
TH
634/**
635 * get_work_pool - return the worker_pool a given work was associated with
636 * @work: the work item of interest
637 *
638 * Return the worker_pool @work was last associated with. %NULL if none.
fa1b54e6 639 *
68e13a67
LJ
640 * Pools are created and destroyed under wq_pool_mutex, and allows read
641 * access under sched-RCU read lock. As such, this function should be
642 * called under wq_pool_mutex or with preemption disabled.
fa1b54e6
TH
643 *
644 * All fields of the returned pool are accessible as long as the above
645 * mentioned locking is in effect. If the returned pool needs to be used
646 * beyond the critical section, the caller is responsible for ensuring the
647 * returned pool is and stays online.
7c3eed5c
TH
648 */
649static struct worker_pool *get_work_pool(struct work_struct *work)
365970a1 650{
e120153d 651 unsigned long data = atomic_long_read(&work->data);
7c3eed5c 652 int pool_id;
7a22ad75 653
68e13a67 654 assert_rcu_or_pool_mutex();
fa1b54e6 655
112202d9
TH
656 if (data & WORK_STRUCT_PWQ)
657 return ((struct pool_workqueue *)
7c3eed5c 658 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
7a22ad75 659
7c3eed5c
TH
660 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
661 if (pool_id == WORK_OFFQ_POOL_NONE)
7a22ad75
TH
662 return NULL;
663
fa1b54e6 664 return idr_find(&worker_pool_idr, pool_id);
7c3eed5c
TH
665}
666
667/**
668 * get_work_pool_id - return the worker pool ID a given work is associated with
669 * @work: the work item of interest
670 *
671 * Return the worker_pool ID @work was last associated with.
672 * %WORK_OFFQ_POOL_NONE if none.
673 */
674static int get_work_pool_id(struct work_struct *work)
675{
54d5b7d0
LJ
676 unsigned long data = atomic_long_read(&work->data);
677
112202d9
TH
678 if (data & WORK_STRUCT_PWQ)
679 return ((struct pool_workqueue *)
54d5b7d0 680 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
7c3eed5c 681
54d5b7d0 682 return data >> WORK_OFFQ_POOL_SHIFT;
7c3eed5c
TH
683}
684
bbb68dfa
TH
685static void mark_work_canceling(struct work_struct *work)
686{
7c3eed5c 687 unsigned long pool_id = get_work_pool_id(work);
bbb68dfa 688
7c3eed5c
TH
689 pool_id <<= WORK_OFFQ_POOL_SHIFT;
690 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
bbb68dfa
TH
691}
692
693static bool work_is_canceling(struct work_struct *work)
694{
695 unsigned long data = atomic_long_read(&work->data);
696
112202d9 697 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
bbb68dfa
TH
698}
699
e22bee78 700/*
3270476a
TH
701 * Policy functions. These define the policies on how the global worker
702 * pools are managed. Unless noted otherwise, these functions assume that
d565ed63 703 * they're being called with pool->lock held.
e22bee78
TH
704 */
705
63d95a91 706static bool __need_more_worker(struct worker_pool *pool)
a848e3b6 707{
e19e397a 708 return !atomic_read(&pool->nr_running);
a848e3b6
ON
709}
710
4594bf15 711/*
e22bee78
TH
712 * Need to wake up a worker? Called from anything but currently
713 * running workers.
974271c4
TH
714 *
715 * Note that, because unbound workers never contribute to nr_running, this
706026c2 716 * function will always return %true for unbound pools as long as the
974271c4 717 * worklist isn't empty.
4594bf15 718 */
63d95a91 719static bool need_more_worker(struct worker_pool *pool)
365970a1 720{
63d95a91 721 return !list_empty(&pool->worklist) && __need_more_worker(pool);
e22bee78 722}
4594bf15 723
e22bee78 724/* Can I start working? Called from busy but !running workers. */
63d95a91 725static bool may_start_working(struct worker_pool *pool)
e22bee78 726{
63d95a91 727 return pool->nr_idle;
e22bee78
TH
728}
729
730/* Do I need to keep working? Called from currently running workers. */
63d95a91 731static bool keep_working(struct worker_pool *pool)
e22bee78 732{
e19e397a
TH
733 return !list_empty(&pool->worklist) &&
734 atomic_read(&pool->nr_running) <= 1;
e22bee78
TH
735}
736
737/* Do we need a new worker? Called from manager. */
63d95a91 738static bool need_to_create_worker(struct worker_pool *pool)
e22bee78 739{
63d95a91 740 return need_more_worker(pool) && !may_start_working(pool);
e22bee78 741}
365970a1 742
e22bee78 743/* Do I need to be the manager? */
63d95a91 744static bool need_to_manage_workers(struct worker_pool *pool)
e22bee78 745{
63d95a91 746 return need_to_create_worker(pool) ||
11ebea50 747 (pool->flags & POOL_MANAGE_WORKERS);
e22bee78
TH
748}
749
750/* Do we have too many workers and should some go away? */
63d95a91 751static bool too_many_workers(struct worker_pool *pool)
e22bee78 752{
34a06bd6 753 bool managing = mutex_is_locked(&pool->manager_arb);
63d95a91
TH
754 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
755 int nr_busy = pool->nr_workers - nr_idle;
e22bee78 756
ea1abd61
LJ
757 /*
758 * nr_idle and idle_list may disagree if idle rebinding is in
759 * progress. Never return %true if idle_list is empty.
760 */
761 if (list_empty(&pool->idle_list))
762 return false;
763
e22bee78 764 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
365970a1
DH
765}
766
4d707b9f 767/*
e22bee78
TH
768 * Wake up functions.
769 */
770
7e11629d 771/* Return the first worker. Safe with preemption disabled */
63d95a91 772static struct worker *first_worker(struct worker_pool *pool)
7e11629d 773{
63d95a91 774 if (unlikely(list_empty(&pool->idle_list)))
7e11629d
TH
775 return NULL;
776
63d95a91 777 return list_first_entry(&pool->idle_list, struct worker, entry);
7e11629d
TH
778}
779
780/**
781 * wake_up_worker - wake up an idle worker
63d95a91 782 * @pool: worker pool to wake worker from
7e11629d 783 *
63d95a91 784 * Wake up the first idle worker of @pool.
7e11629d
TH
785 *
786 * CONTEXT:
d565ed63 787 * spin_lock_irq(pool->lock).
7e11629d 788 */
63d95a91 789static void wake_up_worker(struct worker_pool *pool)
7e11629d 790{
63d95a91 791 struct worker *worker = first_worker(pool);
7e11629d
TH
792
793 if (likely(worker))
794 wake_up_process(worker->task);
795}
796
d302f017 797/**
e22bee78
TH
798 * wq_worker_waking_up - a worker is waking up
799 * @task: task waking up
800 * @cpu: CPU @task is waking up to
801 *
802 * This function is called during try_to_wake_up() when a worker is
803 * being awoken.
804 *
805 * CONTEXT:
806 * spin_lock_irq(rq->lock)
807 */
d84ff051 808void wq_worker_waking_up(struct task_struct *task, int cpu)
e22bee78
TH
809{
810 struct worker *worker = kthread_data(task);
811
36576000 812 if (!(worker->flags & WORKER_NOT_RUNNING)) {
ec22ca5e 813 WARN_ON_ONCE(worker->pool->cpu != cpu);
e19e397a 814 atomic_inc(&worker->pool->nr_running);
36576000 815 }
e22bee78
TH
816}
817
818/**
819 * wq_worker_sleeping - a worker is going to sleep
820 * @task: task going to sleep
821 * @cpu: CPU in question, must be the current CPU number
822 *
823 * This function is called during schedule() when a busy worker is
824 * going to sleep. Worker on the same cpu can be woken up by
825 * returning pointer to its task.
826 *
827 * CONTEXT:
828 * spin_lock_irq(rq->lock)
829 *
830 * RETURNS:
831 * Worker task on @cpu to wake up, %NULL if none.
832 */
d84ff051 833struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
e22bee78
TH
834{
835 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
111c225a 836 struct worker_pool *pool;
e22bee78 837
111c225a
TH
838 /*
839 * Rescuers, which may not have all the fields set up like normal
840 * workers, also reach here, let's not access anything before
841 * checking NOT_RUNNING.
842 */
2d64672e 843 if (worker->flags & WORKER_NOT_RUNNING)
e22bee78
TH
844 return NULL;
845
111c225a 846 pool = worker->pool;
111c225a 847
e22bee78 848 /* this can only happen on the local cpu */
6183c009
TH
849 if (WARN_ON_ONCE(cpu != raw_smp_processor_id()))
850 return NULL;
e22bee78
TH
851
852 /*
853 * The counterpart of the following dec_and_test, implied mb,
854 * worklist not empty test sequence is in insert_work().
855 * Please read comment there.
856 *
628c78e7
TH
857 * NOT_RUNNING is clear. This means that we're bound to and
858 * running on the local cpu w/ rq lock held and preemption
859 * disabled, which in turn means that none else could be
d565ed63 860 * manipulating idle_list, so dereferencing idle_list without pool
628c78e7 861 * lock is safe.
e22bee78 862 */
e19e397a
TH
863 if (atomic_dec_and_test(&pool->nr_running) &&
864 !list_empty(&pool->worklist))
63d95a91 865 to_wakeup = first_worker(pool);
e22bee78
TH
866 return to_wakeup ? to_wakeup->task : NULL;
867}
868
869/**
870 * worker_set_flags - set worker flags and adjust nr_running accordingly
cb444766 871 * @worker: self
d302f017
TH
872 * @flags: flags to set
873 * @wakeup: wakeup an idle worker if necessary
874 *
e22bee78
TH
875 * Set @flags in @worker->flags and adjust nr_running accordingly. If
876 * nr_running becomes zero and @wakeup is %true, an idle worker is
877 * woken up.
d302f017 878 *
cb444766 879 * CONTEXT:
d565ed63 880 * spin_lock_irq(pool->lock)
d302f017
TH
881 */
882static inline void worker_set_flags(struct worker *worker, unsigned int flags,
883 bool wakeup)
884{
bd7bdd43 885 struct worker_pool *pool = worker->pool;
e22bee78 886
cb444766
TH
887 WARN_ON_ONCE(worker->task != current);
888
e22bee78
TH
889 /*
890 * If transitioning into NOT_RUNNING, adjust nr_running and
891 * wake up an idle worker as necessary if requested by
892 * @wakeup.
893 */
894 if ((flags & WORKER_NOT_RUNNING) &&
895 !(worker->flags & WORKER_NOT_RUNNING)) {
e22bee78 896 if (wakeup) {
e19e397a 897 if (atomic_dec_and_test(&pool->nr_running) &&
bd7bdd43 898 !list_empty(&pool->worklist))
63d95a91 899 wake_up_worker(pool);
e22bee78 900 } else
e19e397a 901 atomic_dec(&pool->nr_running);
e22bee78
TH
902 }
903
d302f017
TH
904 worker->flags |= flags;
905}
906
907/**
e22bee78 908 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
cb444766 909 * @worker: self
d302f017
TH
910 * @flags: flags to clear
911 *
e22bee78 912 * Clear @flags in @worker->flags and adjust nr_running accordingly.
d302f017 913 *
cb444766 914 * CONTEXT:
d565ed63 915 * spin_lock_irq(pool->lock)
d302f017
TH
916 */
917static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
918{
63d95a91 919 struct worker_pool *pool = worker->pool;
e22bee78
TH
920 unsigned int oflags = worker->flags;
921
cb444766
TH
922 WARN_ON_ONCE(worker->task != current);
923
d302f017 924 worker->flags &= ~flags;
e22bee78 925
42c025f3
TH
926 /*
927 * If transitioning out of NOT_RUNNING, increment nr_running. Note
928 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
929 * of multiple flags, not a single flag.
930 */
e22bee78
TH
931 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
932 if (!(worker->flags & WORKER_NOT_RUNNING))
e19e397a 933 atomic_inc(&pool->nr_running);
d302f017
TH
934}
935
8cca0eea
TH
936/**
937 * find_worker_executing_work - find worker which is executing a work
c9e7cf27 938 * @pool: pool of interest
8cca0eea
TH
939 * @work: work to find worker for
940 *
c9e7cf27
TH
941 * Find a worker which is executing @work on @pool by searching
942 * @pool->busy_hash which is keyed by the address of @work. For a worker
a2c1c57b
TH
943 * to match, its current execution should match the address of @work and
944 * its work function. This is to avoid unwanted dependency between
945 * unrelated work executions through a work item being recycled while still
946 * being executed.
947 *
948 * This is a bit tricky. A work item may be freed once its execution
949 * starts and nothing prevents the freed area from being recycled for
950 * another work item. If the same work item address ends up being reused
951 * before the original execution finishes, workqueue will identify the
952 * recycled work item as currently executing and make it wait until the
953 * current execution finishes, introducing an unwanted dependency.
954 *
c5aa87bb
TH
955 * This function checks the work item address and work function to avoid
956 * false positives. Note that this isn't complete as one may construct a
957 * work function which can introduce dependency onto itself through a
958 * recycled work item. Well, if somebody wants to shoot oneself in the
959 * foot that badly, there's only so much we can do, and if such deadlock
960 * actually occurs, it should be easy to locate the culprit work function.
8cca0eea
TH
961 *
962 * CONTEXT:
d565ed63 963 * spin_lock_irq(pool->lock).
8cca0eea
TH
964 *
965 * RETURNS:
966 * Pointer to worker which is executing @work if found, NULL
967 * otherwise.
4d707b9f 968 */
c9e7cf27 969static struct worker *find_worker_executing_work(struct worker_pool *pool,
8cca0eea 970 struct work_struct *work)
4d707b9f 971{
42f8570f 972 struct worker *worker;
42f8570f 973
b67bfe0d 974 hash_for_each_possible(pool->busy_hash, worker, hentry,
a2c1c57b
TH
975 (unsigned long)work)
976 if (worker->current_work == work &&
977 worker->current_func == work->func)
42f8570f
SL
978 return worker;
979
980 return NULL;
4d707b9f
ON
981}
982
bf4ede01
TH
983/**
984 * move_linked_works - move linked works to a list
985 * @work: start of series of works to be scheduled
986 * @head: target list to append @work to
987 * @nextp: out paramter for nested worklist walking
988 *
989 * Schedule linked works starting from @work to @head. Work series to
990 * be scheduled starts at @work and includes any consecutive work with
991 * WORK_STRUCT_LINKED set in its predecessor.
992 *
993 * If @nextp is not NULL, it's updated to point to the next work of
994 * the last scheduled work. This allows move_linked_works() to be
995 * nested inside outer list_for_each_entry_safe().
996 *
997 * CONTEXT:
d565ed63 998 * spin_lock_irq(pool->lock).
bf4ede01
TH
999 */
1000static void move_linked_works(struct work_struct *work, struct list_head *head,
1001 struct work_struct **nextp)
1002{
1003 struct work_struct *n;
1004
1005 /*
1006 * Linked worklist will always end before the end of the list,
1007 * use NULL for list head.
1008 */
1009 list_for_each_entry_safe_from(work, n, NULL, entry) {
1010 list_move_tail(&work->entry, head);
1011 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1012 break;
1013 }
1014
1015 /*
1016 * If we're already inside safe list traversal and have moved
1017 * multiple works to the scheduled queue, the next position
1018 * needs to be updated.
1019 */
1020 if (nextp)
1021 *nextp = n;
1022}
1023
8864b4e5
TH
1024/**
1025 * get_pwq - get an extra reference on the specified pool_workqueue
1026 * @pwq: pool_workqueue to get
1027 *
1028 * Obtain an extra reference on @pwq. The caller should guarantee that
1029 * @pwq has positive refcnt and be holding the matching pool->lock.
1030 */
1031static void get_pwq(struct pool_workqueue *pwq)
1032{
1033 lockdep_assert_held(&pwq->pool->lock);
1034 WARN_ON_ONCE(pwq->refcnt <= 0);
1035 pwq->refcnt++;
1036}
1037
1038/**
1039 * put_pwq - put a pool_workqueue reference
1040 * @pwq: pool_workqueue to put
1041 *
1042 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
1043 * destruction. The caller should be holding the matching pool->lock.
1044 */
1045static void put_pwq(struct pool_workqueue *pwq)
1046{
1047 lockdep_assert_held(&pwq->pool->lock);
1048 if (likely(--pwq->refcnt))
1049 return;
1050 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1051 return;
1052 /*
1053 * @pwq can't be released under pool->lock, bounce to
1054 * pwq_unbound_release_workfn(). This never recurses on the same
1055 * pool->lock as this path is taken only for unbound workqueues and
1056 * the release work item is scheduled on a per-cpu workqueue. To
1057 * avoid lockdep warning, unbound pool->locks are given lockdep
1058 * subclass of 1 in get_unbound_pool().
1059 */
1060 schedule_work(&pwq->unbound_release_work);
1061}
1062
dce90d47
TH
1063/**
1064 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1065 * @pwq: pool_workqueue to put (can be %NULL)
1066 *
1067 * put_pwq() with locking. This function also allows %NULL @pwq.
1068 */
1069static void put_pwq_unlocked(struct pool_workqueue *pwq)
1070{
1071 if (pwq) {
1072 /*
1073 * As both pwqs and pools are sched-RCU protected, the
1074 * following lock operations are safe.
1075 */
1076 spin_lock_irq(&pwq->pool->lock);
1077 put_pwq(pwq);
1078 spin_unlock_irq(&pwq->pool->lock);
1079 }
1080}
1081
112202d9 1082static void pwq_activate_delayed_work(struct work_struct *work)
bf4ede01 1083{
112202d9 1084 struct pool_workqueue *pwq = get_work_pwq(work);
bf4ede01
TH
1085
1086 trace_workqueue_activate_work(work);
6fa3eb70
S
1087#ifdef CONFIG_MTK_WQ_DEBUG
1088 mttrace_workqueue_activate_work(work);
1089#endif //CONFIG_MTK_WQ_DEBUG
112202d9 1090 move_linked_works(work, &pwq->pool->worklist, NULL);
bf4ede01 1091 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
112202d9 1092 pwq->nr_active++;
bf4ede01
TH
1093}
1094
112202d9 1095static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
3aa62497 1096{
112202d9 1097 struct work_struct *work = list_first_entry(&pwq->delayed_works,
3aa62497
LJ
1098 struct work_struct, entry);
1099
112202d9 1100 pwq_activate_delayed_work(work);
3aa62497
LJ
1101}
1102
bf4ede01 1103/**
112202d9
TH
1104 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1105 * @pwq: pwq of interest
bf4ede01 1106 * @color: color of work which left the queue
bf4ede01
TH
1107 *
1108 * A work either has completed or is removed from pending queue,
112202d9 1109 * decrement nr_in_flight of its pwq and handle workqueue flushing.
bf4ede01
TH
1110 *
1111 * CONTEXT:
d565ed63 1112 * spin_lock_irq(pool->lock).
bf4ede01 1113 */
112202d9 1114static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
bf4ede01 1115{
8864b4e5 1116 /* uncolored work items don't participate in flushing or nr_active */
bf4ede01 1117 if (color == WORK_NO_COLOR)
8864b4e5 1118 goto out_put;
bf4ede01 1119
112202d9 1120 pwq->nr_in_flight[color]--;
bf4ede01 1121
112202d9
TH
1122 pwq->nr_active--;
1123 if (!list_empty(&pwq->delayed_works)) {
b3f9f405 1124 /* one down, submit a delayed one */
112202d9
TH
1125 if (pwq->nr_active < pwq->max_active)
1126 pwq_activate_first_delayed(pwq);
bf4ede01
TH
1127 }
1128
1129 /* is flush in progress and are we at the flushing tip? */
112202d9 1130 if (likely(pwq->flush_color != color))
8864b4e5 1131 goto out_put;
bf4ede01
TH
1132
1133 /* are there still in-flight works? */
112202d9 1134 if (pwq->nr_in_flight[color])
8864b4e5 1135 goto out_put;
bf4ede01 1136
112202d9
TH
1137 /* this pwq is done, clear flush_color */
1138 pwq->flush_color = -1;
bf4ede01
TH
1139
1140 /*
112202d9 1141 * If this was the last pwq, wake up the first flusher. It
bf4ede01
TH
1142 * will handle the rest.
1143 */
112202d9
TH
1144 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1145 complete(&pwq->wq->first_flusher->done);
8864b4e5
TH
1146out_put:
1147 put_pwq(pwq);
bf4ede01
TH
1148}
1149
36e227d2 1150/**
bbb68dfa 1151 * try_to_grab_pending - steal work item from worklist and disable irq
36e227d2
TH
1152 * @work: work item to steal
1153 * @is_dwork: @work is a delayed_work
bbb68dfa 1154 * @flags: place to store irq state
36e227d2
TH
1155 *
1156 * Try to grab PENDING bit of @work. This function can handle @work in any
1157 * stable state - idle, on timer or on worklist. Return values are
1158 *
1159 * 1 if @work was pending and we successfully stole PENDING
1160 * 0 if @work was idle and we claimed PENDING
1161 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
bbb68dfa
TH
1162 * -ENOENT if someone else is canceling @work, this state may persist
1163 * for arbitrarily long
36e227d2 1164 *
bbb68dfa 1165 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
e0aecdd8
TH
1166 * interrupted while holding PENDING and @work off queue, irq must be
1167 * disabled on entry. This, combined with delayed_work->timer being
1168 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
bbb68dfa
TH
1169 *
1170 * On successful return, >= 0, irq is disabled and the caller is
1171 * responsible for releasing it using local_irq_restore(*@flags).
1172 *
e0aecdd8 1173 * This function is safe to call from any context including IRQ handler.
bf4ede01 1174 */
bbb68dfa
TH
1175static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1176 unsigned long *flags)
bf4ede01 1177{
d565ed63 1178 struct worker_pool *pool;
112202d9 1179 struct pool_workqueue *pwq;
bf4ede01 1180
bbb68dfa
TH
1181 local_irq_save(*flags);
1182
36e227d2
TH
1183 /* try to steal the timer if it exists */
1184 if (is_dwork) {
1185 struct delayed_work *dwork = to_delayed_work(work);
1186
e0aecdd8
TH
1187 /*
1188 * dwork->timer is irqsafe. If del_timer() fails, it's
1189 * guaranteed that the timer is not queued anywhere and not
1190 * running on the local CPU.
1191 */
36e227d2
TH
1192 if (likely(del_timer(&dwork->timer)))
1193 return 1;
1194 }
1195
1196 /* try to claim PENDING the normal way */
bf4ede01
TH
1197 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1198 return 0;
1199
1200 /*
1201 * The queueing is in progress, or it is already queued. Try to
1202 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1203 */
d565ed63
TH
1204 pool = get_work_pool(work);
1205 if (!pool)
bbb68dfa 1206 goto fail;
bf4ede01 1207
d565ed63 1208 spin_lock(&pool->lock);
0b3dae68 1209 /*
112202d9
TH
1210 * work->data is guaranteed to point to pwq only while the work
1211 * item is queued on pwq->wq, and both updating work->data to point
1212 * to pwq on queueing and to pool on dequeueing are done under
1213 * pwq->pool->lock. This in turn guarantees that, if work->data
1214 * points to pwq which is associated with a locked pool, the work
0b3dae68
LJ
1215 * item is currently queued on that pool.
1216 */
112202d9
TH
1217 pwq = get_work_pwq(work);
1218 if (pwq && pwq->pool == pool) {
16062836
TH
1219 debug_work_deactivate(work);
1220
1221 /*
1222 * A delayed work item cannot be grabbed directly because
1223 * it might have linked NO_COLOR work items which, if left
112202d9 1224 * on the delayed_list, will confuse pwq->nr_active
16062836
TH
1225 * management later on and cause stall. Make sure the work
1226 * item is activated before grabbing.
1227 */
1228 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
112202d9 1229 pwq_activate_delayed_work(work);
16062836
TH
1230
1231 list_del_init(&work->entry);
112202d9 1232 pwq_dec_nr_in_flight(get_work_pwq(work), get_work_color(work));
16062836 1233
112202d9 1234 /* work->data points to pwq iff queued, point to pool */
16062836
TH
1235 set_work_pool_and_keep_pending(work, pool->id);
1236
1237 spin_unlock(&pool->lock);
1238 return 1;
bf4ede01 1239 }
d565ed63 1240 spin_unlock(&pool->lock);
bbb68dfa
TH
1241fail:
1242 local_irq_restore(*flags);
1243 if (work_is_canceling(work))
1244 return -ENOENT;
1245 cpu_relax();
36e227d2 1246 return -EAGAIN;
bf4ede01
TH
1247}
1248
4690c4ab 1249/**
706026c2 1250 * insert_work - insert a work into a pool
112202d9 1251 * @pwq: pwq @work belongs to
4690c4ab
TH
1252 * @work: work to insert
1253 * @head: insertion point
1254 * @extra_flags: extra WORK_STRUCT_* flags to set
1255 *
112202d9 1256 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
706026c2 1257 * work_struct flags.
4690c4ab
TH
1258 *
1259 * CONTEXT:
d565ed63 1260 * spin_lock_irq(pool->lock).
4690c4ab 1261 */
112202d9
TH
1262static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1263 struct list_head *head, unsigned int extra_flags)
b89deed3 1264{
112202d9 1265 struct worker_pool *pool = pwq->pool;
e22bee78 1266
4690c4ab 1267 /* we own @work, set data and link */
112202d9 1268 set_work_pwq(work, pwq, extra_flags);
1a4d9b0a 1269 list_add_tail(&work->entry, head);
8864b4e5 1270 get_pwq(pwq);
e22bee78
TH
1271
1272 /*
c5aa87bb
TH
1273 * Ensure either wq_worker_sleeping() sees the above
1274 * list_add_tail() or we see zero nr_running to avoid workers lying
1275 * around lazily while there are works to be processed.
e22bee78
TH
1276 */
1277 smp_mb();
1278
63d95a91
TH
1279 if (__need_more_worker(pool))
1280 wake_up_worker(pool);
b89deed3
ON
1281}
1282
c8efcc25
TH
1283/*
1284 * Test whether @work is being queued from another work executing on the
8d03ecfe 1285 * same workqueue.
c8efcc25
TH
1286 */
1287static bool is_chained_work(struct workqueue_struct *wq)
1288{
8d03ecfe
TH
1289 struct worker *worker;
1290
1291 worker = current_wq_worker();
1292 /*
1293 * Return %true iff I'm a worker execuing a work item on @wq. If
1294 * I'm @worker, it's safe to dereference it without locking.
1295 */
112202d9 1296 return worker && worker->current_pwq->wq == wq;
c8efcc25
TH
1297}
1298
d84ff051 1299static void __queue_work(int cpu, struct workqueue_struct *wq,
1da177e4
LT
1300 struct work_struct *work)
1301{
112202d9 1302 struct pool_workqueue *pwq;
c9178087 1303 struct worker_pool *last_pool;
1e19ffc6 1304 struct list_head *worklist;
8a2e8e5d 1305 unsigned int work_flags;
b75cac93 1306 unsigned int req_cpu = cpu;
8930caba
TH
1307
1308 /*
1309 * While a work item is PENDING && off queue, a task trying to
1310 * steal the PENDING will busy-loop waiting for it to either get
1311 * queued or lose PENDING. Grabbing PENDING and queueing should
1312 * happen with IRQ disabled.
1313 */
1314 WARN_ON_ONCE(!irqs_disabled());
1da177e4 1315
dc186ad7 1316 debug_work_activate(work);
1e19ffc6 1317
c8efcc25 1318 /* if dying, only works from the same workqueue are allowed */
618b01eb 1319 if (unlikely(wq->flags & __WQ_DRAINING) &&
c8efcc25 1320 WARN_ON_ONCE(!is_chained_work(wq)))
e41e704b 1321 return;
9e8cd2f5 1322retry:
df2d5ae4
TH
1323 if (req_cpu == WORK_CPU_UNBOUND)
1324 cpu = raw_smp_processor_id();
1325
c9178087 1326 /* pwq which will be used unless @work is executing elsewhere */
df2d5ae4 1327 if (!(wq->flags & WQ_UNBOUND))
7fb98ea7 1328 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
df2d5ae4
TH
1329 else
1330 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
dbf2576e 1331
c9178087
TH
1332 /*
1333 * If @work was previously on a different pool, it might still be
1334 * running there, in which case the work needs to be queued on that
1335 * pool to guarantee non-reentrancy.
1336 */
1337 last_pool = get_work_pool(work);
1338 if (last_pool && last_pool != pwq->pool) {
1339 struct worker *worker;
18aa9eff 1340
c9178087 1341 spin_lock(&last_pool->lock);
18aa9eff 1342
c9178087 1343 worker = find_worker_executing_work(last_pool, work);
18aa9eff 1344
c9178087
TH
1345 if (worker && worker->current_pwq->wq == wq) {
1346 pwq = worker->current_pwq;
8930caba 1347 } else {
c9178087
TH
1348 /* meh... not running there, queue here */
1349 spin_unlock(&last_pool->lock);
112202d9 1350 spin_lock(&pwq->pool->lock);
8930caba 1351 }
f3421797 1352 } else {
112202d9 1353 spin_lock(&pwq->pool->lock);
502ca9d8
TH
1354 }
1355
9e8cd2f5
TH
1356 /*
1357 * pwq is determined and locked. For unbound pools, we could have
1358 * raced with pwq release and it could already be dead. If its
1359 * refcnt is zero, repeat pwq selection. Note that pwqs never die
df2d5ae4
TH
1360 * without another pwq replacing it in the numa_pwq_tbl or while
1361 * work items are executing on it, so the retrying is guaranteed to
9e8cd2f5
TH
1362 * make forward-progress.
1363 */
1364 if (unlikely(!pwq->refcnt)) {
1365 if (wq->flags & WQ_UNBOUND) {
1366 spin_unlock(&pwq->pool->lock);
1367 cpu_relax();
1368 goto retry;
1369 }
1370 /* oops */
1371 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1372 wq->name, cpu);
1373 }
1374
112202d9
TH
1375 /* pwq determined, queue */
1376 trace_workqueue_queue_work(req_cpu, pwq, work);
6fa3eb70
S
1377#ifdef CONFIG_MTK_WQ_DEBUG
1378 mttrace_workqueue_queue_work(cpu, work);
1379#endif //CONFIG_MTK_WQ_DEBUG
502ca9d8 1380
f5b2552b 1381 if (WARN_ON(!list_empty(&work->entry))) {
112202d9 1382 spin_unlock(&pwq->pool->lock);
f5b2552b
DC
1383 return;
1384 }
1e19ffc6 1385
112202d9
TH
1386 pwq->nr_in_flight[pwq->work_color]++;
1387 work_flags = work_color_to_flags(pwq->work_color);
1e19ffc6 1388
112202d9 1389 if (likely(pwq->nr_active < pwq->max_active)) {
cdadf009 1390 trace_workqueue_activate_work(work);
6fa3eb70
S
1391#ifdef CONFIG_MTK_WQ_DEBUG
1392 mttrace_workqueue_activate_work(work);
1393#endif //CONFIG_MTK_WQ_DEBUG
112202d9
TH
1394 pwq->nr_active++;
1395 worklist = &pwq->pool->worklist;
8a2e8e5d
TH
1396 } else {
1397 work_flags |= WORK_STRUCT_DELAYED;
112202d9 1398 worklist = &pwq->delayed_works;
8a2e8e5d 1399 }
1e19ffc6 1400
112202d9 1401 insert_work(pwq, work, worklist, work_flags);
1e19ffc6 1402
112202d9 1403 spin_unlock(&pwq->pool->lock);
1da177e4
LT
1404}
1405
0fcb78c2 1406/**
c1a220e7
ZR
1407 * queue_work_on - queue work on specific cpu
1408 * @cpu: CPU number to execute work on
0fcb78c2
REB
1409 * @wq: workqueue to use
1410 * @work: work to queue
1411 *
d4283e93 1412 * Returns %false if @work was already on a queue, %true otherwise.
1da177e4 1413 *
c1a220e7
ZR
1414 * We queue the work to a specific CPU, the caller must ensure it
1415 * can't go away.
1da177e4 1416 */
d4283e93
TH
1417bool queue_work_on(int cpu, struct workqueue_struct *wq,
1418 struct work_struct *work)
1da177e4 1419{
d4283e93 1420 bool ret = false;
8930caba 1421 unsigned long flags;
ef1ca236 1422
8930caba 1423 local_irq_save(flags);
c1a220e7 1424
22df02bb 1425 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
4690c4ab 1426 __queue_work(cpu, wq, work);
d4283e93 1427 ret = true;
c1a220e7 1428 }
ef1ca236 1429
8930caba 1430 local_irq_restore(flags);
1da177e4
LT
1431 return ret;
1432}
ad7b1f84 1433EXPORT_SYMBOL(queue_work_on);
1da177e4 1434
d8e794df 1435void delayed_work_timer_fn(unsigned long __data)
1da177e4 1436{
52bad64d 1437 struct delayed_work *dwork = (struct delayed_work *)__data;
1da177e4 1438
e0aecdd8 1439 /* should have been called from irqsafe timer with irq already off */
60c057bc 1440 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1da177e4 1441}
1438ade5 1442EXPORT_SYMBOL(delayed_work_timer_fn);
1da177e4 1443
7beb2edf
TH
1444static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1445 struct delayed_work *dwork, unsigned long delay)
1da177e4 1446{
7beb2edf
TH
1447 struct timer_list *timer = &dwork->timer;
1448 struct work_struct *work = &dwork->work;
7beb2edf
TH
1449
1450 WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1451 timer->data != (unsigned long)dwork);
fc4b514f
TH
1452 WARN_ON_ONCE(timer_pending(timer));
1453 WARN_ON_ONCE(!list_empty(&work->entry));
7beb2edf 1454
8852aac2
TH
1455 /*
1456 * If @delay is 0, queue @dwork->work immediately. This is for
1457 * both optimization and correctness. The earliest @timer can
1458 * expire is on the closest next tick and delayed_work users depend
1459 * on that there's no such delay when @delay is 0.
1460 */
1461 if (!delay) {
1462 __queue_work(cpu, wq, &dwork->work);
1463 return;
1464 }
1465
7beb2edf 1466 timer_stats_timer_set_start_info(&dwork->timer);
1da177e4 1467
60c057bc 1468 dwork->wq = wq;
1265057f 1469 dwork->cpu = cpu;
7beb2edf
TH
1470 timer->expires = jiffies + delay;
1471
1472 if (unlikely(cpu != WORK_CPU_UNBOUND))
1473 add_timer_on(timer, cpu);
1474 else
1475 add_timer(timer);
1da177e4
LT
1476}
1477
0fcb78c2
REB
1478/**
1479 * queue_delayed_work_on - queue work on specific CPU after delay
1480 * @cpu: CPU number to execute work on
1481 * @wq: workqueue to use
af9997e4 1482 * @dwork: work to queue
0fcb78c2
REB
1483 * @delay: number of jiffies to wait before queueing
1484 *
715f1300
TH
1485 * Returns %false if @work was already on a queue, %true otherwise. If
1486 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1487 * execution.
0fcb78c2 1488 */
d4283e93
TH
1489bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1490 struct delayed_work *dwork, unsigned long delay)
7a6bc1cd 1491{
52bad64d 1492 struct work_struct *work = &dwork->work;
d4283e93 1493 bool ret = false;
8930caba 1494 unsigned long flags;
7a6bc1cd 1495
8930caba
TH
1496 /* read the comment in __queue_work() */
1497 local_irq_save(flags);
7a6bc1cd 1498
22df02bb 1499 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
7beb2edf 1500 __queue_delayed_work(cpu, wq, dwork, delay);
d4283e93 1501 ret = true;
7a6bc1cd 1502 }
8a3e77cc 1503
8930caba 1504 local_irq_restore(flags);
7a6bc1cd
VP
1505 return ret;
1506}
ad7b1f84 1507EXPORT_SYMBOL(queue_delayed_work_on);
c7fc77f7 1508
8376fe22
TH
1509/**
1510 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1511 * @cpu: CPU number to execute work on
1512 * @wq: workqueue to use
1513 * @dwork: work to queue
1514 * @delay: number of jiffies to wait before queueing
1515 *
1516 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1517 * modify @dwork's timer so that it expires after @delay. If @delay is
1518 * zero, @work is guaranteed to be scheduled immediately regardless of its
1519 * current state.
1520 *
1521 * Returns %false if @dwork was idle and queued, %true if @dwork was
1522 * pending and its timer was modified.
1523 *
e0aecdd8 1524 * This function is safe to call from any context including IRQ handler.
8376fe22
TH
1525 * See try_to_grab_pending() for details.
1526 */
1527bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1528 struct delayed_work *dwork, unsigned long delay)
1529{
1530 unsigned long flags;
1531 int ret;
c7fc77f7 1532
8376fe22
TH
1533 do {
1534 ret = try_to_grab_pending(&dwork->work, true, &flags);
1535 } while (unlikely(ret == -EAGAIN));
63bc0362 1536
8376fe22
TH
1537 if (likely(ret >= 0)) {
1538 __queue_delayed_work(cpu, wq, dwork, delay);
1539 local_irq_restore(flags);
7a6bc1cd 1540 }
8376fe22
TH
1541
1542 /* -ENOENT from try_to_grab_pending() becomes %true */
7a6bc1cd
VP
1543 return ret;
1544}
8376fe22
TH
1545EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1546
c8e55f36
TH
1547/**
1548 * worker_enter_idle - enter idle state
1549 * @worker: worker which is entering idle state
1550 *
1551 * @worker is entering idle state. Update stats and idle timer if
1552 * necessary.
1553 *
1554 * LOCKING:
d565ed63 1555 * spin_lock_irq(pool->lock).
c8e55f36
TH
1556 */
1557static void worker_enter_idle(struct worker *worker)
1da177e4 1558{
bd7bdd43 1559 struct worker_pool *pool = worker->pool;
c8e55f36 1560
6183c009
TH
1561 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1562 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1563 (worker->hentry.next || worker->hentry.pprev)))
1564 return;
c8e55f36 1565
cb444766
TH
1566 /* can't use worker_set_flags(), also called from start_worker() */
1567 worker->flags |= WORKER_IDLE;
bd7bdd43 1568 pool->nr_idle++;
e22bee78 1569 worker->last_active = jiffies;
c8e55f36
TH
1570
1571 /* idle_list is LIFO */
bd7bdd43 1572 list_add(&worker->entry, &pool->idle_list);
db7bccf4 1573
628c78e7
TH
1574 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1575 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
cb444766 1576
544ecf31 1577 /*
706026c2 1578 * Sanity check nr_running. Because wq_unbind_fn() releases
d565ed63 1579 * pool->lock between setting %WORKER_UNBOUND and zapping
628c78e7
TH
1580 * nr_running, the warning may trigger spuriously. Check iff
1581 * unbind is not in progress.
544ecf31 1582 */
24647570 1583 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
bd7bdd43 1584 pool->nr_workers == pool->nr_idle &&
e19e397a 1585 atomic_read(&pool->nr_running));
c8e55f36
TH
1586}
1587
1588/**
1589 * worker_leave_idle - leave idle state
1590 * @worker: worker which is leaving idle state
1591 *
1592 * @worker is leaving idle state. Update stats.
1593 *
1594 * LOCKING:
d565ed63 1595 * spin_lock_irq(pool->lock).
c8e55f36
TH
1596 */
1597static void worker_leave_idle(struct worker *worker)
1598{
bd7bdd43 1599 struct worker_pool *pool = worker->pool;
c8e55f36 1600
6183c009
TH
1601 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1602 return;
d302f017 1603 worker_clr_flags(worker, WORKER_IDLE);
bd7bdd43 1604 pool->nr_idle--;
c8e55f36
TH
1605 list_del_init(&worker->entry);
1606}
1607
e22bee78 1608/**
f36dc67b
LJ
1609 * worker_maybe_bind_and_lock - try to bind %current to worker_pool and lock it
1610 * @pool: target worker_pool
1611 *
1612 * Bind %current to the cpu of @pool if it is associated and lock @pool.
e22bee78
TH
1613 *
1614 * Works which are scheduled while the cpu is online must at least be
1615 * scheduled to a worker which is bound to the cpu so that if they are
1616 * flushed from cpu callbacks while cpu is going down, they are
1617 * guaranteed to execute on the cpu.
1618 *
f5faa077 1619 * This function is to be used by unbound workers and rescuers to bind
e22bee78
TH
1620 * themselves to the target cpu and may race with cpu going down or
1621 * coming online. kthread_bind() can't be used because it may put the
1622 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
706026c2 1623 * verbatim as it's best effort and blocking and pool may be
e22bee78
TH
1624 * [dis]associated in the meantime.
1625 *
706026c2 1626 * This function tries set_cpus_allowed() and locks pool and verifies the
24647570 1627 * binding against %POOL_DISASSOCIATED which is set during
f2d5a0ee
TH
1628 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
1629 * enters idle state or fetches works without dropping lock, it can
1630 * guarantee the scheduling requirement described in the first paragraph.
e22bee78
TH
1631 *
1632 * CONTEXT:
d565ed63 1633 * Might sleep. Called without any lock but returns with pool->lock
e22bee78
TH
1634 * held.
1635 *
1636 * RETURNS:
706026c2 1637 * %true if the associated pool is online (@worker is successfully
e22bee78
TH
1638 * bound), %false if offline.
1639 */
f36dc67b 1640static bool worker_maybe_bind_and_lock(struct worker_pool *pool)
d565ed63 1641__acquires(&pool->lock)
e22bee78 1642{
e22bee78 1643 while (true) {
4e6045f1 1644 /*
e22bee78
TH
1645 * The following call may fail, succeed or succeed
1646 * without actually migrating the task to the cpu if
1647 * it races with cpu hotunplug operation. Verify
24647570 1648 * against POOL_DISASSOCIATED.
4e6045f1 1649 */
24647570 1650 if (!(pool->flags & POOL_DISASSOCIATED))
7a4e344c 1651 set_cpus_allowed_ptr(current, pool->attrs->cpumask);
e22bee78 1652
d565ed63 1653 spin_lock_irq(&pool->lock);
24647570 1654 if (pool->flags & POOL_DISASSOCIATED)
e22bee78 1655 return false;
f5faa077 1656 if (task_cpu(current) == pool->cpu &&
7a4e344c 1657 cpumask_equal(&current->cpus_allowed, pool->attrs->cpumask))
e22bee78 1658 return true;
d565ed63 1659 spin_unlock_irq(&pool->lock);
e22bee78 1660
5035b20f
TH
1661 /*
1662 * We've raced with CPU hot[un]plug. Give it a breather
1663 * and retry migration. cond_resched() is required here;
1664 * otherwise, we might deadlock against cpu_stop trying to
1665 * bring down the CPU on non-preemptive kernel.
1666 */
e22bee78 1667 cpu_relax();
5035b20f 1668 cond_resched();
e22bee78
TH
1669 }
1670}
1671
c34056a3
TH
1672static struct worker *alloc_worker(void)
1673{
1674 struct worker *worker;
1675
1676 worker = kzalloc(sizeof(*worker), GFP_KERNEL);
c8e55f36
TH
1677 if (worker) {
1678 INIT_LIST_HEAD(&worker->entry);
affee4b2 1679 INIT_LIST_HEAD(&worker->scheduled);
e22bee78
TH
1680 /* on creation a worker is in !idle && prep state */
1681 worker->flags = WORKER_PREP;
c8e55f36 1682 }
c34056a3
TH
1683 return worker;
1684}
1685
1686/**
1687 * create_worker - create a new workqueue worker
63d95a91 1688 * @pool: pool the new worker will belong to
c34056a3 1689 *
63d95a91 1690 * Create a new worker which is bound to @pool. The returned worker
c34056a3
TH
1691 * can be started by calling start_worker() or destroyed using
1692 * destroy_worker().
1693 *
1694 * CONTEXT:
1695 * Might sleep. Does GFP_KERNEL allocations.
1696 *
1697 * RETURNS:
1698 * Pointer to the newly created worker.
1699 */
bc2ae0f5 1700static struct worker *create_worker(struct worker_pool *pool)
c34056a3 1701{
c34056a3 1702 struct worker *worker = NULL;
f3421797 1703 int id = -1;
e3c916a4 1704 char id_buf[16];
c34056a3 1705
cd549687
TH
1706 lockdep_assert_held(&pool->manager_mutex);
1707
822d8405
TH
1708 /*
1709 * ID is needed to determine kthread name. Allocate ID first
1710 * without installing the pointer.
1711 */
1712 idr_preload(GFP_KERNEL);
d565ed63 1713 spin_lock_irq(&pool->lock);
822d8405
TH
1714
1715 id = idr_alloc(&pool->worker_idr, NULL, 0, 0, GFP_NOWAIT);
1716
d565ed63 1717 spin_unlock_irq(&pool->lock);
822d8405
TH
1718 idr_preload_end();
1719 if (id < 0)
1720 goto fail;
c34056a3
TH
1721
1722 worker = alloc_worker();
1723 if (!worker)
1724 goto fail;
1725
bd7bdd43 1726 worker->pool = pool;
c34056a3
TH
1727 worker->id = id;
1728
29c91e99 1729 if (pool->cpu >= 0)
e3c916a4
TH
1730 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1731 pool->attrs->nice < 0 ? "H" : "");
f3421797 1732 else
e3c916a4
TH
1733 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1734
f3f90ad4 1735 worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
e3c916a4 1736 "kworker/%s", id_buf);
c34056a3
TH
1737 if (IS_ERR(worker->task))
1738 goto fail;
1739
c5aa87bb
TH
1740 /*
1741 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1742 * online CPUs. It'll be re-applied when any of the CPUs come up.
1743 */
7a4e344c
TH
1744 set_user_nice(worker->task, pool->attrs->nice);
1745 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
3270476a 1746
14a40ffc
TH
1747 /* prevent userland from meddling with cpumask of workqueue workers */
1748 worker->task->flags |= PF_NO_SETAFFINITY;
7a4e344c
TH
1749
1750 /*
1751 * The caller is responsible for ensuring %POOL_DISASSOCIATED
1752 * remains stable across this function. See the comments above the
1753 * flag definition for details.
1754 */
1755 if (pool->flags & POOL_DISASSOCIATED)
bc2ae0f5 1756 worker->flags |= WORKER_UNBOUND;
c34056a3 1757
822d8405
TH
1758 /* successful, commit the pointer to idr */
1759 spin_lock_irq(&pool->lock);
1760 idr_replace(&pool->worker_idr, worker, worker->id);
1761 spin_unlock_irq(&pool->lock);
1762
c34056a3 1763 return worker;
822d8405 1764
c34056a3
TH
1765fail:
1766 if (id >= 0) {
d565ed63 1767 spin_lock_irq(&pool->lock);
822d8405 1768 idr_remove(&pool->worker_idr, id);
d565ed63 1769 spin_unlock_irq(&pool->lock);
c34056a3
TH
1770 }
1771 kfree(worker);
1772 return NULL;
1773}
1774
1775/**
1776 * start_worker - start a newly created worker
1777 * @worker: worker to start
1778 *
706026c2 1779 * Make the pool aware of @worker and start it.
c34056a3
TH
1780 *
1781 * CONTEXT:
d565ed63 1782 * spin_lock_irq(pool->lock).
c34056a3
TH
1783 */
1784static void start_worker(struct worker *worker)
1785{
cb444766 1786 worker->flags |= WORKER_STARTED;
bd7bdd43 1787 worker->pool->nr_workers++;
c8e55f36 1788 worker_enter_idle(worker);
c34056a3
TH
1789 wake_up_process(worker->task);
1790}
1791
ebf44d16
TH
1792/**
1793 * create_and_start_worker - create and start a worker for a pool
1794 * @pool: the target pool
1795 *
cd549687 1796 * Grab the managership of @pool and create and start a new worker for it.
ebf44d16
TH
1797 */
1798static int create_and_start_worker(struct worker_pool *pool)
1799{
1800 struct worker *worker;
1801
cd549687
TH
1802 mutex_lock(&pool->manager_mutex);
1803
ebf44d16
TH
1804 worker = create_worker(pool);
1805 if (worker) {
1806 spin_lock_irq(&pool->lock);
1807 start_worker(worker);
1808 spin_unlock_irq(&pool->lock);
1809 }
1810
cd549687
TH
1811 mutex_unlock(&pool->manager_mutex);
1812
ebf44d16
TH
1813 return worker ? 0 : -ENOMEM;
1814}
1815
c34056a3
TH
1816/**
1817 * destroy_worker - destroy a workqueue worker
1818 * @worker: worker to be destroyed
1819 *
706026c2 1820 * Destroy @worker and adjust @pool stats accordingly.
c8e55f36
TH
1821 *
1822 * CONTEXT:
d565ed63 1823 * spin_lock_irq(pool->lock) which is released and regrabbed.
c34056a3
TH
1824 */
1825static void destroy_worker(struct worker *worker)
1826{
bd7bdd43 1827 struct worker_pool *pool = worker->pool;
c34056a3 1828
cd549687
TH
1829 lockdep_assert_held(&pool->manager_mutex);
1830 lockdep_assert_held(&pool->lock);
1831
c34056a3 1832 /* sanity check frenzy */
6183c009
TH
1833 if (WARN_ON(worker->current_work) ||
1834 WARN_ON(!list_empty(&worker->scheduled)))
1835 return;
c34056a3 1836
c8e55f36 1837 if (worker->flags & WORKER_STARTED)
bd7bdd43 1838 pool->nr_workers--;
c8e55f36 1839 if (worker->flags & WORKER_IDLE)
bd7bdd43 1840 pool->nr_idle--;
c8e55f36 1841
4403be9e
LJ
1842 /*
1843 * Once WORKER_DIE is set, the kworker may destroy itself at any
1844 * point. Pin to ensure the task stays until we're done with it.
1845 */
1846 get_task_struct(worker->task);
1847
c8e55f36 1848 list_del_init(&worker->entry);
cb444766 1849 worker->flags |= WORKER_DIE;
c8e55f36 1850
822d8405
TH
1851 idr_remove(&pool->worker_idr, worker->id);
1852
d565ed63 1853 spin_unlock_irq(&pool->lock);
c8e55f36 1854
c34056a3 1855 kthread_stop(worker->task);
4403be9e 1856 put_task_struct(worker->task);
c34056a3
TH
1857 kfree(worker);
1858
d565ed63 1859 spin_lock_irq(&pool->lock);
c34056a3
TH
1860}
1861
63d95a91 1862static void idle_worker_timeout(unsigned long __pool)
e22bee78 1863{
63d95a91 1864 struct worker_pool *pool = (void *)__pool;
e22bee78 1865
d565ed63 1866 spin_lock_irq(&pool->lock);
e22bee78 1867
63d95a91 1868 if (too_many_workers(pool)) {
e22bee78
TH
1869 struct worker *worker;
1870 unsigned long expires;
1871
1872 /* idle_list is kept in LIFO order, check the last one */
63d95a91 1873 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78
TH
1874 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1875
1876 if (time_before(jiffies, expires))
63d95a91 1877 mod_timer(&pool->idle_timer, expires);
e22bee78
TH
1878 else {
1879 /* it's been idle for too long, wake up manager */
11ebea50 1880 pool->flags |= POOL_MANAGE_WORKERS;
63d95a91 1881 wake_up_worker(pool);
d5abe669 1882 }
e22bee78
TH
1883 }
1884
d565ed63 1885 spin_unlock_irq(&pool->lock);
e22bee78 1886}
d5abe669 1887
493a1724 1888static void send_mayday(struct work_struct *work)
e22bee78 1889{
112202d9
TH
1890 struct pool_workqueue *pwq = get_work_pwq(work);
1891 struct workqueue_struct *wq = pwq->wq;
493a1724 1892
2e109a28 1893 lockdep_assert_held(&wq_mayday_lock);
e22bee78 1894
493008a8 1895 if (!wq->rescuer)
493a1724 1896 return;
e22bee78
TH
1897
1898 /* mayday mayday mayday */
493a1724 1899 if (list_empty(&pwq->mayday_node)) {
aac8b37f
LJ
1900 /*
1901 * If @pwq is for an unbound wq, its base ref may be put at
1902 * any time due to an attribute change. Pin @pwq until the
1903 * rescuer is done with it.
1904 */
1905 get_pwq(pwq);
493a1724 1906 list_add_tail(&pwq->mayday_node, &wq->maydays);
e22bee78 1907 wake_up_process(wq->rescuer->task);
493a1724 1908 }
e22bee78
TH
1909}
1910
706026c2 1911static void pool_mayday_timeout(unsigned long __pool)
e22bee78 1912{
63d95a91 1913 struct worker_pool *pool = (void *)__pool;
e22bee78
TH
1914 struct work_struct *work;
1915
2e109a28 1916 spin_lock_irq(&wq_mayday_lock); /* for wq->maydays */
493a1724 1917 spin_lock(&pool->lock);
e22bee78 1918
63d95a91 1919 if (need_to_create_worker(pool)) {
e22bee78
TH
1920 /*
1921 * We've been trying to create a new worker but
1922 * haven't been successful. We might be hitting an
1923 * allocation deadlock. Send distress signals to
1924 * rescuers.
1925 */
63d95a91 1926 list_for_each_entry(work, &pool->worklist, entry)
e22bee78 1927 send_mayday(work);
1da177e4 1928 }
e22bee78 1929
493a1724 1930 spin_unlock(&pool->lock);
2e109a28 1931 spin_unlock_irq(&wq_mayday_lock);
e22bee78 1932
63d95a91 1933 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1da177e4
LT
1934}
1935
e22bee78
TH
1936/**
1937 * maybe_create_worker - create a new worker if necessary
63d95a91 1938 * @pool: pool to create a new worker for
e22bee78 1939 *
63d95a91 1940 * Create a new worker for @pool if necessary. @pool is guaranteed to
e22bee78
TH
1941 * have at least one idle worker on return from this function. If
1942 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
63d95a91 1943 * sent to all rescuers with works scheduled on @pool to resolve
e22bee78
TH
1944 * possible allocation deadlock.
1945 *
c5aa87bb
TH
1946 * On return, need_to_create_worker() is guaranteed to be %false and
1947 * may_start_working() %true.
e22bee78
TH
1948 *
1949 * LOCKING:
d565ed63 1950 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
1951 * multiple times. Does GFP_KERNEL allocations. Called only from
1952 * manager.
1953 *
1954 * RETURNS:
c5aa87bb 1955 * %false if no action was taken and pool->lock stayed locked, %true
e22bee78
TH
1956 * otherwise.
1957 */
63d95a91 1958static bool maybe_create_worker(struct worker_pool *pool)
d565ed63
TH
1959__releases(&pool->lock)
1960__acquires(&pool->lock)
1da177e4 1961{
63d95a91 1962 if (!need_to_create_worker(pool))
e22bee78
TH
1963 return false;
1964restart:
d565ed63 1965 spin_unlock_irq(&pool->lock);
9f9c2364 1966
e22bee78 1967 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
63d95a91 1968 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
e22bee78
TH
1969
1970 while (true) {
1971 struct worker *worker;
1972
bc2ae0f5 1973 worker = create_worker(pool);
e22bee78 1974 if (worker) {
63d95a91 1975 del_timer_sync(&pool->mayday_timer);
d565ed63 1976 spin_lock_irq(&pool->lock);
e22bee78 1977 start_worker(worker);
6183c009
TH
1978 if (WARN_ON_ONCE(need_to_create_worker(pool)))
1979 goto restart;
e22bee78
TH
1980 return true;
1981 }
1982
63d95a91 1983 if (!need_to_create_worker(pool))
e22bee78 1984 break;
1da177e4 1985
e22bee78
TH
1986 __set_current_state(TASK_INTERRUPTIBLE);
1987 schedule_timeout(CREATE_COOLDOWN);
9f9c2364 1988
63d95a91 1989 if (!need_to_create_worker(pool))
e22bee78
TH
1990 break;
1991 }
1992
63d95a91 1993 del_timer_sync(&pool->mayday_timer);
d565ed63 1994 spin_lock_irq(&pool->lock);
63d95a91 1995 if (need_to_create_worker(pool))
e22bee78
TH
1996 goto restart;
1997 return true;
1998}
1999
2000/**
2001 * maybe_destroy_worker - destroy workers which have been idle for a while
63d95a91 2002 * @pool: pool to destroy workers for
e22bee78 2003 *
63d95a91 2004 * Destroy @pool workers which have been idle for longer than
e22bee78
TH
2005 * IDLE_WORKER_TIMEOUT.
2006 *
2007 * LOCKING:
d565ed63 2008 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
2009 * multiple times. Called only from manager.
2010 *
2011 * RETURNS:
c5aa87bb 2012 * %false if no action was taken and pool->lock stayed locked, %true
e22bee78
TH
2013 * otherwise.
2014 */
63d95a91 2015static bool maybe_destroy_workers(struct worker_pool *pool)
e22bee78
TH
2016{
2017 bool ret = false;
1da177e4 2018
63d95a91 2019 while (too_many_workers(pool)) {
e22bee78
TH
2020 struct worker *worker;
2021 unsigned long expires;
3af24433 2022
63d95a91 2023 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78 2024 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
85f4186a 2025
e22bee78 2026 if (time_before(jiffies, expires)) {
63d95a91 2027 mod_timer(&pool->idle_timer, expires);
3af24433 2028 break;
e22bee78 2029 }
1da177e4 2030
e22bee78
TH
2031 destroy_worker(worker);
2032 ret = true;
1da177e4 2033 }
1e19ffc6 2034
e22bee78 2035 return ret;
1e19ffc6
TH
2036}
2037
73f53c4a 2038/**
e22bee78
TH
2039 * manage_workers - manage worker pool
2040 * @worker: self
73f53c4a 2041 *
706026c2 2042 * Assume the manager role and manage the worker pool @worker belongs
e22bee78 2043 * to. At any given time, there can be only zero or one manager per
706026c2 2044 * pool. The exclusion is handled automatically by this function.
e22bee78
TH
2045 *
2046 * The caller can safely start processing works on false return. On
2047 * true return, it's guaranteed that need_to_create_worker() is false
2048 * and may_start_working() is true.
73f53c4a
TH
2049 *
2050 * CONTEXT:
d565ed63 2051 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
2052 * multiple times. Does GFP_KERNEL allocations.
2053 *
2054 * RETURNS:
d565ed63
TH
2055 * spin_lock_irq(pool->lock) which may be released and regrabbed
2056 * multiple times. Does GFP_KERNEL allocations.
73f53c4a 2057 */
e22bee78 2058static bool manage_workers(struct worker *worker)
73f53c4a 2059{
63d95a91 2060 struct worker_pool *pool = worker->pool;
e22bee78 2061 bool ret = false;
73f53c4a 2062
bc3a1afc
TH
2063 /*
2064 * Managership is governed by two mutexes - manager_arb and
2065 * manager_mutex. manager_arb handles arbitration of manager role.
2066 * Anyone who successfully grabs manager_arb wins the arbitration
2067 * and becomes the manager. mutex_trylock() on pool->manager_arb
2068 * failure while holding pool->lock reliably indicates that someone
2069 * else is managing the pool and the worker which failed trylock
2070 * can proceed to executing work items. This means that anyone
2071 * grabbing manager_arb is responsible for actually performing
2072 * manager duties. If manager_arb is grabbed and released without
2073 * actual management, the pool may stall indefinitely.
2074 *
2075 * manager_mutex is used for exclusion of actual management
2076 * operations. The holder of manager_mutex can be sure that none
2077 * of management operations, including creation and destruction of
2078 * workers, won't take place until the mutex is released. Because
2079 * manager_mutex doesn't interfere with manager role arbitration,
2080 * it is guaranteed that the pool's management, while may be
2081 * delayed, won't be disturbed by someone else grabbing
2082 * manager_mutex.
2083 */
34a06bd6 2084 if (!mutex_trylock(&pool->manager_arb))
e22bee78 2085 return ret;
1e19ffc6 2086
ee378aa4 2087 /*
bc3a1afc
TH
2088 * With manager arbitration won, manager_mutex would be free in
2089 * most cases. trylock first without dropping @pool->lock.
ee378aa4 2090 */
bc3a1afc 2091 if (unlikely(!mutex_trylock(&pool->manager_mutex))) {
d565ed63 2092 spin_unlock_irq(&pool->lock);
bc3a1afc 2093 mutex_lock(&pool->manager_mutex);
8f174b11 2094 spin_lock_irq(&pool->lock);
ee378aa4
LJ
2095 ret = true;
2096 }
73f53c4a 2097
11ebea50 2098 pool->flags &= ~POOL_MANAGE_WORKERS;
73f53c4a
TH
2099
2100 /*
e22bee78
TH
2101 * Destroy and then create so that may_start_working() is true
2102 * on return.
73f53c4a 2103 */
63d95a91
TH
2104 ret |= maybe_destroy_workers(pool);
2105 ret |= maybe_create_worker(pool);
e22bee78 2106
bc3a1afc 2107 mutex_unlock(&pool->manager_mutex);
34a06bd6 2108 mutex_unlock(&pool->manager_arb);
e22bee78 2109 return ret;
73f53c4a
TH
2110}
2111
a62428c0
TH
2112/**
2113 * process_one_work - process single work
c34056a3 2114 * @worker: self
a62428c0
TH
2115 * @work: work to process
2116 *
2117 * Process @work. This function contains all the logics necessary to
2118 * process a single work including synchronization against and
2119 * interaction with other workers on the same cpu, queueing and
2120 * flushing. As long as context requirement is met, any worker can
2121 * call this function to process a work.
2122 *
2123 * CONTEXT:
d565ed63 2124 * spin_lock_irq(pool->lock) which is released and regrabbed.
a62428c0 2125 */
c34056a3 2126static void process_one_work(struct worker *worker, struct work_struct *work)
d565ed63
TH
2127__releases(&pool->lock)
2128__acquires(&pool->lock)
a62428c0 2129{
112202d9 2130 struct pool_workqueue *pwq = get_work_pwq(work);
bd7bdd43 2131 struct worker_pool *pool = worker->pool;
112202d9 2132 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
73f53c4a 2133 int work_color;
7e11629d 2134 struct worker *collision;
6fa3eb70
S
2135 unsigned long long exec_start;
2136 char func[128];
2137
a62428c0
TH
2138#ifdef CONFIG_LOCKDEP
2139 /*
2140 * It is permissible to free the struct work_struct from
2141 * inside the function that is called from it, this we need to
2142 * take into account for lockdep too. To avoid bogus "held
2143 * lock freed" warnings as well as problems when looking into
2144 * work->lockdep_map, make a copy and use that here.
2145 */
4d82a1de
PZ
2146 struct lockdep_map lockdep_map;
2147
2148 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
a62428c0 2149#endif
6fec10a1
TH
2150 /*
2151 * Ensure we're on the correct CPU. DISASSOCIATED test is
2152 * necessary to avoid spurious warnings from rescuers servicing the
24647570 2153 * unbound or a disassociated pool.
6fec10a1 2154 */
5f7dabfd 2155 WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
24647570 2156 !(pool->flags & POOL_DISASSOCIATED) &&
ec22ca5e 2157 raw_smp_processor_id() != pool->cpu);
25511a47 2158
7e11629d
TH
2159 /*
2160 * A single work shouldn't be executed concurrently by
2161 * multiple workers on a single cpu. Check whether anyone is
2162 * already processing the work. If so, defer the work to the
2163 * currently executing one.
2164 */
c9e7cf27 2165 collision = find_worker_executing_work(pool, work);
7e11629d
TH
2166 if (unlikely(collision)) {
2167 move_linked_works(work, &collision->scheduled, NULL);
2168 return;
2169 }
2170
8930caba 2171 /* claim and dequeue */
a62428c0 2172 debug_work_deactivate(work);
c9e7cf27 2173 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
c34056a3 2174 worker->current_work = work;
a2c1c57b 2175 worker->current_func = work->func;
112202d9 2176 worker->current_pwq = pwq;
73f53c4a 2177 work_color = get_work_color(work);
7a22ad75 2178
a62428c0
TH
2179 list_del_init(&work->entry);
2180
fb0e7beb
TH
2181 /*
2182 * CPU intensive works don't participate in concurrency
2183 * management. They're the scheduler's responsibility.
2184 */
2185 if (unlikely(cpu_intensive))
2186 worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
2187
974271c4 2188 /*
d565ed63 2189 * Unbound pool isn't concurrency managed and work items should be
974271c4
TH
2190 * executed ASAP. Wake up another worker if necessary.
2191 */
63d95a91
TH
2192 if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
2193 wake_up_worker(pool);
974271c4 2194
8930caba 2195 /*
7c3eed5c 2196 * Record the last pool and clear PENDING which should be the last
d565ed63 2197 * update to @work. Also, do this inside @pool->lock so that
23657bb1
TH
2198 * PENDING and queued state changes happen together while IRQ is
2199 * disabled.
8930caba 2200 */
7c3eed5c 2201 set_work_pool_and_clear_pending(work, pool->id);
a62428c0 2202
d565ed63 2203 spin_unlock_irq(&pool->lock);
a62428c0 2204
112202d9 2205 lock_map_acquire_read(&pwq->wq->lockdep_map);
a62428c0 2206 lock_map_acquire(&lockdep_map);
6fa3eb70
S
2207
2208 exec_start = sched_clock();
2209 sprintf(func, "%pf", work->func);
2210
e36c886a 2211 trace_workqueue_execute_start(work);
6fa3eb70
S
2212#ifdef CONFIG_MTK_WQ_DEBUG
2213 mttrace_workqueue_execute_work(work);
2214#endif //CONFIG_MTK_WQ_DEBUG
2215
a2c1c57b 2216 worker->current_func(work);
6fa3eb70 2217
e36c886a
AV
2218 /*
2219 * While we must be careful to not use "work" after this, the trace
2220 * point will only record its address.
2221 */
2222 trace_workqueue_execute_end(work);
6fa3eb70
S
2223#ifdef CONFIG_MTK_WQ_DEBUG
2224 mttrace_workqueue_execute_end(work);
2225#endif //CONFIG_MTK_WQ_DEBUG
2226
2227 if ((sched_clock() - exec_start)> 1000000000) // dump log if execute more than 1 sec
2228 pr_warning("WQ warning! work (%s, %p) execute more than 1 sec, time: %llu ns\n", func, work, sched_clock() - exec_start);
2229
a62428c0 2230 lock_map_release(&lockdep_map);
112202d9 2231 lock_map_release(&pwq->wq->lockdep_map);
a62428c0
TH
2232
2233 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
044c782c
VI
2234 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2235 " last function: %pf\n",
a2c1c57b
TH
2236 current->comm, preempt_count(), task_pid_nr(current),
2237 worker->current_func);
a62428c0
TH
2238 debug_show_held_locks(current);
2239 dump_stack();
2240 }
2241
6ff96f73
TH
2242 /*
2243 * The following prevents a kworker from hogging CPU on !PREEMPT
2244 * kernels, where a requeueing work item waiting for something to
2245 * happen could deadlock with stop_machine as such work item could
2246 * indefinitely requeue itself while all other CPUs are trapped in
2247 * stop_machine.
2248 */
2249 cond_resched();
2250
d565ed63 2251 spin_lock_irq(&pool->lock);
a62428c0 2252
fb0e7beb
TH
2253 /* clear cpu intensive status */
2254 if (unlikely(cpu_intensive))
2255 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2256
a62428c0 2257 /* we're done with it, release */
42f8570f 2258 hash_del(&worker->hentry);
c34056a3 2259 worker->current_work = NULL;
a2c1c57b 2260 worker->current_func = NULL;
112202d9 2261 worker->current_pwq = NULL;
3d1cb205 2262 worker->desc_valid = false;
112202d9 2263 pwq_dec_nr_in_flight(pwq, work_color);
a62428c0
TH
2264}
2265
affee4b2
TH
2266/**
2267 * process_scheduled_works - process scheduled works
2268 * @worker: self
2269 *
2270 * Process all scheduled works. Please note that the scheduled list
2271 * may change while processing a work, so this function repeatedly
2272 * fetches a work from the top and executes it.
2273 *
2274 * CONTEXT:
d565ed63 2275 * spin_lock_irq(pool->lock) which may be released and regrabbed
affee4b2
TH
2276 * multiple times.
2277 */
2278static void process_scheduled_works(struct worker *worker)
1da177e4 2279{
affee4b2
TH
2280 while (!list_empty(&worker->scheduled)) {
2281 struct work_struct *work = list_first_entry(&worker->scheduled,
1da177e4 2282 struct work_struct, entry);
c34056a3 2283 process_one_work(worker, work);
1da177e4 2284 }
1da177e4
LT
2285}
2286
4690c4ab
TH
2287/**
2288 * worker_thread - the worker thread function
c34056a3 2289 * @__worker: self
4690c4ab 2290 *
c5aa87bb
TH
2291 * The worker thread function. All workers belong to a worker_pool -
2292 * either a per-cpu one or dynamic unbound one. These workers process all
2293 * work items regardless of their specific target workqueue. The only
2294 * exception is work items which belong to workqueues with a rescuer which
2295 * will be explained in rescuer_thread().
4690c4ab 2296 */
c34056a3 2297static int worker_thread(void *__worker)
1da177e4 2298{
c34056a3 2299 struct worker *worker = __worker;
bd7bdd43 2300 struct worker_pool *pool = worker->pool;
1da177e4 2301
e22bee78
TH
2302 /* tell the scheduler that this is a workqueue worker */
2303 worker->task->flags |= PF_WQ_WORKER;
c8e55f36 2304woke_up:
d565ed63 2305 spin_lock_irq(&pool->lock);
1da177e4 2306
a9ab775b
TH
2307 /* am I supposed to die? */
2308 if (unlikely(worker->flags & WORKER_DIE)) {
d565ed63 2309 spin_unlock_irq(&pool->lock);
a9ab775b
TH
2310 WARN_ON_ONCE(!list_empty(&worker->entry));
2311 worker->task->flags &= ~PF_WQ_WORKER;
2312 return 0;
c8e55f36 2313 }
affee4b2 2314
c8e55f36 2315 worker_leave_idle(worker);
db7bccf4 2316recheck:
e22bee78 2317 /* no more worker necessary? */
63d95a91 2318 if (!need_more_worker(pool))
e22bee78
TH
2319 goto sleep;
2320
2321 /* do we need to manage? */
63d95a91 2322 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
e22bee78
TH
2323 goto recheck;
2324
c8e55f36
TH
2325 /*
2326 * ->scheduled list can only be filled while a worker is
2327 * preparing to process a work or actually processing it.
2328 * Make sure nobody diddled with it while I was sleeping.
2329 */
6183c009 2330 WARN_ON_ONCE(!list_empty(&worker->scheduled));
c8e55f36 2331
e22bee78 2332 /*
a9ab775b
TH
2333 * Finish PREP stage. We're guaranteed to have at least one idle
2334 * worker or that someone else has already assumed the manager
2335 * role. This is where @worker starts participating in concurrency
2336 * management if applicable and concurrency management is restored
2337 * after being rebound. See rebind_workers() for details.
e22bee78 2338 */
a9ab775b 2339 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
e22bee78
TH
2340
2341 do {
c8e55f36 2342 struct work_struct *work =
bd7bdd43 2343 list_first_entry(&pool->worklist,
c8e55f36
TH
2344 struct work_struct, entry);
2345
2346 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2347 /* optimization path, not strictly necessary */
2348 process_one_work(worker, work);
2349 if (unlikely(!list_empty(&worker->scheduled)))
affee4b2 2350 process_scheduled_works(worker);
c8e55f36
TH
2351 } else {
2352 move_linked_works(work, &worker->scheduled, NULL);
2353 process_scheduled_works(worker);
affee4b2 2354 }
63d95a91 2355 } while (keep_working(pool));
e22bee78
TH
2356
2357 worker_set_flags(worker, WORKER_PREP, false);
d313dd85 2358sleep:
63d95a91 2359 if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
e22bee78 2360 goto recheck;
d313dd85 2361
c8e55f36 2362 /*
d565ed63
TH
2363 * pool->lock is held and there's no work to process and no need to
2364 * manage, sleep. Workers are woken up only while holding
2365 * pool->lock or from local cpu, so setting the current state
2366 * before releasing pool->lock is enough to prevent losing any
2367 * event.
c8e55f36
TH
2368 */
2369 worker_enter_idle(worker);
2370 __set_current_state(TASK_INTERRUPTIBLE);
d565ed63 2371 spin_unlock_irq(&pool->lock);
c8e55f36
TH
2372 schedule();
2373 goto woke_up;
1da177e4
LT
2374}
2375
e22bee78
TH
2376/**
2377 * rescuer_thread - the rescuer thread function
111c225a 2378 * @__rescuer: self
e22bee78
TH
2379 *
2380 * Workqueue rescuer thread function. There's one rescuer for each
493008a8 2381 * workqueue which has WQ_MEM_RECLAIM set.
e22bee78 2382 *
706026c2 2383 * Regular work processing on a pool may block trying to create a new
e22bee78
TH
2384 * worker which uses GFP_KERNEL allocation which has slight chance of
2385 * developing into deadlock if some works currently on the same queue
2386 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2387 * the problem rescuer solves.
2388 *
706026c2
TH
2389 * When such condition is possible, the pool summons rescuers of all
2390 * workqueues which have works queued on the pool and let them process
e22bee78
TH
2391 * those works so that forward progress can be guaranteed.
2392 *
2393 * This should happen rarely.
2394 */
111c225a 2395static int rescuer_thread(void *__rescuer)
e22bee78 2396{
111c225a
TH
2397 struct worker *rescuer = __rescuer;
2398 struct workqueue_struct *wq = rescuer->rescue_wq;
e22bee78 2399 struct list_head *scheduled = &rescuer->scheduled;
f56fb0d4 2400 bool should_stop;
e22bee78
TH
2401
2402 set_user_nice(current, RESCUER_NICE_LEVEL);
111c225a
TH
2403
2404 /*
2405 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2406 * doesn't participate in concurrency management.
2407 */
2408 rescuer->task->flags |= PF_WQ_WORKER;
e22bee78
TH
2409repeat:
2410 set_current_state(TASK_INTERRUPTIBLE);
2411
f56fb0d4
LJ
2412 /*
2413 * By the time the rescuer is requested to stop, the workqueue
2414 * shouldn't have any work pending, but @wq->maydays may still have
2415 * pwq(s) queued. This can happen by non-rescuer workers consuming
2416 * all the work items before the rescuer got to them. Go through
2417 * @wq->maydays processing before acting on should_stop so that the
2418 * list is always empty on exit.
2419 */
2420 should_stop = kthread_should_stop();
e22bee78 2421
493a1724 2422 /* see whether any pwq is asking for help */
2e109a28 2423 spin_lock_irq(&wq_mayday_lock);
493a1724
TH
2424
2425 while (!list_empty(&wq->maydays)) {
2426 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2427 struct pool_workqueue, mayday_node);
112202d9 2428 struct worker_pool *pool = pwq->pool;
e22bee78
TH
2429 struct work_struct *work, *n;
2430
2431 __set_current_state(TASK_RUNNING);
493a1724
TH
2432 list_del_init(&pwq->mayday_node);
2433
2e109a28 2434 spin_unlock_irq(&wq_mayday_lock);
e22bee78
TH
2435
2436 /* migrate to the target cpu if possible */
f36dc67b 2437 worker_maybe_bind_and_lock(pool);
b3104104 2438 rescuer->pool = pool;
e22bee78
TH
2439
2440 /*
2441 * Slurp in all works issued via this workqueue and
2442 * process'em.
2443 */
6183c009 2444 WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
bd7bdd43 2445 list_for_each_entry_safe(work, n, &pool->worklist, entry)
112202d9 2446 if (get_work_pwq(work) == pwq)
e22bee78
TH
2447 move_linked_works(work, scheduled, &n);
2448
2449 process_scheduled_works(rescuer);
7576958a 2450
aac8b37f
LJ
2451 /*
2452 * Put the reference grabbed by send_mayday(). @pool won't
2453 * go away while we're holding its lock.
2454 */
2455 put_pwq(pwq);
2456
7576958a 2457 /*
d565ed63 2458 * Leave this pool. If keep_working() is %true, notify a
7576958a
TH
2459 * regular worker; otherwise, we end up with 0 concurrency
2460 * and stalling the execution.
2461 */
63d95a91
TH
2462 if (keep_working(pool))
2463 wake_up_worker(pool);
7576958a 2464
b3104104 2465 rescuer->pool = NULL;
493a1724 2466 spin_unlock(&pool->lock);
2e109a28 2467 spin_lock(&wq_mayday_lock);
e22bee78
TH
2468 }
2469
2e109a28 2470 spin_unlock_irq(&wq_mayday_lock);
493a1724 2471
f56fb0d4
LJ
2472 if (should_stop) {
2473 __set_current_state(TASK_RUNNING);
2474 rescuer->task->flags &= ~PF_WQ_WORKER;
2475 return 0;
2476 }
2477
111c225a
TH
2478 /* rescuers should never participate in concurrency management */
2479 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
e22bee78
TH
2480 schedule();
2481 goto repeat;
1da177e4
LT
2482}
2483
fc2e4d70
ON
2484struct wq_barrier {
2485 struct work_struct work;
2486 struct completion done;
2487};
2488
2489static void wq_barrier_func(struct work_struct *work)
2490{
2491 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2492 complete(&barr->done);
2493}
2494
4690c4ab
TH
2495/**
2496 * insert_wq_barrier - insert a barrier work
112202d9 2497 * @pwq: pwq to insert barrier into
4690c4ab 2498 * @barr: wq_barrier to insert
affee4b2
TH
2499 * @target: target work to attach @barr to
2500 * @worker: worker currently executing @target, NULL if @target is not executing
4690c4ab 2501 *
affee4b2
TH
2502 * @barr is linked to @target such that @barr is completed only after
2503 * @target finishes execution. Please note that the ordering
2504 * guarantee is observed only with respect to @target and on the local
2505 * cpu.
2506 *
2507 * Currently, a queued barrier can't be canceled. This is because
2508 * try_to_grab_pending() can't determine whether the work to be
2509 * grabbed is at the head of the queue and thus can't clear LINKED
2510 * flag of the previous work while there must be a valid next work
2511 * after a work with LINKED flag set.
2512 *
2513 * Note that when @worker is non-NULL, @target may be modified
112202d9 2514 * underneath us, so we can't reliably determine pwq from @target.
4690c4ab
TH
2515 *
2516 * CONTEXT:
d565ed63 2517 * spin_lock_irq(pool->lock).
4690c4ab 2518 */
112202d9 2519static void insert_wq_barrier(struct pool_workqueue *pwq,
affee4b2
TH
2520 struct wq_barrier *barr,
2521 struct work_struct *target, struct worker *worker)
fc2e4d70 2522{
affee4b2
TH
2523 struct list_head *head;
2524 unsigned int linked = 0;
2525
dc186ad7 2526 /*
d565ed63 2527 * debugobject calls are safe here even with pool->lock locked
dc186ad7
TG
2528 * as we know for sure that this will not trigger any of the
2529 * checks and call back into the fixup functions where we
2530 * might deadlock.
2531 */
ca1cab37 2532 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
22df02bb 2533 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
fc2e4d70 2534 init_completion(&barr->done);
83c22520 2535
affee4b2
TH
2536 /*
2537 * If @target is currently being executed, schedule the
2538 * barrier to the worker; otherwise, put it after @target.
2539 */
2540 if (worker)
2541 head = worker->scheduled.next;
2542 else {
2543 unsigned long *bits = work_data_bits(target);
2544
2545 head = target->entry.next;
2546 /* there can already be other linked works, inherit and set */
2547 linked = *bits & WORK_STRUCT_LINKED;
2548 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2549 }
2550
dc186ad7 2551 debug_work_activate(&barr->work);
112202d9 2552 insert_work(pwq, &barr->work, head,
affee4b2 2553 work_color_to_flags(WORK_NO_COLOR) | linked);
fc2e4d70
ON
2554}
2555
73f53c4a 2556/**
112202d9 2557 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
73f53c4a
TH
2558 * @wq: workqueue being flushed
2559 * @flush_color: new flush color, < 0 for no-op
2560 * @work_color: new work color, < 0 for no-op
2561 *
112202d9 2562 * Prepare pwqs for workqueue flushing.
73f53c4a 2563 *
112202d9
TH
2564 * If @flush_color is non-negative, flush_color on all pwqs should be
2565 * -1. If no pwq has in-flight commands at the specified color, all
2566 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2567 * has in flight commands, its pwq->flush_color is set to
2568 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
73f53c4a
TH
2569 * wakeup logic is armed and %true is returned.
2570 *
2571 * The caller should have initialized @wq->first_flusher prior to
2572 * calling this function with non-negative @flush_color. If
2573 * @flush_color is negative, no flush color update is done and %false
2574 * is returned.
2575 *
112202d9 2576 * If @work_color is non-negative, all pwqs should have the same
73f53c4a
TH
2577 * work_color which is previous to @work_color and all will be
2578 * advanced to @work_color.
2579 *
2580 * CONTEXT:
3c25a55d 2581 * mutex_lock(wq->mutex).
73f53c4a
TH
2582 *
2583 * RETURNS:
2584 * %true if @flush_color >= 0 and there's something to flush. %false
2585 * otherwise.
2586 */
112202d9 2587static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
73f53c4a 2588 int flush_color, int work_color)
1da177e4 2589{
73f53c4a 2590 bool wait = false;
49e3cf44 2591 struct pool_workqueue *pwq;
1da177e4 2592
73f53c4a 2593 if (flush_color >= 0) {
6183c009 2594 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
112202d9 2595 atomic_set(&wq->nr_pwqs_to_flush, 1);
1da177e4 2596 }
2355b70f 2597
49e3cf44 2598 for_each_pwq(pwq, wq) {
112202d9 2599 struct worker_pool *pool = pwq->pool;
fc2e4d70 2600
b09f4fd3 2601 spin_lock_irq(&pool->lock);
83c22520 2602
73f53c4a 2603 if (flush_color >= 0) {
6183c009 2604 WARN_ON_ONCE(pwq->flush_color != -1);
fc2e4d70 2605
112202d9
TH
2606 if (pwq->nr_in_flight[flush_color]) {
2607 pwq->flush_color = flush_color;
2608 atomic_inc(&wq->nr_pwqs_to_flush);
73f53c4a
TH
2609 wait = true;
2610 }
2611 }
1da177e4 2612
73f53c4a 2613 if (work_color >= 0) {
6183c009 2614 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
112202d9 2615 pwq->work_color = work_color;
73f53c4a 2616 }
1da177e4 2617
b09f4fd3 2618 spin_unlock_irq(&pool->lock);
1da177e4 2619 }
2355b70f 2620
112202d9 2621 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
73f53c4a 2622 complete(&wq->first_flusher->done);
14441960 2623
73f53c4a 2624 return wait;
1da177e4
LT
2625}
2626
0fcb78c2 2627/**
1da177e4 2628 * flush_workqueue - ensure that any scheduled work has run to completion.
0fcb78c2 2629 * @wq: workqueue to flush
1da177e4 2630 *
c5aa87bb
TH
2631 * This function sleeps until all work items which were queued on entry
2632 * have finished execution, but it is not livelocked by new incoming ones.
1da177e4 2633 */
7ad5b3a5 2634void flush_workqueue(struct workqueue_struct *wq)
1da177e4 2635{
73f53c4a
TH
2636 struct wq_flusher this_flusher = {
2637 .list = LIST_HEAD_INIT(this_flusher.list),
2638 .flush_color = -1,
2639 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2640 };
2641 int next_color;
1da177e4 2642
3295f0ef
IM
2643 lock_map_acquire(&wq->lockdep_map);
2644 lock_map_release(&wq->lockdep_map);
73f53c4a 2645
3c25a55d 2646 mutex_lock(&wq->mutex);
73f53c4a
TH
2647
2648 /*
2649 * Start-to-wait phase
2650 */
2651 next_color = work_next_color(wq->work_color);
2652
2653 if (next_color != wq->flush_color) {
2654 /*
2655 * Color space is not full. The current work_color
2656 * becomes our flush_color and work_color is advanced
2657 * by one.
2658 */
6183c009 2659 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
73f53c4a
TH
2660 this_flusher.flush_color = wq->work_color;
2661 wq->work_color = next_color;
2662
2663 if (!wq->first_flusher) {
2664 /* no flush in progress, become the first flusher */
6183c009 2665 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
2666
2667 wq->first_flusher = &this_flusher;
2668
112202d9 2669 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
73f53c4a
TH
2670 wq->work_color)) {
2671 /* nothing to flush, done */
2672 wq->flush_color = next_color;
2673 wq->first_flusher = NULL;
2674 goto out_unlock;
2675 }
2676 } else {
2677 /* wait in queue */
6183c009 2678 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
73f53c4a 2679 list_add_tail(&this_flusher.list, &wq->flusher_queue);
112202d9 2680 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
2681 }
2682 } else {
2683 /*
2684 * Oops, color space is full, wait on overflow queue.
2685 * The next flush completion will assign us
2686 * flush_color and transfer to flusher_queue.
2687 */
2688 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2689 }
2690
3c25a55d 2691 mutex_unlock(&wq->mutex);
73f53c4a
TH
2692
2693 wait_for_completion(&this_flusher.done);
2694
2695 /*
2696 * Wake-up-and-cascade phase
2697 *
2698 * First flushers are responsible for cascading flushes and
2699 * handling overflow. Non-first flushers can simply return.
2700 */
2701 if (wq->first_flusher != &this_flusher)
2702 return;
2703
3c25a55d 2704 mutex_lock(&wq->mutex);
73f53c4a 2705
4ce48b37
TH
2706 /* we might have raced, check again with mutex held */
2707 if (wq->first_flusher != &this_flusher)
2708 goto out_unlock;
2709
73f53c4a
TH
2710 wq->first_flusher = NULL;
2711
6183c009
TH
2712 WARN_ON_ONCE(!list_empty(&this_flusher.list));
2713 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
2714
2715 while (true) {
2716 struct wq_flusher *next, *tmp;
2717
2718 /* complete all the flushers sharing the current flush color */
2719 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2720 if (next->flush_color != wq->flush_color)
2721 break;
2722 list_del_init(&next->list);
2723 complete(&next->done);
2724 }
2725
6183c009
TH
2726 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2727 wq->flush_color != work_next_color(wq->work_color));
73f53c4a
TH
2728
2729 /* this flush_color is finished, advance by one */
2730 wq->flush_color = work_next_color(wq->flush_color);
2731
2732 /* one color has been freed, handle overflow queue */
2733 if (!list_empty(&wq->flusher_overflow)) {
2734 /*
2735 * Assign the same color to all overflowed
2736 * flushers, advance work_color and append to
2737 * flusher_queue. This is the start-to-wait
2738 * phase for these overflowed flushers.
2739 */
2740 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2741 tmp->flush_color = wq->work_color;
2742
2743 wq->work_color = work_next_color(wq->work_color);
2744
2745 list_splice_tail_init(&wq->flusher_overflow,
2746 &wq->flusher_queue);
112202d9 2747 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
2748 }
2749
2750 if (list_empty(&wq->flusher_queue)) {
6183c009 2751 WARN_ON_ONCE(wq->flush_color != wq->work_color);
73f53c4a
TH
2752 break;
2753 }
2754
2755 /*
2756 * Need to flush more colors. Make the next flusher
112202d9 2757 * the new first flusher and arm pwqs.
73f53c4a 2758 */
6183c009
TH
2759 WARN_ON_ONCE(wq->flush_color == wq->work_color);
2760 WARN_ON_ONCE(wq->flush_color != next->flush_color);
73f53c4a
TH
2761
2762 list_del_init(&next->list);
2763 wq->first_flusher = next;
2764
112202d9 2765 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
73f53c4a
TH
2766 break;
2767
2768 /*
2769 * Meh... this color is already done, clear first
2770 * flusher and repeat cascading.
2771 */
2772 wq->first_flusher = NULL;
2773 }
2774
2775out_unlock:
3c25a55d 2776 mutex_unlock(&wq->mutex);
1da177e4 2777}
ae90dd5d 2778EXPORT_SYMBOL_GPL(flush_workqueue);
1da177e4 2779
9c5a2ba7
TH
2780/**
2781 * drain_workqueue - drain a workqueue
2782 * @wq: workqueue to drain
2783 *
2784 * Wait until the workqueue becomes empty. While draining is in progress,
2785 * only chain queueing is allowed. IOW, only currently pending or running
2786 * work items on @wq can queue further work items on it. @wq is flushed
2787 * repeatedly until it becomes empty. The number of flushing is detemined
2788 * by the depth of chaining and should be relatively short. Whine if it
2789 * takes too long.
2790 */
2791void drain_workqueue(struct workqueue_struct *wq)
2792{
2793 unsigned int flush_cnt = 0;
49e3cf44 2794 struct pool_workqueue *pwq;
9c5a2ba7
TH
2795
2796 /*
2797 * __queue_work() needs to test whether there are drainers, is much
2798 * hotter than drain_workqueue() and already looks at @wq->flags.
618b01eb 2799 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
9c5a2ba7 2800 */
87fc741e 2801 mutex_lock(&wq->mutex);
9c5a2ba7 2802 if (!wq->nr_drainers++)
618b01eb 2803 wq->flags |= __WQ_DRAINING;
87fc741e 2804 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2805reflush:
2806 flush_workqueue(wq);
2807
b09f4fd3 2808 mutex_lock(&wq->mutex);
76af4d93 2809
49e3cf44 2810 for_each_pwq(pwq, wq) {
fa2563e4 2811 bool drained;
9c5a2ba7 2812
b09f4fd3 2813 spin_lock_irq(&pwq->pool->lock);
112202d9 2814 drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
b09f4fd3 2815 spin_unlock_irq(&pwq->pool->lock);
fa2563e4
TT
2816
2817 if (drained)
9c5a2ba7
TH
2818 continue;
2819
2820 if (++flush_cnt == 10 ||
2821 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
c5aa87bb 2822 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
044c782c 2823 wq->name, flush_cnt);
76af4d93 2824
b09f4fd3 2825 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2826 goto reflush;
2827 }
2828
9c5a2ba7 2829 if (!--wq->nr_drainers)
618b01eb 2830 wq->flags &= ~__WQ_DRAINING;
87fc741e 2831 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2832}
2833EXPORT_SYMBOL_GPL(drain_workqueue);
2834
606a5020 2835static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
db700897 2836{
affee4b2 2837 struct worker *worker = NULL;
c9e7cf27 2838 struct worker_pool *pool;
112202d9 2839 struct pool_workqueue *pwq;
db700897
ON
2840
2841 might_sleep();
fa1b54e6
TH
2842
2843 local_irq_disable();
c9e7cf27 2844 pool = get_work_pool(work);
fa1b54e6
TH
2845 if (!pool) {
2846 local_irq_enable();
baf59022 2847 return false;
fa1b54e6 2848 }
db700897 2849
fa1b54e6 2850 spin_lock(&pool->lock);
0b3dae68 2851 /* see the comment in try_to_grab_pending() with the same code */
112202d9
TH
2852 pwq = get_work_pwq(work);
2853 if (pwq) {
2854 if (unlikely(pwq->pool != pool))
4690c4ab 2855 goto already_gone;
606a5020 2856 } else {
c9e7cf27 2857 worker = find_worker_executing_work(pool, work);
affee4b2 2858 if (!worker)
4690c4ab 2859 goto already_gone;
112202d9 2860 pwq = worker->current_pwq;
606a5020 2861 }
db700897 2862
112202d9 2863 insert_wq_barrier(pwq, barr, work, worker);
d565ed63 2864 spin_unlock_irq(&pool->lock);
7a22ad75 2865
e159489b
TH
2866 /*
2867 * If @max_active is 1 or rescuer is in use, flushing another work
2868 * item on the same workqueue may lead to deadlock. Make sure the
2869 * flusher is not running on the same workqueue by verifying write
2870 * access.
2871 */
493008a8 2872 if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
112202d9 2873 lock_map_acquire(&pwq->wq->lockdep_map);
e159489b 2874 else
112202d9
TH
2875 lock_map_acquire_read(&pwq->wq->lockdep_map);
2876 lock_map_release(&pwq->wq->lockdep_map);
e159489b 2877
401a8d04 2878 return true;
4690c4ab 2879already_gone:
d565ed63 2880 spin_unlock_irq(&pool->lock);
401a8d04 2881 return false;
db700897 2882}
baf59022
TH
2883
2884/**
2885 * flush_work - wait for a work to finish executing the last queueing instance
2886 * @work: the work to flush
2887 *
606a5020
TH
2888 * Wait until @work has finished execution. @work is guaranteed to be idle
2889 * on return if it hasn't been requeued since flush started.
baf59022
TH
2890 *
2891 * RETURNS:
2892 * %true if flush_work() waited for the work to finish execution,
2893 * %false if it was already idle.
2894 */
2895bool flush_work(struct work_struct *work)
2896{
2897 struct wq_barrier barr;
2898
0976dfc1
SB
2899 lock_map_acquire(&work->lockdep_map);
2900 lock_map_release(&work->lockdep_map);
2901
606a5020 2902 if (start_flush_work(work, &barr)) {
401a8d04
TH
2903 wait_for_completion(&barr.done);
2904 destroy_work_on_stack(&barr.work);
2905 return true;
606a5020 2906 } else {
401a8d04 2907 return false;
6e84d644 2908 }
6e84d644 2909}
606a5020 2910EXPORT_SYMBOL_GPL(flush_work);
6e84d644 2911
36e227d2 2912static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
1f1f642e 2913{
bbb68dfa 2914 unsigned long flags;
1f1f642e
ON
2915 int ret;
2916
2917 do {
bbb68dfa
TH
2918 ret = try_to_grab_pending(work, is_dwork, &flags);
2919 /*
2920 * If someone else is canceling, wait for the same event it
2921 * would be waiting for before retrying.
2922 */
2923 if (unlikely(ret == -ENOENT))
606a5020 2924 flush_work(work);
1f1f642e
ON
2925 } while (unlikely(ret < 0));
2926
bbb68dfa
TH
2927 /* tell other tasks trying to grab @work to back off */
2928 mark_work_canceling(work);
2929 local_irq_restore(flags);
2930
606a5020 2931 flush_work(work);
7a22ad75 2932 clear_work_data(work);
1f1f642e
ON
2933 return ret;
2934}
2935
6e84d644 2936/**
401a8d04
TH
2937 * cancel_work_sync - cancel a work and wait for it to finish
2938 * @work: the work to cancel
6e84d644 2939 *
401a8d04
TH
2940 * Cancel @work and wait for its execution to finish. This function
2941 * can be used even if the work re-queues itself or migrates to
2942 * another workqueue. On return from this function, @work is
2943 * guaranteed to be not pending or executing on any CPU.
1f1f642e 2944 *
401a8d04
TH
2945 * cancel_work_sync(&delayed_work->work) must not be used for
2946 * delayed_work's. Use cancel_delayed_work_sync() instead.
6e84d644 2947 *
401a8d04 2948 * The caller must ensure that the workqueue on which @work was last
6e84d644 2949 * queued can't be destroyed before this function returns.
401a8d04
TH
2950 *
2951 * RETURNS:
2952 * %true if @work was pending, %false otherwise.
6e84d644 2953 */
401a8d04 2954bool cancel_work_sync(struct work_struct *work)
6e84d644 2955{
36e227d2 2956 return __cancel_work_timer(work, false);
b89deed3 2957}
28e53bdd 2958EXPORT_SYMBOL_GPL(cancel_work_sync);
b89deed3 2959
6e84d644 2960/**
401a8d04
TH
2961 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2962 * @dwork: the delayed work to flush
6e84d644 2963 *
401a8d04
TH
2964 * Delayed timer is cancelled and the pending work is queued for
2965 * immediate execution. Like flush_work(), this function only
2966 * considers the last queueing instance of @dwork.
1f1f642e 2967 *
401a8d04
TH
2968 * RETURNS:
2969 * %true if flush_work() waited for the work to finish execution,
2970 * %false if it was already idle.
6e84d644 2971 */
401a8d04
TH
2972bool flush_delayed_work(struct delayed_work *dwork)
2973{
8930caba 2974 local_irq_disable();
401a8d04 2975 if (del_timer_sync(&dwork->timer))
60c057bc 2976 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
8930caba 2977 local_irq_enable();
401a8d04
TH
2978 return flush_work(&dwork->work);
2979}
2980EXPORT_SYMBOL(flush_delayed_work);
2981
09383498 2982/**
57b30ae7
TH
2983 * cancel_delayed_work - cancel a delayed work
2984 * @dwork: delayed_work to cancel
09383498 2985 *
57b30ae7
TH
2986 * Kill off a pending delayed_work. Returns %true if @dwork was pending
2987 * and canceled; %false if wasn't pending. Note that the work callback
2988 * function may still be running on return, unless it returns %true and the
2989 * work doesn't re-arm itself. Explicitly flush or use
2990 * cancel_delayed_work_sync() to wait on it.
09383498 2991 *
57b30ae7 2992 * This function is safe to call from any context including IRQ handler.
09383498 2993 */
57b30ae7 2994bool cancel_delayed_work(struct delayed_work *dwork)
09383498 2995{
57b30ae7
TH
2996 unsigned long flags;
2997 int ret;
2998
2999 do {
3000 ret = try_to_grab_pending(&dwork->work, true, &flags);
3001 } while (unlikely(ret == -EAGAIN));
3002
3003 if (unlikely(ret < 0))
3004 return false;
3005
7c3eed5c
TH
3006 set_work_pool_and_clear_pending(&dwork->work,
3007 get_work_pool_id(&dwork->work));
57b30ae7 3008 local_irq_restore(flags);
c0158ca6 3009 return ret;
09383498 3010}
57b30ae7 3011EXPORT_SYMBOL(cancel_delayed_work);
09383498 3012
401a8d04
TH
3013/**
3014 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3015 * @dwork: the delayed work cancel
3016 *
3017 * This is cancel_work_sync() for delayed works.
3018 *
3019 * RETURNS:
3020 * %true if @dwork was pending, %false otherwise.
3021 */
3022bool cancel_delayed_work_sync(struct delayed_work *dwork)
6e84d644 3023{
36e227d2 3024 return __cancel_work_timer(&dwork->work, true);
6e84d644 3025}
f5a421a4 3026EXPORT_SYMBOL(cancel_delayed_work_sync);
1da177e4 3027
b6136773 3028/**
31ddd871 3029 * schedule_on_each_cpu - execute a function synchronously on each online CPU
b6136773 3030 * @func: the function to call
b6136773 3031 *
31ddd871
TH
3032 * schedule_on_each_cpu() executes @func on each online CPU using the
3033 * system workqueue and blocks until all CPUs have completed.
b6136773 3034 * schedule_on_each_cpu() is very slow.
31ddd871
TH
3035 *
3036 * RETURNS:
3037 * 0 on success, -errno on failure.
b6136773 3038 */
65f27f38 3039int schedule_on_each_cpu(work_func_t func)
15316ba8
CL
3040{
3041 int cpu;
38f51568 3042 struct work_struct __percpu *works;
15316ba8 3043
b6136773
AM
3044 works = alloc_percpu(struct work_struct);
3045 if (!works)
15316ba8 3046 return -ENOMEM;
b6136773 3047
93981800
TH
3048 get_online_cpus();
3049
15316ba8 3050 for_each_online_cpu(cpu) {
9bfb1839
IM
3051 struct work_struct *work = per_cpu_ptr(works, cpu);
3052
3053 INIT_WORK(work, func);
b71ab8c2 3054 schedule_work_on(cpu, work);
65a64464 3055 }
93981800
TH
3056
3057 for_each_online_cpu(cpu)
3058 flush_work(per_cpu_ptr(works, cpu));
3059
95402b38 3060 put_online_cpus();
b6136773 3061 free_percpu(works);
15316ba8
CL
3062 return 0;
3063}
3064
eef6a7d5
AS
3065/**
3066 * flush_scheduled_work - ensure that any scheduled work has run to completion.
3067 *
3068 * Forces execution of the kernel-global workqueue and blocks until its
3069 * completion.
3070 *
3071 * Think twice before calling this function! It's very easy to get into
3072 * trouble if you don't take great care. Either of the following situations
3073 * will lead to deadlock:
3074 *
3075 * One of the work items currently on the workqueue needs to acquire
3076 * a lock held by your code or its caller.
3077 *
3078 * Your code is running in the context of a work routine.
3079 *
3080 * They will be detected by lockdep when they occur, but the first might not
3081 * occur very often. It depends on what work items are on the workqueue and
3082 * what locks they need, which you have no control over.
3083 *
3084 * In most situations flushing the entire workqueue is overkill; you merely
3085 * need to know that a particular work item isn't queued and isn't running.
3086 * In such cases you should use cancel_delayed_work_sync() or
3087 * cancel_work_sync() instead.
3088 */
1da177e4
LT
3089void flush_scheduled_work(void)
3090{
d320c038 3091 flush_workqueue(system_wq);
1da177e4 3092}
ae90dd5d 3093EXPORT_SYMBOL(flush_scheduled_work);
1da177e4 3094
1fa44eca
JB
3095/**
3096 * execute_in_process_context - reliably execute the routine with user context
3097 * @fn: the function to execute
1fa44eca
JB
3098 * @ew: guaranteed storage for the execute work structure (must
3099 * be available when the work executes)
3100 *
3101 * Executes the function immediately if process context is available,
3102 * otherwise schedules the function for delayed execution.
3103 *
3104 * Returns: 0 - function was executed
3105 * 1 - function was scheduled for execution
3106 */
65f27f38 3107int execute_in_process_context(work_func_t fn, struct execute_work *ew)
1fa44eca
JB
3108{
3109 if (!in_interrupt()) {
65f27f38 3110 fn(&ew->work);
1fa44eca
JB
3111 return 0;
3112 }
3113
65f27f38 3114 INIT_WORK(&ew->work, fn);
1fa44eca
JB
3115 schedule_work(&ew->work);
3116
3117 return 1;
3118}
3119EXPORT_SYMBOL_GPL(execute_in_process_context);
3120
226223ab
TH
3121#ifdef CONFIG_SYSFS
3122/*
3123 * Workqueues with WQ_SYSFS flag set is visible to userland via
3124 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
3125 * following attributes.
3126 *
3127 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
3128 * max_active RW int : maximum number of in-flight work items
3129 *
3130 * Unbound workqueues have the following extra attributes.
3131 *
3132 * id RO int : the associated pool ID
3133 * nice RW int : nice value of the workers
3134 * cpumask RW mask : bitmask of allowed CPUs for the workers
3135 */
3136struct wq_device {
3137 struct workqueue_struct *wq;
3138 struct device dev;
3139};
3140
3141static struct workqueue_struct *dev_to_wq(struct device *dev)
3142{
3143 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
3144
3145 return wq_dev->wq;
3146}
3147
3148static ssize_t wq_per_cpu_show(struct device *dev,
3149 struct device_attribute *attr, char *buf)
3150{
3151 struct workqueue_struct *wq = dev_to_wq(dev);
3152
3153 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
3154}
3155
3156static ssize_t wq_max_active_show(struct device *dev,
3157 struct device_attribute *attr, char *buf)
3158{
3159 struct workqueue_struct *wq = dev_to_wq(dev);
3160
3161 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
3162}
3163
3164static ssize_t wq_max_active_store(struct device *dev,
3165 struct device_attribute *attr,
3166 const char *buf, size_t count)
3167{
3168 struct workqueue_struct *wq = dev_to_wq(dev);
3169 int val;
3170
3171 if (sscanf(buf, "%d", &val) != 1 || val <= 0)
3172 return -EINVAL;
3173
3174 workqueue_set_max_active(wq, val);
3175 return count;
3176}
3177
3178static struct device_attribute wq_sysfs_attrs[] = {
3179 __ATTR(per_cpu, 0444, wq_per_cpu_show, NULL),
3180 __ATTR(max_active, 0644, wq_max_active_show, wq_max_active_store),
3181 __ATTR_NULL,
3182};
3183
d55262c4
TH
3184static ssize_t wq_pool_ids_show(struct device *dev,
3185 struct device_attribute *attr, char *buf)
226223ab
TH
3186{
3187 struct workqueue_struct *wq = dev_to_wq(dev);
d55262c4
TH
3188 const char *delim = "";
3189 int node, written = 0;
226223ab
TH
3190
3191 rcu_read_lock_sched();
d55262c4
TH
3192 for_each_node(node) {
3193 written += scnprintf(buf + written, PAGE_SIZE - written,
3194 "%s%d:%d", delim, node,
3195 unbound_pwq_by_node(wq, node)->pool->id);
3196 delim = " ";
3197 }
3198 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
226223ab
TH
3199 rcu_read_unlock_sched();
3200
3201 return written;
3202}
3203
3204static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
3205 char *buf)
3206{
3207 struct workqueue_struct *wq = dev_to_wq(dev);
3208 int written;
3209
6029a918
TH
3210 mutex_lock(&wq->mutex);
3211 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
3212 mutex_unlock(&wq->mutex);
226223ab
TH
3213
3214 return written;
3215}
3216
3217/* prepare workqueue_attrs for sysfs store operations */
3218static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
3219{
3220 struct workqueue_attrs *attrs;
3221
3222 attrs = alloc_workqueue_attrs(GFP_KERNEL);
3223 if (!attrs)
3224 return NULL;
3225
6029a918
TH
3226 mutex_lock(&wq->mutex);
3227 copy_workqueue_attrs(attrs, wq->unbound_attrs);
3228 mutex_unlock(&wq->mutex);
226223ab
TH
3229 return attrs;
3230}
3231
3232static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
3233 const char *buf, size_t count)
3234{
3235 struct workqueue_struct *wq = dev_to_wq(dev);
3236 struct workqueue_attrs *attrs;
3237 int ret;
3238
3239 attrs = wq_sysfs_prep_attrs(wq);
3240 if (!attrs)
3241 return -ENOMEM;
3242
3243 if (sscanf(buf, "%d", &attrs->nice) == 1 &&
3244 attrs->nice >= -20 && attrs->nice <= 19)
3245 ret = apply_workqueue_attrs(wq, attrs);
3246 else
3247 ret = -EINVAL;
3248
3249 free_workqueue_attrs(attrs);
3250 return ret ?: count;
3251}
3252
3253static ssize_t wq_cpumask_show(struct device *dev,
3254 struct device_attribute *attr, char *buf)
3255{
3256 struct workqueue_struct *wq = dev_to_wq(dev);
3257 int written;
3258
6029a918
TH
3259 mutex_lock(&wq->mutex);
3260 written = cpumask_scnprintf(buf, PAGE_SIZE, wq->unbound_attrs->cpumask);
3261 mutex_unlock(&wq->mutex);
226223ab
TH
3262
3263 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
3264 return written;
3265}
3266
3267static ssize_t wq_cpumask_store(struct device *dev,
3268 struct device_attribute *attr,
3269 const char *buf, size_t count)
3270{
3271 struct workqueue_struct *wq = dev_to_wq(dev);
3272 struct workqueue_attrs *attrs;
3273 int ret;
3274
3275 attrs = wq_sysfs_prep_attrs(wq);
3276 if (!attrs)
3277 return -ENOMEM;
3278
3279 ret = cpumask_parse(buf, attrs->cpumask);
3280 if (!ret)
3281 ret = apply_workqueue_attrs(wq, attrs);
3282
3283 free_workqueue_attrs(attrs);
3284 return ret ?: count;
3285}
3286
d55262c4
TH
3287static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
3288 char *buf)
3289{
3290 struct workqueue_struct *wq = dev_to_wq(dev);
3291 int written;
3292
3293 mutex_lock(&wq->mutex);
3294 written = scnprintf(buf, PAGE_SIZE, "%d\n",
3295 !wq->unbound_attrs->no_numa);
3296 mutex_unlock(&wq->mutex);
3297
3298 return written;
3299}
3300
3301static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
3302 const char *buf, size_t count)
3303{
3304 struct workqueue_struct *wq = dev_to_wq(dev);
3305 struct workqueue_attrs *attrs;
3306 int v, ret;
3307
3308 attrs = wq_sysfs_prep_attrs(wq);
3309 if (!attrs)
3310 return -ENOMEM;
3311
3312 ret = -EINVAL;
3313 if (sscanf(buf, "%d", &v) == 1) {
3314 attrs->no_numa = !v;
3315 ret = apply_workqueue_attrs(wq, attrs);
3316 }
3317
3318 free_workqueue_attrs(attrs);
3319 return ret ?: count;
3320}
3321
226223ab 3322static struct device_attribute wq_sysfs_unbound_attrs[] = {
d55262c4 3323 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
226223ab
TH
3324 __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
3325 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
d55262c4 3326 __ATTR(numa, 0644, wq_numa_show, wq_numa_store),
226223ab
TH
3327 __ATTR_NULL,
3328};
3329
3330static struct bus_type wq_subsys = {
3331 .name = "workqueue",
3332 .dev_attrs = wq_sysfs_attrs,
3333};
3334
3335static int __init wq_sysfs_init(void)
3336{
3337 return subsys_virtual_register(&wq_subsys, NULL);
3338}
3339core_initcall(wq_sysfs_init);
3340
3341static void wq_device_release(struct device *dev)
3342{
3343 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
3344
3345 kfree(wq_dev);
3346}
3347
3348/**
3349 * workqueue_sysfs_register - make a workqueue visible in sysfs
3350 * @wq: the workqueue to register
3351 *
3352 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
3353 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
3354 * which is the preferred method.
3355 *
3356 * Workqueue user should use this function directly iff it wants to apply
3357 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
3358 * apply_workqueue_attrs() may race against userland updating the
3359 * attributes.
3360 *
3361 * Returns 0 on success, -errno on failure.
3362 */
3363int workqueue_sysfs_register(struct workqueue_struct *wq)
3364{
3365 struct wq_device *wq_dev;
3366 int ret;
3367
3368 /*
3369 * Adjusting max_active or creating new pwqs by applyting
3370 * attributes breaks ordering guarantee. Disallow exposing ordered
3371 * workqueues.
3372 */
3373 if (WARN_ON(wq->flags & __WQ_ORDERED))
3374 return -EINVAL;
3375
3376 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
3377 if (!wq_dev)
3378 return -ENOMEM;
3379
3380 wq_dev->wq = wq;
3381 wq_dev->dev.bus = &wq_subsys;
3382 wq_dev->dev.init_name = wq->name;
3383 wq_dev->dev.release = wq_device_release;
3384
3385 /*
3386 * unbound_attrs are created separately. Suppress uevent until
3387 * everything is ready.
3388 */
3389 dev_set_uevent_suppress(&wq_dev->dev, true);
3390
3391 ret = device_register(&wq_dev->dev);
3392 if (ret) {
3393 kfree(wq_dev);
3394 wq->wq_dev = NULL;
3395 return ret;
3396 }
3397
3398 if (wq->flags & WQ_UNBOUND) {
3399 struct device_attribute *attr;
3400
3401 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
3402 ret = device_create_file(&wq_dev->dev, attr);
3403 if (ret) {
3404 device_unregister(&wq_dev->dev);
3405 wq->wq_dev = NULL;
3406 return ret;
3407 }
3408 }
3409 }
3410
7c36f88c 3411 dev_set_uevent_suppress(&wq_dev->dev, false);
226223ab
TH
3412 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
3413 return 0;
3414}
3415
3416/**
3417 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
3418 * @wq: the workqueue to unregister
3419 *
3420 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
3421 */
3422static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
3423{
3424 struct wq_device *wq_dev = wq->wq_dev;
3425
3426 if (!wq->wq_dev)
3427 return;
3428
3429 wq->wq_dev = NULL;
3430 device_unregister(&wq_dev->dev);
3431}
3432#else /* CONFIG_SYSFS */
3433static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
3434#endif /* CONFIG_SYSFS */
3435
7a4e344c
TH
3436/**
3437 * free_workqueue_attrs - free a workqueue_attrs
3438 * @attrs: workqueue_attrs to free
3439 *
3440 * Undo alloc_workqueue_attrs().
3441 */
3442void free_workqueue_attrs(struct workqueue_attrs *attrs)
3443{
3444 if (attrs) {
3445 free_cpumask_var(attrs->cpumask);
3446 kfree(attrs);
3447 }
3448}
3449
3450/**
3451 * alloc_workqueue_attrs - allocate a workqueue_attrs
3452 * @gfp_mask: allocation mask to use
3453 *
3454 * Allocate a new workqueue_attrs, initialize with default settings and
3455 * return it. Returns NULL on failure.
3456 */
3457struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
3458{
3459 struct workqueue_attrs *attrs;
3460
3461 attrs = kzalloc(sizeof(*attrs), gfp_mask);
3462 if (!attrs)
3463 goto fail;
3464 if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
3465 goto fail;
3466
13e2e556 3467 cpumask_copy(attrs->cpumask, cpu_possible_mask);
7a4e344c
TH
3468 return attrs;
3469fail:
3470 free_workqueue_attrs(attrs);
3471 return NULL;
3472}
3473
29c91e99
TH
3474static void copy_workqueue_attrs(struct workqueue_attrs *to,
3475 const struct workqueue_attrs *from)
3476{
3477 to->nice = from->nice;
3478 cpumask_copy(to->cpumask, from->cpumask);
73b8bd6d
SL
3479 /*
3480 * Unlike hash and equality test, this function doesn't ignore
3481 * ->no_numa as it is used for both pool and wq attrs. Instead,
3482 * get_unbound_pool() explicitly clears ->no_numa after copying.
3483 */
3484 to->no_numa = from->no_numa;
29c91e99
TH
3485}
3486
29c91e99
TH
3487/* hash value of the content of @attr */
3488static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3489{
3490 u32 hash = 0;
3491
3492 hash = jhash_1word(attrs->nice, hash);
13e2e556
TH
3493 hash = jhash(cpumask_bits(attrs->cpumask),
3494 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
29c91e99
TH
3495 return hash;
3496}
3497
3498/* content equality test */
3499static bool wqattrs_equal(const struct workqueue_attrs *a,
3500 const struct workqueue_attrs *b)
3501{
3502 if (a->nice != b->nice)
3503 return false;
3504 if (!cpumask_equal(a->cpumask, b->cpumask))
3505 return false;
3506 return true;
3507}
3508
7a4e344c
TH
3509/**
3510 * init_worker_pool - initialize a newly zalloc'd worker_pool
3511 * @pool: worker_pool to initialize
3512 *
3513 * Initiailize a newly zalloc'd @pool. It also allocates @pool->attrs.
29c91e99
TH
3514 * Returns 0 on success, -errno on failure. Even on failure, all fields
3515 * inside @pool proper are initialized and put_unbound_pool() can be called
3516 * on @pool safely to release it.
7a4e344c
TH
3517 */
3518static int init_worker_pool(struct worker_pool *pool)
4e1a1f9a
TH
3519{
3520 spin_lock_init(&pool->lock);
29c91e99
TH
3521 pool->id = -1;
3522 pool->cpu = -1;
f3f90ad4 3523 pool->node = NUMA_NO_NODE;
4e1a1f9a
TH
3524 pool->flags |= POOL_DISASSOCIATED;
3525 INIT_LIST_HEAD(&pool->worklist);
3526 INIT_LIST_HEAD(&pool->idle_list);
3527 hash_init(pool->busy_hash);
3528
3529 init_timer_deferrable(&pool->idle_timer);
3530 pool->idle_timer.function = idle_worker_timeout;
3531 pool->idle_timer.data = (unsigned long)pool;
3532
3533 setup_timer(&pool->mayday_timer, pool_mayday_timeout,
3534 (unsigned long)pool);
3535
3536 mutex_init(&pool->manager_arb);
bc3a1afc 3537 mutex_init(&pool->manager_mutex);
822d8405 3538 idr_init(&pool->worker_idr);
7a4e344c 3539
29c91e99
TH
3540 INIT_HLIST_NODE(&pool->hash_node);
3541 pool->refcnt = 1;
3542
3543 /* shouldn't fail above this point */
7a4e344c
TH
3544 pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
3545 if (!pool->attrs)
3546 return -ENOMEM;
3547 return 0;
4e1a1f9a
TH
3548}
3549
29c91e99
TH
3550static void rcu_free_pool(struct rcu_head *rcu)
3551{
3552 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3553
822d8405 3554 idr_destroy(&pool->worker_idr);
29c91e99
TH
3555 free_workqueue_attrs(pool->attrs);
3556 kfree(pool);
3557}
3558
3559/**
3560 * put_unbound_pool - put a worker_pool
3561 * @pool: worker_pool to put
3562 *
3563 * Put @pool. If its refcnt reaches zero, it gets destroyed in sched-RCU
c5aa87bb
TH
3564 * safe manner. get_unbound_pool() calls this function on its failure path
3565 * and this function should be able to release pools which went through,
3566 * successfully or not, init_worker_pool().
a892cacc
TH
3567 *
3568 * Should be called with wq_pool_mutex held.
29c91e99
TH
3569 */
3570static void put_unbound_pool(struct worker_pool *pool)
3571{
3572 struct worker *worker;
3573
a892cacc
TH
3574 lockdep_assert_held(&wq_pool_mutex);
3575
3576 if (--pool->refcnt)
29c91e99 3577 return;
29c91e99
TH
3578
3579 /* sanity checks */
3580 if (WARN_ON(!(pool->flags & POOL_DISASSOCIATED)) ||
a892cacc 3581 WARN_ON(!list_empty(&pool->worklist)))
29c91e99 3582 return;
29c91e99
TH
3583
3584 /* release id and unhash */
3585 if (pool->id >= 0)
3586 idr_remove(&worker_pool_idr, pool->id);
3587 hash_del(&pool->hash_node);
3588
c5aa87bb
TH
3589 /*
3590 * Become the manager and destroy all workers. Grabbing
3591 * manager_arb prevents @pool's workers from blocking on
3592 * manager_mutex.
3593 */
29c91e99 3594 mutex_lock(&pool->manager_arb);
cd549687 3595 mutex_lock(&pool->manager_mutex);
29c91e99
TH
3596 spin_lock_irq(&pool->lock);
3597
3598 while ((worker = first_worker(pool)))
3599 destroy_worker(worker);
3600 WARN_ON(pool->nr_workers || pool->nr_idle);
3601
3602 spin_unlock_irq(&pool->lock);
cd549687 3603 mutex_unlock(&pool->manager_mutex);
29c91e99
TH
3604 mutex_unlock(&pool->manager_arb);
3605
3606 /* shut down the timers */
3607 del_timer_sync(&pool->idle_timer);
3608 del_timer_sync(&pool->mayday_timer);
3609
3610 /* sched-RCU protected to allow dereferences from get_work_pool() */
3611 call_rcu_sched(&pool->rcu, rcu_free_pool);
3612}
3613
3614/**
3615 * get_unbound_pool - get a worker_pool with the specified attributes
3616 * @attrs: the attributes of the worker_pool to get
3617 *
3618 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3619 * reference count and return it. If there already is a matching
3620 * worker_pool, it will be used; otherwise, this function attempts to
3621 * create a new one. On failure, returns NULL.
a892cacc
TH
3622 *
3623 * Should be called with wq_pool_mutex held.
29c91e99
TH
3624 */
3625static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3626{
29c91e99
TH
3627 u32 hash = wqattrs_hash(attrs);
3628 struct worker_pool *pool;
f3f90ad4 3629 int node;
29c91e99 3630
a892cacc 3631 lockdep_assert_held(&wq_pool_mutex);
29c91e99
TH
3632
3633 /* do we already have a matching pool? */
29c91e99
TH
3634 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3635 if (wqattrs_equal(pool->attrs, attrs)) {
3636 pool->refcnt++;
3637 goto out_unlock;
3638 }
3639 }
29c91e99
TH
3640
3641 /* nope, create a new one */
3642 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
3643 if (!pool || init_worker_pool(pool) < 0)
3644 goto fail;
3645
12ee4fc6
LJ
3646 if (workqueue_freezing)
3647 pool->flags |= POOL_FREEZING;
3648
8864b4e5 3649 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */
29c91e99
TH
3650 copy_workqueue_attrs(pool->attrs, attrs);
3651
73b8bd6d
SL
3652 /*
3653 * no_numa isn't a worker_pool attribute, always clear it. See
3654 * 'struct workqueue_attrs' comments for detail.
3655 */
3656 pool->attrs->no_numa = false;
3657
f3f90ad4
TH
3658 /* if cpumask is contained inside a NUMA node, we belong to that node */
3659 if (wq_numa_enabled) {
3660 for_each_node(node) {
3661 if (cpumask_subset(pool->attrs->cpumask,
3662 wq_numa_possible_cpumask[node])) {
3663 pool->node = node;
3664 break;
3665 }
3666 }
3667 }
3668
29c91e99
TH
3669 if (worker_pool_assign_id(pool) < 0)
3670 goto fail;
3671
3672 /* create and start the initial worker */
ebf44d16 3673 if (create_and_start_worker(pool) < 0)
29c91e99
TH
3674 goto fail;
3675
29c91e99 3676 /* install */
29c91e99
TH
3677 hash_add(unbound_pool_hash, &pool->hash_node, hash);
3678out_unlock:
29c91e99
TH
3679 return pool;
3680fail:
29c91e99
TH
3681 if (pool)
3682 put_unbound_pool(pool);
3683 return NULL;
3684}
3685
8864b4e5
TH
3686static void rcu_free_pwq(struct rcu_head *rcu)
3687{
3688 kmem_cache_free(pwq_cache,
3689 container_of(rcu, struct pool_workqueue, rcu));
3690}
3691
3692/*
3693 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3694 * and needs to be destroyed.
3695 */
3696static void pwq_unbound_release_workfn(struct work_struct *work)
3697{
3698 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3699 unbound_release_work);
3700 struct workqueue_struct *wq = pwq->wq;
3701 struct worker_pool *pool = pwq->pool;
bc0caf09 3702 bool is_last;
8864b4e5
TH
3703
3704 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3705 return;
3706
75ccf595 3707 /*
3c25a55d 3708 * Unlink @pwq. Synchronization against wq->mutex isn't strictly
75ccf595
TH
3709 * necessary on release but do it anyway. It's easier to verify
3710 * and consistent with the linking path.
3711 */
3c25a55d 3712 mutex_lock(&wq->mutex);
8864b4e5 3713 list_del_rcu(&pwq->pwqs_node);
bc0caf09 3714 is_last = list_empty(&wq->pwqs);
3c25a55d 3715 mutex_unlock(&wq->mutex);
8864b4e5 3716
a892cacc 3717 mutex_lock(&wq_pool_mutex);
8864b4e5 3718 put_unbound_pool(pool);
a892cacc
TH
3719 mutex_unlock(&wq_pool_mutex);
3720
8864b4e5
TH
3721 call_rcu_sched(&pwq->rcu, rcu_free_pwq);
3722
3723 /*
3724 * If we're the last pwq going away, @wq is already dead and no one
3725 * is gonna access it anymore. Free it.
3726 */
6029a918
TH
3727 if (is_last) {
3728 free_workqueue_attrs(wq->unbound_attrs);
8864b4e5 3729 kfree(wq);
6029a918 3730 }
8864b4e5
TH
3731}
3732
0fbd95aa 3733/**
699ce097 3734 * pwq_adjust_max_active - update a pwq's max_active to the current setting
0fbd95aa 3735 * @pwq: target pool_workqueue
0fbd95aa 3736 *
699ce097
TH
3737 * If @pwq isn't freezing, set @pwq->max_active to the associated
3738 * workqueue's saved_max_active and activate delayed work items
3739 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
0fbd95aa 3740 */
699ce097 3741static void pwq_adjust_max_active(struct pool_workqueue *pwq)
0fbd95aa 3742{
699ce097
TH
3743 struct workqueue_struct *wq = pwq->wq;
3744 bool freezable = wq->flags & WQ_FREEZABLE;
3745
3746 /* for @wq->saved_max_active */
a357fc03 3747 lockdep_assert_held(&wq->mutex);
699ce097
TH
3748
3749 /* fast exit for non-freezable wqs */
3750 if (!freezable && pwq->max_active == wq->saved_max_active)
3751 return;
3752
a357fc03 3753 spin_lock_irq(&pwq->pool->lock);
699ce097
TH
3754
3755 if (!freezable || !(pwq->pool->flags & POOL_FREEZING)) {
3756 pwq->max_active = wq->saved_max_active;
0fbd95aa 3757
699ce097
TH
3758 while (!list_empty(&pwq->delayed_works) &&
3759 pwq->nr_active < pwq->max_active)
3760 pwq_activate_first_delayed(pwq);
951a078a
LJ
3761
3762 /*
3763 * Need to kick a worker after thawed or an unbound wq's
3764 * max_active is bumped. It's a slow path. Do it always.
3765 */
3766 wake_up_worker(pwq->pool);
699ce097
TH
3767 } else {
3768 pwq->max_active = 0;
3769 }
3770
a357fc03 3771 spin_unlock_irq(&pwq->pool->lock);
0fbd95aa
TH
3772}
3773
e50aba9a 3774/* initialize newly alloced @pwq which is associated with @wq and @pool */
f147f29e
TH
3775static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3776 struct worker_pool *pool)
d2c1d404
TH
3777{
3778 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3779
e50aba9a
TH
3780 memset(pwq, 0, sizeof(*pwq));
3781
d2c1d404
TH
3782 pwq->pool = pool;
3783 pwq->wq = wq;
3784 pwq->flush_color = -1;
8864b4e5 3785 pwq->refcnt = 1;
d2c1d404 3786 INIT_LIST_HEAD(&pwq->delayed_works);
1befcf30 3787 INIT_LIST_HEAD(&pwq->pwqs_node);
d2c1d404 3788 INIT_LIST_HEAD(&pwq->mayday_node);
8864b4e5 3789 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
f147f29e 3790}
d2c1d404 3791
f147f29e 3792/* sync @pwq with the current state of its associated wq and link it */
1befcf30 3793static void link_pwq(struct pool_workqueue *pwq)
f147f29e
TH
3794{
3795 struct workqueue_struct *wq = pwq->wq;
3796
3797 lockdep_assert_held(&wq->mutex);
75ccf595 3798
1befcf30
TH
3799 /* may be called multiple times, ignore if already linked */
3800 if (!list_empty(&pwq->pwqs_node))
3801 return;
3802
983ca25e
TH
3803 /*
3804 * Set the matching work_color. This is synchronized with
3c25a55d 3805 * wq->mutex to avoid confusing flush_workqueue().
983ca25e 3806 */
75ccf595 3807 pwq->work_color = wq->work_color;
983ca25e
TH
3808
3809 /* sync max_active to the current setting */
3810 pwq_adjust_max_active(pwq);
3811
3812 /* link in @pwq */
9e8cd2f5 3813 list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
f147f29e 3814}
a357fc03 3815
f147f29e
TH
3816/* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3817static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3818 const struct workqueue_attrs *attrs)
3819{
3820 struct worker_pool *pool;
3821 struct pool_workqueue *pwq;
3822
3823 lockdep_assert_held(&wq_pool_mutex);
3824
3825 pool = get_unbound_pool(attrs);
3826 if (!pool)
3827 return NULL;
3828
e50aba9a 3829 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
f147f29e
TH
3830 if (!pwq) {
3831 put_unbound_pool(pool);
3832 return NULL;
df2d5ae4 3833 }
6029a918 3834
f147f29e
TH
3835 init_pwq(pwq, wq, pool);
3836 return pwq;
d2c1d404
TH
3837}
3838
4c16bd32
TH
3839/* undo alloc_unbound_pwq(), used only in the error path */
3840static void free_unbound_pwq(struct pool_workqueue *pwq)
3841{
3842 lockdep_assert_held(&wq_pool_mutex);
3843
3844 if (pwq) {
3845 put_unbound_pool(pwq->pool);
cece95df 3846 kmem_cache_free(pwq_cache, pwq);
4c16bd32
TH
3847 }
3848}
3849
3850/**
3851 * wq_calc_node_mask - calculate a wq_attrs' cpumask for the specified node
3852 * @attrs: the wq_attrs of interest
3853 * @node: the target NUMA node
3854 * @cpu_going_down: if >= 0, the CPU to consider as offline
3855 * @cpumask: outarg, the resulting cpumask
3856 *
3857 * Calculate the cpumask a workqueue with @attrs should use on @node. If
3858 * @cpu_going_down is >= 0, that cpu is considered offline during
3859 * calculation. The result is stored in @cpumask. This function returns
3860 * %true if the resulting @cpumask is different from @attrs->cpumask,
3861 * %false if equal.
3862 *
3863 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If
3864 * enabled and @node has online CPUs requested by @attrs, the returned
3865 * cpumask is the intersection of the possible CPUs of @node and
3866 * @attrs->cpumask.
3867 *
3868 * The caller is responsible for ensuring that the cpumask of @node stays
3869 * stable.
3870 */
3871static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3872 int cpu_going_down, cpumask_t *cpumask)
3873{
d55262c4 3874 if (!wq_numa_enabled || attrs->no_numa)
4c16bd32
TH
3875 goto use_dfl;
3876
3877 /* does @node have any online CPUs @attrs wants? */
3878 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3879 if (cpu_going_down >= 0)
3880 cpumask_clear_cpu(cpu_going_down, cpumask);
3881
3882 if (cpumask_empty(cpumask))
3883 goto use_dfl;
3884
3885 /* yeap, return possible CPUs in @node that @attrs wants */
3886 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3887 return !cpumask_equal(cpumask, attrs->cpumask);
3888
3889use_dfl:
3890 cpumask_copy(cpumask, attrs->cpumask);
3891 return false;
3892}
3893
1befcf30
TH
3894/* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3895static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3896 int node,
3897 struct pool_workqueue *pwq)
3898{
3899 struct pool_workqueue *old_pwq;
3900
3901 lockdep_assert_held(&wq->mutex);
3902
3903 /* link_pwq() can handle duplicate calls */
3904 link_pwq(pwq);
3905
3906 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3907 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3908 return old_pwq;
3909}
3910
9e8cd2f5
TH
3911/**
3912 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
3913 * @wq: the target workqueue
3914 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
3915 *
4c16bd32
TH
3916 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA
3917 * machines, this function maps a separate pwq to each NUMA node with
3918 * possibles CPUs in @attrs->cpumask so that work items are affine to the
3919 * NUMA node it was issued on. Older pwqs are released as in-flight work
3920 * items finish. Note that a work item which repeatedly requeues itself
3921 * back-to-back will stay on its current pwq.
9e8cd2f5
TH
3922 *
3923 * Performs GFP_KERNEL allocations. Returns 0 on success and -errno on
3924 * failure.
3925 */
3926int apply_workqueue_attrs(struct workqueue_struct *wq,
3927 const struct workqueue_attrs *attrs)
3928{
4c16bd32
TH
3929 struct workqueue_attrs *new_attrs, *tmp_attrs;
3930 struct pool_workqueue **pwq_tbl, *dfl_pwq;
f147f29e 3931 int node, ret;
9e8cd2f5 3932
8719dcea 3933 /* only unbound workqueues can change attributes */
9e8cd2f5
TH
3934 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3935 return -EINVAL;
3936
8719dcea
TH
3937 /* creating multiple pwqs breaks ordering guarantee */
3938 if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
3939 return -EINVAL;
3940
4c16bd32 3941 pwq_tbl = kzalloc(wq_numa_tbl_len * sizeof(pwq_tbl[0]), GFP_KERNEL);
13e2e556 3942 new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
4c16bd32
TH
3943 tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3944 if (!pwq_tbl || !new_attrs || !tmp_attrs)
13e2e556
TH
3945 goto enomem;
3946
4c16bd32 3947 /* make a copy of @attrs and sanitize it */
13e2e556
TH
3948 copy_workqueue_attrs(new_attrs, attrs);
3949 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
3950
4c16bd32
TH
3951 /*
3952 * We may create multiple pwqs with differing cpumasks. Make a
3953 * copy of @new_attrs which will be modified and used to obtain
3954 * pools.
3955 */
3956 copy_workqueue_attrs(tmp_attrs, new_attrs);
3957
3958 /*
3959 * CPUs should stay stable across pwq creations and installations.
3960 * Pin CPUs, determine the target cpumask for each node and create
3961 * pwqs accordingly.
3962 */
3963 get_online_cpus();
3964
a892cacc 3965 mutex_lock(&wq_pool_mutex);
4c16bd32
TH
3966
3967 /*
3968 * If something goes wrong during CPU up/down, we'll fall back to
3969 * the default pwq covering whole @attrs->cpumask. Always create
3970 * it even if we don't use it immediately.
3971 */
3972 dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3973 if (!dfl_pwq)
3974 goto enomem_pwq;
3975
3976 for_each_node(node) {
3977 if (wq_calc_node_cpumask(attrs, node, -1, tmp_attrs->cpumask)) {
3978 pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3979 if (!pwq_tbl[node])
3980 goto enomem_pwq;
3981 } else {
3982 dfl_pwq->refcnt++;
3983 pwq_tbl[node] = dfl_pwq;
3984 }
3985 }
3986
f147f29e 3987 mutex_unlock(&wq_pool_mutex);
9e8cd2f5 3988
4c16bd32 3989 /* all pwqs have been created successfully, let's install'em */
f147f29e 3990 mutex_lock(&wq->mutex);
a892cacc 3991
f147f29e 3992 copy_workqueue_attrs(wq->unbound_attrs, new_attrs);
4c16bd32
TH
3993
3994 /* save the previous pwq and install the new one */
f147f29e 3995 for_each_node(node)
4c16bd32
TH
3996 pwq_tbl[node] = numa_pwq_tbl_install(wq, node, pwq_tbl[node]);
3997
3998 /* @dfl_pwq might not have been used, ensure it's linked */
3999 link_pwq(dfl_pwq);
4000 swap(wq->dfl_pwq, dfl_pwq);
f147f29e
TH
4001
4002 mutex_unlock(&wq->mutex);
9e8cd2f5 4003
4c16bd32
TH
4004 /* put the old pwqs */
4005 for_each_node(node)
4006 put_pwq_unlocked(pwq_tbl[node]);
4007 put_pwq_unlocked(dfl_pwq);
4008
4009 put_online_cpus();
4862125b
TH
4010 ret = 0;
4011 /* fall through */
4012out_free:
4c16bd32 4013 free_workqueue_attrs(tmp_attrs);
4862125b 4014 free_workqueue_attrs(new_attrs);
4c16bd32 4015 kfree(pwq_tbl);
4862125b 4016 return ret;
13e2e556 4017
4c16bd32
TH
4018enomem_pwq:
4019 free_unbound_pwq(dfl_pwq);
4020 for_each_node(node)
4021 if (pwq_tbl && pwq_tbl[node] != dfl_pwq)
4022 free_unbound_pwq(pwq_tbl[node]);
4023 mutex_unlock(&wq_pool_mutex);
4024 put_online_cpus();
13e2e556 4025enomem:
4862125b
TH
4026 ret = -ENOMEM;
4027 goto out_free;
9e8cd2f5
TH
4028}
4029
4c16bd32
TH
4030/**
4031 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
4032 * @wq: the target workqueue
4033 * @cpu: the CPU coming up or going down
4034 * @online: whether @cpu is coming up or going down
4035 *
4036 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
4037 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of
4038 * @wq accordingly.
4039 *
4040 * If NUMA affinity can't be adjusted due to memory allocation failure, it
4041 * falls back to @wq->dfl_pwq which may not be optimal but is always
4042 * correct.
4043 *
4044 * Note that when the last allowed CPU of a NUMA node goes offline for a
4045 * workqueue with a cpumask spanning multiple nodes, the workers which were
4046 * already executing the work items for the workqueue will lose their CPU
4047 * affinity and may execute on any CPU. This is similar to how per-cpu
4048 * workqueues behave on CPU_DOWN. If a workqueue user wants strict
4049 * affinity, it's the user's responsibility to flush the work item from
4050 * CPU_DOWN_PREPARE.
4051 */
4052static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
4053 bool online)
4054{
4055 int node = cpu_to_node(cpu);
4056 int cpu_off = online ? -1 : cpu;
4057 struct pool_workqueue *old_pwq = NULL, *pwq;
4058 struct workqueue_attrs *target_attrs;
4059 cpumask_t *cpumask;
4060
4061 lockdep_assert_held(&wq_pool_mutex);
4062
4063 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND))
4064 return;
4065
4066 /*
4067 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
4068 * Let's use a preallocated one. The following buf is protected by
4069 * CPU hotplug exclusion.
4070 */
4071 target_attrs = wq_update_unbound_numa_attrs_buf;
4072 cpumask = target_attrs->cpumask;
4073
4074 mutex_lock(&wq->mutex);
d55262c4
TH
4075 if (wq->unbound_attrs->no_numa)
4076 goto out_unlock;
4c16bd32
TH
4077
4078 copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
4079 pwq = unbound_pwq_by_node(wq, node);
4080
4081 /*
4082 * Let's determine what needs to be done. If the target cpumask is
4083 * different from wq's, we need to compare it to @pwq's and create
4084 * a new one if they don't match. If the target cpumask equals
4085 * wq's, the default pwq should be used. If @pwq is already the
4086 * default one, nothing to do; otherwise, install the default one.
4087 */
4088 if (wq_calc_node_cpumask(wq->unbound_attrs, node, cpu_off, cpumask)) {
4089 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
4090 goto out_unlock;
4091 } else {
4092 if (pwq == wq->dfl_pwq)
4093 goto out_unlock;
4094 else
4095 goto use_dfl_pwq;
4096 }
4097
4098 mutex_unlock(&wq->mutex);
4099
4100 /* create a new pwq */
4101 pwq = alloc_unbound_pwq(wq, target_attrs);
4102 if (!pwq) {
4103 pr_warning("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
4104 wq->name);
55a3dfcc
DY
4105 mutex_lock(&wq->mutex);
4106 goto use_dfl_pwq;
4c16bd32
TH
4107 }
4108
4109 /*
4110 * Install the new pwq. As this function is called only from CPU
4111 * hotplug callbacks and applying a new attrs is wrapped with
4112 * get/put_online_cpus(), @wq->unbound_attrs couldn't have changed
4113 * inbetween.
4114 */
4115 mutex_lock(&wq->mutex);
4116 old_pwq = numa_pwq_tbl_install(wq, node, pwq);
4117 goto out_unlock;
4118
4119use_dfl_pwq:
4120 spin_lock_irq(&wq->dfl_pwq->pool->lock);
4121 get_pwq(wq->dfl_pwq);
4122 spin_unlock_irq(&wq->dfl_pwq->pool->lock);
4123 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
4124out_unlock:
4125 mutex_unlock(&wq->mutex);
4126 put_pwq_unlocked(old_pwq);
4127}
4128
30cdf249 4129static int alloc_and_link_pwqs(struct workqueue_struct *wq)
0f900049 4130{
49e3cf44 4131 bool highpri = wq->flags & WQ_HIGHPRI;
ced4ac92 4132 int cpu, ret;
30cdf249
TH
4133
4134 if (!(wq->flags & WQ_UNBOUND)) {
420c0ddb
TH
4135 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
4136 if (!wq->cpu_pwqs)
30cdf249
TH
4137 return -ENOMEM;
4138
4139 for_each_possible_cpu(cpu) {
7fb98ea7
TH
4140 struct pool_workqueue *pwq =
4141 per_cpu_ptr(wq->cpu_pwqs, cpu);
7a62c2c8 4142 struct worker_pool *cpu_pools =
f02ae73a 4143 per_cpu(cpu_worker_pools, cpu);
f3421797 4144
f147f29e
TH
4145 init_pwq(pwq, wq, &cpu_pools[highpri]);
4146
4147 mutex_lock(&wq->mutex);
1befcf30 4148 link_pwq(pwq);
f147f29e 4149 mutex_unlock(&wq->mutex);
30cdf249 4150 }
9e8cd2f5 4151 return 0;
ced4ac92
TH
4152 } else if (wq->flags & __WQ_ORDERED) {
4153 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
4154 /* there should only be single pwq for ordering guarantee */
4155 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
4156 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
4157 "ordering guarantee broken for workqueue %s\n", wq->name);
4158 return ret;
30cdf249 4159 } else {
9e8cd2f5 4160 return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
30cdf249 4161 }
0f900049
TH
4162}
4163
f3421797
TH
4164static int wq_clamp_max_active(int max_active, unsigned int flags,
4165 const char *name)
b71ab8c2 4166{
f3421797
TH
4167 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
4168
4169 if (max_active < 1 || max_active > lim)
044c782c
VI
4170 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
4171 max_active, name, 1, lim);
b71ab8c2 4172
f3421797 4173 return clamp_val(max_active, 1, lim);
b71ab8c2
TH
4174}
4175
b196be89 4176struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
d320c038
TH
4177 unsigned int flags,
4178 int max_active,
4179 struct lock_class_key *key,
b196be89 4180 const char *lock_name, ...)
1da177e4 4181{
df2d5ae4 4182 size_t tbl_size = 0;
ecf6881f 4183 va_list args;
1da177e4 4184 struct workqueue_struct *wq;
49e3cf44 4185 struct pool_workqueue *pwq;
b196be89 4186
ecf6881f 4187 /* allocate wq and format name */
df2d5ae4
TH
4188 if (flags & WQ_UNBOUND)
4189 tbl_size = wq_numa_tbl_len * sizeof(wq->numa_pwq_tbl[0]);
4190
4191 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
b196be89 4192 if (!wq)
d2c1d404 4193 return NULL;
b196be89 4194
6029a918
TH
4195 if (flags & WQ_UNBOUND) {
4196 wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
4197 if (!wq->unbound_attrs)
4198 goto err_free_wq;
4199 }
4200
ecf6881f
TH
4201 va_start(args, lock_name);
4202 vsnprintf(wq->name, sizeof(wq->name), fmt, args);
b196be89 4203 va_end(args);
1da177e4 4204
d320c038 4205 max_active = max_active ?: WQ_DFL_ACTIVE;
b196be89 4206 max_active = wq_clamp_max_active(max_active, flags, wq->name);
3af24433 4207
b196be89 4208 /* init wq */
97e37d7b 4209 wq->flags = flags;
a0a1a5fd 4210 wq->saved_max_active = max_active;
3c25a55d 4211 mutex_init(&wq->mutex);
112202d9 4212 atomic_set(&wq->nr_pwqs_to_flush, 0);
30cdf249 4213 INIT_LIST_HEAD(&wq->pwqs);
73f53c4a
TH
4214 INIT_LIST_HEAD(&wq->flusher_queue);
4215 INIT_LIST_HEAD(&wq->flusher_overflow);
493a1724 4216 INIT_LIST_HEAD(&wq->maydays);
502ca9d8 4217
eb13ba87 4218 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
cce1a165 4219 INIT_LIST_HEAD(&wq->list);
3af24433 4220
30cdf249 4221 if (alloc_and_link_pwqs(wq) < 0)
d2c1d404 4222 goto err_free_wq;
1537663f 4223
493008a8
TH
4224 /*
4225 * Workqueues which may be used during memory reclaim should
4226 * have a rescuer to guarantee forward progress.
4227 */
4228 if (flags & WQ_MEM_RECLAIM) {
e22bee78
TH
4229 struct worker *rescuer;
4230
d2c1d404 4231 rescuer = alloc_worker();
e22bee78 4232 if (!rescuer)
d2c1d404 4233 goto err_destroy;
e22bee78 4234
111c225a
TH
4235 rescuer->rescue_wq = wq;
4236 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
b196be89 4237 wq->name);
d2c1d404
TH
4238 if (IS_ERR(rescuer->task)) {
4239 kfree(rescuer);
4240 goto err_destroy;
4241 }
e22bee78 4242
d2c1d404 4243 wq->rescuer = rescuer;
14a40ffc 4244 rescuer->task->flags |= PF_NO_SETAFFINITY;
e22bee78 4245 wake_up_process(rescuer->task);
3af24433
ON
4246 }
4247
226223ab
TH
4248 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4249 goto err_destroy;
4250
a0a1a5fd 4251 /*
68e13a67
LJ
4252 * wq_pool_mutex protects global freeze state and workqueues list.
4253 * Grab it, adjust max_active and add the new @wq to workqueues
4254 * list.
a0a1a5fd 4255 */
68e13a67 4256 mutex_lock(&wq_pool_mutex);
a0a1a5fd 4257
a357fc03 4258 mutex_lock(&wq->mutex);
699ce097
TH
4259 for_each_pwq(pwq, wq)
4260 pwq_adjust_max_active(pwq);
a357fc03 4261 mutex_unlock(&wq->mutex);
a0a1a5fd 4262
1537663f 4263 list_add(&wq->list, &workqueues);
a0a1a5fd 4264
68e13a67 4265 mutex_unlock(&wq_pool_mutex);
1537663f 4266
3af24433 4267 return wq;
d2c1d404
TH
4268
4269err_free_wq:
6029a918 4270 free_workqueue_attrs(wq->unbound_attrs);
d2c1d404
TH
4271 kfree(wq);
4272 return NULL;
4273err_destroy:
4274 destroy_workqueue(wq);
4690c4ab 4275 return NULL;
3af24433 4276}
d320c038 4277EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
1da177e4 4278
3af24433
ON
4279/**
4280 * destroy_workqueue - safely terminate a workqueue
4281 * @wq: target workqueue
4282 *
4283 * Safely destroy a workqueue. All work currently pending will be done first.
4284 */
4285void destroy_workqueue(struct workqueue_struct *wq)
4286{
49e3cf44 4287 struct pool_workqueue *pwq;
4c16bd32 4288 int node;
3af24433 4289
9c5a2ba7
TH
4290 /* drain it before proceeding with destruction */
4291 drain_workqueue(wq);
c8efcc25 4292
6183c009 4293 /* sanity checks */
b09f4fd3 4294 mutex_lock(&wq->mutex);
49e3cf44 4295 for_each_pwq(pwq, wq) {
6183c009
TH
4296 int i;
4297
76af4d93
TH
4298 for (i = 0; i < WORK_NR_COLORS; i++) {
4299 if (WARN_ON(pwq->nr_in_flight[i])) {
b09f4fd3 4300 mutex_unlock(&wq->mutex);
6183c009 4301 return;
76af4d93
TH
4302 }
4303 }
4304
5c529597 4305 if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
8864b4e5 4306 WARN_ON(pwq->nr_active) ||
76af4d93 4307 WARN_ON(!list_empty(&pwq->delayed_works))) {
b09f4fd3 4308 mutex_unlock(&wq->mutex);
6183c009 4309 return;
76af4d93 4310 }
6183c009 4311 }
b09f4fd3 4312 mutex_unlock(&wq->mutex);
6183c009 4313
a0a1a5fd
TH
4314 /*
4315 * wq list is used to freeze wq, remove from list after
4316 * flushing is complete in case freeze races us.
4317 */
68e13a67 4318 mutex_lock(&wq_pool_mutex);
d2c1d404 4319 list_del_init(&wq->list);
68e13a67 4320 mutex_unlock(&wq_pool_mutex);
3af24433 4321
226223ab
TH
4322 workqueue_sysfs_unregister(wq);
4323
493008a8 4324 if (wq->rescuer) {
e22bee78 4325 kthread_stop(wq->rescuer->task);
8d9df9f0 4326 kfree(wq->rescuer);
493008a8 4327 wq->rescuer = NULL;
e22bee78
TH
4328 }
4329
8864b4e5
TH
4330 if (!(wq->flags & WQ_UNBOUND)) {
4331 /*
4332 * The base ref is never dropped on per-cpu pwqs. Directly
4333 * free the pwqs and wq.
4334 */
4335 free_percpu(wq->cpu_pwqs);
4336 kfree(wq);
4337 } else {
4338 /*
4339 * We're the sole accessor of @wq at this point. Directly
4c16bd32
TH
4340 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4341 * @wq will be freed when the last pwq is released.
8864b4e5 4342 */
4c16bd32
TH
4343 for_each_node(node) {
4344 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4345 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4346 put_pwq_unlocked(pwq);
4347 }
4348
4349 /*
4350 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is
4351 * put. Don't access it afterwards.
4352 */
4353 pwq = wq->dfl_pwq;
4354 wq->dfl_pwq = NULL;
dce90d47 4355 put_pwq_unlocked(pwq);
29c91e99 4356 }
3af24433
ON
4357}
4358EXPORT_SYMBOL_GPL(destroy_workqueue);
4359
dcd989cb
TH
4360/**
4361 * workqueue_set_max_active - adjust max_active of a workqueue
4362 * @wq: target workqueue
4363 * @max_active: new max_active value.
4364 *
4365 * Set max_active of @wq to @max_active.
4366 *
4367 * CONTEXT:
4368 * Don't call from IRQ context.
4369 */
4370void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4371{
49e3cf44 4372 struct pool_workqueue *pwq;
dcd989cb 4373
8719dcea
TH
4374 /* disallow meddling with max_active for ordered workqueues */
4375 if (WARN_ON(wq->flags & __WQ_ORDERED))
4376 return;
4377
f3421797 4378 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
dcd989cb 4379
a357fc03 4380 mutex_lock(&wq->mutex);
dcd989cb
TH
4381
4382 wq->saved_max_active = max_active;
4383
699ce097
TH
4384 for_each_pwq(pwq, wq)
4385 pwq_adjust_max_active(pwq);
93981800 4386
a357fc03 4387 mutex_unlock(&wq->mutex);
15316ba8 4388}
dcd989cb 4389EXPORT_SYMBOL_GPL(workqueue_set_max_active);
15316ba8 4390
e6267616
TH
4391/**
4392 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4393 *
4394 * Determine whether %current is a workqueue rescuer. Can be used from
4395 * work functions to determine whether it's being run off the rescuer task.
4396 */
4397bool current_is_workqueue_rescuer(void)
4398{
4399 struct worker *worker = current_wq_worker();
4400
6a092dfd 4401 return worker && worker->rescue_wq;
e6267616
TH
4402}
4403
eef6a7d5 4404/**
dcd989cb
TH
4405 * workqueue_congested - test whether a workqueue is congested
4406 * @cpu: CPU in question
4407 * @wq: target workqueue
eef6a7d5 4408 *
dcd989cb
TH
4409 * Test whether @wq's cpu workqueue for @cpu is congested. There is
4410 * no synchronization around this function and the test result is
4411 * unreliable and only useful as advisory hints or for debugging.
eef6a7d5 4412 *
d3251859
TH
4413 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4414 * Note that both per-cpu and unbound workqueues may be associated with
4415 * multiple pool_workqueues which have separate congested states. A
4416 * workqueue being congested on one CPU doesn't mean the workqueue is also
4417 * contested on other CPUs / NUMA nodes.
4418 *
dcd989cb
TH
4419 * RETURNS:
4420 * %true if congested, %false otherwise.
eef6a7d5 4421 */
d84ff051 4422bool workqueue_congested(int cpu, struct workqueue_struct *wq)
1da177e4 4423{
7fb98ea7 4424 struct pool_workqueue *pwq;
76af4d93
TH
4425 bool ret;
4426
88109453 4427 rcu_read_lock_sched();
7fb98ea7 4428
d3251859
TH
4429 if (cpu == WORK_CPU_UNBOUND)
4430 cpu = smp_processor_id();
4431
7fb98ea7
TH
4432 if (!(wq->flags & WQ_UNBOUND))
4433 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4434 else
df2d5ae4 4435 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
dcd989cb 4436
76af4d93 4437 ret = !list_empty(&pwq->delayed_works);
88109453 4438 rcu_read_unlock_sched();
76af4d93
TH
4439
4440 return ret;
1da177e4 4441}
dcd989cb 4442EXPORT_SYMBOL_GPL(workqueue_congested);
1da177e4 4443
dcd989cb
TH
4444/**
4445 * work_busy - test whether a work is currently pending or running
4446 * @work: the work to be tested
4447 *
4448 * Test whether @work is currently pending or running. There is no
4449 * synchronization around this function and the test result is
4450 * unreliable and only useful as advisory hints or for debugging.
dcd989cb
TH
4451 *
4452 * RETURNS:
4453 * OR'd bitmask of WORK_BUSY_* bits.
4454 */
4455unsigned int work_busy(struct work_struct *work)
1da177e4 4456{
fa1b54e6 4457 struct worker_pool *pool;
dcd989cb
TH
4458 unsigned long flags;
4459 unsigned int ret = 0;
1da177e4 4460
dcd989cb
TH
4461 if (work_pending(work))
4462 ret |= WORK_BUSY_PENDING;
1da177e4 4463
fa1b54e6
TH
4464 local_irq_save(flags);
4465 pool = get_work_pool(work);
038366c5 4466 if (pool) {
fa1b54e6 4467 spin_lock(&pool->lock);
038366c5
LJ
4468 if (find_worker_executing_work(pool, work))
4469 ret |= WORK_BUSY_RUNNING;
fa1b54e6 4470 spin_unlock(&pool->lock);
038366c5 4471 }
fa1b54e6 4472 local_irq_restore(flags);
1da177e4 4473
dcd989cb 4474 return ret;
1da177e4 4475}
dcd989cb 4476EXPORT_SYMBOL_GPL(work_busy);
1da177e4 4477
3d1cb205
TH
4478/**
4479 * set_worker_desc - set description for the current work item
4480 * @fmt: printf-style format string
4481 * @...: arguments for the format string
4482 *
4483 * This function can be called by a running work function to describe what
4484 * the work item is about. If the worker task gets dumped, this
4485 * information will be printed out together to help debugging. The
4486 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4487 */
4488void set_worker_desc(const char *fmt, ...)
4489{
4490 struct worker *worker = current_wq_worker();
4491 va_list args;
4492
4493 if (worker) {
4494 va_start(args, fmt);
4495 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4496 va_end(args);
4497 worker->desc_valid = true;
4498 }
4499}
4500
4501/**
4502 * print_worker_info - print out worker information and description
4503 * @log_lvl: the log level to use when printing
4504 * @task: target task
4505 *
4506 * If @task is a worker and currently executing a work item, print out the
4507 * name of the workqueue being serviced and worker description set with
4508 * set_worker_desc() by the currently executing work item.
4509 *
4510 * This function can be safely called on any task as long as the
4511 * task_struct itself is accessible. While safe, this function isn't
4512 * synchronized and may print out mixups or garbages of limited length.
4513 */
4514void print_worker_info(const char *log_lvl, struct task_struct *task)
4515{
4516 work_func_t *fn = NULL;
4517 char name[WQ_NAME_LEN] = { };
4518 char desc[WORKER_DESC_LEN] = { };
4519 struct pool_workqueue *pwq = NULL;
4520 struct workqueue_struct *wq = NULL;
4521 bool desc_valid = false;
4522 struct worker *worker;
4523
4524 if (!(task->flags & PF_WQ_WORKER))
4525 return;
4526
4527 /*
4528 * This function is called without any synchronization and @task
4529 * could be in any state. Be careful with dereferences.
4530 */
4531 worker = probe_kthread_data(task);
4532
4533 /*
4534 * Carefully copy the associated workqueue's workfn and name. Keep
4535 * the original last '\0' in case the original contains garbage.
4536 */
4537 probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
4538 probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
4539 probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
4540 probe_kernel_read(name, wq->name, sizeof(name) - 1);
4541
4542 /* copy worker description */
4543 probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
4544 if (desc_valid)
4545 probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
4546
4547 if (fn || name[0] || desc[0]) {
4548 printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
4549 if (desc[0])
4550 pr_cont(" (%s)", desc);
4551 pr_cont("\n");
4552 }
4553}
4554
db7bccf4
TH
4555/*
4556 * CPU hotplug.
4557 *
e22bee78 4558 * There are two challenges in supporting CPU hotplug. Firstly, there
112202d9 4559 * are a lot of assumptions on strong associations among work, pwq and
706026c2 4560 * pool which make migrating pending and scheduled works very
e22bee78 4561 * difficult to implement without impacting hot paths. Secondly,
94cf58bb 4562 * worker pools serve mix of short, long and very long running works making
e22bee78
TH
4563 * blocked draining impractical.
4564 *
24647570 4565 * This is solved by allowing the pools to be disassociated from the CPU
628c78e7
TH
4566 * running as an unbound one and allowing it to be reattached later if the
4567 * cpu comes back online.
db7bccf4 4568 */
1da177e4 4569
706026c2 4570static void wq_unbind_fn(struct work_struct *work)
3af24433 4571{
38db41d9 4572 int cpu = smp_processor_id();
4ce62e9e 4573 struct worker_pool *pool;
db7bccf4 4574 struct worker *worker;
a9ab775b 4575 int wi;
3af24433 4576
f02ae73a 4577 for_each_cpu_worker_pool(pool, cpu) {
6183c009 4578 WARN_ON_ONCE(cpu != smp_processor_id());
db7bccf4 4579
bc3a1afc 4580 mutex_lock(&pool->manager_mutex);
94cf58bb 4581 spin_lock_irq(&pool->lock);
3af24433 4582
94cf58bb 4583 /*
bc3a1afc 4584 * We've blocked all manager operations. Make all workers
94cf58bb
TH
4585 * unbound and set DISASSOCIATED. Before this, all workers
4586 * except for the ones which are still executing works from
4587 * before the last CPU down must be on the cpu. After
4588 * this, they may become diasporas.
4589 */
a9ab775b 4590 for_each_pool_worker(worker, wi, pool)
c9e7cf27 4591 worker->flags |= WORKER_UNBOUND;
06ba38a9 4592
24647570 4593 pool->flags |= POOL_DISASSOCIATED;
f2d5a0ee 4594
94cf58bb 4595 spin_unlock_irq(&pool->lock);
bc3a1afc 4596 mutex_unlock(&pool->manager_mutex);
628c78e7 4597
eb283428
LJ
4598 /*
4599 * Call schedule() so that we cross rq->lock and thus can
4600 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4601 * This is necessary as scheduler callbacks may be invoked
4602 * from other cpus.
4603 */
4604 schedule();
06ba38a9 4605
eb283428
LJ
4606 /*
4607 * Sched callbacks are disabled now. Zap nr_running.
4608 * After this, nr_running stays zero and need_more_worker()
4609 * and keep_working() are always true as long as the
4610 * worklist is not empty. This pool now behaves as an
4611 * unbound (in terms of concurrency management) pool which
4612 * are served by workers tied to the pool.
4613 */
e19e397a 4614 atomic_set(&pool->nr_running, 0);
eb283428
LJ
4615
4616 /*
4617 * With concurrency management just turned off, a busy
4618 * worker blocking could lead to lengthy stalls. Kick off
4619 * unbound chain execution of currently pending work items.
4620 */
4621 spin_lock_irq(&pool->lock);
4622 wake_up_worker(pool);
4623 spin_unlock_irq(&pool->lock);
4624 }
3af24433 4625}
3af24433 4626
bd7c089e
TH
4627/**
4628 * rebind_workers - rebind all workers of a pool to the associated CPU
4629 * @pool: pool of interest
4630 *
a9ab775b 4631 * @pool->cpu is coming online. Rebind all workers to the CPU.
bd7c089e
TH
4632 */
4633static void rebind_workers(struct worker_pool *pool)
4634{
a9ab775b
TH
4635 struct worker *worker;
4636 int wi;
bd7c089e
TH
4637
4638 lockdep_assert_held(&pool->manager_mutex);
bd7c089e 4639
a9ab775b
TH
4640 /*
4641 * Restore CPU affinity of all workers. As all idle workers should
4642 * be on the run-queue of the associated CPU before any local
4643 * wake-ups for concurrency management happen, restore CPU affinty
4644 * of all workers first and then clear UNBOUND. As we're called
4645 * from CPU_ONLINE, the following shouldn't fail.
4646 */
4647 for_each_pool_worker(worker, wi, pool)
4648 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4649 pool->attrs->cpumask) < 0);
bd7c089e 4650
a9ab775b 4651 spin_lock_irq(&pool->lock);
bd7c089e 4652
a9ab775b
TH
4653 for_each_pool_worker(worker, wi, pool) {
4654 unsigned int worker_flags = worker->flags;
bd7c089e
TH
4655
4656 /*
a9ab775b
TH
4657 * A bound idle worker should actually be on the runqueue
4658 * of the associated CPU for local wake-ups targeting it to
4659 * work. Kick all idle workers so that they migrate to the
4660 * associated CPU. Doing this in the same loop as
4661 * replacing UNBOUND with REBOUND is safe as no worker will
4662 * be bound before @pool->lock is released.
bd7c089e 4663 */
a9ab775b
TH
4664 if (worker_flags & WORKER_IDLE)
4665 wake_up_process(worker->task);
bd7c089e 4666
a9ab775b
TH
4667 /*
4668 * We want to clear UNBOUND but can't directly call
4669 * worker_clr_flags() or adjust nr_running. Atomically
4670 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4671 * @worker will clear REBOUND using worker_clr_flags() when
4672 * it initiates the next execution cycle thus restoring
4673 * concurrency management. Note that when or whether
4674 * @worker clears REBOUND doesn't affect correctness.
4675 *
4676 * ACCESS_ONCE() is necessary because @worker->flags may be
4677 * tested without holding any lock in
4678 * wq_worker_waking_up(). Without it, NOT_RUNNING test may
4679 * fail incorrectly leading to premature concurrency
4680 * management operations.
4681 */
4682 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4683 worker_flags |= WORKER_REBOUND;
4684 worker_flags &= ~WORKER_UNBOUND;
4685 ACCESS_ONCE(worker->flags) = worker_flags;
bd7c089e 4686 }
a9ab775b
TH
4687
4688 spin_unlock_irq(&pool->lock);
bd7c089e
TH
4689}
4690
7dbc725e
TH
4691/**
4692 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4693 * @pool: unbound pool of interest
4694 * @cpu: the CPU which is coming up
4695 *
4696 * An unbound pool may end up with a cpumask which doesn't have any online
4697 * CPUs. When a worker of such pool get scheduled, the scheduler resets
4698 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
4699 * online CPU before, cpus_allowed of all its workers should be restored.
4700 */
4701static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
4702{
4703 static cpumask_t cpumask;
4704 struct worker *worker;
4705 int wi;
4706
4707 lockdep_assert_held(&pool->manager_mutex);
4708
4709 /* is @cpu allowed for @pool? */
4710 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
4711 return;
4712
4713 /* is @cpu the only online CPU? */
4714 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
4715 if (cpumask_weight(&cpumask) != 1)
4716 return;
4717
4718 /* as we're called from CPU_ONLINE, the following shouldn't fail */
4719 for_each_pool_worker(worker, wi, pool)
4720 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4721 pool->attrs->cpumask) < 0);
4722}
4723
8db25e78
TH
4724/*
4725 * Workqueues should be brought up before normal priority CPU notifiers.
4726 * This will be registered high priority CPU notifier.
4727 */
9fdf9b73 4728static int __cpuinit workqueue_cpu_up_callback(struct notifier_block *nfb,
8db25e78
TH
4729 unsigned long action,
4730 void *hcpu)
3af24433 4731{
d84ff051 4732 int cpu = (unsigned long)hcpu;
4ce62e9e 4733 struct worker_pool *pool;
4c16bd32 4734 struct workqueue_struct *wq;
7dbc725e 4735 int pi;
3ce63377 4736
8db25e78 4737 switch (action & ~CPU_TASKS_FROZEN) {
3af24433 4738 case CPU_UP_PREPARE:
f02ae73a 4739 for_each_cpu_worker_pool(pool, cpu) {
3ce63377
TH
4740 if (pool->nr_workers)
4741 continue;
ebf44d16 4742 if (create_and_start_worker(pool) < 0)
3ce63377 4743 return NOTIFY_BAD;
3af24433 4744 }
8db25e78 4745 break;
3af24433 4746
db7bccf4
TH
4747 case CPU_DOWN_FAILED:
4748 case CPU_ONLINE:
68e13a67 4749 mutex_lock(&wq_pool_mutex);
7dbc725e
TH
4750
4751 for_each_pool(pool, pi) {
bc3a1afc 4752 mutex_lock(&pool->manager_mutex);
94cf58bb 4753
7dbc725e
TH
4754 if (pool->cpu == cpu) {
4755 spin_lock_irq(&pool->lock);
4756 pool->flags &= ~POOL_DISASSOCIATED;
4757 spin_unlock_irq(&pool->lock);
a9ab775b 4758
7dbc725e
TH
4759 rebind_workers(pool);
4760 } else if (pool->cpu < 0) {
4761 restore_unbound_workers_cpumask(pool, cpu);
4762 }
94cf58bb 4763
bc3a1afc 4764 mutex_unlock(&pool->manager_mutex);
94cf58bb 4765 }
7dbc725e 4766
4c16bd32
TH
4767 /* update NUMA affinity of unbound workqueues */
4768 list_for_each_entry(wq, &workqueues, list)
4769 wq_update_unbound_numa(wq, cpu, true);
4770
68e13a67 4771 mutex_unlock(&wq_pool_mutex);
db7bccf4 4772 break;
00dfcaf7 4773 }
65758202
TH
4774 return NOTIFY_OK;
4775}
4776
4777/*
4778 * Workqueues should be brought down after normal priority CPU notifiers.
4779 * This will be registered as low priority CPU notifier.
4780 */
9fdf9b73 4781static int __cpuinit workqueue_cpu_down_callback(struct notifier_block *nfb,
65758202
TH
4782 unsigned long action,
4783 void *hcpu)
4784{
d84ff051 4785 int cpu = (unsigned long)hcpu;
8db25e78 4786 struct work_struct unbind_work;
4c16bd32 4787 struct workqueue_struct *wq;
8db25e78 4788
65758202
TH
4789 switch (action & ~CPU_TASKS_FROZEN) {
4790 case CPU_DOWN_PREPARE:
4c16bd32 4791 /* unbinding per-cpu workers should happen on the local CPU */
706026c2 4792 INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
7635d2fd 4793 queue_work_on(cpu, system_highpri_wq, &unbind_work);
4c16bd32
TH
4794
4795 /* update NUMA affinity of unbound workqueues */
4796 mutex_lock(&wq_pool_mutex);
4797 list_for_each_entry(wq, &workqueues, list)
4798 wq_update_unbound_numa(wq, cpu, false);
4799 mutex_unlock(&wq_pool_mutex);
4800
4801 /* wait for per-cpu unbinding to finish */
8db25e78
TH
4802 flush_work(&unbind_work);
4803 break;
65758202
TH
4804 }
4805 return NOTIFY_OK;
4806}
4807
2d3854a3 4808#ifdef CONFIG_SMP
8ccad40d 4809
2d3854a3 4810struct work_for_cpu {
ed48ece2 4811 struct work_struct work;
2d3854a3
RR
4812 long (*fn)(void *);
4813 void *arg;
4814 long ret;
4815};
4816
ed48ece2 4817static void work_for_cpu_fn(struct work_struct *work)
2d3854a3 4818{
ed48ece2
TH
4819 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
4820
2d3854a3
RR
4821 wfc->ret = wfc->fn(wfc->arg);
4822}
4823
4824/**
4825 * work_on_cpu - run a function in user context on a particular cpu
4826 * @cpu: the cpu to run on
4827 * @fn: the function to run
4828 * @arg: the function arg
4829 *
31ad9081
RR
4830 * This will return the value @fn returns.
4831 * It is up to the caller to ensure that the cpu doesn't go offline.
6b44003e 4832 * The caller must not hold any locks which would prevent @fn from completing.
2d3854a3 4833 */
d84ff051 4834long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
2d3854a3 4835{
ed48ece2 4836 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
6b44003e 4837
ed48ece2
TH
4838 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
4839 schedule_work_on(cpu, &wfc.work);
4840 flush_work(&wfc.work);
2d3854a3
RR
4841 return wfc.ret;
4842}
4843EXPORT_SYMBOL_GPL(work_on_cpu);
4844#endif /* CONFIG_SMP */
4845
a0a1a5fd
TH
4846#ifdef CONFIG_FREEZER
4847
4848/**
4849 * freeze_workqueues_begin - begin freezing workqueues
4850 *
58a69cb4 4851 * Start freezing workqueues. After this function returns, all freezable
c5aa87bb 4852 * workqueues will queue new works to their delayed_works list instead of
706026c2 4853 * pool->worklist.
a0a1a5fd
TH
4854 *
4855 * CONTEXT:
a357fc03 4856 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
a0a1a5fd
TH
4857 */
4858void freeze_workqueues_begin(void)
4859{
17116969 4860 struct worker_pool *pool;
24b8a847
TH
4861 struct workqueue_struct *wq;
4862 struct pool_workqueue *pwq;
611c92a0 4863 int pi;
a0a1a5fd 4864
68e13a67 4865 mutex_lock(&wq_pool_mutex);
a0a1a5fd 4866
6183c009 4867 WARN_ON_ONCE(workqueue_freezing);
a0a1a5fd
TH
4868 workqueue_freezing = true;
4869
24b8a847 4870 /* set FREEZING */
611c92a0 4871 for_each_pool(pool, pi) {
5bcab335 4872 spin_lock_irq(&pool->lock);
17116969
TH
4873 WARN_ON_ONCE(pool->flags & POOL_FREEZING);
4874 pool->flags |= POOL_FREEZING;
5bcab335 4875 spin_unlock_irq(&pool->lock);
24b8a847 4876 }
a0a1a5fd 4877
24b8a847 4878 list_for_each_entry(wq, &workqueues, list) {
a357fc03 4879 mutex_lock(&wq->mutex);
699ce097
TH
4880 for_each_pwq(pwq, wq)
4881 pwq_adjust_max_active(pwq);
a357fc03 4882 mutex_unlock(&wq->mutex);
a0a1a5fd 4883 }
5bcab335 4884
68e13a67 4885 mutex_unlock(&wq_pool_mutex);
a0a1a5fd
TH
4886}
4887
4888/**
58a69cb4 4889 * freeze_workqueues_busy - are freezable workqueues still busy?
a0a1a5fd
TH
4890 *
4891 * Check whether freezing is complete. This function must be called
4892 * between freeze_workqueues_begin() and thaw_workqueues().
4893 *
4894 * CONTEXT:
68e13a67 4895 * Grabs and releases wq_pool_mutex.
a0a1a5fd
TH
4896 *
4897 * RETURNS:
58a69cb4
TH
4898 * %true if some freezable workqueues are still busy. %false if freezing
4899 * is complete.
a0a1a5fd
TH
4900 */
4901bool freeze_workqueues_busy(void)
4902{
a0a1a5fd 4903 bool busy = false;
24b8a847
TH
4904 struct workqueue_struct *wq;
4905 struct pool_workqueue *pwq;
a0a1a5fd 4906
68e13a67 4907 mutex_lock(&wq_pool_mutex);
a0a1a5fd 4908
6183c009 4909 WARN_ON_ONCE(!workqueue_freezing);
a0a1a5fd 4910
24b8a847
TH
4911 list_for_each_entry(wq, &workqueues, list) {
4912 if (!(wq->flags & WQ_FREEZABLE))
4913 continue;
a0a1a5fd
TH
4914 /*
4915 * nr_active is monotonically decreasing. It's safe
4916 * to peek without lock.
4917 */
88109453 4918 rcu_read_lock_sched();
24b8a847 4919 for_each_pwq(pwq, wq) {
6183c009 4920 WARN_ON_ONCE(pwq->nr_active < 0);
112202d9 4921 if (pwq->nr_active) {
a0a1a5fd 4922 busy = true;
88109453 4923 rcu_read_unlock_sched();
a0a1a5fd
TH
4924 goto out_unlock;
4925 }
4926 }
88109453 4927 rcu_read_unlock_sched();
a0a1a5fd
TH
4928 }
4929out_unlock:
68e13a67 4930 mutex_unlock(&wq_pool_mutex);
a0a1a5fd
TH
4931 return busy;
4932}
4933
4934/**
4935 * thaw_workqueues - thaw workqueues
4936 *
4937 * Thaw workqueues. Normal queueing is restored and all collected
706026c2 4938 * frozen works are transferred to their respective pool worklists.
a0a1a5fd
TH
4939 *
4940 * CONTEXT:
a357fc03 4941 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
a0a1a5fd
TH
4942 */
4943void thaw_workqueues(void)
4944{
24b8a847
TH
4945 struct workqueue_struct *wq;
4946 struct pool_workqueue *pwq;
4947 struct worker_pool *pool;
611c92a0 4948 int pi;
a0a1a5fd 4949
68e13a67 4950 mutex_lock(&wq_pool_mutex);
a0a1a5fd
TH
4951
4952 if (!workqueue_freezing)
4953 goto out_unlock;
4954
24b8a847 4955 /* clear FREEZING */
611c92a0 4956 for_each_pool(pool, pi) {
5bcab335 4957 spin_lock_irq(&pool->lock);
24b8a847
TH
4958 WARN_ON_ONCE(!(pool->flags & POOL_FREEZING));
4959 pool->flags &= ~POOL_FREEZING;
5bcab335 4960 spin_unlock_irq(&pool->lock);
24b8a847 4961 }
8b03ae3c 4962
24b8a847
TH
4963 /* restore max_active and repopulate worklist */
4964 list_for_each_entry(wq, &workqueues, list) {
a357fc03 4965 mutex_lock(&wq->mutex);
699ce097
TH
4966 for_each_pwq(pwq, wq)
4967 pwq_adjust_max_active(pwq);
a357fc03 4968 mutex_unlock(&wq->mutex);
a0a1a5fd
TH
4969 }
4970
4971 workqueue_freezing = false;
4972out_unlock:
68e13a67 4973 mutex_unlock(&wq_pool_mutex);
a0a1a5fd
TH
4974}
4975#endif /* CONFIG_FREEZER */
4976
bce90380
TH
4977static void __init wq_numa_init(void)
4978{
4979 cpumask_var_t *tbl;
4980 int node, cpu;
4981
4982 /* determine NUMA pwq table len - highest node id + 1 */
4983 for_each_node(node)
4984 wq_numa_tbl_len = max(wq_numa_tbl_len, node + 1);
4985
4986 if (num_possible_nodes() <= 1)
4987 return;
4988
d55262c4
TH
4989 if (wq_disable_numa) {
4990 pr_info("workqueue: NUMA affinity support disabled\n");
4991 return;
4992 }
4993
4c16bd32
TH
4994 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
4995 BUG_ON(!wq_update_unbound_numa_attrs_buf);
4996
bce90380
TH
4997 /*
4998 * We want masks of possible CPUs of each node which isn't readily
4999 * available. Build one from cpu_to_node() which should have been
5000 * fully initialized by now.
5001 */
5002 tbl = kzalloc(wq_numa_tbl_len * sizeof(tbl[0]), GFP_KERNEL);
5003 BUG_ON(!tbl);
5004
5005 for_each_node(node)
3e24998c 5006 BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
1be0c25d 5007 node_online(node) ? node : NUMA_NO_NODE));
bce90380
TH
5008
5009 for_each_possible_cpu(cpu) {
5010 node = cpu_to_node(cpu);
5011 if (WARN_ON(node == NUMA_NO_NODE)) {
5012 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5013 /* happens iff arch is bonkers, let's just proceed */
5014 return;
5015 }
5016 cpumask_set_cpu(cpu, tbl[node]);
5017 }
5018
5019 wq_numa_possible_cpumask = tbl;
5020 wq_numa_enabled = true;
5021}
5022
6ee0578b 5023static int __init init_workqueues(void)
1da177e4 5024{
7a4e344c
TH
5025 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
5026 int i, cpu;
c34056a3 5027
7c3eed5c
TH
5028 /* make sure we have enough bits for OFFQ pool ID */
5029 BUILD_BUG_ON((1LU << (BITS_PER_LONG - WORK_OFFQ_POOL_SHIFT)) <
6be19588 5030 WORK_CPU_END * NR_STD_WORKER_POOLS);
b5490077 5031
e904e6c2
TH
5032 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
5033
5034 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
5035
65758202 5036 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
a5b4e57d 5037 hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
8b03ae3c 5038
bce90380
TH
5039 wq_numa_init();
5040
706026c2 5041 /* initialize CPU pools */
29c91e99 5042 for_each_possible_cpu(cpu) {
4ce62e9e 5043 struct worker_pool *pool;
8b03ae3c 5044
7a4e344c 5045 i = 0;
f02ae73a 5046 for_each_cpu_worker_pool(pool, cpu) {
7a4e344c 5047 BUG_ON(init_worker_pool(pool));
ec22ca5e 5048 pool->cpu = cpu;
29c91e99 5049 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
7a4e344c 5050 pool->attrs->nice = std_nice[i++];
f3f90ad4 5051 pool->node = cpu_to_node(cpu);
7a4e344c 5052
9daf9e67 5053 /* alloc pool ID */
68e13a67 5054 mutex_lock(&wq_pool_mutex);
9daf9e67 5055 BUG_ON(worker_pool_assign_id(pool));
68e13a67 5056 mutex_unlock(&wq_pool_mutex);
4ce62e9e 5057 }
8b03ae3c
TH
5058 }
5059
e22bee78 5060 /* create the initial worker */
29c91e99 5061 for_each_online_cpu(cpu) {
4ce62e9e 5062 struct worker_pool *pool;
e22bee78 5063
f02ae73a 5064 for_each_cpu_worker_pool(pool, cpu) {
29c91e99 5065 pool->flags &= ~POOL_DISASSOCIATED;
ebf44d16 5066 BUG_ON(create_and_start_worker(pool) < 0);
4ce62e9e 5067 }
e22bee78
TH
5068 }
5069
ced4ac92 5070 /* create default unbound and ordered wq attrs */
29c91e99
TH
5071 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
5072 struct workqueue_attrs *attrs;
5073
5074 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
29c91e99 5075 attrs->nice = std_nice[i];
29c91e99 5076 unbound_std_wq_attrs[i] = attrs;
ced4ac92
TH
5077
5078 /*
5079 * An ordered wq should have only one pwq as ordering is
5080 * guaranteed by max_active which is enforced by pwqs.
5081 * Turn off NUMA so that dfl_pwq is used for all nodes.
5082 */
5083 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5084 attrs->nice = std_nice[i];
5085 attrs->no_numa = true;
5086 ordered_wq_attrs[i] = attrs;
29c91e99
TH
5087 }
5088
d320c038 5089 system_wq = alloc_workqueue("events", 0, 0);
1aabe902 5090 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
d320c038 5091 system_long_wq = alloc_workqueue("events_long", 0, 0);
f3421797
TH
5092 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
5093 WQ_UNBOUND_MAX_ACTIVE);
24d51add
TH
5094 system_freezable_wq = alloc_workqueue("events_freezable",
5095 WQ_FREEZABLE, 0);
1aabe902 5096 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
ae930e0f 5097 !system_unbound_wq || !system_freezable_wq);
6ee0578b 5098 return 0;
1da177e4 5099}
6ee0578b 5100early_initcall(init_workqueues);