workqueue: use %current instead of worker->task in worker_maybe_bind_and_lock()
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / workqueue.c
CommitLineData
1da177e4 1/*
c54fce6e 2 * kernel/workqueue.c - generic async execution with shared worker pool
1da177e4 3 *
c54fce6e 4 * Copyright (C) 2002 Ingo Molnar
1da177e4 5 *
c54fce6e
TH
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
1da177e4 11 *
c54fce6e 12 * Made to use alloc_percpu by Christoph Lameter.
1da177e4 13 *
c54fce6e
TH
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
89ada679 16 *
c54fce6e
TH
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
19 * automatically managed. There is one worker pool for each CPU and
20 * one extra for works which are better served by workers which are
21 * not bound to any specific CPU.
22 *
23 * Please read Documentation/workqueue.txt for details.
1da177e4
LT
24 */
25
9984de1a 26#include <linux/export.h>
1da177e4
LT
27#include <linux/kernel.h>
28#include <linux/sched.h>
29#include <linux/init.h>
30#include <linux/signal.h>
31#include <linux/completion.h>
32#include <linux/workqueue.h>
33#include <linux/slab.h>
34#include <linux/cpu.h>
35#include <linux/notifier.h>
36#include <linux/kthread.h>
1fa44eca 37#include <linux/hardirq.h>
46934023 38#include <linux/mempolicy.h>
341a5958 39#include <linux/freezer.h>
d5abe669
PZ
40#include <linux/kallsyms.h>
41#include <linux/debug_locks.h>
4e6045f1 42#include <linux/lockdep.h>
c34056a3 43#include <linux/idr.h>
42f8570f 44#include <linux/hashtable.h>
e22bee78 45
ea138446 46#include "workqueue_internal.h"
1da177e4 47
c8e55f36 48enum {
24647570
TH
49 /*
50 * worker_pool flags
bc2ae0f5 51 *
24647570 52 * A bound pool is either associated or disassociated with its CPU.
bc2ae0f5
TH
53 * While associated (!DISASSOCIATED), all workers are bound to the
54 * CPU and none has %WORKER_UNBOUND set and concurrency management
55 * is in effect.
56 *
57 * While DISASSOCIATED, the cpu may be offline and all workers have
58 * %WORKER_UNBOUND set and concurrency management disabled, and may
24647570 59 * be executing on any CPU. The pool behaves as an unbound one.
bc2ae0f5
TH
60 *
61 * Note that DISASSOCIATED can be flipped only while holding
24647570
TH
62 * assoc_mutex to avoid changing binding state while
63 * create_worker() is in progress.
bc2ae0f5 64 */
11ebea50 65 POOL_MANAGE_WORKERS = 1 << 0, /* need to manage workers */
552a37e9 66 POOL_MANAGING_WORKERS = 1 << 1, /* managing workers */
24647570 67 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
35b6bb63 68 POOL_FREEZING = 1 << 3, /* freeze in progress */
db7bccf4 69
c8e55f36
TH
70 /* worker flags */
71 WORKER_STARTED = 1 << 0, /* started */
72 WORKER_DIE = 1 << 1, /* die die die */
73 WORKER_IDLE = 1 << 2, /* is idle */
e22bee78 74 WORKER_PREP = 1 << 3, /* preparing to run works */
fb0e7beb 75 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
f3421797 76 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
e22bee78 77
5f7dabfd 78 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_UNBOUND |
403c821d 79 WORKER_CPU_INTENSIVE,
db7bccf4 80
e34cdddb 81 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
4ce62e9e 82
c8e55f36 83 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
db7bccf4 84
e22bee78
TH
85 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
86 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
87
3233cdbd
TH
88 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
89 /* call for help after 10ms
90 (min two ticks) */
e22bee78
TH
91 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
92 CREATE_COOLDOWN = HZ, /* time to breath after fail */
e22bee78
TH
93
94 /*
95 * Rescue workers are used only on emergencies and shared by
96 * all cpus. Give -20.
97 */
98 RESCUER_NICE_LEVEL = -20,
3270476a 99 HIGHPRI_NICE_LEVEL = -20,
c8e55f36 100};
1da177e4
LT
101
102/*
4690c4ab
TH
103 * Structure fields follow one of the following exclusion rules.
104 *
e41e704b
TH
105 * I: Modifiable by initialization/destruction paths and read-only for
106 * everyone else.
4690c4ab 107 *
e22bee78
TH
108 * P: Preemption protected. Disabling preemption is enough and should
109 * only be modified and accessed from the local cpu.
110 *
d565ed63 111 * L: pool->lock protected. Access with pool->lock held.
4690c4ab 112 *
d565ed63
TH
113 * X: During normal operation, modification requires pool->lock and should
114 * be done only from local cpu. Either disabling preemption on local
115 * cpu or grabbing pool->lock is enough for read access. If
116 * POOL_DISASSOCIATED is set, it's identical to L.
e22bee78 117 *
73f53c4a
TH
118 * F: wq->flush_mutex protected.
119 *
4690c4ab 120 * W: workqueue_lock protected.
1da177e4 121 */
1da177e4 122
2eaebdb3 123/* struct worker is defined in workqueue_internal.h */
c34056a3 124
bd7bdd43 125struct worker_pool {
d565ed63 126 spinlock_t lock; /* the pool lock */
ec22ca5e 127 unsigned int cpu; /* I: the associated cpu */
9daf9e67 128 int id; /* I: pool ID */
11ebea50 129 unsigned int flags; /* X: flags */
bd7bdd43
TH
130
131 struct list_head worklist; /* L: list of pending works */
132 int nr_workers; /* L: total number of workers */
ea1abd61
LJ
133
134 /* nr_idle includes the ones off idle_list for rebinding */
bd7bdd43
TH
135 int nr_idle; /* L: currently idle ones */
136
137 struct list_head idle_list; /* X: list of idle workers */
138 struct timer_list idle_timer; /* L: worker idle timeout */
139 struct timer_list mayday_timer; /* L: SOS timer for workers */
140
c9e7cf27
TH
141 /* workers are chained either in busy_hash or idle_list */
142 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
143 /* L: hash of busy workers */
144
24647570 145 struct mutex assoc_mutex; /* protect POOL_DISASSOCIATED */
bd7bdd43 146 struct ida worker_ida; /* L: for worker IDs */
e19e397a
TH
147
148 /*
149 * The current concurrency level. As it's likely to be accessed
150 * from other CPUs during try_to_wake_up(), put it in a separate
151 * cacheline.
152 */
153 atomic_t nr_running ____cacheline_aligned_in_smp;
8b03ae3c
TH
154} ____cacheline_aligned_in_smp;
155
1da177e4 156/*
112202d9
TH
157 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
158 * of work_struct->data are used for flags and the remaining high bits
159 * point to the pwq; thus, pwqs need to be aligned at two's power of the
160 * number of flag bits.
1da177e4 161 */
112202d9 162struct pool_workqueue {
bd7bdd43 163 struct worker_pool *pool; /* I: the associated pool */
4690c4ab 164 struct workqueue_struct *wq; /* I: the owning workqueue */
73f53c4a
TH
165 int work_color; /* L: current color */
166 int flush_color; /* L: flushing color */
167 int nr_in_flight[WORK_NR_COLORS];
168 /* L: nr of in_flight works */
1e19ffc6 169 int nr_active; /* L: nr of active works */
a0a1a5fd 170 int max_active; /* L: max active works */
1e19ffc6 171 struct list_head delayed_works; /* L: delayed works */
0f900049 172};
1da177e4 173
73f53c4a
TH
174/*
175 * Structure used to wait for workqueue flush.
176 */
177struct wq_flusher {
178 struct list_head list; /* F: list of flushers */
179 int flush_color; /* F: flush color waiting for */
180 struct completion done; /* flush completion */
181};
182
f2e005aa
TH
183/*
184 * All cpumasks are assumed to be always set on UP and thus can't be
185 * used to determine whether there's something to be done.
186 */
187#ifdef CONFIG_SMP
188typedef cpumask_var_t mayday_mask_t;
189#define mayday_test_and_set_cpu(cpu, mask) \
190 cpumask_test_and_set_cpu((cpu), (mask))
191#define mayday_clear_cpu(cpu, mask) cpumask_clear_cpu((cpu), (mask))
192#define for_each_mayday_cpu(cpu, mask) for_each_cpu((cpu), (mask))
9c37547a 193#define alloc_mayday_mask(maskp, gfp) zalloc_cpumask_var((maskp), (gfp))
f2e005aa
TH
194#define free_mayday_mask(mask) free_cpumask_var((mask))
195#else
196typedef unsigned long mayday_mask_t;
197#define mayday_test_and_set_cpu(cpu, mask) test_and_set_bit(0, &(mask))
198#define mayday_clear_cpu(cpu, mask) clear_bit(0, &(mask))
199#define for_each_mayday_cpu(cpu, mask) if ((cpu) = 0, (mask))
200#define alloc_mayday_mask(maskp, gfp) true
201#define free_mayday_mask(mask) do { } while (0)
202#endif
1da177e4
LT
203
204/*
205 * The externally visible workqueue abstraction is an array of
206 * per-CPU workqueues:
207 */
208struct workqueue_struct {
9c5a2ba7 209 unsigned int flags; /* W: WQ_* flags */
bdbc5dd7 210 union {
112202d9
TH
211 struct pool_workqueue __percpu *pcpu;
212 struct pool_workqueue *single;
bdbc5dd7 213 unsigned long v;
112202d9 214 } pool_wq; /* I: pwq's */
4690c4ab 215 struct list_head list; /* W: list of all workqueues */
73f53c4a
TH
216
217 struct mutex flush_mutex; /* protects wq flushing */
218 int work_color; /* F: current work color */
219 int flush_color; /* F: current flush color */
112202d9 220 atomic_t nr_pwqs_to_flush; /* flush in progress */
73f53c4a
TH
221 struct wq_flusher *first_flusher; /* F: first flusher */
222 struct list_head flusher_queue; /* F: flush waiters */
223 struct list_head flusher_overflow; /* F: flush overflow list */
224
f2e005aa 225 mayday_mask_t mayday_mask; /* cpus requesting rescue */
e22bee78
TH
226 struct worker *rescuer; /* I: rescue worker */
227
9c5a2ba7 228 int nr_drainers; /* W: drain in progress */
112202d9 229 int saved_max_active; /* W: saved pwq max_active */
4e6045f1 230#ifdef CONFIG_LOCKDEP
4690c4ab 231 struct lockdep_map lockdep_map;
4e6045f1 232#endif
b196be89 233 char name[]; /* I: workqueue name */
1da177e4
LT
234};
235
d320c038 236struct workqueue_struct *system_wq __read_mostly;
d320c038 237EXPORT_SYMBOL_GPL(system_wq);
044c782c 238struct workqueue_struct *system_highpri_wq __read_mostly;
1aabe902 239EXPORT_SYMBOL_GPL(system_highpri_wq);
044c782c 240struct workqueue_struct *system_long_wq __read_mostly;
d320c038 241EXPORT_SYMBOL_GPL(system_long_wq);
044c782c 242struct workqueue_struct *system_unbound_wq __read_mostly;
f3421797 243EXPORT_SYMBOL_GPL(system_unbound_wq);
044c782c 244struct workqueue_struct *system_freezable_wq __read_mostly;
24d51add 245EXPORT_SYMBOL_GPL(system_freezable_wq);
d320c038 246
97bd2347
TH
247#define CREATE_TRACE_POINTS
248#include <trace/events/workqueue.h>
249
38db41d9 250#define for_each_std_worker_pool(pool, cpu) \
a60dc39c
TH
251 for ((pool) = &std_worker_pools(cpu)[0]; \
252 (pool) < &std_worker_pools(cpu)[NR_STD_WORKER_POOLS]; (pool)++)
4ce62e9e 253
b67bfe0d
SL
254#define for_each_busy_worker(worker, i, pool) \
255 hash_for_each(pool->busy_hash, i, worker, hentry)
db7bccf4 256
706026c2
TH
257static inline int __next_wq_cpu(int cpu, const struct cpumask *mask,
258 unsigned int sw)
f3421797
TH
259{
260 if (cpu < nr_cpu_ids) {
261 if (sw & 1) {
262 cpu = cpumask_next(cpu, mask);
263 if (cpu < nr_cpu_ids)
264 return cpu;
265 }
266 if (sw & 2)
267 return WORK_CPU_UNBOUND;
268 }
6be19588 269 return WORK_CPU_END;
f3421797
TH
270}
271
112202d9 272static inline int __next_pwq_cpu(int cpu, const struct cpumask *mask,
706026c2 273 struct workqueue_struct *wq)
f3421797 274{
706026c2 275 return __next_wq_cpu(cpu, mask, !(wq->flags & WQ_UNBOUND) ? 1 : 2);
f3421797
TH
276}
277
09884951
TH
278/*
279 * CPU iterators
280 *
706026c2 281 * An extra cpu number is defined using an invalid cpu number
09884951 282 * (WORK_CPU_UNBOUND) to host workqueues which are not bound to any
706026c2
TH
283 * specific CPU. The following iterators are similar to for_each_*_cpu()
284 * iterators but also considers the unbound CPU.
09884951 285 *
706026c2
TH
286 * for_each_wq_cpu() : possible CPUs + WORK_CPU_UNBOUND
287 * for_each_online_wq_cpu() : online CPUs + WORK_CPU_UNBOUND
112202d9 288 * for_each_pwq_cpu() : possible CPUs for bound workqueues,
09884951
TH
289 * WORK_CPU_UNBOUND for unbound workqueues
290 */
706026c2
TH
291#define for_each_wq_cpu(cpu) \
292 for ((cpu) = __next_wq_cpu(-1, cpu_possible_mask, 3); \
6be19588 293 (cpu) < WORK_CPU_END; \
706026c2 294 (cpu) = __next_wq_cpu((cpu), cpu_possible_mask, 3))
f3421797 295
706026c2
TH
296#define for_each_online_wq_cpu(cpu) \
297 for ((cpu) = __next_wq_cpu(-1, cpu_online_mask, 3); \
6be19588 298 (cpu) < WORK_CPU_END; \
706026c2 299 (cpu) = __next_wq_cpu((cpu), cpu_online_mask, 3))
f3421797 300
112202d9
TH
301#define for_each_pwq_cpu(cpu, wq) \
302 for ((cpu) = __next_pwq_cpu(-1, cpu_possible_mask, (wq)); \
6be19588 303 (cpu) < WORK_CPU_END; \
112202d9 304 (cpu) = __next_pwq_cpu((cpu), cpu_possible_mask, (wq)))
f3421797 305
dc186ad7
TG
306#ifdef CONFIG_DEBUG_OBJECTS_WORK
307
308static struct debug_obj_descr work_debug_descr;
309
99777288
SG
310static void *work_debug_hint(void *addr)
311{
312 return ((struct work_struct *) addr)->func;
313}
314
dc186ad7
TG
315/*
316 * fixup_init is called when:
317 * - an active object is initialized
318 */
319static int work_fixup_init(void *addr, enum debug_obj_state state)
320{
321 struct work_struct *work = addr;
322
323 switch (state) {
324 case ODEBUG_STATE_ACTIVE:
325 cancel_work_sync(work);
326 debug_object_init(work, &work_debug_descr);
327 return 1;
328 default:
329 return 0;
330 }
331}
332
333/*
334 * fixup_activate is called when:
335 * - an active object is activated
336 * - an unknown object is activated (might be a statically initialized object)
337 */
338static int work_fixup_activate(void *addr, enum debug_obj_state state)
339{
340 struct work_struct *work = addr;
341
342 switch (state) {
343
344 case ODEBUG_STATE_NOTAVAILABLE:
345 /*
346 * This is not really a fixup. The work struct was
347 * statically initialized. We just make sure that it
348 * is tracked in the object tracker.
349 */
22df02bb 350 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
dc186ad7
TG
351 debug_object_init(work, &work_debug_descr);
352 debug_object_activate(work, &work_debug_descr);
353 return 0;
354 }
355 WARN_ON_ONCE(1);
356 return 0;
357
358 case ODEBUG_STATE_ACTIVE:
359 WARN_ON(1);
360
361 default:
362 return 0;
363 }
364}
365
366/*
367 * fixup_free is called when:
368 * - an active object is freed
369 */
370static int work_fixup_free(void *addr, enum debug_obj_state state)
371{
372 struct work_struct *work = addr;
373
374 switch (state) {
375 case ODEBUG_STATE_ACTIVE:
376 cancel_work_sync(work);
377 debug_object_free(work, &work_debug_descr);
378 return 1;
379 default:
380 return 0;
381 }
382}
383
384static struct debug_obj_descr work_debug_descr = {
385 .name = "work_struct",
99777288 386 .debug_hint = work_debug_hint,
dc186ad7
TG
387 .fixup_init = work_fixup_init,
388 .fixup_activate = work_fixup_activate,
389 .fixup_free = work_fixup_free,
390};
391
392static inline void debug_work_activate(struct work_struct *work)
393{
394 debug_object_activate(work, &work_debug_descr);
395}
396
397static inline void debug_work_deactivate(struct work_struct *work)
398{
399 debug_object_deactivate(work, &work_debug_descr);
400}
401
402void __init_work(struct work_struct *work, int onstack)
403{
404 if (onstack)
405 debug_object_init_on_stack(work, &work_debug_descr);
406 else
407 debug_object_init(work, &work_debug_descr);
408}
409EXPORT_SYMBOL_GPL(__init_work);
410
411void destroy_work_on_stack(struct work_struct *work)
412{
413 debug_object_free(work, &work_debug_descr);
414}
415EXPORT_SYMBOL_GPL(destroy_work_on_stack);
416
417#else
418static inline void debug_work_activate(struct work_struct *work) { }
419static inline void debug_work_deactivate(struct work_struct *work) { }
420#endif
421
95402b38
GS
422/* Serializes the accesses to the list of workqueues. */
423static DEFINE_SPINLOCK(workqueue_lock);
1da177e4 424static LIST_HEAD(workqueues);
a0a1a5fd 425static bool workqueue_freezing; /* W: have wqs started freezing? */
c34056a3 426
e22bee78 427/*
e19e397a
TH
428 * The CPU and unbound standard worker pools. The unbound ones have
429 * POOL_DISASSOCIATED set, and their workers have WORKER_UNBOUND set.
f3421797 430 */
e19e397a
TH
431static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
432 cpu_std_worker_pools);
a60dc39c 433static struct worker_pool unbound_std_worker_pools[NR_STD_WORKER_POOLS];
f3421797 434
9daf9e67
TH
435/* idr of all pools */
436static DEFINE_MUTEX(worker_pool_idr_mutex);
437static DEFINE_IDR(worker_pool_idr);
438
c34056a3 439static int worker_thread(void *__worker);
1da177e4 440
a60dc39c 441static struct worker_pool *std_worker_pools(int cpu)
8b03ae3c 442{
f3421797 443 if (cpu != WORK_CPU_UNBOUND)
a60dc39c 444 return per_cpu(cpu_std_worker_pools, cpu);
f3421797 445 else
a60dc39c 446 return unbound_std_worker_pools;
8b03ae3c
TH
447}
448
4e8f0a60
TH
449static int std_worker_pool_pri(struct worker_pool *pool)
450{
a60dc39c 451 return pool - std_worker_pools(pool->cpu);
4e8f0a60
TH
452}
453
9daf9e67
TH
454/* allocate ID and assign it to @pool */
455static int worker_pool_assign_id(struct worker_pool *pool)
456{
457 int ret;
458
459 mutex_lock(&worker_pool_idr_mutex);
460 idr_pre_get(&worker_pool_idr, GFP_KERNEL);
461 ret = idr_get_new(&worker_pool_idr, pool, &pool->id);
462 mutex_unlock(&worker_pool_idr_mutex);
463
464 return ret;
465}
466
7c3eed5c
TH
467/*
468 * Lookup worker_pool by id. The idr currently is built during boot and
469 * never modified. Don't worry about locking for now.
470 */
471static struct worker_pool *worker_pool_by_id(int pool_id)
472{
473 return idr_find(&worker_pool_idr, pool_id);
474}
475
d565ed63
TH
476static struct worker_pool *get_std_worker_pool(int cpu, bool highpri)
477{
a60dc39c 478 struct worker_pool *pools = std_worker_pools(cpu);
d565ed63 479
a60dc39c 480 return &pools[highpri];
d565ed63
TH
481}
482
112202d9
TH
483static struct pool_workqueue *get_pwq(unsigned int cpu,
484 struct workqueue_struct *wq)
b1f4ec17 485{
f3421797 486 if (!(wq->flags & WQ_UNBOUND)) {
e06ffa1e 487 if (likely(cpu < nr_cpu_ids))
112202d9 488 return per_cpu_ptr(wq->pool_wq.pcpu, cpu);
f3421797 489 } else if (likely(cpu == WORK_CPU_UNBOUND))
112202d9 490 return wq->pool_wq.single;
f3421797 491 return NULL;
b1f4ec17
ON
492}
493
73f53c4a
TH
494static unsigned int work_color_to_flags(int color)
495{
496 return color << WORK_STRUCT_COLOR_SHIFT;
497}
498
499static int get_work_color(struct work_struct *work)
500{
501 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
502 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
503}
504
505static int work_next_color(int color)
506{
507 return (color + 1) % WORK_NR_COLORS;
508}
1da177e4 509
14441960 510/*
112202d9
TH
511 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
512 * contain the pointer to the queued pwq. Once execution starts, the flag
7c3eed5c 513 * is cleared and the high bits contain OFFQ flags and pool ID.
7a22ad75 514 *
112202d9
TH
515 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
516 * and clear_work_data() can be used to set the pwq, pool or clear
bbb68dfa
TH
517 * work->data. These functions should only be called while the work is
518 * owned - ie. while the PENDING bit is set.
7a22ad75 519 *
112202d9 520 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
7c3eed5c 521 * corresponding to a work. Pool is available once the work has been
112202d9 522 * queued anywhere after initialization until it is sync canceled. pwq is
7c3eed5c 523 * available only while the work item is queued.
7a22ad75 524 *
bbb68dfa
TH
525 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
526 * canceled. While being canceled, a work item may have its PENDING set
527 * but stay off timer and worklist for arbitrarily long and nobody should
528 * try to steal the PENDING bit.
14441960 529 */
7a22ad75
TH
530static inline void set_work_data(struct work_struct *work, unsigned long data,
531 unsigned long flags)
365970a1 532{
4594bf15 533 BUG_ON(!work_pending(work));
7a22ad75
TH
534 atomic_long_set(&work->data, data | flags | work_static(work));
535}
365970a1 536
112202d9 537static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
7a22ad75
TH
538 unsigned long extra_flags)
539{
112202d9
TH
540 set_work_data(work, (unsigned long)pwq,
541 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
365970a1
DH
542}
543
4468a00f
LJ
544static void set_work_pool_and_keep_pending(struct work_struct *work,
545 int pool_id)
546{
547 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
548 WORK_STRUCT_PENDING);
549}
550
7c3eed5c
TH
551static void set_work_pool_and_clear_pending(struct work_struct *work,
552 int pool_id)
7a22ad75 553{
23657bb1
TH
554 /*
555 * The following wmb is paired with the implied mb in
556 * test_and_set_bit(PENDING) and ensures all updates to @work made
557 * here are visible to and precede any updates by the next PENDING
558 * owner.
559 */
560 smp_wmb();
7c3eed5c 561 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
7a22ad75 562}
f756d5e2 563
7a22ad75 564static void clear_work_data(struct work_struct *work)
1da177e4 565{
7c3eed5c
TH
566 smp_wmb(); /* see set_work_pool_and_clear_pending() */
567 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
1da177e4
LT
568}
569
112202d9 570static struct pool_workqueue *get_work_pwq(struct work_struct *work)
b1f4ec17 571{
e120153d 572 unsigned long data = atomic_long_read(&work->data);
7a22ad75 573
112202d9 574 if (data & WORK_STRUCT_PWQ)
e120153d
TH
575 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
576 else
577 return NULL;
4d707b9f
ON
578}
579
7c3eed5c
TH
580/**
581 * get_work_pool - return the worker_pool a given work was associated with
582 * @work: the work item of interest
583 *
584 * Return the worker_pool @work was last associated with. %NULL if none.
585 */
586static struct worker_pool *get_work_pool(struct work_struct *work)
365970a1 587{
e120153d 588 unsigned long data = atomic_long_read(&work->data);
7c3eed5c
TH
589 struct worker_pool *pool;
590 int pool_id;
7a22ad75 591
112202d9
TH
592 if (data & WORK_STRUCT_PWQ)
593 return ((struct pool_workqueue *)
7c3eed5c 594 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
7a22ad75 595
7c3eed5c
TH
596 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
597 if (pool_id == WORK_OFFQ_POOL_NONE)
7a22ad75
TH
598 return NULL;
599
7c3eed5c
TH
600 pool = worker_pool_by_id(pool_id);
601 WARN_ON_ONCE(!pool);
602 return pool;
603}
604
605/**
606 * get_work_pool_id - return the worker pool ID a given work is associated with
607 * @work: the work item of interest
608 *
609 * Return the worker_pool ID @work was last associated with.
610 * %WORK_OFFQ_POOL_NONE if none.
611 */
612static int get_work_pool_id(struct work_struct *work)
613{
54d5b7d0
LJ
614 unsigned long data = atomic_long_read(&work->data);
615
112202d9
TH
616 if (data & WORK_STRUCT_PWQ)
617 return ((struct pool_workqueue *)
54d5b7d0 618 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
7c3eed5c 619
54d5b7d0 620 return data >> WORK_OFFQ_POOL_SHIFT;
7c3eed5c
TH
621}
622
bbb68dfa
TH
623static void mark_work_canceling(struct work_struct *work)
624{
7c3eed5c 625 unsigned long pool_id = get_work_pool_id(work);
bbb68dfa 626
7c3eed5c
TH
627 pool_id <<= WORK_OFFQ_POOL_SHIFT;
628 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
bbb68dfa
TH
629}
630
631static bool work_is_canceling(struct work_struct *work)
632{
633 unsigned long data = atomic_long_read(&work->data);
634
112202d9 635 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
bbb68dfa
TH
636}
637
e22bee78 638/*
3270476a
TH
639 * Policy functions. These define the policies on how the global worker
640 * pools are managed. Unless noted otherwise, these functions assume that
d565ed63 641 * they're being called with pool->lock held.
e22bee78
TH
642 */
643
63d95a91 644static bool __need_more_worker(struct worker_pool *pool)
a848e3b6 645{
e19e397a 646 return !atomic_read(&pool->nr_running);
a848e3b6
ON
647}
648
4594bf15 649/*
e22bee78
TH
650 * Need to wake up a worker? Called from anything but currently
651 * running workers.
974271c4
TH
652 *
653 * Note that, because unbound workers never contribute to nr_running, this
706026c2 654 * function will always return %true for unbound pools as long as the
974271c4 655 * worklist isn't empty.
4594bf15 656 */
63d95a91 657static bool need_more_worker(struct worker_pool *pool)
365970a1 658{
63d95a91 659 return !list_empty(&pool->worklist) && __need_more_worker(pool);
e22bee78 660}
4594bf15 661
e22bee78 662/* Can I start working? Called from busy but !running workers. */
63d95a91 663static bool may_start_working(struct worker_pool *pool)
e22bee78 664{
63d95a91 665 return pool->nr_idle;
e22bee78
TH
666}
667
668/* Do I need to keep working? Called from currently running workers. */
63d95a91 669static bool keep_working(struct worker_pool *pool)
e22bee78 670{
e19e397a
TH
671 return !list_empty(&pool->worklist) &&
672 atomic_read(&pool->nr_running) <= 1;
e22bee78
TH
673}
674
675/* Do we need a new worker? Called from manager. */
63d95a91 676static bool need_to_create_worker(struct worker_pool *pool)
e22bee78 677{
63d95a91 678 return need_more_worker(pool) && !may_start_working(pool);
e22bee78 679}
365970a1 680
e22bee78 681/* Do I need to be the manager? */
63d95a91 682static bool need_to_manage_workers(struct worker_pool *pool)
e22bee78 683{
63d95a91 684 return need_to_create_worker(pool) ||
11ebea50 685 (pool->flags & POOL_MANAGE_WORKERS);
e22bee78
TH
686}
687
688/* Do we have too many workers and should some go away? */
63d95a91 689static bool too_many_workers(struct worker_pool *pool)
e22bee78 690{
552a37e9 691 bool managing = pool->flags & POOL_MANAGING_WORKERS;
63d95a91
TH
692 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
693 int nr_busy = pool->nr_workers - nr_idle;
e22bee78 694
ea1abd61
LJ
695 /*
696 * nr_idle and idle_list may disagree if idle rebinding is in
697 * progress. Never return %true if idle_list is empty.
698 */
699 if (list_empty(&pool->idle_list))
700 return false;
701
e22bee78 702 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
365970a1
DH
703}
704
4d707b9f 705/*
e22bee78
TH
706 * Wake up functions.
707 */
708
7e11629d 709/* Return the first worker. Safe with preemption disabled */
63d95a91 710static struct worker *first_worker(struct worker_pool *pool)
7e11629d 711{
63d95a91 712 if (unlikely(list_empty(&pool->idle_list)))
7e11629d
TH
713 return NULL;
714
63d95a91 715 return list_first_entry(&pool->idle_list, struct worker, entry);
7e11629d
TH
716}
717
718/**
719 * wake_up_worker - wake up an idle worker
63d95a91 720 * @pool: worker pool to wake worker from
7e11629d 721 *
63d95a91 722 * Wake up the first idle worker of @pool.
7e11629d
TH
723 *
724 * CONTEXT:
d565ed63 725 * spin_lock_irq(pool->lock).
7e11629d 726 */
63d95a91 727static void wake_up_worker(struct worker_pool *pool)
7e11629d 728{
63d95a91 729 struct worker *worker = first_worker(pool);
7e11629d
TH
730
731 if (likely(worker))
732 wake_up_process(worker->task);
733}
734
d302f017 735/**
e22bee78
TH
736 * wq_worker_waking_up - a worker is waking up
737 * @task: task waking up
738 * @cpu: CPU @task is waking up to
739 *
740 * This function is called during try_to_wake_up() when a worker is
741 * being awoken.
742 *
743 * CONTEXT:
744 * spin_lock_irq(rq->lock)
745 */
746void wq_worker_waking_up(struct task_struct *task, unsigned int cpu)
747{
748 struct worker *worker = kthread_data(task);
749
36576000 750 if (!(worker->flags & WORKER_NOT_RUNNING)) {
ec22ca5e 751 WARN_ON_ONCE(worker->pool->cpu != cpu);
e19e397a 752 atomic_inc(&worker->pool->nr_running);
36576000 753 }
e22bee78
TH
754}
755
756/**
757 * wq_worker_sleeping - a worker is going to sleep
758 * @task: task going to sleep
759 * @cpu: CPU in question, must be the current CPU number
760 *
761 * This function is called during schedule() when a busy worker is
762 * going to sleep. Worker on the same cpu can be woken up by
763 * returning pointer to its task.
764 *
765 * CONTEXT:
766 * spin_lock_irq(rq->lock)
767 *
768 * RETURNS:
769 * Worker task on @cpu to wake up, %NULL if none.
770 */
771struct task_struct *wq_worker_sleeping(struct task_struct *task,
772 unsigned int cpu)
773{
774 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
111c225a 775 struct worker_pool *pool;
e22bee78 776
111c225a
TH
777 /*
778 * Rescuers, which may not have all the fields set up like normal
779 * workers, also reach here, let's not access anything before
780 * checking NOT_RUNNING.
781 */
2d64672e 782 if (worker->flags & WORKER_NOT_RUNNING)
e22bee78
TH
783 return NULL;
784
111c225a 785 pool = worker->pool;
111c225a 786
e22bee78
TH
787 /* this can only happen on the local cpu */
788 BUG_ON(cpu != raw_smp_processor_id());
789
790 /*
791 * The counterpart of the following dec_and_test, implied mb,
792 * worklist not empty test sequence is in insert_work().
793 * Please read comment there.
794 *
628c78e7
TH
795 * NOT_RUNNING is clear. This means that we're bound to and
796 * running on the local cpu w/ rq lock held and preemption
797 * disabled, which in turn means that none else could be
d565ed63 798 * manipulating idle_list, so dereferencing idle_list without pool
628c78e7 799 * lock is safe.
e22bee78 800 */
e19e397a
TH
801 if (atomic_dec_and_test(&pool->nr_running) &&
802 !list_empty(&pool->worklist))
63d95a91 803 to_wakeup = first_worker(pool);
e22bee78
TH
804 return to_wakeup ? to_wakeup->task : NULL;
805}
806
807/**
808 * worker_set_flags - set worker flags and adjust nr_running accordingly
cb444766 809 * @worker: self
d302f017
TH
810 * @flags: flags to set
811 * @wakeup: wakeup an idle worker if necessary
812 *
e22bee78
TH
813 * Set @flags in @worker->flags and adjust nr_running accordingly. If
814 * nr_running becomes zero and @wakeup is %true, an idle worker is
815 * woken up.
d302f017 816 *
cb444766 817 * CONTEXT:
d565ed63 818 * spin_lock_irq(pool->lock)
d302f017
TH
819 */
820static inline void worker_set_flags(struct worker *worker, unsigned int flags,
821 bool wakeup)
822{
bd7bdd43 823 struct worker_pool *pool = worker->pool;
e22bee78 824
cb444766
TH
825 WARN_ON_ONCE(worker->task != current);
826
e22bee78
TH
827 /*
828 * If transitioning into NOT_RUNNING, adjust nr_running and
829 * wake up an idle worker as necessary if requested by
830 * @wakeup.
831 */
832 if ((flags & WORKER_NOT_RUNNING) &&
833 !(worker->flags & WORKER_NOT_RUNNING)) {
e22bee78 834 if (wakeup) {
e19e397a 835 if (atomic_dec_and_test(&pool->nr_running) &&
bd7bdd43 836 !list_empty(&pool->worklist))
63d95a91 837 wake_up_worker(pool);
e22bee78 838 } else
e19e397a 839 atomic_dec(&pool->nr_running);
e22bee78
TH
840 }
841
d302f017
TH
842 worker->flags |= flags;
843}
844
845/**
e22bee78 846 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
cb444766 847 * @worker: self
d302f017
TH
848 * @flags: flags to clear
849 *
e22bee78 850 * Clear @flags in @worker->flags and adjust nr_running accordingly.
d302f017 851 *
cb444766 852 * CONTEXT:
d565ed63 853 * spin_lock_irq(pool->lock)
d302f017
TH
854 */
855static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
856{
63d95a91 857 struct worker_pool *pool = worker->pool;
e22bee78
TH
858 unsigned int oflags = worker->flags;
859
cb444766
TH
860 WARN_ON_ONCE(worker->task != current);
861
d302f017 862 worker->flags &= ~flags;
e22bee78 863
42c025f3
TH
864 /*
865 * If transitioning out of NOT_RUNNING, increment nr_running. Note
866 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
867 * of multiple flags, not a single flag.
868 */
e22bee78
TH
869 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
870 if (!(worker->flags & WORKER_NOT_RUNNING))
e19e397a 871 atomic_inc(&pool->nr_running);
d302f017
TH
872}
873
8cca0eea
TH
874/**
875 * find_worker_executing_work - find worker which is executing a work
c9e7cf27 876 * @pool: pool of interest
8cca0eea
TH
877 * @work: work to find worker for
878 *
c9e7cf27
TH
879 * Find a worker which is executing @work on @pool by searching
880 * @pool->busy_hash which is keyed by the address of @work. For a worker
a2c1c57b
TH
881 * to match, its current execution should match the address of @work and
882 * its work function. This is to avoid unwanted dependency between
883 * unrelated work executions through a work item being recycled while still
884 * being executed.
885 *
886 * This is a bit tricky. A work item may be freed once its execution
887 * starts and nothing prevents the freed area from being recycled for
888 * another work item. If the same work item address ends up being reused
889 * before the original execution finishes, workqueue will identify the
890 * recycled work item as currently executing and make it wait until the
891 * current execution finishes, introducing an unwanted dependency.
892 *
893 * This function checks the work item address, work function and workqueue
894 * to avoid false positives. Note that this isn't complete as one may
895 * construct a work function which can introduce dependency onto itself
896 * through a recycled work item. Well, if somebody wants to shoot oneself
897 * in the foot that badly, there's only so much we can do, and if such
898 * deadlock actually occurs, it should be easy to locate the culprit work
899 * function.
8cca0eea
TH
900 *
901 * CONTEXT:
d565ed63 902 * spin_lock_irq(pool->lock).
8cca0eea
TH
903 *
904 * RETURNS:
905 * Pointer to worker which is executing @work if found, NULL
906 * otherwise.
4d707b9f 907 */
c9e7cf27 908static struct worker *find_worker_executing_work(struct worker_pool *pool,
8cca0eea 909 struct work_struct *work)
4d707b9f 910{
42f8570f 911 struct worker *worker;
42f8570f 912
b67bfe0d 913 hash_for_each_possible(pool->busy_hash, worker, hentry,
a2c1c57b
TH
914 (unsigned long)work)
915 if (worker->current_work == work &&
916 worker->current_func == work->func)
42f8570f
SL
917 return worker;
918
919 return NULL;
4d707b9f
ON
920}
921
bf4ede01
TH
922/**
923 * move_linked_works - move linked works to a list
924 * @work: start of series of works to be scheduled
925 * @head: target list to append @work to
926 * @nextp: out paramter for nested worklist walking
927 *
928 * Schedule linked works starting from @work to @head. Work series to
929 * be scheduled starts at @work and includes any consecutive work with
930 * WORK_STRUCT_LINKED set in its predecessor.
931 *
932 * If @nextp is not NULL, it's updated to point to the next work of
933 * the last scheduled work. This allows move_linked_works() to be
934 * nested inside outer list_for_each_entry_safe().
935 *
936 * CONTEXT:
d565ed63 937 * spin_lock_irq(pool->lock).
bf4ede01
TH
938 */
939static void move_linked_works(struct work_struct *work, struct list_head *head,
940 struct work_struct **nextp)
941{
942 struct work_struct *n;
943
944 /*
945 * Linked worklist will always end before the end of the list,
946 * use NULL for list head.
947 */
948 list_for_each_entry_safe_from(work, n, NULL, entry) {
949 list_move_tail(&work->entry, head);
950 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
951 break;
952 }
953
954 /*
955 * If we're already inside safe list traversal and have moved
956 * multiple works to the scheduled queue, the next position
957 * needs to be updated.
958 */
959 if (nextp)
960 *nextp = n;
961}
962
112202d9 963static void pwq_activate_delayed_work(struct work_struct *work)
bf4ede01 964{
112202d9 965 struct pool_workqueue *pwq = get_work_pwq(work);
bf4ede01
TH
966
967 trace_workqueue_activate_work(work);
112202d9 968 move_linked_works(work, &pwq->pool->worklist, NULL);
bf4ede01 969 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
112202d9 970 pwq->nr_active++;
bf4ede01
TH
971}
972
112202d9 973static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
3aa62497 974{
112202d9 975 struct work_struct *work = list_first_entry(&pwq->delayed_works,
3aa62497
LJ
976 struct work_struct, entry);
977
112202d9 978 pwq_activate_delayed_work(work);
3aa62497
LJ
979}
980
bf4ede01 981/**
112202d9
TH
982 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
983 * @pwq: pwq of interest
bf4ede01 984 * @color: color of work which left the queue
bf4ede01
TH
985 *
986 * A work either has completed or is removed from pending queue,
112202d9 987 * decrement nr_in_flight of its pwq and handle workqueue flushing.
bf4ede01
TH
988 *
989 * CONTEXT:
d565ed63 990 * spin_lock_irq(pool->lock).
bf4ede01 991 */
112202d9 992static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
bf4ede01
TH
993{
994 /* ignore uncolored works */
995 if (color == WORK_NO_COLOR)
996 return;
997
112202d9 998 pwq->nr_in_flight[color]--;
bf4ede01 999
112202d9
TH
1000 pwq->nr_active--;
1001 if (!list_empty(&pwq->delayed_works)) {
b3f9f405 1002 /* one down, submit a delayed one */
112202d9
TH
1003 if (pwq->nr_active < pwq->max_active)
1004 pwq_activate_first_delayed(pwq);
bf4ede01
TH
1005 }
1006
1007 /* is flush in progress and are we at the flushing tip? */
112202d9 1008 if (likely(pwq->flush_color != color))
bf4ede01
TH
1009 return;
1010
1011 /* are there still in-flight works? */
112202d9 1012 if (pwq->nr_in_flight[color])
bf4ede01
TH
1013 return;
1014
112202d9
TH
1015 /* this pwq is done, clear flush_color */
1016 pwq->flush_color = -1;
bf4ede01
TH
1017
1018 /*
112202d9 1019 * If this was the last pwq, wake up the first flusher. It
bf4ede01
TH
1020 * will handle the rest.
1021 */
112202d9
TH
1022 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1023 complete(&pwq->wq->first_flusher->done);
bf4ede01
TH
1024}
1025
36e227d2 1026/**
bbb68dfa 1027 * try_to_grab_pending - steal work item from worklist and disable irq
36e227d2
TH
1028 * @work: work item to steal
1029 * @is_dwork: @work is a delayed_work
bbb68dfa 1030 * @flags: place to store irq state
36e227d2
TH
1031 *
1032 * Try to grab PENDING bit of @work. This function can handle @work in any
1033 * stable state - idle, on timer or on worklist. Return values are
1034 *
1035 * 1 if @work was pending and we successfully stole PENDING
1036 * 0 if @work was idle and we claimed PENDING
1037 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
bbb68dfa
TH
1038 * -ENOENT if someone else is canceling @work, this state may persist
1039 * for arbitrarily long
36e227d2 1040 *
bbb68dfa 1041 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
e0aecdd8
TH
1042 * interrupted while holding PENDING and @work off queue, irq must be
1043 * disabled on entry. This, combined with delayed_work->timer being
1044 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
bbb68dfa
TH
1045 *
1046 * On successful return, >= 0, irq is disabled and the caller is
1047 * responsible for releasing it using local_irq_restore(*@flags).
1048 *
e0aecdd8 1049 * This function is safe to call from any context including IRQ handler.
bf4ede01 1050 */
bbb68dfa
TH
1051static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1052 unsigned long *flags)
bf4ede01 1053{
d565ed63 1054 struct worker_pool *pool;
112202d9 1055 struct pool_workqueue *pwq;
bf4ede01 1056
bbb68dfa
TH
1057 local_irq_save(*flags);
1058
36e227d2
TH
1059 /* try to steal the timer if it exists */
1060 if (is_dwork) {
1061 struct delayed_work *dwork = to_delayed_work(work);
1062
e0aecdd8
TH
1063 /*
1064 * dwork->timer is irqsafe. If del_timer() fails, it's
1065 * guaranteed that the timer is not queued anywhere and not
1066 * running on the local CPU.
1067 */
36e227d2
TH
1068 if (likely(del_timer(&dwork->timer)))
1069 return 1;
1070 }
1071
1072 /* try to claim PENDING the normal way */
bf4ede01
TH
1073 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1074 return 0;
1075
1076 /*
1077 * The queueing is in progress, or it is already queued. Try to
1078 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1079 */
d565ed63
TH
1080 pool = get_work_pool(work);
1081 if (!pool)
bbb68dfa 1082 goto fail;
bf4ede01 1083
d565ed63 1084 spin_lock(&pool->lock);
0b3dae68 1085 /*
112202d9
TH
1086 * work->data is guaranteed to point to pwq only while the work
1087 * item is queued on pwq->wq, and both updating work->data to point
1088 * to pwq on queueing and to pool on dequeueing are done under
1089 * pwq->pool->lock. This in turn guarantees that, if work->data
1090 * points to pwq which is associated with a locked pool, the work
0b3dae68
LJ
1091 * item is currently queued on that pool.
1092 */
112202d9
TH
1093 pwq = get_work_pwq(work);
1094 if (pwq && pwq->pool == pool) {
16062836
TH
1095 debug_work_deactivate(work);
1096
1097 /*
1098 * A delayed work item cannot be grabbed directly because
1099 * it might have linked NO_COLOR work items which, if left
112202d9 1100 * on the delayed_list, will confuse pwq->nr_active
16062836
TH
1101 * management later on and cause stall. Make sure the work
1102 * item is activated before grabbing.
1103 */
1104 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
112202d9 1105 pwq_activate_delayed_work(work);
16062836
TH
1106
1107 list_del_init(&work->entry);
112202d9 1108 pwq_dec_nr_in_flight(get_work_pwq(work), get_work_color(work));
16062836 1109
112202d9 1110 /* work->data points to pwq iff queued, point to pool */
16062836
TH
1111 set_work_pool_and_keep_pending(work, pool->id);
1112
1113 spin_unlock(&pool->lock);
1114 return 1;
bf4ede01 1115 }
d565ed63 1116 spin_unlock(&pool->lock);
bbb68dfa
TH
1117fail:
1118 local_irq_restore(*flags);
1119 if (work_is_canceling(work))
1120 return -ENOENT;
1121 cpu_relax();
36e227d2 1122 return -EAGAIN;
bf4ede01
TH
1123}
1124
4690c4ab 1125/**
706026c2 1126 * insert_work - insert a work into a pool
112202d9 1127 * @pwq: pwq @work belongs to
4690c4ab
TH
1128 * @work: work to insert
1129 * @head: insertion point
1130 * @extra_flags: extra WORK_STRUCT_* flags to set
1131 *
112202d9 1132 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
706026c2 1133 * work_struct flags.
4690c4ab
TH
1134 *
1135 * CONTEXT:
d565ed63 1136 * spin_lock_irq(pool->lock).
4690c4ab 1137 */
112202d9
TH
1138static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1139 struct list_head *head, unsigned int extra_flags)
b89deed3 1140{
112202d9 1141 struct worker_pool *pool = pwq->pool;
e22bee78 1142
4690c4ab 1143 /* we own @work, set data and link */
112202d9 1144 set_work_pwq(work, pwq, extra_flags);
1a4d9b0a 1145 list_add_tail(&work->entry, head);
e22bee78
TH
1146
1147 /*
1148 * Ensure either worker_sched_deactivated() sees the above
1149 * list_add_tail() or we see zero nr_running to avoid workers
1150 * lying around lazily while there are works to be processed.
1151 */
1152 smp_mb();
1153
63d95a91
TH
1154 if (__need_more_worker(pool))
1155 wake_up_worker(pool);
b89deed3
ON
1156}
1157
c8efcc25
TH
1158/*
1159 * Test whether @work is being queued from another work executing on the
8d03ecfe 1160 * same workqueue.
c8efcc25
TH
1161 */
1162static bool is_chained_work(struct workqueue_struct *wq)
1163{
8d03ecfe
TH
1164 struct worker *worker;
1165
1166 worker = current_wq_worker();
1167 /*
1168 * Return %true iff I'm a worker execuing a work item on @wq. If
1169 * I'm @worker, it's safe to dereference it without locking.
1170 */
112202d9 1171 return worker && worker->current_pwq->wq == wq;
c8efcc25
TH
1172}
1173
4690c4ab 1174static void __queue_work(unsigned int cpu, struct workqueue_struct *wq,
1da177e4
LT
1175 struct work_struct *work)
1176{
112202d9 1177 struct pool_workqueue *pwq;
1e19ffc6 1178 struct list_head *worklist;
8a2e8e5d 1179 unsigned int work_flags;
b75cac93 1180 unsigned int req_cpu = cpu;
8930caba
TH
1181
1182 /*
1183 * While a work item is PENDING && off queue, a task trying to
1184 * steal the PENDING will busy-loop waiting for it to either get
1185 * queued or lose PENDING. Grabbing PENDING and queueing should
1186 * happen with IRQ disabled.
1187 */
1188 WARN_ON_ONCE(!irqs_disabled());
1da177e4 1189
dc186ad7 1190 debug_work_activate(work);
1e19ffc6 1191
c8efcc25 1192 /* if dying, only works from the same workqueue are allowed */
9c5a2ba7 1193 if (unlikely(wq->flags & WQ_DRAINING) &&
c8efcc25 1194 WARN_ON_ONCE(!is_chained_work(wq)))
e41e704b
TH
1195 return;
1196
112202d9 1197 /* determine the pwq to use */
c7fc77f7 1198 if (!(wq->flags & WQ_UNBOUND)) {
c9e7cf27 1199 struct worker_pool *last_pool;
18aa9eff 1200
57469821 1201 if (cpu == WORK_CPU_UNBOUND)
c7fc77f7
TH
1202 cpu = raw_smp_processor_id();
1203
18aa9eff 1204 /*
dbf2576e
TH
1205 * It's multi cpu. If @work was previously on a different
1206 * cpu, it might still be running there, in which case the
1207 * work needs to be queued on that cpu to guarantee
1208 * non-reentrancy.
18aa9eff 1209 */
112202d9 1210 pwq = get_pwq(cpu, wq);
c9e7cf27 1211 last_pool = get_work_pool(work);
dbf2576e 1212
112202d9 1213 if (last_pool && last_pool != pwq->pool) {
18aa9eff
TH
1214 struct worker *worker;
1215
d565ed63 1216 spin_lock(&last_pool->lock);
18aa9eff 1217
c9e7cf27 1218 worker = find_worker_executing_work(last_pool, work);
18aa9eff 1219
112202d9
TH
1220 if (worker && worker->current_pwq->wq == wq) {
1221 pwq = get_pwq(last_pool->cpu, wq);
8594fade 1222 } else {
18aa9eff 1223 /* meh... not running there, queue here */
d565ed63 1224 spin_unlock(&last_pool->lock);
112202d9 1225 spin_lock(&pwq->pool->lock);
18aa9eff 1226 }
8930caba 1227 } else {
112202d9 1228 spin_lock(&pwq->pool->lock);
8930caba 1229 }
f3421797 1230 } else {
112202d9
TH
1231 pwq = get_pwq(WORK_CPU_UNBOUND, wq);
1232 spin_lock(&pwq->pool->lock);
502ca9d8
TH
1233 }
1234
112202d9
TH
1235 /* pwq determined, queue */
1236 trace_workqueue_queue_work(req_cpu, pwq, work);
502ca9d8 1237
f5b2552b 1238 if (WARN_ON(!list_empty(&work->entry))) {
112202d9 1239 spin_unlock(&pwq->pool->lock);
f5b2552b
DC
1240 return;
1241 }
1e19ffc6 1242
112202d9
TH
1243 pwq->nr_in_flight[pwq->work_color]++;
1244 work_flags = work_color_to_flags(pwq->work_color);
1e19ffc6 1245
112202d9 1246 if (likely(pwq->nr_active < pwq->max_active)) {
cdadf009 1247 trace_workqueue_activate_work(work);
112202d9
TH
1248 pwq->nr_active++;
1249 worklist = &pwq->pool->worklist;
8a2e8e5d
TH
1250 } else {
1251 work_flags |= WORK_STRUCT_DELAYED;
112202d9 1252 worklist = &pwq->delayed_works;
8a2e8e5d 1253 }
1e19ffc6 1254
112202d9 1255 insert_work(pwq, work, worklist, work_flags);
1e19ffc6 1256
112202d9 1257 spin_unlock(&pwq->pool->lock);
1da177e4
LT
1258}
1259
0fcb78c2 1260/**
c1a220e7
ZR
1261 * queue_work_on - queue work on specific cpu
1262 * @cpu: CPU number to execute work on
0fcb78c2
REB
1263 * @wq: workqueue to use
1264 * @work: work to queue
1265 *
d4283e93 1266 * Returns %false if @work was already on a queue, %true otherwise.
1da177e4 1267 *
c1a220e7
ZR
1268 * We queue the work to a specific CPU, the caller must ensure it
1269 * can't go away.
1da177e4 1270 */
d4283e93
TH
1271bool queue_work_on(int cpu, struct workqueue_struct *wq,
1272 struct work_struct *work)
1da177e4 1273{
d4283e93 1274 bool ret = false;
8930caba 1275 unsigned long flags;
ef1ca236 1276
8930caba 1277 local_irq_save(flags);
c1a220e7 1278
22df02bb 1279 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
4690c4ab 1280 __queue_work(cpu, wq, work);
d4283e93 1281 ret = true;
c1a220e7 1282 }
ef1ca236 1283
8930caba 1284 local_irq_restore(flags);
1da177e4
LT
1285 return ret;
1286}
c1a220e7 1287EXPORT_SYMBOL_GPL(queue_work_on);
1da177e4 1288
c1a220e7 1289/**
0a13c00e 1290 * queue_work - queue work on a workqueue
c1a220e7
ZR
1291 * @wq: workqueue to use
1292 * @work: work to queue
1293 *
d4283e93 1294 * Returns %false if @work was already on a queue, %true otherwise.
c1a220e7 1295 *
0a13c00e
TH
1296 * We queue the work to the CPU on which it was submitted, but if the CPU dies
1297 * it can be processed by another CPU.
c1a220e7 1298 */
d4283e93 1299bool queue_work(struct workqueue_struct *wq, struct work_struct *work)
c1a220e7 1300{
57469821 1301 return queue_work_on(WORK_CPU_UNBOUND, wq, work);
c1a220e7 1302}
0a13c00e 1303EXPORT_SYMBOL_GPL(queue_work);
c1a220e7 1304
d8e794df 1305void delayed_work_timer_fn(unsigned long __data)
1da177e4 1306{
52bad64d 1307 struct delayed_work *dwork = (struct delayed_work *)__data;
1da177e4 1308
e0aecdd8 1309 /* should have been called from irqsafe timer with irq already off */
60c057bc 1310 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1da177e4 1311}
1438ade5 1312EXPORT_SYMBOL(delayed_work_timer_fn);
1da177e4 1313
7beb2edf
TH
1314static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1315 struct delayed_work *dwork, unsigned long delay)
1da177e4 1316{
7beb2edf
TH
1317 struct timer_list *timer = &dwork->timer;
1318 struct work_struct *work = &dwork->work;
7beb2edf
TH
1319
1320 WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1321 timer->data != (unsigned long)dwork);
fc4b514f
TH
1322 WARN_ON_ONCE(timer_pending(timer));
1323 WARN_ON_ONCE(!list_empty(&work->entry));
7beb2edf 1324
8852aac2
TH
1325 /*
1326 * If @delay is 0, queue @dwork->work immediately. This is for
1327 * both optimization and correctness. The earliest @timer can
1328 * expire is on the closest next tick and delayed_work users depend
1329 * on that there's no such delay when @delay is 0.
1330 */
1331 if (!delay) {
1332 __queue_work(cpu, wq, &dwork->work);
1333 return;
1334 }
1335
7beb2edf 1336 timer_stats_timer_set_start_info(&dwork->timer);
1da177e4 1337
60c057bc 1338 dwork->wq = wq;
1265057f 1339 dwork->cpu = cpu;
7beb2edf
TH
1340 timer->expires = jiffies + delay;
1341
1342 if (unlikely(cpu != WORK_CPU_UNBOUND))
1343 add_timer_on(timer, cpu);
1344 else
1345 add_timer(timer);
1da177e4
LT
1346}
1347
0fcb78c2
REB
1348/**
1349 * queue_delayed_work_on - queue work on specific CPU after delay
1350 * @cpu: CPU number to execute work on
1351 * @wq: workqueue to use
af9997e4 1352 * @dwork: work to queue
0fcb78c2
REB
1353 * @delay: number of jiffies to wait before queueing
1354 *
715f1300
TH
1355 * Returns %false if @work was already on a queue, %true otherwise. If
1356 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1357 * execution.
0fcb78c2 1358 */
d4283e93
TH
1359bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1360 struct delayed_work *dwork, unsigned long delay)
7a6bc1cd 1361{
52bad64d 1362 struct work_struct *work = &dwork->work;
d4283e93 1363 bool ret = false;
8930caba 1364 unsigned long flags;
7a6bc1cd 1365
8930caba
TH
1366 /* read the comment in __queue_work() */
1367 local_irq_save(flags);
7a6bc1cd 1368
22df02bb 1369 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
7beb2edf 1370 __queue_delayed_work(cpu, wq, dwork, delay);
d4283e93 1371 ret = true;
7a6bc1cd 1372 }
8a3e77cc 1373
8930caba 1374 local_irq_restore(flags);
7a6bc1cd
VP
1375 return ret;
1376}
ae90dd5d 1377EXPORT_SYMBOL_GPL(queue_delayed_work_on);
c7fc77f7 1378
0a13c00e
TH
1379/**
1380 * queue_delayed_work - queue work on a workqueue after delay
1381 * @wq: workqueue to use
1382 * @dwork: delayable work to queue
1383 * @delay: number of jiffies to wait before queueing
1384 *
715f1300 1385 * Equivalent to queue_delayed_work_on() but tries to use the local CPU.
0a13c00e 1386 */
d4283e93 1387bool queue_delayed_work(struct workqueue_struct *wq,
0a13c00e
TH
1388 struct delayed_work *dwork, unsigned long delay)
1389{
57469821 1390 return queue_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
0a13c00e
TH
1391}
1392EXPORT_SYMBOL_GPL(queue_delayed_work);
c7fc77f7 1393
8376fe22
TH
1394/**
1395 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1396 * @cpu: CPU number to execute work on
1397 * @wq: workqueue to use
1398 * @dwork: work to queue
1399 * @delay: number of jiffies to wait before queueing
1400 *
1401 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1402 * modify @dwork's timer so that it expires after @delay. If @delay is
1403 * zero, @work is guaranteed to be scheduled immediately regardless of its
1404 * current state.
1405 *
1406 * Returns %false if @dwork was idle and queued, %true if @dwork was
1407 * pending and its timer was modified.
1408 *
e0aecdd8 1409 * This function is safe to call from any context including IRQ handler.
8376fe22
TH
1410 * See try_to_grab_pending() for details.
1411 */
1412bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1413 struct delayed_work *dwork, unsigned long delay)
1414{
1415 unsigned long flags;
1416 int ret;
c7fc77f7 1417
8376fe22
TH
1418 do {
1419 ret = try_to_grab_pending(&dwork->work, true, &flags);
1420 } while (unlikely(ret == -EAGAIN));
63bc0362 1421
8376fe22
TH
1422 if (likely(ret >= 0)) {
1423 __queue_delayed_work(cpu, wq, dwork, delay);
1424 local_irq_restore(flags);
7a6bc1cd 1425 }
8376fe22
TH
1426
1427 /* -ENOENT from try_to_grab_pending() becomes %true */
7a6bc1cd
VP
1428 return ret;
1429}
8376fe22
TH
1430EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1431
1432/**
1433 * mod_delayed_work - modify delay of or queue a delayed work
1434 * @wq: workqueue to use
1435 * @dwork: work to queue
1436 * @delay: number of jiffies to wait before queueing
1437 *
1438 * mod_delayed_work_on() on local CPU.
1439 */
1440bool mod_delayed_work(struct workqueue_struct *wq, struct delayed_work *dwork,
1441 unsigned long delay)
1442{
1443 return mod_delayed_work_on(WORK_CPU_UNBOUND, wq, dwork, delay);
1444}
1445EXPORT_SYMBOL_GPL(mod_delayed_work);
1da177e4 1446
c8e55f36
TH
1447/**
1448 * worker_enter_idle - enter idle state
1449 * @worker: worker which is entering idle state
1450 *
1451 * @worker is entering idle state. Update stats and idle timer if
1452 * necessary.
1453 *
1454 * LOCKING:
d565ed63 1455 * spin_lock_irq(pool->lock).
c8e55f36
TH
1456 */
1457static void worker_enter_idle(struct worker *worker)
1da177e4 1458{
bd7bdd43 1459 struct worker_pool *pool = worker->pool;
c8e55f36
TH
1460
1461 BUG_ON(worker->flags & WORKER_IDLE);
1462 BUG_ON(!list_empty(&worker->entry) &&
1463 (worker->hentry.next || worker->hentry.pprev));
1464
cb444766
TH
1465 /* can't use worker_set_flags(), also called from start_worker() */
1466 worker->flags |= WORKER_IDLE;
bd7bdd43 1467 pool->nr_idle++;
e22bee78 1468 worker->last_active = jiffies;
c8e55f36
TH
1469
1470 /* idle_list is LIFO */
bd7bdd43 1471 list_add(&worker->entry, &pool->idle_list);
db7bccf4 1472
628c78e7
TH
1473 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1474 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
cb444766 1475
544ecf31 1476 /*
706026c2 1477 * Sanity check nr_running. Because wq_unbind_fn() releases
d565ed63 1478 * pool->lock between setting %WORKER_UNBOUND and zapping
628c78e7
TH
1479 * nr_running, the warning may trigger spuriously. Check iff
1480 * unbind is not in progress.
544ecf31 1481 */
24647570 1482 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
bd7bdd43 1483 pool->nr_workers == pool->nr_idle &&
e19e397a 1484 atomic_read(&pool->nr_running));
c8e55f36
TH
1485}
1486
1487/**
1488 * worker_leave_idle - leave idle state
1489 * @worker: worker which is leaving idle state
1490 *
1491 * @worker is leaving idle state. Update stats.
1492 *
1493 * LOCKING:
d565ed63 1494 * spin_lock_irq(pool->lock).
c8e55f36
TH
1495 */
1496static void worker_leave_idle(struct worker *worker)
1497{
bd7bdd43 1498 struct worker_pool *pool = worker->pool;
c8e55f36
TH
1499
1500 BUG_ON(!(worker->flags & WORKER_IDLE));
d302f017 1501 worker_clr_flags(worker, WORKER_IDLE);
bd7bdd43 1502 pool->nr_idle--;
c8e55f36
TH
1503 list_del_init(&worker->entry);
1504}
1505
e22bee78 1506/**
706026c2 1507 * worker_maybe_bind_and_lock - bind worker to its cpu if possible and lock pool
e22bee78
TH
1508 * @worker: self
1509 *
1510 * Works which are scheduled while the cpu is online must at least be
1511 * scheduled to a worker which is bound to the cpu so that if they are
1512 * flushed from cpu callbacks while cpu is going down, they are
1513 * guaranteed to execute on the cpu.
1514 *
f5faa077 1515 * This function is to be used by unbound workers and rescuers to bind
e22bee78
TH
1516 * themselves to the target cpu and may race with cpu going down or
1517 * coming online. kthread_bind() can't be used because it may put the
1518 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
706026c2 1519 * verbatim as it's best effort and blocking and pool may be
e22bee78
TH
1520 * [dis]associated in the meantime.
1521 *
706026c2 1522 * This function tries set_cpus_allowed() and locks pool and verifies the
24647570 1523 * binding against %POOL_DISASSOCIATED which is set during
f2d5a0ee
TH
1524 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
1525 * enters idle state or fetches works without dropping lock, it can
1526 * guarantee the scheduling requirement described in the first paragraph.
e22bee78
TH
1527 *
1528 * CONTEXT:
d565ed63 1529 * Might sleep. Called without any lock but returns with pool->lock
e22bee78
TH
1530 * held.
1531 *
1532 * RETURNS:
706026c2 1533 * %true if the associated pool is online (@worker is successfully
e22bee78
TH
1534 * bound), %false if offline.
1535 */
1536static bool worker_maybe_bind_and_lock(struct worker *worker)
d565ed63 1537__acquires(&pool->lock)
e22bee78 1538{
24647570 1539 struct worker_pool *pool = worker->pool;
e22bee78
TH
1540
1541 while (true) {
4e6045f1 1542 /*
e22bee78
TH
1543 * The following call may fail, succeed or succeed
1544 * without actually migrating the task to the cpu if
1545 * it races with cpu hotunplug operation. Verify
24647570 1546 * against POOL_DISASSOCIATED.
4e6045f1 1547 */
24647570 1548 if (!(pool->flags & POOL_DISASSOCIATED))
f5faa077 1549 set_cpus_allowed_ptr(current, get_cpu_mask(pool->cpu));
e22bee78 1550
d565ed63 1551 spin_lock_irq(&pool->lock);
24647570 1552 if (pool->flags & POOL_DISASSOCIATED)
e22bee78 1553 return false;
f5faa077 1554 if (task_cpu(current) == pool->cpu &&
e22bee78 1555 cpumask_equal(&current->cpus_allowed,
ec22ca5e 1556 get_cpu_mask(pool->cpu)))
e22bee78 1557 return true;
d565ed63 1558 spin_unlock_irq(&pool->lock);
e22bee78 1559
5035b20f
TH
1560 /*
1561 * We've raced with CPU hot[un]plug. Give it a breather
1562 * and retry migration. cond_resched() is required here;
1563 * otherwise, we might deadlock against cpu_stop trying to
1564 * bring down the CPU on non-preemptive kernel.
1565 */
e22bee78 1566 cpu_relax();
5035b20f 1567 cond_resched();
e22bee78
TH
1568 }
1569}
1570
25511a47 1571/*
ea1abd61 1572 * Rebind an idle @worker to its CPU. worker_thread() will test
5f7dabfd 1573 * list_empty(@worker->entry) before leaving idle and call this function.
25511a47
TH
1574 */
1575static void idle_worker_rebind(struct worker *worker)
1576{
5f7dabfd
LJ
1577 /* CPU may go down again inbetween, clear UNBOUND only on success */
1578 if (worker_maybe_bind_and_lock(worker))
1579 worker_clr_flags(worker, WORKER_UNBOUND);
25511a47 1580
ea1abd61
LJ
1581 /* rebind complete, become available again */
1582 list_add(&worker->entry, &worker->pool->idle_list);
d565ed63 1583 spin_unlock_irq(&worker->pool->lock);
25511a47
TH
1584}
1585
e22bee78 1586/*
25511a47 1587 * Function for @worker->rebind.work used to rebind unbound busy workers to
403c821d
TH
1588 * the associated cpu which is coming back online. This is scheduled by
1589 * cpu up but can race with other cpu hotplug operations and may be
1590 * executed twice without intervening cpu down.
e22bee78 1591 */
25511a47 1592static void busy_worker_rebind_fn(struct work_struct *work)
e22bee78
TH
1593{
1594 struct worker *worker = container_of(work, struct worker, rebind_work);
e22bee78 1595
eab6d828
LJ
1596 if (worker_maybe_bind_and_lock(worker))
1597 worker_clr_flags(worker, WORKER_UNBOUND);
e22bee78 1598
d565ed63 1599 spin_unlock_irq(&worker->pool->lock);
e22bee78
TH
1600}
1601
25511a47 1602/**
94cf58bb
TH
1603 * rebind_workers - rebind all workers of a pool to the associated CPU
1604 * @pool: pool of interest
25511a47 1605 *
94cf58bb 1606 * @pool->cpu is coming online. Rebind all workers to the CPU. Rebinding
25511a47
TH
1607 * is different for idle and busy ones.
1608 *
ea1abd61
LJ
1609 * Idle ones will be removed from the idle_list and woken up. They will
1610 * add themselves back after completing rebind. This ensures that the
1611 * idle_list doesn't contain any unbound workers when re-bound busy workers
1612 * try to perform local wake-ups for concurrency management.
25511a47 1613 *
ea1abd61
LJ
1614 * Busy workers can rebind after they finish their current work items.
1615 * Queueing the rebind work item at the head of the scheduled list is
1616 * enough. Note that nr_running will be properly bumped as busy workers
1617 * rebind.
25511a47 1618 *
ea1abd61
LJ
1619 * On return, all non-manager workers are scheduled for rebind - see
1620 * manage_workers() for the manager special case. Any idle worker
1621 * including the manager will not appear on @idle_list until rebind is
1622 * complete, making local wake-ups safe.
25511a47 1623 */
94cf58bb 1624static void rebind_workers(struct worker_pool *pool)
25511a47 1625{
ea1abd61 1626 struct worker *worker, *n;
25511a47
TH
1627 int i;
1628
94cf58bb
TH
1629 lockdep_assert_held(&pool->assoc_mutex);
1630 lockdep_assert_held(&pool->lock);
25511a47 1631
5f7dabfd 1632 /* dequeue and kick idle ones */
94cf58bb
TH
1633 list_for_each_entry_safe(worker, n, &pool->idle_list, entry) {
1634 /*
1635 * idle workers should be off @pool->idle_list until rebind
1636 * is complete to avoid receiving premature local wake-ups.
1637 */
1638 list_del_init(&worker->entry);
25511a47 1639
94cf58bb
TH
1640 /*
1641 * worker_thread() will see the above dequeuing and call
1642 * idle_worker_rebind().
1643 */
1644 wake_up_process(worker->task);
1645 }
25511a47 1646
94cf58bb 1647 /* rebind busy workers */
b67bfe0d 1648 for_each_busy_worker(worker, i, pool) {
94cf58bb
TH
1649 struct work_struct *rebind_work = &worker->rebind_work;
1650 struct workqueue_struct *wq;
25511a47 1651
94cf58bb
TH
1652 if (test_and_set_bit(WORK_STRUCT_PENDING_BIT,
1653 work_data_bits(rebind_work)))
1654 continue;
25511a47 1655
94cf58bb 1656 debug_work_activate(rebind_work);
90beca5d 1657
94cf58bb
TH
1658 /*
1659 * wq doesn't really matter but let's keep @worker->pool
112202d9 1660 * and @pwq->pool consistent for sanity.
94cf58bb
TH
1661 */
1662 if (std_worker_pool_pri(worker->pool))
1663 wq = system_highpri_wq;
1664 else
1665 wq = system_wq;
1666
112202d9 1667 insert_work(get_pwq(pool->cpu, wq), rebind_work,
94cf58bb
TH
1668 worker->scheduled.next,
1669 work_color_to_flags(WORK_NO_COLOR));
ec58815a 1670 }
25511a47
TH
1671}
1672
c34056a3
TH
1673static struct worker *alloc_worker(void)
1674{
1675 struct worker *worker;
1676
1677 worker = kzalloc(sizeof(*worker), GFP_KERNEL);
c8e55f36
TH
1678 if (worker) {
1679 INIT_LIST_HEAD(&worker->entry);
affee4b2 1680 INIT_LIST_HEAD(&worker->scheduled);
25511a47 1681 INIT_WORK(&worker->rebind_work, busy_worker_rebind_fn);
e22bee78
TH
1682 /* on creation a worker is in !idle && prep state */
1683 worker->flags = WORKER_PREP;
c8e55f36 1684 }
c34056a3
TH
1685 return worker;
1686}
1687
1688/**
1689 * create_worker - create a new workqueue worker
63d95a91 1690 * @pool: pool the new worker will belong to
c34056a3 1691 *
63d95a91 1692 * Create a new worker which is bound to @pool. The returned worker
c34056a3
TH
1693 * can be started by calling start_worker() or destroyed using
1694 * destroy_worker().
1695 *
1696 * CONTEXT:
1697 * Might sleep. Does GFP_KERNEL allocations.
1698 *
1699 * RETURNS:
1700 * Pointer to the newly created worker.
1701 */
bc2ae0f5 1702static struct worker *create_worker(struct worker_pool *pool)
c34056a3 1703{
e34cdddb 1704 const char *pri = std_worker_pool_pri(pool) ? "H" : "";
c34056a3 1705 struct worker *worker = NULL;
f3421797 1706 int id = -1;
c34056a3 1707
d565ed63 1708 spin_lock_irq(&pool->lock);
bd7bdd43 1709 while (ida_get_new(&pool->worker_ida, &id)) {
d565ed63 1710 spin_unlock_irq(&pool->lock);
bd7bdd43 1711 if (!ida_pre_get(&pool->worker_ida, GFP_KERNEL))
c34056a3 1712 goto fail;
d565ed63 1713 spin_lock_irq(&pool->lock);
c34056a3 1714 }
d565ed63 1715 spin_unlock_irq(&pool->lock);
c34056a3
TH
1716
1717 worker = alloc_worker();
1718 if (!worker)
1719 goto fail;
1720
bd7bdd43 1721 worker->pool = pool;
c34056a3
TH
1722 worker->id = id;
1723
ec22ca5e 1724 if (pool->cpu != WORK_CPU_UNBOUND)
94dcf29a 1725 worker->task = kthread_create_on_node(worker_thread,
ec22ca5e
TH
1726 worker, cpu_to_node(pool->cpu),
1727 "kworker/%u:%d%s", pool->cpu, id, pri);
f3421797
TH
1728 else
1729 worker->task = kthread_create(worker_thread, worker,
3270476a 1730 "kworker/u:%d%s", id, pri);
c34056a3
TH
1731 if (IS_ERR(worker->task))
1732 goto fail;
1733
e34cdddb 1734 if (std_worker_pool_pri(pool))
3270476a
TH
1735 set_user_nice(worker->task, HIGHPRI_NICE_LEVEL);
1736
db7bccf4 1737 /*
bc2ae0f5 1738 * Determine CPU binding of the new worker depending on
24647570 1739 * %POOL_DISASSOCIATED. The caller is responsible for ensuring the
bc2ae0f5
TH
1740 * flag remains stable across this function. See the comments
1741 * above the flag definition for details.
1742 *
1743 * As an unbound worker may later become a regular one if CPU comes
1744 * online, make sure every worker has %PF_THREAD_BOUND set.
db7bccf4 1745 */
24647570 1746 if (!(pool->flags & POOL_DISASSOCIATED)) {
ec22ca5e 1747 kthread_bind(worker->task, pool->cpu);
bc2ae0f5 1748 } else {
db7bccf4 1749 worker->task->flags |= PF_THREAD_BOUND;
bc2ae0f5 1750 worker->flags |= WORKER_UNBOUND;
f3421797 1751 }
c34056a3
TH
1752
1753 return worker;
1754fail:
1755 if (id >= 0) {
d565ed63 1756 spin_lock_irq(&pool->lock);
bd7bdd43 1757 ida_remove(&pool->worker_ida, id);
d565ed63 1758 spin_unlock_irq(&pool->lock);
c34056a3
TH
1759 }
1760 kfree(worker);
1761 return NULL;
1762}
1763
1764/**
1765 * start_worker - start a newly created worker
1766 * @worker: worker to start
1767 *
706026c2 1768 * Make the pool aware of @worker and start it.
c34056a3
TH
1769 *
1770 * CONTEXT:
d565ed63 1771 * spin_lock_irq(pool->lock).
c34056a3
TH
1772 */
1773static void start_worker(struct worker *worker)
1774{
cb444766 1775 worker->flags |= WORKER_STARTED;
bd7bdd43 1776 worker->pool->nr_workers++;
c8e55f36 1777 worker_enter_idle(worker);
c34056a3
TH
1778 wake_up_process(worker->task);
1779}
1780
1781/**
1782 * destroy_worker - destroy a workqueue worker
1783 * @worker: worker to be destroyed
1784 *
706026c2 1785 * Destroy @worker and adjust @pool stats accordingly.
c8e55f36
TH
1786 *
1787 * CONTEXT:
d565ed63 1788 * spin_lock_irq(pool->lock) which is released and regrabbed.
c34056a3
TH
1789 */
1790static void destroy_worker(struct worker *worker)
1791{
bd7bdd43 1792 struct worker_pool *pool = worker->pool;
c34056a3
TH
1793 int id = worker->id;
1794
1795 /* sanity check frenzy */
1796 BUG_ON(worker->current_work);
affee4b2 1797 BUG_ON(!list_empty(&worker->scheduled));
c34056a3 1798
c8e55f36 1799 if (worker->flags & WORKER_STARTED)
bd7bdd43 1800 pool->nr_workers--;
c8e55f36 1801 if (worker->flags & WORKER_IDLE)
bd7bdd43 1802 pool->nr_idle--;
c8e55f36
TH
1803
1804 list_del_init(&worker->entry);
cb444766 1805 worker->flags |= WORKER_DIE;
c8e55f36 1806
d565ed63 1807 spin_unlock_irq(&pool->lock);
c8e55f36 1808
c34056a3
TH
1809 kthread_stop(worker->task);
1810 kfree(worker);
1811
d565ed63 1812 spin_lock_irq(&pool->lock);
bd7bdd43 1813 ida_remove(&pool->worker_ida, id);
c34056a3
TH
1814}
1815
63d95a91 1816static void idle_worker_timeout(unsigned long __pool)
e22bee78 1817{
63d95a91 1818 struct worker_pool *pool = (void *)__pool;
e22bee78 1819
d565ed63 1820 spin_lock_irq(&pool->lock);
e22bee78 1821
63d95a91 1822 if (too_many_workers(pool)) {
e22bee78
TH
1823 struct worker *worker;
1824 unsigned long expires;
1825
1826 /* idle_list is kept in LIFO order, check the last one */
63d95a91 1827 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78
TH
1828 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1829
1830 if (time_before(jiffies, expires))
63d95a91 1831 mod_timer(&pool->idle_timer, expires);
e22bee78
TH
1832 else {
1833 /* it's been idle for too long, wake up manager */
11ebea50 1834 pool->flags |= POOL_MANAGE_WORKERS;
63d95a91 1835 wake_up_worker(pool);
d5abe669 1836 }
e22bee78
TH
1837 }
1838
d565ed63 1839 spin_unlock_irq(&pool->lock);
e22bee78 1840}
d5abe669 1841
e22bee78
TH
1842static bool send_mayday(struct work_struct *work)
1843{
112202d9
TH
1844 struct pool_workqueue *pwq = get_work_pwq(work);
1845 struct workqueue_struct *wq = pwq->wq;
f3421797 1846 unsigned int cpu;
e22bee78
TH
1847
1848 if (!(wq->flags & WQ_RESCUER))
1849 return false;
1850
1851 /* mayday mayday mayday */
112202d9 1852 cpu = pwq->pool->cpu;
f3421797
TH
1853 /* WORK_CPU_UNBOUND can't be set in cpumask, use cpu 0 instead */
1854 if (cpu == WORK_CPU_UNBOUND)
1855 cpu = 0;
f2e005aa 1856 if (!mayday_test_and_set_cpu(cpu, wq->mayday_mask))
e22bee78
TH
1857 wake_up_process(wq->rescuer->task);
1858 return true;
1859}
1860
706026c2 1861static void pool_mayday_timeout(unsigned long __pool)
e22bee78 1862{
63d95a91 1863 struct worker_pool *pool = (void *)__pool;
e22bee78
TH
1864 struct work_struct *work;
1865
d565ed63 1866 spin_lock_irq(&pool->lock);
e22bee78 1867
63d95a91 1868 if (need_to_create_worker(pool)) {
e22bee78
TH
1869 /*
1870 * We've been trying to create a new worker but
1871 * haven't been successful. We might be hitting an
1872 * allocation deadlock. Send distress signals to
1873 * rescuers.
1874 */
63d95a91 1875 list_for_each_entry(work, &pool->worklist, entry)
e22bee78 1876 send_mayday(work);
1da177e4 1877 }
e22bee78 1878
d565ed63 1879 spin_unlock_irq(&pool->lock);
e22bee78 1880
63d95a91 1881 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1da177e4
LT
1882}
1883
e22bee78
TH
1884/**
1885 * maybe_create_worker - create a new worker if necessary
63d95a91 1886 * @pool: pool to create a new worker for
e22bee78 1887 *
63d95a91 1888 * Create a new worker for @pool if necessary. @pool is guaranteed to
e22bee78
TH
1889 * have at least one idle worker on return from this function. If
1890 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
63d95a91 1891 * sent to all rescuers with works scheduled on @pool to resolve
e22bee78
TH
1892 * possible allocation deadlock.
1893 *
1894 * On return, need_to_create_worker() is guaranteed to be false and
1895 * may_start_working() true.
1896 *
1897 * LOCKING:
d565ed63 1898 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
1899 * multiple times. Does GFP_KERNEL allocations. Called only from
1900 * manager.
1901 *
1902 * RETURNS:
d565ed63 1903 * false if no action was taken and pool->lock stayed locked, true
e22bee78
TH
1904 * otherwise.
1905 */
63d95a91 1906static bool maybe_create_worker(struct worker_pool *pool)
d565ed63
TH
1907__releases(&pool->lock)
1908__acquires(&pool->lock)
1da177e4 1909{
63d95a91 1910 if (!need_to_create_worker(pool))
e22bee78
TH
1911 return false;
1912restart:
d565ed63 1913 spin_unlock_irq(&pool->lock);
9f9c2364 1914
e22bee78 1915 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
63d95a91 1916 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
e22bee78
TH
1917
1918 while (true) {
1919 struct worker *worker;
1920
bc2ae0f5 1921 worker = create_worker(pool);
e22bee78 1922 if (worker) {
63d95a91 1923 del_timer_sync(&pool->mayday_timer);
d565ed63 1924 spin_lock_irq(&pool->lock);
e22bee78 1925 start_worker(worker);
63d95a91 1926 BUG_ON(need_to_create_worker(pool));
e22bee78
TH
1927 return true;
1928 }
1929
63d95a91 1930 if (!need_to_create_worker(pool))
e22bee78 1931 break;
1da177e4 1932
e22bee78
TH
1933 __set_current_state(TASK_INTERRUPTIBLE);
1934 schedule_timeout(CREATE_COOLDOWN);
9f9c2364 1935
63d95a91 1936 if (!need_to_create_worker(pool))
e22bee78
TH
1937 break;
1938 }
1939
63d95a91 1940 del_timer_sync(&pool->mayday_timer);
d565ed63 1941 spin_lock_irq(&pool->lock);
63d95a91 1942 if (need_to_create_worker(pool))
e22bee78
TH
1943 goto restart;
1944 return true;
1945}
1946
1947/**
1948 * maybe_destroy_worker - destroy workers which have been idle for a while
63d95a91 1949 * @pool: pool to destroy workers for
e22bee78 1950 *
63d95a91 1951 * Destroy @pool workers which have been idle for longer than
e22bee78
TH
1952 * IDLE_WORKER_TIMEOUT.
1953 *
1954 * LOCKING:
d565ed63 1955 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
1956 * multiple times. Called only from manager.
1957 *
1958 * RETURNS:
d565ed63 1959 * false if no action was taken and pool->lock stayed locked, true
e22bee78
TH
1960 * otherwise.
1961 */
63d95a91 1962static bool maybe_destroy_workers(struct worker_pool *pool)
e22bee78
TH
1963{
1964 bool ret = false;
1da177e4 1965
63d95a91 1966 while (too_many_workers(pool)) {
e22bee78
TH
1967 struct worker *worker;
1968 unsigned long expires;
3af24433 1969
63d95a91 1970 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78 1971 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
85f4186a 1972
e22bee78 1973 if (time_before(jiffies, expires)) {
63d95a91 1974 mod_timer(&pool->idle_timer, expires);
3af24433 1975 break;
e22bee78 1976 }
1da177e4 1977
e22bee78
TH
1978 destroy_worker(worker);
1979 ret = true;
1da177e4 1980 }
1e19ffc6 1981
e22bee78 1982 return ret;
1e19ffc6
TH
1983}
1984
73f53c4a 1985/**
e22bee78
TH
1986 * manage_workers - manage worker pool
1987 * @worker: self
73f53c4a 1988 *
706026c2 1989 * Assume the manager role and manage the worker pool @worker belongs
e22bee78 1990 * to. At any given time, there can be only zero or one manager per
706026c2 1991 * pool. The exclusion is handled automatically by this function.
e22bee78
TH
1992 *
1993 * The caller can safely start processing works on false return. On
1994 * true return, it's guaranteed that need_to_create_worker() is false
1995 * and may_start_working() is true.
73f53c4a
TH
1996 *
1997 * CONTEXT:
d565ed63 1998 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
1999 * multiple times. Does GFP_KERNEL allocations.
2000 *
2001 * RETURNS:
d565ed63
TH
2002 * spin_lock_irq(pool->lock) which may be released and regrabbed
2003 * multiple times. Does GFP_KERNEL allocations.
73f53c4a 2004 */
e22bee78 2005static bool manage_workers(struct worker *worker)
73f53c4a 2006{
63d95a91 2007 struct worker_pool *pool = worker->pool;
e22bee78 2008 bool ret = false;
73f53c4a 2009
ee378aa4 2010 if (pool->flags & POOL_MANAGING_WORKERS)
e22bee78 2011 return ret;
1e19ffc6 2012
552a37e9 2013 pool->flags |= POOL_MANAGING_WORKERS;
73f53c4a 2014
ee378aa4
LJ
2015 /*
2016 * To simplify both worker management and CPU hotplug, hold off
2017 * management while hotplug is in progress. CPU hotplug path can't
2018 * grab %POOL_MANAGING_WORKERS to achieve this because that can
2019 * lead to idle worker depletion (all become busy thinking someone
2020 * else is managing) which in turn can result in deadlock under
b2eb83d1 2021 * extreme circumstances. Use @pool->assoc_mutex to synchronize
ee378aa4
LJ
2022 * manager against CPU hotplug.
2023 *
b2eb83d1 2024 * assoc_mutex would always be free unless CPU hotplug is in
d565ed63 2025 * progress. trylock first without dropping @pool->lock.
ee378aa4 2026 */
b2eb83d1 2027 if (unlikely(!mutex_trylock(&pool->assoc_mutex))) {
d565ed63 2028 spin_unlock_irq(&pool->lock);
b2eb83d1 2029 mutex_lock(&pool->assoc_mutex);
ee378aa4
LJ
2030 /*
2031 * CPU hotplug could have happened while we were waiting
b2eb83d1 2032 * for assoc_mutex. Hotplug itself can't handle us
ee378aa4 2033 * because manager isn't either on idle or busy list, and
706026c2 2034 * @pool's state and ours could have deviated.
ee378aa4 2035 *
b2eb83d1 2036 * As hotplug is now excluded via assoc_mutex, we can
ee378aa4 2037 * simply try to bind. It will succeed or fail depending
706026c2 2038 * on @pool's current state. Try it and adjust
ee378aa4
LJ
2039 * %WORKER_UNBOUND accordingly.
2040 */
2041 if (worker_maybe_bind_and_lock(worker))
2042 worker->flags &= ~WORKER_UNBOUND;
2043 else
2044 worker->flags |= WORKER_UNBOUND;
73f53c4a 2045
ee378aa4
LJ
2046 ret = true;
2047 }
73f53c4a 2048
11ebea50 2049 pool->flags &= ~POOL_MANAGE_WORKERS;
73f53c4a
TH
2050
2051 /*
e22bee78
TH
2052 * Destroy and then create so that may_start_working() is true
2053 * on return.
73f53c4a 2054 */
63d95a91
TH
2055 ret |= maybe_destroy_workers(pool);
2056 ret |= maybe_create_worker(pool);
e22bee78 2057
552a37e9 2058 pool->flags &= ~POOL_MANAGING_WORKERS;
b2eb83d1 2059 mutex_unlock(&pool->assoc_mutex);
e22bee78 2060 return ret;
73f53c4a
TH
2061}
2062
a62428c0
TH
2063/**
2064 * process_one_work - process single work
c34056a3 2065 * @worker: self
a62428c0
TH
2066 * @work: work to process
2067 *
2068 * Process @work. This function contains all the logics necessary to
2069 * process a single work including synchronization against and
2070 * interaction with other workers on the same cpu, queueing and
2071 * flushing. As long as context requirement is met, any worker can
2072 * call this function to process a work.
2073 *
2074 * CONTEXT:
d565ed63 2075 * spin_lock_irq(pool->lock) which is released and regrabbed.
a62428c0 2076 */
c34056a3 2077static void process_one_work(struct worker *worker, struct work_struct *work)
d565ed63
TH
2078__releases(&pool->lock)
2079__acquires(&pool->lock)
a62428c0 2080{
112202d9 2081 struct pool_workqueue *pwq = get_work_pwq(work);
bd7bdd43 2082 struct worker_pool *pool = worker->pool;
112202d9 2083 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
73f53c4a 2084 int work_color;
7e11629d 2085 struct worker *collision;
a62428c0
TH
2086#ifdef CONFIG_LOCKDEP
2087 /*
2088 * It is permissible to free the struct work_struct from
2089 * inside the function that is called from it, this we need to
2090 * take into account for lockdep too. To avoid bogus "held
2091 * lock freed" warnings as well as problems when looking into
2092 * work->lockdep_map, make a copy and use that here.
2093 */
4d82a1de
PZ
2094 struct lockdep_map lockdep_map;
2095
2096 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
a62428c0 2097#endif
6fec10a1
TH
2098 /*
2099 * Ensure we're on the correct CPU. DISASSOCIATED test is
2100 * necessary to avoid spurious warnings from rescuers servicing the
24647570 2101 * unbound or a disassociated pool.
6fec10a1 2102 */
5f7dabfd 2103 WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
24647570 2104 !(pool->flags & POOL_DISASSOCIATED) &&
ec22ca5e 2105 raw_smp_processor_id() != pool->cpu);
25511a47 2106
7e11629d
TH
2107 /*
2108 * A single work shouldn't be executed concurrently by
2109 * multiple workers on a single cpu. Check whether anyone is
2110 * already processing the work. If so, defer the work to the
2111 * currently executing one.
2112 */
c9e7cf27 2113 collision = find_worker_executing_work(pool, work);
7e11629d
TH
2114 if (unlikely(collision)) {
2115 move_linked_works(work, &collision->scheduled, NULL);
2116 return;
2117 }
2118
8930caba 2119 /* claim and dequeue */
a62428c0 2120 debug_work_deactivate(work);
c9e7cf27 2121 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
c34056a3 2122 worker->current_work = work;
a2c1c57b 2123 worker->current_func = work->func;
112202d9 2124 worker->current_pwq = pwq;
73f53c4a 2125 work_color = get_work_color(work);
7a22ad75 2126
a62428c0
TH
2127 list_del_init(&work->entry);
2128
fb0e7beb
TH
2129 /*
2130 * CPU intensive works don't participate in concurrency
2131 * management. They're the scheduler's responsibility.
2132 */
2133 if (unlikely(cpu_intensive))
2134 worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
2135
974271c4 2136 /*
d565ed63 2137 * Unbound pool isn't concurrency managed and work items should be
974271c4
TH
2138 * executed ASAP. Wake up another worker if necessary.
2139 */
63d95a91
TH
2140 if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
2141 wake_up_worker(pool);
974271c4 2142
8930caba 2143 /*
7c3eed5c 2144 * Record the last pool and clear PENDING which should be the last
d565ed63 2145 * update to @work. Also, do this inside @pool->lock so that
23657bb1
TH
2146 * PENDING and queued state changes happen together while IRQ is
2147 * disabled.
8930caba 2148 */
7c3eed5c 2149 set_work_pool_and_clear_pending(work, pool->id);
a62428c0 2150
d565ed63 2151 spin_unlock_irq(&pool->lock);
a62428c0 2152
112202d9 2153 lock_map_acquire_read(&pwq->wq->lockdep_map);
a62428c0 2154 lock_map_acquire(&lockdep_map);
e36c886a 2155 trace_workqueue_execute_start(work);
a2c1c57b 2156 worker->current_func(work);
e36c886a
AV
2157 /*
2158 * While we must be careful to not use "work" after this, the trace
2159 * point will only record its address.
2160 */
2161 trace_workqueue_execute_end(work);
a62428c0 2162 lock_map_release(&lockdep_map);
112202d9 2163 lock_map_release(&pwq->wq->lockdep_map);
a62428c0
TH
2164
2165 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
044c782c
VI
2166 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2167 " last function: %pf\n",
a2c1c57b
TH
2168 current->comm, preempt_count(), task_pid_nr(current),
2169 worker->current_func);
a62428c0
TH
2170 debug_show_held_locks(current);
2171 dump_stack();
2172 }
2173
d565ed63 2174 spin_lock_irq(&pool->lock);
a62428c0 2175
fb0e7beb
TH
2176 /* clear cpu intensive status */
2177 if (unlikely(cpu_intensive))
2178 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2179
a62428c0 2180 /* we're done with it, release */
42f8570f 2181 hash_del(&worker->hentry);
c34056a3 2182 worker->current_work = NULL;
a2c1c57b 2183 worker->current_func = NULL;
112202d9
TH
2184 worker->current_pwq = NULL;
2185 pwq_dec_nr_in_flight(pwq, work_color);
a62428c0
TH
2186}
2187
affee4b2
TH
2188/**
2189 * process_scheduled_works - process scheduled works
2190 * @worker: self
2191 *
2192 * Process all scheduled works. Please note that the scheduled list
2193 * may change while processing a work, so this function repeatedly
2194 * fetches a work from the top and executes it.
2195 *
2196 * CONTEXT:
d565ed63 2197 * spin_lock_irq(pool->lock) which may be released and regrabbed
affee4b2
TH
2198 * multiple times.
2199 */
2200static void process_scheduled_works(struct worker *worker)
1da177e4 2201{
affee4b2
TH
2202 while (!list_empty(&worker->scheduled)) {
2203 struct work_struct *work = list_first_entry(&worker->scheduled,
1da177e4 2204 struct work_struct, entry);
c34056a3 2205 process_one_work(worker, work);
1da177e4 2206 }
1da177e4
LT
2207}
2208
4690c4ab
TH
2209/**
2210 * worker_thread - the worker thread function
c34056a3 2211 * @__worker: self
4690c4ab 2212 *
706026c2
TH
2213 * The worker thread function. There are NR_CPU_WORKER_POOLS dynamic pools
2214 * of these per each cpu. These workers process all works regardless of
e22bee78
TH
2215 * their specific target workqueue. The only exception is works which
2216 * belong to workqueues with a rescuer which will be explained in
2217 * rescuer_thread().
4690c4ab 2218 */
c34056a3 2219static int worker_thread(void *__worker)
1da177e4 2220{
c34056a3 2221 struct worker *worker = __worker;
bd7bdd43 2222 struct worker_pool *pool = worker->pool;
1da177e4 2223
e22bee78
TH
2224 /* tell the scheduler that this is a workqueue worker */
2225 worker->task->flags |= PF_WQ_WORKER;
c8e55f36 2226woke_up:
d565ed63 2227 spin_lock_irq(&pool->lock);
1da177e4 2228
5f7dabfd
LJ
2229 /* we are off idle list if destruction or rebind is requested */
2230 if (unlikely(list_empty(&worker->entry))) {
d565ed63 2231 spin_unlock_irq(&pool->lock);
25511a47 2232
5f7dabfd 2233 /* if DIE is set, destruction is requested */
25511a47
TH
2234 if (worker->flags & WORKER_DIE) {
2235 worker->task->flags &= ~PF_WQ_WORKER;
2236 return 0;
2237 }
2238
5f7dabfd 2239 /* otherwise, rebind */
25511a47
TH
2240 idle_worker_rebind(worker);
2241 goto woke_up;
c8e55f36 2242 }
affee4b2 2243
c8e55f36 2244 worker_leave_idle(worker);
db7bccf4 2245recheck:
e22bee78 2246 /* no more worker necessary? */
63d95a91 2247 if (!need_more_worker(pool))
e22bee78
TH
2248 goto sleep;
2249
2250 /* do we need to manage? */
63d95a91 2251 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
e22bee78
TH
2252 goto recheck;
2253
c8e55f36
TH
2254 /*
2255 * ->scheduled list can only be filled while a worker is
2256 * preparing to process a work or actually processing it.
2257 * Make sure nobody diddled with it while I was sleeping.
2258 */
2259 BUG_ON(!list_empty(&worker->scheduled));
2260
e22bee78
TH
2261 /*
2262 * When control reaches this point, we're guaranteed to have
2263 * at least one idle worker or that someone else has already
2264 * assumed the manager role.
2265 */
2266 worker_clr_flags(worker, WORKER_PREP);
2267
2268 do {
c8e55f36 2269 struct work_struct *work =
bd7bdd43 2270 list_first_entry(&pool->worklist,
c8e55f36
TH
2271 struct work_struct, entry);
2272
2273 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2274 /* optimization path, not strictly necessary */
2275 process_one_work(worker, work);
2276 if (unlikely(!list_empty(&worker->scheduled)))
affee4b2 2277 process_scheduled_works(worker);
c8e55f36
TH
2278 } else {
2279 move_linked_works(work, &worker->scheduled, NULL);
2280 process_scheduled_works(worker);
affee4b2 2281 }
63d95a91 2282 } while (keep_working(pool));
e22bee78
TH
2283
2284 worker_set_flags(worker, WORKER_PREP, false);
d313dd85 2285sleep:
63d95a91 2286 if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
e22bee78 2287 goto recheck;
d313dd85 2288
c8e55f36 2289 /*
d565ed63
TH
2290 * pool->lock is held and there's no work to process and no need to
2291 * manage, sleep. Workers are woken up only while holding
2292 * pool->lock or from local cpu, so setting the current state
2293 * before releasing pool->lock is enough to prevent losing any
2294 * event.
c8e55f36
TH
2295 */
2296 worker_enter_idle(worker);
2297 __set_current_state(TASK_INTERRUPTIBLE);
d565ed63 2298 spin_unlock_irq(&pool->lock);
c8e55f36
TH
2299 schedule();
2300 goto woke_up;
1da177e4
LT
2301}
2302
e22bee78
TH
2303/**
2304 * rescuer_thread - the rescuer thread function
111c225a 2305 * @__rescuer: self
e22bee78
TH
2306 *
2307 * Workqueue rescuer thread function. There's one rescuer for each
2308 * workqueue which has WQ_RESCUER set.
2309 *
706026c2 2310 * Regular work processing on a pool may block trying to create a new
e22bee78
TH
2311 * worker which uses GFP_KERNEL allocation which has slight chance of
2312 * developing into deadlock if some works currently on the same queue
2313 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2314 * the problem rescuer solves.
2315 *
706026c2
TH
2316 * When such condition is possible, the pool summons rescuers of all
2317 * workqueues which have works queued on the pool and let them process
e22bee78
TH
2318 * those works so that forward progress can be guaranteed.
2319 *
2320 * This should happen rarely.
2321 */
111c225a 2322static int rescuer_thread(void *__rescuer)
e22bee78 2323{
111c225a
TH
2324 struct worker *rescuer = __rescuer;
2325 struct workqueue_struct *wq = rescuer->rescue_wq;
e22bee78 2326 struct list_head *scheduled = &rescuer->scheduled;
f3421797 2327 bool is_unbound = wq->flags & WQ_UNBOUND;
e22bee78
TH
2328 unsigned int cpu;
2329
2330 set_user_nice(current, RESCUER_NICE_LEVEL);
111c225a
TH
2331
2332 /*
2333 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2334 * doesn't participate in concurrency management.
2335 */
2336 rescuer->task->flags |= PF_WQ_WORKER;
e22bee78
TH
2337repeat:
2338 set_current_state(TASK_INTERRUPTIBLE);
2339
412d32e6
MG
2340 if (kthread_should_stop()) {
2341 __set_current_state(TASK_RUNNING);
111c225a 2342 rescuer->task->flags &= ~PF_WQ_WORKER;
e22bee78 2343 return 0;
412d32e6 2344 }
e22bee78 2345
f3421797
TH
2346 /*
2347 * See whether any cpu is asking for help. Unbounded
2348 * workqueues use cpu 0 in mayday_mask for CPU_UNBOUND.
2349 */
f2e005aa 2350 for_each_mayday_cpu(cpu, wq->mayday_mask) {
f3421797 2351 unsigned int tcpu = is_unbound ? WORK_CPU_UNBOUND : cpu;
112202d9
TH
2352 struct pool_workqueue *pwq = get_pwq(tcpu, wq);
2353 struct worker_pool *pool = pwq->pool;
e22bee78
TH
2354 struct work_struct *work, *n;
2355
2356 __set_current_state(TASK_RUNNING);
f2e005aa 2357 mayday_clear_cpu(cpu, wq->mayday_mask);
e22bee78
TH
2358
2359 /* migrate to the target cpu if possible */
bd7bdd43 2360 rescuer->pool = pool;
e22bee78
TH
2361 worker_maybe_bind_and_lock(rescuer);
2362
2363 /*
2364 * Slurp in all works issued via this workqueue and
2365 * process'em.
2366 */
2367 BUG_ON(!list_empty(&rescuer->scheduled));
bd7bdd43 2368 list_for_each_entry_safe(work, n, &pool->worklist, entry)
112202d9 2369 if (get_work_pwq(work) == pwq)
e22bee78
TH
2370 move_linked_works(work, scheduled, &n);
2371
2372 process_scheduled_works(rescuer);
7576958a
TH
2373
2374 /*
d565ed63 2375 * Leave this pool. If keep_working() is %true, notify a
7576958a
TH
2376 * regular worker; otherwise, we end up with 0 concurrency
2377 * and stalling the execution.
2378 */
63d95a91
TH
2379 if (keep_working(pool))
2380 wake_up_worker(pool);
7576958a 2381
d565ed63 2382 spin_unlock_irq(&pool->lock);
e22bee78
TH
2383 }
2384
111c225a
TH
2385 /* rescuers should never participate in concurrency management */
2386 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
e22bee78
TH
2387 schedule();
2388 goto repeat;
1da177e4
LT
2389}
2390
fc2e4d70
ON
2391struct wq_barrier {
2392 struct work_struct work;
2393 struct completion done;
2394};
2395
2396static void wq_barrier_func(struct work_struct *work)
2397{
2398 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2399 complete(&barr->done);
2400}
2401
4690c4ab
TH
2402/**
2403 * insert_wq_barrier - insert a barrier work
112202d9 2404 * @pwq: pwq to insert barrier into
4690c4ab 2405 * @barr: wq_barrier to insert
affee4b2
TH
2406 * @target: target work to attach @barr to
2407 * @worker: worker currently executing @target, NULL if @target is not executing
4690c4ab 2408 *
affee4b2
TH
2409 * @barr is linked to @target such that @barr is completed only after
2410 * @target finishes execution. Please note that the ordering
2411 * guarantee is observed only with respect to @target and on the local
2412 * cpu.
2413 *
2414 * Currently, a queued barrier can't be canceled. This is because
2415 * try_to_grab_pending() can't determine whether the work to be
2416 * grabbed is at the head of the queue and thus can't clear LINKED
2417 * flag of the previous work while there must be a valid next work
2418 * after a work with LINKED flag set.
2419 *
2420 * Note that when @worker is non-NULL, @target may be modified
112202d9 2421 * underneath us, so we can't reliably determine pwq from @target.
4690c4ab
TH
2422 *
2423 * CONTEXT:
d565ed63 2424 * spin_lock_irq(pool->lock).
4690c4ab 2425 */
112202d9 2426static void insert_wq_barrier(struct pool_workqueue *pwq,
affee4b2
TH
2427 struct wq_barrier *barr,
2428 struct work_struct *target, struct worker *worker)
fc2e4d70 2429{
affee4b2
TH
2430 struct list_head *head;
2431 unsigned int linked = 0;
2432
dc186ad7 2433 /*
d565ed63 2434 * debugobject calls are safe here even with pool->lock locked
dc186ad7
TG
2435 * as we know for sure that this will not trigger any of the
2436 * checks and call back into the fixup functions where we
2437 * might deadlock.
2438 */
ca1cab37 2439 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
22df02bb 2440 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
fc2e4d70 2441 init_completion(&barr->done);
83c22520 2442
affee4b2
TH
2443 /*
2444 * If @target is currently being executed, schedule the
2445 * barrier to the worker; otherwise, put it after @target.
2446 */
2447 if (worker)
2448 head = worker->scheduled.next;
2449 else {
2450 unsigned long *bits = work_data_bits(target);
2451
2452 head = target->entry.next;
2453 /* there can already be other linked works, inherit and set */
2454 linked = *bits & WORK_STRUCT_LINKED;
2455 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2456 }
2457
dc186ad7 2458 debug_work_activate(&barr->work);
112202d9 2459 insert_work(pwq, &barr->work, head,
affee4b2 2460 work_color_to_flags(WORK_NO_COLOR) | linked);
fc2e4d70
ON
2461}
2462
73f53c4a 2463/**
112202d9 2464 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
73f53c4a
TH
2465 * @wq: workqueue being flushed
2466 * @flush_color: new flush color, < 0 for no-op
2467 * @work_color: new work color, < 0 for no-op
2468 *
112202d9 2469 * Prepare pwqs for workqueue flushing.
73f53c4a 2470 *
112202d9
TH
2471 * If @flush_color is non-negative, flush_color on all pwqs should be
2472 * -1. If no pwq has in-flight commands at the specified color, all
2473 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2474 * has in flight commands, its pwq->flush_color is set to
2475 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
73f53c4a
TH
2476 * wakeup logic is armed and %true is returned.
2477 *
2478 * The caller should have initialized @wq->first_flusher prior to
2479 * calling this function with non-negative @flush_color. If
2480 * @flush_color is negative, no flush color update is done and %false
2481 * is returned.
2482 *
112202d9 2483 * If @work_color is non-negative, all pwqs should have the same
73f53c4a
TH
2484 * work_color which is previous to @work_color and all will be
2485 * advanced to @work_color.
2486 *
2487 * CONTEXT:
2488 * mutex_lock(wq->flush_mutex).
2489 *
2490 * RETURNS:
2491 * %true if @flush_color >= 0 and there's something to flush. %false
2492 * otherwise.
2493 */
112202d9 2494static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
73f53c4a 2495 int flush_color, int work_color)
1da177e4 2496{
73f53c4a
TH
2497 bool wait = false;
2498 unsigned int cpu;
1da177e4 2499
73f53c4a 2500 if (flush_color >= 0) {
112202d9
TH
2501 BUG_ON(atomic_read(&wq->nr_pwqs_to_flush));
2502 atomic_set(&wq->nr_pwqs_to_flush, 1);
1da177e4 2503 }
2355b70f 2504
112202d9
TH
2505 for_each_pwq_cpu(cpu, wq) {
2506 struct pool_workqueue *pwq = get_pwq(cpu, wq);
2507 struct worker_pool *pool = pwq->pool;
fc2e4d70 2508
d565ed63 2509 spin_lock_irq(&pool->lock);
83c22520 2510
73f53c4a 2511 if (flush_color >= 0) {
112202d9 2512 BUG_ON(pwq->flush_color != -1);
fc2e4d70 2513
112202d9
TH
2514 if (pwq->nr_in_flight[flush_color]) {
2515 pwq->flush_color = flush_color;
2516 atomic_inc(&wq->nr_pwqs_to_flush);
73f53c4a
TH
2517 wait = true;
2518 }
2519 }
1da177e4 2520
73f53c4a 2521 if (work_color >= 0) {
112202d9
TH
2522 BUG_ON(work_color != work_next_color(pwq->work_color));
2523 pwq->work_color = work_color;
73f53c4a 2524 }
1da177e4 2525
d565ed63 2526 spin_unlock_irq(&pool->lock);
1da177e4 2527 }
2355b70f 2528
112202d9 2529 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
73f53c4a 2530 complete(&wq->first_flusher->done);
14441960 2531
73f53c4a 2532 return wait;
1da177e4
LT
2533}
2534
0fcb78c2 2535/**
1da177e4 2536 * flush_workqueue - ensure that any scheduled work has run to completion.
0fcb78c2 2537 * @wq: workqueue to flush
1da177e4
LT
2538 *
2539 * Forces execution of the workqueue and blocks until its completion.
2540 * This is typically used in driver shutdown handlers.
2541 *
fc2e4d70
ON
2542 * We sleep until all works which were queued on entry have been handled,
2543 * but we are not livelocked by new incoming ones.
1da177e4 2544 */
7ad5b3a5 2545void flush_workqueue(struct workqueue_struct *wq)
1da177e4 2546{
73f53c4a
TH
2547 struct wq_flusher this_flusher = {
2548 .list = LIST_HEAD_INIT(this_flusher.list),
2549 .flush_color = -1,
2550 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2551 };
2552 int next_color;
1da177e4 2553
3295f0ef
IM
2554 lock_map_acquire(&wq->lockdep_map);
2555 lock_map_release(&wq->lockdep_map);
73f53c4a
TH
2556
2557 mutex_lock(&wq->flush_mutex);
2558
2559 /*
2560 * Start-to-wait phase
2561 */
2562 next_color = work_next_color(wq->work_color);
2563
2564 if (next_color != wq->flush_color) {
2565 /*
2566 * Color space is not full. The current work_color
2567 * becomes our flush_color and work_color is advanced
2568 * by one.
2569 */
2570 BUG_ON(!list_empty(&wq->flusher_overflow));
2571 this_flusher.flush_color = wq->work_color;
2572 wq->work_color = next_color;
2573
2574 if (!wq->first_flusher) {
2575 /* no flush in progress, become the first flusher */
2576 BUG_ON(wq->flush_color != this_flusher.flush_color);
2577
2578 wq->first_flusher = &this_flusher;
2579
112202d9 2580 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
73f53c4a
TH
2581 wq->work_color)) {
2582 /* nothing to flush, done */
2583 wq->flush_color = next_color;
2584 wq->first_flusher = NULL;
2585 goto out_unlock;
2586 }
2587 } else {
2588 /* wait in queue */
2589 BUG_ON(wq->flush_color == this_flusher.flush_color);
2590 list_add_tail(&this_flusher.list, &wq->flusher_queue);
112202d9 2591 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
2592 }
2593 } else {
2594 /*
2595 * Oops, color space is full, wait on overflow queue.
2596 * The next flush completion will assign us
2597 * flush_color and transfer to flusher_queue.
2598 */
2599 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2600 }
2601
2602 mutex_unlock(&wq->flush_mutex);
2603
2604 wait_for_completion(&this_flusher.done);
2605
2606 /*
2607 * Wake-up-and-cascade phase
2608 *
2609 * First flushers are responsible for cascading flushes and
2610 * handling overflow. Non-first flushers can simply return.
2611 */
2612 if (wq->first_flusher != &this_flusher)
2613 return;
2614
2615 mutex_lock(&wq->flush_mutex);
2616
4ce48b37
TH
2617 /* we might have raced, check again with mutex held */
2618 if (wq->first_flusher != &this_flusher)
2619 goto out_unlock;
2620
73f53c4a
TH
2621 wq->first_flusher = NULL;
2622
2623 BUG_ON(!list_empty(&this_flusher.list));
2624 BUG_ON(wq->flush_color != this_flusher.flush_color);
2625
2626 while (true) {
2627 struct wq_flusher *next, *tmp;
2628
2629 /* complete all the flushers sharing the current flush color */
2630 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2631 if (next->flush_color != wq->flush_color)
2632 break;
2633 list_del_init(&next->list);
2634 complete(&next->done);
2635 }
2636
2637 BUG_ON(!list_empty(&wq->flusher_overflow) &&
2638 wq->flush_color != work_next_color(wq->work_color));
2639
2640 /* this flush_color is finished, advance by one */
2641 wq->flush_color = work_next_color(wq->flush_color);
2642
2643 /* one color has been freed, handle overflow queue */
2644 if (!list_empty(&wq->flusher_overflow)) {
2645 /*
2646 * Assign the same color to all overflowed
2647 * flushers, advance work_color and append to
2648 * flusher_queue. This is the start-to-wait
2649 * phase for these overflowed flushers.
2650 */
2651 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2652 tmp->flush_color = wq->work_color;
2653
2654 wq->work_color = work_next_color(wq->work_color);
2655
2656 list_splice_tail_init(&wq->flusher_overflow,
2657 &wq->flusher_queue);
112202d9 2658 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
2659 }
2660
2661 if (list_empty(&wq->flusher_queue)) {
2662 BUG_ON(wq->flush_color != wq->work_color);
2663 break;
2664 }
2665
2666 /*
2667 * Need to flush more colors. Make the next flusher
112202d9 2668 * the new first flusher and arm pwqs.
73f53c4a
TH
2669 */
2670 BUG_ON(wq->flush_color == wq->work_color);
2671 BUG_ON(wq->flush_color != next->flush_color);
2672
2673 list_del_init(&next->list);
2674 wq->first_flusher = next;
2675
112202d9 2676 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
73f53c4a
TH
2677 break;
2678
2679 /*
2680 * Meh... this color is already done, clear first
2681 * flusher and repeat cascading.
2682 */
2683 wq->first_flusher = NULL;
2684 }
2685
2686out_unlock:
2687 mutex_unlock(&wq->flush_mutex);
1da177e4 2688}
ae90dd5d 2689EXPORT_SYMBOL_GPL(flush_workqueue);
1da177e4 2690
9c5a2ba7
TH
2691/**
2692 * drain_workqueue - drain a workqueue
2693 * @wq: workqueue to drain
2694 *
2695 * Wait until the workqueue becomes empty. While draining is in progress,
2696 * only chain queueing is allowed. IOW, only currently pending or running
2697 * work items on @wq can queue further work items on it. @wq is flushed
2698 * repeatedly until it becomes empty. The number of flushing is detemined
2699 * by the depth of chaining and should be relatively short. Whine if it
2700 * takes too long.
2701 */
2702void drain_workqueue(struct workqueue_struct *wq)
2703{
2704 unsigned int flush_cnt = 0;
2705 unsigned int cpu;
2706
2707 /*
2708 * __queue_work() needs to test whether there are drainers, is much
2709 * hotter than drain_workqueue() and already looks at @wq->flags.
2710 * Use WQ_DRAINING so that queue doesn't have to check nr_drainers.
2711 */
2712 spin_lock(&workqueue_lock);
2713 if (!wq->nr_drainers++)
2714 wq->flags |= WQ_DRAINING;
2715 spin_unlock(&workqueue_lock);
2716reflush:
2717 flush_workqueue(wq);
2718
112202d9
TH
2719 for_each_pwq_cpu(cpu, wq) {
2720 struct pool_workqueue *pwq = get_pwq(cpu, wq);
fa2563e4 2721 bool drained;
9c5a2ba7 2722
112202d9
TH
2723 spin_lock_irq(&pwq->pool->lock);
2724 drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2725 spin_unlock_irq(&pwq->pool->lock);
fa2563e4
TT
2726
2727 if (drained)
9c5a2ba7
TH
2728 continue;
2729
2730 if (++flush_cnt == 10 ||
2731 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
044c782c
VI
2732 pr_warn("workqueue %s: flush on destruction isn't complete after %u tries\n",
2733 wq->name, flush_cnt);
9c5a2ba7
TH
2734 goto reflush;
2735 }
2736
2737 spin_lock(&workqueue_lock);
2738 if (!--wq->nr_drainers)
2739 wq->flags &= ~WQ_DRAINING;
2740 spin_unlock(&workqueue_lock);
2741}
2742EXPORT_SYMBOL_GPL(drain_workqueue);
2743
606a5020 2744static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
db700897 2745{
affee4b2 2746 struct worker *worker = NULL;
c9e7cf27 2747 struct worker_pool *pool;
112202d9 2748 struct pool_workqueue *pwq;
db700897
ON
2749
2750 might_sleep();
c9e7cf27
TH
2751 pool = get_work_pool(work);
2752 if (!pool)
baf59022 2753 return false;
db700897 2754
d565ed63 2755 spin_lock_irq(&pool->lock);
0b3dae68 2756 /* see the comment in try_to_grab_pending() with the same code */
112202d9
TH
2757 pwq = get_work_pwq(work);
2758 if (pwq) {
2759 if (unlikely(pwq->pool != pool))
4690c4ab 2760 goto already_gone;
606a5020 2761 } else {
c9e7cf27 2762 worker = find_worker_executing_work(pool, work);
affee4b2 2763 if (!worker)
4690c4ab 2764 goto already_gone;
112202d9 2765 pwq = worker->current_pwq;
606a5020 2766 }
db700897 2767
112202d9 2768 insert_wq_barrier(pwq, barr, work, worker);
d565ed63 2769 spin_unlock_irq(&pool->lock);
7a22ad75 2770
e159489b
TH
2771 /*
2772 * If @max_active is 1 or rescuer is in use, flushing another work
2773 * item on the same workqueue may lead to deadlock. Make sure the
2774 * flusher is not running on the same workqueue by verifying write
2775 * access.
2776 */
112202d9
TH
2777 if (pwq->wq->saved_max_active == 1 || pwq->wq->flags & WQ_RESCUER)
2778 lock_map_acquire(&pwq->wq->lockdep_map);
e159489b 2779 else
112202d9
TH
2780 lock_map_acquire_read(&pwq->wq->lockdep_map);
2781 lock_map_release(&pwq->wq->lockdep_map);
e159489b 2782
401a8d04 2783 return true;
4690c4ab 2784already_gone:
d565ed63 2785 spin_unlock_irq(&pool->lock);
401a8d04 2786 return false;
db700897 2787}
baf59022
TH
2788
2789/**
2790 * flush_work - wait for a work to finish executing the last queueing instance
2791 * @work: the work to flush
2792 *
606a5020
TH
2793 * Wait until @work has finished execution. @work is guaranteed to be idle
2794 * on return if it hasn't been requeued since flush started.
baf59022
TH
2795 *
2796 * RETURNS:
2797 * %true if flush_work() waited for the work to finish execution,
2798 * %false if it was already idle.
2799 */
2800bool flush_work(struct work_struct *work)
2801{
2802 struct wq_barrier barr;
2803
0976dfc1
SB
2804 lock_map_acquire(&work->lockdep_map);
2805 lock_map_release(&work->lockdep_map);
2806
606a5020 2807 if (start_flush_work(work, &barr)) {
401a8d04
TH
2808 wait_for_completion(&barr.done);
2809 destroy_work_on_stack(&barr.work);
2810 return true;
606a5020 2811 } else {
401a8d04 2812 return false;
6e84d644 2813 }
6e84d644 2814}
606a5020 2815EXPORT_SYMBOL_GPL(flush_work);
6e84d644 2816
36e227d2 2817static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
1f1f642e 2818{
bbb68dfa 2819 unsigned long flags;
1f1f642e
ON
2820 int ret;
2821
2822 do {
bbb68dfa
TH
2823 ret = try_to_grab_pending(work, is_dwork, &flags);
2824 /*
2825 * If someone else is canceling, wait for the same event it
2826 * would be waiting for before retrying.
2827 */
2828 if (unlikely(ret == -ENOENT))
606a5020 2829 flush_work(work);
1f1f642e
ON
2830 } while (unlikely(ret < 0));
2831
bbb68dfa
TH
2832 /* tell other tasks trying to grab @work to back off */
2833 mark_work_canceling(work);
2834 local_irq_restore(flags);
2835
606a5020 2836 flush_work(work);
7a22ad75 2837 clear_work_data(work);
1f1f642e
ON
2838 return ret;
2839}
2840
6e84d644 2841/**
401a8d04
TH
2842 * cancel_work_sync - cancel a work and wait for it to finish
2843 * @work: the work to cancel
6e84d644 2844 *
401a8d04
TH
2845 * Cancel @work and wait for its execution to finish. This function
2846 * can be used even if the work re-queues itself or migrates to
2847 * another workqueue. On return from this function, @work is
2848 * guaranteed to be not pending or executing on any CPU.
1f1f642e 2849 *
401a8d04
TH
2850 * cancel_work_sync(&delayed_work->work) must not be used for
2851 * delayed_work's. Use cancel_delayed_work_sync() instead.
6e84d644 2852 *
401a8d04 2853 * The caller must ensure that the workqueue on which @work was last
6e84d644 2854 * queued can't be destroyed before this function returns.
401a8d04
TH
2855 *
2856 * RETURNS:
2857 * %true if @work was pending, %false otherwise.
6e84d644 2858 */
401a8d04 2859bool cancel_work_sync(struct work_struct *work)
6e84d644 2860{
36e227d2 2861 return __cancel_work_timer(work, false);
b89deed3 2862}
28e53bdd 2863EXPORT_SYMBOL_GPL(cancel_work_sync);
b89deed3 2864
6e84d644 2865/**
401a8d04
TH
2866 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2867 * @dwork: the delayed work to flush
6e84d644 2868 *
401a8d04
TH
2869 * Delayed timer is cancelled and the pending work is queued for
2870 * immediate execution. Like flush_work(), this function only
2871 * considers the last queueing instance of @dwork.
1f1f642e 2872 *
401a8d04
TH
2873 * RETURNS:
2874 * %true if flush_work() waited for the work to finish execution,
2875 * %false if it was already idle.
6e84d644 2876 */
401a8d04
TH
2877bool flush_delayed_work(struct delayed_work *dwork)
2878{
8930caba 2879 local_irq_disable();
401a8d04 2880 if (del_timer_sync(&dwork->timer))
60c057bc 2881 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
8930caba 2882 local_irq_enable();
401a8d04
TH
2883 return flush_work(&dwork->work);
2884}
2885EXPORT_SYMBOL(flush_delayed_work);
2886
09383498 2887/**
57b30ae7
TH
2888 * cancel_delayed_work - cancel a delayed work
2889 * @dwork: delayed_work to cancel
09383498 2890 *
57b30ae7
TH
2891 * Kill off a pending delayed_work. Returns %true if @dwork was pending
2892 * and canceled; %false if wasn't pending. Note that the work callback
2893 * function may still be running on return, unless it returns %true and the
2894 * work doesn't re-arm itself. Explicitly flush or use
2895 * cancel_delayed_work_sync() to wait on it.
09383498 2896 *
57b30ae7 2897 * This function is safe to call from any context including IRQ handler.
09383498 2898 */
57b30ae7 2899bool cancel_delayed_work(struct delayed_work *dwork)
09383498 2900{
57b30ae7
TH
2901 unsigned long flags;
2902 int ret;
2903
2904 do {
2905 ret = try_to_grab_pending(&dwork->work, true, &flags);
2906 } while (unlikely(ret == -EAGAIN));
2907
2908 if (unlikely(ret < 0))
2909 return false;
2910
7c3eed5c
TH
2911 set_work_pool_and_clear_pending(&dwork->work,
2912 get_work_pool_id(&dwork->work));
57b30ae7 2913 local_irq_restore(flags);
c0158ca6 2914 return ret;
09383498 2915}
57b30ae7 2916EXPORT_SYMBOL(cancel_delayed_work);
09383498 2917
401a8d04
TH
2918/**
2919 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
2920 * @dwork: the delayed work cancel
2921 *
2922 * This is cancel_work_sync() for delayed works.
2923 *
2924 * RETURNS:
2925 * %true if @dwork was pending, %false otherwise.
2926 */
2927bool cancel_delayed_work_sync(struct delayed_work *dwork)
6e84d644 2928{
36e227d2 2929 return __cancel_work_timer(&dwork->work, true);
6e84d644 2930}
f5a421a4 2931EXPORT_SYMBOL(cancel_delayed_work_sync);
1da177e4 2932
0fcb78c2 2933/**
c1a220e7
ZR
2934 * schedule_work_on - put work task on a specific cpu
2935 * @cpu: cpu to put the work task on
2936 * @work: job to be done
2937 *
2938 * This puts a job on a specific cpu
2939 */
d4283e93 2940bool schedule_work_on(int cpu, struct work_struct *work)
c1a220e7 2941{
d320c038 2942 return queue_work_on(cpu, system_wq, work);
c1a220e7
ZR
2943}
2944EXPORT_SYMBOL(schedule_work_on);
2945
0fcb78c2 2946/**
0fcb78c2
REB
2947 * schedule_work - put work task in global workqueue
2948 * @work: job to be done
0fcb78c2 2949 *
d4283e93
TH
2950 * Returns %false if @work was already on the kernel-global workqueue and
2951 * %true otherwise.
5b0f437d
BVA
2952 *
2953 * This puts a job in the kernel-global workqueue if it was not already
2954 * queued and leaves it in the same position on the kernel-global
2955 * workqueue otherwise.
0fcb78c2 2956 */
d4283e93 2957bool schedule_work(struct work_struct *work)
1da177e4 2958{
d320c038 2959 return queue_work(system_wq, work);
1da177e4 2960}
ae90dd5d 2961EXPORT_SYMBOL(schedule_work);
1da177e4 2962
0fcb78c2
REB
2963/**
2964 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
2965 * @cpu: cpu to use
52bad64d 2966 * @dwork: job to be done
0fcb78c2
REB
2967 * @delay: number of jiffies to wait
2968 *
2969 * After waiting for a given time this puts a job in the kernel-global
2970 * workqueue on the specified CPU.
2971 */
d4283e93
TH
2972bool schedule_delayed_work_on(int cpu, struct delayed_work *dwork,
2973 unsigned long delay)
1da177e4 2974{
d320c038 2975 return queue_delayed_work_on(cpu, system_wq, dwork, delay);
1da177e4 2976}
ae90dd5d 2977EXPORT_SYMBOL(schedule_delayed_work_on);
1da177e4 2978
0fcb78c2
REB
2979/**
2980 * schedule_delayed_work - put work task in global workqueue after delay
52bad64d
DH
2981 * @dwork: job to be done
2982 * @delay: number of jiffies to wait or 0 for immediate execution
0fcb78c2
REB
2983 *
2984 * After waiting for a given time this puts a job in the kernel-global
2985 * workqueue.
2986 */
d4283e93 2987bool schedule_delayed_work(struct delayed_work *dwork, unsigned long delay)
1da177e4 2988{
d320c038 2989 return queue_delayed_work(system_wq, dwork, delay);
1da177e4 2990}
ae90dd5d 2991EXPORT_SYMBOL(schedule_delayed_work);
1da177e4 2992
b6136773 2993/**
31ddd871 2994 * schedule_on_each_cpu - execute a function synchronously on each online CPU
b6136773 2995 * @func: the function to call
b6136773 2996 *
31ddd871
TH
2997 * schedule_on_each_cpu() executes @func on each online CPU using the
2998 * system workqueue and blocks until all CPUs have completed.
b6136773 2999 * schedule_on_each_cpu() is very slow.
31ddd871
TH
3000 *
3001 * RETURNS:
3002 * 0 on success, -errno on failure.
b6136773 3003 */
65f27f38 3004int schedule_on_each_cpu(work_func_t func)
15316ba8
CL
3005{
3006 int cpu;
38f51568 3007 struct work_struct __percpu *works;
15316ba8 3008
b6136773
AM
3009 works = alloc_percpu(struct work_struct);
3010 if (!works)
15316ba8 3011 return -ENOMEM;
b6136773 3012
93981800
TH
3013 get_online_cpus();
3014
15316ba8 3015 for_each_online_cpu(cpu) {
9bfb1839
IM
3016 struct work_struct *work = per_cpu_ptr(works, cpu);
3017
3018 INIT_WORK(work, func);
b71ab8c2 3019 schedule_work_on(cpu, work);
65a64464 3020 }
93981800
TH
3021
3022 for_each_online_cpu(cpu)
3023 flush_work(per_cpu_ptr(works, cpu));
3024
95402b38 3025 put_online_cpus();
b6136773 3026 free_percpu(works);
15316ba8
CL
3027 return 0;
3028}
3029
eef6a7d5
AS
3030/**
3031 * flush_scheduled_work - ensure that any scheduled work has run to completion.
3032 *
3033 * Forces execution of the kernel-global workqueue and blocks until its
3034 * completion.
3035 *
3036 * Think twice before calling this function! It's very easy to get into
3037 * trouble if you don't take great care. Either of the following situations
3038 * will lead to deadlock:
3039 *
3040 * One of the work items currently on the workqueue needs to acquire
3041 * a lock held by your code or its caller.
3042 *
3043 * Your code is running in the context of a work routine.
3044 *
3045 * They will be detected by lockdep when they occur, but the first might not
3046 * occur very often. It depends on what work items are on the workqueue and
3047 * what locks they need, which you have no control over.
3048 *
3049 * In most situations flushing the entire workqueue is overkill; you merely
3050 * need to know that a particular work item isn't queued and isn't running.
3051 * In such cases you should use cancel_delayed_work_sync() or
3052 * cancel_work_sync() instead.
3053 */
1da177e4
LT
3054void flush_scheduled_work(void)
3055{
d320c038 3056 flush_workqueue(system_wq);
1da177e4 3057}
ae90dd5d 3058EXPORT_SYMBOL(flush_scheduled_work);
1da177e4 3059
1fa44eca
JB
3060/**
3061 * execute_in_process_context - reliably execute the routine with user context
3062 * @fn: the function to execute
1fa44eca
JB
3063 * @ew: guaranteed storage for the execute work structure (must
3064 * be available when the work executes)
3065 *
3066 * Executes the function immediately if process context is available,
3067 * otherwise schedules the function for delayed execution.
3068 *
3069 * Returns: 0 - function was executed
3070 * 1 - function was scheduled for execution
3071 */
65f27f38 3072int execute_in_process_context(work_func_t fn, struct execute_work *ew)
1fa44eca
JB
3073{
3074 if (!in_interrupt()) {
65f27f38 3075 fn(&ew->work);
1fa44eca
JB
3076 return 0;
3077 }
3078
65f27f38 3079 INIT_WORK(&ew->work, fn);
1fa44eca
JB
3080 schedule_work(&ew->work);
3081
3082 return 1;
3083}
3084EXPORT_SYMBOL_GPL(execute_in_process_context);
3085
1da177e4
LT
3086int keventd_up(void)
3087{
d320c038 3088 return system_wq != NULL;
1da177e4
LT
3089}
3090
112202d9 3091static int alloc_pwqs(struct workqueue_struct *wq)
0f900049 3092{
65a64464 3093 /*
112202d9 3094 * pwqs are forced aligned according to WORK_STRUCT_FLAG_BITS.
0f900049
TH
3095 * Make sure that the alignment isn't lower than that of
3096 * unsigned long long.
65a64464 3097 */
112202d9 3098 const size_t size = sizeof(struct pool_workqueue);
0f900049
TH
3099 const size_t align = max_t(size_t, 1 << WORK_STRUCT_FLAG_BITS,
3100 __alignof__(unsigned long long));
65a64464 3101
e06ffa1e 3102 if (!(wq->flags & WQ_UNBOUND))
112202d9 3103 wq->pool_wq.pcpu = __alloc_percpu(size, align);
931ac77e 3104 else {
f3421797
TH
3105 void *ptr;
3106
3107 /*
112202d9 3108 * Allocate enough room to align pwq and put an extra
f3421797
TH
3109 * pointer at the end pointing back to the originally
3110 * allocated pointer which will be used for free.
3111 */
3112 ptr = kzalloc(size + align + sizeof(void *), GFP_KERNEL);
3113 if (ptr) {
112202d9
TH
3114 wq->pool_wq.single = PTR_ALIGN(ptr, align);
3115 *(void **)(wq->pool_wq.single + 1) = ptr;
f3421797 3116 }
bdbc5dd7 3117 }
f3421797 3118
0415b00d 3119 /* just in case, make sure it's actually aligned */
112202d9
TH
3120 BUG_ON(!IS_ALIGNED(wq->pool_wq.v, align));
3121 return wq->pool_wq.v ? 0 : -ENOMEM;
0f900049
TH
3122}
3123
112202d9 3124static void free_pwqs(struct workqueue_struct *wq)
0f900049 3125{
e06ffa1e 3126 if (!(wq->flags & WQ_UNBOUND))
112202d9
TH
3127 free_percpu(wq->pool_wq.pcpu);
3128 else if (wq->pool_wq.single) {
3129 /* the pointer to free is stored right after the pwq */
3130 kfree(*(void **)(wq->pool_wq.single + 1));
f3421797 3131 }
0f900049
TH
3132}
3133
f3421797
TH
3134static int wq_clamp_max_active(int max_active, unsigned int flags,
3135 const char *name)
b71ab8c2 3136{
f3421797
TH
3137 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
3138
3139 if (max_active < 1 || max_active > lim)
044c782c
VI
3140 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
3141 max_active, name, 1, lim);
b71ab8c2 3142
f3421797 3143 return clamp_val(max_active, 1, lim);
b71ab8c2
TH
3144}
3145
b196be89 3146struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
d320c038
TH
3147 unsigned int flags,
3148 int max_active,
3149 struct lock_class_key *key,
b196be89 3150 const char *lock_name, ...)
1da177e4 3151{
b196be89 3152 va_list args, args1;
1da177e4 3153 struct workqueue_struct *wq;
c34056a3 3154 unsigned int cpu;
b196be89
TH
3155 size_t namelen;
3156
3157 /* determine namelen, allocate wq and format name */
3158 va_start(args, lock_name);
3159 va_copy(args1, args);
3160 namelen = vsnprintf(NULL, 0, fmt, args) + 1;
3161
3162 wq = kzalloc(sizeof(*wq) + namelen, GFP_KERNEL);
3163 if (!wq)
3164 goto err;
3165
3166 vsnprintf(wq->name, namelen, fmt, args1);
3167 va_end(args);
3168 va_end(args1);
1da177e4 3169
6370a6ad
TH
3170 /*
3171 * Workqueues which may be used during memory reclaim should
3172 * have a rescuer to guarantee forward progress.
3173 */
3174 if (flags & WQ_MEM_RECLAIM)
3175 flags |= WQ_RESCUER;
3176
d320c038 3177 max_active = max_active ?: WQ_DFL_ACTIVE;
b196be89 3178 max_active = wq_clamp_max_active(max_active, flags, wq->name);
3af24433 3179
b196be89 3180 /* init wq */
97e37d7b 3181 wq->flags = flags;
a0a1a5fd 3182 wq->saved_max_active = max_active;
73f53c4a 3183 mutex_init(&wq->flush_mutex);
112202d9 3184 atomic_set(&wq->nr_pwqs_to_flush, 0);
73f53c4a
TH
3185 INIT_LIST_HEAD(&wq->flusher_queue);
3186 INIT_LIST_HEAD(&wq->flusher_overflow);
502ca9d8 3187
eb13ba87 3188 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
cce1a165 3189 INIT_LIST_HEAD(&wq->list);
3af24433 3190
112202d9 3191 if (alloc_pwqs(wq) < 0)
bdbc5dd7
TH
3192 goto err;
3193
112202d9
TH
3194 for_each_pwq_cpu(cpu, wq) {
3195 struct pool_workqueue *pwq = get_pwq(cpu, wq);
1537663f 3196
112202d9
TH
3197 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3198 pwq->pool = get_std_worker_pool(cpu, flags & WQ_HIGHPRI);
3199 pwq->wq = wq;
3200 pwq->flush_color = -1;
3201 pwq->max_active = max_active;
3202 INIT_LIST_HEAD(&pwq->delayed_works);
e22bee78 3203 }
1537663f 3204
e22bee78
TH
3205 if (flags & WQ_RESCUER) {
3206 struct worker *rescuer;
3207
f2e005aa 3208 if (!alloc_mayday_mask(&wq->mayday_mask, GFP_KERNEL))
e22bee78
TH
3209 goto err;
3210
3211 wq->rescuer = rescuer = alloc_worker();
3212 if (!rescuer)
3213 goto err;
3214
111c225a
TH
3215 rescuer->rescue_wq = wq;
3216 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
b196be89 3217 wq->name);
e22bee78
TH
3218 if (IS_ERR(rescuer->task))
3219 goto err;
3220
e22bee78
TH
3221 rescuer->task->flags |= PF_THREAD_BOUND;
3222 wake_up_process(rescuer->task);
3af24433
ON
3223 }
3224
a0a1a5fd
TH
3225 /*
3226 * workqueue_lock protects global freeze state and workqueues
3227 * list. Grab it, set max_active accordingly and add the new
3228 * workqueue to workqueues list.
3229 */
1537663f 3230 spin_lock(&workqueue_lock);
a0a1a5fd 3231
58a69cb4 3232 if (workqueue_freezing && wq->flags & WQ_FREEZABLE)
112202d9
TH
3233 for_each_pwq_cpu(cpu, wq)
3234 get_pwq(cpu, wq)->max_active = 0;
a0a1a5fd 3235
1537663f 3236 list_add(&wq->list, &workqueues);
a0a1a5fd 3237
1537663f
TH
3238 spin_unlock(&workqueue_lock);
3239
3af24433 3240 return wq;
4690c4ab
TH
3241err:
3242 if (wq) {
112202d9 3243 free_pwqs(wq);
f2e005aa 3244 free_mayday_mask(wq->mayday_mask);
e22bee78 3245 kfree(wq->rescuer);
4690c4ab
TH
3246 kfree(wq);
3247 }
3248 return NULL;
3af24433 3249}
d320c038 3250EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
1da177e4 3251
3af24433
ON
3252/**
3253 * destroy_workqueue - safely terminate a workqueue
3254 * @wq: target workqueue
3255 *
3256 * Safely destroy a workqueue. All work currently pending will be done first.
3257 */
3258void destroy_workqueue(struct workqueue_struct *wq)
3259{
c8e55f36 3260 unsigned int cpu;
3af24433 3261
9c5a2ba7
TH
3262 /* drain it before proceeding with destruction */
3263 drain_workqueue(wq);
c8efcc25 3264
a0a1a5fd
TH
3265 /*
3266 * wq list is used to freeze wq, remove from list after
3267 * flushing is complete in case freeze races us.
3268 */
95402b38 3269 spin_lock(&workqueue_lock);
b1f4ec17 3270 list_del(&wq->list);
95402b38 3271 spin_unlock(&workqueue_lock);
3af24433 3272
e22bee78 3273 /* sanity check */
112202d9
TH
3274 for_each_pwq_cpu(cpu, wq) {
3275 struct pool_workqueue *pwq = get_pwq(cpu, wq);
73f53c4a
TH
3276 int i;
3277
73f53c4a 3278 for (i = 0; i < WORK_NR_COLORS; i++)
112202d9
TH
3279 BUG_ON(pwq->nr_in_flight[i]);
3280 BUG_ON(pwq->nr_active);
3281 BUG_ON(!list_empty(&pwq->delayed_works));
73f53c4a 3282 }
9b41ea72 3283
e22bee78
TH
3284 if (wq->flags & WQ_RESCUER) {
3285 kthread_stop(wq->rescuer->task);
f2e005aa 3286 free_mayday_mask(wq->mayday_mask);
8d9df9f0 3287 kfree(wq->rescuer);
e22bee78
TH
3288 }
3289
112202d9 3290 free_pwqs(wq);
3af24433
ON
3291 kfree(wq);
3292}
3293EXPORT_SYMBOL_GPL(destroy_workqueue);
3294
9f4bd4cd 3295/**
112202d9
TH
3296 * pwq_set_max_active - adjust max_active of a pwq
3297 * @pwq: target pool_workqueue
9f4bd4cd
LJ
3298 * @max_active: new max_active value.
3299 *
112202d9 3300 * Set @pwq->max_active to @max_active and activate delayed works if
9f4bd4cd
LJ
3301 * increased.
3302 *
3303 * CONTEXT:
d565ed63 3304 * spin_lock_irq(pool->lock).
9f4bd4cd 3305 */
112202d9 3306static void pwq_set_max_active(struct pool_workqueue *pwq, int max_active)
9f4bd4cd 3307{
112202d9 3308 pwq->max_active = max_active;
9f4bd4cd 3309
112202d9
TH
3310 while (!list_empty(&pwq->delayed_works) &&
3311 pwq->nr_active < pwq->max_active)
3312 pwq_activate_first_delayed(pwq);
9f4bd4cd
LJ
3313}
3314
dcd989cb
TH
3315/**
3316 * workqueue_set_max_active - adjust max_active of a workqueue
3317 * @wq: target workqueue
3318 * @max_active: new max_active value.
3319 *
3320 * Set max_active of @wq to @max_active.
3321 *
3322 * CONTEXT:
3323 * Don't call from IRQ context.
3324 */
3325void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
3326{
3327 unsigned int cpu;
3328
f3421797 3329 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
dcd989cb
TH
3330
3331 spin_lock(&workqueue_lock);
3332
3333 wq->saved_max_active = max_active;
3334
112202d9
TH
3335 for_each_pwq_cpu(cpu, wq) {
3336 struct pool_workqueue *pwq = get_pwq(cpu, wq);
3337 struct worker_pool *pool = pwq->pool;
dcd989cb 3338
d565ed63 3339 spin_lock_irq(&pool->lock);
dcd989cb 3340
58a69cb4 3341 if (!(wq->flags & WQ_FREEZABLE) ||
35b6bb63 3342 !(pool->flags & POOL_FREEZING))
112202d9 3343 pwq_set_max_active(pwq, max_active);
9bfb1839 3344
d565ed63 3345 spin_unlock_irq(&pool->lock);
65a64464 3346 }
93981800 3347
dcd989cb 3348 spin_unlock(&workqueue_lock);
15316ba8 3349}
dcd989cb 3350EXPORT_SYMBOL_GPL(workqueue_set_max_active);
15316ba8 3351
eef6a7d5 3352/**
dcd989cb
TH
3353 * workqueue_congested - test whether a workqueue is congested
3354 * @cpu: CPU in question
3355 * @wq: target workqueue
eef6a7d5 3356 *
dcd989cb
TH
3357 * Test whether @wq's cpu workqueue for @cpu is congested. There is
3358 * no synchronization around this function and the test result is
3359 * unreliable and only useful as advisory hints or for debugging.
eef6a7d5 3360 *
dcd989cb
TH
3361 * RETURNS:
3362 * %true if congested, %false otherwise.
eef6a7d5 3363 */
dcd989cb 3364bool workqueue_congested(unsigned int cpu, struct workqueue_struct *wq)
1da177e4 3365{
112202d9 3366 struct pool_workqueue *pwq = get_pwq(cpu, wq);
dcd989cb 3367
112202d9 3368 return !list_empty(&pwq->delayed_works);
1da177e4 3369}
dcd989cb 3370EXPORT_SYMBOL_GPL(workqueue_congested);
1da177e4 3371
dcd989cb
TH
3372/**
3373 * work_busy - test whether a work is currently pending or running
3374 * @work: the work to be tested
3375 *
3376 * Test whether @work is currently pending or running. There is no
3377 * synchronization around this function and the test result is
3378 * unreliable and only useful as advisory hints or for debugging.
dcd989cb
TH
3379 *
3380 * RETURNS:
3381 * OR'd bitmask of WORK_BUSY_* bits.
3382 */
3383unsigned int work_busy(struct work_struct *work)
1da177e4 3384{
c9e7cf27 3385 struct worker_pool *pool = get_work_pool(work);
dcd989cb
TH
3386 unsigned long flags;
3387 unsigned int ret = 0;
1da177e4 3388
dcd989cb
TH
3389 if (work_pending(work))
3390 ret |= WORK_BUSY_PENDING;
1da177e4 3391
038366c5
LJ
3392 if (pool) {
3393 spin_lock_irqsave(&pool->lock, flags);
3394 if (find_worker_executing_work(pool, work))
3395 ret |= WORK_BUSY_RUNNING;
3396 spin_unlock_irqrestore(&pool->lock, flags);
3397 }
1da177e4 3398
dcd989cb 3399 return ret;
1da177e4 3400}
dcd989cb 3401EXPORT_SYMBOL_GPL(work_busy);
1da177e4 3402
db7bccf4
TH
3403/*
3404 * CPU hotplug.
3405 *
e22bee78 3406 * There are two challenges in supporting CPU hotplug. Firstly, there
112202d9 3407 * are a lot of assumptions on strong associations among work, pwq and
706026c2 3408 * pool which make migrating pending and scheduled works very
e22bee78 3409 * difficult to implement without impacting hot paths. Secondly,
94cf58bb 3410 * worker pools serve mix of short, long and very long running works making
e22bee78
TH
3411 * blocked draining impractical.
3412 *
24647570 3413 * This is solved by allowing the pools to be disassociated from the CPU
628c78e7
TH
3414 * running as an unbound one and allowing it to be reattached later if the
3415 * cpu comes back online.
db7bccf4 3416 */
1da177e4 3417
706026c2 3418static void wq_unbind_fn(struct work_struct *work)
3af24433 3419{
38db41d9 3420 int cpu = smp_processor_id();
4ce62e9e 3421 struct worker_pool *pool;
db7bccf4 3422 struct worker *worker;
db7bccf4 3423 int i;
3af24433 3424
38db41d9
TH
3425 for_each_std_worker_pool(pool, cpu) {
3426 BUG_ON(cpu != smp_processor_id());
db7bccf4 3427
94cf58bb
TH
3428 mutex_lock(&pool->assoc_mutex);
3429 spin_lock_irq(&pool->lock);
3af24433 3430
94cf58bb
TH
3431 /*
3432 * We've claimed all manager positions. Make all workers
3433 * unbound and set DISASSOCIATED. Before this, all workers
3434 * except for the ones which are still executing works from
3435 * before the last CPU down must be on the cpu. After
3436 * this, they may become diasporas.
3437 */
4ce62e9e 3438 list_for_each_entry(worker, &pool->idle_list, entry)
403c821d 3439 worker->flags |= WORKER_UNBOUND;
3af24433 3440
b67bfe0d 3441 for_each_busy_worker(worker, i, pool)
c9e7cf27 3442 worker->flags |= WORKER_UNBOUND;
06ba38a9 3443
24647570 3444 pool->flags |= POOL_DISASSOCIATED;
f2d5a0ee 3445
94cf58bb
TH
3446 spin_unlock_irq(&pool->lock);
3447 mutex_unlock(&pool->assoc_mutex);
3448 }
628c78e7 3449
e22bee78 3450 /*
403c821d 3451 * Call schedule() so that we cross rq->lock and thus can guarantee
628c78e7
TH
3452 * sched callbacks see the %WORKER_UNBOUND flag. This is necessary
3453 * as scheduler callbacks may be invoked from other cpus.
e22bee78 3454 */
e22bee78 3455 schedule();
06ba38a9 3456
e22bee78 3457 /*
628c78e7
TH
3458 * Sched callbacks are disabled now. Zap nr_running. After this,
3459 * nr_running stays zero and need_more_worker() and keep_working()
38db41d9
TH
3460 * are always true as long as the worklist is not empty. Pools on
3461 * @cpu now behave as unbound (in terms of concurrency management)
3462 * pools which are served by workers tied to the CPU.
628c78e7
TH
3463 *
3464 * On return from this function, the current worker would trigger
3465 * unbound chain execution of pending work items if other workers
3466 * didn't already.
e22bee78 3467 */
38db41d9 3468 for_each_std_worker_pool(pool, cpu)
e19e397a 3469 atomic_set(&pool->nr_running, 0);
3af24433 3470}
3af24433 3471
8db25e78
TH
3472/*
3473 * Workqueues should be brought up before normal priority CPU notifiers.
3474 * This will be registered high priority CPU notifier.
3475 */
9fdf9b73 3476static int __cpuinit workqueue_cpu_up_callback(struct notifier_block *nfb,
8db25e78
TH
3477 unsigned long action,
3478 void *hcpu)
3af24433
ON
3479{
3480 unsigned int cpu = (unsigned long)hcpu;
4ce62e9e 3481 struct worker_pool *pool;
3ce63377 3482
8db25e78 3483 switch (action & ~CPU_TASKS_FROZEN) {
3af24433 3484 case CPU_UP_PREPARE:
38db41d9 3485 for_each_std_worker_pool(pool, cpu) {
3ce63377
TH
3486 struct worker *worker;
3487
3488 if (pool->nr_workers)
3489 continue;
3490
3491 worker = create_worker(pool);
3492 if (!worker)
3493 return NOTIFY_BAD;
3494
d565ed63 3495 spin_lock_irq(&pool->lock);
3ce63377 3496 start_worker(worker);
d565ed63 3497 spin_unlock_irq(&pool->lock);
3af24433 3498 }
8db25e78 3499 break;
3af24433 3500
db7bccf4
TH
3501 case CPU_DOWN_FAILED:
3502 case CPU_ONLINE:
38db41d9 3503 for_each_std_worker_pool(pool, cpu) {
94cf58bb
TH
3504 mutex_lock(&pool->assoc_mutex);
3505 spin_lock_irq(&pool->lock);
3506
24647570 3507 pool->flags &= ~POOL_DISASSOCIATED;
94cf58bb
TH
3508 rebind_workers(pool);
3509
3510 spin_unlock_irq(&pool->lock);
3511 mutex_unlock(&pool->assoc_mutex);
3512 }
db7bccf4 3513 break;
00dfcaf7 3514 }
65758202
TH
3515 return NOTIFY_OK;
3516}
3517
3518/*
3519 * Workqueues should be brought down after normal priority CPU notifiers.
3520 * This will be registered as low priority CPU notifier.
3521 */
9fdf9b73 3522static int __cpuinit workqueue_cpu_down_callback(struct notifier_block *nfb,
65758202
TH
3523 unsigned long action,
3524 void *hcpu)
3525{
8db25e78
TH
3526 unsigned int cpu = (unsigned long)hcpu;
3527 struct work_struct unbind_work;
3528
65758202
TH
3529 switch (action & ~CPU_TASKS_FROZEN) {
3530 case CPU_DOWN_PREPARE:
8db25e78 3531 /* unbinding should happen on the local CPU */
706026c2 3532 INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
7635d2fd 3533 queue_work_on(cpu, system_highpri_wq, &unbind_work);
8db25e78
TH
3534 flush_work(&unbind_work);
3535 break;
65758202
TH
3536 }
3537 return NOTIFY_OK;
3538}
3539
2d3854a3 3540#ifdef CONFIG_SMP
8ccad40d 3541
2d3854a3 3542struct work_for_cpu {
ed48ece2 3543 struct work_struct work;
2d3854a3
RR
3544 long (*fn)(void *);
3545 void *arg;
3546 long ret;
3547};
3548
ed48ece2 3549static void work_for_cpu_fn(struct work_struct *work)
2d3854a3 3550{
ed48ece2
TH
3551 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
3552
2d3854a3
RR
3553 wfc->ret = wfc->fn(wfc->arg);
3554}
3555
3556/**
3557 * work_on_cpu - run a function in user context on a particular cpu
3558 * @cpu: the cpu to run on
3559 * @fn: the function to run
3560 * @arg: the function arg
3561 *
31ad9081
RR
3562 * This will return the value @fn returns.
3563 * It is up to the caller to ensure that the cpu doesn't go offline.
6b44003e 3564 * The caller must not hold any locks which would prevent @fn from completing.
2d3854a3
RR
3565 */
3566long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg)
3567{
ed48ece2 3568 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
6b44003e 3569
ed48ece2
TH
3570 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
3571 schedule_work_on(cpu, &wfc.work);
3572 flush_work(&wfc.work);
2d3854a3
RR
3573 return wfc.ret;
3574}
3575EXPORT_SYMBOL_GPL(work_on_cpu);
3576#endif /* CONFIG_SMP */
3577
a0a1a5fd
TH
3578#ifdef CONFIG_FREEZER
3579
3580/**
3581 * freeze_workqueues_begin - begin freezing workqueues
3582 *
58a69cb4
TH
3583 * Start freezing workqueues. After this function returns, all freezable
3584 * workqueues will queue new works to their frozen_works list instead of
706026c2 3585 * pool->worklist.
a0a1a5fd
TH
3586 *
3587 * CONTEXT:
d565ed63 3588 * Grabs and releases workqueue_lock and pool->lock's.
a0a1a5fd
TH
3589 */
3590void freeze_workqueues_begin(void)
3591{
a0a1a5fd
TH
3592 unsigned int cpu;
3593
3594 spin_lock(&workqueue_lock);
3595
3596 BUG_ON(workqueue_freezing);
3597 workqueue_freezing = true;
3598
706026c2 3599 for_each_wq_cpu(cpu) {
35b6bb63 3600 struct worker_pool *pool;
bdbc5dd7 3601 struct workqueue_struct *wq;
8b03ae3c 3602
38db41d9 3603 for_each_std_worker_pool(pool, cpu) {
a1056305 3604 spin_lock_irq(&pool->lock);
d565ed63 3605
35b6bb63
TH
3606 WARN_ON_ONCE(pool->flags & POOL_FREEZING);
3607 pool->flags |= POOL_FREEZING;
db7bccf4 3608
a1056305 3609 list_for_each_entry(wq, &workqueues, list) {
112202d9 3610 struct pool_workqueue *pwq = get_pwq(cpu, wq);
a0a1a5fd 3611
112202d9 3612 if (pwq && pwq->pool == pool &&
a1056305 3613 (wq->flags & WQ_FREEZABLE))
112202d9 3614 pwq->max_active = 0;
a1056305 3615 }
8b03ae3c 3616
a1056305
TH
3617 spin_unlock_irq(&pool->lock);
3618 }
a0a1a5fd
TH
3619 }
3620
3621 spin_unlock(&workqueue_lock);
3622}
3623
3624/**
58a69cb4 3625 * freeze_workqueues_busy - are freezable workqueues still busy?
a0a1a5fd
TH
3626 *
3627 * Check whether freezing is complete. This function must be called
3628 * between freeze_workqueues_begin() and thaw_workqueues().
3629 *
3630 * CONTEXT:
3631 * Grabs and releases workqueue_lock.
3632 *
3633 * RETURNS:
58a69cb4
TH
3634 * %true if some freezable workqueues are still busy. %false if freezing
3635 * is complete.
a0a1a5fd
TH
3636 */
3637bool freeze_workqueues_busy(void)
3638{
a0a1a5fd
TH
3639 unsigned int cpu;
3640 bool busy = false;
3641
3642 spin_lock(&workqueue_lock);
3643
3644 BUG_ON(!workqueue_freezing);
3645
706026c2 3646 for_each_wq_cpu(cpu) {
bdbc5dd7 3647 struct workqueue_struct *wq;
a0a1a5fd
TH
3648 /*
3649 * nr_active is monotonically decreasing. It's safe
3650 * to peek without lock.
3651 */
3652 list_for_each_entry(wq, &workqueues, list) {
112202d9 3653 struct pool_workqueue *pwq = get_pwq(cpu, wq);
a0a1a5fd 3654
112202d9 3655 if (!pwq || !(wq->flags & WQ_FREEZABLE))
a0a1a5fd
TH
3656 continue;
3657
112202d9
TH
3658 BUG_ON(pwq->nr_active < 0);
3659 if (pwq->nr_active) {
a0a1a5fd
TH
3660 busy = true;
3661 goto out_unlock;
3662 }
3663 }
3664 }
3665out_unlock:
3666 spin_unlock(&workqueue_lock);
3667 return busy;
3668}
3669
3670/**
3671 * thaw_workqueues - thaw workqueues
3672 *
3673 * Thaw workqueues. Normal queueing is restored and all collected
706026c2 3674 * frozen works are transferred to their respective pool worklists.
a0a1a5fd
TH
3675 *
3676 * CONTEXT:
d565ed63 3677 * Grabs and releases workqueue_lock and pool->lock's.
a0a1a5fd
TH
3678 */
3679void thaw_workqueues(void)
3680{
a0a1a5fd
TH
3681 unsigned int cpu;
3682
3683 spin_lock(&workqueue_lock);
3684
3685 if (!workqueue_freezing)
3686 goto out_unlock;
3687
706026c2 3688 for_each_wq_cpu(cpu) {
4ce62e9e 3689 struct worker_pool *pool;
bdbc5dd7 3690 struct workqueue_struct *wq;
8b03ae3c 3691
38db41d9 3692 for_each_std_worker_pool(pool, cpu) {
a1056305 3693 spin_lock_irq(&pool->lock);
d565ed63 3694
35b6bb63
TH
3695 WARN_ON_ONCE(!(pool->flags & POOL_FREEZING));
3696 pool->flags &= ~POOL_FREEZING;
db7bccf4 3697
a1056305 3698 list_for_each_entry(wq, &workqueues, list) {
112202d9 3699 struct pool_workqueue *pwq = get_pwq(cpu, wq);
a0a1a5fd 3700
112202d9 3701 if (!pwq || pwq->pool != pool ||
a1056305
TH
3702 !(wq->flags & WQ_FREEZABLE))
3703 continue;
a0a1a5fd 3704
a1056305 3705 /* restore max_active and repopulate worklist */
112202d9 3706 pwq_set_max_active(pwq, wq->saved_max_active);
a1056305 3707 }
8b03ae3c 3708
4ce62e9e 3709 wake_up_worker(pool);
a1056305
TH
3710
3711 spin_unlock_irq(&pool->lock);
d565ed63 3712 }
a0a1a5fd
TH
3713 }
3714
3715 workqueue_freezing = false;
3716out_unlock:
3717 spin_unlock(&workqueue_lock);
3718}
3719#endif /* CONFIG_FREEZER */
3720
6ee0578b 3721static int __init init_workqueues(void)
1da177e4 3722{
c34056a3
TH
3723 unsigned int cpu;
3724
7c3eed5c
TH
3725 /* make sure we have enough bits for OFFQ pool ID */
3726 BUILD_BUG_ON((1LU << (BITS_PER_LONG - WORK_OFFQ_POOL_SHIFT)) <
6be19588 3727 WORK_CPU_END * NR_STD_WORKER_POOLS);
b5490077 3728
65758202 3729 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
a5b4e57d 3730 hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
8b03ae3c 3731
706026c2
TH
3732 /* initialize CPU pools */
3733 for_each_wq_cpu(cpu) {
4ce62e9e 3734 struct worker_pool *pool;
8b03ae3c 3735
38db41d9 3736 for_each_std_worker_pool(pool, cpu) {
d565ed63 3737 spin_lock_init(&pool->lock);
ec22ca5e 3738 pool->cpu = cpu;
24647570 3739 pool->flags |= POOL_DISASSOCIATED;
4ce62e9e
TH
3740 INIT_LIST_HEAD(&pool->worklist);
3741 INIT_LIST_HEAD(&pool->idle_list);
c9e7cf27 3742 hash_init(pool->busy_hash);
e7577c50 3743
4ce62e9e
TH
3744 init_timer_deferrable(&pool->idle_timer);
3745 pool->idle_timer.function = idle_worker_timeout;
3746 pool->idle_timer.data = (unsigned long)pool;
e22bee78 3747
706026c2 3748 setup_timer(&pool->mayday_timer, pool_mayday_timeout,
4ce62e9e
TH
3749 (unsigned long)pool);
3750
b2eb83d1 3751 mutex_init(&pool->assoc_mutex);
4ce62e9e 3752 ida_init(&pool->worker_ida);
9daf9e67
TH
3753
3754 /* alloc pool ID */
3755 BUG_ON(worker_pool_assign_id(pool));
4ce62e9e 3756 }
8b03ae3c
TH
3757 }
3758
e22bee78 3759 /* create the initial worker */
706026c2 3760 for_each_online_wq_cpu(cpu) {
4ce62e9e 3761 struct worker_pool *pool;
e22bee78 3762
38db41d9 3763 for_each_std_worker_pool(pool, cpu) {
4ce62e9e
TH
3764 struct worker *worker;
3765
24647570
TH
3766 if (cpu != WORK_CPU_UNBOUND)
3767 pool->flags &= ~POOL_DISASSOCIATED;
3768
bc2ae0f5 3769 worker = create_worker(pool);
4ce62e9e 3770 BUG_ON(!worker);
d565ed63 3771 spin_lock_irq(&pool->lock);
4ce62e9e 3772 start_worker(worker);
d565ed63 3773 spin_unlock_irq(&pool->lock);
4ce62e9e 3774 }
e22bee78
TH
3775 }
3776
d320c038 3777 system_wq = alloc_workqueue("events", 0, 0);
1aabe902 3778 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
d320c038 3779 system_long_wq = alloc_workqueue("events_long", 0, 0);
f3421797
TH
3780 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
3781 WQ_UNBOUND_MAX_ACTIVE);
24d51add
TH
3782 system_freezable_wq = alloc_workqueue("events_freezable",
3783 WQ_FREEZABLE, 0);
1aabe902 3784 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
ae930e0f 3785 !system_unbound_wq || !system_freezable_wq);
6ee0578b 3786 return 0;
1da177e4 3787}
6ee0578b 3788early_initcall(init_workqueues);