Linux 3.10.54
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / workqueue.c
CommitLineData
1da177e4 1/*
c54fce6e 2 * kernel/workqueue.c - generic async execution with shared worker pool
1da177e4 3 *
c54fce6e 4 * Copyright (C) 2002 Ingo Molnar
1da177e4 5 *
c54fce6e
TH
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
1da177e4 11 *
c54fce6e 12 * Made to use alloc_percpu by Christoph Lameter.
1da177e4 13 *
c54fce6e
TH
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
89ada679 16 *
c54fce6e
TH
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
19 * automatically managed. There is one worker pool for each CPU and
20 * one extra for works which are better served by workers which are
21 * not bound to any specific CPU.
22 *
23 * Please read Documentation/workqueue.txt for details.
1da177e4
LT
24 */
25
9984de1a 26#include <linux/export.h>
1da177e4
LT
27#include <linux/kernel.h>
28#include <linux/sched.h>
29#include <linux/init.h>
30#include <linux/signal.h>
31#include <linux/completion.h>
32#include <linux/workqueue.h>
33#include <linux/slab.h>
34#include <linux/cpu.h>
35#include <linux/notifier.h>
36#include <linux/kthread.h>
1fa44eca 37#include <linux/hardirq.h>
46934023 38#include <linux/mempolicy.h>
341a5958 39#include <linux/freezer.h>
d5abe669
PZ
40#include <linux/kallsyms.h>
41#include <linux/debug_locks.h>
4e6045f1 42#include <linux/lockdep.h>
c34056a3 43#include <linux/idr.h>
29c91e99 44#include <linux/jhash.h>
42f8570f 45#include <linux/hashtable.h>
76af4d93 46#include <linux/rculist.h>
bce90380 47#include <linux/nodemask.h>
4c16bd32 48#include <linux/moduleparam.h>
3d1cb205 49#include <linux/uaccess.h>
e22bee78 50
ea138446 51#include "workqueue_internal.h"
1da177e4 52
c8e55f36 53enum {
24647570
TH
54 /*
55 * worker_pool flags
bc2ae0f5 56 *
24647570 57 * A bound pool is either associated or disassociated with its CPU.
bc2ae0f5
TH
58 * While associated (!DISASSOCIATED), all workers are bound to the
59 * CPU and none has %WORKER_UNBOUND set and concurrency management
60 * is in effect.
61 *
62 * While DISASSOCIATED, the cpu may be offline and all workers have
63 * %WORKER_UNBOUND set and concurrency management disabled, and may
24647570 64 * be executing on any CPU. The pool behaves as an unbound one.
bc2ae0f5 65 *
bc3a1afc
TH
66 * Note that DISASSOCIATED should be flipped only while holding
67 * manager_mutex to avoid changing binding state while
24647570 68 * create_worker() is in progress.
bc2ae0f5 69 */
11ebea50 70 POOL_MANAGE_WORKERS = 1 << 0, /* need to manage workers */
24647570 71 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
35b6bb63 72 POOL_FREEZING = 1 << 3, /* freeze in progress */
db7bccf4 73
c8e55f36
TH
74 /* worker flags */
75 WORKER_STARTED = 1 << 0, /* started */
76 WORKER_DIE = 1 << 1, /* die die die */
77 WORKER_IDLE = 1 << 2, /* is idle */
e22bee78 78 WORKER_PREP = 1 << 3, /* preparing to run works */
fb0e7beb 79 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
f3421797 80 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
a9ab775b 81 WORKER_REBOUND = 1 << 8, /* worker was rebound */
e22bee78 82
a9ab775b
TH
83 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
84 WORKER_UNBOUND | WORKER_REBOUND,
db7bccf4 85
e34cdddb 86 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
4ce62e9e 87
29c91e99 88 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
c8e55f36 89 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
db7bccf4 90
e22bee78
TH
91 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
92 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
93
3233cdbd
TH
94 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
95 /* call for help after 10ms
96 (min two ticks) */
e22bee78
TH
97 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
98 CREATE_COOLDOWN = HZ, /* time to breath after fail */
e22bee78
TH
99
100 /*
101 * Rescue workers are used only on emergencies and shared by
102 * all cpus. Give -20.
103 */
104 RESCUER_NICE_LEVEL = -20,
3270476a 105 HIGHPRI_NICE_LEVEL = -20,
ecf6881f
TH
106
107 WQ_NAME_LEN = 24,
c8e55f36 108};
1da177e4
LT
109
110/*
4690c4ab
TH
111 * Structure fields follow one of the following exclusion rules.
112 *
e41e704b
TH
113 * I: Modifiable by initialization/destruction paths and read-only for
114 * everyone else.
4690c4ab 115 *
e22bee78
TH
116 * P: Preemption protected. Disabling preemption is enough and should
117 * only be modified and accessed from the local cpu.
118 *
d565ed63 119 * L: pool->lock protected. Access with pool->lock held.
4690c4ab 120 *
d565ed63
TH
121 * X: During normal operation, modification requires pool->lock and should
122 * be done only from local cpu. Either disabling preemption on local
123 * cpu or grabbing pool->lock is enough for read access. If
124 * POOL_DISASSOCIATED is set, it's identical to L.
e22bee78 125 *
822d8405
TH
126 * MG: pool->manager_mutex and pool->lock protected. Writes require both
127 * locks. Reads can happen under either lock.
128 *
68e13a67 129 * PL: wq_pool_mutex protected.
5bcab335 130 *
68e13a67 131 * PR: wq_pool_mutex protected for writes. Sched-RCU protected for reads.
76af4d93 132 *
3c25a55d
LJ
133 * WQ: wq->mutex protected.
134 *
b5927605 135 * WR: wq->mutex protected for writes. Sched-RCU protected for reads.
2e109a28
TH
136 *
137 * MD: wq_mayday_lock protected.
1da177e4 138 */
1da177e4 139
2eaebdb3 140/* struct worker is defined in workqueue_internal.h */
c34056a3 141
bd7bdd43 142struct worker_pool {
d565ed63 143 spinlock_t lock; /* the pool lock */
d84ff051 144 int cpu; /* I: the associated cpu */
f3f90ad4 145 int node; /* I: the associated node ID */
9daf9e67 146 int id; /* I: pool ID */
11ebea50 147 unsigned int flags; /* X: flags */
bd7bdd43
TH
148
149 struct list_head worklist; /* L: list of pending works */
150 int nr_workers; /* L: total number of workers */
ea1abd61
LJ
151
152 /* nr_idle includes the ones off idle_list for rebinding */
bd7bdd43
TH
153 int nr_idle; /* L: currently idle ones */
154
155 struct list_head idle_list; /* X: list of idle workers */
156 struct timer_list idle_timer; /* L: worker idle timeout */
157 struct timer_list mayday_timer; /* L: SOS timer for workers */
158
c5aa87bb 159 /* a workers is either on busy_hash or idle_list, or the manager */
c9e7cf27
TH
160 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
161 /* L: hash of busy workers */
162
bc3a1afc 163 /* see manage_workers() for details on the two manager mutexes */
34a06bd6 164 struct mutex manager_arb; /* manager arbitration */
bc3a1afc 165 struct mutex manager_mutex; /* manager exclusion */
822d8405 166 struct idr worker_idr; /* MG: worker IDs and iteration */
e19e397a 167
7a4e344c 168 struct workqueue_attrs *attrs; /* I: worker attributes */
68e13a67
LJ
169 struct hlist_node hash_node; /* PL: unbound_pool_hash node */
170 int refcnt; /* PL: refcnt for unbound pools */
7a4e344c 171
e19e397a
TH
172 /*
173 * The current concurrency level. As it's likely to be accessed
174 * from other CPUs during try_to_wake_up(), put it in a separate
175 * cacheline.
176 */
177 atomic_t nr_running ____cacheline_aligned_in_smp;
29c91e99
TH
178
179 /*
180 * Destruction of pool is sched-RCU protected to allow dereferences
181 * from get_work_pool().
182 */
183 struct rcu_head rcu;
8b03ae3c
TH
184} ____cacheline_aligned_in_smp;
185
1da177e4 186/*
112202d9
TH
187 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
188 * of work_struct->data are used for flags and the remaining high bits
189 * point to the pwq; thus, pwqs need to be aligned at two's power of the
190 * number of flag bits.
1da177e4 191 */
112202d9 192struct pool_workqueue {
bd7bdd43 193 struct worker_pool *pool; /* I: the associated pool */
4690c4ab 194 struct workqueue_struct *wq; /* I: the owning workqueue */
73f53c4a
TH
195 int work_color; /* L: current color */
196 int flush_color; /* L: flushing color */
8864b4e5 197 int refcnt; /* L: reference count */
73f53c4a
TH
198 int nr_in_flight[WORK_NR_COLORS];
199 /* L: nr of in_flight works */
1e19ffc6 200 int nr_active; /* L: nr of active works */
a0a1a5fd 201 int max_active; /* L: max active works */
1e19ffc6 202 struct list_head delayed_works; /* L: delayed works */
3c25a55d 203 struct list_head pwqs_node; /* WR: node on wq->pwqs */
2e109a28 204 struct list_head mayday_node; /* MD: node on wq->maydays */
8864b4e5
TH
205
206 /*
207 * Release of unbound pwq is punted to system_wq. See put_pwq()
208 * and pwq_unbound_release_workfn() for details. pool_workqueue
209 * itself is also sched-RCU protected so that the first pwq can be
b09f4fd3 210 * determined without grabbing wq->mutex.
8864b4e5
TH
211 */
212 struct work_struct unbound_release_work;
213 struct rcu_head rcu;
e904e6c2 214} __aligned(1 << WORK_STRUCT_FLAG_BITS);
1da177e4 215
73f53c4a
TH
216/*
217 * Structure used to wait for workqueue flush.
218 */
219struct wq_flusher {
3c25a55d
LJ
220 struct list_head list; /* WQ: list of flushers */
221 int flush_color; /* WQ: flush color waiting for */
73f53c4a
TH
222 struct completion done; /* flush completion */
223};
224
226223ab
TH
225struct wq_device;
226
1da177e4 227/*
c5aa87bb
TH
228 * The externally visible workqueue. It relays the issued work items to
229 * the appropriate worker_pool through its pool_workqueues.
1da177e4
LT
230 */
231struct workqueue_struct {
3c25a55d 232 struct list_head pwqs; /* WR: all pwqs of this wq */
68e13a67 233 struct list_head list; /* PL: list of all workqueues */
73f53c4a 234
3c25a55d
LJ
235 struct mutex mutex; /* protects this wq */
236 int work_color; /* WQ: current work color */
237 int flush_color; /* WQ: current flush color */
112202d9 238 atomic_t nr_pwqs_to_flush; /* flush in progress */
3c25a55d
LJ
239 struct wq_flusher *first_flusher; /* WQ: first flusher */
240 struct list_head flusher_queue; /* WQ: flush waiters */
241 struct list_head flusher_overflow; /* WQ: flush overflow list */
73f53c4a 242
2e109a28 243 struct list_head maydays; /* MD: pwqs requesting rescue */
e22bee78
TH
244 struct worker *rescuer; /* I: rescue worker */
245
87fc741e 246 int nr_drainers; /* WQ: drain in progress */
a357fc03 247 int saved_max_active; /* WQ: saved pwq max_active */
226223ab 248
6029a918 249 struct workqueue_attrs *unbound_attrs; /* WQ: only for unbound wqs */
4c16bd32 250 struct pool_workqueue *dfl_pwq; /* WQ: only for unbound wqs */
6029a918 251
226223ab
TH
252#ifdef CONFIG_SYSFS
253 struct wq_device *wq_dev; /* I: for sysfs interface */
254#endif
4e6045f1 255#ifdef CONFIG_LOCKDEP
4690c4ab 256 struct lockdep_map lockdep_map;
4e6045f1 257#endif
ecf6881f 258 char name[WQ_NAME_LEN]; /* I: workqueue name */
2728fd2f
TH
259
260 /* hot fields used during command issue, aligned to cacheline */
261 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */
262 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
df2d5ae4 263 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* FR: unbound pwqs indexed by node */
1da177e4
LT
264};
265
e904e6c2
TH
266static struct kmem_cache *pwq_cache;
267
bce90380
TH
268static int wq_numa_tbl_len; /* highest possible NUMA node id + 1 */
269static cpumask_var_t *wq_numa_possible_cpumask;
270 /* possible CPUs of each node */
271
d55262c4
TH
272static bool wq_disable_numa;
273module_param_named(disable_numa, wq_disable_numa, bool, 0444);
274
bce90380
TH
275static bool wq_numa_enabled; /* unbound NUMA affinity enabled */
276
4c16bd32
TH
277/* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
278static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
279
68e13a67 280static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
2e109a28 281static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
5bcab335 282
68e13a67
LJ
283static LIST_HEAD(workqueues); /* PL: list of all workqueues */
284static bool workqueue_freezing; /* PL: have wqs started freezing? */
7d19c5ce
TH
285
286/* the per-cpu worker pools */
287static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
288 cpu_worker_pools);
289
68e13a67 290static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
7d19c5ce 291
68e13a67 292/* PL: hash of all unbound pools keyed by pool->attrs */
29c91e99
TH
293static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
294
c5aa87bb 295/* I: attributes used when instantiating standard unbound pools on demand */
29c91e99
TH
296static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
297
ced4ac92
TH
298/* I: attributes used when instantiating ordered pools on demand */
299static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
300
d320c038 301struct workqueue_struct *system_wq __read_mostly;
ad7b1f84 302EXPORT_SYMBOL(system_wq);
044c782c 303struct workqueue_struct *system_highpri_wq __read_mostly;
1aabe902 304EXPORT_SYMBOL_GPL(system_highpri_wq);
044c782c 305struct workqueue_struct *system_long_wq __read_mostly;
d320c038 306EXPORT_SYMBOL_GPL(system_long_wq);
044c782c 307struct workqueue_struct *system_unbound_wq __read_mostly;
f3421797 308EXPORT_SYMBOL_GPL(system_unbound_wq);
044c782c 309struct workqueue_struct *system_freezable_wq __read_mostly;
24d51add 310EXPORT_SYMBOL_GPL(system_freezable_wq);
d320c038 311
7d19c5ce
TH
312static int worker_thread(void *__worker);
313static void copy_workqueue_attrs(struct workqueue_attrs *to,
314 const struct workqueue_attrs *from);
315
97bd2347
TH
316#define CREATE_TRACE_POINTS
317#include <trace/events/workqueue.h>
318
68e13a67 319#define assert_rcu_or_pool_mutex() \
5bcab335 320 rcu_lockdep_assert(rcu_read_lock_sched_held() || \
68e13a67
LJ
321 lockdep_is_held(&wq_pool_mutex), \
322 "sched RCU or wq_pool_mutex should be held")
5bcab335 323
b09f4fd3 324#define assert_rcu_or_wq_mutex(wq) \
76af4d93 325 rcu_lockdep_assert(rcu_read_lock_sched_held() || \
b5927605 326 lockdep_is_held(&wq->mutex), \
b09f4fd3 327 "sched RCU or wq->mutex should be held")
76af4d93 328
822d8405
TH
329#ifdef CONFIG_LOCKDEP
330#define assert_manager_or_pool_lock(pool) \
519e3c11
LJ
331 WARN_ONCE(debug_locks && \
332 !lockdep_is_held(&(pool)->manager_mutex) && \
822d8405
TH
333 !lockdep_is_held(&(pool)->lock), \
334 "pool->manager_mutex or ->lock should be held")
335#else
336#define assert_manager_or_pool_lock(pool) do { } while (0)
337#endif
338
f02ae73a
TH
339#define for_each_cpu_worker_pool(pool, cpu) \
340 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
341 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
7a62c2c8 342 (pool)++)
4ce62e9e 343
17116969
TH
344/**
345 * for_each_pool - iterate through all worker_pools in the system
346 * @pool: iteration cursor
611c92a0 347 * @pi: integer used for iteration
fa1b54e6 348 *
68e13a67
LJ
349 * This must be called either with wq_pool_mutex held or sched RCU read
350 * locked. If the pool needs to be used beyond the locking in effect, the
351 * caller is responsible for guaranteeing that the pool stays online.
fa1b54e6
TH
352 *
353 * The if/else clause exists only for the lockdep assertion and can be
354 * ignored.
17116969 355 */
611c92a0
TH
356#define for_each_pool(pool, pi) \
357 idr_for_each_entry(&worker_pool_idr, pool, pi) \
68e13a67 358 if (({ assert_rcu_or_pool_mutex(); false; })) { } \
fa1b54e6 359 else
17116969 360
822d8405
TH
361/**
362 * for_each_pool_worker - iterate through all workers of a worker_pool
363 * @worker: iteration cursor
364 * @wi: integer used for iteration
365 * @pool: worker_pool to iterate workers of
366 *
367 * This must be called with either @pool->manager_mutex or ->lock held.
368 *
369 * The if/else clause exists only for the lockdep assertion and can be
370 * ignored.
371 */
372#define for_each_pool_worker(worker, wi, pool) \
373 idr_for_each_entry(&(pool)->worker_idr, (worker), (wi)) \
374 if (({ assert_manager_or_pool_lock((pool)); false; })) { } \
375 else
376
49e3cf44
TH
377/**
378 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
379 * @pwq: iteration cursor
380 * @wq: the target workqueue
76af4d93 381 *
b09f4fd3 382 * This must be called either with wq->mutex held or sched RCU read locked.
794b18bc
TH
383 * If the pwq needs to be used beyond the locking in effect, the caller is
384 * responsible for guaranteeing that the pwq stays online.
76af4d93
TH
385 *
386 * The if/else clause exists only for the lockdep assertion and can be
387 * ignored.
49e3cf44
TH
388 */
389#define for_each_pwq(pwq, wq) \
76af4d93 390 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \
b09f4fd3 391 if (({ assert_rcu_or_wq_mutex(wq); false; })) { } \
76af4d93 392 else
f3421797 393
dc186ad7
TG
394#ifdef CONFIG_DEBUG_OBJECTS_WORK
395
396static struct debug_obj_descr work_debug_descr;
397
99777288
SG
398static void *work_debug_hint(void *addr)
399{
400 return ((struct work_struct *) addr)->func;
401}
402
dc186ad7
TG
403/*
404 * fixup_init is called when:
405 * - an active object is initialized
406 */
407static int work_fixup_init(void *addr, enum debug_obj_state state)
408{
409 struct work_struct *work = addr;
410
411 switch (state) {
412 case ODEBUG_STATE_ACTIVE:
413 cancel_work_sync(work);
414 debug_object_init(work, &work_debug_descr);
415 return 1;
416 default:
417 return 0;
418 }
419}
420
421/*
422 * fixup_activate is called when:
423 * - an active object is activated
424 * - an unknown object is activated (might be a statically initialized object)
425 */
426static int work_fixup_activate(void *addr, enum debug_obj_state state)
427{
428 struct work_struct *work = addr;
429
430 switch (state) {
431
432 case ODEBUG_STATE_NOTAVAILABLE:
433 /*
434 * This is not really a fixup. The work struct was
435 * statically initialized. We just make sure that it
436 * is tracked in the object tracker.
437 */
22df02bb 438 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
dc186ad7
TG
439 debug_object_init(work, &work_debug_descr);
440 debug_object_activate(work, &work_debug_descr);
441 return 0;
442 }
443 WARN_ON_ONCE(1);
444 return 0;
445
446 case ODEBUG_STATE_ACTIVE:
447 WARN_ON(1);
448
449 default:
450 return 0;
451 }
452}
453
454/*
455 * fixup_free is called when:
456 * - an active object is freed
457 */
458static int work_fixup_free(void *addr, enum debug_obj_state state)
459{
460 struct work_struct *work = addr;
461
462 switch (state) {
463 case ODEBUG_STATE_ACTIVE:
464 cancel_work_sync(work);
465 debug_object_free(work, &work_debug_descr);
466 return 1;
467 default:
468 return 0;
469 }
470}
471
472static struct debug_obj_descr work_debug_descr = {
473 .name = "work_struct",
99777288 474 .debug_hint = work_debug_hint,
dc186ad7
TG
475 .fixup_init = work_fixup_init,
476 .fixup_activate = work_fixup_activate,
477 .fixup_free = work_fixup_free,
478};
479
480static inline void debug_work_activate(struct work_struct *work)
481{
482 debug_object_activate(work, &work_debug_descr);
483}
484
485static inline void debug_work_deactivate(struct work_struct *work)
486{
487 debug_object_deactivate(work, &work_debug_descr);
488}
489
490void __init_work(struct work_struct *work, int onstack)
491{
492 if (onstack)
493 debug_object_init_on_stack(work, &work_debug_descr);
494 else
495 debug_object_init(work, &work_debug_descr);
496}
497EXPORT_SYMBOL_GPL(__init_work);
498
499void destroy_work_on_stack(struct work_struct *work)
500{
501 debug_object_free(work, &work_debug_descr);
502}
503EXPORT_SYMBOL_GPL(destroy_work_on_stack);
504
505#else
506static inline void debug_work_activate(struct work_struct *work) { }
507static inline void debug_work_deactivate(struct work_struct *work) { }
508#endif
509
9daf9e67
TH
510/* allocate ID and assign it to @pool */
511static int worker_pool_assign_id(struct worker_pool *pool)
512{
513 int ret;
514
68e13a67 515 lockdep_assert_held(&wq_pool_mutex);
5bcab335 516
e68035fb 517 ret = idr_alloc(&worker_pool_idr, pool, 0, 0, GFP_KERNEL);
229641a6 518 if (ret >= 0) {
e68035fb 519 pool->id = ret;
229641a6
TH
520 return 0;
521 }
fa1b54e6 522 return ret;
7c3eed5c
TH
523}
524
df2d5ae4
TH
525/**
526 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
527 * @wq: the target workqueue
528 * @node: the node ID
529 *
530 * This must be called either with pwq_lock held or sched RCU read locked.
531 * If the pwq needs to be used beyond the locking in effect, the caller is
532 * responsible for guaranteeing that the pwq stays online.
533 */
534static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
535 int node)
536{
537 assert_rcu_or_wq_mutex(wq);
538 return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
539}
540
73f53c4a
TH
541static unsigned int work_color_to_flags(int color)
542{
543 return color << WORK_STRUCT_COLOR_SHIFT;
544}
545
546static int get_work_color(struct work_struct *work)
547{
548 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
549 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
550}
551
552static int work_next_color(int color)
553{
554 return (color + 1) % WORK_NR_COLORS;
555}
1da177e4 556
14441960 557/*
112202d9
TH
558 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
559 * contain the pointer to the queued pwq. Once execution starts, the flag
7c3eed5c 560 * is cleared and the high bits contain OFFQ flags and pool ID.
7a22ad75 561 *
112202d9
TH
562 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
563 * and clear_work_data() can be used to set the pwq, pool or clear
bbb68dfa
TH
564 * work->data. These functions should only be called while the work is
565 * owned - ie. while the PENDING bit is set.
7a22ad75 566 *
112202d9 567 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
7c3eed5c 568 * corresponding to a work. Pool is available once the work has been
112202d9 569 * queued anywhere after initialization until it is sync canceled. pwq is
7c3eed5c 570 * available only while the work item is queued.
7a22ad75 571 *
bbb68dfa
TH
572 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
573 * canceled. While being canceled, a work item may have its PENDING set
574 * but stay off timer and worklist for arbitrarily long and nobody should
575 * try to steal the PENDING bit.
14441960 576 */
7a22ad75
TH
577static inline void set_work_data(struct work_struct *work, unsigned long data,
578 unsigned long flags)
365970a1 579{
6183c009 580 WARN_ON_ONCE(!work_pending(work));
7a22ad75
TH
581 atomic_long_set(&work->data, data | flags | work_static(work));
582}
365970a1 583
112202d9 584static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
7a22ad75
TH
585 unsigned long extra_flags)
586{
112202d9
TH
587 set_work_data(work, (unsigned long)pwq,
588 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
365970a1
DH
589}
590
4468a00f
LJ
591static void set_work_pool_and_keep_pending(struct work_struct *work,
592 int pool_id)
593{
594 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
595 WORK_STRUCT_PENDING);
596}
597
7c3eed5c
TH
598static void set_work_pool_and_clear_pending(struct work_struct *work,
599 int pool_id)
7a22ad75 600{
23657bb1
TH
601 /*
602 * The following wmb is paired with the implied mb in
603 * test_and_set_bit(PENDING) and ensures all updates to @work made
604 * here are visible to and precede any updates by the next PENDING
605 * owner.
606 */
607 smp_wmb();
7c3eed5c 608 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
7a22ad75 609}
f756d5e2 610
7a22ad75 611static void clear_work_data(struct work_struct *work)
1da177e4 612{
7c3eed5c
TH
613 smp_wmb(); /* see set_work_pool_and_clear_pending() */
614 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
1da177e4
LT
615}
616
112202d9 617static struct pool_workqueue *get_work_pwq(struct work_struct *work)
b1f4ec17 618{
e120153d 619 unsigned long data = atomic_long_read(&work->data);
7a22ad75 620
112202d9 621 if (data & WORK_STRUCT_PWQ)
e120153d
TH
622 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
623 else
624 return NULL;
4d707b9f
ON
625}
626
7c3eed5c
TH
627/**
628 * get_work_pool - return the worker_pool a given work was associated with
629 * @work: the work item of interest
630 *
631 * Return the worker_pool @work was last associated with. %NULL if none.
fa1b54e6 632 *
68e13a67
LJ
633 * Pools are created and destroyed under wq_pool_mutex, and allows read
634 * access under sched-RCU read lock. As such, this function should be
635 * called under wq_pool_mutex or with preemption disabled.
fa1b54e6
TH
636 *
637 * All fields of the returned pool are accessible as long as the above
638 * mentioned locking is in effect. If the returned pool needs to be used
639 * beyond the critical section, the caller is responsible for ensuring the
640 * returned pool is and stays online.
7c3eed5c
TH
641 */
642static struct worker_pool *get_work_pool(struct work_struct *work)
365970a1 643{
e120153d 644 unsigned long data = atomic_long_read(&work->data);
7c3eed5c 645 int pool_id;
7a22ad75 646
68e13a67 647 assert_rcu_or_pool_mutex();
fa1b54e6 648
112202d9
TH
649 if (data & WORK_STRUCT_PWQ)
650 return ((struct pool_workqueue *)
7c3eed5c 651 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
7a22ad75 652
7c3eed5c
TH
653 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
654 if (pool_id == WORK_OFFQ_POOL_NONE)
7a22ad75
TH
655 return NULL;
656
fa1b54e6 657 return idr_find(&worker_pool_idr, pool_id);
7c3eed5c
TH
658}
659
660/**
661 * get_work_pool_id - return the worker pool ID a given work is associated with
662 * @work: the work item of interest
663 *
664 * Return the worker_pool ID @work was last associated with.
665 * %WORK_OFFQ_POOL_NONE if none.
666 */
667static int get_work_pool_id(struct work_struct *work)
668{
54d5b7d0
LJ
669 unsigned long data = atomic_long_read(&work->data);
670
112202d9
TH
671 if (data & WORK_STRUCT_PWQ)
672 return ((struct pool_workqueue *)
54d5b7d0 673 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
7c3eed5c 674
54d5b7d0 675 return data >> WORK_OFFQ_POOL_SHIFT;
7c3eed5c
TH
676}
677
bbb68dfa
TH
678static void mark_work_canceling(struct work_struct *work)
679{
7c3eed5c 680 unsigned long pool_id = get_work_pool_id(work);
bbb68dfa 681
7c3eed5c
TH
682 pool_id <<= WORK_OFFQ_POOL_SHIFT;
683 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
bbb68dfa
TH
684}
685
686static bool work_is_canceling(struct work_struct *work)
687{
688 unsigned long data = atomic_long_read(&work->data);
689
112202d9 690 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
bbb68dfa
TH
691}
692
e22bee78 693/*
3270476a
TH
694 * Policy functions. These define the policies on how the global worker
695 * pools are managed. Unless noted otherwise, these functions assume that
d565ed63 696 * they're being called with pool->lock held.
e22bee78
TH
697 */
698
63d95a91 699static bool __need_more_worker(struct worker_pool *pool)
a848e3b6 700{
e19e397a 701 return !atomic_read(&pool->nr_running);
a848e3b6
ON
702}
703
4594bf15 704/*
e22bee78
TH
705 * Need to wake up a worker? Called from anything but currently
706 * running workers.
974271c4
TH
707 *
708 * Note that, because unbound workers never contribute to nr_running, this
706026c2 709 * function will always return %true for unbound pools as long as the
974271c4 710 * worklist isn't empty.
4594bf15 711 */
63d95a91 712static bool need_more_worker(struct worker_pool *pool)
365970a1 713{
63d95a91 714 return !list_empty(&pool->worklist) && __need_more_worker(pool);
e22bee78 715}
4594bf15 716
e22bee78 717/* Can I start working? Called from busy but !running workers. */
63d95a91 718static bool may_start_working(struct worker_pool *pool)
e22bee78 719{
63d95a91 720 return pool->nr_idle;
e22bee78
TH
721}
722
723/* Do I need to keep working? Called from currently running workers. */
63d95a91 724static bool keep_working(struct worker_pool *pool)
e22bee78 725{
e19e397a
TH
726 return !list_empty(&pool->worklist) &&
727 atomic_read(&pool->nr_running) <= 1;
e22bee78
TH
728}
729
730/* Do we need a new worker? Called from manager. */
63d95a91 731static bool need_to_create_worker(struct worker_pool *pool)
e22bee78 732{
63d95a91 733 return need_more_worker(pool) && !may_start_working(pool);
e22bee78 734}
365970a1 735
e22bee78 736/* Do I need to be the manager? */
63d95a91 737static bool need_to_manage_workers(struct worker_pool *pool)
e22bee78 738{
63d95a91 739 return need_to_create_worker(pool) ||
11ebea50 740 (pool->flags & POOL_MANAGE_WORKERS);
e22bee78
TH
741}
742
743/* Do we have too many workers and should some go away? */
63d95a91 744static bool too_many_workers(struct worker_pool *pool)
e22bee78 745{
34a06bd6 746 bool managing = mutex_is_locked(&pool->manager_arb);
63d95a91
TH
747 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
748 int nr_busy = pool->nr_workers - nr_idle;
e22bee78 749
ea1abd61
LJ
750 /*
751 * nr_idle and idle_list may disagree if idle rebinding is in
752 * progress. Never return %true if idle_list is empty.
753 */
754 if (list_empty(&pool->idle_list))
755 return false;
756
e22bee78 757 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
365970a1
DH
758}
759
4d707b9f 760/*
e22bee78
TH
761 * Wake up functions.
762 */
763
7e11629d 764/* Return the first worker. Safe with preemption disabled */
63d95a91 765static struct worker *first_worker(struct worker_pool *pool)
7e11629d 766{
63d95a91 767 if (unlikely(list_empty(&pool->idle_list)))
7e11629d
TH
768 return NULL;
769
63d95a91 770 return list_first_entry(&pool->idle_list, struct worker, entry);
7e11629d
TH
771}
772
773/**
774 * wake_up_worker - wake up an idle worker
63d95a91 775 * @pool: worker pool to wake worker from
7e11629d 776 *
63d95a91 777 * Wake up the first idle worker of @pool.
7e11629d
TH
778 *
779 * CONTEXT:
d565ed63 780 * spin_lock_irq(pool->lock).
7e11629d 781 */
63d95a91 782static void wake_up_worker(struct worker_pool *pool)
7e11629d 783{
63d95a91 784 struct worker *worker = first_worker(pool);
7e11629d
TH
785
786 if (likely(worker))
787 wake_up_process(worker->task);
788}
789
d302f017 790/**
e22bee78
TH
791 * wq_worker_waking_up - a worker is waking up
792 * @task: task waking up
793 * @cpu: CPU @task is waking up to
794 *
795 * This function is called during try_to_wake_up() when a worker is
796 * being awoken.
797 *
798 * CONTEXT:
799 * spin_lock_irq(rq->lock)
800 */
d84ff051 801void wq_worker_waking_up(struct task_struct *task, int cpu)
e22bee78
TH
802{
803 struct worker *worker = kthread_data(task);
804
36576000 805 if (!(worker->flags & WORKER_NOT_RUNNING)) {
ec22ca5e 806 WARN_ON_ONCE(worker->pool->cpu != cpu);
e19e397a 807 atomic_inc(&worker->pool->nr_running);
36576000 808 }
e22bee78
TH
809}
810
811/**
812 * wq_worker_sleeping - a worker is going to sleep
813 * @task: task going to sleep
814 * @cpu: CPU in question, must be the current CPU number
815 *
816 * This function is called during schedule() when a busy worker is
817 * going to sleep. Worker on the same cpu can be woken up by
818 * returning pointer to its task.
819 *
820 * CONTEXT:
821 * spin_lock_irq(rq->lock)
822 *
823 * RETURNS:
824 * Worker task on @cpu to wake up, %NULL if none.
825 */
d84ff051 826struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
e22bee78
TH
827{
828 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
111c225a 829 struct worker_pool *pool;
e22bee78 830
111c225a
TH
831 /*
832 * Rescuers, which may not have all the fields set up like normal
833 * workers, also reach here, let's not access anything before
834 * checking NOT_RUNNING.
835 */
2d64672e 836 if (worker->flags & WORKER_NOT_RUNNING)
e22bee78
TH
837 return NULL;
838
111c225a 839 pool = worker->pool;
111c225a 840
e22bee78 841 /* this can only happen on the local cpu */
6183c009
TH
842 if (WARN_ON_ONCE(cpu != raw_smp_processor_id()))
843 return NULL;
e22bee78
TH
844
845 /*
846 * The counterpart of the following dec_and_test, implied mb,
847 * worklist not empty test sequence is in insert_work().
848 * Please read comment there.
849 *
628c78e7
TH
850 * NOT_RUNNING is clear. This means that we're bound to and
851 * running on the local cpu w/ rq lock held and preemption
852 * disabled, which in turn means that none else could be
d565ed63 853 * manipulating idle_list, so dereferencing idle_list without pool
628c78e7 854 * lock is safe.
e22bee78 855 */
e19e397a
TH
856 if (atomic_dec_and_test(&pool->nr_running) &&
857 !list_empty(&pool->worklist))
63d95a91 858 to_wakeup = first_worker(pool);
e22bee78
TH
859 return to_wakeup ? to_wakeup->task : NULL;
860}
861
862/**
863 * worker_set_flags - set worker flags and adjust nr_running accordingly
cb444766 864 * @worker: self
d302f017
TH
865 * @flags: flags to set
866 * @wakeup: wakeup an idle worker if necessary
867 *
e22bee78
TH
868 * Set @flags in @worker->flags and adjust nr_running accordingly. If
869 * nr_running becomes zero and @wakeup is %true, an idle worker is
870 * woken up.
d302f017 871 *
cb444766 872 * CONTEXT:
d565ed63 873 * spin_lock_irq(pool->lock)
d302f017
TH
874 */
875static inline void worker_set_flags(struct worker *worker, unsigned int flags,
876 bool wakeup)
877{
bd7bdd43 878 struct worker_pool *pool = worker->pool;
e22bee78 879
cb444766
TH
880 WARN_ON_ONCE(worker->task != current);
881
e22bee78
TH
882 /*
883 * If transitioning into NOT_RUNNING, adjust nr_running and
884 * wake up an idle worker as necessary if requested by
885 * @wakeup.
886 */
887 if ((flags & WORKER_NOT_RUNNING) &&
888 !(worker->flags & WORKER_NOT_RUNNING)) {
e22bee78 889 if (wakeup) {
e19e397a 890 if (atomic_dec_and_test(&pool->nr_running) &&
bd7bdd43 891 !list_empty(&pool->worklist))
63d95a91 892 wake_up_worker(pool);
e22bee78 893 } else
e19e397a 894 atomic_dec(&pool->nr_running);
e22bee78
TH
895 }
896
d302f017
TH
897 worker->flags |= flags;
898}
899
900/**
e22bee78 901 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
cb444766 902 * @worker: self
d302f017
TH
903 * @flags: flags to clear
904 *
e22bee78 905 * Clear @flags in @worker->flags and adjust nr_running accordingly.
d302f017 906 *
cb444766 907 * CONTEXT:
d565ed63 908 * spin_lock_irq(pool->lock)
d302f017
TH
909 */
910static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
911{
63d95a91 912 struct worker_pool *pool = worker->pool;
e22bee78
TH
913 unsigned int oflags = worker->flags;
914
cb444766
TH
915 WARN_ON_ONCE(worker->task != current);
916
d302f017 917 worker->flags &= ~flags;
e22bee78 918
42c025f3
TH
919 /*
920 * If transitioning out of NOT_RUNNING, increment nr_running. Note
921 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
922 * of multiple flags, not a single flag.
923 */
e22bee78
TH
924 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
925 if (!(worker->flags & WORKER_NOT_RUNNING))
e19e397a 926 atomic_inc(&pool->nr_running);
d302f017
TH
927}
928
8cca0eea
TH
929/**
930 * find_worker_executing_work - find worker which is executing a work
c9e7cf27 931 * @pool: pool of interest
8cca0eea
TH
932 * @work: work to find worker for
933 *
c9e7cf27
TH
934 * Find a worker which is executing @work on @pool by searching
935 * @pool->busy_hash which is keyed by the address of @work. For a worker
a2c1c57b
TH
936 * to match, its current execution should match the address of @work and
937 * its work function. This is to avoid unwanted dependency between
938 * unrelated work executions through a work item being recycled while still
939 * being executed.
940 *
941 * This is a bit tricky. A work item may be freed once its execution
942 * starts and nothing prevents the freed area from being recycled for
943 * another work item. If the same work item address ends up being reused
944 * before the original execution finishes, workqueue will identify the
945 * recycled work item as currently executing and make it wait until the
946 * current execution finishes, introducing an unwanted dependency.
947 *
c5aa87bb
TH
948 * This function checks the work item address and work function to avoid
949 * false positives. Note that this isn't complete as one may construct a
950 * work function which can introduce dependency onto itself through a
951 * recycled work item. Well, if somebody wants to shoot oneself in the
952 * foot that badly, there's only so much we can do, and if such deadlock
953 * actually occurs, it should be easy to locate the culprit work function.
8cca0eea
TH
954 *
955 * CONTEXT:
d565ed63 956 * spin_lock_irq(pool->lock).
8cca0eea
TH
957 *
958 * RETURNS:
959 * Pointer to worker which is executing @work if found, NULL
960 * otherwise.
4d707b9f 961 */
c9e7cf27 962static struct worker *find_worker_executing_work(struct worker_pool *pool,
8cca0eea 963 struct work_struct *work)
4d707b9f 964{
42f8570f 965 struct worker *worker;
42f8570f 966
b67bfe0d 967 hash_for_each_possible(pool->busy_hash, worker, hentry,
a2c1c57b
TH
968 (unsigned long)work)
969 if (worker->current_work == work &&
970 worker->current_func == work->func)
42f8570f
SL
971 return worker;
972
973 return NULL;
4d707b9f
ON
974}
975
bf4ede01
TH
976/**
977 * move_linked_works - move linked works to a list
978 * @work: start of series of works to be scheduled
979 * @head: target list to append @work to
980 * @nextp: out paramter for nested worklist walking
981 *
982 * Schedule linked works starting from @work to @head. Work series to
983 * be scheduled starts at @work and includes any consecutive work with
984 * WORK_STRUCT_LINKED set in its predecessor.
985 *
986 * If @nextp is not NULL, it's updated to point to the next work of
987 * the last scheduled work. This allows move_linked_works() to be
988 * nested inside outer list_for_each_entry_safe().
989 *
990 * CONTEXT:
d565ed63 991 * spin_lock_irq(pool->lock).
bf4ede01
TH
992 */
993static void move_linked_works(struct work_struct *work, struct list_head *head,
994 struct work_struct **nextp)
995{
996 struct work_struct *n;
997
998 /*
999 * Linked worklist will always end before the end of the list,
1000 * use NULL for list head.
1001 */
1002 list_for_each_entry_safe_from(work, n, NULL, entry) {
1003 list_move_tail(&work->entry, head);
1004 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1005 break;
1006 }
1007
1008 /*
1009 * If we're already inside safe list traversal and have moved
1010 * multiple works to the scheduled queue, the next position
1011 * needs to be updated.
1012 */
1013 if (nextp)
1014 *nextp = n;
1015}
1016
8864b4e5
TH
1017/**
1018 * get_pwq - get an extra reference on the specified pool_workqueue
1019 * @pwq: pool_workqueue to get
1020 *
1021 * Obtain an extra reference on @pwq. The caller should guarantee that
1022 * @pwq has positive refcnt and be holding the matching pool->lock.
1023 */
1024static void get_pwq(struct pool_workqueue *pwq)
1025{
1026 lockdep_assert_held(&pwq->pool->lock);
1027 WARN_ON_ONCE(pwq->refcnt <= 0);
1028 pwq->refcnt++;
1029}
1030
1031/**
1032 * put_pwq - put a pool_workqueue reference
1033 * @pwq: pool_workqueue to put
1034 *
1035 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
1036 * destruction. The caller should be holding the matching pool->lock.
1037 */
1038static void put_pwq(struct pool_workqueue *pwq)
1039{
1040 lockdep_assert_held(&pwq->pool->lock);
1041 if (likely(--pwq->refcnt))
1042 return;
1043 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1044 return;
1045 /*
1046 * @pwq can't be released under pool->lock, bounce to
1047 * pwq_unbound_release_workfn(). This never recurses on the same
1048 * pool->lock as this path is taken only for unbound workqueues and
1049 * the release work item is scheduled on a per-cpu workqueue. To
1050 * avoid lockdep warning, unbound pool->locks are given lockdep
1051 * subclass of 1 in get_unbound_pool().
1052 */
1053 schedule_work(&pwq->unbound_release_work);
1054}
1055
dce90d47
TH
1056/**
1057 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1058 * @pwq: pool_workqueue to put (can be %NULL)
1059 *
1060 * put_pwq() with locking. This function also allows %NULL @pwq.
1061 */
1062static void put_pwq_unlocked(struct pool_workqueue *pwq)
1063{
1064 if (pwq) {
1065 /*
1066 * As both pwqs and pools are sched-RCU protected, the
1067 * following lock operations are safe.
1068 */
1069 spin_lock_irq(&pwq->pool->lock);
1070 put_pwq(pwq);
1071 spin_unlock_irq(&pwq->pool->lock);
1072 }
1073}
1074
112202d9 1075static void pwq_activate_delayed_work(struct work_struct *work)
bf4ede01 1076{
112202d9 1077 struct pool_workqueue *pwq = get_work_pwq(work);
bf4ede01
TH
1078
1079 trace_workqueue_activate_work(work);
112202d9 1080 move_linked_works(work, &pwq->pool->worklist, NULL);
bf4ede01 1081 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
112202d9 1082 pwq->nr_active++;
bf4ede01
TH
1083}
1084
112202d9 1085static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
3aa62497 1086{
112202d9 1087 struct work_struct *work = list_first_entry(&pwq->delayed_works,
3aa62497
LJ
1088 struct work_struct, entry);
1089
112202d9 1090 pwq_activate_delayed_work(work);
3aa62497
LJ
1091}
1092
bf4ede01 1093/**
112202d9
TH
1094 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1095 * @pwq: pwq of interest
bf4ede01 1096 * @color: color of work which left the queue
bf4ede01
TH
1097 *
1098 * A work either has completed or is removed from pending queue,
112202d9 1099 * decrement nr_in_flight of its pwq and handle workqueue flushing.
bf4ede01
TH
1100 *
1101 * CONTEXT:
d565ed63 1102 * spin_lock_irq(pool->lock).
bf4ede01 1103 */
112202d9 1104static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
bf4ede01 1105{
8864b4e5 1106 /* uncolored work items don't participate in flushing or nr_active */
bf4ede01 1107 if (color == WORK_NO_COLOR)
8864b4e5 1108 goto out_put;
bf4ede01 1109
112202d9 1110 pwq->nr_in_flight[color]--;
bf4ede01 1111
112202d9
TH
1112 pwq->nr_active--;
1113 if (!list_empty(&pwq->delayed_works)) {
b3f9f405 1114 /* one down, submit a delayed one */
112202d9
TH
1115 if (pwq->nr_active < pwq->max_active)
1116 pwq_activate_first_delayed(pwq);
bf4ede01
TH
1117 }
1118
1119 /* is flush in progress and are we at the flushing tip? */
112202d9 1120 if (likely(pwq->flush_color != color))
8864b4e5 1121 goto out_put;
bf4ede01
TH
1122
1123 /* are there still in-flight works? */
112202d9 1124 if (pwq->nr_in_flight[color])
8864b4e5 1125 goto out_put;
bf4ede01 1126
112202d9
TH
1127 /* this pwq is done, clear flush_color */
1128 pwq->flush_color = -1;
bf4ede01
TH
1129
1130 /*
112202d9 1131 * If this was the last pwq, wake up the first flusher. It
bf4ede01
TH
1132 * will handle the rest.
1133 */
112202d9
TH
1134 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1135 complete(&pwq->wq->first_flusher->done);
8864b4e5
TH
1136out_put:
1137 put_pwq(pwq);
bf4ede01
TH
1138}
1139
36e227d2 1140/**
bbb68dfa 1141 * try_to_grab_pending - steal work item from worklist and disable irq
36e227d2
TH
1142 * @work: work item to steal
1143 * @is_dwork: @work is a delayed_work
bbb68dfa 1144 * @flags: place to store irq state
36e227d2
TH
1145 *
1146 * Try to grab PENDING bit of @work. This function can handle @work in any
1147 * stable state - idle, on timer or on worklist. Return values are
1148 *
1149 * 1 if @work was pending and we successfully stole PENDING
1150 * 0 if @work was idle and we claimed PENDING
1151 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
bbb68dfa
TH
1152 * -ENOENT if someone else is canceling @work, this state may persist
1153 * for arbitrarily long
36e227d2 1154 *
bbb68dfa 1155 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
e0aecdd8
TH
1156 * interrupted while holding PENDING and @work off queue, irq must be
1157 * disabled on entry. This, combined with delayed_work->timer being
1158 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
bbb68dfa
TH
1159 *
1160 * On successful return, >= 0, irq is disabled and the caller is
1161 * responsible for releasing it using local_irq_restore(*@flags).
1162 *
e0aecdd8 1163 * This function is safe to call from any context including IRQ handler.
bf4ede01 1164 */
bbb68dfa
TH
1165static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1166 unsigned long *flags)
bf4ede01 1167{
d565ed63 1168 struct worker_pool *pool;
112202d9 1169 struct pool_workqueue *pwq;
bf4ede01 1170
bbb68dfa
TH
1171 local_irq_save(*flags);
1172
36e227d2
TH
1173 /* try to steal the timer if it exists */
1174 if (is_dwork) {
1175 struct delayed_work *dwork = to_delayed_work(work);
1176
e0aecdd8
TH
1177 /*
1178 * dwork->timer is irqsafe. If del_timer() fails, it's
1179 * guaranteed that the timer is not queued anywhere and not
1180 * running on the local CPU.
1181 */
36e227d2
TH
1182 if (likely(del_timer(&dwork->timer)))
1183 return 1;
1184 }
1185
1186 /* try to claim PENDING the normal way */
bf4ede01
TH
1187 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1188 return 0;
1189
1190 /*
1191 * The queueing is in progress, or it is already queued. Try to
1192 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1193 */
d565ed63
TH
1194 pool = get_work_pool(work);
1195 if (!pool)
bbb68dfa 1196 goto fail;
bf4ede01 1197
d565ed63 1198 spin_lock(&pool->lock);
0b3dae68 1199 /*
112202d9
TH
1200 * work->data is guaranteed to point to pwq only while the work
1201 * item is queued on pwq->wq, and both updating work->data to point
1202 * to pwq on queueing and to pool on dequeueing are done under
1203 * pwq->pool->lock. This in turn guarantees that, if work->data
1204 * points to pwq which is associated with a locked pool, the work
0b3dae68
LJ
1205 * item is currently queued on that pool.
1206 */
112202d9
TH
1207 pwq = get_work_pwq(work);
1208 if (pwq && pwq->pool == pool) {
16062836
TH
1209 debug_work_deactivate(work);
1210
1211 /*
1212 * A delayed work item cannot be grabbed directly because
1213 * it might have linked NO_COLOR work items which, if left
112202d9 1214 * on the delayed_list, will confuse pwq->nr_active
16062836
TH
1215 * management later on and cause stall. Make sure the work
1216 * item is activated before grabbing.
1217 */
1218 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
112202d9 1219 pwq_activate_delayed_work(work);
16062836
TH
1220
1221 list_del_init(&work->entry);
112202d9 1222 pwq_dec_nr_in_flight(get_work_pwq(work), get_work_color(work));
16062836 1223
112202d9 1224 /* work->data points to pwq iff queued, point to pool */
16062836
TH
1225 set_work_pool_and_keep_pending(work, pool->id);
1226
1227 spin_unlock(&pool->lock);
1228 return 1;
bf4ede01 1229 }
d565ed63 1230 spin_unlock(&pool->lock);
bbb68dfa
TH
1231fail:
1232 local_irq_restore(*flags);
1233 if (work_is_canceling(work))
1234 return -ENOENT;
1235 cpu_relax();
36e227d2 1236 return -EAGAIN;
bf4ede01
TH
1237}
1238
4690c4ab 1239/**
706026c2 1240 * insert_work - insert a work into a pool
112202d9 1241 * @pwq: pwq @work belongs to
4690c4ab
TH
1242 * @work: work to insert
1243 * @head: insertion point
1244 * @extra_flags: extra WORK_STRUCT_* flags to set
1245 *
112202d9 1246 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
706026c2 1247 * work_struct flags.
4690c4ab
TH
1248 *
1249 * CONTEXT:
d565ed63 1250 * spin_lock_irq(pool->lock).
4690c4ab 1251 */
112202d9
TH
1252static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1253 struct list_head *head, unsigned int extra_flags)
b89deed3 1254{
112202d9 1255 struct worker_pool *pool = pwq->pool;
e22bee78 1256
4690c4ab 1257 /* we own @work, set data and link */
112202d9 1258 set_work_pwq(work, pwq, extra_flags);
1a4d9b0a 1259 list_add_tail(&work->entry, head);
8864b4e5 1260 get_pwq(pwq);
e22bee78
TH
1261
1262 /*
c5aa87bb
TH
1263 * Ensure either wq_worker_sleeping() sees the above
1264 * list_add_tail() or we see zero nr_running to avoid workers lying
1265 * around lazily while there are works to be processed.
e22bee78
TH
1266 */
1267 smp_mb();
1268
63d95a91
TH
1269 if (__need_more_worker(pool))
1270 wake_up_worker(pool);
b89deed3
ON
1271}
1272
c8efcc25
TH
1273/*
1274 * Test whether @work is being queued from another work executing on the
8d03ecfe 1275 * same workqueue.
c8efcc25
TH
1276 */
1277static bool is_chained_work(struct workqueue_struct *wq)
1278{
8d03ecfe
TH
1279 struct worker *worker;
1280
1281 worker = current_wq_worker();
1282 /*
1283 * Return %true iff I'm a worker execuing a work item on @wq. If
1284 * I'm @worker, it's safe to dereference it without locking.
1285 */
112202d9 1286 return worker && worker->current_pwq->wq == wq;
c8efcc25
TH
1287}
1288
d84ff051 1289static void __queue_work(int cpu, struct workqueue_struct *wq,
1da177e4
LT
1290 struct work_struct *work)
1291{
112202d9 1292 struct pool_workqueue *pwq;
c9178087 1293 struct worker_pool *last_pool;
1e19ffc6 1294 struct list_head *worklist;
8a2e8e5d 1295 unsigned int work_flags;
b75cac93 1296 unsigned int req_cpu = cpu;
8930caba
TH
1297
1298 /*
1299 * While a work item is PENDING && off queue, a task trying to
1300 * steal the PENDING will busy-loop waiting for it to either get
1301 * queued or lose PENDING. Grabbing PENDING and queueing should
1302 * happen with IRQ disabled.
1303 */
1304 WARN_ON_ONCE(!irqs_disabled());
1da177e4 1305
dc186ad7 1306 debug_work_activate(work);
1e19ffc6 1307
c8efcc25 1308 /* if dying, only works from the same workqueue are allowed */
618b01eb 1309 if (unlikely(wq->flags & __WQ_DRAINING) &&
c8efcc25 1310 WARN_ON_ONCE(!is_chained_work(wq)))
e41e704b 1311 return;
9e8cd2f5 1312retry:
df2d5ae4
TH
1313 if (req_cpu == WORK_CPU_UNBOUND)
1314 cpu = raw_smp_processor_id();
1315
c9178087 1316 /* pwq which will be used unless @work is executing elsewhere */
df2d5ae4 1317 if (!(wq->flags & WQ_UNBOUND))
7fb98ea7 1318 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
df2d5ae4
TH
1319 else
1320 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
dbf2576e 1321
c9178087
TH
1322 /*
1323 * If @work was previously on a different pool, it might still be
1324 * running there, in which case the work needs to be queued on that
1325 * pool to guarantee non-reentrancy.
1326 */
1327 last_pool = get_work_pool(work);
1328 if (last_pool && last_pool != pwq->pool) {
1329 struct worker *worker;
18aa9eff 1330
c9178087 1331 spin_lock(&last_pool->lock);
18aa9eff 1332
c9178087 1333 worker = find_worker_executing_work(last_pool, work);
18aa9eff 1334
c9178087
TH
1335 if (worker && worker->current_pwq->wq == wq) {
1336 pwq = worker->current_pwq;
8930caba 1337 } else {
c9178087
TH
1338 /* meh... not running there, queue here */
1339 spin_unlock(&last_pool->lock);
112202d9 1340 spin_lock(&pwq->pool->lock);
8930caba 1341 }
f3421797 1342 } else {
112202d9 1343 spin_lock(&pwq->pool->lock);
502ca9d8
TH
1344 }
1345
9e8cd2f5
TH
1346 /*
1347 * pwq is determined and locked. For unbound pools, we could have
1348 * raced with pwq release and it could already be dead. If its
1349 * refcnt is zero, repeat pwq selection. Note that pwqs never die
df2d5ae4
TH
1350 * without another pwq replacing it in the numa_pwq_tbl or while
1351 * work items are executing on it, so the retrying is guaranteed to
9e8cd2f5
TH
1352 * make forward-progress.
1353 */
1354 if (unlikely(!pwq->refcnt)) {
1355 if (wq->flags & WQ_UNBOUND) {
1356 spin_unlock(&pwq->pool->lock);
1357 cpu_relax();
1358 goto retry;
1359 }
1360 /* oops */
1361 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1362 wq->name, cpu);
1363 }
1364
112202d9
TH
1365 /* pwq determined, queue */
1366 trace_workqueue_queue_work(req_cpu, pwq, work);
502ca9d8 1367
f5b2552b 1368 if (WARN_ON(!list_empty(&work->entry))) {
112202d9 1369 spin_unlock(&pwq->pool->lock);
f5b2552b
DC
1370 return;
1371 }
1e19ffc6 1372
112202d9
TH
1373 pwq->nr_in_flight[pwq->work_color]++;
1374 work_flags = work_color_to_flags(pwq->work_color);
1e19ffc6 1375
112202d9 1376 if (likely(pwq->nr_active < pwq->max_active)) {
cdadf009 1377 trace_workqueue_activate_work(work);
112202d9
TH
1378 pwq->nr_active++;
1379 worklist = &pwq->pool->worklist;
8a2e8e5d
TH
1380 } else {
1381 work_flags |= WORK_STRUCT_DELAYED;
112202d9 1382 worklist = &pwq->delayed_works;
8a2e8e5d 1383 }
1e19ffc6 1384
112202d9 1385 insert_work(pwq, work, worklist, work_flags);
1e19ffc6 1386
112202d9 1387 spin_unlock(&pwq->pool->lock);
1da177e4
LT
1388}
1389
0fcb78c2 1390/**
c1a220e7
ZR
1391 * queue_work_on - queue work on specific cpu
1392 * @cpu: CPU number to execute work on
0fcb78c2
REB
1393 * @wq: workqueue to use
1394 * @work: work to queue
1395 *
d4283e93 1396 * Returns %false if @work was already on a queue, %true otherwise.
1da177e4 1397 *
c1a220e7
ZR
1398 * We queue the work to a specific CPU, the caller must ensure it
1399 * can't go away.
1da177e4 1400 */
d4283e93
TH
1401bool queue_work_on(int cpu, struct workqueue_struct *wq,
1402 struct work_struct *work)
1da177e4 1403{
d4283e93 1404 bool ret = false;
8930caba 1405 unsigned long flags;
ef1ca236 1406
8930caba 1407 local_irq_save(flags);
c1a220e7 1408
22df02bb 1409 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
4690c4ab 1410 __queue_work(cpu, wq, work);
d4283e93 1411 ret = true;
c1a220e7 1412 }
ef1ca236 1413
8930caba 1414 local_irq_restore(flags);
1da177e4
LT
1415 return ret;
1416}
ad7b1f84 1417EXPORT_SYMBOL(queue_work_on);
1da177e4 1418
d8e794df 1419void delayed_work_timer_fn(unsigned long __data)
1da177e4 1420{
52bad64d 1421 struct delayed_work *dwork = (struct delayed_work *)__data;
1da177e4 1422
e0aecdd8 1423 /* should have been called from irqsafe timer with irq already off */
60c057bc 1424 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1da177e4 1425}
1438ade5 1426EXPORT_SYMBOL(delayed_work_timer_fn);
1da177e4 1427
7beb2edf
TH
1428static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1429 struct delayed_work *dwork, unsigned long delay)
1da177e4 1430{
7beb2edf
TH
1431 struct timer_list *timer = &dwork->timer;
1432 struct work_struct *work = &dwork->work;
7beb2edf
TH
1433
1434 WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1435 timer->data != (unsigned long)dwork);
fc4b514f
TH
1436 WARN_ON_ONCE(timer_pending(timer));
1437 WARN_ON_ONCE(!list_empty(&work->entry));
7beb2edf 1438
8852aac2
TH
1439 /*
1440 * If @delay is 0, queue @dwork->work immediately. This is for
1441 * both optimization and correctness. The earliest @timer can
1442 * expire is on the closest next tick and delayed_work users depend
1443 * on that there's no such delay when @delay is 0.
1444 */
1445 if (!delay) {
1446 __queue_work(cpu, wq, &dwork->work);
1447 return;
1448 }
1449
7beb2edf 1450 timer_stats_timer_set_start_info(&dwork->timer);
1da177e4 1451
60c057bc 1452 dwork->wq = wq;
1265057f 1453 dwork->cpu = cpu;
7beb2edf
TH
1454 timer->expires = jiffies + delay;
1455
1456 if (unlikely(cpu != WORK_CPU_UNBOUND))
1457 add_timer_on(timer, cpu);
1458 else
1459 add_timer(timer);
1da177e4
LT
1460}
1461
0fcb78c2
REB
1462/**
1463 * queue_delayed_work_on - queue work on specific CPU after delay
1464 * @cpu: CPU number to execute work on
1465 * @wq: workqueue to use
af9997e4 1466 * @dwork: work to queue
0fcb78c2
REB
1467 * @delay: number of jiffies to wait before queueing
1468 *
715f1300
TH
1469 * Returns %false if @work was already on a queue, %true otherwise. If
1470 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1471 * execution.
0fcb78c2 1472 */
d4283e93
TH
1473bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1474 struct delayed_work *dwork, unsigned long delay)
7a6bc1cd 1475{
52bad64d 1476 struct work_struct *work = &dwork->work;
d4283e93 1477 bool ret = false;
8930caba 1478 unsigned long flags;
7a6bc1cd 1479
8930caba
TH
1480 /* read the comment in __queue_work() */
1481 local_irq_save(flags);
7a6bc1cd 1482
22df02bb 1483 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
7beb2edf 1484 __queue_delayed_work(cpu, wq, dwork, delay);
d4283e93 1485 ret = true;
7a6bc1cd 1486 }
8a3e77cc 1487
8930caba 1488 local_irq_restore(flags);
7a6bc1cd
VP
1489 return ret;
1490}
ad7b1f84 1491EXPORT_SYMBOL(queue_delayed_work_on);
c7fc77f7 1492
8376fe22
TH
1493/**
1494 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1495 * @cpu: CPU number to execute work on
1496 * @wq: workqueue to use
1497 * @dwork: work to queue
1498 * @delay: number of jiffies to wait before queueing
1499 *
1500 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1501 * modify @dwork's timer so that it expires after @delay. If @delay is
1502 * zero, @work is guaranteed to be scheduled immediately regardless of its
1503 * current state.
1504 *
1505 * Returns %false if @dwork was idle and queued, %true if @dwork was
1506 * pending and its timer was modified.
1507 *
e0aecdd8 1508 * This function is safe to call from any context including IRQ handler.
8376fe22
TH
1509 * See try_to_grab_pending() for details.
1510 */
1511bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1512 struct delayed_work *dwork, unsigned long delay)
1513{
1514 unsigned long flags;
1515 int ret;
c7fc77f7 1516
8376fe22
TH
1517 do {
1518 ret = try_to_grab_pending(&dwork->work, true, &flags);
1519 } while (unlikely(ret == -EAGAIN));
63bc0362 1520
8376fe22
TH
1521 if (likely(ret >= 0)) {
1522 __queue_delayed_work(cpu, wq, dwork, delay);
1523 local_irq_restore(flags);
7a6bc1cd 1524 }
8376fe22
TH
1525
1526 /* -ENOENT from try_to_grab_pending() becomes %true */
7a6bc1cd
VP
1527 return ret;
1528}
8376fe22
TH
1529EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1530
c8e55f36
TH
1531/**
1532 * worker_enter_idle - enter idle state
1533 * @worker: worker which is entering idle state
1534 *
1535 * @worker is entering idle state. Update stats and idle timer if
1536 * necessary.
1537 *
1538 * LOCKING:
d565ed63 1539 * spin_lock_irq(pool->lock).
c8e55f36
TH
1540 */
1541static void worker_enter_idle(struct worker *worker)
1da177e4 1542{
bd7bdd43 1543 struct worker_pool *pool = worker->pool;
c8e55f36 1544
6183c009
TH
1545 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1546 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1547 (worker->hentry.next || worker->hentry.pprev)))
1548 return;
c8e55f36 1549
cb444766
TH
1550 /* can't use worker_set_flags(), also called from start_worker() */
1551 worker->flags |= WORKER_IDLE;
bd7bdd43 1552 pool->nr_idle++;
e22bee78 1553 worker->last_active = jiffies;
c8e55f36
TH
1554
1555 /* idle_list is LIFO */
bd7bdd43 1556 list_add(&worker->entry, &pool->idle_list);
db7bccf4 1557
628c78e7
TH
1558 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1559 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
cb444766 1560
544ecf31 1561 /*
706026c2 1562 * Sanity check nr_running. Because wq_unbind_fn() releases
d565ed63 1563 * pool->lock between setting %WORKER_UNBOUND and zapping
628c78e7
TH
1564 * nr_running, the warning may trigger spuriously. Check iff
1565 * unbind is not in progress.
544ecf31 1566 */
24647570 1567 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
bd7bdd43 1568 pool->nr_workers == pool->nr_idle &&
e19e397a 1569 atomic_read(&pool->nr_running));
c8e55f36
TH
1570}
1571
1572/**
1573 * worker_leave_idle - leave idle state
1574 * @worker: worker which is leaving idle state
1575 *
1576 * @worker is leaving idle state. Update stats.
1577 *
1578 * LOCKING:
d565ed63 1579 * spin_lock_irq(pool->lock).
c8e55f36
TH
1580 */
1581static void worker_leave_idle(struct worker *worker)
1582{
bd7bdd43 1583 struct worker_pool *pool = worker->pool;
c8e55f36 1584
6183c009
TH
1585 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1586 return;
d302f017 1587 worker_clr_flags(worker, WORKER_IDLE);
bd7bdd43 1588 pool->nr_idle--;
c8e55f36
TH
1589 list_del_init(&worker->entry);
1590}
1591
e22bee78 1592/**
f36dc67b
LJ
1593 * worker_maybe_bind_and_lock - try to bind %current to worker_pool and lock it
1594 * @pool: target worker_pool
1595 *
1596 * Bind %current to the cpu of @pool if it is associated and lock @pool.
e22bee78
TH
1597 *
1598 * Works which are scheduled while the cpu is online must at least be
1599 * scheduled to a worker which is bound to the cpu so that if they are
1600 * flushed from cpu callbacks while cpu is going down, they are
1601 * guaranteed to execute on the cpu.
1602 *
f5faa077 1603 * This function is to be used by unbound workers and rescuers to bind
e22bee78
TH
1604 * themselves to the target cpu and may race with cpu going down or
1605 * coming online. kthread_bind() can't be used because it may put the
1606 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
706026c2 1607 * verbatim as it's best effort and blocking and pool may be
e22bee78
TH
1608 * [dis]associated in the meantime.
1609 *
706026c2 1610 * This function tries set_cpus_allowed() and locks pool and verifies the
24647570 1611 * binding against %POOL_DISASSOCIATED which is set during
f2d5a0ee
TH
1612 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
1613 * enters idle state or fetches works without dropping lock, it can
1614 * guarantee the scheduling requirement described in the first paragraph.
e22bee78
TH
1615 *
1616 * CONTEXT:
d565ed63 1617 * Might sleep. Called without any lock but returns with pool->lock
e22bee78
TH
1618 * held.
1619 *
1620 * RETURNS:
706026c2 1621 * %true if the associated pool is online (@worker is successfully
e22bee78
TH
1622 * bound), %false if offline.
1623 */
f36dc67b 1624static bool worker_maybe_bind_and_lock(struct worker_pool *pool)
d565ed63 1625__acquires(&pool->lock)
e22bee78 1626{
e22bee78 1627 while (true) {
4e6045f1 1628 /*
e22bee78
TH
1629 * The following call may fail, succeed or succeed
1630 * without actually migrating the task to the cpu if
1631 * it races with cpu hotunplug operation. Verify
24647570 1632 * against POOL_DISASSOCIATED.
4e6045f1 1633 */
24647570 1634 if (!(pool->flags & POOL_DISASSOCIATED))
7a4e344c 1635 set_cpus_allowed_ptr(current, pool->attrs->cpumask);
e22bee78 1636
d565ed63 1637 spin_lock_irq(&pool->lock);
24647570 1638 if (pool->flags & POOL_DISASSOCIATED)
e22bee78 1639 return false;
f5faa077 1640 if (task_cpu(current) == pool->cpu &&
7a4e344c 1641 cpumask_equal(&current->cpus_allowed, pool->attrs->cpumask))
e22bee78 1642 return true;
d565ed63 1643 spin_unlock_irq(&pool->lock);
e22bee78 1644
5035b20f
TH
1645 /*
1646 * We've raced with CPU hot[un]plug. Give it a breather
1647 * and retry migration. cond_resched() is required here;
1648 * otherwise, we might deadlock against cpu_stop trying to
1649 * bring down the CPU on non-preemptive kernel.
1650 */
e22bee78 1651 cpu_relax();
5035b20f 1652 cond_resched();
e22bee78
TH
1653 }
1654}
1655
c34056a3
TH
1656static struct worker *alloc_worker(void)
1657{
1658 struct worker *worker;
1659
1660 worker = kzalloc(sizeof(*worker), GFP_KERNEL);
c8e55f36
TH
1661 if (worker) {
1662 INIT_LIST_HEAD(&worker->entry);
affee4b2 1663 INIT_LIST_HEAD(&worker->scheduled);
e22bee78
TH
1664 /* on creation a worker is in !idle && prep state */
1665 worker->flags = WORKER_PREP;
c8e55f36 1666 }
c34056a3
TH
1667 return worker;
1668}
1669
1670/**
1671 * create_worker - create a new workqueue worker
63d95a91 1672 * @pool: pool the new worker will belong to
c34056a3 1673 *
63d95a91 1674 * Create a new worker which is bound to @pool. The returned worker
c34056a3
TH
1675 * can be started by calling start_worker() or destroyed using
1676 * destroy_worker().
1677 *
1678 * CONTEXT:
1679 * Might sleep. Does GFP_KERNEL allocations.
1680 *
1681 * RETURNS:
1682 * Pointer to the newly created worker.
1683 */
bc2ae0f5 1684static struct worker *create_worker(struct worker_pool *pool)
c34056a3 1685{
c34056a3 1686 struct worker *worker = NULL;
f3421797 1687 int id = -1;
e3c916a4 1688 char id_buf[16];
c34056a3 1689
cd549687
TH
1690 lockdep_assert_held(&pool->manager_mutex);
1691
822d8405
TH
1692 /*
1693 * ID is needed to determine kthread name. Allocate ID first
1694 * without installing the pointer.
1695 */
1696 idr_preload(GFP_KERNEL);
d565ed63 1697 spin_lock_irq(&pool->lock);
822d8405
TH
1698
1699 id = idr_alloc(&pool->worker_idr, NULL, 0, 0, GFP_NOWAIT);
1700
d565ed63 1701 spin_unlock_irq(&pool->lock);
822d8405
TH
1702 idr_preload_end();
1703 if (id < 0)
1704 goto fail;
c34056a3
TH
1705
1706 worker = alloc_worker();
1707 if (!worker)
1708 goto fail;
1709
bd7bdd43 1710 worker->pool = pool;
c34056a3
TH
1711 worker->id = id;
1712
29c91e99 1713 if (pool->cpu >= 0)
e3c916a4
TH
1714 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1715 pool->attrs->nice < 0 ? "H" : "");
f3421797 1716 else
e3c916a4
TH
1717 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1718
f3f90ad4 1719 worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
e3c916a4 1720 "kworker/%s", id_buf);
c34056a3
TH
1721 if (IS_ERR(worker->task))
1722 goto fail;
1723
c5aa87bb
TH
1724 /*
1725 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1726 * online CPUs. It'll be re-applied when any of the CPUs come up.
1727 */
7a4e344c
TH
1728 set_user_nice(worker->task, pool->attrs->nice);
1729 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
3270476a 1730
14a40ffc
TH
1731 /* prevent userland from meddling with cpumask of workqueue workers */
1732 worker->task->flags |= PF_NO_SETAFFINITY;
7a4e344c
TH
1733
1734 /*
1735 * The caller is responsible for ensuring %POOL_DISASSOCIATED
1736 * remains stable across this function. See the comments above the
1737 * flag definition for details.
1738 */
1739 if (pool->flags & POOL_DISASSOCIATED)
bc2ae0f5 1740 worker->flags |= WORKER_UNBOUND;
c34056a3 1741
822d8405
TH
1742 /* successful, commit the pointer to idr */
1743 spin_lock_irq(&pool->lock);
1744 idr_replace(&pool->worker_idr, worker, worker->id);
1745 spin_unlock_irq(&pool->lock);
1746
c34056a3 1747 return worker;
822d8405 1748
c34056a3
TH
1749fail:
1750 if (id >= 0) {
d565ed63 1751 spin_lock_irq(&pool->lock);
822d8405 1752 idr_remove(&pool->worker_idr, id);
d565ed63 1753 spin_unlock_irq(&pool->lock);
c34056a3
TH
1754 }
1755 kfree(worker);
1756 return NULL;
1757}
1758
1759/**
1760 * start_worker - start a newly created worker
1761 * @worker: worker to start
1762 *
706026c2 1763 * Make the pool aware of @worker and start it.
c34056a3
TH
1764 *
1765 * CONTEXT:
d565ed63 1766 * spin_lock_irq(pool->lock).
c34056a3
TH
1767 */
1768static void start_worker(struct worker *worker)
1769{
cb444766 1770 worker->flags |= WORKER_STARTED;
bd7bdd43 1771 worker->pool->nr_workers++;
c8e55f36 1772 worker_enter_idle(worker);
c34056a3
TH
1773 wake_up_process(worker->task);
1774}
1775
ebf44d16
TH
1776/**
1777 * create_and_start_worker - create and start a worker for a pool
1778 * @pool: the target pool
1779 *
cd549687 1780 * Grab the managership of @pool and create and start a new worker for it.
ebf44d16
TH
1781 */
1782static int create_and_start_worker(struct worker_pool *pool)
1783{
1784 struct worker *worker;
1785
cd549687
TH
1786 mutex_lock(&pool->manager_mutex);
1787
ebf44d16
TH
1788 worker = create_worker(pool);
1789 if (worker) {
1790 spin_lock_irq(&pool->lock);
1791 start_worker(worker);
1792 spin_unlock_irq(&pool->lock);
1793 }
1794
cd549687
TH
1795 mutex_unlock(&pool->manager_mutex);
1796
ebf44d16
TH
1797 return worker ? 0 : -ENOMEM;
1798}
1799
c34056a3
TH
1800/**
1801 * destroy_worker - destroy a workqueue worker
1802 * @worker: worker to be destroyed
1803 *
706026c2 1804 * Destroy @worker and adjust @pool stats accordingly.
c8e55f36
TH
1805 *
1806 * CONTEXT:
d565ed63 1807 * spin_lock_irq(pool->lock) which is released and regrabbed.
c34056a3
TH
1808 */
1809static void destroy_worker(struct worker *worker)
1810{
bd7bdd43 1811 struct worker_pool *pool = worker->pool;
c34056a3 1812
cd549687
TH
1813 lockdep_assert_held(&pool->manager_mutex);
1814 lockdep_assert_held(&pool->lock);
1815
c34056a3 1816 /* sanity check frenzy */
6183c009
TH
1817 if (WARN_ON(worker->current_work) ||
1818 WARN_ON(!list_empty(&worker->scheduled)))
1819 return;
c34056a3 1820
c8e55f36 1821 if (worker->flags & WORKER_STARTED)
bd7bdd43 1822 pool->nr_workers--;
c8e55f36 1823 if (worker->flags & WORKER_IDLE)
bd7bdd43 1824 pool->nr_idle--;
c8e55f36 1825
4403be9e
LJ
1826 /*
1827 * Once WORKER_DIE is set, the kworker may destroy itself at any
1828 * point. Pin to ensure the task stays until we're done with it.
1829 */
1830 get_task_struct(worker->task);
1831
c8e55f36 1832 list_del_init(&worker->entry);
cb444766 1833 worker->flags |= WORKER_DIE;
c8e55f36 1834
822d8405
TH
1835 idr_remove(&pool->worker_idr, worker->id);
1836
d565ed63 1837 spin_unlock_irq(&pool->lock);
c8e55f36 1838
c34056a3 1839 kthread_stop(worker->task);
4403be9e 1840 put_task_struct(worker->task);
c34056a3
TH
1841 kfree(worker);
1842
d565ed63 1843 spin_lock_irq(&pool->lock);
c34056a3
TH
1844}
1845
63d95a91 1846static void idle_worker_timeout(unsigned long __pool)
e22bee78 1847{
63d95a91 1848 struct worker_pool *pool = (void *)__pool;
e22bee78 1849
d565ed63 1850 spin_lock_irq(&pool->lock);
e22bee78 1851
63d95a91 1852 if (too_many_workers(pool)) {
e22bee78
TH
1853 struct worker *worker;
1854 unsigned long expires;
1855
1856 /* idle_list is kept in LIFO order, check the last one */
63d95a91 1857 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78
TH
1858 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1859
1860 if (time_before(jiffies, expires))
63d95a91 1861 mod_timer(&pool->idle_timer, expires);
e22bee78
TH
1862 else {
1863 /* it's been idle for too long, wake up manager */
11ebea50 1864 pool->flags |= POOL_MANAGE_WORKERS;
63d95a91 1865 wake_up_worker(pool);
d5abe669 1866 }
e22bee78
TH
1867 }
1868
d565ed63 1869 spin_unlock_irq(&pool->lock);
e22bee78 1870}
d5abe669 1871
493a1724 1872static void send_mayday(struct work_struct *work)
e22bee78 1873{
112202d9
TH
1874 struct pool_workqueue *pwq = get_work_pwq(work);
1875 struct workqueue_struct *wq = pwq->wq;
493a1724 1876
2e109a28 1877 lockdep_assert_held(&wq_mayday_lock);
e22bee78 1878
493008a8 1879 if (!wq->rescuer)
493a1724 1880 return;
e22bee78
TH
1881
1882 /* mayday mayday mayday */
493a1724 1883 if (list_empty(&pwq->mayday_node)) {
aac8b37f
LJ
1884 /*
1885 * If @pwq is for an unbound wq, its base ref may be put at
1886 * any time due to an attribute change. Pin @pwq until the
1887 * rescuer is done with it.
1888 */
1889 get_pwq(pwq);
493a1724 1890 list_add_tail(&pwq->mayday_node, &wq->maydays);
e22bee78 1891 wake_up_process(wq->rescuer->task);
493a1724 1892 }
e22bee78
TH
1893}
1894
706026c2 1895static void pool_mayday_timeout(unsigned long __pool)
e22bee78 1896{
63d95a91 1897 struct worker_pool *pool = (void *)__pool;
e22bee78
TH
1898 struct work_struct *work;
1899
2e109a28 1900 spin_lock_irq(&wq_mayday_lock); /* for wq->maydays */
493a1724 1901 spin_lock(&pool->lock);
e22bee78 1902
63d95a91 1903 if (need_to_create_worker(pool)) {
e22bee78
TH
1904 /*
1905 * We've been trying to create a new worker but
1906 * haven't been successful. We might be hitting an
1907 * allocation deadlock. Send distress signals to
1908 * rescuers.
1909 */
63d95a91 1910 list_for_each_entry(work, &pool->worklist, entry)
e22bee78 1911 send_mayday(work);
1da177e4 1912 }
e22bee78 1913
493a1724 1914 spin_unlock(&pool->lock);
2e109a28 1915 spin_unlock_irq(&wq_mayday_lock);
e22bee78 1916
63d95a91 1917 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1da177e4
LT
1918}
1919
e22bee78
TH
1920/**
1921 * maybe_create_worker - create a new worker if necessary
63d95a91 1922 * @pool: pool to create a new worker for
e22bee78 1923 *
63d95a91 1924 * Create a new worker for @pool if necessary. @pool is guaranteed to
e22bee78
TH
1925 * have at least one idle worker on return from this function. If
1926 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
63d95a91 1927 * sent to all rescuers with works scheduled on @pool to resolve
e22bee78
TH
1928 * possible allocation deadlock.
1929 *
c5aa87bb
TH
1930 * On return, need_to_create_worker() is guaranteed to be %false and
1931 * may_start_working() %true.
e22bee78
TH
1932 *
1933 * LOCKING:
d565ed63 1934 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
1935 * multiple times. Does GFP_KERNEL allocations. Called only from
1936 * manager.
1937 *
1938 * RETURNS:
c5aa87bb 1939 * %false if no action was taken and pool->lock stayed locked, %true
e22bee78
TH
1940 * otherwise.
1941 */
63d95a91 1942static bool maybe_create_worker(struct worker_pool *pool)
d565ed63
TH
1943__releases(&pool->lock)
1944__acquires(&pool->lock)
1da177e4 1945{
63d95a91 1946 if (!need_to_create_worker(pool))
e22bee78
TH
1947 return false;
1948restart:
d565ed63 1949 spin_unlock_irq(&pool->lock);
9f9c2364 1950
e22bee78 1951 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
63d95a91 1952 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
e22bee78
TH
1953
1954 while (true) {
1955 struct worker *worker;
1956
bc2ae0f5 1957 worker = create_worker(pool);
e22bee78 1958 if (worker) {
63d95a91 1959 del_timer_sync(&pool->mayday_timer);
d565ed63 1960 spin_lock_irq(&pool->lock);
e22bee78 1961 start_worker(worker);
6183c009
TH
1962 if (WARN_ON_ONCE(need_to_create_worker(pool)))
1963 goto restart;
e22bee78
TH
1964 return true;
1965 }
1966
63d95a91 1967 if (!need_to_create_worker(pool))
e22bee78 1968 break;
1da177e4 1969
e22bee78
TH
1970 __set_current_state(TASK_INTERRUPTIBLE);
1971 schedule_timeout(CREATE_COOLDOWN);
9f9c2364 1972
63d95a91 1973 if (!need_to_create_worker(pool))
e22bee78
TH
1974 break;
1975 }
1976
63d95a91 1977 del_timer_sync(&pool->mayday_timer);
d565ed63 1978 spin_lock_irq(&pool->lock);
63d95a91 1979 if (need_to_create_worker(pool))
e22bee78
TH
1980 goto restart;
1981 return true;
1982}
1983
1984/**
1985 * maybe_destroy_worker - destroy workers which have been idle for a while
63d95a91 1986 * @pool: pool to destroy workers for
e22bee78 1987 *
63d95a91 1988 * Destroy @pool workers which have been idle for longer than
e22bee78
TH
1989 * IDLE_WORKER_TIMEOUT.
1990 *
1991 * LOCKING:
d565ed63 1992 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
1993 * multiple times. Called only from manager.
1994 *
1995 * RETURNS:
c5aa87bb 1996 * %false if no action was taken and pool->lock stayed locked, %true
e22bee78
TH
1997 * otherwise.
1998 */
63d95a91 1999static bool maybe_destroy_workers(struct worker_pool *pool)
e22bee78
TH
2000{
2001 bool ret = false;
1da177e4 2002
63d95a91 2003 while (too_many_workers(pool)) {
e22bee78
TH
2004 struct worker *worker;
2005 unsigned long expires;
3af24433 2006
63d95a91 2007 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78 2008 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
85f4186a 2009
e22bee78 2010 if (time_before(jiffies, expires)) {
63d95a91 2011 mod_timer(&pool->idle_timer, expires);
3af24433 2012 break;
e22bee78 2013 }
1da177e4 2014
e22bee78
TH
2015 destroy_worker(worker);
2016 ret = true;
1da177e4 2017 }
1e19ffc6 2018
e22bee78 2019 return ret;
1e19ffc6
TH
2020}
2021
73f53c4a 2022/**
e22bee78
TH
2023 * manage_workers - manage worker pool
2024 * @worker: self
73f53c4a 2025 *
706026c2 2026 * Assume the manager role and manage the worker pool @worker belongs
e22bee78 2027 * to. At any given time, there can be only zero or one manager per
706026c2 2028 * pool. The exclusion is handled automatically by this function.
e22bee78
TH
2029 *
2030 * The caller can safely start processing works on false return. On
2031 * true return, it's guaranteed that need_to_create_worker() is false
2032 * and may_start_working() is true.
73f53c4a
TH
2033 *
2034 * CONTEXT:
d565ed63 2035 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
2036 * multiple times. Does GFP_KERNEL allocations.
2037 *
2038 * RETURNS:
d565ed63
TH
2039 * spin_lock_irq(pool->lock) which may be released and regrabbed
2040 * multiple times. Does GFP_KERNEL allocations.
73f53c4a 2041 */
e22bee78 2042static bool manage_workers(struct worker *worker)
73f53c4a 2043{
63d95a91 2044 struct worker_pool *pool = worker->pool;
e22bee78 2045 bool ret = false;
73f53c4a 2046
bc3a1afc
TH
2047 /*
2048 * Managership is governed by two mutexes - manager_arb and
2049 * manager_mutex. manager_arb handles arbitration of manager role.
2050 * Anyone who successfully grabs manager_arb wins the arbitration
2051 * and becomes the manager. mutex_trylock() on pool->manager_arb
2052 * failure while holding pool->lock reliably indicates that someone
2053 * else is managing the pool and the worker which failed trylock
2054 * can proceed to executing work items. This means that anyone
2055 * grabbing manager_arb is responsible for actually performing
2056 * manager duties. If manager_arb is grabbed and released without
2057 * actual management, the pool may stall indefinitely.
2058 *
2059 * manager_mutex is used for exclusion of actual management
2060 * operations. The holder of manager_mutex can be sure that none
2061 * of management operations, including creation and destruction of
2062 * workers, won't take place until the mutex is released. Because
2063 * manager_mutex doesn't interfere with manager role arbitration,
2064 * it is guaranteed that the pool's management, while may be
2065 * delayed, won't be disturbed by someone else grabbing
2066 * manager_mutex.
2067 */
34a06bd6 2068 if (!mutex_trylock(&pool->manager_arb))
e22bee78 2069 return ret;
1e19ffc6 2070
ee378aa4 2071 /*
bc3a1afc
TH
2072 * With manager arbitration won, manager_mutex would be free in
2073 * most cases. trylock first without dropping @pool->lock.
ee378aa4 2074 */
bc3a1afc 2075 if (unlikely(!mutex_trylock(&pool->manager_mutex))) {
d565ed63 2076 spin_unlock_irq(&pool->lock);
bc3a1afc 2077 mutex_lock(&pool->manager_mutex);
8f174b11 2078 spin_lock_irq(&pool->lock);
ee378aa4
LJ
2079 ret = true;
2080 }
73f53c4a 2081
11ebea50 2082 pool->flags &= ~POOL_MANAGE_WORKERS;
73f53c4a
TH
2083
2084 /*
e22bee78
TH
2085 * Destroy and then create so that may_start_working() is true
2086 * on return.
73f53c4a 2087 */
63d95a91
TH
2088 ret |= maybe_destroy_workers(pool);
2089 ret |= maybe_create_worker(pool);
e22bee78 2090
bc3a1afc 2091 mutex_unlock(&pool->manager_mutex);
34a06bd6 2092 mutex_unlock(&pool->manager_arb);
e22bee78 2093 return ret;
73f53c4a
TH
2094}
2095
a62428c0
TH
2096/**
2097 * process_one_work - process single work
c34056a3 2098 * @worker: self
a62428c0
TH
2099 * @work: work to process
2100 *
2101 * Process @work. This function contains all the logics necessary to
2102 * process a single work including synchronization against and
2103 * interaction with other workers on the same cpu, queueing and
2104 * flushing. As long as context requirement is met, any worker can
2105 * call this function to process a work.
2106 *
2107 * CONTEXT:
d565ed63 2108 * spin_lock_irq(pool->lock) which is released and regrabbed.
a62428c0 2109 */
c34056a3 2110static void process_one_work(struct worker *worker, struct work_struct *work)
d565ed63
TH
2111__releases(&pool->lock)
2112__acquires(&pool->lock)
a62428c0 2113{
112202d9 2114 struct pool_workqueue *pwq = get_work_pwq(work);
bd7bdd43 2115 struct worker_pool *pool = worker->pool;
112202d9 2116 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
73f53c4a 2117 int work_color;
7e11629d 2118 struct worker *collision;
a62428c0
TH
2119#ifdef CONFIG_LOCKDEP
2120 /*
2121 * It is permissible to free the struct work_struct from
2122 * inside the function that is called from it, this we need to
2123 * take into account for lockdep too. To avoid bogus "held
2124 * lock freed" warnings as well as problems when looking into
2125 * work->lockdep_map, make a copy and use that here.
2126 */
4d82a1de
PZ
2127 struct lockdep_map lockdep_map;
2128
2129 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
a62428c0 2130#endif
6fec10a1
TH
2131 /*
2132 * Ensure we're on the correct CPU. DISASSOCIATED test is
2133 * necessary to avoid spurious warnings from rescuers servicing the
24647570 2134 * unbound or a disassociated pool.
6fec10a1 2135 */
5f7dabfd 2136 WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
24647570 2137 !(pool->flags & POOL_DISASSOCIATED) &&
ec22ca5e 2138 raw_smp_processor_id() != pool->cpu);
25511a47 2139
7e11629d
TH
2140 /*
2141 * A single work shouldn't be executed concurrently by
2142 * multiple workers on a single cpu. Check whether anyone is
2143 * already processing the work. If so, defer the work to the
2144 * currently executing one.
2145 */
c9e7cf27 2146 collision = find_worker_executing_work(pool, work);
7e11629d
TH
2147 if (unlikely(collision)) {
2148 move_linked_works(work, &collision->scheduled, NULL);
2149 return;
2150 }
2151
8930caba 2152 /* claim and dequeue */
a62428c0 2153 debug_work_deactivate(work);
c9e7cf27 2154 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
c34056a3 2155 worker->current_work = work;
a2c1c57b 2156 worker->current_func = work->func;
112202d9 2157 worker->current_pwq = pwq;
73f53c4a 2158 work_color = get_work_color(work);
7a22ad75 2159
a62428c0
TH
2160 list_del_init(&work->entry);
2161
fb0e7beb
TH
2162 /*
2163 * CPU intensive works don't participate in concurrency
2164 * management. They're the scheduler's responsibility.
2165 */
2166 if (unlikely(cpu_intensive))
2167 worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
2168
974271c4 2169 /*
d565ed63 2170 * Unbound pool isn't concurrency managed and work items should be
974271c4
TH
2171 * executed ASAP. Wake up another worker if necessary.
2172 */
63d95a91
TH
2173 if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
2174 wake_up_worker(pool);
974271c4 2175
8930caba 2176 /*
7c3eed5c 2177 * Record the last pool and clear PENDING which should be the last
d565ed63 2178 * update to @work. Also, do this inside @pool->lock so that
23657bb1
TH
2179 * PENDING and queued state changes happen together while IRQ is
2180 * disabled.
8930caba 2181 */
7c3eed5c 2182 set_work_pool_and_clear_pending(work, pool->id);
a62428c0 2183
d565ed63 2184 spin_unlock_irq(&pool->lock);
a62428c0 2185
112202d9 2186 lock_map_acquire_read(&pwq->wq->lockdep_map);
a62428c0 2187 lock_map_acquire(&lockdep_map);
e36c886a 2188 trace_workqueue_execute_start(work);
a2c1c57b 2189 worker->current_func(work);
e36c886a
AV
2190 /*
2191 * While we must be careful to not use "work" after this, the trace
2192 * point will only record its address.
2193 */
2194 trace_workqueue_execute_end(work);
a62428c0 2195 lock_map_release(&lockdep_map);
112202d9 2196 lock_map_release(&pwq->wq->lockdep_map);
a62428c0
TH
2197
2198 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
044c782c
VI
2199 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2200 " last function: %pf\n",
a2c1c57b
TH
2201 current->comm, preempt_count(), task_pid_nr(current),
2202 worker->current_func);
a62428c0
TH
2203 debug_show_held_locks(current);
2204 dump_stack();
2205 }
2206
6ff96f73
TH
2207 /*
2208 * The following prevents a kworker from hogging CPU on !PREEMPT
2209 * kernels, where a requeueing work item waiting for something to
2210 * happen could deadlock with stop_machine as such work item could
2211 * indefinitely requeue itself while all other CPUs are trapped in
2212 * stop_machine.
2213 */
2214 cond_resched();
2215
d565ed63 2216 spin_lock_irq(&pool->lock);
a62428c0 2217
fb0e7beb
TH
2218 /* clear cpu intensive status */
2219 if (unlikely(cpu_intensive))
2220 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2221
a62428c0 2222 /* we're done with it, release */
42f8570f 2223 hash_del(&worker->hentry);
c34056a3 2224 worker->current_work = NULL;
a2c1c57b 2225 worker->current_func = NULL;
112202d9 2226 worker->current_pwq = NULL;
3d1cb205 2227 worker->desc_valid = false;
112202d9 2228 pwq_dec_nr_in_flight(pwq, work_color);
a62428c0
TH
2229}
2230
affee4b2
TH
2231/**
2232 * process_scheduled_works - process scheduled works
2233 * @worker: self
2234 *
2235 * Process all scheduled works. Please note that the scheduled list
2236 * may change while processing a work, so this function repeatedly
2237 * fetches a work from the top and executes it.
2238 *
2239 * CONTEXT:
d565ed63 2240 * spin_lock_irq(pool->lock) which may be released and regrabbed
affee4b2
TH
2241 * multiple times.
2242 */
2243static void process_scheduled_works(struct worker *worker)
1da177e4 2244{
affee4b2
TH
2245 while (!list_empty(&worker->scheduled)) {
2246 struct work_struct *work = list_first_entry(&worker->scheduled,
1da177e4 2247 struct work_struct, entry);
c34056a3 2248 process_one_work(worker, work);
1da177e4 2249 }
1da177e4
LT
2250}
2251
4690c4ab
TH
2252/**
2253 * worker_thread - the worker thread function
c34056a3 2254 * @__worker: self
4690c4ab 2255 *
c5aa87bb
TH
2256 * The worker thread function. All workers belong to a worker_pool -
2257 * either a per-cpu one or dynamic unbound one. These workers process all
2258 * work items regardless of their specific target workqueue. The only
2259 * exception is work items which belong to workqueues with a rescuer which
2260 * will be explained in rescuer_thread().
4690c4ab 2261 */
c34056a3 2262static int worker_thread(void *__worker)
1da177e4 2263{
c34056a3 2264 struct worker *worker = __worker;
bd7bdd43 2265 struct worker_pool *pool = worker->pool;
1da177e4 2266
e22bee78
TH
2267 /* tell the scheduler that this is a workqueue worker */
2268 worker->task->flags |= PF_WQ_WORKER;
c8e55f36 2269woke_up:
d565ed63 2270 spin_lock_irq(&pool->lock);
1da177e4 2271
a9ab775b
TH
2272 /* am I supposed to die? */
2273 if (unlikely(worker->flags & WORKER_DIE)) {
d565ed63 2274 spin_unlock_irq(&pool->lock);
a9ab775b
TH
2275 WARN_ON_ONCE(!list_empty(&worker->entry));
2276 worker->task->flags &= ~PF_WQ_WORKER;
2277 return 0;
c8e55f36 2278 }
affee4b2 2279
c8e55f36 2280 worker_leave_idle(worker);
db7bccf4 2281recheck:
e22bee78 2282 /* no more worker necessary? */
63d95a91 2283 if (!need_more_worker(pool))
e22bee78
TH
2284 goto sleep;
2285
2286 /* do we need to manage? */
63d95a91 2287 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
e22bee78
TH
2288 goto recheck;
2289
c8e55f36
TH
2290 /*
2291 * ->scheduled list can only be filled while a worker is
2292 * preparing to process a work or actually processing it.
2293 * Make sure nobody diddled with it while I was sleeping.
2294 */
6183c009 2295 WARN_ON_ONCE(!list_empty(&worker->scheduled));
c8e55f36 2296
e22bee78 2297 /*
a9ab775b
TH
2298 * Finish PREP stage. We're guaranteed to have at least one idle
2299 * worker or that someone else has already assumed the manager
2300 * role. This is where @worker starts participating in concurrency
2301 * management if applicable and concurrency management is restored
2302 * after being rebound. See rebind_workers() for details.
e22bee78 2303 */
a9ab775b 2304 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
e22bee78
TH
2305
2306 do {
c8e55f36 2307 struct work_struct *work =
bd7bdd43 2308 list_first_entry(&pool->worklist,
c8e55f36
TH
2309 struct work_struct, entry);
2310
2311 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2312 /* optimization path, not strictly necessary */
2313 process_one_work(worker, work);
2314 if (unlikely(!list_empty(&worker->scheduled)))
affee4b2 2315 process_scheduled_works(worker);
c8e55f36
TH
2316 } else {
2317 move_linked_works(work, &worker->scheduled, NULL);
2318 process_scheduled_works(worker);
affee4b2 2319 }
63d95a91 2320 } while (keep_working(pool));
e22bee78
TH
2321
2322 worker_set_flags(worker, WORKER_PREP, false);
d313dd85 2323sleep:
63d95a91 2324 if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
e22bee78 2325 goto recheck;
d313dd85 2326
c8e55f36 2327 /*
d565ed63
TH
2328 * pool->lock is held and there's no work to process and no need to
2329 * manage, sleep. Workers are woken up only while holding
2330 * pool->lock or from local cpu, so setting the current state
2331 * before releasing pool->lock is enough to prevent losing any
2332 * event.
c8e55f36
TH
2333 */
2334 worker_enter_idle(worker);
2335 __set_current_state(TASK_INTERRUPTIBLE);
d565ed63 2336 spin_unlock_irq(&pool->lock);
c8e55f36
TH
2337 schedule();
2338 goto woke_up;
1da177e4
LT
2339}
2340
e22bee78
TH
2341/**
2342 * rescuer_thread - the rescuer thread function
111c225a 2343 * @__rescuer: self
e22bee78
TH
2344 *
2345 * Workqueue rescuer thread function. There's one rescuer for each
493008a8 2346 * workqueue which has WQ_MEM_RECLAIM set.
e22bee78 2347 *
706026c2 2348 * Regular work processing on a pool may block trying to create a new
e22bee78
TH
2349 * worker which uses GFP_KERNEL allocation which has slight chance of
2350 * developing into deadlock if some works currently on the same queue
2351 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2352 * the problem rescuer solves.
2353 *
706026c2
TH
2354 * When such condition is possible, the pool summons rescuers of all
2355 * workqueues which have works queued on the pool and let them process
e22bee78
TH
2356 * those works so that forward progress can be guaranteed.
2357 *
2358 * This should happen rarely.
2359 */
111c225a 2360static int rescuer_thread(void *__rescuer)
e22bee78 2361{
111c225a
TH
2362 struct worker *rescuer = __rescuer;
2363 struct workqueue_struct *wq = rescuer->rescue_wq;
e22bee78 2364 struct list_head *scheduled = &rescuer->scheduled;
f56fb0d4 2365 bool should_stop;
e22bee78
TH
2366
2367 set_user_nice(current, RESCUER_NICE_LEVEL);
111c225a
TH
2368
2369 /*
2370 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2371 * doesn't participate in concurrency management.
2372 */
2373 rescuer->task->flags |= PF_WQ_WORKER;
e22bee78
TH
2374repeat:
2375 set_current_state(TASK_INTERRUPTIBLE);
2376
f56fb0d4
LJ
2377 /*
2378 * By the time the rescuer is requested to stop, the workqueue
2379 * shouldn't have any work pending, but @wq->maydays may still have
2380 * pwq(s) queued. This can happen by non-rescuer workers consuming
2381 * all the work items before the rescuer got to them. Go through
2382 * @wq->maydays processing before acting on should_stop so that the
2383 * list is always empty on exit.
2384 */
2385 should_stop = kthread_should_stop();
e22bee78 2386
493a1724 2387 /* see whether any pwq is asking for help */
2e109a28 2388 spin_lock_irq(&wq_mayday_lock);
493a1724
TH
2389
2390 while (!list_empty(&wq->maydays)) {
2391 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2392 struct pool_workqueue, mayday_node);
112202d9 2393 struct worker_pool *pool = pwq->pool;
e22bee78
TH
2394 struct work_struct *work, *n;
2395
2396 __set_current_state(TASK_RUNNING);
493a1724
TH
2397 list_del_init(&pwq->mayday_node);
2398
2e109a28 2399 spin_unlock_irq(&wq_mayday_lock);
e22bee78
TH
2400
2401 /* migrate to the target cpu if possible */
f36dc67b 2402 worker_maybe_bind_and_lock(pool);
b3104104 2403 rescuer->pool = pool;
e22bee78
TH
2404
2405 /*
2406 * Slurp in all works issued via this workqueue and
2407 * process'em.
2408 */
6183c009 2409 WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
bd7bdd43 2410 list_for_each_entry_safe(work, n, &pool->worklist, entry)
112202d9 2411 if (get_work_pwq(work) == pwq)
e22bee78
TH
2412 move_linked_works(work, scheduled, &n);
2413
2414 process_scheduled_works(rescuer);
7576958a 2415
aac8b37f
LJ
2416 /*
2417 * Put the reference grabbed by send_mayday(). @pool won't
2418 * go away while we're holding its lock.
2419 */
2420 put_pwq(pwq);
2421
7576958a 2422 /*
d565ed63 2423 * Leave this pool. If keep_working() is %true, notify a
7576958a
TH
2424 * regular worker; otherwise, we end up with 0 concurrency
2425 * and stalling the execution.
2426 */
63d95a91
TH
2427 if (keep_working(pool))
2428 wake_up_worker(pool);
7576958a 2429
b3104104 2430 rescuer->pool = NULL;
493a1724 2431 spin_unlock(&pool->lock);
2e109a28 2432 spin_lock(&wq_mayday_lock);
e22bee78
TH
2433 }
2434
2e109a28 2435 spin_unlock_irq(&wq_mayday_lock);
493a1724 2436
f56fb0d4
LJ
2437 if (should_stop) {
2438 __set_current_state(TASK_RUNNING);
2439 rescuer->task->flags &= ~PF_WQ_WORKER;
2440 return 0;
2441 }
2442
111c225a
TH
2443 /* rescuers should never participate in concurrency management */
2444 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
e22bee78
TH
2445 schedule();
2446 goto repeat;
1da177e4
LT
2447}
2448
fc2e4d70
ON
2449struct wq_barrier {
2450 struct work_struct work;
2451 struct completion done;
2452};
2453
2454static void wq_barrier_func(struct work_struct *work)
2455{
2456 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2457 complete(&barr->done);
2458}
2459
4690c4ab
TH
2460/**
2461 * insert_wq_barrier - insert a barrier work
112202d9 2462 * @pwq: pwq to insert barrier into
4690c4ab 2463 * @barr: wq_barrier to insert
affee4b2
TH
2464 * @target: target work to attach @barr to
2465 * @worker: worker currently executing @target, NULL if @target is not executing
4690c4ab 2466 *
affee4b2
TH
2467 * @barr is linked to @target such that @barr is completed only after
2468 * @target finishes execution. Please note that the ordering
2469 * guarantee is observed only with respect to @target and on the local
2470 * cpu.
2471 *
2472 * Currently, a queued barrier can't be canceled. This is because
2473 * try_to_grab_pending() can't determine whether the work to be
2474 * grabbed is at the head of the queue and thus can't clear LINKED
2475 * flag of the previous work while there must be a valid next work
2476 * after a work with LINKED flag set.
2477 *
2478 * Note that when @worker is non-NULL, @target may be modified
112202d9 2479 * underneath us, so we can't reliably determine pwq from @target.
4690c4ab
TH
2480 *
2481 * CONTEXT:
d565ed63 2482 * spin_lock_irq(pool->lock).
4690c4ab 2483 */
112202d9 2484static void insert_wq_barrier(struct pool_workqueue *pwq,
affee4b2
TH
2485 struct wq_barrier *barr,
2486 struct work_struct *target, struct worker *worker)
fc2e4d70 2487{
affee4b2
TH
2488 struct list_head *head;
2489 unsigned int linked = 0;
2490
dc186ad7 2491 /*
d565ed63 2492 * debugobject calls are safe here even with pool->lock locked
dc186ad7
TG
2493 * as we know for sure that this will not trigger any of the
2494 * checks and call back into the fixup functions where we
2495 * might deadlock.
2496 */
ca1cab37 2497 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
22df02bb 2498 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
fc2e4d70 2499 init_completion(&barr->done);
83c22520 2500
affee4b2
TH
2501 /*
2502 * If @target is currently being executed, schedule the
2503 * barrier to the worker; otherwise, put it after @target.
2504 */
2505 if (worker)
2506 head = worker->scheduled.next;
2507 else {
2508 unsigned long *bits = work_data_bits(target);
2509
2510 head = target->entry.next;
2511 /* there can already be other linked works, inherit and set */
2512 linked = *bits & WORK_STRUCT_LINKED;
2513 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2514 }
2515
dc186ad7 2516 debug_work_activate(&barr->work);
112202d9 2517 insert_work(pwq, &barr->work, head,
affee4b2 2518 work_color_to_flags(WORK_NO_COLOR) | linked);
fc2e4d70
ON
2519}
2520
73f53c4a 2521/**
112202d9 2522 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
73f53c4a
TH
2523 * @wq: workqueue being flushed
2524 * @flush_color: new flush color, < 0 for no-op
2525 * @work_color: new work color, < 0 for no-op
2526 *
112202d9 2527 * Prepare pwqs for workqueue flushing.
73f53c4a 2528 *
112202d9
TH
2529 * If @flush_color is non-negative, flush_color on all pwqs should be
2530 * -1. If no pwq has in-flight commands at the specified color, all
2531 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2532 * has in flight commands, its pwq->flush_color is set to
2533 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
73f53c4a
TH
2534 * wakeup logic is armed and %true is returned.
2535 *
2536 * The caller should have initialized @wq->first_flusher prior to
2537 * calling this function with non-negative @flush_color. If
2538 * @flush_color is negative, no flush color update is done and %false
2539 * is returned.
2540 *
112202d9 2541 * If @work_color is non-negative, all pwqs should have the same
73f53c4a
TH
2542 * work_color which is previous to @work_color and all will be
2543 * advanced to @work_color.
2544 *
2545 * CONTEXT:
3c25a55d 2546 * mutex_lock(wq->mutex).
73f53c4a
TH
2547 *
2548 * RETURNS:
2549 * %true if @flush_color >= 0 and there's something to flush. %false
2550 * otherwise.
2551 */
112202d9 2552static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
73f53c4a 2553 int flush_color, int work_color)
1da177e4 2554{
73f53c4a 2555 bool wait = false;
49e3cf44 2556 struct pool_workqueue *pwq;
1da177e4 2557
73f53c4a 2558 if (flush_color >= 0) {
6183c009 2559 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
112202d9 2560 atomic_set(&wq->nr_pwqs_to_flush, 1);
1da177e4 2561 }
2355b70f 2562
49e3cf44 2563 for_each_pwq(pwq, wq) {
112202d9 2564 struct worker_pool *pool = pwq->pool;
fc2e4d70 2565
b09f4fd3 2566 spin_lock_irq(&pool->lock);
83c22520 2567
73f53c4a 2568 if (flush_color >= 0) {
6183c009 2569 WARN_ON_ONCE(pwq->flush_color != -1);
fc2e4d70 2570
112202d9
TH
2571 if (pwq->nr_in_flight[flush_color]) {
2572 pwq->flush_color = flush_color;
2573 atomic_inc(&wq->nr_pwqs_to_flush);
73f53c4a
TH
2574 wait = true;
2575 }
2576 }
1da177e4 2577
73f53c4a 2578 if (work_color >= 0) {
6183c009 2579 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
112202d9 2580 pwq->work_color = work_color;
73f53c4a 2581 }
1da177e4 2582
b09f4fd3 2583 spin_unlock_irq(&pool->lock);
1da177e4 2584 }
2355b70f 2585
112202d9 2586 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
73f53c4a 2587 complete(&wq->first_flusher->done);
14441960 2588
73f53c4a 2589 return wait;
1da177e4
LT
2590}
2591
0fcb78c2 2592/**
1da177e4 2593 * flush_workqueue - ensure that any scheduled work has run to completion.
0fcb78c2 2594 * @wq: workqueue to flush
1da177e4 2595 *
c5aa87bb
TH
2596 * This function sleeps until all work items which were queued on entry
2597 * have finished execution, but it is not livelocked by new incoming ones.
1da177e4 2598 */
7ad5b3a5 2599void flush_workqueue(struct workqueue_struct *wq)
1da177e4 2600{
73f53c4a
TH
2601 struct wq_flusher this_flusher = {
2602 .list = LIST_HEAD_INIT(this_flusher.list),
2603 .flush_color = -1,
2604 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2605 };
2606 int next_color;
1da177e4 2607
3295f0ef
IM
2608 lock_map_acquire(&wq->lockdep_map);
2609 lock_map_release(&wq->lockdep_map);
73f53c4a 2610
3c25a55d 2611 mutex_lock(&wq->mutex);
73f53c4a
TH
2612
2613 /*
2614 * Start-to-wait phase
2615 */
2616 next_color = work_next_color(wq->work_color);
2617
2618 if (next_color != wq->flush_color) {
2619 /*
2620 * Color space is not full. The current work_color
2621 * becomes our flush_color and work_color is advanced
2622 * by one.
2623 */
6183c009 2624 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
73f53c4a
TH
2625 this_flusher.flush_color = wq->work_color;
2626 wq->work_color = next_color;
2627
2628 if (!wq->first_flusher) {
2629 /* no flush in progress, become the first flusher */
6183c009 2630 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
2631
2632 wq->first_flusher = &this_flusher;
2633
112202d9 2634 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
73f53c4a
TH
2635 wq->work_color)) {
2636 /* nothing to flush, done */
2637 wq->flush_color = next_color;
2638 wq->first_flusher = NULL;
2639 goto out_unlock;
2640 }
2641 } else {
2642 /* wait in queue */
6183c009 2643 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
73f53c4a 2644 list_add_tail(&this_flusher.list, &wq->flusher_queue);
112202d9 2645 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
2646 }
2647 } else {
2648 /*
2649 * Oops, color space is full, wait on overflow queue.
2650 * The next flush completion will assign us
2651 * flush_color and transfer to flusher_queue.
2652 */
2653 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2654 }
2655
3c25a55d 2656 mutex_unlock(&wq->mutex);
73f53c4a
TH
2657
2658 wait_for_completion(&this_flusher.done);
2659
2660 /*
2661 * Wake-up-and-cascade phase
2662 *
2663 * First flushers are responsible for cascading flushes and
2664 * handling overflow. Non-first flushers can simply return.
2665 */
2666 if (wq->first_flusher != &this_flusher)
2667 return;
2668
3c25a55d 2669 mutex_lock(&wq->mutex);
73f53c4a 2670
4ce48b37
TH
2671 /* we might have raced, check again with mutex held */
2672 if (wq->first_flusher != &this_flusher)
2673 goto out_unlock;
2674
73f53c4a
TH
2675 wq->first_flusher = NULL;
2676
6183c009
TH
2677 WARN_ON_ONCE(!list_empty(&this_flusher.list));
2678 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
2679
2680 while (true) {
2681 struct wq_flusher *next, *tmp;
2682
2683 /* complete all the flushers sharing the current flush color */
2684 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2685 if (next->flush_color != wq->flush_color)
2686 break;
2687 list_del_init(&next->list);
2688 complete(&next->done);
2689 }
2690
6183c009
TH
2691 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2692 wq->flush_color != work_next_color(wq->work_color));
73f53c4a
TH
2693
2694 /* this flush_color is finished, advance by one */
2695 wq->flush_color = work_next_color(wq->flush_color);
2696
2697 /* one color has been freed, handle overflow queue */
2698 if (!list_empty(&wq->flusher_overflow)) {
2699 /*
2700 * Assign the same color to all overflowed
2701 * flushers, advance work_color and append to
2702 * flusher_queue. This is the start-to-wait
2703 * phase for these overflowed flushers.
2704 */
2705 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2706 tmp->flush_color = wq->work_color;
2707
2708 wq->work_color = work_next_color(wq->work_color);
2709
2710 list_splice_tail_init(&wq->flusher_overflow,
2711 &wq->flusher_queue);
112202d9 2712 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
2713 }
2714
2715 if (list_empty(&wq->flusher_queue)) {
6183c009 2716 WARN_ON_ONCE(wq->flush_color != wq->work_color);
73f53c4a
TH
2717 break;
2718 }
2719
2720 /*
2721 * Need to flush more colors. Make the next flusher
112202d9 2722 * the new first flusher and arm pwqs.
73f53c4a 2723 */
6183c009
TH
2724 WARN_ON_ONCE(wq->flush_color == wq->work_color);
2725 WARN_ON_ONCE(wq->flush_color != next->flush_color);
73f53c4a
TH
2726
2727 list_del_init(&next->list);
2728 wq->first_flusher = next;
2729
112202d9 2730 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
73f53c4a
TH
2731 break;
2732
2733 /*
2734 * Meh... this color is already done, clear first
2735 * flusher and repeat cascading.
2736 */
2737 wq->first_flusher = NULL;
2738 }
2739
2740out_unlock:
3c25a55d 2741 mutex_unlock(&wq->mutex);
1da177e4 2742}
ae90dd5d 2743EXPORT_SYMBOL_GPL(flush_workqueue);
1da177e4 2744
9c5a2ba7
TH
2745/**
2746 * drain_workqueue - drain a workqueue
2747 * @wq: workqueue to drain
2748 *
2749 * Wait until the workqueue becomes empty. While draining is in progress,
2750 * only chain queueing is allowed. IOW, only currently pending or running
2751 * work items on @wq can queue further work items on it. @wq is flushed
2752 * repeatedly until it becomes empty. The number of flushing is detemined
2753 * by the depth of chaining and should be relatively short. Whine if it
2754 * takes too long.
2755 */
2756void drain_workqueue(struct workqueue_struct *wq)
2757{
2758 unsigned int flush_cnt = 0;
49e3cf44 2759 struct pool_workqueue *pwq;
9c5a2ba7
TH
2760
2761 /*
2762 * __queue_work() needs to test whether there are drainers, is much
2763 * hotter than drain_workqueue() and already looks at @wq->flags.
618b01eb 2764 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
9c5a2ba7 2765 */
87fc741e 2766 mutex_lock(&wq->mutex);
9c5a2ba7 2767 if (!wq->nr_drainers++)
618b01eb 2768 wq->flags |= __WQ_DRAINING;
87fc741e 2769 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2770reflush:
2771 flush_workqueue(wq);
2772
b09f4fd3 2773 mutex_lock(&wq->mutex);
76af4d93 2774
49e3cf44 2775 for_each_pwq(pwq, wq) {
fa2563e4 2776 bool drained;
9c5a2ba7 2777
b09f4fd3 2778 spin_lock_irq(&pwq->pool->lock);
112202d9 2779 drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
b09f4fd3 2780 spin_unlock_irq(&pwq->pool->lock);
fa2563e4
TT
2781
2782 if (drained)
9c5a2ba7
TH
2783 continue;
2784
2785 if (++flush_cnt == 10 ||
2786 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
c5aa87bb 2787 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
044c782c 2788 wq->name, flush_cnt);
76af4d93 2789
b09f4fd3 2790 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2791 goto reflush;
2792 }
2793
9c5a2ba7 2794 if (!--wq->nr_drainers)
618b01eb 2795 wq->flags &= ~__WQ_DRAINING;
87fc741e 2796 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2797}
2798EXPORT_SYMBOL_GPL(drain_workqueue);
2799
606a5020 2800static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
db700897 2801{
affee4b2 2802 struct worker *worker = NULL;
c9e7cf27 2803 struct worker_pool *pool;
112202d9 2804 struct pool_workqueue *pwq;
db700897
ON
2805
2806 might_sleep();
fa1b54e6
TH
2807
2808 local_irq_disable();
c9e7cf27 2809 pool = get_work_pool(work);
fa1b54e6
TH
2810 if (!pool) {
2811 local_irq_enable();
baf59022 2812 return false;
fa1b54e6 2813 }
db700897 2814
fa1b54e6 2815 spin_lock(&pool->lock);
0b3dae68 2816 /* see the comment in try_to_grab_pending() with the same code */
112202d9
TH
2817 pwq = get_work_pwq(work);
2818 if (pwq) {
2819 if (unlikely(pwq->pool != pool))
4690c4ab 2820 goto already_gone;
606a5020 2821 } else {
c9e7cf27 2822 worker = find_worker_executing_work(pool, work);
affee4b2 2823 if (!worker)
4690c4ab 2824 goto already_gone;
112202d9 2825 pwq = worker->current_pwq;
606a5020 2826 }
db700897 2827
112202d9 2828 insert_wq_barrier(pwq, barr, work, worker);
d565ed63 2829 spin_unlock_irq(&pool->lock);
7a22ad75 2830
e159489b
TH
2831 /*
2832 * If @max_active is 1 or rescuer is in use, flushing another work
2833 * item on the same workqueue may lead to deadlock. Make sure the
2834 * flusher is not running on the same workqueue by verifying write
2835 * access.
2836 */
493008a8 2837 if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
112202d9 2838 lock_map_acquire(&pwq->wq->lockdep_map);
e159489b 2839 else
112202d9
TH
2840 lock_map_acquire_read(&pwq->wq->lockdep_map);
2841 lock_map_release(&pwq->wq->lockdep_map);
e159489b 2842
401a8d04 2843 return true;
4690c4ab 2844already_gone:
d565ed63 2845 spin_unlock_irq(&pool->lock);
401a8d04 2846 return false;
db700897 2847}
baf59022
TH
2848
2849/**
2850 * flush_work - wait for a work to finish executing the last queueing instance
2851 * @work: the work to flush
2852 *
606a5020
TH
2853 * Wait until @work has finished execution. @work is guaranteed to be idle
2854 * on return if it hasn't been requeued since flush started.
baf59022
TH
2855 *
2856 * RETURNS:
2857 * %true if flush_work() waited for the work to finish execution,
2858 * %false if it was already idle.
2859 */
2860bool flush_work(struct work_struct *work)
2861{
2862 struct wq_barrier barr;
2863
0976dfc1
SB
2864 lock_map_acquire(&work->lockdep_map);
2865 lock_map_release(&work->lockdep_map);
2866
606a5020 2867 if (start_flush_work(work, &barr)) {
401a8d04
TH
2868 wait_for_completion(&barr.done);
2869 destroy_work_on_stack(&barr.work);
2870 return true;
606a5020 2871 } else {
401a8d04 2872 return false;
6e84d644 2873 }
6e84d644 2874}
606a5020 2875EXPORT_SYMBOL_GPL(flush_work);
6e84d644 2876
36e227d2 2877static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
1f1f642e 2878{
bbb68dfa 2879 unsigned long flags;
1f1f642e
ON
2880 int ret;
2881
2882 do {
bbb68dfa
TH
2883 ret = try_to_grab_pending(work, is_dwork, &flags);
2884 /*
2885 * If someone else is canceling, wait for the same event it
2886 * would be waiting for before retrying.
2887 */
2888 if (unlikely(ret == -ENOENT))
606a5020 2889 flush_work(work);
1f1f642e
ON
2890 } while (unlikely(ret < 0));
2891
bbb68dfa
TH
2892 /* tell other tasks trying to grab @work to back off */
2893 mark_work_canceling(work);
2894 local_irq_restore(flags);
2895
606a5020 2896 flush_work(work);
7a22ad75 2897 clear_work_data(work);
1f1f642e
ON
2898 return ret;
2899}
2900
6e84d644 2901/**
401a8d04
TH
2902 * cancel_work_sync - cancel a work and wait for it to finish
2903 * @work: the work to cancel
6e84d644 2904 *
401a8d04
TH
2905 * Cancel @work and wait for its execution to finish. This function
2906 * can be used even if the work re-queues itself or migrates to
2907 * another workqueue. On return from this function, @work is
2908 * guaranteed to be not pending or executing on any CPU.
1f1f642e 2909 *
401a8d04
TH
2910 * cancel_work_sync(&delayed_work->work) must not be used for
2911 * delayed_work's. Use cancel_delayed_work_sync() instead.
6e84d644 2912 *
401a8d04 2913 * The caller must ensure that the workqueue on which @work was last
6e84d644 2914 * queued can't be destroyed before this function returns.
401a8d04
TH
2915 *
2916 * RETURNS:
2917 * %true if @work was pending, %false otherwise.
6e84d644 2918 */
401a8d04 2919bool cancel_work_sync(struct work_struct *work)
6e84d644 2920{
36e227d2 2921 return __cancel_work_timer(work, false);
b89deed3 2922}
28e53bdd 2923EXPORT_SYMBOL_GPL(cancel_work_sync);
b89deed3 2924
6e84d644 2925/**
401a8d04
TH
2926 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2927 * @dwork: the delayed work to flush
6e84d644 2928 *
401a8d04
TH
2929 * Delayed timer is cancelled and the pending work is queued for
2930 * immediate execution. Like flush_work(), this function only
2931 * considers the last queueing instance of @dwork.
1f1f642e 2932 *
401a8d04
TH
2933 * RETURNS:
2934 * %true if flush_work() waited for the work to finish execution,
2935 * %false if it was already idle.
6e84d644 2936 */
401a8d04
TH
2937bool flush_delayed_work(struct delayed_work *dwork)
2938{
8930caba 2939 local_irq_disable();
401a8d04 2940 if (del_timer_sync(&dwork->timer))
60c057bc 2941 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
8930caba 2942 local_irq_enable();
401a8d04
TH
2943 return flush_work(&dwork->work);
2944}
2945EXPORT_SYMBOL(flush_delayed_work);
2946
09383498 2947/**
57b30ae7
TH
2948 * cancel_delayed_work - cancel a delayed work
2949 * @dwork: delayed_work to cancel
09383498 2950 *
57b30ae7
TH
2951 * Kill off a pending delayed_work. Returns %true if @dwork was pending
2952 * and canceled; %false if wasn't pending. Note that the work callback
2953 * function may still be running on return, unless it returns %true and the
2954 * work doesn't re-arm itself. Explicitly flush or use
2955 * cancel_delayed_work_sync() to wait on it.
09383498 2956 *
57b30ae7 2957 * This function is safe to call from any context including IRQ handler.
09383498 2958 */
57b30ae7 2959bool cancel_delayed_work(struct delayed_work *dwork)
09383498 2960{
57b30ae7
TH
2961 unsigned long flags;
2962 int ret;
2963
2964 do {
2965 ret = try_to_grab_pending(&dwork->work, true, &flags);
2966 } while (unlikely(ret == -EAGAIN));
2967
2968 if (unlikely(ret < 0))
2969 return false;
2970
7c3eed5c
TH
2971 set_work_pool_and_clear_pending(&dwork->work,
2972 get_work_pool_id(&dwork->work));
57b30ae7 2973 local_irq_restore(flags);
c0158ca6 2974 return ret;
09383498 2975}
57b30ae7 2976EXPORT_SYMBOL(cancel_delayed_work);
09383498 2977
401a8d04
TH
2978/**
2979 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
2980 * @dwork: the delayed work cancel
2981 *
2982 * This is cancel_work_sync() for delayed works.
2983 *
2984 * RETURNS:
2985 * %true if @dwork was pending, %false otherwise.
2986 */
2987bool cancel_delayed_work_sync(struct delayed_work *dwork)
6e84d644 2988{
36e227d2 2989 return __cancel_work_timer(&dwork->work, true);
6e84d644 2990}
f5a421a4 2991EXPORT_SYMBOL(cancel_delayed_work_sync);
1da177e4 2992
b6136773 2993/**
31ddd871 2994 * schedule_on_each_cpu - execute a function synchronously on each online CPU
b6136773 2995 * @func: the function to call
b6136773 2996 *
31ddd871
TH
2997 * schedule_on_each_cpu() executes @func on each online CPU using the
2998 * system workqueue and blocks until all CPUs have completed.
b6136773 2999 * schedule_on_each_cpu() is very slow.
31ddd871
TH
3000 *
3001 * RETURNS:
3002 * 0 on success, -errno on failure.
b6136773 3003 */
65f27f38 3004int schedule_on_each_cpu(work_func_t func)
15316ba8
CL
3005{
3006 int cpu;
38f51568 3007 struct work_struct __percpu *works;
15316ba8 3008
b6136773
AM
3009 works = alloc_percpu(struct work_struct);
3010 if (!works)
15316ba8 3011 return -ENOMEM;
b6136773 3012
93981800
TH
3013 get_online_cpus();
3014
15316ba8 3015 for_each_online_cpu(cpu) {
9bfb1839
IM
3016 struct work_struct *work = per_cpu_ptr(works, cpu);
3017
3018 INIT_WORK(work, func);
b71ab8c2 3019 schedule_work_on(cpu, work);
65a64464 3020 }
93981800
TH
3021
3022 for_each_online_cpu(cpu)
3023 flush_work(per_cpu_ptr(works, cpu));
3024
95402b38 3025 put_online_cpus();
b6136773 3026 free_percpu(works);
15316ba8
CL
3027 return 0;
3028}
3029
eef6a7d5
AS
3030/**
3031 * flush_scheduled_work - ensure that any scheduled work has run to completion.
3032 *
3033 * Forces execution of the kernel-global workqueue and blocks until its
3034 * completion.
3035 *
3036 * Think twice before calling this function! It's very easy to get into
3037 * trouble if you don't take great care. Either of the following situations
3038 * will lead to deadlock:
3039 *
3040 * One of the work items currently on the workqueue needs to acquire
3041 * a lock held by your code or its caller.
3042 *
3043 * Your code is running in the context of a work routine.
3044 *
3045 * They will be detected by lockdep when they occur, but the first might not
3046 * occur very often. It depends on what work items are on the workqueue and
3047 * what locks they need, which you have no control over.
3048 *
3049 * In most situations flushing the entire workqueue is overkill; you merely
3050 * need to know that a particular work item isn't queued and isn't running.
3051 * In such cases you should use cancel_delayed_work_sync() or
3052 * cancel_work_sync() instead.
3053 */
1da177e4
LT
3054void flush_scheduled_work(void)
3055{
d320c038 3056 flush_workqueue(system_wq);
1da177e4 3057}
ae90dd5d 3058EXPORT_SYMBOL(flush_scheduled_work);
1da177e4 3059
1fa44eca
JB
3060/**
3061 * execute_in_process_context - reliably execute the routine with user context
3062 * @fn: the function to execute
1fa44eca
JB
3063 * @ew: guaranteed storage for the execute work structure (must
3064 * be available when the work executes)
3065 *
3066 * Executes the function immediately if process context is available,
3067 * otherwise schedules the function for delayed execution.
3068 *
3069 * Returns: 0 - function was executed
3070 * 1 - function was scheduled for execution
3071 */
65f27f38 3072int execute_in_process_context(work_func_t fn, struct execute_work *ew)
1fa44eca
JB
3073{
3074 if (!in_interrupt()) {
65f27f38 3075 fn(&ew->work);
1fa44eca
JB
3076 return 0;
3077 }
3078
65f27f38 3079 INIT_WORK(&ew->work, fn);
1fa44eca
JB
3080 schedule_work(&ew->work);
3081
3082 return 1;
3083}
3084EXPORT_SYMBOL_GPL(execute_in_process_context);
3085
226223ab
TH
3086#ifdef CONFIG_SYSFS
3087/*
3088 * Workqueues with WQ_SYSFS flag set is visible to userland via
3089 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
3090 * following attributes.
3091 *
3092 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
3093 * max_active RW int : maximum number of in-flight work items
3094 *
3095 * Unbound workqueues have the following extra attributes.
3096 *
3097 * id RO int : the associated pool ID
3098 * nice RW int : nice value of the workers
3099 * cpumask RW mask : bitmask of allowed CPUs for the workers
3100 */
3101struct wq_device {
3102 struct workqueue_struct *wq;
3103 struct device dev;
3104};
3105
3106static struct workqueue_struct *dev_to_wq(struct device *dev)
3107{
3108 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
3109
3110 return wq_dev->wq;
3111}
3112
3113static ssize_t wq_per_cpu_show(struct device *dev,
3114 struct device_attribute *attr, char *buf)
3115{
3116 struct workqueue_struct *wq = dev_to_wq(dev);
3117
3118 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
3119}
3120
3121static ssize_t wq_max_active_show(struct device *dev,
3122 struct device_attribute *attr, char *buf)
3123{
3124 struct workqueue_struct *wq = dev_to_wq(dev);
3125
3126 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
3127}
3128
3129static ssize_t wq_max_active_store(struct device *dev,
3130 struct device_attribute *attr,
3131 const char *buf, size_t count)
3132{
3133 struct workqueue_struct *wq = dev_to_wq(dev);
3134 int val;
3135
3136 if (sscanf(buf, "%d", &val) != 1 || val <= 0)
3137 return -EINVAL;
3138
3139 workqueue_set_max_active(wq, val);
3140 return count;
3141}
3142
3143static struct device_attribute wq_sysfs_attrs[] = {
3144 __ATTR(per_cpu, 0444, wq_per_cpu_show, NULL),
3145 __ATTR(max_active, 0644, wq_max_active_show, wq_max_active_store),
3146 __ATTR_NULL,
3147};
3148
d55262c4
TH
3149static ssize_t wq_pool_ids_show(struct device *dev,
3150 struct device_attribute *attr, char *buf)
226223ab
TH
3151{
3152 struct workqueue_struct *wq = dev_to_wq(dev);
d55262c4
TH
3153 const char *delim = "";
3154 int node, written = 0;
226223ab
TH
3155
3156 rcu_read_lock_sched();
d55262c4
TH
3157 for_each_node(node) {
3158 written += scnprintf(buf + written, PAGE_SIZE - written,
3159 "%s%d:%d", delim, node,
3160 unbound_pwq_by_node(wq, node)->pool->id);
3161 delim = " ";
3162 }
3163 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
226223ab
TH
3164 rcu_read_unlock_sched();
3165
3166 return written;
3167}
3168
3169static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
3170 char *buf)
3171{
3172 struct workqueue_struct *wq = dev_to_wq(dev);
3173 int written;
3174
6029a918
TH
3175 mutex_lock(&wq->mutex);
3176 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
3177 mutex_unlock(&wq->mutex);
226223ab
TH
3178
3179 return written;
3180}
3181
3182/* prepare workqueue_attrs for sysfs store operations */
3183static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
3184{
3185 struct workqueue_attrs *attrs;
3186
3187 attrs = alloc_workqueue_attrs(GFP_KERNEL);
3188 if (!attrs)
3189 return NULL;
3190
6029a918
TH
3191 mutex_lock(&wq->mutex);
3192 copy_workqueue_attrs(attrs, wq->unbound_attrs);
3193 mutex_unlock(&wq->mutex);
226223ab
TH
3194 return attrs;
3195}
3196
3197static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
3198 const char *buf, size_t count)
3199{
3200 struct workqueue_struct *wq = dev_to_wq(dev);
3201 struct workqueue_attrs *attrs;
3202 int ret;
3203
3204 attrs = wq_sysfs_prep_attrs(wq);
3205 if (!attrs)
3206 return -ENOMEM;
3207
3208 if (sscanf(buf, "%d", &attrs->nice) == 1 &&
3209 attrs->nice >= -20 && attrs->nice <= 19)
3210 ret = apply_workqueue_attrs(wq, attrs);
3211 else
3212 ret = -EINVAL;
3213
3214 free_workqueue_attrs(attrs);
3215 return ret ?: count;
3216}
3217
3218static ssize_t wq_cpumask_show(struct device *dev,
3219 struct device_attribute *attr, char *buf)
3220{
3221 struct workqueue_struct *wq = dev_to_wq(dev);
3222 int written;
3223
6029a918
TH
3224 mutex_lock(&wq->mutex);
3225 written = cpumask_scnprintf(buf, PAGE_SIZE, wq->unbound_attrs->cpumask);
3226 mutex_unlock(&wq->mutex);
226223ab
TH
3227
3228 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
3229 return written;
3230}
3231
3232static ssize_t wq_cpumask_store(struct device *dev,
3233 struct device_attribute *attr,
3234 const char *buf, size_t count)
3235{
3236 struct workqueue_struct *wq = dev_to_wq(dev);
3237 struct workqueue_attrs *attrs;
3238 int ret;
3239
3240 attrs = wq_sysfs_prep_attrs(wq);
3241 if (!attrs)
3242 return -ENOMEM;
3243
3244 ret = cpumask_parse(buf, attrs->cpumask);
3245 if (!ret)
3246 ret = apply_workqueue_attrs(wq, attrs);
3247
3248 free_workqueue_attrs(attrs);
3249 return ret ?: count;
3250}
3251
d55262c4
TH
3252static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
3253 char *buf)
3254{
3255 struct workqueue_struct *wq = dev_to_wq(dev);
3256 int written;
3257
3258 mutex_lock(&wq->mutex);
3259 written = scnprintf(buf, PAGE_SIZE, "%d\n",
3260 !wq->unbound_attrs->no_numa);
3261 mutex_unlock(&wq->mutex);
3262
3263 return written;
3264}
3265
3266static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
3267 const char *buf, size_t count)
3268{
3269 struct workqueue_struct *wq = dev_to_wq(dev);
3270 struct workqueue_attrs *attrs;
3271 int v, ret;
3272
3273 attrs = wq_sysfs_prep_attrs(wq);
3274 if (!attrs)
3275 return -ENOMEM;
3276
3277 ret = -EINVAL;
3278 if (sscanf(buf, "%d", &v) == 1) {
3279 attrs->no_numa = !v;
3280 ret = apply_workqueue_attrs(wq, attrs);
3281 }
3282
3283 free_workqueue_attrs(attrs);
3284 return ret ?: count;
3285}
3286
226223ab 3287static struct device_attribute wq_sysfs_unbound_attrs[] = {
d55262c4 3288 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
226223ab
TH
3289 __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
3290 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
d55262c4 3291 __ATTR(numa, 0644, wq_numa_show, wq_numa_store),
226223ab
TH
3292 __ATTR_NULL,
3293};
3294
3295static struct bus_type wq_subsys = {
3296 .name = "workqueue",
3297 .dev_attrs = wq_sysfs_attrs,
3298};
3299
3300static int __init wq_sysfs_init(void)
3301{
3302 return subsys_virtual_register(&wq_subsys, NULL);
3303}
3304core_initcall(wq_sysfs_init);
3305
3306static void wq_device_release(struct device *dev)
3307{
3308 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
3309
3310 kfree(wq_dev);
3311}
3312
3313/**
3314 * workqueue_sysfs_register - make a workqueue visible in sysfs
3315 * @wq: the workqueue to register
3316 *
3317 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
3318 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
3319 * which is the preferred method.
3320 *
3321 * Workqueue user should use this function directly iff it wants to apply
3322 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
3323 * apply_workqueue_attrs() may race against userland updating the
3324 * attributes.
3325 *
3326 * Returns 0 on success, -errno on failure.
3327 */
3328int workqueue_sysfs_register(struct workqueue_struct *wq)
3329{
3330 struct wq_device *wq_dev;
3331 int ret;
3332
3333 /*
3334 * Adjusting max_active or creating new pwqs by applyting
3335 * attributes breaks ordering guarantee. Disallow exposing ordered
3336 * workqueues.
3337 */
3338 if (WARN_ON(wq->flags & __WQ_ORDERED))
3339 return -EINVAL;
3340
3341 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
3342 if (!wq_dev)
3343 return -ENOMEM;
3344
3345 wq_dev->wq = wq;
3346 wq_dev->dev.bus = &wq_subsys;
3347 wq_dev->dev.init_name = wq->name;
3348 wq_dev->dev.release = wq_device_release;
3349
3350 /*
3351 * unbound_attrs are created separately. Suppress uevent until
3352 * everything is ready.
3353 */
3354 dev_set_uevent_suppress(&wq_dev->dev, true);
3355
3356 ret = device_register(&wq_dev->dev);
3357 if (ret) {
3358 kfree(wq_dev);
3359 wq->wq_dev = NULL;
3360 return ret;
3361 }
3362
3363 if (wq->flags & WQ_UNBOUND) {
3364 struct device_attribute *attr;
3365
3366 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
3367 ret = device_create_file(&wq_dev->dev, attr);
3368 if (ret) {
3369 device_unregister(&wq_dev->dev);
3370 wq->wq_dev = NULL;
3371 return ret;
3372 }
3373 }
3374 }
3375
7c36f88c 3376 dev_set_uevent_suppress(&wq_dev->dev, false);
226223ab
TH
3377 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
3378 return 0;
3379}
3380
3381/**
3382 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
3383 * @wq: the workqueue to unregister
3384 *
3385 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
3386 */
3387static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
3388{
3389 struct wq_device *wq_dev = wq->wq_dev;
3390
3391 if (!wq->wq_dev)
3392 return;
3393
3394 wq->wq_dev = NULL;
3395 device_unregister(&wq_dev->dev);
3396}
3397#else /* CONFIG_SYSFS */
3398static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
3399#endif /* CONFIG_SYSFS */
3400
7a4e344c
TH
3401/**
3402 * free_workqueue_attrs - free a workqueue_attrs
3403 * @attrs: workqueue_attrs to free
3404 *
3405 * Undo alloc_workqueue_attrs().
3406 */
3407void free_workqueue_attrs(struct workqueue_attrs *attrs)
3408{
3409 if (attrs) {
3410 free_cpumask_var(attrs->cpumask);
3411 kfree(attrs);
3412 }
3413}
3414
3415/**
3416 * alloc_workqueue_attrs - allocate a workqueue_attrs
3417 * @gfp_mask: allocation mask to use
3418 *
3419 * Allocate a new workqueue_attrs, initialize with default settings and
3420 * return it. Returns NULL on failure.
3421 */
3422struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
3423{
3424 struct workqueue_attrs *attrs;
3425
3426 attrs = kzalloc(sizeof(*attrs), gfp_mask);
3427 if (!attrs)
3428 goto fail;
3429 if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
3430 goto fail;
3431
13e2e556 3432 cpumask_copy(attrs->cpumask, cpu_possible_mask);
7a4e344c
TH
3433 return attrs;
3434fail:
3435 free_workqueue_attrs(attrs);
3436 return NULL;
3437}
3438
29c91e99
TH
3439static void copy_workqueue_attrs(struct workqueue_attrs *to,
3440 const struct workqueue_attrs *from)
3441{
3442 to->nice = from->nice;
3443 cpumask_copy(to->cpumask, from->cpumask);
73b8bd6d
SL
3444 /*
3445 * Unlike hash and equality test, this function doesn't ignore
3446 * ->no_numa as it is used for both pool and wq attrs. Instead,
3447 * get_unbound_pool() explicitly clears ->no_numa after copying.
3448 */
3449 to->no_numa = from->no_numa;
29c91e99
TH
3450}
3451
29c91e99
TH
3452/* hash value of the content of @attr */
3453static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3454{
3455 u32 hash = 0;
3456
3457 hash = jhash_1word(attrs->nice, hash);
13e2e556
TH
3458 hash = jhash(cpumask_bits(attrs->cpumask),
3459 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
29c91e99
TH
3460 return hash;
3461}
3462
3463/* content equality test */
3464static bool wqattrs_equal(const struct workqueue_attrs *a,
3465 const struct workqueue_attrs *b)
3466{
3467 if (a->nice != b->nice)
3468 return false;
3469 if (!cpumask_equal(a->cpumask, b->cpumask))
3470 return false;
3471 return true;
3472}
3473
7a4e344c
TH
3474/**
3475 * init_worker_pool - initialize a newly zalloc'd worker_pool
3476 * @pool: worker_pool to initialize
3477 *
3478 * Initiailize a newly zalloc'd @pool. It also allocates @pool->attrs.
29c91e99
TH
3479 * Returns 0 on success, -errno on failure. Even on failure, all fields
3480 * inside @pool proper are initialized and put_unbound_pool() can be called
3481 * on @pool safely to release it.
7a4e344c
TH
3482 */
3483static int init_worker_pool(struct worker_pool *pool)
4e1a1f9a
TH
3484{
3485 spin_lock_init(&pool->lock);
29c91e99
TH
3486 pool->id = -1;
3487 pool->cpu = -1;
f3f90ad4 3488 pool->node = NUMA_NO_NODE;
4e1a1f9a
TH
3489 pool->flags |= POOL_DISASSOCIATED;
3490 INIT_LIST_HEAD(&pool->worklist);
3491 INIT_LIST_HEAD(&pool->idle_list);
3492 hash_init(pool->busy_hash);
3493
3494 init_timer_deferrable(&pool->idle_timer);
3495 pool->idle_timer.function = idle_worker_timeout;
3496 pool->idle_timer.data = (unsigned long)pool;
3497
3498 setup_timer(&pool->mayday_timer, pool_mayday_timeout,
3499 (unsigned long)pool);
3500
3501 mutex_init(&pool->manager_arb);
bc3a1afc 3502 mutex_init(&pool->manager_mutex);
822d8405 3503 idr_init(&pool->worker_idr);
7a4e344c 3504
29c91e99
TH
3505 INIT_HLIST_NODE(&pool->hash_node);
3506 pool->refcnt = 1;
3507
3508 /* shouldn't fail above this point */
7a4e344c
TH
3509 pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
3510 if (!pool->attrs)
3511 return -ENOMEM;
3512 return 0;
4e1a1f9a
TH
3513}
3514
29c91e99
TH
3515static void rcu_free_pool(struct rcu_head *rcu)
3516{
3517 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3518
822d8405 3519 idr_destroy(&pool->worker_idr);
29c91e99
TH
3520 free_workqueue_attrs(pool->attrs);
3521 kfree(pool);
3522}
3523
3524/**
3525 * put_unbound_pool - put a worker_pool
3526 * @pool: worker_pool to put
3527 *
3528 * Put @pool. If its refcnt reaches zero, it gets destroyed in sched-RCU
c5aa87bb
TH
3529 * safe manner. get_unbound_pool() calls this function on its failure path
3530 * and this function should be able to release pools which went through,
3531 * successfully or not, init_worker_pool().
a892cacc
TH
3532 *
3533 * Should be called with wq_pool_mutex held.
29c91e99
TH
3534 */
3535static void put_unbound_pool(struct worker_pool *pool)
3536{
3537 struct worker *worker;
3538
a892cacc
TH
3539 lockdep_assert_held(&wq_pool_mutex);
3540
3541 if (--pool->refcnt)
29c91e99 3542 return;
29c91e99
TH
3543
3544 /* sanity checks */
3545 if (WARN_ON(!(pool->flags & POOL_DISASSOCIATED)) ||
a892cacc 3546 WARN_ON(!list_empty(&pool->worklist)))
29c91e99 3547 return;
29c91e99
TH
3548
3549 /* release id and unhash */
3550 if (pool->id >= 0)
3551 idr_remove(&worker_pool_idr, pool->id);
3552 hash_del(&pool->hash_node);
3553
c5aa87bb
TH
3554 /*
3555 * Become the manager and destroy all workers. Grabbing
3556 * manager_arb prevents @pool's workers from blocking on
3557 * manager_mutex.
3558 */
29c91e99 3559 mutex_lock(&pool->manager_arb);
cd549687 3560 mutex_lock(&pool->manager_mutex);
29c91e99
TH
3561 spin_lock_irq(&pool->lock);
3562
3563 while ((worker = first_worker(pool)))
3564 destroy_worker(worker);
3565 WARN_ON(pool->nr_workers || pool->nr_idle);
3566
3567 spin_unlock_irq(&pool->lock);
cd549687 3568 mutex_unlock(&pool->manager_mutex);
29c91e99
TH
3569 mutex_unlock(&pool->manager_arb);
3570
3571 /* shut down the timers */
3572 del_timer_sync(&pool->idle_timer);
3573 del_timer_sync(&pool->mayday_timer);
3574
3575 /* sched-RCU protected to allow dereferences from get_work_pool() */
3576 call_rcu_sched(&pool->rcu, rcu_free_pool);
3577}
3578
3579/**
3580 * get_unbound_pool - get a worker_pool with the specified attributes
3581 * @attrs: the attributes of the worker_pool to get
3582 *
3583 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3584 * reference count and return it. If there already is a matching
3585 * worker_pool, it will be used; otherwise, this function attempts to
3586 * create a new one. On failure, returns NULL.
a892cacc
TH
3587 *
3588 * Should be called with wq_pool_mutex held.
29c91e99
TH
3589 */
3590static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3591{
29c91e99
TH
3592 u32 hash = wqattrs_hash(attrs);
3593 struct worker_pool *pool;
f3f90ad4 3594 int node;
29c91e99 3595
a892cacc 3596 lockdep_assert_held(&wq_pool_mutex);
29c91e99
TH
3597
3598 /* do we already have a matching pool? */
29c91e99
TH
3599 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3600 if (wqattrs_equal(pool->attrs, attrs)) {
3601 pool->refcnt++;
3602 goto out_unlock;
3603 }
3604 }
29c91e99
TH
3605
3606 /* nope, create a new one */
3607 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
3608 if (!pool || init_worker_pool(pool) < 0)
3609 goto fail;
3610
12ee4fc6
LJ
3611 if (workqueue_freezing)
3612 pool->flags |= POOL_FREEZING;
3613
8864b4e5 3614 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */
29c91e99
TH
3615 copy_workqueue_attrs(pool->attrs, attrs);
3616
73b8bd6d
SL
3617 /*
3618 * no_numa isn't a worker_pool attribute, always clear it. See
3619 * 'struct workqueue_attrs' comments for detail.
3620 */
3621 pool->attrs->no_numa = false;
3622
f3f90ad4
TH
3623 /* if cpumask is contained inside a NUMA node, we belong to that node */
3624 if (wq_numa_enabled) {
3625 for_each_node(node) {
3626 if (cpumask_subset(pool->attrs->cpumask,
3627 wq_numa_possible_cpumask[node])) {
3628 pool->node = node;
3629 break;
3630 }
3631 }
3632 }
3633
29c91e99
TH
3634 if (worker_pool_assign_id(pool) < 0)
3635 goto fail;
3636
3637 /* create and start the initial worker */
ebf44d16 3638 if (create_and_start_worker(pool) < 0)
29c91e99
TH
3639 goto fail;
3640
29c91e99 3641 /* install */
29c91e99
TH
3642 hash_add(unbound_pool_hash, &pool->hash_node, hash);
3643out_unlock:
29c91e99
TH
3644 return pool;
3645fail:
29c91e99
TH
3646 if (pool)
3647 put_unbound_pool(pool);
3648 return NULL;
3649}
3650
8864b4e5
TH
3651static void rcu_free_pwq(struct rcu_head *rcu)
3652{
3653 kmem_cache_free(pwq_cache,
3654 container_of(rcu, struct pool_workqueue, rcu));
3655}
3656
3657/*
3658 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3659 * and needs to be destroyed.
3660 */
3661static void pwq_unbound_release_workfn(struct work_struct *work)
3662{
3663 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3664 unbound_release_work);
3665 struct workqueue_struct *wq = pwq->wq;
3666 struct worker_pool *pool = pwq->pool;
bc0caf09 3667 bool is_last;
8864b4e5
TH
3668
3669 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3670 return;
3671
75ccf595 3672 /*
3c25a55d 3673 * Unlink @pwq. Synchronization against wq->mutex isn't strictly
75ccf595
TH
3674 * necessary on release but do it anyway. It's easier to verify
3675 * and consistent with the linking path.
3676 */
3c25a55d 3677 mutex_lock(&wq->mutex);
8864b4e5 3678 list_del_rcu(&pwq->pwqs_node);
bc0caf09 3679 is_last = list_empty(&wq->pwqs);
3c25a55d 3680 mutex_unlock(&wq->mutex);
8864b4e5 3681
a892cacc 3682 mutex_lock(&wq_pool_mutex);
8864b4e5 3683 put_unbound_pool(pool);
a892cacc
TH
3684 mutex_unlock(&wq_pool_mutex);
3685
8864b4e5
TH
3686 call_rcu_sched(&pwq->rcu, rcu_free_pwq);
3687
3688 /*
3689 * If we're the last pwq going away, @wq is already dead and no one
3690 * is gonna access it anymore. Free it.
3691 */
6029a918
TH
3692 if (is_last) {
3693 free_workqueue_attrs(wq->unbound_attrs);
8864b4e5 3694 kfree(wq);
6029a918 3695 }
8864b4e5
TH
3696}
3697
0fbd95aa 3698/**
699ce097 3699 * pwq_adjust_max_active - update a pwq's max_active to the current setting
0fbd95aa 3700 * @pwq: target pool_workqueue
0fbd95aa 3701 *
699ce097
TH
3702 * If @pwq isn't freezing, set @pwq->max_active to the associated
3703 * workqueue's saved_max_active and activate delayed work items
3704 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
0fbd95aa 3705 */
699ce097 3706static void pwq_adjust_max_active(struct pool_workqueue *pwq)
0fbd95aa 3707{
699ce097
TH
3708 struct workqueue_struct *wq = pwq->wq;
3709 bool freezable = wq->flags & WQ_FREEZABLE;
3710
3711 /* for @wq->saved_max_active */
a357fc03 3712 lockdep_assert_held(&wq->mutex);
699ce097
TH
3713
3714 /* fast exit for non-freezable wqs */
3715 if (!freezable && pwq->max_active == wq->saved_max_active)
3716 return;
3717
a357fc03 3718 spin_lock_irq(&pwq->pool->lock);
699ce097
TH
3719
3720 if (!freezable || !(pwq->pool->flags & POOL_FREEZING)) {
3721 pwq->max_active = wq->saved_max_active;
0fbd95aa 3722
699ce097
TH
3723 while (!list_empty(&pwq->delayed_works) &&
3724 pwq->nr_active < pwq->max_active)
3725 pwq_activate_first_delayed(pwq);
951a078a
LJ
3726
3727 /*
3728 * Need to kick a worker after thawed or an unbound wq's
3729 * max_active is bumped. It's a slow path. Do it always.
3730 */
3731 wake_up_worker(pwq->pool);
699ce097
TH
3732 } else {
3733 pwq->max_active = 0;
3734 }
3735
a357fc03 3736 spin_unlock_irq(&pwq->pool->lock);
0fbd95aa
TH
3737}
3738
e50aba9a 3739/* initialize newly alloced @pwq which is associated with @wq and @pool */
f147f29e
TH
3740static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3741 struct worker_pool *pool)
d2c1d404
TH
3742{
3743 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3744
e50aba9a
TH
3745 memset(pwq, 0, sizeof(*pwq));
3746
d2c1d404
TH
3747 pwq->pool = pool;
3748 pwq->wq = wq;
3749 pwq->flush_color = -1;
8864b4e5 3750 pwq->refcnt = 1;
d2c1d404 3751 INIT_LIST_HEAD(&pwq->delayed_works);
1befcf30 3752 INIT_LIST_HEAD(&pwq->pwqs_node);
d2c1d404 3753 INIT_LIST_HEAD(&pwq->mayday_node);
8864b4e5 3754 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
f147f29e 3755}
d2c1d404 3756
f147f29e 3757/* sync @pwq with the current state of its associated wq and link it */
1befcf30 3758static void link_pwq(struct pool_workqueue *pwq)
f147f29e
TH
3759{
3760 struct workqueue_struct *wq = pwq->wq;
3761
3762 lockdep_assert_held(&wq->mutex);
75ccf595 3763
1befcf30
TH
3764 /* may be called multiple times, ignore if already linked */
3765 if (!list_empty(&pwq->pwqs_node))
3766 return;
3767
983ca25e
TH
3768 /*
3769 * Set the matching work_color. This is synchronized with
3c25a55d 3770 * wq->mutex to avoid confusing flush_workqueue().
983ca25e 3771 */
75ccf595 3772 pwq->work_color = wq->work_color;
983ca25e
TH
3773
3774 /* sync max_active to the current setting */
3775 pwq_adjust_max_active(pwq);
3776
3777 /* link in @pwq */
9e8cd2f5 3778 list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
f147f29e 3779}
a357fc03 3780
f147f29e
TH
3781/* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3782static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3783 const struct workqueue_attrs *attrs)
3784{
3785 struct worker_pool *pool;
3786 struct pool_workqueue *pwq;
3787
3788 lockdep_assert_held(&wq_pool_mutex);
3789
3790 pool = get_unbound_pool(attrs);
3791 if (!pool)
3792 return NULL;
3793
e50aba9a 3794 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
f147f29e
TH
3795 if (!pwq) {
3796 put_unbound_pool(pool);
3797 return NULL;
df2d5ae4 3798 }
6029a918 3799
f147f29e
TH
3800 init_pwq(pwq, wq, pool);
3801 return pwq;
d2c1d404
TH
3802}
3803
4c16bd32
TH
3804/* undo alloc_unbound_pwq(), used only in the error path */
3805static void free_unbound_pwq(struct pool_workqueue *pwq)
3806{
3807 lockdep_assert_held(&wq_pool_mutex);
3808
3809 if (pwq) {
3810 put_unbound_pool(pwq->pool);
cece95df 3811 kmem_cache_free(pwq_cache, pwq);
4c16bd32
TH
3812 }
3813}
3814
3815/**
3816 * wq_calc_node_mask - calculate a wq_attrs' cpumask for the specified node
3817 * @attrs: the wq_attrs of interest
3818 * @node: the target NUMA node
3819 * @cpu_going_down: if >= 0, the CPU to consider as offline
3820 * @cpumask: outarg, the resulting cpumask
3821 *
3822 * Calculate the cpumask a workqueue with @attrs should use on @node. If
3823 * @cpu_going_down is >= 0, that cpu is considered offline during
3824 * calculation. The result is stored in @cpumask. This function returns
3825 * %true if the resulting @cpumask is different from @attrs->cpumask,
3826 * %false if equal.
3827 *
3828 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If
3829 * enabled and @node has online CPUs requested by @attrs, the returned
3830 * cpumask is the intersection of the possible CPUs of @node and
3831 * @attrs->cpumask.
3832 *
3833 * The caller is responsible for ensuring that the cpumask of @node stays
3834 * stable.
3835 */
3836static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3837 int cpu_going_down, cpumask_t *cpumask)
3838{
d55262c4 3839 if (!wq_numa_enabled || attrs->no_numa)
4c16bd32
TH
3840 goto use_dfl;
3841
3842 /* does @node have any online CPUs @attrs wants? */
3843 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3844 if (cpu_going_down >= 0)
3845 cpumask_clear_cpu(cpu_going_down, cpumask);
3846
3847 if (cpumask_empty(cpumask))
3848 goto use_dfl;
3849
3850 /* yeap, return possible CPUs in @node that @attrs wants */
3851 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3852 return !cpumask_equal(cpumask, attrs->cpumask);
3853
3854use_dfl:
3855 cpumask_copy(cpumask, attrs->cpumask);
3856 return false;
3857}
3858
1befcf30
TH
3859/* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3860static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3861 int node,
3862 struct pool_workqueue *pwq)
3863{
3864 struct pool_workqueue *old_pwq;
3865
3866 lockdep_assert_held(&wq->mutex);
3867
3868 /* link_pwq() can handle duplicate calls */
3869 link_pwq(pwq);
3870
3871 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3872 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3873 return old_pwq;
3874}
3875
9e8cd2f5
TH
3876/**
3877 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
3878 * @wq: the target workqueue
3879 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
3880 *
4c16bd32
TH
3881 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA
3882 * machines, this function maps a separate pwq to each NUMA node with
3883 * possibles CPUs in @attrs->cpumask so that work items are affine to the
3884 * NUMA node it was issued on. Older pwqs are released as in-flight work
3885 * items finish. Note that a work item which repeatedly requeues itself
3886 * back-to-back will stay on its current pwq.
9e8cd2f5
TH
3887 *
3888 * Performs GFP_KERNEL allocations. Returns 0 on success and -errno on
3889 * failure.
3890 */
3891int apply_workqueue_attrs(struct workqueue_struct *wq,
3892 const struct workqueue_attrs *attrs)
3893{
4c16bd32
TH
3894 struct workqueue_attrs *new_attrs, *tmp_attrs;
3895 struct pool_workqueue **pwq_tbl, *dfl_pwq;
f147f29e 3896 int node, ret;
9e8cd2f5 3897
8719dcea 3898 /* only unbound workqueues can change attributes */
9e8cd2f5
TH
3899 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3900 return -EINVAL;
3901
8719dcea
TH
3902 /* creating multiple pwqs breaks ordering guarantee */
3903 if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
3904 return -EINVAL;
3905
4c16bd32 3906 pwq_tbl = kzalloc(wq_numa_tbl_len * sizeof(pwq_tbl[0]), GFP_KERNEL);
13e2e556 3907 new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
4c16bd32
TH
3908 tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3909 if (!pwq_tbl || !new_attrs || !tmp_attrs)
13e2e556
TH
3910 goto enomem;
3911
4c16bd32 3912 /* make a copy of @attrs and sanitize it */
13e2e556
TH
3913 copy_workqueue_attrs(new_attrs, attrs);
3914 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
3915
4c16bd32
TH
3916 /*
3917 * We may create multiple pwqs with differing cpumasks. Make a
3918 * copy of @new_attrs which will be modified and used to obtain
3919 * pools.
3920 */
3921 copy_workqueue_attrs(tmp_attrs, new_attrs);
3922
3923 /*
3924 * CPUs should stay stable across pwq creations and installations.
3925 * Pin CPUs, determine the target cpumask for each node and create
3926 * pwqs accordingly.
3927 */
3928 get_online_cpus();
3929
a892cacc 3930 mutex_lock(&wq_pool_mutex);
4c16bd32
TH
3931
3932 /*
3933 * If something goes wrong during CPU up/down, we'll fall back to
3934 * the default pwq covering whole @attrs->cpumask. Always create
3935 * it even if we don't use it immediately.
3936 */
3937 dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3938 if (!dfl_pwq)
3939 goto enomem_pwq;
3940
3941 for_each_node(node) {
3942 if (wq_calc_node_cpumask(attrs, node, -1, tmp_attrs->cpumask)) {
3943 pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3944 if (!pwq_tbl[node])
3945 goto enomem_pwq;
3946 } else {
3947 dfl_pwq->refcnt++;
3948 pwq_tbl[node] = dfl_pwq;
3949 }
3950 }
3951
f147f29e 3952 mutex_unlock(&wq_pool_mutex);
9e8cd2f5 3953
4c16bd32 3954 /* all pwqs have been created successfully, let's install'em */
f147f29e 3955 mutex_lock(&wq->mutex);
a892cacc 3956
f147f29e 3957 copy_workqueue_attrs(wq->unbound_attrs, new_attrs);
4c16bd32
TH
3958
3959 /* save the previous pwq and install the new one */
f147f29e 3960 for_each_node(node)
4c16bd32
TH
3961 pwq_tbl[node] = numa_pwq_tbl_install(wq, node, pwq_tbl[node]);
3962
3963 /* @dfl_pwq might not have been used, ensure it's linked */
3964 link_pwq(dfl_pwq);
3965 swap(wq->dfl_pwq, dfl_pwq);
f147f29e
TH
3966
3967 mutex_unlock(&wq->mutex);
9e8cd2f5 3968
4c16bd32
TH
3969 /* put the old pwqs */
3970 for_each_node(node)
3971 put_pwq_unlocked(pwq_tbl[node]);
3972 put_pwq_unlocked(dfl_pwq);
3973
3974 put_online_cpus();
4862125b
TH
3975 ret = 0;
3976 /* fall through */
3977out_free:
4c16bd32 3978 free_workqueue_attrs(tmp_attrs);
4862125b 3979 free_workqueue_attrs(new_attrs);
4c16bd32 3980 kfree(pwq_tbl);
4862125b 3981 return ret;
13e2e556 3982
4c16bd32
TH
3983enomem_pwq:
3984 free_unbound_pwq(dfl_pwq);
3985 for_each_node(node)
3986 if (pwq_tbl && pwq_tbl[node] != dfl_pwq)
3987 free_unbound_pwq(pwq_tbl[node]);
3988 mutex_unlock(&wq_pool_mutex);
3989 put_online_cpus();
13e2e556 3990enomem:
4862125b
TH
3991 ret = -ENOMEM;
3992 goto out_free;
9e8cd2f5
TH
3993}
3994
4c16bd32
TH
3995/**
3996 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
3997 * @wq: the target workqueue
3998 * @cpu: the CPU coming up or going down
3999 * @online: whether @cpu is coming up or going down
4000 *
4001 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
4002 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of
4003 * @wq accordingly.
4004 *
4005 * If NUMA affinity can't be adjusted due to memory allocation failure, it
4006 * falls back to @wq->dfl_pwq which may not be optimal but is always
4007 * correct.
4008 *
4009 * Note that when the last allowed CPU of a NUMA node goes offline for a
4010 * workqueue with a cpumask spanning multiple nodes, the workers which were
4011 * already executing the work items for the workqueue will lose their CPU
4012 * affinity and may execute on any CPU. This is similar to how per-cpu
4013 * workqueues behave on CPU_DOWN. If a workqueue user wants strict
4014 * affinity, it's the user's responsibility to flush the work item from
4015 * CPU_DOWN_PREPARE.
4016 */
4017static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
4018 bool online)
4019{
4020 int node = cpu_to_node(cpu);
4021 int cpu_off = online ? -1 : cpu;
4022 struct pool_workqueue *old_pwq = NULL, *pwq;
4023 struct workqueue_attrs *target_attrs;
4024 cpumask_t *cpumask;
4025
4026 lockdep_assert_held(&wq_pool_mutex);
4027
4028 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND))
4029 return;
4030
4031 /*
4032 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
4033 * Let's use a preallocated one. The following buf is protected by
4034 * CPU hotplug exclusion.
4035 */
4036 target_attrs = wq_update_unbound_numa_attrs_buf;
4037 cpumask = target_attrs->cpumask;
4038
4039 mutex_lock(&wq->mutex);
d55262c4
TH
4040 if (wq->unbound_attrs->no_numa)
4041 goto out_unlock;
4c16bd32
TH
4042
4043 copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
4044 pwq = unbound_pwq_by_node(wq, node);
4045
4046 /*
4047 * Let's determine what needs to be done. If the target cpumask is
4048 * different from wq's, we need to compare it to @pwq's and create
4049 * a new one if they don't match. If the target cpumask equals
4050 * wq's, the default pwq should be used. If @pwq is already the
4051 * default one, nothing to do; otherwise, install the default one.
4052 */
4053 if (wq_calc_node_cpumask(wq->unbound_attrs, node, cpu_off, cpumask)) {
4054 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
4055 goto out_unlock;
4056 } else {
4057 if (pwq == wq->dfl_pwq)
4058 goto out_unlock;
4059 else
4060 goto use_dfl_pwq;
4061 }
4062
4063 mutex_unlock(&wq->mutex);
4064
4065 /* create a new pwq */
4066 pwq = alloc_unbound_pwq(wq, target_attrs);
4067 if (!pwq) {
4068 pr_warning("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
4069 wq->name);
55a3dfcc
DY
4070 mutex_lock(&wq->mutex);
4071 goto use_dfl_pwq;
4c16bd32
TH
4072 }
4073
4074 /*
4075 * Install the new pwq. As this function is called only from CPU
4076 * hotplug callbacks and applying a new attrs is wrapped with
4077 * get/put_online_cpus(), @wq->unbound_attrs couldn't have changed
4078 * inbetween.
4079 */
4080 mutex_lock(&wq->mutex);
4081 old_pwq = numa_pwq_tbl_install(wq, node, pwq);
4082 goto out_unlock;
4083
4084use_dfl_pwq:
4085 spin_lock_irq(&wq->dfl_pwq->pool->lock);
4086 get_pwq(wq->dfl_pwq);
4087 spin_unlock_irq(&wq->dfl_pwq->pool->lock);
4088 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
4089out_unlock:
4090 mutex_unlock(&wq->mutex);
4091 put_pwq_unlocked(old_pwq);
4092}
4093
30cdf249 4094static int alloc_and_link_pwqs(struct workqueue_struct *wq)
0f900049 4095{
49e3cf44 4096 bool highpri = wq->flags & WQ_HIGHPRI;
ced4ac92 4097 int cpu, ret;
30cdf249
TH
4098
4099 if (!(wq->flags & WQ_UNBOUND)) {
420c0ddb
TH
4100 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
4101 if (!wq->cpu_pwqs)
30cdf249
TH
4102 return -ENOMEM;
4103
4104 for_each_possible_cpu(cpu) {
7fb98ea7
TH
4105 struct pool_workqueue *pwq =
4106 per_cpu_ptr(wq->cpu_pwqs, cpu);
7a62c2c8 4107 struct worker_pool *cpu_pools =
f02ae73a 4108 per_cpu(cpu_worker_pools, cpu);
f3421797 4109
f147f29e
TH
4110 init_pwq(pwq, wq, &cpu_pools[highpri]);
4111
4112 mutex_lock(&wq->mutex);
1befcf30 4113 link_pwq(pwq);
f147f29e 4114 mutex_unlock(&wq->mutex);
30cdf249 4115 }
9e8cd2f5 4116 return 0;
ced4ac92
TH
4117 } else if (wq->flags & __WQ_ORDERED) {
4118 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
4119 /* there should only be single pwq for ordering guarantee */
4120 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
4121 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
4122 "ordering guarantee broken for workqueue %s\n", wq->name);
4123 return ret;
30cdf249 4124 } else {
9e8cd2f5 4125 return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
30cdf249 4126 }
0f900049
TH
4127}
4128
f3421797
TH
4129static int wq_clamp_max_active(int max_active, unsigned int flags,
4130 const char *name)
b71ab8c2 4131{
f3421797
TH
4132 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
4133
4134 if (max_active < 1 || max_active > lim)
044c782c
VI
4135 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
4136 max_active, name, 1, lim);
b71ab8c2 4137
f3421797 4138 return clamp_val(max_active, 1, lim);
b71ab8c2
TH
4139}
4140
b196be89 4141struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
d320c038
TH
4142 unsigned int flags,
4143 int max_active,
4144 struct lock_class_key *key,
b196be89 4145 const char *lock_name, ...)
1da177e4 4146{
df2d5ae4 4147 size_t tbl_size = 0;
ecf6881f 4148 va_list args;
1da177e4 4149 struct workqueue_struct *wq;
49e3cf44 4150 struct pool_workqueue *pwq;
b196be89 4151
ecf6881f 4152 /* allocate wq and format name */
df2d5ae4
TH
4153 if (flags & WQ_UNBOUND)
4154 tbl_size = wq_numa_tbl_len * sizeof(wq->numa_pwq_tbl[0]);
4155
4156 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
b196be89 4157 if (!wq)
d2c1d404 4158 return NULL;
b196be89 4159
6029a918
TH
4160 if (flags & WQ_UNBOUND) {
4161 wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
4162 if (!wq->unbound_attrs)
4163 goto err_free_wq;
4164 }
4165
ecf6881f
TH
4166 va_start(args, lock_name);
4167 vsnprintf(wq->name, sizeof(wq->name), fmt, args);
b196be89 4168 va_end(args);
1da177e4 4169
d320c038 4170 max_active = max_active ?: WQ_DFL_ACTIVE;
b196be89 4171 max_active = wq_clamp_max_active(max_active, flags, wq->name);
3af24433 4172
b196be89 4173 /* init wq */
97e37d7b 4174 wq->flags = flags;
a0a1a5fd 4175 wq->saved_max_active = max_active;
3c25a55d 4176 mutex_init(&wq->mutex);
112202d9 4177 atomic_set(&wq->nr_pwqs_to_flush, 0);
30cdf249 4178 INIT_LIST_HEAD(&wq->pwqs);
73f53c4a
TH
4179 INIT_LIST_HEAD(&wq->flusher_queue);
4180 INIT_LIST_HEAD(&wq->flusher_overflow);
493a1724 4181 INIT_LIST_HEAD(&wq->maydays);
502ca9d8 4182
eb13ba87 4183 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
cce1a165 4184 INIT_LIST_HEAD(&wq->list);
3af24433 4185
30cdf249 4186 if (alloc_and_link_pwqs(wq) < 0)
d2c1d404 4187 goto err_free_wq;
1537663f 4188
493008a8
TH
4189 /*
4190 * Workqueues which may be used during memory reclaim should
4191 * have a rescuer to guarantee forward progress.
4192 */
4193 if (flags & WQ_MEM_RECLAIM) {
e22bee78
TH
4194 struct worker *rescuer;
4195
d2c1d404 4196 rescuer = alloc_worker();
e22bee78 4197 if (!rescuer)
d2c1d404 4198 goto err_destroy;
e22bee78 4199
111c225a
TH
4200 rescuer->rescue_wq = wq;
4201 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
b196be89 4202 wq->name);
d2c1d404
TH
4203 if (IS_ERR(rescuer->task)) {
4204 kfree(rescuer);
4205 goto err_destroy;
4206 }
e22bee78 4207
d2c1d404 4208 wq->rescuer = rescuer;
14a40ffc 4209 rescuer->task->flags |= PF_NO_SETAFFINITY;
e22bee78 4210 wake_up_process(rescuer->task);
3af24433
ON
4211 }
4212
226223ab
TH
4213 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4214 goto err_destroy;
4215
a0a1a5fd 4216 /*
68e13a67
LJ
4217 * wq_pool_mutex protects global freeze state and workqueues list.
4218 * Grab it, adjust max_active and add the new @wq to workqueues
4219 * list.
a0a1a5fd 4220 */
68e13a67 4221 mutex_lock(&wq_pool_mutex);
a0a1a5fd 4222
a357fc03 4223 mutex_lock(&wq->mutex);
699ce097
TH
4224 for_each_pwq(pwq, wq)
4225 pwq_adjust_max_active(pwq);
a357fc03 4226 mutex_unlock(&wq->mutex);
a0a1a5fd 4227
1537663f 4228 list_add(&wq->list, &workqueues);
a0a1a5fd 4229
68e13a67 4230 mutex_unlock(&wq_pool_mutex);
1537663f 4231
3af24433 4232 return wq;
d2c1d404
TH
4233
4234err_free_wq:
6029a918 4235 free_workqueue_attrs(wq->unbound_attrs);
d2c1d404
TH
4236 kfree(wq);
4237 return NULL;
4238err_destroy:
4239 destroy_workqueue(wq);
4690c4ab 4240 return NULL;
3af24433 4241}
d320c038 4242EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
1da177e4 4243
3af24433
ON
4244/**
4245 * destroy_workqueue - safely terminate a workqueue
4246 * @wq: target workqueue
4247 *
4248 * Safely destroy a workqueue. All work currently pending will be done first.
4249 */
4250void destroy_workqueue(struct workqueue_struct *wq)
4251{
49e3cf44 4252 struct pool_workqueue *pwq;
4c16bd32 4253 int node;
3af24433 4254
9c5a2ba7
TH
4255 /* drain it before proceeding with destruction */
4256 drain_workqueue(wq);
c8efcc25 4257
6183c009 4258 /* sanity checks */
b09f4fd3 4259 mutex_lock(&wq->mutex);
49e3cf44 4260 for_each_pwq(pwq, wq) {
6183c009
TH
4261 int i;
4262
76af4d93
TH
4263 for (i = 0; i < WORK_NR_COLORS; i++) {
4264 if (WARN_ON(pwq->nr_in_flight[i])) {
b09f4fd3 4265 mutex_unlock(&wq->mutex);
6183c009 4266 return;
76af4d93
TH
4267 }
4268 }
4269
5c529597 4270 if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
8864b4e5 4271 WARN_ON(pwq->nr_active) ||
76af4d93 4272 WARN_ON(!list_empty(&pwq->delayed_works))) {
b09f4fd3 4273 mutex_unlock(&wq->mutex);
6183c009 4274 return;
76af4d93 4275 }
6183c009 4276 }
b09f4fd3 4277 mutex_unlock(&wq->mutex);
6183c009 4278
a0a1a5fd
TH
4279 /*
4280 * wq list is used to freeze wq, remove from list after
4281 * flushing is complete in case freeze races us.
4282 */
68e13a67 4283 mutex_lock(&wq_pool_mutex);
d2c1d404 4284 list_del_init(&wq->list);
68e13a67 4285 mutex_unlock(&wq_pool_mutex);
3af24433 4286
226223ab
TH
4287 workqueue_sysfs_unregister(wq);
4288
493008a8 4289 if (wq->rescuer) {
e22bee78 4290 kthread_stop(wq->rescuer->task);
8d9df9f0 4291 kfree(wq->rescuer);
493008a8 4292 wq->rescuer = NULL;
e22bee78
TH
4293 }
4294
8864b4e5
TH
4295 if (!(wq->flags & WQ_UNBOUND)) {
4296 /*
4297 * The base ref is never dropped on per-cpu pwqs. Directly
4298 * free the pwqs and wq.
4299 */
4300 free_percpu(wq->cpu_pwqs);
4301 kfree(wq);
4302 } else {
4303 /*
4304 * We're the sole accessor of @wq at this point. Directly
4c16bd32
TH
4305 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4306 * @wq will be freed when the last pwq is released.
8864b4e5 4307 */
4c16bd32
TH
4308 for_each_node(node) {
4309 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4310 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4311 put_pwq_unlocked(pwq);
4312 }
4313
4314 /*
4315 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is
4316 * put. Don't access it afterwards.
4317 */
4318 pwq = wq->dfl_pwq;
4319 wq->dfl_pwq = NULL;
dce90d47 4320 put_pwq_unlocked(pwq);
29c91e99 4321 }
3af24433
ON
4322}
4323EXPORT_SYMBOL_GPL(destroy_workqueue);
4324
dcd989cb
TH
4325/**
4326 * workqueue_set_max_active - adjust max_active of a workqueue
4327 * @wq: target workqueue
4328 * @max_active: new max_active value.
4329 *
4330 * Set max_active of @wq to @max_active.
4331 *
4332 * CONTEXT:
4333 * Don't call from IRQ context.
4334 */
4335void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4336{
49e3cf44 4337 struct pool_workqueue *pwq;
dcd989cb 4338
8719dcea
TH
4339 /* disallow meddling with max_active for ordered workqueues */
4340 if (WARN_ON(wq->flags & __WQ_ORDERED))
4341 return;
4342
f3421797 4343 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
dcd989cb 4344
a357fc03 4345 mutex_lock(&wq->mutex);
dcd989cb
TH
4346
4347 wq->saved_max_active = max_active;
4348
699ce097
TH
4349 for_each_pwq(pwq, wq)
4350 pwq_adjust_max_active(pwq);
93981800 4351
a357fc03 4352 mutex_unlock(&wq->mutex);
15316ba8 4353}
dcd989cb 4354EXPORT_SYMBOL_GPL(workqueue_set_max_active);
15316ba8 4355
e6267616
TH
4356/**
4357 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4358 *
4359 * Determine whether %current is a workqueue rescuer. Can be used from
4360 * work functions to determine whether it's being run off the rescuer task.
4361 */
4362bool current_is_workqueue_rescuer(void)
4363{
4364 struct worker *worker = current_wq_worker();
4365
6a092dfd 4366 return worker && worker->rescue_wq;
e6267616
TH
4367}
4368
eef6a7d5 4369/**
dcd989cb
TH
4370 * workqueue_congested - test whether a workqueue is congested
4371 * @cpu: CPU in question
4372 * @wq: target workqueue
eef6a7d5 4373 *
dcd989cb
TH
4374 * Test whether @wq's cpu workqueue for @cpu is congested. There is
4375 * no synchronization around this function and the test result is
4376 * unreliable and only useful as advisory hints or for debugging.
eef6a7d5 4377 *
d3251859
TH
4378 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4379 * Note that both per-cpu and unbound workqueues may be associated with
4380 * multiple pool_workqueues which have separate congested states. A
4381 * workqueue being congested on one CPU doesn't mean the workqueue is also
4382 * contested on other CPUs / NUMA nodes.
4383 *
dcd989cb
TH
4384 * RETURNS:
4385 * %true if congested, %false otherwise.
eef6a7d5 4386 */
d84ff051 4387bool workqueue_congested(int cpu, struct workqueue_struct *wq)
1da177e4 4388{
7fb98ea7 4389 struct pool_workqueue *pwq;
76af4d93
TH
4390 bool ret;
4391
88109453 4392 rcu_read_lock_sched();
7fb98ea7 4393
d3251859
TH
4394 if (cpu == WORK_CPU_UNBOUND)
4395 cpu = smp_processor_id();
4396
7fb98ea7
TH
4397 if (!(wq->flags & WQ_UNBOUND))
4398 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4399 else
df2d5ae4 4400 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
dcd989cb 4401
76af4d93 4402 ret = !list_empty(&pwq->delayed_works);
88109453 4403 rcu_read_unlock_sched();
76af4d93
TH
4404
4405 return ret;
1da177e4 4406}
dcd989cb 4407EXPORT_SYMBOL_GPL(workqueue_congested);
1da177e4 4408
dcd989cb
TH
4409/**
4410 * work_busy - test whether a work is currently pending or running
4411 * @work: the work to be tested
4412 *
4413 * Test whether @work is currently pending or running. There is no
4414 * synchronization around this function and the test result is
4415 * unreliable and only useful as advisory hints or for debugging.
dcd989cb
TH
4416 *
4417 * RETURNS:
4418 * OR'd bitmask of WORK_BUSY_* bits.
4419 */
4420unsigned int work_busy(struct work_struct *work)
1da177e4 4421{
fa1b54e6 4422 struct worker_pool *pool;
dcd989cb
TH
4423 unsigned long flags;
4424 unsigned int ret = 0;
1da177e4 4425
dcd989cb
TH
4426 if (work_pending(work))
4427 ret |= WORK_BUSY_PENDING;
1da177e4 4428
fa1b54e6
TH
4429 local_irq_save(flags);
4430 pool = get_work_pool(work);
038366c5 4431 if (pool) {
fa1b54e6 4432 spin_lock(&pool->lock);
038366c5
LJ
4433 if (find_worker_executing_work(pool, work))
4434 ret |= WORK_BUSY_RUNNING;
fa1b54e6 4435 spin_unlock(&pool->lock);
038366c5 4436 }
fa1b54e6 4437 local_irq_restore(flags);
1da177e4 4438
dcd989cb 4439 return ret;
1da177e4 4440}
dcd989cb 4441EXPORT_SYMBOL_GPL(work_busy);
1da177e4 4442
3d1cb205
TH
4443/**
4444 * set_worker_desc - set description for the current work item
4445 * @fmt: printf-style format string
4446 * @...: arguments for the format string
4447 *
4448 * This function can be called by a running work function to describe what
4449 * the work item is about. If the worker task gets dumped, this
4450 * information will be printed out together to help debugging. The
4451 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4452 */
4453void set_worker_desc(const char *fmt, ...)
4454{
4455 struct worker *worker = current_wq_worker();
4456 va_list args;
4457
4458 if (worker) {
4459 va_start(args, fmt);
4460 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4461 va_end(args);
4462 worker->desc_valid = true;
4463 }
4464}
4465
4466/**
4467 * print_worker_info - print out worker information and description
4468 * @log_lvl: the log level to use when printing
4469 * @task: target task
4470 *
4471 * If @task is a worker and currently executing a work item, print out the
4472 * name of the workqueue being serviced and worker description set with
4473 * set_worker_desc() by the currently executing work item.
4474 *
4475 * This function can be safely called on any task as long as the
4476 * task_struct itself is accessible. While safe, this function isn't
4477 * synchronized and may print out mixups or garbages of limited length.
4478 */
4479void print_worker_info(const char *log_lvl, struct task_struct *task)
4480{
4481 work_func_t *fn = NULL;
4482 char name[WQ_NAME_LEN] = { };
4483 char desc[WORKER_DESC_LEN] = { };
4484 struct pool_workqueue *pwq = NULL;
4485 struct workqueue_struct *wq = NULL;
4486 bool desc_valid = false;
4487 struct worker *worker;
4488
4489 if (!(task->flags & PF_WQ_WORKER))
4490 return;
4491
4492 /*
4493 * This function is called without any synchronization and @task
4494 * could be in any state. Be careful with dereferences.
4495 */
4496 worker = probe_kthread_data(task);
4497
4498 /*
4499 * Carefully copy the associated workqueue's workfn and name. Keep
4500 * the original last '\0' in case the original contains garbage.
4501 */
4502 probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
4503 probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
4504 probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
4505 probe_kernel_read(name, wq->name, sizeof(name) - 1);
4506
4507 /* copy worker description */
4508 probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
4509 if (desc_valid)
4510 probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
4511
4512 if (fn || name[0] || desc[0]) {
4513 printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
4514 if (desc[0])
4515 pr_cont(" (%s)", desc);
4516 pr_cont("\n");
4517 }
4518}
4519
db7bccf4
TH
4520/*
4521 * CPU hotplug.
4522 *
e22bee78 4523 * There are two challenges in supporting CPU hotplug. Firstly, there
112202d9 4524 * are a lot of assumptions on strong associations among work, pwq and
706026c2 4525 * pool which make migrating pending and scheduled works very
e22bee78 4526 * difficult to implement without impacting hot paths. Secondly,
94cf58bb 4527 * worker pools serve mix of short, long and very long running works making
e22bee78
TH
4528 * blocked draining impractical.
4529 *
24647570 4530 * This is solved by allowing the pools to be disassociated from the CPU
628c78e7
TH
4531 * running as an unbound one and allowing it to be reattached later if the
4532 * cpu comes back online.
db7bccf4 4533 */
1da177e4 4534
706026c2 4535static void wq_unbind_fn(struct work_struct *work)
3af24433 4536{
38db41d9 4537 int cpu = smp_processor_id();
4ce62e9e 4538 struct worker_pool *pool;
db7bccf4 4539 struct worker *worker;
a9ab775b 4540 int wi;
3af24433 4541
f02ae73a 4542 for_each_cpu_worker_pool(pool, cpu) {
6183c009 4543 WARN_ON_ONCE(cpu != smp_processor_id());
db7bccf4 4544
bc3a1afc 4545 mutex_lock(&pool->manager_mutex);
94cf58bb 4546 spin_lock_irq(&pool->lock);
3af24433 4547
94cf58bb 4548 /*
bc3a1afc 4549 * We've blocked all manager operations. Make all workers
94cf58bb
TH
4550 * unbound and set DISASSOCIATED. Before this, all workers
4551 * except for the ones which are still executing works from
4552 * before the last CPU down must be on the cpu. After
4553 * this, they may become diasporas.
4554 */
a9ab775b 4555 for_each_pool_worker(worker, wi, pool)
c9e7cf27 4556 worker->flags |= WORKER_UNBOUND;
06ba38a9 4557
24647570 4558 pool->flags |= POOL_DISASSOCIATED;
f2d5a0ee 4559
94cf58bb 4560 spin_unlock_irq(&pool->lock);
bc3a1afc 4561 mutex_unlock(&pool->manager_mutex);
628c78e7 4562
eb283428
LJ
4563 /*
4564 * Call schedule() so that we cross rq->lock and thus can
4565 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4566 * This is necessary as scheduler callbacks may be invoked
4567 * from other cpus.
4568 */
4569 schedule();
06ba38a9 4570
eb283428
LJ
4571 /*
4572 * Sched callbacks are disabled now. Zap nr_running.
4573 * After this, nr_running stays zero and need_more_worker()
4574 * and keep_working() are always true as long as the
4575 * worklist is not empty. This pool now behaves as an
4576 * unbound (in terms of concurrency management) pool which
4577 * are served by workers tied to the pool.
4578 */
e19e397a 4579 atomic_set(&pool->nr_running, 0);
eb283428
LJ
4580
4581 /*
4582 * With concurrency management just turned off, a busy
4583 * worker blocking could lead to lengthy stalls. Kick off
4584 * unbound chain execution of currently pending work items.
4585 */
4586 spin_lock_irq(&pool->lock);
4587 wake_up_worker(pool);
4588 spin_unlock_irq(&pool->lock);
4589 }
3af24433 4590}
3af24433 4591
bd7c089e
TH
4592/**
4593 * rebind_workers - rebind all workers of a pool to the associated CPU
4594 * @pool: pool of interest
4595 *
a9ab775b 4596 * @pool->cpu is coming online. Rebind all workers to the CPU.
bd7c089e
TH
4597 */
4598static void rebind_workers(struct worker_pool *pool)
4599{
a9ab775b
TH
4600 struct worker *worker;
4601 int wi;
bd7c089e
TH
4602
4603 lockdep_assert_held(&pool->manager_mutex);
bd7c089e 4604
a9ab775b
TH
4605 /*
4606 * Restore CPU affinity of all workers. As all idle workers should
4607 * be on the run-queue of the associated CPU before any local
4608 * wake-ups for concurrency management happen, restore CPU affinty
4609 * of all workers first and then clear UNBOUND. As we're called
4610 * from CPU_ONLINE, the following shouldn't fail.
4611 */
4612 for_each_pool_worker(worker, wi, pool)
4613 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4614 pool->attrs->cpumask) < 0);
bd7c089e 4615
a9ab775b 4616 spin_lock_irq(&pool->lock);
bd7c089e 4617
a9ab775b
TH
4618 for_each_pool_worker(worker, wi, pool) {
4619 unsigned int worker_flags = worker->flags;
bd7c089e
TH
4620
4621 /*
a9ab775b
TH
4622 * A bound idle worker should actually be on the runqueue
4623 * of the associated CPU for local wake-ups targeting it to
4624 * work. Kick all idle workers so that they migrate to the
4625 * associated CPU. Doing this in the same loop as
4626 * replacing UNBOUND with REBOUND is safe as no worker will
4627 * be bound before @pool->lock is released.
bd7c089e 4628 */
a9ab775b
TH
4629 if (worker_flags & WORKER_IDLE)
4630 wake_up_process(worker->task);
bd7c089e 4631
a9ab775b
TH
4632 /*
4633 * We want to clear UNBOUND but can't directly call
4634 * worker_clr_flags() or adjust nr_running. Atomically
4635 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4636 * @worker will clear REBOUND using worker_clr_flags() when
4637 * it initiates the next execution cycle thus restoring
4638 * concurrency management. Note that when or whether
4639 * @worker clears REBOUND doesn't affect correctness.
4640 *
4641 * ACCESS_ONCE() is necessary because @worker->flags may be
4642 * tested without holding any lock in
4643 * wq_worker_waking_up(). Without it, NOT_RUNNING test may
4644 * fail incorrectly leading to premature concurrency
4645 * management operations.
4646 */
4647 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4648 worker_flags |= WORKER_REBOUND;
4649 worker_flags &= ~WORKER_UNBOUND;
4650 ACCESS_ONCE(worker->flags) = worker_flags;
bd7c089e 4651 }
a9ab775b
TH
4652
4653 spin_unlock_irq(&pool->lock);
bd7c089e
TH
4654}
4655
7dbc725e
TH
4656/**
4657 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4658 * @pool: unbound pool of interest
4659 * @cpu: the CPU which is coming up
4660 *
4661 * An unbound pool may end up with a cpumask which doesn't have any online
4662 * CPUs. When a worker of such pool get scheduled, the scheduler resets
4663 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
4664 * online CPU before, cpus_allowed of all its workers should be restored.
4665 */
4666static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
4667{
4668 static cpumask_t cpumask;
4669 struct worker *worker;
4670 int wi;
4671
4672 lockdep_assert_held(&pool->manager_mutex);
4673
4674 /* is @cpu allowed for @pool? */
4675 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
4676 return;
4677
4678 /* is @cpu the only online CPU? */
4679 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
4680 if (cpumask_weight(&cpumask) != 1)
4681 return;
4682
4683 /* as we're called from CPU_ONLINE, the following shouldn't fail */
4684 for_each_pool_worker(worker, wi, pool)
4685 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4686 pool->attrs->cpumask) < 0);
4687}
4688
8db25e78
TH
4689/*
4690 * Workqueues should be brought up before normal priority CPU notifiers.
4691 * This will be registered high priority CPU notifier.
4692 */
9fdf9b73 4693static int __cpuinit workqueue_cpu_up_callback(struct notifier_block *nfb,
8db25e78
TH
4694 unsigned long action,
4695 void *hcpu)
3af24433 4696{
d84ff051 4697 int cpu = (unsigned long)hcpu;
4ce62e9e 4698 struct worker_pool *pool;
4c16bd32 4699 struct workqueue_struct *wq;
7dbc725e 4700 int pi;
3ce63377 4701
8db25e78 4702 switch (action & ~CPU_TASKS_FROZEN) {
3af24433 4703 case CPU_UP_PREPARE:
f02ae73a 4704 for_each_cpu_worker_pool(pool, cpu) {
3ce63377
TH
4705 if (pool->nr_workers)
4706 continue;
ebf44d16 4707 if (create_and_start_worker(pool) < 0)
3ce63377 4708 return NOTIFY_BAD;
3af24433 4709 }
8db25e78 4710 break;
3af24433 4711
db7bccf4
TH
4712 case CPU_DOWN_FAILED:
4713 case CPU_ONLINE:
68e13a67 4714 mutex_lock(&wq_pool_mutex);
7dbc725e
TH
4715
4716 for_each_pool(pool, pi) {
bc3a1afc 4717 mutex_lock(&pool->manager_mutex);
94cf58bb 4718
7dbc725e
TH
4719 if (pool->cpu == cpu) {
4720 spin_lock_irq(&pool->lock);
4721 pool->flags &= ~POOL_DISASSOCIATED;
4722 spin_unlock_irq(&pool->lock);
a9ab775b 4723
7dbc725e
TH
4724 rebind_workers(pool);
4725 } else if (pool->cpu < 0) {
4726 restore_unbound_workers_cpumask(pool, cpu);
4727 }
94cf58bb 4728
bc3a1afc 4729 mutex_unlock(&pool->manager_mutex);
94cf58bb 4730 }
7dbc725e 4731
4c16bd32
TH
4732 /* update NUMA affinity of unbound workqueues */
4733 list_for_each_entry(wq, &workqueues, list)
4734 wq_update_unbound_numa(wq, cpu, true);
4735
68e13a67 4736 mutex_unlock(&wq_pool_mutex);
db7bccf4 4737 break;
00dfcaf7 4738 }
65758202
TH
4739 return NOTIFY_OK;
4740}
4741
4742/*
4743 * Workqueues should be brought down after normal priority CPU notifiers.
4744 * This will be registered as low priority CPU notifier.
4745 */
9fdf9b73 4746static int __cpuinit workqueue_cpu_down_callback(struct notifier_block *nfb,
65758202
TH
4747 unsigned long action,
4748 void *hcpu)
4749{
d84ff051 4750 int cpu = (unsigned long)hcpu;
8db25e78 4751 struct work_struct unbind_work;
4c16bd32 4752 struct workqueue_struct *wq;
8db25e78 4753
65758202
TH
4754 switch (action & ~CPU_TASKS_FROZEN) {
4755 case CPU_DOWN_PREPARE:
4c16bd32 4756 /* unbinding per-cpu workers should happen on the local CPU */
706026c2 4757 INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
7635d2fd 4758 queue_work_on(cpu, system_highpri_wq, &unbind_work);
4c16bd32
TH
4759
4760 /* update NUMA affinity of unbound workqueues */
4761 mutex_lock(&wq_pool_mutex);
4762 list_for_each_entry(wq, &workqueues, list)
4763 wq_update_unbound_numa(wq, cpu, false);
4764 mutex_unlock(&wq_pool_mutex);
4765
4766 /* wait for per-cpu unbinding to finish */
8db25e78
TH
4767 flush_work(&unbind_work);
4768 break;
65758202
TH
4769 }
4770 return NOTIFY_OK;
4771}
4772
2d3854a3 4773#ifdef CONFIG_SMP
8ccad40d 4774
2d3854a3 4775struct work_for_cpu {
ed48ece2 4776 struct work_struct work;
2d3854a3
RR
4777 long (*fn)(void *);
4778 void *arg;
4779 long ret;
4780};
4781
ed48ece2 4782static void work_for_cpu_fn(struct work_struct *work)
2d3854a3 4783{
ed48ece2
TH
4784 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
4785
2d3854a3
RR
4786 wfc->ret = wfc->fn(wfc->arg);
4787}
4788
4789/**
4790 * work_on_cpu - run a function in user context on a particular cpu
4791 * @cpu: the cpu to run on
4792 * @fn: the function to run
4793 * @arg: the function arg
4794 *
31ad9081
RR
4795 * This will return the value @fn returns.
4796 * It is up to the caller to ensure that the cpu doesn't go offline.
6b44003e 4797 * The caller must not hold any locks which would prevent @fn from completing.
2d3854a3 4798 */
d84ff051 4799long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
2d3854a3 4800{
ed48ece2 4801 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
6b44003e 4802
ed48ece2
TH
4803 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
4804 schedule_work_on(cpu, &wfc.work);
4805 flush_work(&wfc.work);
2d3854a3
RR
4806 return wfc.ret;
4807}
4808EXPORT_SYMBOL_GPL(work_on_cpu);
4809#endif /* CONFIG_SMP */
4810
a0a1a5fd
TH
4811#ifdef CONFIG_FREEZER
4812
4813/**
4814 * freeze_workqueues_begin - begin freezing workqueues
4815 *
58a69cb4 4816 * Start freezing workqueues. After this function returns, all freezable
c5aa87bb 4817 * workqueues will queue new works to their delayed_works list instead of
706026c2 4818 * pool->worklist.
a0a1a5fd
TH
4819 *
4820 * CONTEXT:
a357fc03 4821 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
a0a1a5fd
TH
4822 */
4823void freeze_workqueues_begin(void)
4824{
17116969 4825 struct worker_pool *pool;
24b8a847
TH
4826 struct workqueue_struct *wq;
4827 struct pool_workqueue *pwq;
611c92a0 4828 int pi;
a0a1a5fd 4829
68e13a67 4830 mutex_lock(&wq_pool_mutex);
a0a1a5fd 4831
6183c009 4832 WARN_ON_ONCE(workqueue_freezing);
a0a1a5fd
TH
4833 workqueue_freezing = true;
4834
24b8a847 4835 /* set FREEZING */
611c92a0 4836 for_each_pool(pool, pi) {
5bcab335 4837 spin_lock_irq(&pool->lock);
17116969
TH
4838 WARN_ON_ONCE(pool->flags & POOL_FREEZING);
4839 pool->flags |= POOL_FREEZING;
5bcab335 4840 spin_unlock_irq(&pool->lock);
24b8a847 4841 }
a0a1a5fd 4842
24b8a847 4843 list_for_each_entry(wq, &workqueues, list) {
a357fc03 4844 mutex_lock(&wq->mutex);
699ce097
TH
4845 for_each_pwq(pwq, wq)
4846 pwq_adjust_max_active(pwq);
a357fc03 4847 mutex_unlock(&wq->mutex);
a0a1a5fd 4848 }
5bcab335 4849
68e13a67 4850 mutex_unlock(&wq_pool_mutex);
a0a1a5fd
TH
4851}
4852
4853/**
58a69cb4 4854 * freeze_workqueues_busy - are freezable workqueues still busy?
a0a1a5fd
TH
4855 *
4856 * Check whether freezing is complete. This function must be called
4857 * between freeze_workqueues_begin() and thaw_workqueues().
4858 *
4859 * CONTEXT:
68e13a67 4860 * Grabs and releases wq_pool_mutex.
a0a1a5fd
TH
4861 *
4862 * RETURNS:
58a69cb4
TH
4863 * %true if some freezable workqueues are still busy. %false if freezing
4864 * is complete.
a0a1a5fd
TH
4865 */
4866bool freeze_workqueues_busy(void)
4867{
a0a1a5fd 4868 bool busy = false;
24b8a847
TH
4869 struct workqueue_struct *wq;
4870 struct pool_workqueue *pwq;
a0a1a5fd 4871
68e13a67 4872 mutex_lock(&wq_pool_mutex);
a0a1a5fd 4873
6183c009 4874 WARN_ON_ONCE(!workqueue_freezing);
a0a1a5fd 4875
24b8a847
TH
4876 list_for_each_entry(wq, &workqueues, list) {
4877 if (!(wq->flags & WQ_FREEZABLE))
4878 continue;
a0a1a5fd
TH
4879 /*
4880 * nr_active is monotonically decreasing. It's safe
4881 * to peek without lock.
4882 */
88109453 4883 rcu_read_lock_sched();
24b8a847 4884 for_each_pwq(pwq, wq) {
6183c009 4885 WARN_ON_ONCE(pwq->nr_active < 0);
112202d9 4886 if (pwq->nr_active) {
a0a1a5fd 4887 busy = true;
88109453 4888 rcu_read_unlock_sched();
a0a1a5fd
TH
4889 goto out_unlock;
4890 }
4891 }
88109453 4892 rcu_read_unlock_sched();
a0a1a5fd
TH
4893 }
4894out_unlock:
68e13a67 4895 mutex_unlock(&wq_pool_mutex);
a0a1a5fd
TH
4896 return busy;
4897}
4898
4899/**
4900 * thaw_workqueues - thaw workqueues
4901 *
4902 * Thaw workqueues. Normal queueing is restored and all collected
706026c2 4903 * frozen works are transferred to their respective pool worklists.
a0a1a5fd
TH
4904 *
4905 * CONTEXT:
a357fc03 4906 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
a0a1a5fd
TH
4907 */
4908void thaw_workqueues(void)
4909{
24b8a847
TH
4910 struct workqueue_struct *wq;
4911 struct pool_workqueue *pwq;
4912 struct worker_pool *pool;
611c92a0 4913 int pi;
a0a1a5fd 4914
68e13a67 4915 mutex_lock(&wq_pool_mutex);
a0a1a5fd
TH
4916
4917 if (!workqueue_freezing)
4918 goto out_unlock;
4919
24b8a847 4920 /* clear FREEZING */
611c92a0 4921 for_each_pool(pool, pi) {
5bcab335 4922 spin_lock_irq(&pool->lock);
24b8a847
TH
4923 WARN_ON_ONCE(!(pool->flags & POOL_FREEZING));
4924 pool->flags &= ~POOL_FREEZING;
5bcab335 4925 spin_unlock_irq(&pool->lock);
24b8a847 4926 }
8b03ae3c 4927
24b8a847
TH
4928 /* restore max_active and repopulate worklist */
4929 list_for_each_entry(wq, &workqueues, list) {
a357fc03 4930 mutex_lock(&wq->mutex);
699ce097
TH
4931 for_each_pwq(pwq, wq)
4932 pwq_adjust_max_active(pwq);
a357fc03 4933 mutex_unlock(&wq->mutex);
a0a1a5fd
TH
4934 }
4935
4936 workqueue_freezing = false;
4937out_unlock:
68e13a67 4938 mutex_unlock(&wq_pool_mutex);
a0a1a5fd
TH
4939}
4940#endif /* CONFIG_FREEZER */
4941
bce90380
TH
4942static void __init wq_numa_init(void)
4943{
4944 cpumask_var_t *tbl;
4945 int node, cpu;
4946
4947 /* determine NUMA pwq table len - highest node id + 1 */
4948 for_each_node(node)
4949 wq_numa_tbl_len = max(wq_numa_tbl_len, node + 1);
4950
4951 if (num_possible_nodes() <= 1)
4952 return;
4953
d55262c4
TH
4954 if (wq_disable_numa) {
4955 pr_info("workqueue: NUMA affinity support disabled\n");
4956 return;
4957 }
4958
4c16bd32
TH
4959 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
4960 BUG_ON(!wq_update_unbound_numa_attrs_buf);
4961
bce90380
TH
4962 /*
4963 * We want masks of possible CPUs of each node which isn't readily
4964 * available. Build one from cpu_to_node() which should have been
4965 * fully initialized by now.
4966 */
4967 tbl = kzalloc(wq_numa_tbl_len * sizeof(tbl[0]), GFP_KERNEL);
4968 BUG_ON(!tbl);
4969
4970 for_each_node(node)
3e24998c 4971 BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
1be0c25d 4972 node_online(node) ? node : NUMA_NO_NODE));
bce90380
TH
4973
4974 for_each_possible_cpu(cpu) {
4975 node = cpu_to_node(cpu);
4976 if (WARN_ON(node == NUMA_NO_NODE)) {
4977 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
4978 /* happens iff arch is bonkers, let's just proceed */
4979 return;
4980 }
4981 cpumask_set_cpu(cpu, tbl[node]);
4982 }
4983
4984 wq_numa_possible_cpumask = tbl;
4985 wq_numa_enabled = true;
4986}
4987
6ee0578b 4988static int __init init_workqueues(void)
1da177e4 4989{
7a4e344c
TH
4990 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
4991 int i, cpu;
c34056a3 4992
7c3eed5c
TH
4993 /* make sure we have enough bits for OFFQ pool ID */
4994 BUILD_BUG_ON((1LU << (BITS_PER_LONG - WORK_OFFQ_POOL_SHIFT)) <
6be19588 4995 WORK_CPU_END * NR_STD_WORKER_POOLS);
b5490077 4996
e904e6c2
TH
4997 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
4998
4999 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
5000
65758202 5001 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
a5b4e57d 5002 hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
8b03ae3c 5003
bce90380
TH
5004 wq_numa_init();
5005
706026c2 5006 /* initialize CPU pools */
29c91e99 5007 for_each_possible_cpu(cpu) {
4ce62e9e 5008 struct worker_pool *pool;
8b03ae3c 5009
7a4e344c 5010 i = 0;
f02ae73a 5011 for_each_cpu_worker_pool(pool, cpu) {
7a4e344c 5012 BUG_ON(init_worker_pool(pool));
ec22ca5e 5013 pool->cpu = cpu;
29c91e99 5014 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
7a4e344c 5015 pool->attrs->nice = std_nice[i++];
f3f90ad4 5016 pool->node = cpu_to_node(cpu);
7a4e344c 5017
9daf9e67 5018 /* alloc pool ID */
68e13a67 5019 mutex_lock(&wq_pool_mutex);
9daf9e67 5020 BUG_ON(worker_pool_assign_id(pool));
68e13a67 5021 mutex_unlock(&wq_pool_mutex);
4ce62e9e 5022 }
8b03ae3c
TH
5023 }
5024
e22bee78 5025 /* create the initial worker */
29c91e99 5026 for_each_online_cpu(cpu) {
4ce62e9e 5027 struct worker_pool *pool;
e22bee78 5028
f02ae73a 5029 for_each_cpu_worker_pool(pool, cpu) {
29c91e99 5030 pool->flags &= ~POOL_DISASSOCIATED;
ebf44d16 5031 BUG_ON(create_and_start_worker(pool) < 0);
4ce62e9e 5032 }
e22bee78
TH
5033 }
5034
ced4ac92 5035 /* create default unbound and ordered wq attrs */
29c91e99
TH
5036 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
5037 struct workqueue_attrs *attrs;
5038
5039 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
29c91e99 5040 attrs->nice = std_nice[i];
29c91e99 5041 unbound_std_wq_attrs[i] = attrs;
ced4ac92
TH
5042
5043 /*
5044 * An ordered wq should have only one pwq as ordering is
5045 * guaranteed by max_active which is enforced by pwqs.
5046 * Turn off NUMA so that dfl_pwq is used for all nodes.
5047 */
5048 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5049 attrs->nice = std_nice[i];
5050 attrs->no_numa = true;
5051 ordered_wq_attrs[i] = attrs;
29c91e99
TH
5052 }
5053
d320c038 5054 system_wq = alloc_workqueue("events", 0, 0);
1aabe902 5055 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
d320c038 5056 system_long_wq = alloc_workqueue("events_long", 0, 0);
f3421797
TH
5057 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
5058 WQ_UNBOUND_MAX_ACTIVE);
24d51add
TH
5059 system_freezable_wq = alloc_workqueue("events_freezable",
5060 WQ_FREEZABLE, 0);
1aabe902 5061 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
ae930e0f 5062 !system_unbound_wq || !system_freezable_wq);
6ee0578b 5063 return 0;
1da177e4 5064}
6ee0578b 5065early_initcall(init_workqueues);