[PATCH] Make address_space_operations->sync_page return void
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / xfs / linux-2.6 / xfs_aops.c
CommitLineData
1da177e4 1/*
7b718769
NS
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
a844f451 19#include "xfs_bit.h"
1da177e4 20#include "xfs_log.h"
a844f451 21#include "xfs_inum.h"
1da177e4 22#include "xfs_sb.h"
a844f451 23#include "xfs_ag.h"
1da177e4
LT
24#include "xfs_dir.h"
25#include "xfs_dir2.h"
26#include "xfs_trans.h"
27#include "xfs_dmapi.h"
28#include "xfs_mount.h"
29#include "xfs_bmap_btree.h"
30#include "xfs_alloc_btree.h"
31#include "xfs_ialloc_btree.h"
1da177e4
LT
32#include "xfs_dir_sf.h"
33#include "xfs_dir2_sf.h"
a844f451 34#include "xfs_attr_sf.h"
1da177e4
LT
35#include "xfs_dinode.h"
36#include "xfs_inode.h"
a844f451
NS
37#include "xfs_alloc.h"
38#include "xfs_btree.h"
1da177e4
LT
39#include "xfs_error.h"
40#include "xfs_rw.h"
41#include "xfs_iomap.h"
42#include <linux/mpage.h>
10ce4444 43#include <linux/pagevec.h>
1da177e4
LT
44#include <linux/writeback.h>
45
f51623b2
NS
46STATIC void
47xfs_count_page_state(
48 struct page *page,
49 int *delalloc,
50 int *unmapped,
51 int *unwritten)
52{
53 struct buffer_head *bh, *head;
54
55 *delalloc = *unmapped = *unwritten = 0;
56
57 bh = head = page_buffers(page);
58 do {
59 if (buffer_uptodate(bh) && !buffer_mapped(bh))
60 (*unmapped) = 1;
61 else if (buffer_unwritten(bh) && !buffer_delay(bh))
62 clear_buffer_unwritten(bh);
63 else if (buffer_unwritten(bh))
64 (*unwritten) = 1;
65 else if (buffer_delay(bh))
66 (*delalloc) = 1;
67 } while ((bh = bh->b_this_page) != head);
68}
69
1da177e4
LT
70#if defined(XFS_RW_TRACE)
71void
72xfs_page_trace(
73 int tag,
74 struct inode *inode,
75 struct page *page,
76 int mask)
77{
78 xfs_inode_t *ip;
ec86dc02 79 vnode_t *vp = vn_from_inode(inode);
1da177e4 80 loff_t isize = i_size_read(inode);
f6d6d4fc 81 loff_t offset = page_offset(page);
1da177e4
LT
82 int delalloc = -1, unmapped = -1, unwritten = -1;
83
84 if (page_has_buffers(page))
85 xfs_count_page_state(page, &delalloc, &unmapped, &unwritten);
86
75e17b3c 87 ip = xfs_vtoi(vp);
1da177e4
LT
88 if (!ip->i_rwtrace)
89 return;
90
91 ktrace_enter(ip->i_rwtrace,
92 (void *)((unsigned long)tag),
93 (void *)ip,
94 (void *)inode,
95 (void *)page,
96 (void *)((unsigned long)mask),
97 (void *)((unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff)),
98 (void *)((unsigned long)(ip->i_d.di_size & 0xffffffff)),
99 (void *)((unsigned long)((isize >> 32) & 0xffffffff)),
100 (void *)((unsigned long)(isize & 0xffffffff)),
101 (void *)((unsigned long)((offset >> 32) & 0xffffffff)),
102 (void *)((unsigned long)(offset & 0xffffffff)),
103 (void *)((unsigned long)delalloc),
104 (void *)((unsigned long)unmapped),
105 (void *)((unsigned long)unwritten),
f1fdc848 106 (void *)((unsigned long)current_pid()),
1da177e4
LT
107 (void *)NULL);
108}
109#else
110#define xfs_page_trace(tag, inode, page, mask)
111#endif
112
0829c360
CH
113/*
114 * Schedule IO completion handling on a xfsdatad if this was
115 * the final hold on this ioend.
116 */
117STATIC void
118xfs_finish_ioend(
119 xfs_ioend_t *ioend)
120{
121 if (atomic_dec_and_test(&ioend->io_remaining))
122 queue_work(xfsdatad_workqueue, &ioend->io_work);
123}
124
f6d6d4fc
CH
125/*
126 * We're now finished for good with this ioend structure.
127 * Update the page state via the associated buffer_heads,
128 * release holds on the inode and bio, and finally free
129 * up memory. Do not use the ioend after this.
130 */
0829c360
CH
131STATIC void
132xfs_destroy_ioend(
133 xfs_ioend_t *ioend)
134{
f6d6d4fc
CH
135 struct buffer_head *bh, *next;
136
137 for (bh = ioend->io_buffer_head; bh; bh = next) {
138 next = bh->b_private;
139 bh->b_end_io(bh, ioend->io_uptodate);
140 }
141
0829c360
CH
142 vn_iowake(ioend->io_vnode);
143 mempool_free(ioend, xfs_ioend_pool);
144}
145
146/*
f6d6d4fc
CH
147 * Buffered IO write completion for delayed allocate extents.
148 * TODO: Update ondisk isize now that we know the file data
149 * has been flushed (i.e. the notorious "NULL file" problem).
150 */
151STATIC void
152xfs_end_bio_delalloc(
153 void *data)
154{
155 xfs_ioend_t *ioend = data;
156
157 xfs_destroy_ioend(ioend);
158}
159
160/*
161 * Buffered IO write completion for regular, written extents.
162 */
163STATIC void
164xfs_end_bio_written(
165 void *data)
166{
167 xfs_ioend_t *ioend = data;
168
169 xfs_destroy_ioend(ioend);
170}
171
172/*
173 * IO write completion for unwritten extents.
174 *
0829c360 175 * Issue transactions to convert a buffer range from unwritten
f0973863 176 * to written extents.
0829c360
CH
177 */
178STATIC void
179xfs_end_bio_unwritten(
180 void *data)
181{
182 xfs_ioend_t *ioend = data;
183 vnode_t *vp = ioend->io_vnode;
184 xfs_off_t offset = ioend->io_offset;
185 size_t size = ioend->io_size;
186 int error;
187
188 if (ioend->io_uptodate)
189 VOP_BMAP(vp, offset, size, BMAPI_UNWRITTEN, NULL, NULL, error);
190 xfs_destroy_ioend(ioend);
191}
192
193/*
194 * Allocate and initialise an IO completion structure.
195 * We need to track unwritten extent write completion here initially.
196 * We'll need to extend this for updating the ondisk inode size later
197 * (vs. incore size).
198 */
199STATIC xfs_ioend_t *
200xfs_alloc_ioend(
f6d6d4fc
CH
201 struct inode *inode,
202 unsigned int type)
0829c360
CH
203{
204 xfs_ioend_t *ioend;
205
206 ioend = mempool_alloc(xfs_ioend_pool, GFP_NOFS);
207
208 /*
209 * Set the count to 1 initially, which will prevent an I/O
210 * completion callback from happening before we have started
211 * all the I/O from calling the completion routine too early.
212 */
213 atomic_set(&ioend->io_remaining, 1);
214 ioend->io_uptodate = 1; /* cleared if any I/O fails */
f6d6d4fc
CH
215 ioend->io_list = NULL;
216 ioend->io_type = type;
ec86dc02 217 ioend->io_vnode = vn_from_inode(inode);
c1a073bd 218 ioend->io_buffer_head = NULL;
f6d6d4fc 219 ioend->io_buffer_tail = NULL;
0829c360
CH
220 atomic_inc(&ioend->io_vnode->v_iocount);
221 ioend->io_offset = 0;
222 ioend->io_size = 0;
223
f6d6d4fc
CH
224 if (type == IOMAP_UNWRITTEN)
225 INIT_WORK(&ioend->io_work, xfs_end_bio_unwritten, ioend);
226 else if (type == IOMAP_DELAY)
227 INIT_WORK(&ioend->io_work, xfs_end_bio_delalloc, ioend);
228 else
229 INIT_WORK(&ioend->io_work, xfs_end_bio_written, ioend);
0829c360
CH
230
231 return ioend;
232}
233
1da177e4
LT
234STATIC int
235xfs_map_blocks(
236 struct inode *inode,
237 loff_t offset,
238 ssize_t count,
239 xfs_iomap_t *mapp,
240 int flags)
241{
ec86dc02 242 vnode_t *vp = vn_from_inode(inode);
1da177e4
LT
243 int error, nmaps = 1;
244
245 VOP_BMAP(vp, offset, count, flags, mapp, &nmaps, error);
246 if (!error && (flags & (BMAPI_WRITE|BMAPI_ALLOCATE)))
247 VMODIFY(vp);
248 return -error;
249}
250
1defeac9
CH
251STATIC inline int
252xfs_iomap_valid(
1da177e4 253 xfs_iomap_t *iomapp,
1defeac9 254 loff_t offset)
1da177e4 255{
1defeac9
CH
256 return offset >= iomapp->iomap_offset &&
257 offset < iomapp->iomap_offset + iomapp->iomap_bsize;
1da177e4
LT
258}
259
f6d6d4fc
CH
260/*
261 * BIO completion handler for buffered IO.
262 */
263STATIC int
264xfs_end_bio(
265 struct bio *bio,
266 unsigned int bytes_done,
267 int error)
268{
269 xfs_ioend_t *ioend = bio->bi_private;
270
271 if (bio->bi_size)
272 return 1;
273
274 ASSERT(ioend);
275 ASSERT(atomic_read(&bio->bi_cnt) >= 1);
276
277 /* Toss bio and pass work off to an xfsdatad thread */
278 if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
279 ioend->io_uptodate = 0;
280 bio->bi_private = NULL;
281 bio->bi_end_io = NULL;
282
283 bio_put(bio);
284 xfs_finish_ioend(ioend);
285 return 0;
286}
287
288STATIC void
289xfs_submit_ioend_bio(
290 xfs_ioend_t *ioend,
291 struct bio *bio)
292{
293 atomic_inc(&ioend->io_remaining);
294
295 bio->bi_private = ioend;
296 bio->bi_end_io = xfs_end_bio;
297
298 submit_bio(WRITE, bio);
299 ASSERT(!bio_flagged(bio, BIO_EOPNOTSUPP));
300 bio_put(bio);
301}
302
303STATIC struct bio *
304xfs_alloc_ioend_bio(
305 struct buffer_head *bh)
306{
307 struct bio *bio;
308 int nvecs = bio_get_nr_vecs(bh->b_bdev);
309
310 do {
311 bio = bio_alloc(GFP_NOIO, nvecs);
312 nvecs >>= 1;
313 } while (!bio);
314
315 ASSERT(bio->bi_private == NULL);
316 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
317 bio->bi_bdev = bh->b_bdev;
318 bio_get(bio);
319 return bio;
320}
321
322STATIC void
323xfs_start_buffer_writeback(
324 struct buffer_head *bh)
325{
326 ASSERT(buffer_mapped(bh));
327 ASSERT(buffer_locked(bh));
328 ASSERT(!buffer_delay(bh));
329 ASSERT(!buffer_unwritten(bh));
330
331 mark_buffer_async_write(bh);
332 set_buffer_uptodate(bh);
333 clear_buffer_dirty(bh);
334}
335
336STATIC void
337xfs_start_page_writeback(
338 struct page *page,
339 struct writeback_control *wbc,
340 int clear_dirty,
341 int buffers)
342{
343 ASSERT(PageLocked(page));
344 ASSERT(!PageWriteback(page));
345 set_page_writeback(page);
346 if (clear_dirty)
347 clear_page_dirty(page);
348 unlock_page(page);
349 if (!buffers) {
350 end_page_writeback(page);
351 wbc->pages_skipped++; /* We didn't write this page */
352 }
353}
354
355static inline int bio_add_buffer(struct bio *bio, struct buffer_head *bh)
356{
357 return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
358}
359
360/*
d88992f6
DC
361 * Submit all of the bios for all of the ioends we have saved up, covering the
362 * initial writepage page and also any probed pages.
363 *
364 * Because we may have multiple ioends spanning a page, we need to start
365 * writeback on all the buffers before we submit them for I/O. If we mark the
366 * buffers as we got, then we can end up with a page that only has buffers
367 * marked async write and I/O complete on can occur before we mark the other
368 * buffers async write.
369 *
370 * The end result of this is that we trip a bug in end_page_writeback() because
371 * we call it twice for the one page as the code in end_buffer_async_write()
372 * assumes that all buffers on the page are started at the same time.
373 *
374 * The fix is two passes across the ioend list - one to start writeback on the
375 * bufferheads, and then the second one submit them for I/O.
f6d6d4fc
CH
376 */
377STATIC void
378xfs_submit_ioend(
379 xfs_ioend_t *ioend)
380{
d88992f6 381 xfs_ioend_t *head = ioend;
f6d6d4fc
CH
382 xfs_ioend_t *next;
383 struct buffer_head *bh;
384 struct bio *bio;
385 sector_t lastblock = 0;
386
d88992f6
DC
387 /* Pass 1 - start writeback */
388 do {
389 next = ioend->io_list;
390 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
391 xfs_start_buffer_writeback(bh);
392 }
393 } while ((ioend = next) != NULL);
394
395 /* Pass 2 - submit I/O */
396 ioend = head;
f6d6d4fc
CH
397 do {
398 next = ioend->io_list;
399 bio = NULL;
400
401 for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
f6d6d4fc
CH
402
403 if (!bio) {
404 retry:
405 bio = xfs_alloc_ioend_bio(bh);
406 } else if (bh->b_blocknr != lastblock + 1) {
407 xfs_submit_ioend_bio(ioend, bio);
408 goto retry;
409 }
410
411 if (bio_add_buffer(bio, bh) != bh->b_size) {
412 xfs_submit_ioend_bio(ioend, bio);
413 goto retry;
414 }
415
416 lastblock = bh->b_blocknr;
417 }
418 if (bio)
419 xfs_submit_ioend_bio(ioend, bio);
420 xfs_finish_ioend(ioend);
421 } while ((ioend = next) != NULL);
422}
423
424/*
425 * Cancel submission of all buffer_heads so far in this endio.
426 * Toss the endio too. Only ever called for the initial page
427 * in a writepage request, so only ever one page.
428 */
429STATIC void
430xfs_cancel_ioend(
431 xfs_ioend_t *ioend)
432{
433 xfs_ioend_t *next;
434 struct buffer_head *bh, *next_bh;
435
436 do {
437 next = ioend->io_list;
438 bh = ioend->io_buffer_head;
439 do {
440 next_bh = bh->b_private;
441 clear_buffer_async_write(bh);
442 unlock_buffer(bh);
443 } while ((bh = next_bh) != NULL);
444
445 vn_iowake(ioend->io_vnode);
446 mempool_free(ioend, xfs_ioend_pool);
447 } while ((ioend = next) != NULL);
448}
449
450/*
451 * Test to see if we've been building up a completion structure for
452 * earlier buffers -- if so, we try to append to this ioend if we
453 * can, otherwise we finish off any current ioend and start another.
454 * Return true if we've finished the given ioend.
455 */
456STATIC void
457xfs_add_to_ioend(
458 struct inode *inode,
459 struct buffer_head *bh,
7336cea8 460 xfs_off_t offset,
f6d6d4fc
CH
461 unsigned int type,
462 xfs_ioend_t **result,
463 int need_ioend)
464{
465 xfs_ioend_t *ioend = *result;
466
467 if (!ioend || need_ioend || type != ioend->io_type) {
468 xfs_ioend_t *previous = *result;
f6d6d4fc 469
f6d6d4fc
CH
470 ioend = xfs_alloc_ioend(inode, type);
471 ioend->io_offset = offset;
472 ioend->io_buffer_head = bh;
473 ioend->io_buffer_tail = bh;
474 if (previous)
475 previous->io_list = ioend;
476 *result = ioend;
477 } else {
478 ioend->io_buffer_tail->b_private = bh;
479 ioend->io_buffer_tail = bh;
480 }
481
482 bh->b_private = NULL;
483 ioend->io_size += bh->b_size;
484}
485
87cbc49c
NS
486STATIC void
487xfs_map_buffer(
488 struct buffer_head *bh,
489 xfs_iomap_t *mp,
490 xfs_off_t offset,
491 uint block_bits)
492{
493 sector_t bn;
494
495 ASSERT(mp->iomap_bn != IOMAP_DADDR_NULL);
496
497 bn = (mp->iomap_bn >> (block_bits - BBSHIFT)) +
498 ((offset - mp->iomap_offset) >> block_bits);
499
500 ASSERT(bn || (mp->iomap_flags & IOMAP_REALTIME));
501
502 bh->b_blocknr = bn;
503 set_buffer_mapped(bh);
504}
505
1da177e4
LT
506STATIC void
507xfs_map_at_offset(
1da177e4 508 struct buffer_head *bh,
1defeac9 509 loff_t offset,
1da177e4 510 int block_bits,
1defeac9 511 xfs_iomap_t *iomapp)
1da177e4 512{
1da177e4
LT
513 ASSERT(!(iomapp->iomap_flags & IOMAP_HOLE));
514 ASSERT(!(iomapp->iomap_flags & IOMAP_DELAY));
1da177e4
LT
515
516 lock_buffer(bh);
87cbc49c 517 xfs_map_buffer(bh, iomapp, offset, block_bits);
ce8e922c 518 bh->b_bdev = iomapp->iomap_target->bt_bdev;
1da177e4
LT
519 set_buffer_mapped(bh);
520 clear_buffer_delay(bh);
f6d6d4fc 521 clear_buffer_unwritten(bh);
1da177e4
LT
522}
523
524/*
6c4fe19f 525 * Look for a page at index that is suitable for clustering.
1da177e4
LT
526 */
527STATIC unsigned int
6c4fe19f 528xfs_probe_page(
10ce4444 529 struct page *page,
6c4fe19f
CH
530 unsigned int pg_offset,
531 int mapped)
1da177e4 532{
1da177e4
LT
533 int ret = 0;
534
1da177e4 535 if (PageWriteback(page))
10ce4444 536 return 0;
1da177e4
LT
537
538 if (page->mapping && PageDirty(page)) {
539 if (page_has_buffers(page)) {
540 struct buffer_head *bh, *head;
541
542 bh = head = page_buffers(page);
543 do {
6c4fe19f
CH
544 if (!buffer_uptodate(bh))
545 break;
546 if (mapped != buffer_mapped(bh))
1da177e4
LT
547 break;
548 ret += bh->b_size;
549 if (ret >= pg_offset)
550 break;
551 } while ((bh = bh->b_this_page) != head);
552 } else
6c4fe19f 553 ret = mapped ? 0 : PAGE_CACHE_SIZE;
1da177e4
LT
554 }
555
1da177e4
LT
556 return ret;
557}
558
f6d6d4fc 559STATIC size_t
6c4fe19f 560xfs_probe_cluster(
1da177e4
LT
561 struct inode *inode,
562 struct page *startpage,
563 struct buffer_head *bh,
6c4fe19f
CH
564 struct buffer_head *head,
565 int mapped)
1da177e4 566{
10ce4444 567 struct pagevec pvec;
1da177e4 568 pgoff_t tindex, tlast, tloff;
10ce4444
CH
569 size_t total = 0;
570 int done = 0, i;
1da177e4
LT
571
572 /* First sum forwards in this page */
573 do {
2353e8e9 574 if (!buffer_uptodate(bh) || (mapped != buffer_mapped(bh)))
10ce4444 575 return total;
1da177e4
LT
576 total += bh->b_size;
577 } while ((bh = bh->b_this_page) != head);
578
10ce4444
CH
579 /* if we reached the end of the page, sum forwards in following pages */
580 tlast = i_size_read(inode) >> PAGE_CACHE_SHIFT;
581 tindex = startpage->index + 1;
582
583 /* Prune this back to avoid pathological behavior */
584 tloff = min(tlast, startpage->index + 64);
585
586 pagevec_init(&pvec, 0);
587 while (!done && tindex <= tloff) {
588 unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
589
590 if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
591 break;
592
593 for (i = 0; i < pagevec_count(&pvec); i++) {
594 struct page *page = pvec.pages[i];
595 size_t pg_offset, len = 0;
596
597 if (tindex == tlast) {
598 pg_offset =
599 i_size_read(inode) & (PAGE_CACHE_SIZE - 1);
1defeac9
CH
600 if (!pg_offset) {
601 done = 1;
10ce4444 602 break;
1defeac9 603 }
10ce4444
CH
604 } else
605 pg_offset = PAGE_CACHE_SIZE;
606
607 if (page->index == tindex && !TestSetPageLocked(page)) {
6c4fe19f 608 len = xfs_probe_page(page, pg_offset, mapped);
10ce4444
CH
609 unlock_page(page);
610 }
611
612 if (!len) {
613 done = 1;
614 break;
615 }
616
1da177e4 617 total += len;
1defeac9 618 tindex++;
1da177e4 619 }
10ce4444
CH
620
621 pagevec_release(&pvec);
622 cond_resched();
1da177e4 623 }
10ce4444 624
1da177e4
LT
625 return total;
626}
627
628/*
10ce4444
CH
629 * Test if a given page is suitable for writing as part of an unwritten
630 * or delayed allocate extent.
1da177e4 631 */
10ce4444
CH
632STATIC int
633xfs_is_delayed_page(
634 struct page *page,
f6d6d4fc 635 unsigned int type)
1da177e4 636{
1da177e4 637 if (PageWriteback(page))
10ce4444 638 return 0;
1da177e4
LT
639
640 if (page->mapping && page_has_buffers(page)) {
641 struct buffer_head *bh, *head;
642 int acceptable = 0;
643
644 bh = head = page_buffers(page);
645 do {
f6d6d4fc
CH
646 if (buffer_unwritten(bh))
647 acceptable = (type == IOMAP_UNWRITTEN);
648 else if (buffer_delay(bh))
649 acceptable = (type == IOMAP_DELAY);
2ddee844 650 else if (buffer_dirty(bh) && buffer_mapped(bh))
6c4fe19f 651 acceptable = (type == 0);
f6d6d4fc 652 else
1da177e4 653 break;
1da177e4
LT
654 } while ((bh = bh->b_this_page) != head);
655
656 if (acceptable)
10ce4444 657 return 1;
1da177e4
LT
658 }
659
10ce4444 660 return 0;
1da177e4
LT
661}
662
1da177e4
LT
663/*
664 * Allocate & map buffers for page given the extent map. Write it out.
665 * except for the original page of a writepage, this is called on
666 * delalloc/unwritten pages only, for the original page it is possible
667 * that the page has no mapping at all.
668 */
f6d6d4fc 669STATIC int
1da177e4
LT
670xfs_convert_page(
671 struct inode *inode,
672 struct page *page,
10ce4444 673 loff_t tindex,
1defeac9 674 xfs_iomap_t *mp,
f6d6d4fc 675 xfs_ioend_t **ioendp,
1da177e4 676 struct writeback_control *wbc,
1da177e4
LT
677 int startio,
678 int all_bh)
679{
f6d6d4fc 680 struct buffer_head *bh, *head;
9260dc6b
CH
681 xfs_off_t end_offset;
682 unsigned long p_offset;
f6d6d4fc 683 unsigned int type;
1da177e4 684 int bbits = inode->i_blkbits;
24e17b5f 685 int len, page_dirty;
f6d6d4fc 686 int count = 0, done = 0, uptodate = 1;
9260dc6b 687 xfs_off_t offset = page_offset(page);
1da177e4 688
10ce4444
CH
689 if (page->index != tindex)
690 goto fail;
691 if (TestSetPageLocked(page))
692 goto fail;
693 if (PageWriteback(page))
694 goto fail_unlock_page;
695 if (page->mapping != inode->i_mapping)
696 goto fail_unlock_page;
697 if (!xfs_is_delayed_page(page, (*ioendp)->io_type))
698 goto fail_unlock_page;
699
24e17b5f
NS
700 /*
701 * page_dirty is initially a count of buffers on the page before
702 * EOF and is decrememted as we move each into a cleanable state.
9260dc6b
CH
703 *
704 * Derivation:
705 *
706 * End offset is the highest offset that this page should represent.
707 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
708 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
709 * hence give us the correct page_dirty count. On any other page,
710 * it will be zero and in that case we need page_dirty to be the
711 * count of buffers on the page.
24e17b5f 712 */
9260dc6b
CH
713 end_offset = min_t(unsigned long long,
714 (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT,
715 i_size_read(inode));
716
24e17b5f 717 len = 1 << inode->i_blkbits;
9260dc6b
CH
718 p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1),
719 PAGE_CACHE_SIZE);
720 p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE;
721 page_dirty = p_offset / len;
24e17b5f 722
1da177e4
LT
723 bh = head = page_buffers(page);
724 do {
9260dc6b 725 if (offset >= end_offset)
1da177e4 726 break;
f6d6d4fc
CH
727 if (!buffer_uptodate(bh))
728 uptodate = 0;
729 if (!(PageUptodate(page) || buffer_uptodate(bh))) {
730 done = 1;
1da177e4 731 continue;
f6d6d4fc
CH
732 }
733
9260dc6b
CH
734 if (buffer_unwritten(bh) || buffer_delay(bh)) {
735 if (buffer_unwritten(bh))
736 type = IOMAP_UNWRITTEN;
737 else
738 type = IOMAP_DELAY;
739
740 if (!xfs_iomap_valid(mp, offset)) {
f6d6d4fc 741 done = 1;
9260dc6b
CH
742 continue;
743 }
744
745 ASSERT(!(mp->iomap_flags & IOMAP_HOLE));
746 ASSERT(!(mp->iomap_flags & IOMAP_DELAY));
747
748 xfs_map_at_offset(bh, offset, bbits, mp);
749 if (startio) {
7336cea8 750 xfs_add_to_ioend(inode, bh, offset,
9260dc6b
CH
751 type, ioendp, done);
752 } else {
753 set_buffer_dirty(bh);
754 unlock_buffer(bh);
755 mark_buffer_dirty(bh);
756 }
757 page_dirty--;
758 count++;
759 } else {
760 type = 0;
761 if (buffer_mapped(bh) && all_bh && startio) {
1da177e4 762 lock_buffer(bh);
7336cea8 763 xfs_add_to_ioend(inode, bh, offset,
f6d6d4fc
CH
764 type, ioendp, done);
765 count++;
24e17b5f 766 page_dirty--;
9260dc6b
CH
767 } else {
768 done = 1;
1da177e4 769 }
1da177e4 770 }
7336cea8 771 } while (offset += len, (bh = bh->b_this_page) != head);
1da177e4 772
f6d6d4fc
CH
773 if (uptodate && bh == head)
774 SetPageUptodate(page);
775
776 if (startio) {
f5e596bb
CH
777 if (count) {
778 struct backing_dev_info *bdi;
779
780 bdi = inode->i_mapping->backing_dev_info;
9fddaca2 781 wbc->nr_to_write--;
f5e596bb
CH
782 if (bdi_write_congested(bdi)) {
783 wbc->encountered_congestion = 1;
784 done = 1;
9fddaca2 785 } else if (wbc->nr_to_write <= 0) {
f5e596bb
CH
786 done = 1;
787 }
788 }
f6d6d4fc 789 xfs_start_page_writeback(page, wbc, !page_dirty, count);
1da177e4 790 }
f6d6d4fc
CH
791
792 return done;
10ce4444
CH
793 fail_unlock_page:
794 unlock_page(page);
795 fail:
796 return 1;
1da177e4
LT
797}
798
799/*
800 * Convert & write out a cluster of pages in the same extent as defined
801 * by mp and following the start page.
802 */
803STATIC void
804xfs_cluster_write(
805 struct inode *inode,
806 pgoff_t tindex,
807 xfs_iomap_t *iomapp,
f6d6d4fc 808 xfs_ioend_t **ioendp,
1da177e4
LT
809 struct writeback_control *wbc,
810 int startio,
811 int all_bh,
812 pgoff_t tlast)
813{
10ce4444
CH
814 struct pagevec pvec;
815 int done = 0, i;
1da177e4 816
10ce4444
CH
817 pagevec_init(&pvec, 0);
818 while (!done && tindex <= tlast) {
819 unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
820
821 if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
1da177e4 822 break;
10ce4444
CH
823
824 for (i = 0; i < pagevec_count(&pvec); i++) {
825 done = xfs_convert_page(inode, pvec.pages[i], tindex++,
826 iomapp, ioendp, wbc, startio, all_bh);
827 if (done)
828 break;
829 }
830
831 pagevec_release(&pvec);
832 cond_resched();
1da177e4
LT
833 }
834}
835
836/*
837 * Calling this without startio set means we are being asked to make a dirty
838 * page ready for freeing it's buffers. When called with startio set then
839 * we are coming from writepage.
840 *
841 * When called with startio set it is important that we write the WHOLE
842 * page if possible.
843 * The bh->b_state's cannot know if any of the blocks or which block for
844 * that matter are dirty due to mmap writes, and therefore bh uptodate is
845 * only vaild if the page itself isn't completely uptodate. Some layers
846 * may clear the page dirty flag prior to calling write page, under the
847 * assumption the entire page will be written out; by not writing out the
848 * whole page the page can be reused before all valid dirty data is
849 * written out. Note: in the case of a page that has been dirty'd by
850 * mapwrite and but partially setup by block_prepare_write the
851 * bh->b_states's will not agree and only ones setup by BPW/BCW will have
852 * valid state, thus the whole page must be written out thing.
853 */
854
855STATIC int
856xfs_page_state_convert(
857 struct inode *inode,
858 struct page *page,
859 struct writeback_control *wbc,
860 int startio,
861 int unmapped) /* also implies page uptodate */
862{
f6d6d4fc 863 struct buffer_head *bh, *head;
1defeac9 864 xfs_iomap_t iomap;
f6d6d4fc 865 xfs_ioend_t *ioend = NULL, *iohead = NULL;
1da177e4
LT
866 loff_t offset;
867 unsigned long p_offset = 0;
f6d6d4fc 868 unsigned int type;
1da177e4
LT
869 __uint64_t end_offset;
870 pgoff_t end_index, last_index, tlast;
d5cb48aa
CH
871 ssize_t size, len;
872 int flags, err, iomap_valid = 0, uptodate = 1;
f6d6d4fc 873 int page_dirty, count = 0, trylock_flag = 0;
6c4fe19f 874 int all_bh = unmapped;
1da177e4 875
3ba0815a 876 /* wait for other IO threads? */
f5e596bb 877 if (startio && (wbc->sync_mode == WB_SYNC_NONE && wbc->nonblocking))
f6d6d4fc 878 trylock_flag |= BMAPI_TRYLOCK;
3ba0815a 879
1da177e4
LT
880 /* Is this page beyond the end of the file? */
881 offset = i_size_read(inode);
882 end_index = offset >> PAGE_CACHE_SHIFT;
883 last_index = (offset - 1) >> PAGE_CACHE_SHIFT;
884 if (page->index >= end_index) {
885 if ((page->index >= end_index + 1) ||
886 !(i_size_read(inode) & (PAGE_CACHE_SIZE - 1))) {
19d5bcf3
NS
887 if (startio)
888 unlock_page(page);
889 return 0;
1da177e4
LT
890 }
891 }
892
1da177e4 893 /*
24e17b5f
NS
894 * page_dirty is initially a count of buffers on the page before
895 * EOF and is decrememted as we move each into a cleanable state.
f6d6d4fc
CH
896 *
897 * Derivation:
898 *
899 * End offset is the highest offset that this page should represent.
900 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
901 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
902 * hence give us the correct page_dirty count. On any other page,
903 * it will be zero and in that case we need page_dirty to be the
904 * count of buffers on the page.
905 */
906 end_offset = min_t(unsigned long long,
907 (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT, offset);
24e17b5f 908 len = 1 << inode->i_blkbits;
f6d6d4fc
CH
909 p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1),
910 PAGE_CACHE_SIZE);
911 p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE;
24e17b5f
NS
912 page_dirty = p_offset / len;
913
24e17b5f 914 bh = head = page_buffers(page);
f6d6d4fc 915 offset = page_offset(page);
6c4fe19f
CH
916 flags = -1;
917 type = 0;
f6d6d4fc 918
f6d6d4fc 919 /* TODO: cleanup count and page_dirty */
1da177e4
LT
920
921 do {
922 if (offset >= end_offset)
923 break;
924 if (!buffer_uptodate(bh))
925 uptodate = 0;
f6d6d4fc 926 if (!(PageUptodate(page) || buffer_uptodate(bh)) && !startio) {
1defeac9
CH
927 /*
928 * the iomap is actually still valid, but the ioend
929 * isn't. shouldn't happen too often.
930 */
931 iomap_valid = 0;
1da177e4 932 continue;
f6d6d4fc 933 }
1da177e4 934
1defeac9
CH
935 if (iomap_valid)
936 iomap_valid = xfs_iomap_valid(&iomap, offset);
1da177e4
LT
937
938 /*
939 * First case, map an unwritten extent and prepare for
940 * extent state conversion transaction on completion.
f6d6d4fc 941 *
1da177e4
LT
942 * Second case, allocate space for a delalloc buffer.
943 * We can return EAGAIN here in the release page case.
d5cb48aa
CH
944 *
945 * Third case, an unmapped buffer was found, and we are
946 * in a path where we need to write the whole page out.
947 */
948 if (buffer_unwritten(bh) || buffer_delay(bh) ||
949 ((buffer_uptodate(bh) || PageUptodate(page)) &&
950 !buffer_mapped(bh) && (unmapped || startio))) {
6c4fe19f
CH
951 /*
952 * Make sure we don't use a read-only iomap
953 */
954 if (flags == BMAPI_READ)
955 iomap_valid = 0;
956
f6d6d4fc
CH
957 if (buffer_unwritten(bh)) {
958 type = IOMAP_UNWRITTEN;
959 flags = BMAPI_WRITE|BMAPI_IGNSTATE;
d5cb48aa 960 } else if (buffer_delay(bh)) {
f6d6d4fc
CH
961 type = IOMAP_DELAY;
962 flags = BMAPI_ALLOCATE;
963 if (!startio)
964 flags |= trylock_flag;
d5cb48aa 965 } else {
6c4fe19f 966 type = IOMAP_NEW;
d5cb48aa 967 flags = BMAPI_WRITE|BMAPI_MMAP;
f6d6d4fc
CH
968 }
969
1defeac9 970 if (!iomap_valid) {
6c4fe19f
CH
971 if (type == IOMAP_NEW) {
972 size = xfs_probe_cluster(inode,
973 page, bh, head, 0);
d5cb48aa
CH
974 } else {
975 size = len;
976 }
977
978 err = xfs_map_blocks(inode, offset, size,
979 &iomap, flags);
f6d6d4fc 980 if (err)
1da177e4 981 goto error;
1defeac9 982 iomap_valid = xfs_iomap_valid(&iomap, offset);
1da177e4 983 }
1defeac9
CH
984 if (iomap_valid) {
985 xfs_map_at_offset(bh, offset,
986 inode->i_blkbits, &iomap);
1da177e4 987 if (startio) {
7336cea8 988 xfs_add_to_ioend(inode, bh, offset,
1defeac9
CH
989 type, &ioend,
990 !iomap_valid);
1da177e4
LT
991 } else {
992 set_buffer_dirty(bh);
993 unlock_buffer(bh);
994 mark_buffer_dirty(bh);
995 }
996 page_dirty--;
f6d6d4fc 997 count++;
1da177e4 998 }
d5cb48aa 999 } else if (buffer_uptodate(bh) && startio) {
6c4fe19f
CH
1000 /*
1001 * we got here because the buffer is already mapped.
1002 * That means it must already have extents allocated
1003 * underneath it. Map the extent by reading it.
1004 */
1005 if (!iomap_valid || type != 0) {
1006 flags = BMAPI_READ;
1007 size = xfs_probe_cluster(inode, page, bh,
1008 head, 1);
1009 err = xfs_map_blocks(inode, offset, size,
1010 &iomap, flags);
1011 if (err)
1012 goto error;
1013 iomap_valid = xfs_iomap_valid(&iomap, offset);
1014 }
d5cb48aa 1015
6c4fe19f 1016 type = 0;
d5cb48aa
CH
1017 if (!test_and_set_bit(BH_Lock, &bh->b_state)) {
1018 ASSERT(buffer_mapped(bh));
6c4fe19f
CH
1019 if (iomap_valid)
1020 all_bh = 1;
7336cea8 1021 xfs_add_to_ioend(inode, bh, offset, type,
d5cb48aa
CH
1022 &ioend, !iomap_valid);
1023 page_dirty--;
1024 count++;
f6d6d4fc 1025 } else {
1defeac9 1026 iomap_valid = 0;
1da177e4 1027 }
d5cb48aa
CH
1028 } else if ((buffer_uptodate(bh) || PageUptodate(page)) &&
1029 (unmapped || startio)) {
1030 iomap_valid = 0;
1da177e4 1031 }
f6d6d4fc
CH
1032
1033 if (!iohead)
1034 iohead = ioend;
1035
1036 } while (offset += len, ((bh = bh->b_this_page) != head));
1da177e4
LT
1037
1038 if (uptodate && bh == head)
1039 SetPageUptodate(page);
1040
f6d6d4fc
CH
1041 if (startio)
1042 xfs_start_page_writeback(page, wbc, 1, count);
1da177e4 1043
1defeac9
CH
1044 if (ioend && iomap_valid) {
1045 offset = (iomap.iomap_offset + iomap.iomap_bsize - 1) >>
1da177e4 1046 PAGE_CACHE_SHIFT;
775bf6c9 1047 tlast = min_t(pgoff_t, offset, last_index);
1defeac9 1048 xfs_cluster_write(inode, page->index + 1, &iomap, &ioend,
6c4fe19f 1049 wbc, startio, all_bh, tlast);
1da177e4
LT
1050 }
1051
f6d6d4fc
CH
1052 if (iohead)
1053 xfs_submit_ioend(iohead);
1054
1da177e4
LT
1055 return page_dirty;
1056
1057error:
f6d6d4fc
CH
1058 if (iohead)
1059 xfs_cancel_ioend(iohead);
1da177e4
LT
1060
1061 /*
1062 * If it's delalloc and we have nowhere to put it,
1063 * throw it away, unless the lower layers told
1064 * us to try again.
1065 */
1066 if (err != -EAGAIN) {
f6d6d4fc 1067 if (!unmapped)
1da177e4 1068 block_invalidatepage(page, 0);
1da177e4
LT
1069 ClearPageUptodate(page);
1070 }
1071 return err;
1072}
1073
f51623b2
NS
1074/*
1075 * writepage: Called from one of two places:
1076 *
1077 * 1. we are flushing a delalloc buffer head.
1078 *
1079 * 2. we are writing out a dirty page. Typically the page dirty
1080 * state is cleared before we get here. In this case is it
1081 * conceivable we have no buffer heads.
1082 *
1083 * For delalloc space on the page we need to allocate space and
1084 * flush it. For unmapped buffer heads on the page we should
1085 * allocate space if the page is uptodate. For any other dirty
1086 * buffer heads on the page we should flush them.
1087 *
1088 * If we detect that a transaction would be required to flush
1089 * the page, we have to check the process flags first, if we
1090 * are already in a transaction or disk I/O during allocations
1091 * is off, we need to fail the writepage and redirty the page.
1092 */
1093
1094STATIC int
e4c573bb 1095xfs_vm_writepage(
f51623b2
NS
1096 struct page *page,
1097 struct writeback_control *wbc)
1098{
1099 int error;
1100 int need_trans;
1101 int delalloc, unmapped, unwritten;
1102 struct inode *inode = page->mapping->host;
1103
1104 xfs_page_trace(XFS_WRITEPAGE_ENTER, inode, page, 0);
1105
1106 /*
1107 * We need a transaction if:
1108 * 1. There are delalloc buffers on the page
1109 * 2. The page is uptodate and we have unmapped buffers
1110 * 3. The page is uptodate and we have no buffers
1111 * 4. There are unwritten buffers on the page
1112 */
1113
1114 if (!page_has_buffers(page)) {
1115 unmapped = 1;
1116 need_trans = 1;
1117 } else {
1118 xfs_count_page_state(page, &delalloc, &unmapped, &unwritten);
1119 if (!PageUptodate(page))
1120 unmapped = 0;
1121 need_trans = delalloc + unmapped + unwritten;
1122 }
1123
1124 /*
1125 * If we need a transaction and the process flags say
1126 * we are already in a transaction, or no IO is allowed
1127 * then mark the page dirty again and leave the page
1128 * as is.
1129 */
1130 if (PFLAGS_TEST_FSTRANS() && need_trans)
1131 goto out_fail;
1132
1133 /*
1134 * Delay hooking up buffer heads until we have
1135 * made our go/no-go decision.
1136 */
1137 if (!page_has_buffers(page))
1138 create_empty_buffers(page, 1 << inode->i_blkbits, 0);
1139
1140 /*
1141 * Convert delayed allocate, unwritten or unmapped space
1142 * to real space and flush out to disk.
1143 */
1144 error = xfs_page_state_convert(inode, page, wbc, 1, unmapped);
1145 if (error == -EAGAIN)
1146 goto out_fail;
1147 if (unlikely(error < 0))
1148 goto out_unlock;
1149
1150 return 0;
1151
1152out_fail:
1153 redirty_page_for_writepage(wbc, page);
1154 unlock_page(page);
1155 return 0;
1156out_unlock:
1157 unlock_page(page);
1158 return error;
1159}
1160
1161/*
1162 * Called to move a page into cleanable state - and from there
1163 * to be released. Possibly the page is already clean. We always
1164 * have buffer heads in this call.
1165 *
1166 * Returns 0 if the page is ok to release, 1 otherwise.
1167 *
1168 * Possible scenarios are:
1169 *
1170 * 1. We are being called to release a page which has been written
1171 * to via regular I/O. buffer heads will be dirty and possibly
1172 * delalloc. If no delalloc buffer heads in this case then we
1173 * can just return zero.
1174 *
1175 * 2. We are called to release a page which has been written via
1176 * mmap, all we need to do is ensure there is no delalloc
1177 * state in the buffer heads, if not we can let the caller
1178 * free them and we should come back later via writepage.
1179 */
1180STATIC int
238f4c54 1181xfs_vm_releasepage(
f51623b2
NS
1182 struct page *page,
1183 gfp_t gfp_mask)
1184{
1185 struct inode *inode = page->mapping->host;
1186 int dirty, delalloc, unmapped, unwritten;
1187 struct writeback_control wbc = {
1188 .sync_mode = WB_SYNC_ALL,
1189 .nr_to_write = 1,
1190 };
1191
1192 xfs_page_trace(XFS_RELEASEPAGE_ENTER, inode, page, gfp_mask);
1193
238f4c54
NS
1194 if (!page_has_buffers(page))
1195 return 0;
1196
f51623b2
NS
1197 xfs_count_page_state(page, &delalloc, &unmapped, &unwritten);
1198 if (!delalloc && !unwritten)
1199 goto free_buffers;
1200
1201 if (!(gfp_mask & __GFP_FS))
1202 return 0;
1203
1204 /* If we are already inside a transaction or the thread cannot
1205 * do I/O, we cannot release this page.
1206 */
1207 if (PFLAGS_TEST_FSTRANS())
1208 return 0;
1209
1210 /*
1211 * Convert delalloc space to real space, do not flush the
1212 * data out to disk, that will be done by the caller.
1213 * Never need to allocate space here - we will always
1214 * come back to writepage in that case.
1215 */
1216 dirty = xfs_page_state_convert(inode, page, &wbc, 0, 0);
1217 if (dirty == 0 && !unwritten)
1218 goto free_buffers;
1219 return 0;
1220
1221free_buffers:
1222 return try_to_free_buffers(page);
1223}
1224
1da177e4 1225STATIC int
e4c573bb 1226__xfs_get_block(
1da177e4
LT
1227 struct inode *inode,
1228 sector_t iblock,
1229 unsigned long blocks,
1230 struct buffer_head *bh_result,
1231 int create,
1232 int direct,
1233 bmapi_flags_t flags)
1234{
ec86dc02 1235 vnode_t *vp = vn_from_inode(inode);
1da177e4 1236 xfs_iomap_t iomap;
fdc7ed75
NS
1237 xfs_off_t offset;
1238 ssize_t size;
1da177e4
LT
1239 int retpbbm = 1;
1240 int error;
1da177e4 1241
fdc7ed75 1242 offset = (xfs_off_t)iblock << inode->i_blkbits;
a4656391
NS
1243 if (blocks)
1244 size = (ssize_t) min_t(xfs_off_t, LONG_MAX,
1245 (xfs_off_t)blocks << inode->i_blkbits);
1246 else
1247 size = 1 << inode->i_blkbits;
1da177e4
LT
1248
1249 VOP_BMAP(vp, offset, size,
1250 create ? flags : BMAPI_READ, &iomap, &retpbbm, error);
1251 if (error)
1252 return -error;
1253
1254 if (retpbbm == 0)
1255 return 0;
1256
1257 if (iomap.iomap_bn != IOMAP_DADDR_NULL) {
87cbc49c
NS
1258 /*
1259 * For unwritten extents do not report a disk address on
1da177e4
LT
1260 * the read case (treat as if we're reading into a hole).
1261 */
1262 if (create || !(iomap.iomap_flags & IOMAP_UNWRITTEN)) {
87cbc49c
NS
1263 xfs_map_buffer(bh_result, &iomap, offset,
1264 inode->i_blkbits);
1da177e4
LT
1265 }
1266 if (create && (iomap.iomap_flags & IOMAP_UNWRITTEN)) {
1267 if (direct)
1268 bh_result->b_private = inode;
1269 set_buffer_unwritten(bh_result);
1270 set_buffer_delay(bh_result);
1271 }
1272 }
1273
1274 /* If this is a realtime file, data might be on a new device */
ce8e922c 1275 bh_result->b_bdev = iomap.iomap_target->bt_bdev;
1da177e4
LT
1276
1277 /* If we previously allocated a block out beyond eof and
1278 * we are now coming back to use it then we will need to
1279 * flag it as new even if it has a disk address.
1280 */
1281 if (create &&
1282 ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) ||
fdc7ed75 1283 (offset >= i_size_read(inode)) || (iomap.iomap_flags & IOMAP_NEW)))
1da177e4 1284 set_buffer_new(bh_result);
1da177e4
LT
1285
1286 if (iomap.iomap_flags & IOMAP_DELAY) {
1287 BUG_ON(direct);
1288 if (create) {
1289 set_buffer_uptodate(bh_result);
1290 set_buffer_mapped(bh_result);
1291 set_buffer_delay(bh_result);
1292 }
1293 }
1294
1295 if (blocks) {
fdc7ed75
NS
1296 ASSERT(iomap.iomap_bsize - iomap.iomap_delta > 0);
1297 offset = min_t(xfs_off_t,
1298 iomap.iomap_bsize - iomap.iomap_delta,
a4656391 1299 (xfs_off_t)blocks << inode->i_blkbits);
fdc7ed75 1300 bh_result->b_size = (u32) min_t(xfs_off_t, UINT_MAX, offset);
1da177e4
LT
1301 }
1302
1303 return 0;
1304}
1305
1306int
e4c573bb 1307xfs_get_block(
1da177e4
LT
1308 struct inode *inode,
1309 sector_t iblock,
1310 struct buffer_head *bh_result,
1311 int create)
1312{
e4c573bb 1313 return __xfs_get_block(inode, iblock, 0, bh_result,
1da177e4
LT
1314 create, 0, BMAPI_WRITE);
1315}
1316
1317STATIC int
e4c573bb 1318xfs_get_blocks_direct(
1da177e4
LT
1319 struct inode *inode,
1320 sector_t iblock,
1321 unsigned long max_blocks,
1322 struct buffer_head *bh_result,
1323 int create)
1324{
e4c573bb 1325 return __xfs_get_block(inode, iblock, max_blocks, bh_result,
1da177e4
LT
1326 create, 1, BMAPI_WRITE|BMAPI_DIRECT);
1327}
1328
f0973863 1329STATIC void
e4c573bb 1330xfs_end_io_direct(
f0973863
CH
1331 struct kiocb *iocb,
1332 loff_t offset,
1333 ssize_t size,
1334 void *private)
1335{
1336 xfs_ioend_t *ioend = iocb->private;
1337
1338 /*
1339 * Non-NULL private data means we need to issue a transaction to
1340 * convert a range from unwritten to written extents. This needs
1341 * to happen from process contect but aio+dio I/O completion
1342 * happens from irq context so we need to defer it to a workqueue.
1343 * This is not nessecary for synchronous direct I/O, but we do
1344 * it anyway to keep the code uniform and simpler.
1345 *
1346 * The core direct I/O code might be changed to always call the
1347 * completion handler in the future, in which case all this can
1348 * go away.
1349 */
1350 if (private && size > 0) {
1351 ioend->io_offset = offset;
1352 ioend->io_size = size;
1353 xfs_finish_ioend(ioend);
1354 } else {
1355 ASSERT(size >= 0);
1356 xfs_destroy_ioend(ioend);
1357 }
1358
1359 /*
1360 * blockdev_direct_IO can return an error even afer the I/O
1361 * completion handler was called. Thus we need to protect
1362 * against double-freeing.
1363 */
1364 iocb->private = NULL;
1365}
1366
1da177e4 1367STATIC ssize_t
e4c573bb 1368xfs_vm_direct_IO(
1da177e4
LT
1369 int rw,
1370 struct kiocb *iocb,
1371 const struct iovec *iov,
1372 loff_t offset,
1373 unsigned long nr_segs)
1374{
1375 struct file *file = iocb->ki_filp;
1376 struct inode *inode = file->f_mapping->host;
ec86dc02 1377 vnode_t *vp = vn_from_inode(inode);
1da177e4
LT
1378 xfs_iomap_t iomap;
1379 int maps = 1;
1380 int error;
f0973863 1381 ssize_t ret;
1da177e4
LT
1382
1383 VOP_BMAP(vp, offset, 0, BMAPI_DEVICE, &iomap, &maps, error);
1384 if (error)
1385 return -error;
1386
f6d6d4fc 1387 iocb->private = xfs_alloc_ioend(inode, IOMAP_UNWRITTEN);
f0973863
CH
1388
1389 ret = blockdev_direct_IO_own_locking(rw, iocb, inode,
ce8e922c 1390 iomap.iomap_target->bt_bdev,
1da177e4 1391 iov, offset, nr_segs,
e4c573bb
NS
1392 xfs_get_blocks_direct,
1393 xfs_end_io_direct);
f0973863
CH
1394
1395 if (unlikely(ret <= 0 && iocb->private))
1396 xfs_destroy_ioend(iocb->private);
1397 return ret;
1da177e4
LT
1398}
1399
f51623b2 1400STATIC int
e4c573bb 1401xfs_vm_prepare_write(
f51623b2
NS
1402 struct file *file,
1403 struct page *page,
1404 unsigned int from,
1405 unsigned int to)
1406{
e4c573bb 1407 return block_prepare_write(page, from, to, xfs_get_block);
f51623b2 1408}
1da177e4
LT
1409
1410STATIC sector_t
e4c573bb 1411xfs_vm_bmap(
1da177e4
LT
1412 struct address_space *mapping,
1413 sector_t block)
1414{
1415 struct inode *inode = (struct inode *)mapping->host;
ec86dc02 1416 vnode_t *vp = vn_from_inode(inode);
1da177e4
LT
1417 int error;
1418
e4c573bb 1419 vn_trace_entry(vp, __FUNCTION__, (inst_t *)__return_address);
1da177e4
LT
1420
1421 VOP_RWLOCK(vp, VRWLOCK_READ);
1422 VOP_FLUSH_PAGES(vp, (xfs_off_t)0, -1, 0, FI_REMAPF, error);
1423 VOP_RWUNLOCK(vp, VRWLOCK_READ);
e4c573bb 1424 return generic_block_bmap(mapping, block, xfs_get_block);
1da177e4
LT
1425}
1426
1427STATIC int
e4c573bb 1428xfs_vm_readpage(
1da177e4
LT
1429 struct file *unused,
1430 struct page *page)
1431{
e4c573bb 1432 return mpage_readpage(page, xfs_get_block);
1da177e4
LT
1433}
1434
1435STATIC int
e4c573bb 1436xfs_vm_readpages(
1da177e4
LT
1437 struct file *unused,
1438 struct address_space *mapping,
1439 struct list_head *pages,
1440 unsigned nr_pages)
1441{
e4c573bb 1442 return mpage_readpages(mapping, pages, nr_pages, xfs_get_block);
1da177e4
LT
1443}
1444
bcec2b7f 1445STATIC int
238f4c54 1446xfs_vm_invalidatepage(
bcec2b7f
NS
1447 struct page *page,
1448 unsigned long offset)
1449{
1450 xfs_page_trace(XFS_INVALIDPAGE_ENTER,
1451 page->mapping->host, page, offset);
1452 return block_invalidatepage(page, offset);
1453}
1454
e4c573bb
NS
1455struct address_space_operations xfs_address_space_operations = {
1456 .readpage = xfs_vm_readpage,
1457 .readpages = xfs_vm_readpages,
1458 .writepage = xfs_vm_writepage,
1da177e4 1459 .sync_page = block_sync_page,
238f4c54
NS
1460 .releasepage = xfs_vm_releasepage,
1461 .invalidatepage = xfs_vm_invalidatepage,
e4c573bb 1462 .prepare_write = xfs_vm_prepare_write,
1da177e4 1463 .commit_write = generic_commit_write,
e4c573bb
NS
1464 .bmap = xfs_vm_bmap,
1465 .direct_IO = xfs_vm_direct_IO,
e965f963 1466 .migratepage = buffer_migrate_page,
1da177e4 1467};