MD: Prevent sysfs operations on uninitialized kobjects
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / md / raid5.c
CommitLineData
1da177e4
LT
1/*
2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
16a53ecc 5 * Copyright (C) 2002, 2003 H. Peter Anvin
1da177e4 6 *
16a53ecc
N
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
1da177e4
LT
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
ae3c20cc
N
21/*
22 * BITMAP UNPLUGGING:
23 *
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
26 * explanation.
27 *
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
7c13edc8
N
30 * conf->seq_write is the number of the last batch successfully written.
31 * conf->seq_flush is the number of the last batch that was closed to
ae3c20cc
N
32 * new additions.
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
7c13edc8 35 * the number of the batch it will be in. This is seq_flush+1.
ae3c20cc
N
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
39 * batch.
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
43 * miss any bits.
44 */
1da177e4 45
bff61975 46#include <linux/blkdev.h>
f6705578 47#include <linux/kthread.h>
f701d589 48#include <linux/raid/pq.h>
91c00924 49#include <linux/async_tx.h>
056075c7 50#include <linux/module.h>
07a3b417 51#include <linux/async.h>
bff61975 52#include <linux/seq_file.h>
36d1c647 53#include <linux/cpu.h>
5a0e3ad6 54#include <linux/slab.h>
8bda470e 55#include <linux/ratelimit.h>
a9add5d9
N
56#include <trace/events/block.h>
57
43b2e5d8 58#include "md.h"
bff61975 59#include "raid5.h"
54071b38 60#include "raid0.h"
ef740c37 61#include "bitmap.h"
72626685 62
1da177e4
LT
63/*
64 * Stripe cache
65 */
66
67#define NR_STRIPES 256
68#define STRIPE_SIZE PAGE_SIZE
69#define STRIPE_SHIFT (PAGE_SHIFT - 9)
70#define STRIPE_SECTORS (STRIPE_SIZE>>9)
71#define IO_THRESHOLD 1
8b3e6cdc 72#define BYPASS_THRESHOLD 1
fccddba0 73#define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
1da177e4
LT
74#define HASH_MASK (NR_HASH - 1)
75
d1688a6d 76static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
db298e19
N
77{
78 int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
79 return &conf->stripe_hashtbl[hash];
80}
1da177e4
LT
81
82/* bio's attached to a stripe+device for I/O are linked together in bi_sector
83 * order without overlap. There may be several bio's per stripe+device, and
84 * a bio could span several devices.
85 * When walking this list for a particular stripe+device, we must never proceed
86 * beyond a bio that extends past this device, as the next bio might no longer
87 * be valid.
db298e19 88 * This function is used to determine the 'next' bio in the list, given the sector
1da177e4
LT
89 * of the current stripe+device
90 */
db298e19
N
91static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
92{
93 int sectors = bio->bi_size >> 9;
94 if (bio->bi_sector + sectors < sector + STRIPE_SECTORS)
95 return bio->bi_next;
96 else
97 return NULL;
98}
1da177e4 99
960e739d 100/*
5b99c2ff
JA
101 * We maintain a biased count of active stripes in the bottom 16 bits of
102 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
960e739d 103 */
e7836bd6 104static inline int raid5_bi_processed_stripes(struct bio *bio)
960e739d 105{
e7836bd6
SL
106 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
107 return (atomic_read(segments) >> 16) & 0xffff;
960e739d
JA
108}
109
e7836bd6 110static inline int raid5_dec_bi_active_stripes(struct bio *bio)
960e739d 111{
e7836bd6
SL
112 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
113 return atomic_sub_return(1, segments) & 0xffff;
960e739d
JA
114}
115
e7836bd6 116static inline void raid5_inc_bi_active_stripes(struct bio *bio)
960e739d 117{
e7836bd6
SL
118 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
119 atomic_inc(segments);
960e739d
JA
120}
121
e7836bd6
SL
122static inline void raid5_set_bi_processed_stripes(struct bio *bio,
123 unsigned int cnt)
960e739d 124{
e7836bd6
SL
125 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
126 int old, new;
960e739d 127
e7836bd6
SL
128 do {
129 old = atomic_read(segments);
130 new = (old & 0xffff) | (cnt << 16);
131 } while (atomic_cmpxchg(segments, old, new) != old);
960e739d
JA
132}
133
e7836bd6 134static inline void raid5_set_bi_stripes(struct bio *bio, unsigned int cnt)
960e739d 135{
e7836bd6
SL
136 atomic_t *segments = (atomic_t *)&bio->bi_phys_segments;
137 atomic_set(segments, cnt);
960e739d
JA
138}
139
d0dabf7e
N
140/* Find first data disk in a raid6 stripe */
141static inline int raid6_d0(struct stripe_head *sh)
142{
67cc2b81
N
143 if (sh->ddf_layout)
144 /* ddf always start from first device */
145 return 0;
146 /* md starts just after Q block */
d0dabf7e
N
147 if (sh->qd_idx == sh->disks - 1)
148 return 0;
149 else
150 return sh->qd_idx + 1;
151}
16a53ecc
N
152static inline int raid6_next_disk(int disk, int raid_disks)
153{
154 disk++;
155 return (disk < raid_disks) ? disk : 0;
156}
a4456856 157
d0dabf7e
N
158/* When walking through the disks in a raid5, starting at raid6_d0,
159 * We need to map each disk to a 'slot', where the data disks are slot
160 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
161 * is raid_disks-1. This help does that mapping.
162 */
67cc2b81
N
163static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
164 int *count, int syndrome_disks)
d0dabf7e 165{
6629542e 166 int slot = *count;
67cc2b81 167
e4424fee 168 if (sh->ddf_layout)
6629542e 169 (*count)++;
d0dabf7e 170 if (idx == sh->pd_idx)
67cc2b81 171 return syndrome_disks;
d0dabf7e 172 if (idx == sh->qd_idx)
67cc2b81 173 return syndrome_disks + 1;
e4424fee 174 if (!sh->ddf_layout)
6629542e 175 (*count)++;
d0dabf7e
N
176 return slot;
177}
178
a4456856
DW
179static void return_io(struct bio *return_bi)
180{
181 struct bio *bi = return_bi;
182 while (bi) {
a4456856
DW
183
184 return_bi = bi->bi_next;
185 bi->bi_next = NULL;
186 bi->bi_size = 0;
a9add5d9
N
187 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
188 bi, 0);
0e13fe23 189 bio_endio(bi, 0);
a4456856
DW
190 bi = return_bi;
191 }
192}
193
d1688a6d 194static void print_raid5_conf (struct r5conf *conf);
1da177e4 195
600aa109
DW
196static int stripe_operations_active(struct stripe_head *sh)
197{
198 return sh->check_state || sh->reconstruct_state ||
199 test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
200 test_bit(STRIPE_COMPUTE_RUN, &sh->state);
201}
202
4eb788df 203static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh)
1da177e4 204{
4eb788df
SL
205 BUG_ON(!list_empty(&sh->lru));
206 BUG_ON(atomic_read(&conf->active_stripes)==0);
207 if (test_bit(STRIPE_HANDLE, &sh->state)) {
208 if (test_bit(STRIPE_DELAYED, &sh->state) &&
209 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
210 list_add_tail(&sh->lru, &conf->delayed_list);
211 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
212 sh->bm_seq - conf->seq_write > 0)
213 list_add_tail(&sh->lru, &conf->bitmap_list);
214 else {
215 clear_bit(STRIPE_DELAYED, &sh->state);
216 clear_bit(STRIPE_BIT_DELAY, &sh->state);
217 list_add_tail(&sh->lru, &conf->handle_list);
218 }
219 md_wakeup_thread(conf->mddev->thread);
220 } else {
221 BUG_ON(stripe_operations_active(sh));
222 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
223 if (atomic_dec_return(&conf->preread_active_stripes)
224 < IO_THRESHOLD)
225 md_wakeup_thread(conf->mddev->thread);
226 atomic_dec(&conf->active_stripes);
227 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
228 list_add_tail(&sh->lru, &conf->inactive_list);
229 wake_up(&conf->wait_for_stripe);
230 if (conf->retry_read_aligned)
231 md_wakeup_thread(conf->mddev->thread);
1da177e4
LT
232 }
233 }
234}
d0dabf7e 235
4eb788df
SL
236static void __release_stripe(struct r5conf *conf, struct stripe_head *sh)
237{
238 if (atomic_dec_and_test(&sh->count))
239 do_release_stripe(conf, sh);
240}
241
1da177e4
LT
242static void release_stripe(struct stripe_head *sh)
243{
d1688a6d 244 struct r5conf *conf = sh->raid_conf;
1da177e4 245 unsigned long flags;
16a53ecc 246
4eb788df
SL
247 local_irq_save(flags);
248 if (atomic_dec_and_lock(&sh->count, &conf->device_lock)) {
249 do_release_stripe(conf, sh);
250 spin_unlock(&conf->device_lock);
251 }
252 local_irq_restore(flags);
1da177e4
LT
253}
254
fccddba0 255static inline void remove_hash(struct stripe_head *sh)
1da177e4 256{
45b4233c
DW
257 pr_debug("remove_hash(), stripe %llu\n",
258 (unsigned long long)sh->sector);
1da177e4 259
fccddba0 260 hlist_del_init(&sh->hash);
1da177e4
LT
261}
262
d1688a6d 263static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
1da177e4 264{
fccddba0 265 struct hlist_head *hp = stripe_hash(conf, sh->sector);
1da177e4 266
45b4233c
DW
267 pr_debug("insert_hash(), stripe %llu\n",
268 (unsigned long long)sh->sector);
1da177e4 269
fccddba0 270 hlist_add_head(&sh->hash, hp);
1da177e4
LT
271}
272
273
274/* find an idle stripe, make sure it is unhashed, and return it. */
d1688a6d 275static struct stripe_head *get_free_stripe(struct r5conf *conf)
1da177e4
LT
276{
277 struct stripe_head *sh = NULL;
278 struct list_head *first;
279
1da177e4
LT
280 if (list_empty(&conf->inactive_list))
281 goto out;
282 first = conf->inactive_list.next;
283 sh = list_entry(first, struct stripe_head, lru);
284 list_del_init(first);
285 remove_hash(sh);
286 atomic_inc(&conf->active_stripes);
287out:
288 return sh;
289}
290
e4e11e38 291static void shrink_buffers(struct stripe_head *sh)
1da177e4
LT
292{
293 struct page *p;
294 int i;
e4e11e38 295 int num = sh->raid_conf->pool_size;
1da177e4 296
e4e11e38 297 for (i = 0; i < num ; i++) {
1da177e4
LT
298 p = sh->dev[i].page;
299 if (!p)
300 continue;
301 sh->dev[i].page = NULL;
2d1f3b5d 302 put_page(p);
1da177e4
LT
303 }
304}
305
e4e11e38 306static int grow_buffers(struct stripe_head *sh)
1da177e4
LT
307{
308 int i;
e4e11e38 309 int num = sh->raid_conf->pool_size;
1da177e4 310
e4e11e38 311 for (i = 0; i < num; i++) {
1da177e4
LT
312 struct page *page;
313
314 if (!(page = alloc_page(GFP_KERNEL))) {
315 return 1;
316 }
317 sh->dev[i].page = page;
318 }
319 return 0;
320}
321
784052ec 322static void raid5_build_block(struct stripe_head *sh, int i, int previous);
d1688a6d 323static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
911d4ee8 324 struct stripe_head *sh);
1da177e4 325
b5663ba4 326static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
1da177e4 327{
d1688a6d 328 struct r5conf *conf = sh->raid_conf;
7ecaa1e6 329 int i;
1da177e4 330
78bafebd
ES
331 BUG_ON(atomic_read(&sh->count) != 0);
332 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
600aa109 333 BUG_ON(stripe_operations_active(sh));
d84e0f10 334
45b4233c 335 pr_debug("init_stripe called, stripe %llu\n",
1da177e4
LT
336 (unsigned long long)sh->sector);
337
338 remove_hash(sh);
16a53ecc 339
86b42c71 340 sh->generation = conf->generation - previous;
b5663ba4 341 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
1da177e4 342 sh->sector = sector;
911d4ee8 343 stripe_set_idx(sector, conf, previous, sh);
1da177e4
LT
344 sh->state = 0;
345
7ecaa1e6
N
346
347 for (i = sh->disks; i--; ) {
1da177e4
LT
348 struct r5dev *dev = &sh->dev[i];
349
d84e0f10 350 if (dev->toread || dev->read || dev->towrite || dev->written ||
1da177e4 351 test_bit(R5_LOCKED, &dev->flags)) {
d84e0f10 352 printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
1da177e4 353 (unsigned long long)sh->sector, i, dev->toread,
d84e0f10 354 dev->read, dev->towrite, dev->written,
1da177e4 355 test_bit(R5_LOCKED, &dev->flags));
8cfa7b0f 356 WARN_ON(1);
1da177e4
LT
357 }
358 dev->flags = 0;
784052ec 359 raid5_build_block(sh, i, previous);
1da177e4
LT
360 }
361 insert_hash(conf, sh);
362}
363
d1688a6d 364static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
86b42c71 365 short generation)
1da177e4
LT
366{
367 struct stripe_head *sh;
fccddba0 368 struct hlist_node *hn;
1da177e4 369
45b4233c 370 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
fccddba0 371 hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
86b42c71 372 if (sh->sector == sector && sh->generation == generation)
1da177e4 373 return sh;
45b4233c 374 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
1da177e4
LT
375 return NULL;
376}
377
674806d6
N
378/*
379 * Need to check if array has failed when deciding whether to:
380 * - start an array
381 * - remove non-faulty devices
382 * - add a spare
383 * - allow a reshape
384 * This determination is simple when no reshape is happening.
385 * However if there is a reshape, we need to carefully check
386 * both the before and after sections.
387 * This is because some failed devices may only affect one
388 * of the two sections, and some non-in_sync devices may
389 * be insync in the section most affected by failed devices.
390 */
908f4fbd 391static int calc_degraded(struct r5conf *conf)
674806d6 392{
908f4fbd 393 int degraded, degraded2;
674806d6 394 int i;
674806d6
N
395
396 rcu_read_lock();
397 degraded = 0;
398 for (i = 0; i < conf->previous_raid_disks; i++) {
3cb03002 399 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
e5c86471
N
400 if (rdev && test_bit(Faulty, &rdev->flags))
401 rdev = rcu_dereference(conf->disks[i].replacement);
674806d6
N
402 if (!rdev || test_bit(Faulty, &rdev->flags))
403 degraded++;
404 else if (test_bit(In_sync, &rdev->flags))
405 ;
406 else
407 /* not in-sync or faulty.
408 * If the reshape increases the number of devices,
409 * this is being recovered by the reshape, so
410 * this 'previous' section is not in_sync.
411 * If the number of devices is being reduced however,
412 * the device can only be part of the array if
413 * we are reverting a reshape, so this section will
414 * be in-sync.
415 */
416 if (conf->raid_disks >= conf->previous_raid_disks)
417 degraded++;
418 }
419 rcu_read_unlock();
908f4fbd
N
420 if (conf->raid_disks == conf->previous_raid_disks)
421 return degraded;
674806d6 422 rcu_read_lock();
908f4fbd 423 degraded2 = 0;
674806d6 424 for (i = 0; i < conf->raid_disks; i++) {
3cb03002 425 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
e5c86471
N
426 if (rdev && test_bit(Faulty, &rdev->flags))
427 rdev = rcu_dereference(conf->disks[i].replacement);
674806d6 428 if (!rdev || test_bit(Faulty, &rdev->flags))
908f4fbd 429 degraded2++;
674806d6
N
430 else if (test_bit(In_sync, &rdev->flags))
431 ;
432 else
433 /* not in-sync or faulty.
434 * If reshape increases the number of devices, this
435 * section has already been recovered, else it
436 * almost certainly hasn't.
437 */
438 if (conf->raid_disks <= conf->previous_raid_disks)
908f4fbd 439 degraded2++;
674806d6
N
440 }
441 rcu_read_unlock();
908f4fbd
N
442 if (degraded2 > degraded)
443 return degraded2;
444 return degraded;
445}
446
447static int has_failed(struct r5conf *conf)
448{
449 int degraded;
450
451 if (conf->mddev->reshape_position == MaxSector)
452 return conf->mddev->degraded > conf->max_degraded;
453
454 degraded = calc_degraded(conf);
674806d6
N
455 if (degraded > conf->max_degraded)
456 return 1;
457 return 0;
458}
459
b5663ba4 460static struct stripe_head *
d1688a6d 461get_active_stripe(struct r5conf *conf, sector_t sector,
a8c906ca 462 int previous, int noblock, int noquiesce)
1da177e4
LT
463{
464 struct stripe_head *sh;
465
45b4233c 466 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
1da177e4
LT
467
468 spin_lock_irq(&conf->device_lock);
469
470 do {
72626685 471 wait_event_lock_irq(conf->wait_for_stripe,
a8c906ca 472 conf->quiesce == 0 || noquiesce,
eed8c02e 473 conf->device_lock);
86b42c71 474 sh = __find_stripe(conf, sector, conf->generation - previous);
1da177e4
LT
475 if (!sh) {
476 if (!conf->inactive_blocked)
477 sh = get_free_stripe(conf);
478 if (noblock && sh == NULL)
479 break;
480 if (!sh) {
481 conf->inactive_blocked = 1;
482 wait_event_lock_irq(conf->wait_for_stripe,
483 !list_empty(&conf->inactive_list) &&
5036805b
N
484 (atomic_read(&conf->active_stripes)
485 < (conf->max_nr_stripes *3/4)
1da177e4 486 || !conf->inactive_blocked),
eed8c02e 487 conf->device_lock);
1da177e4
LT
488 conf->inactive_blocked = 0;
489 } else
b5663ba4 490 init_stripe(sh, sector, previous);
1da177e4
LT
491 } else {
492 if (atomic_read(&sh->count)) {
ab69ae12 493 BUG_ON(!list_empty(&sh->lru)
8811b596
SL
494 && !test_bit(STRIPE_EXPANDING, &sh->state)
495 && !test_bit(STRIPE_ON_UNPLUG_LIST, &sh->state));
1da177e4
LT
496 } else {
497 if (!test_bit(STRIPE_HANDLE, &sh->state))
498 atomic_inc(&conf->active_stripes);
ff4e8d9a
N
499 if (list_empty(&sh->lru) &&
500 !test_bit(STRIPE_EXPANDING, &sh->state))
16a53ecc
N
501 BUG();
502 list_del_init(&sh->lru);
1da177e4
LT
503 }
504 }
505 } while (sh == NULL);
506
507 if (sh)
508 atomic_inc(&sh->count);
509
510 spin_unlock_irq(&conf->device_lock);
511 return sh;
512}
513
05616be5
N
514/* Determine if 'data_offset' or 'new_data_offset' should be used
515 * in this stripe_head.
516 */
517static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
518{
519 sector_t progress = conf->reshape_progress;
520 /* Need a memory barrier to make sure we see the value
521 * of conf->generation, or ->data_offset that was set before
522 * reshape_progress was updated.
523 */
524 smp_rmb();
525 if (progress == MaxSector)
526 return 0;
527 if (sh->generation == conf->generation - 1)
528 return 0;
529 /* We are in a reshape, and this is a new-generation stripe,
530 * so use new_data_offset.
531 */
532 return 1;
533}
534
6712ecf8
N
535static void
536raid5_end_read_request(struct bio *bi, int error);
537static void
538raid5_end_write_request(struct bio *bi, int error);
91c00924 539
c4e5ac0a 540static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
91c00924 541{
d1688a6d 542 struct r5conf *conf = sh->raid_conf;
91c00924
DW
543 int i, disks = sh->disks;
544
545 might_sleep();
546
547 for (i = disks; i--; ) {
548 int rw;
9a3e1101 549 int replace_only = 0;
977df362
N
550 struct bio *bi, *rbi;
551 struct md_rdev *rdev, *rrdev = NULL;
e9c7469b
TH
552 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
553 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
554 rw = WRITE_FUA;
555 else
556 rw = WRITE;
9e444768 557 if (test_bit(R5_Discard, &sh->dev[i].flags))
620125f2 558 rw |= REQ_DISCARD;
e9c7469b 559 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
91c00924 560 rw = READ;
9a3e1101
N
561 else if (test_and_clear_bit(R5_WantReplace,
562 &sh->dev[i].flags)) {
563 rw = WRITE;
564 replace_only = 1;
565 } else
91c00924 566 continue;
bc0934f0
SL
567 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
568 rw |= REQ_SYNC;
91c00924
DW
569
570 bi = &sh->dev[i].req;
977df362 571 rbi = &sh->dev[i].rreq; /* For writing to replacement */
91c00924
DW
572
573 bi->bi_rw = rw;
977df362
N
574 rbi->bi_rw = rw;
575 if (rw & WRITE) {
91c00924 576 bi->bi_end_io = raid5_end_write_request;
977df362
N
577 rbi->bi_end_io = raid5_end_write_request;
578 } else
91c00924
DW
579 bi->bi_end_io = raid5_end_read_request;
580
581 rcu_read_lock();
9a3e1101 582 rrdev = rcu_dereference(conf->disks[i].replacement);
dd054fce
N
583 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
584 rdev = rcu_dereference(conf->disks[i].rdev);
585 if (!rdev) {
586 rdev = rrdev;
587 rrdev = NULL;
588 }
9a3e1101
N
589 if (rw & WRITE) {
590 if (replace_only)
591 rdev = NULL;
dd054fce
N
592 if (rdev == rrdev)
593 /* We raced and saw duplicates */
594 rrdev = NULL;
9a3e1101 595 } else {
dd054fce 596 if (test_bit(R5_ReadRepl, &sh->dev[i].flags) && rrdev)
9a3e1101
N
597 rdev = rrdev;
598 rrdev = NULL;
599 }
977df362 600
91c00924
DW
601 if (rdev && test_bit(Faulty, &rdev->flags))
602 rdev = NULL;
603 if (rdev)
604 atomic_inc(&rdev->nr_pending);
977df362
N
605 if (rrdev && test_bit(Faulty, &rrdev->flags))
606 rrdev = NULL;
607 if (rrdev)
608 atomic_inc(&rrdev->nr_pending);
91c00924
DW
609 rcu_read_unlock();
610
73e92e51 611 /* We have already checked bad blocks for reads. Now
977df362
N
612 * need to check for writes. We never accept write errors
613 * on the replacement, so we don't to check rrdev.
73e92e51
N
614 */
615 while ((rw & WRITE) && rdev &&
616 test_bit(WriteErrorSeen, &rdev->flags)) {
617 sector_t first_bad;
618 int bad_sectors;
619 int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
620 &first_bad, &bad_sectors);
621 if (!bad)
622 break;
623
624 if (bad < 0) {
625 set_bit(BlockedBadBlocks, &rdev->flags);
626 if (!conf->mddev->external &&
627 conf->mddev->flags) {
628 /* It is very unlikely, but we might
629 * still need to write out the
630 * bad block log - better give it
631 * a chance*/
632 md_check_recovery(conf->mddev);
633 }
1850753d 634 /*
635 * Because md_wait_for_blocked_rdev
636 * will dec nr_pending, we must
637 * increment it first.
638 */
639 atomic_inc(&rdev->nr_pending);
73e92e51
N
640 md_wait_for_blocked_rdev(rdev, conf->mddev);
641 } else {
642 /* Acknowledged bad block - skip the write */
643 rdev_dec_pending(rdev, conf->mddev);
644 rdev = NULL;
645 }
646 }
647
91c00924 648 if (rdev) {
9a3e1101
N
649 if (s->syncing || s->expanding || s->expanded
650 || s->replacing)
91c00924
DW
651 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
652
2b7497f0
DW
653 set_bit(STRIPE_IO_STARTED, &sh->state);
654
91c00924
DW
655 bi->bi_bdev = rdev->bdev;
656 pr_debug("%s: for %llu schedule op %ld on disc %d\n",
e46b272b 657 __func__, (unsigned long long)sh->sector,
91c00924
DW
658 bi->bi_rw, i);
659 atomic_inc(&sh->count);
05616be5
N
660 if (use_new_offset(conf, sh))
661 bi->bi_sector = (sh->sector
662 + rdev->new_data_offset);
663 else
664 bi->bi_sector = (sh->sector
665 + rdev->data_offset);
3f9e7c14 666 if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
667 bi->bi_rw |= REQ_FLUSH;
668
91c00924 669 bi->bi_flags = 1 << BIO_UPTODATE;
91c00924 670 bi->bi_idx = 0;
91c00924
DW
671 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
672 bi->bi_io_vec[0].bv_offset = 0;
673 bi->bi_size = STRIPE_SIZE;
674 bi->bi_next = NULL;
977df362
N
675 if (rrdev)
676 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
e3620a3a
JB
677
678 if (conf->mddev->gendisk)
679 trace_block_bio_remap(bdev_get_queue(bi->bi_bdev),
680 bi, disk_devt(conf->mddev->gendisk),
681 sh->dev[i].sector);
91c00924 682 generic_make_request(bi);
977df362
N
683 }
684 if (rrdev) {
9a3e1101
N
685 if (s->syncing || s->expanding || s->expanded
686 || s->replacing)
977df362
N
687 md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
688
689 set_bit(STRIPE_IO_STARTED, &sh->state);
690
691 rbi->bi_bdev = rrdev->bdev;
692 pr_debug("%s: for %llu schedule op %ld on "
693 "replacement disc %d\n",
694 __func__, (unsigned long long)sh->sector,
695 rbi->bi_rw, i);
696 atomic_inc(&sh->count);
05616be5
N
697 if (use_new_offset(conf, sh))
698 rbi->bi_sector = (sh->sector
699 + rrdev->new_data_offset);
700 else
701 rbi->bi_sector = (sh->sector
702 + rrdev->data_offset);
977df362
N
703 rbi->bi_flags = 1 << BIO_UPTODATE;
704 rbi->bi_idx = 0;
705 rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
706 rbi->bi_io_vec[0].bv_offset = 0;
707 rbi->bi_size = STRIPE_SIZE;
708 rbi->bi_next = NULL;
e3620a3a
JB
709 if (conf->mddev->gendisk)
710 trace_block_bio_remap(bdev_get_queue(rbi->bi_bdev),
711 rbi, disk_devt(conf->mddev->gendisk),
712 sh->dev[i].sector);
977df362
N
713 generic_make_request(rbi);
714 }
715 if (!rdev && !rrdev) {
b062962e 716 if (rw & WRITE)
91c00924
DW
717 set_bit(STRIPE_DEGRADED, &sh->state);
718 pr_debug("skip op %ld on disc %d for sector %llu\n",
719 bi->bi_rw, i, (unsigned long long)sh->sector);
720 clear_bit(R5_LOCKED, &sh->dev[i].flags);
721 set_bit(STRIPE_HANDLE, &sh->state);
722 }
723 }
724}
725
726static struct dma_async_tx_descriptor *
727async_copy_data(int frombio, struct bio *bio, struct page *page,
728 sector_t sector, struct dma_async_tx_descriptor *tx)
729{
730 struct bio_vec *bvl;
731 struct page *bio_page;
732 int i;
733 int page_offset;
a08abd8c 734 struct async_submit_ctl submit;
0403e382 735 enum async_tx_flags flags = 0;
91c00924
DW
736
737 if (bio->bi_sector >= sector)
738 page_offset = (signed)(bio->bi_sector - sector) * 512;
739 else
740 page_offset = (signed)(sector - bio->bi_sector) * -512;
a08abd8c 741
0403e382
DW
742 if (frombio)
743 flags |= ASYNC_TX_FENCE;
744 init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
745
91c00924 746 bio_for_each_segment(bvl, bio, i) {
fcde9075 747 int len = bvl->bv_len;
91c00924
DW
748 int clen;
749 int b_offset = 0;
750
751 if (page_offset < 0) {
752 b_offset = -page_offset;
753 page_offset += b_offset;
754 len -= b_offset;
755 }
756
757 if (len > 0 && page_offset + len > STRIPE_SIZE)
758 clen = STRIPE_SIZE - page_offset;
759 else
760 clen = len;
761
762 if (clen > 0) {
fcde9075
NK
763 b_offset += bvl->bv_offset;
764 bio_page = bvl->bv_page;
91c00924
DW
765 if (frombio)
766 tx = async_memcpy(page, bio_page, page_offset,
a08abd8c 767 b_offset, clen, &submit);
91c00924
DW
768 else
769 tx = async_memcpy(bio_page, page, b_offset,
a08abd8c 770 page_offset, clen, &submit);
91c00924 771 }
a08abd8c
DW
772 /* chain the operations */
773 submit.depend_tx = tx;
774
91c00924
DW
775 if (clen < len) /* hit end of page */
776 break;
777 page_offset += len;
778 }
779
780 return tx;
781}
782
783static void ops_complete_biofill(void *stripe_head_ref)
784{
785 struct stripe_head *sh = stripe_head_ref;
786 struct bio *return_bi = NULL;
e4d84909 787 int i;
91c00924 788
e46b272b 789 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
790 (unsigned long long)sh->sector);
791
792 /* clear completed biofills */
793 for (i = sh->disks; i--; ) {
794 struct r5dev *dev = &sh->dev[i];
91c00924
DW
795
796 /* acknowledge completion of a biofill operation */
e4d84909
DW
797 /* and check if we need to reply to a read request,
798 * new R5_Wantfill requests are held off until
83de75cc 799 * !STRIPE_BIOFILL_RUN
e4d84909
DW
800 */
801 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
91c00924 802 struct bio *rbi, *rbi2;
91c00924 803
91c00924
DW
804 BUG_ON(!dev->read);
805 rbi = dev->read;
806 dev->read = NULL;
807 while (rbi && rbi->bi_sector <
808 dev->sector + STRIPE_SECTORS) {
809 rbi2 = r5_next_bio(rbi, dev->sector);
e7836bd6 810 if (!raid5_dec_bi_active_stripes(rbi)) {
91c00924
DW
811 rbi->bi_next = return_bi;
812 return_bi = rbi;
813 }
91c00924
DW
814 rbi = rbi2;
815 }
816 }
817 }
83de75cc 818 clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
91c00924
DW
819
820 return_io(return_bi);
821
e4d84909 822 set_bit(STRIPE_HANDLE, &sh->state);
91c00924
DW
823 release_stripe(sh);
824}
825
826static void ops_run_biofill(struct stripe_head *sh)
827{
828 struct dma_async_tx_descriptor *tx = NULL;
a08abd8c 829 struct async_submit_ctl submit;
91c00924
DW
830 int i;
831
e46b272b 832 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
833 (unsigned long long)sh->sector);
834
835 for (i = sh->disks; i--; ) {
836 struct r5dev *dev = &sh->dev[i];
837 if (test_bit(R5_Wantfill, &dev->flags)) {
838 struct bio *rbi;
b17459c0 839 spin_lock_irq(&sh->stripe_lock);
91c00924
DW
840 dev->read = rbi = dev->toread;
841 dev->toread = NULL;
b17459c0 842 spin_unlock_irq(&sh->stripe_lock);
91c00924
DW
843 while (rbi && rbi->bi_sector <
844 dev->sector + STRIPE_SECTORS) {
845 tx = async_copy_data(0, rbi, dev->page,
846 dev->sector, tx);
847 rbi = r5_next_bio(rbi, dev->sector);
848 }
849 }
850 }
851
852 atomic_inc(&sh->count);
a08abd8c
DW
853 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
854 async_trigger_callback(&submit);
91c00924
DW
855}
856
4e7d2c0a 857static void mark_target_uptodate(struct stripe_head *sh, int target)
91c00924 858{
4e7d2c0a 859 struct r5dev *tgt;
91c00924 860
4e7d2c0a
DW
861 if (target < 0)
862 return;
91c00924 863
4e7d2c0a 864 tgt = &sh->dev[target];
91c00924
DW
865 set_bit(R5_UPTODATE, &tgt->flags);
866 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
867 clear_bit(R5_Wantcompute, &tgt->flags);
4e7d2c0a
DW
868}
869
ac6b53b6 870static void ops_complete_compute(void *stripe_head_ref)
91c00924
DW
871{
872 struct stripe_head *sh = stripe_head_ref;
91c00924 873
e46b272b 874 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
875 (unsigned long long)sh->sector);
876
ac6b53b6 877 /* mark the computed target(s) as uptodate */
4e7d2c0a 878 mark_target_uptodate(sh, sh->ops.target);
ac6b53b6 879 mark_target_uptodate(sh, sh->ops.target2);
4e7d2c0a 880
ecc65c9b
DW
881 clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
882 if (sh->check_state == check_state_compute_run)
883 sh->check_state = check_state_compute_result;
91c00924
DW
884 set_bit(STRIPE_HANDLE, &sh->state);
885 release_stripe(sh);
886}
887
d6f38f31
DW
888/* return a pointer to the address conversion region of the scribble buffer */
889static addr_conv_t *to_addr_conv(struct stripe_head *sh,
890 struct raid5_percpu *percpu)
891{
892 return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
893}
894
895static struct dma_async_tx_descriptor *
896ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
91c00924 897{
91c00924 898 int disks = sh->disks;
d6f38f31 899 struct page **xor_srcs = percpu->scribble;
91c00924
DW
900 int target = sh->ops.target;
901 struct r5dev *tgt = &sh->dev[target];
902 struct page *xor_dest = tgt->page;
903 int count = 0;
904 struct dma_async_tx_descriptor *tx;
a08abd8c 905 struct async_submit_ctl submit;
91c00924
DW
906 int i;
907
908 pr_debug("%s: stripe %llu block: %d\n",
e46b272b 909 __func__, (unsigned long long)sh->sector, target);
91c00924
DW
910 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
911
912 for (i = disks; i--; )
913 if (i != target)
914 xor_srcs[count++] = sh->dev[i].page;
915
916 atomic_inc(&sh->count);
917
0403e382 918 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
ac6b53b6 919 ops_complete_compute, sh, to_addr_conv(sh, percpu));
91c00924 920 if (unlikely(count == 1))
a08abd8c 921 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
91c00924 922 else
a08abd8c 923 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
91c00924 924
91c00924
DW
925 return tx;
926}
927
ac6b53b6
DW
928/* set_syndrome_sources - populate source buffers for gen_syndrome
929 * @srcs - (struct page *) array of size sh->disks
930 * @sh - stripe_head to parse
931 *
932 * Populates srcs in proper layout order for the stripe and returns the
933 * 'count' of sources to be used in a call to async_gen_syndrome. The P
934 * destination buffer is recorded in srcs[count] and the Q destination
935 * is recorded in srcs[count+1]].
936 */
937static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
938{
939 int disks = sh->disks;
940 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
941 int d0_idx = raid6_d0(sh);
942 int count;
943 int i;
944
945 for (i = 0; i < disks; i++)
5dd33c9a 946 srcs[i] = NULL;
ac6b53b6
DW
947
948 count = 0;
949 i = d0_idx;
950 do {
951 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
952
953 srcs[slot] = sh->dev[i].page;
954 i = raid6_next_disk(i, disks);
955 } while (i != d0_idx);
ac6b53b6 956
e4424fee 957 return syndrome_disks;
ac6b53b6
DW
958}
959
960static struct dma_async_tx_descriptor *
961ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
962{
963 int disks = sh->disks;
964 struct page **blocks = percpu->scribble;
965 int target;
966 int qd_idx = sh->qd_idx;
967 struct dma_async_tx_descriptor *tx;
968 struct async_submit_ctl submit;
969 struct r5dev *tgt;
970 struct page *dest;
971 int i;
972 int count;
973
974 if (sh->ops.target < 0)
975 target = sh->ops.target2;
976 else if (sh->ops.target2 < 0)
977 target = sh->ops.target;
91c00924 978 else
ac6b53b6
DW
979 /* we should only have one valid target */
980 BUG();
981 BUG_ON(target < 0);
982 pr_debug("%s: stripe %llu block: %d\n",
983 __func__, (unsigned long long)sh->sector, target);
984
985 tgt = &sh->dev[target];
986 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
987 dest = tgt->page;
988
989 atomic_inc(&sh->count);
990
991 if (target == qd_idx) {
992 count = set_syndrome_sources(blocks, sh);
993 blocks[count] = NULL; /* regenerating p is not necessary */
994 BUG_ON(blocks[count+1] != dest); /* q should already be set */
0403e382
DW
995 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
996 ops_complete_compute, sh,
ac6b53b6
DW
997 to_addr_conv(sh, percpu));
998 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
999 } else {
1000 /* Compute any data- or p-drive using XOR */
1001 count = 0;
1002 for (i = disks; i-- ; ) {
1003 if (i == target || i == qd_idx)
1004 continue;
1005 blocks[count++] = sh->dev[i].page;
1006 }
1007
0403e382
DW
1008 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1009 NULL, ops_complete_compute, sh,
ac6b53b6
DW
1010 to_addr_conv(sh, percpu));
1011 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1012 }
91c00924 1013
91c00924
DW
1014 return tx;
1015}
1016
ac6b53b6
DW
1017static struct dma_async_tx_descriptor *
1018ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1019{
1020 int i, count, disks = sh->disks;
1021 int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1022 int d0_idx = raid6_d0(sh);
1023 int faila = -1, failb = -1;
1024 int target = sh->ops.target;
1025 int target2 = sh->ops.target2;
1026 struct r5dev *tgt = &sh->dev[target];
1027 struct r5dev *tgt2 = &sh->dev[target2];
1028 struct dma_async_tx_descriptor *tx;
1029 struct page **blocks = percpu->scribble;
1030 struct async_submit_ctl submit;
1031
1032 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1033 __func__, (unsigned long long)sh->sector, target, target2);
1034 BUG_ON(target < 0 || target2 < 0);
1035 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1036 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1037
6c910a78 1038 /* we need to open-code set_syndrome_sources to handle the
ac6b53b6
DW
1039 * slot number conversion for 'faila' and 'failb'
1040 */
1041 for (i = 0; i < disks ; i++)
5dd33c9a 1042 blocks[i] = NULL;
ac6b53b6
DW
1043 count = 0;
1044 i = d0_idx;
1045 do {
1046 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1047
1048 blocks[slot] = sh->dev[i].page;
1049
1050 if (i == target)
1051 faila = slot;
1052 if (i == target2)
1053 failb = slot;
1054 i = raid6_next_disk(i, disks);
1055 } while (i != d0_idx);
ac6b53b6
DW
1056
1057 BUG_ON(faila == failb);
1058 if (failb < faila)
1059 swap(faila, failb);
1060 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1061 __func__, (unsigned long long)sh->sector, faila, failb);
1062
1063 atomic_inc(&sh->count);
1064
1065 if (failb == syndrome_disks+1) {
1066 /* Q disk is one of the missing disks */
1067 if (faila == syndrome_disks) {
1068 /* Missing P+Q, just recompute */
0403e382
DW
1069 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1070 ops_complete_compute, sh,
1071 to_addr_conv(sh, percpu));
e4424fee 1072 return async_gen_syndrome(blocks, 0, syndrome_disks+2,
ac6b53b6
DW
1073 STRIPE_SIZE, &submit);
1074 } else {
1075 struct page *dest;
1076 int data_target;
1077 int qd_idx = sh->qd_idx;
1078
1079 /* Missing D+Q: recompute D from P, then recompute Q */
1080 if (target == qd_idx)
1081 data_target = target2;
1082 else
1083 data_target = target;
1084
1085 count = 0;
1086 for (i = disks; i-- ; ) {
1087 if (i == data_target || i == qd_idx)
1088 continue;
1089 blocks[count++] = sh->dev[i].page;
1090 }
1091 dest = sh->dev[data_target].page;
0403e382
DW
1092 init_async_submit(&submit,
1093 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1094 NULL, NULL, NULL,
1095 to_addr_conv(sh, percpu));
ac6b53b6
DW
1096 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1097 &submit);
1098
1099 count = set_syndrome_sources(blocks, sh);
0403e382
DW
1100 init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1101 ops_complete_compute, sh,
1102 to_addr_conv(sh, percpu));
ac6b53b6
DW
1103 return async_gen_syndrome(blocks, 0, count+2,
1104 STRIPE_SIZE, &submit);
1105 }
ac6b53b6 1106 } else {
6c910a78
DW
1107 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1108 ops_complete_compute, sh,
1109 to_addr_conv(sh, percpu));
1110 if (failb == syndrome_disks) {
1111 /* We're missing D+P. */
1112 return async_raid6_datap_recov(syndrome_disks+2,
1113 STRIPE_SIZE, faila,
1114 blocks, &submit);
1115 } else {
1116 /* We're missing D+D. */
1117 return async_raid6_2data_recov(syndrome_disks+2,
1118 STRIPE_SIZE, faila, failb,
1119 blocks, &submit);
1120 }
ac6b53b6
DW
1121 }
1122}
1123
1124
91c00924
DW
1125static void ops_complete_prexor(void *stripe_head_ref)
1126{
1127 struct stripe_head *sh = stripe_head_ref;
1128
e46b272b 1129 pr_debug("%s: stripe %llu\n", __func__,
91c00924 1130 (unsigned long long)sh->sector);
91c00924
DW
1131}
1132
1133static struct dma_async_tx_descriptor *
d6f38f31
DW
1134ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
1135 struct dma_async_tx_descriptor *tx)
91c00924 1136{
91c00924 1137 int disks = sh->disks;
d6f38f31 1138 struct page **xor_srcs = percpu->scribble;
91c00924 1139 int count = 0, pd_idx = sh->pd_idx, i;
a08abd8c 1140 struct async_submit_ctl submit;
91c00924
DW
1141
1142 /* existing parity data subtracted */
1143 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1144
e46b272b 1145 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1146 (unsigned long long)sh->sector);
1147
1148 for (i = disks; i--; ) {
1149 struct r5dev *dev = &sh->dev[i];
1150 /* Only process blocks that are known to be uptodate */
d8ee0728 1151 if (test_bit(R5_Wantdrain, &dev->flags))
91c00924
DW
1152 xor_srcs[count++] = dev->page;
1153 }
1154
0403e382 1155 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
d6f38f31 1156 ops_complete_prexor, sh, to_addr_conv(sh, percpu));
a08abd8c 1157 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
91c00924
DW
1158
1159 return tx;
1160}
1161
1162static struct dma_async_tx_descriptor *
d8ee0728 1163ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
91c00924
DW
1164{
1165 int disks = sh->disks;
d8ee0728 1166 int i;
91c00924 1167
e46b272b 1168 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1169 (unsigned long long)sh->sector);
1170
1171 for (i = disks; i--; ) {
1172 struct r5dev *dev = &sh->dev[i];
1173 struct bio *chosen;
91c00924 1174
d8ee0728 1175 if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
91c00924
DW
1176 struct bio *wbi;
1177
b17459c0 1178 spin_lock_irq(&sh->stripe_lock);
91c00924
DW
1179 chosen = dev->towrite;
1180 dev->towrite = NULL;
1181 BUG_ON(dev->written);
1182 wbi = dev->written = chosen;
b17459c0 1183 spin_unlock_irq(&sh->stripe_lock);
91c00924
DW
1184
1185 while (wbi && wbi->bi_sector <
1186 dev->sector + STRIPE_SECTORS) {
e9c7469b
TH
1187 if (wbi->bi_rw & REQ_FUA)
1188 set_bit(R5_WantFUA, &dev->flags);
bc0934f0
SL
1189 if (wbi->bi_rw & REQ_SYNC)
1190 set_bit(R5_SyncIO, &dev->flags);
9e444768 1191 if (wbi->bi_rw & REQ_DISCARD)
620125f2 1192 set_bit(R5_Discard, &dev->flags);
9e444768 1193 else
620125f2
SL
1194 tx = async_copy_data(1, wbi, dev->page,
1195 dev->sector, tx);
91c00924
DW
1196 wbi = r5_next_bio(wbi, dev->sector);
1197 }
1198 }
1199 }
1200
1201 return tx;
1202}
1203
ac6b53b6 1204static void ops_complete_reconstruct(void *stripe_head_ref)
91c00924
DW
1205{
1206 struct stripe_head *sh = stripe_head_ref;
ac6b53b6
DW
1207 int disks = sh->disks;
1208 int pd_idx = sh->pd_idx;
1209 int qd_idx = sh->qd_idx;
1210 int i;
9e444768 1211 bool fua = false, sync = false, discard = false;
91c00924 1212
e46b272b 1213 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1214 (unsigned long long)sh->sector);
1215
bc0934f0 1216 for (i = disks; i--; ) {
e9c7469b 1217 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
bc0934f0 1218 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
9e444768 1219 discard |= test_bit(R5_Discard, &sh->dev[i].flags);
bc0934f0 1220 }
e9c7469b 1221
91c00924
DW
1222 for (i = disks; i--; ) {
1223 struct r5dev *dev = &sh->dev[i];
ac6b53b6 1224
e9c7469b 1225 if (dev->written || i == pd_idx || i == qd_idx) {
9e444768
SL
1226 if (!discard)
1227 set_bit(R5_UPTODATE, &dev->flags);
e9c7469b
TH
1228 if (fua)
1229 set_bit(R5_WantFUA, &dev->flags);
bc0934f0
SL
1230 if (sync)
1231 set_bit(R5_SyncIO, &dev->flags);
e9c7469b 1232 }
91c00924
DW
1233 }
1234
d8ee0728
DW
1235 if (sh->reconstruct_state == reconstruct_state_drain_run)
1236 sh->reconstruct_state = reconstruct_state_drain_result;
1237 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1238 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1239 else {
1240 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1241 sh->reconstruct_state = reconstruct_state_result;
1242 }
91c00924
DW
1243
1244 set_bit(STRIPE_HANDLE, &sh->state);
1245 release_stripe(sh);
1246}
1247
1248static void
ac6b53b6
DW
1249ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1250 struct dma_async_tx_descriptor *tx)
91c00924 1251{
91c00924 1252 int disks = sh->disks;
d6f38f31 1253 struct page **xor_srcs = percpu->scribble;
a08abd8c 1254 struct async_submit_ctl submit;
91c00924
DW
1255 int count = 0, pd_idx = sh->pd_idx, i;
1256 struct page *xor_dest;
d8ee0728 1257 int prexor = 0;
91c00924 1258 unsigned long flags;
91c00924 1259
e46b272b 1260 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1261 (unsigned long long)sh->sector);
1262
620125f2
SL
1263 for (i = 0; i < sh->disks; i++) {
1264 if (pd_idx == i)
1265 continue;
1266 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1267 break;
1268 }
1269 if (i >= sh->disks) {
1270 atomic_inc(&sh->count);
620125f2
SL
1271 set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1272 ops_complete_reconstruct(sh);
1273 return;
1274 }
91c00924
DW
1275 /* check if prexor is active which means only process blocks
1276 * that are part of a read-modify-write (written)
1277 */
d8ee0728
DW
1278 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1279 prexor = 1;
91c00924
DW
1280 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1281 for (i = disks; i--; ) {
1282 struct r5dev *dev = &sh->dev[i];
1283 if (dev->written)
1284 xor_srcs[count++] = dev->page;
1285 }
1286 } else {
1287 xor_dest = sh->dev[pd_idx].page;
1288 for (i = disks; i--; ) {
1289 struct r5dev *dev = &sh->dev[i];
1290 if (i != pd_idx)
1291 xor_srcs[count++] = dev->page;
1292 }
1293 }
1294
91c00924
DW
1295 /* 1/ if we prexor'd then the dest is reused as a source
1296 * 2/ if we did not prexor then we are redoing the parity
1297 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1298 * for the synchronous xor case
1299 */
88ba2aa5 1300 flags = ASYNC_TX_ACK |
91c00924
DW
1301 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1302
1303 atomic_inc(&sh->count);
1304
ac6b53b6 1305 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
d6f38f31 1306 to_addr_conv(sh, percpu));
a08abd8c
DW
1307 if (unlikely(count == 1))
1308 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1309 else
1310 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
91c00924
DW
1311}
1312
ac6b53b6
DW
1313static void
1314ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1315 struct dma_async_tx_descriptor *tx)
1316{
1317 struct async_submit_ctl submit;
1318 struct page **blocks = percpu->scribble;
620125f2 1319 int count, i;
ac6b53b6
DW
1320
1321 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1322
620125f2
SL
1323 for (i = 0; i < sh->disks; i++) {
1324 if (sh->pd_idx == i || sh->qd_idx == i)
1325 continue;
1326 if (!test_bit(R5_Discard, &sh->dev[i].flags))
1327 break;
1328 }
1329 if (i >= sh->disks) {
1330 atomic_inc(&sh->count);
620125f2
SL
1331 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1332 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1333 ops_complete_reconstruct(sh);
1334 return;
1335 }
1336
ac6b53b6
DW
1337 count = set_syndrome_sources(blocks, sh);
1338
1339 atomic_inc(&sh->count);
1340
1341 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1342 sh, to_addr_conv(sh, percpu));
1343 async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
91c00924
DW
1344}
1345
1346static void ops_complete_check(void *stripe_head_ref)
1347{
1348 struct stripe_head *sh = stripe_head_ref;
91c00924 1349
e46b272b 1350 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1351 (unsigned long long)sh->sector);
1352
ecc65c9b 1353 sh->check_state = check_state_check_result;
91c00924
DW
1354 set_bit(STRIPE_HANDLE, &sh->state);
1355 release_stripe(sh);
1356}
1357
ac6b53b6 1358static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
91c00924 1359{
91c00924 1360 int disks = sh->disks;
ac6b53b6
DW
1361 int pd_idx = sh->pd_idx;
1362 int qd_idx = sh->qd_idx;
1363 struct page *xor_dest;
d6f38f31 1364 struct page **xor_srcs = percpu->scribble;
91c00924 1365 struct dma_async_tx_descriptor *tx;
a08abd8c 1366 struct async_submit_ctl submit;
ac6b53b6
DW
1367 int count;
1368 int i;
91c00924 1369
e46b272b 1370 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1371 (unsigned long long)sh->sector);
1372
ac6b53b6
DW
1373 count = 0;
1374 xor_dest = sh->dev[pd_idx].page;
1375 xor_srcs[count++] = xor_dest;
91c00924 1376 for (i = disks; i--; ) {
ac6b53b6
DW
1377 if (i == pd_idx || i == qd_idx)
1378 continue;
1379 xor_srcs[count++] = sh->dev[i].page;
91c00924
DW
1380 }
1381
d6f38f31
DW
1382 init_async_submit(&submit, 0, NULL, NULL, NULL,
1383 to_addr_conv(sh, percpu));
099f53cb 1384 tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
a08abd8c 1385 &sh->ops.zero_sum_result, &submit);
91c00924 1386
91c00924 1387 atomic_inc(&sh->count);
a08abd8c
DW
1388 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1389 tx = async_trigger_callback(&submit);
91c00924
DW
1390}
1391
ac6b53b6
DW
1392static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1393{
1394 struct page **srcs = percpu->scribble;
1395 struct async_submit_ctl submit;
1396 int count;
1397
1398 pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1399 (unsigned long long)sh->sector, checkp);
1400
1401 count = set_syndrome_sources(srcs, sh);
1402 if (!checkp)
1403 srcs[count] = NULL;
91c00924 1404
91c00924 1405 atomic_inc(&sh->count);
ac6b53b6
DW
1406 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1407 sh, to_addr_conv(sh, percpu));
1408 async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1409 &sh->ops.zero_sum_result, percpu->spare_page, &submit);
91c00924
DW
1410}
1411
51acbcec 1412static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
91c00924
DW
1413{
1414 int overlap_clear = 0, i, disks = sh->disks;
1415 struct dma_async_tx_descriptor *tx = NULL;
d1688a6d 1416 struct r5conf *conf = sh->raid_conf;
ac6b53b6 1417 int level = conf->level;
d6f38f31
DW
1418 struct raid5_percpu *percpu;
1419 unsigned long cpu;
91c00924 1420
d6f38f31
DW
1421 cpu = get_cpu();
1422 percpu = per_cpu_ptr(conf->percpu, cpu);
83de75cc 1423 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
91c00924
DW
1424 ops_run_biofill(sh);
1425 overlap_clear++;
1426 }
1427
7b3a871e 1428 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
ac6b53b6
DW
1429 if (level < 6)
1430 tx = ops_run_compute5(sh, percpu);
1431 else {
1432 if (sh->ops.target2 < 0 || sh->ops.target < 0)
1433 tx = ops_run_compute6_1(sh, percpu);
1434 else
1435 tx = ops_run_compute6_2(sh, percpu);
1436 }
1437 /* terminate the chain if reconstruct is not set to be run */
1438 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
7b3a871e
DW
1439 async_tx_ack(tx);
1440 }
91c00924 1441
600aa109 1442 if (test_bit(STRIPE_OP_PREXOR, &ops_request))
d6f38f31 1443 tx = ops_run_prexor(sh, percpu, tx);
91c00924 1444
600aa109 1445 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
d8ee0728 1446 tx = ops_run_biodrain(sh, tx);
91c00924
DW
1447 overlap_clear++;
1448 }
1449
ac6b53b6
DW
1450 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1451 if (level < 6)
1452 ops_run_reconstruct5(sh, percpu, tx);
1453 else
1454 ops_run_reconstruct6(sh, percpu, tx);
1455 }
91c00924 1456
ac6b53b6
DW
1457 if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1458 if (sh->check_state == check_state_run)
1459 ops_run_check_p(sh, percpu);
1460 else if (sh->check_state == check_state_run_q)
1461 ops_run_check_pq(sh, percpu, 0);
1462 else if (sh->check_state == check_state_run_pq)
1463 ops_run_check_pq(sh, percpu, 1);
1464 else
1465 BUG();
1466 }
91c00924 1467
91c00924
DW
1468 if (overlap_clear)
1469 for (i = disks; i--; ) {
1470 struct r5dev *dev = &sh->dev[i];
1471 if (test_and_clear_bit(R5_Overlap, &dev->flags))
1472 wake_up(&sh->raid_conf->wait_for_overlap);
1473 }
d6f38f31 1474 put_cpu();
91c00924
DW
1475}
1476
d1688a6d 1477static int grow_one_stripe(struct r5conf *conf)
1da177e4
LT
1478{
1479 struct stripe_head *sh;
6ce32846 1480 sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL);
3f294f4f
N
1481 if (!sh)
1482 return 0;
6ce32846 1483
3f294f4f 1484 sh->raid_conf = conf;
3f294f4f 1485
b17459c0
SL
1486 spin_lock_init(&sh->stripe_lock);
1487
e4e11e38
N
1488 if (grow_buffers(sh)) {
1489 shrink_buffers(sh);
3f294f4f
N
1490 kmem_cache_free(conf->slab_cache, sh);
1491 return 0;
1492 }
1493 /* we just created an active stripe so... */
1494 atomic_set(&sh->count, 1);
1495 atomic_inc(&conf->active_stripes);
1496 INIT_LIST_HEAD(&sh->lru);
1497 release_stripe(sh);
1498 return 1;
1499}
1500
d1688a6d 1501static int grow_stripes(struct r5conf *conf, int num)
3f294f4f 1502{
e18b890b 1503 struct kmem_cache *sc;
5e5e3e78 1504 int devs = max(conf->raid_disks, conf->previous_raid_disks);
1da177e4 1505
f4be6b43
N
1506 if (conf->mddev->gendisk)
1507 sprintf(conf->cache_name[0],
1508 "raid%d-%s", conf->level, mdname(conf->mddev));
1509 else
1510 sprintf(conf->cache_name[0],
1511 "raid%d-%p", conf->level, conf->mddev);
1512 sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
1513
ad01c9e3
N
1514 conf->active_name = 0;
1515 sc = kmem_cache_create(conf->cache_name[conf->active_name],
1da177e4 1516 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
20c2df83 1517 0, 0, NULL);
1da177e4
LT
1518 if (!sc)
1519 return 1;
1520 conf->slab_cache = sc;
ad01c9e3 1521 conf->pool_size = devs;
16a53ecc 1522 while (num--)
3f294f4f 1523 if (!grow_one_stripe(conf))
1da177e4 1524 return 1;
1da177e4
LT
1525 return 0;
1526}
29269553 1527
d6f38f31
DW
1528/**
1529 * scribble_len - return the required size of the scribble region
1530 * @num - total number of disks in the array
1531 *
1532 * The size must be enough to contain:
1533 * 1/ a struct page pointer for each device in the array +2
1534 * 2/ room to convert each entry in (1) to its corresponding dma
1535 * (dma_map_page()) or page (page_address()) address.
1536 *
1537 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1538 * calculate over all devices (not just the data blocks), using zeros in place
1539 * of the P and Q blocks.
1540 */
1541static size_t scribble_len(int num)
1542{
1543 size_t len;
1544
1545 len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1546
1547 return len;
1548}
1549
d1688a6d 1550static int resize_stripes(struct r5conf *conf, int newsize)
ad01c9e3
N
1551{
1552 /* Make all the stripes able to hold 'newsize' devices.
1553 * New slots in each stripe get 'page' set to a new page.
1554 *
1555 * This happens in stages:
1556 * 1/ create a new kmem_cache and allocate the required number of
1557 * stripe_heads.
83f0d77a 1558 * 2/ gather all the old stripe_heads and transfer the pages across
ad01c9e3
N
1559 * to the new stripe_heads. This will have the side effect of
1560 * freezing the array as once all stripe_heads have been collected,
1561 * no IO will be possible. Old stripe heads are freed once their
1562 * pages have been transferred over, and the old kmem_cache is
1563 * freed when all stripes are done.
1564 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
1565 * we simple return a failre status - no need to clean anything up.
1566 * 4/ allocate new pages for the new slots in the new stripe_heads.
1567 * If this fails, we don't bother trying the shrink the
1568 * stripe_heads down again, we just leave them as they are.
1569 * As each stripe_head is processed the new one is released into
1570 * active service.
1571 *
1572 * Once step2 is started, we cannot afford to wait for a write,
1573 * so we use GFP_NOIO allocations.
1574 */
1575 struct stripe_head *osh, *nsh;
1576 LIST_HEAD(newstripes);
1577 struct disk_info *ndisks;
d6f38f31 1578 unsigned long cpu;
b5470dc5 1579 int err;
e18b890b 1580 struct kmem_cache *sc;
ad01c9e3
N
1581 int i;
1582
1583 if (newsize <= conf->pool_size)
1584 return 0; /* never bother to shrink */
1585
b5470dc5
DW
1586 err = md_allow_write(conf->mddev);
1587 if (err)
1588 return err;
2a2275d6 1589
ad01c9e3
N
1590 /* Step 1 */
1591 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1592 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
20c2df83 1593 0, 0, NULL);
ad01c9e3
N
1594 if (!sc)
1595 return -ENOMEM;
1596
1597 for (i = conf->max_nr_stripes; i; i--) {
6ce32846 1598 nsh = kmem_cache_zalloc(sc, GFP_KERNEL);
ad01c9e3
N
1599 if (!nsh)
1600 break;
1601
ad01c9e3 1602 nsh->raid_conf = conf;
cb13ff69 1603 spin_lock_init(&nsh->stripe_lock);
ad01c9e3
N
1604
1605 list_add(&nsh->lru, &newstripes);
1606 }
1607 if (i) {
1608 /* didn't get enough, give up */
1609 while (!list_empty(&newstripes)) {
1610 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1611 list_del(&nsh->lru);
1612 kmem_cache_free(sc, nsh);
1613 }
1614 kmem_cache_destroy(sc);
1615 return -ENOMEM;
1616 }
1617 /* Step 2 - Must use GFP_NOIO now.
1618 * OK, we have enough stripes, start collecting inactive
1619 * stripes and copying them over
1620 */
1621 list_for_each_entry(nsh, &newstripes, lru) {
1622 spin_lock_irq(&conf->device_lock);
1623 wait_event_lock_irq(conf->wait_for_stripe,
1624 !list_empty(&conf->inactive_list),
eed8c02e 1625 conf->device_lock);
ad01c9e3
N
1626 osh = get_free_stripe(conf);
1627 spin_unlock_irq(&conf->device_lock);
1628 atomic_set(&nsh->count, 1);
1629 for(i=0; i<conf->pool_size; i++)
1630 nsh->dev[i].page = osh->dev[i].page;
1631 for( ; i<newsize; i++)
1632 nsh->dev[i].page = NULL;
1633 kmem_cache_free(conf->slab_cache, osh);
1634 }
1635 kmem_cache_destroy(conf->slab_cache);
1636
1637 /* Step 3.
1638 * At this point, we are holding all the stripes so the array
1639 * is completely stalled, so now is a good time to resize
d6f38f31 1640 * conf->disks and the scribble region
ad01c9e3
N
1641 */
1642 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1643 if (ndisks) {
1644 for (i=0; i<conf->raid_disks; i++)
1645 ndisks[i] = conf->disks[i];
1646 kfree(conf->disks);
1647 conf->disks = ndisks;
1648 } else
1649 err = -ENOMEM;
1650
d6f38f31
DW
1651 get_online_cpus();
1652 conf->scribble_len = scribble_len(newsize);
1653 for_each_present_cpu(cpu) {
1654 struct raid5_percpu *percpu;
1655 void *scribble;
1656
1657 percpu = per_cpu_ptr(conf->percpu, cpu);
1658 scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1659
1660 if (scribble) {
1661 kfree(percpu->scribble);
1662 percpu->scribble = scribble;
1663 } else {
1664 err = -ENOMEM;
1665 break;
1666 }
1667 }
1668 put_online_cpus();
1669
ad01c9e3
N
1670 /* Step 4, return new stripes to service */
1671 while(!list_empty(&newstripes)) {
1672 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1673 list_del_init(&nsh->lru);
d6f38f31 1674
ad01c9e3
N
1675 for (i=conf->raid_disks; i < newsize; i++)
1676 if (nsh->dev[i].page == NULL) {
1677 struct page *p = alloc_page(GFP_NOIO);
1678 nsh->dev[i].page = p;
1679 if (!p)
1680 err = -ENOMEM;
1681 }
1682 release_stripe(nsh);
1683 }
1684 /* critical section pass, GFP_NOIO no longer needed */
1685
1686 conf->slab_cache = sc;
1687 conf->active_name = 1-conf->active_name;
1688 conf->pool_size = newsize;
1689 return err;
1690}
1da177e4 1691
d1688a6d 1692static int drop_one_stripe(struct r5conf *conf)
1da177e4
LT
1693{
1694 struct stripe_head *sh;
1695
3f294f4f
N
1696 spin_lock_irq(&conf->device_lock);
1697 sh = get_free_stripe(conf);
1698 spin_unlock_irq(&conf->device_lock);
1699 if (!sh)
1700 return 0;
78bafebd 1701 BUG_ON(atomic_read(&sh->count));
e4e11e38 1702 shrink_buffers(sh);
3f294f4f
N
1703 kmem_cache_free(conf->slab_cache, sh);
1704 atomic_dec(&conf->active_stripes);
1705 return 1;
1706}
1707
d1688a6d 1708static void shrink_stripes(struct r5conf *conf)
3f294f4f
N
1709{
1710 while (drop_one_stripe(conf))
1711 ;
1712
29fc7e3e
N
1713 if (conf->slab_cache)
1714 kmem_cache_destroy(conf->slab_cache);
1da177e4
LT
1715 conf->slab_cache = NULL;
1716}
1717
6712ecf8 1718static void raid5_end_read_request(struct bio * bi, int error)
1da177e4 1719{
99c0fb5f 1720 struct stripe_head *sh = bi->bi_private;
d1688a6d 1721 struct r5conf *conf = sh->raid_conf;
7ecaa1e6 1722 int disks = sh->disks, i;
1da177e4 1723 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
d6950432 1724 char b[BDEVNAME_SIZE];
dd054fce 1725 struct md_rdev *rdev = NULL;
05616be5 1726 sector_t s;
1da177e4
LT
1727
1728 for (i=0 ; i<disks; i++)
1729 if (bi == &sh->dev[i].req)
1730 break;
1731
45b4233c
DW
1732 pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1733 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1da177e4
LT
1734 uptodate);
1735 if (i == disks) {
1736 BUG();
6712ecf8 1737 return;
1da177e4 1738 }
14a75d3e 1739 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
dd054fce
N
1740 /* If replacement finished while this request was outstanding,
1741 * 'replacement' might be NULL already.
1742 * In that case it moved down to 'rdev'.
1743 * rdev is not removed until all requests are finished.
1744 */
14a75d3e 1745 rdev = conf->disks[i].replacement;
dd054fce 1746 if (!rdev)
14a75d3e 1747 rdev = conf->disks[i].rdev;
1da177e4 1748
05616be5
N
1749 if (use_new_offset(conf, sh))
1750 s = sh->sector + rdev->new_data_offset;
1751 else
1752 s = sh->sector + rdev->data_offset;
1da177e4 1753 if (uptodate) {
1da177e4 1754 set_bit(R5_UPTODATE, &sh->dev[i].flags);
4e5314b5 1755 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
14a75d3e
N
1756 /* Note that this cannot happen on a
1757 * replacement device. We just fail those on
1758 * any error
1759 */
8bda470e
CD
1760 printk_ratelimited(
1761 KERN_INFO
1762 "md/raid:%s: read error corrected"
1763 " (%lu sectors at %llu on %s)\n",
1764 mdname(conf->mddev), STRIPE_SECTORS,
05616be5 1765 (unsigned long long)s,
8bda470e 1766 bdevname(rdev->bdev, b));
ddd5115f 1767 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
4e5314b5
N
1768 clear_bit(R5_ReadError, &sh->dev[i].flags);
1769 clear_bit(R5_ReWrite, &sh->dev[i].flags);
3f9e7c14 1770 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
1771 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
1772
14a75d3e
N
1773 if (atomic_read(&rdev->read_errors))
1774 atomic_set(&rdev->read_errors, 0);
1da177e4 1775 } else {
14a75d3e 1776 const char *bdn = bdevname(rdev->bdev, b);
ba22dcbf 1777 int retry = 0;
2e8ac303 1778 int set_bad = 0;
d6950432 1779
1da177e4 1780 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
d6950432 1781 atomic_inc(&rdev->read_errors);
14a75d3e
N
1782 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
1783 printk_ratelimited(
1784 KERN_WARNING
1785 "md/raid:%s: read error on replacement device "
1786 "(sector %llu on %s).\n",
1787 mdname(conf->mddev),
05616be5 1788 (unsigned long long)s,
14a75d3e 1789 bdn);
2e8ac303 1790 else if (conf->mddev->degraded >= conf->max_degraded) {
1791 set_bad = 1;
8bda470e
CD
1792 printk_ratelimited(
1793 KERN_WARNING
1794 "md/raid:%s: read error not correctable "
1795 "(sector %llu on %s).\n",
1796 mdname(conf->mddev),
05616be5 1797 (unsigned long long)s,
8bda470e 1798 bdn);
2e8ac303 1799 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
4e5314b5 1800 /* Oh, no!!! */
2e8ac303 1801 set_bad = 1;
8bda470e
CD
1802 printk_ratelimited(
1803 KERN_WARNING
1804 "md/raid:%s: read error NOT corrected!! "
1805 "(sector %llu on %s).\n",
1806 mdname(conf->mddev),
05616be5 1807 (unsigned long long)s,
8bda470e 1808 bdn);
2e8ac303 1809 } else if (atomic_read(&rdev->read_errors)
ba22dcbf 1810 > conf->max_nr_stripes)
14f8d26b 1811 printk(KERN_WARNING
0c55e022 1812 "md/raid:%s: Too many read errors, failing device %s.\n",
d6950432 1813 mdname(conf->mddev), bdn);
ba22dcbf
N
1814 else
1815 retry = 1;
1816 if (retry)
3f9e7c14 1817 if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
1818 set_bit(R5_ReadError, &sh->dev[i].flags);
1819 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
1820 } else
1821 set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
ba22dcbf 1822 else {
4e5314b5
N
1823 clear_bit(R5_ReadError, &sh->dev[i].flags);
1824 clear_bit(R5_ReWrite, &sh->dev[i].flags);
2e8ac303 1825 if (!(set_bad
1826 && test_bit(In_sync, &rdev->flags)
1827 && rdev_set_badblocks(
1828 rdev, sh->sector, STRIPE_SECTORS, 0)))
1829 md_error(conf->mddev, rdev);
ba22dcbf 1830 }
1da177e4 1831 }
14a75d3e 1832 rdev_dec_pending(rdev, conf->mddev);
1da177e4
LT
1833 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1834 set_bit(STRIPE_HANDLE, &sh->state);
1835 release_stripe(sh);
1da177e4
LT
1836}
1837
d710e138 1838static void raid5_end_write_request(struct bio *bi, int error)
1da177e4 1839{
99c0fb5f 1840 struct stripe_head *sh = bi->bi_private;
d1688a6d 1841 struct r5conf *conf = sh->raid_conf;
7ecaa1e6 1842 int disks = sh->disks, i;
977df362 1843 struct md_rdev *uninitialized_var(rdev);
1da177e4 1844 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
b84db560
N
1845 sector_t first_bad;
1846 int bad_sectors;
977df362 1847 int replacement = 0;
1da177e4 1848
977df362
N
1849 for (i = 0 ; i < disks; i++) {
1850 if (bi == &sh->dev[i].req) {
1851 rdev = conf->disks[i].rdev;
1da177e4 1852 break;
977df362
N
1853 }
1854 if (bi == &sh->dev[i].rreq) {
1855 rdev = conf->disks[i].replacement;
dd054fce
N
1856 if (rdev)
1857 replacement = 1;
1858 else
1859 /* rdev was removed and 'replacement'
1860 * replaced it. rdev is not removed
1861 * until all requests are finished.
1862 */
1863 rdev = conf->disks[i].rdev;
977df362
N
1864 break;
1865 }
1866 }
45b4233c 1867 pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1da177e4
LT
1868 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1869 uptodate);
1870 if (i == disks) {
1871 BUG();
6712ecf8 1872 return;
1da177e4
LT
1873 }
1874
977df362
N
1875 if (replacement) {
1876 if (!uptodate)
1877 md_error(conf->mddev, rdev);
1878 else if (is_badblock(rdev, sh->sector,
1879 STRIPE_SECTORS,
1880 &first_bad, &bad_sectors))
1881 set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
1882 } else {
1883 if (!uptodate) {
1884 set_bit(WriteErrorSeen, &rdev->flags);
1885 set_bit(R5_WriteError, &sh->dev[i].flags);
3a6de292
N
1886 if (!test_and_set_bit(WantReplacement, &rdev->flags))
1887 set_bit(MD_RECOVERY_NEEDED,
1888 &rdev->mddev->recovery);
977df362
N
1889 } else if (is_badblock(rdev, sh->sector,
1890 STRIPE_SECTORS,
1891 &first_bad, &bad_sectors))
1892 set_bit(R5_MadeGood, &sh->dev[i].flags);
1893 }
1894 rdev_dec_pending(rdev, conf->mddev);
1da177e4 1895
977df362
N
1896 if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
1897 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1da177e4 1898 set_bit(STRIPE_HANDLE, &sh->state);
c04be0aa 1899 release_stripe(sh);
1da177e4
LT
1900}
1901
784052ec 1902static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
1da177e4 1903
784052ec 1904static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1da177e4
LT
1905{
1906 struct r5dev *dev = &sh->dev[i];
1907
1908 bio_init(&dev->req);
1909 dev->req.bi_io_vec = &dev->vec;
1910 dev->req.bi_vcnt++;
1911 dev->req.bi_max_vecs++;
1da177e4 1912 dev->req.bi_private = sh;
995c4275 1913 dev->vec.bv_page = dev->page;
1da177e4 1914
977df362
N
1915 bio_init(&dev->rreq);
1916 dev->rreq.bi_io_vec = &dev->rvec;
1917 dev->rreq.bi_vcnt++;
1918 dev->rreq.bi_max_vecs++;
1919 dev->rreq.bi_private = sh;
1920 dev->rvec.bv_page = dev->page;
1921
1da177e4 1922 dev->flags = 0;
784052ec 1923 dev->sector = compute_blocknr(sh, i, previous);
1da177e4
LT
1924}
1925
fd01b88c 1926static void error(struct mddev *mddev, struct md_rdev *rdev)
1da177e4
LT
1927{
1928 char b[BDEVNAME_SIZE];
d1688a6d 1929 struct r5conf *conf = mddev->private;
908f4fbd 1930 unsigned long flags;
0c55e022 1931 pr_debug("raid456: error called\n");
1da177e4 1932
908f4fbd
N
1933 spin_lock_irqsave(&conf->device_lock, flags);
1934 clear_bit(In_sync, &rdev->flags);
1935 mddev->degraded = calc_degraded(conf);
1936 spin_unlock_irqrestore(&conf->device_lock, flags);
1937 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1938
de393cde 1939 set_bit(Blocked, &rdev->flags);
6f8d0c77
N
1940 set_bit(Faulty, &rdev->flags);
1941 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1942 printk(KERN_ALERT
1943 "md/raid:%s: Disk failure on %s, disabling device.\n"
1944 "md/raid:%s: Operation continuing on %d devices.\n",
1945 mdname(mddev),
1946 bdevname(rdev->bdev, b),
1947 mdname(mddev),
1948 conf->raid_disks - mddev->degraded);
16a53ecc 1949}
1da177e4
LT
1950
1951/*
1952 * Input: a 'big' sector number,
1953 * Output: index of the data and parity disk, and the sector # in them.
1954 */
d1688a6d 1955static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
911d4ee8
N
1956 int previous, int *dd_idx,
1957 struct stripe_head *sh)
1da177e4 1958{
6e3b96ed 1959 sector_t stripe, stripe2;
35f2a591 1960 sector_t chunk_number;
1da177e4 1961 unsigned int chunk_offset;
911d4ee8 1962 int pd_idx, qd_idx;
67cc2b81 1963 int ddf_layout = 0;
1da177e4 1964 sector_t new_sector;
e183eaed
N
1965 int algorithm = previous ? conf->prev_algo
1966 : conf->algorithm;
09c9e5fa
AN
1967 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1968 : conf->chunk_sectors;
112bf897
N
1969 int raid_disks = previous ? conf->previous_raid_disks
1970 : conf->raid_disks;
1971 int data_disks = raid_disks - conf->max_degraded;
1da177e4
LT
1972
1973 /* First compute the information on this sector */
1974
1975 /*
1976 * Compute the chunk number and the sector offset inside the chunk
1977 */
1978 chunk_offset = sector_div(r_sector, sectors_per_chunk);
1979 chunk_number = r_sector;
1da177e4
LT
1980
1981 /*
1982 * Compute the stripe number
1983 */
35f2a591
N
1984 stripe = chunk_number;
1985 *dd_idx = sector_div(stripe, data_disks);
6e3b96ed 1986 stripe2 = stripe;
1da177e4
LT
1987 /*
1988 * Select the parity disk based on the user selected algorithm.
1989 */
84789554 1990 pd_idx = qd_idx = -1;
16a53ecc
N
1991 switch(conf->level) {
1992 case 4:
911d4ee8 1993 pd_idx = data_disks;
16a53ecc
N
1994 break;
1995 case 5:
e183eaed 1996 switch (algorithm) {
1da177e4 1997 case ALGORITHM_LEFT_ASYMMETRIC:
6e3b96ed 1998 pd_idx = data_disks - sector_div(stripe2, raid_disks);
911d4ee8 1999 if (*dd_idx >= pd_idx)
1da177e4
LT
2000 (*dd_idx)++;
2001 break;
2002 case ALGORITHM_RIGHT_ASYMMETRIC:
6e3b96ed 2003 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8 2004 if (*dd_idx >= pd_idx)
1da177e4
LT
2005 (*dd_idx)++;
2006 break;
2007 case ALGORITHM_LEFT_SYMMETRIC:
6e3b96ed 2008 pd_idx = data_disks - sector_div(stripe2, raid_disks);
911d4ee8 2009 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1da177e4
LT
2010 break;
2011 case ALGORITHM_RIGHT_SYMMETRIC:
6e3b96ed 2012 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8 2013 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1da177e4 2014 break;
99c0fb5f
N
2015 case ALGORITHM_PARITY_0:
2016 pd_idx = 0;
2017 (*dd_idx)++;
2018 break;
2019 case ALGORITHM_PARITY_N:
2020 pd_idx = data_disks;
2021 break;
1da177e4 2022 default:
99c0fb5f 2023 BUG();
16a53ecc
N
2024 }
2025 break;
2026 case 6:
2027
e183eaed 2028 switch (algorithm) {
16a53ecc 2029 case ALGORITHM_LEFT_ASYMMETRIC:
6e3b96ed 2030 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
911d4ee8
N
2031 qd_idx = pd_idx + 1;
2032 if (pd_idx == raid_disks-1) {
99c0fb5f 2033 (*dd_idx)++; /* Q D D D P */
911d4ee8
N
2034 qd_idx = 0;
2035 } else if (*dd_idx >= pd_idx)
16a53ecc
N
2036 (*dd_idx) += 2; /* D D P Q D */
2037 break;
2038 case ALGORITHM_RIGHT_ASYMMETRIC:
6e3b96ed 2039 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8
N
2040 qd_idx = pd_idx + 1;
2041 if (pd_idx == raid_disks-1) {
99c0fb5f 2042 (*dd_idx)++; /* Q D D D P */
911d4ee8
N
2043 qd_idx = 0;
2044 } else if (*dd_idx >= pd_idx)
16a53ecc
N
2045 (*dd_idx) += 2; /* D D P Q D */
2046 break;
2047 case ALGORITHM_LEFT_SYMMETRIC:
6e3b96ed 2048 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
911d4ee8
N
2049 qd_idx = (pd_idx + 1) % raid_disks;
2050 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
16a53ecc
N
2051 break;
2052 case ALGORITHM_RIGHT_SYMMETRIC:
6e3b96ed 2053 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8
N
2054 qd_idx = (pd_idx + 1) % raid_disks;
2055 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
16a53ecc 2056 break;
99c0fb5f
N
2057
2058 case ALGORITHM_PARITY_0:
2059 pd_idx = 0;
2060 qd_idx = 1;
2061 (*dd_idx) += 2;
2062 break;
2063 case ALGORITHM_PARITY_N:
2064 pd_idx = data_disks;
2065 qd_idx = data_disks + 1;
2066 break;
2067
2068 case ALGORITHM_ROTATING_ZERO_RESTART:
2069 /* Exactly the same as RIGHT_ASYMMETRIC, but or
2070 * of blocks for computing Q is different.
2071 */
6e3b96ed 2072 pd_idx = sector_div(stripe2, raid_disks);
99c0fb5f
N
2073 qd_idx = pd_idx + 1;
2074 if (pd_idx == raid_disks-1) {
2075 (*dd_idx)++; /* Q D D D P */
2076 qd_idx = 0;
2077 } else if (*dd_idx >= pd_idx)
2078 (*dd_idx) += 2; /* D D P Q D */
67cc2b81 2079 ddf_layout = 1;
99c0fb5f
N
2080 break;
2081
2082 case ALGORITHM_ROTATING_N_RESTART:
2083 /* Same a left_asymmetric, by first stripe is
2084 * D D D P Q rather than
2085 * Q D D D P
2086 */
6e3b96ed
N
2087 stripe2 += 1;
2088 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
99c0fb5f
N
2089 qd_idx = pd_idx + 1;
2090 if (pd_idx == raid_disks-1) {
2091 (*dd_idx)++; /* Q D D D P */
2092 qd_idx = 0;
2093 } else if (*dd_idx >= pd_idx)
2094 (*dd_idx) += 2; /* D D P Q D */
67cc2b81 2095 ddf_layout = 1;
99c0fb5f
N
2096 break;
2097
2098 case ALGORITHM_ROTATING_N_CONTINUE:
2099 /* Same as left_symmetric but Q is before P */
6e3b96ed 2100 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
99c0fb5f
N
2101 qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2102 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
67cc2b81 2103 ddf_layout = 1;
99c0fb5f
N
2104 break;
2105
2106 case ALGORITHM_LEFT_ASYMMETRIC_6:
2107 /* RAID5 left_asymmetric, with Q on last device */
6e3b96ed 2108 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
99c0fb5f
N
2109 if (*dd_idx >= pd_idx)
2110 (*dd_idx)++;
2111 qd_idx = raid_disks - 1;
2112 break;
2113
2114 case ALGORITHM_RIGHT_ASYMMETRIC_6:
6e3b96ed 2115 pd_idx = sector_div(stripe2, raid_disks-1);
99c0fb5f
N
2116 if (*dd_idx >= pd_idx)
2117 (*dd_idx)++;
2118 qd_idx = raid_disks - 1;
2119 break;
2120
2121 case ALGORITHM_LEFT_SYMMETRIC_6:
6e3b96ed 2122 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
99c0fb5f
N
2123 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2124 qd_idx = raid_disks - 1;
2125 break;
2126
2127 case ALGORITHM_RIGHT_SYMMETRIC_6:
6e3b96ed 2128 pd_idx = sector_div(stripe2, raid_disks-1);
99c0fb5f
N
2129 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2130 qd_idx = raid_disks - 1;
2131 break;
2132
2133 case ALGORITHM_PARITY_0_6:
2134 pd_idx = 0;
2135 (*dd_idx)++;
2136 qd_idx = raid_disks - 1;
2137 break;
2138
16a53ecc 2139 default:
99c0fb5f 2140 BUG();
16a53ecc
N
2141 }
2142 break;
1da177e4
LT
2143 }
2144
911d4ee8
N
2145 if (sh) {
2146 sh->pd_idx = pd_idx;
2147 sh->qd_idx = qd_idx;
67cc2b81 2148 sh->ddf_layout = ddf_layout;
911d4ee8 2149 }
1da177e4
LT
2150 /*
2151 * Finally, compute the new sector number
2152 */
2153 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2154 return new_sector;
2155}
2156
2157
784052ec 2158static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
1da177e4 2159{
d1688a6d 2160 struct r5conf *conf = sh->raid_conf;
b875e531
N
2161 int raid_disks = sh->disks;
2162 int data_disks = raid_disks - conf->max_degraded;
1da177e4 2163 sector_t new_sector = sh->sector, check;
09c9e5fa
AN
2164 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2165 : conf->chunk_sectors;
e183eaed
N
2166 int algorithm = previous ? conf->prev_algo
2167 : conf->algorithm;
1da177e4
LT
2168 sector_t stripe;
2169 int chunk_offset;
35f2a591
N
2170 sector_t chunk_number;
2171 int dummy1, dd_idx = i;
1da177e4 2172 sector_t r_sector;
911d4ee8 2173 struct stripe_head sh2;
1da177e4 2174
16a53ecc 2175
1da177e4
LT
2176 chunk_offset = sector_div(new_sector, sectors_per_chunk);
2177 stripe = new_sector;
1da177e4 2178
16a53ecc
N
2179 if (i == sh->pd_idx)
2180 return 0;
2181 switch(conf->level) {
2182 case 4: break;
2183 case 5:
e183eaed 2184 switch (algorithm) {
1da177e4
LT
2185 case ALGORITHM_LEFT_ASYMMETRIC:
2186 case ALGORITHM_RIGHT_ASYMMETRIC:
2187 if (i > sh->pd_idx)
2188 i--;
2189 break;
2190 case ALGORITHM_LEFT_SYMMETRIC:
2191 case ALGORITHM_RIGHT_SYMMETRIC:
2192 if (i < sh->pd_idx)
2193 i += raid_disks;
2194 i -= (sh->pd_idx + 1);
2195 break;
99c0fb5f
N
2196 case ALGORITHM_PARITY_0:
2197 i -= 1;
2198 break;
2199 case ALGORITHM_PARITY_N:
2200 break;
1da177e4 2201 default:
99c0fb5f 2202 BUG();
16a53ecc
N
2203 }
2204 break;
2205 case 6:
d0dabf7e 2206 if (i == sh->qd_idx)
16a53ecc 2207 return 0; /* It is the Q disk */
e183eaed 2208 switch (algorithm) {
16a53ecc
N
2209 case ALGORITHM_LEFT_ASYMMETRIC:
2210 case ALGORITHM_RIGHT_ASYMMETRIC:
99c0fb5f
N
2211 case ALGORITHM_ROTATING_ZERO_RESTART:
2212 case ALGORITHM_ROTATING_N_RESTART:
2213 if (sh->pd_idx == raid_disks-1)
2214 i--; /* Q D D D P */
16a53ecc
N
2215 else if (i > sh->pd_idx)
2216 i -= 2; /* D D P Q D */
2217 break;
2218 case ALGORITHM_LEFT_SYMMETRIC:
2219 case ALGORITHM_RIGHT_SYMMETRIC:
2220 if (sh->pd_idx == raid_disks-1)
2221 i--; /* Q D D D P */
2222 else {
2223 /* D D P Q D */
2224 if (i < sh->pd_idx)
2225 i += raid_disks;
2226 i -= (sh->pd_idx + 2);
2227 }
2228 break;
99c0fb5f
N
2229 case ALGORITHM_PARITY_0:
2230 i -= 2;
2231 break;
2232 case ALGORITHM_PARITY_N:
2233 break;
2234 case ALGORITHM_ROTATING_N_CONTINUE:
e4424fee 2235 /* Like left_symmetric, but P is before Q */
99c0fb5f
N
2236 if (sh->pd_idx == 0)
2237 i--; /* P D D D Q */
e4424fee
N
2238 else {
2239 /* D D Q P D */
2240 if (i < sh->pd_idx)
2241 i += raid_disks;
2242 i -= (sh->pd_idx + 1);
2243 }
99c0fb5f
N
2244 break;
2245 case ALGORITHM_LEFT_ASYMMETRIC_6:
2246 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2247 if (i > sh->pd_idx)
2248 i--;
2249 break;
2250 case ALGORITHM_LEFT_SYMMETRIC_6:
2251 case ALGORITHM_RIGHT_SYMMETRIC_6:
2252 if (i < sh->pd_idx)
2253 i += data_disks + 1;
2254 i -= (sh->pd_idx + 1);
2255 break;
2256 case ALGORITHM_PARITY_0_6:
2257 i -= 1;
2258 break;
16a53ecc 2259 default:
99c0fb5f 2260 BUG();
16a53ecc
N
2261 }
2262 break;
1da177e4
LT
2263 }
2264
2265 chunk_number = stripe * data_disks + i;
35f2a591 2266 r_sector = chunk_number * sectors_per_chunk + chunk_offset;
1da177e4 2267
112bf897 2268 check = raid5_compute_sector(conf, r_sector,
784052ec 2269 previous, &dummy1, &sh2);
911d4ee8
N
2270 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2271 || sh2.qd_idx != sh->qd_idx) {
0c55e022
N
2272 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2273 mdname(conf->mddev));
1da177e4
LT
2274 return 0;
2275 }
2276 return r_sector;
2277}
2278
2279
600aa109 2280static void
c0f7bddb 2281schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
600aa109 2282 int rcw, int expand)
e33129d8
DW
2283{
2284 int i, pd_idx = sh->pd_idx, disks = sh->disks;
d1688a6d 2285 struct r5conf *conf = sh->raid_conf;
c0f7bddb 2286 int level = conf->level;
e33129d8
DW
2287
2288 if (rcw) {
e33129d8
DW
2289
2290 for (i = disks; i--; ) {
2291 struct r5dev *dev = &sh->dev[i];
2292
2293 if (dev->towrite) {
2294 set_bit(R5_LOCKED, &dev->flags);
d8ee0728 2295 set_bit(R5_Wantdrain, &dev->flags);
e33129d8
DW
2296 if (!expand)
2297 clear_bit(R5_UPTODATE, &dev->flags);
600aa109 2298 s->locked++;
e33129d8
DW
2299 }
2300 }
ce7d363a
N
2301 /* if we are not expanding this is a proper write request, and
2302 * there will be bios with new data to be drained into the
2303 * stripe cache
2304 */
2305 if (!expand) {
2306 if (!s->locked)
2307 /* False alarm, nothing to do */
2308 return;
2309 sh->reconstruct_state = reconstruct_state_drain_run;
2310 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2311 } else
2312 sh->reconstruct_state = reconstruct_state_run;
2313
2314 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2315
c0f7bddb 2316 if (s->locked + conf->max_degraded == disks)
8b3e6cdc 2317 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
c0f7bddb 2318 atomic_inc(&conf->pending_full_writes);
e33129d8 2319 } else {
c0f7bddb 2320 BUG_ON(level == 6);
e33129d8
DW
2321 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2322 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2323
e33129d8
DW
2324 for (i = disks; i--; ) {
2325 struct r5dev *dev = &sh->dev[i];
2326 if (i == pd_idx)
2327 continue;
2328
e33129d8
DW
2329 if (dev->towrite &&
2330 (test_bit(R5_UPTODATE, &dev->flags) ||
d8ee0728
DW
2331 test_bit(R5_Wantcompute, &dev->flags))) {
2332 set_bit(R5_Wantdrain, &dev->flags);
e33129d8
DW
2333 set_bit(R5_LOCKED, &dev->flags);
2334 clear_bit(R5_UPTODATE, &dev->flags);
600aa109 2335 s->locked++;
e33129d8
DW
2336 }
2337 }
ce7d363a
N
2338 if (!s->locked)
2339 /* False alarm - nothing to do */
2340 return;
2341 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2342 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2343 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2344 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
e33129d8
DW
2345 }
2346
c0f7bddb 2347 /* keep the parity disk(s) locked while asynchronous operations
e33129d8
DW
2348 * are in flight
2349 */
2350 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2351 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
600aa109 2352 s->locked++;
e33129d8 2353
c0f7bddb
YT
2354 if (level == 6) {
2355 int qd_idx = sh->qd_idx;
2356 struct r5dev *dev = &sh->dev[qd_idx];
2357
2358 set_bit(R5_LOCKED, &dev->flags);
2359 clear_bit(R5_UPTODATE, &dev->flags);
2360 s->locked++;
2361 }
2362
600aa109 2363 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
e46b272b 2364 __func__, (unsigned long long)sh->sector,
600aa109 2365 s->locked, s->ops_request);
e33129d8 2366}
16a53ecc 2367
1da177e4
LT
2368/*
2369 * Each stripe/dev can have one or more bion attached.
16a53ecc 2370 * toread/towrite point to the first in a chain.
1da177e4
LT
2371 * The bi_next chain must be in order.
2372 */
2373static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2374{
2375 struct bio **bip;
d1688a6d 2376 struct r5conf *conf = sh->raid_conf;
72626685 2377 int firstwrite=0;
1da177e4 2378
cbe47ec5 2379 pr_debug("adding bi b#%llu to stripe s#%llu\n",
1da177e4
LT
2380 (unsigned long long)bi->bi_sector,
2381 (unsigned long long)sh->sector);
2382
b17459c0
SL
2383 /*
2384 * If several bio share a stripe. The bio bi_phys_segments acts as a
2385 * reference count to avoid race. The reference count should already be
2386 * increased before this function is called (for example, in
2387 * make_request()), so other bio sharing this stripe will not free the
2388 * stripe. If a stripe is owned by one stripe, the stripe lock will
2389 * protect it.
2390 */
2391 spin_lock_irq(&sh->stripe_lock);
72626685 2392 if (forwrite) {
1da177e4 2393 bip = &sh->dev[dd_idx].towrite;
7eaf7e8e 2394 if (*bip == NULL)
72626685
N
2395 firstwrite = 1;
2396 } else
1da177e4
LT
2397 bip = &sh->dev[dd_idx].toread;
2398 while (*bip && (*bip)->bi_sector < bi->bi_sector) {
2399 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
2400 goto overlap;
2401 bip = & (*bip)->bi_next;
2402 }
2403 if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
2404 goto overlap;
2405
78bafebd 2406 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
1da177e4
LT
2407 if (*bip)
2408 bi->bi_next = *bip;
2409 *bip = bi;
e7836bd6 2410 raid5_inc_bi_active_stripes(bi);
72626685 2411
1da177e4
LT
2412 if (forwrite) {
2413 /* check if page is covered */
2414 sector_t sector = sh->dev[dd_idx].sector;
2415 for (bi=sh->dev[dd_idx].towrite;
2416 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2417 bi && bi->bi_sector <= sector;
2418 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2419 if (bi->bi_sector + (bi->bi_size>>9) >= sector)
2420 sector = bi->bi_sector + (bi->bi_size>>9);
2421 }
2422 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2423 set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2424 }
cbe47ec5
N
2425
2426 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2427 (unsigned long long)(*bip)->bi_sector,
2428 (unsigned long long)sh->sector, dd_idx);
b97390ae 2429 spin_unlock_irq(&sh->stripe_lock);
cbe47ec5
N
2430
2431 if (conf->mddev->bitmap && firstwrite) {
2432 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2433 STRIPE_SECTORS, 0);
2434 sh->bm_seq = conf->seq_flush+1;
2435 set_bit(STRIPE_BIT_DELAY, &sh->state);
2436 }
1da177e4
LT
2437 return 1;
2438
2439 overlap:
2440 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
b17459c0 2441 spin_unlock_irq(&sh->stripe_lock);
1da177e4
LT
2442 return 0;
2443}
2444
d1688a6d 2445static void end_reshape(struct r5conf *conf);
29269553 2446
d1688a6d 2447static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
911d4ee8 2448 struct stripe_head *sh)
ccfcc3c1 2449{
784052ec 2450 int sectors_per_chunk =
09c9e5fa 2451 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
911d4ee8 2452 int dd_idx;
2d2063ce 2453 int chunk_offset = sector_div(stripe, sectors_per_chunk);
112bf897 2454 int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2d2063ce 2455
112bf897
N
2456 raid5_compute_sector(conf,
2457 stripe * (disks - conf->max_degraded)
b875e531 2458 *sectors_per_chunk + chunk_offset,
112bf897 2459 previous,
911d4ee8 2460 &dd_idx, sh);
ccfcc3c1
N
2461}
2462
a4456856 2463static void
d1688a6d 2464handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
a4456856
DW
2465 struct stripe_head_state *s, int disks,
2466 struct bio **return_bi)
2467{
2468 int i;
2469 for (i = disks; i--; ) {
2470 struct bio *bi;
2471 int bitmap_end = 0;
2472
2473 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3cb03002 2474 struct md_rdev *rdev;
a4456856
DW
2475 rcu_read_lock();
2476 rdev = rcu_dereference(conf->disks[i].rdev);
2477 if (rdev && test_bit(In_sync, &rdev->flags))
7f0da59b
N
2478 atomic_inc(&rdev->nr_pending);
2479 else
2480 rdev = NULL;
a4456856 2481 rcu_read_unlock();
7f0da59b
N
2482 if (rdev) {
2483 if (!rdev_set_badblocks(
2484 rdev,
2485 sh->sector,
2486 STRIPE_SECTORS, 0))
2487 md_error(conf->mddev, rdev);
2488 rdev_dec_pending(rdev, conf->mddev);
2489 }
a4456856 2490 }
b17459c0 2491 spin_lock_irq(&sh->stripe_lock);
a4456856
DW
2492 /* fail all writes first */
2493 bi = sh->dev[i].towrite;
2494 sh->dev[i].towrite = NULL;
b17459c0 2495 spin_unlock_irq(&sh->stripe_lock);
1ed850f3 2496 if (bi)
a4456856 2497 bitmap_end = 1;
a4456856
DW
2498
2499 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2500 wake_up(&conf->wait_for_overlap);
2501
2502 while (bi && bi->bi_sector <
2503 sh->dev[i].sector + STRIPE_SECTORS) {
2504 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2505 clear_bit(BIO_UPTODATE, &bi->bi_flags);
e7836bd6 2506 if (!raid5_dec_bi_active_stripes(bi)) {
a4456856
DW
2507 md_write_end(conf->mddev);
2508 bi->bi_next = *return_bi;
2509 *return_bi = bi;
2510 }
2511 bi = nextbi;
2512 }
7eaf7e8e
SL
2513 if (bitmap_end)
2514 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2515 STRIPE_SECTORS, 0, 0);
2516 bitmap_end = 0;
a4456856
DW
2517 /* and fail all 'written' */
2518 bi = sh->dev[i].written;
2519 sh->dev[i].written = NULL;
2520 if (bi) bitmap_end = 1;
2521 while (bi && bi->bi_sector <
2522 sh->dev[i].sector + STRIPE_SECTORS) {
2523 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2524 clear_bit(BIO_UPTODATE, &bi->bi_flags);
e7836bd6 2525 if (!raid5_dec_bi_active_stripes(bi)) {
a4456856
DW
2526 md_write_end(conf->mddev);
2527 bi->bi_next = *return_bi;
2528 *return_bi = bi;
2529 }
2530 bi = bi2;
2531 }
2532
b5e98d65
DW
2533 /* fail any reads if this device is non-operational and
2534 * the data has not reached the cache yet.
2535 */
2536 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2537 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2538 test_bit(R5_ReadError, &sh->dev[i].flags))) {
143c4d05 2539 spin_lock_irq(&sh->stripe_lock);
a4456856
DW
2540 bi = sh->dev[i].toread;
2541 sh->dev[i].toread = NULL;
143c4d05 2542 spin_unlock_irq(&sh->stripe_lock);
a4456856
DW
2543 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2544 wake_up(&conf->wait_for_overlap);
a4456856
DW
2545 while (bi && bi->bi_sector <
2546 sh->dev[i].sector + STRIPE_SECTORS) {
2547 struct bio *nextbi =
2548 r5_next_bio(bi, sh->dev[i].sector);
2549 clear_bit(BIO_UPTODATE, &bi->bi_flags);
e7836bd6 2550 if (!raid5_dec_bi_active_stripes(bi)) {
a4456856
DW
2551 bi->bi_next = *return_bi;
2552 *return_bi = bi;
2553 }
2554 bi = nextbi;
2555 }
2556 }
a4456856
DW
2557 if (bitmap_end)
2558 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2559 STRIPE_SECTORS, 0, 0);
8cfa7b0f
N
2560 /* If we were in the middle of a write the parity block might
2561 * still be locked - so just clear all R5_LOCKED flags
2562 */
2563 clear_bit(R5_LOCKED, &sh->dev[i].flags);
a4456856
DW
2564 }
2565
8b3e6cdc
DW
2566 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2567 if (atomic_dec_and_test(&conf->pending_full_writes))
2568 md_wakeup_thread(conf->mddev->thread);
a4456856
DW
2569}
2570
7f0da59b 2571static void
d1688a6d 2572handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
7f0da59b
N
2573 struct stripe_head_state *s)
2574{
2575 int abort = 0;
2576 int i;
2577
7f0da59b
N
2578 clear_bit(STRIPE_SYNCING, &sh->state);
2579 s->syncing = 0;
9a3e1101 2580 s->replacing = 0;
7f0da59b 2581 /* There is nothing more to do for sync/check/repair.
18b9837e
N
2582 * Don't even need to abort as that is handled elsewhere
2583 * if needed, and not always wanted e.g. if there is a known
2584 * bad block here.
9a3e1101 2585 * For recover/replace we need to record a bad block on all
7f0da59b
N
2586 * non-sync devices, or abort the recovery
2587 */
18b9837e
N
2588 if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
2589 /* During recovery devices cannot be removed, so
2590 * locking and refcounting of rdevs is not needed
2591 */
2592 for (i = 0; i < conf->raid_disks; i++) {
2593 struct md_rdev *rdev = conf->disks[i].rdev;
2594 if (rdev
2595 && !test_bit(Faulty, &rdev->flags)
2596 && !test_bit(In_sync, &rdev->flags)
2597 && !rdev_set_badblocks(rdev, sh->sector,
2598 STRIPE_SECTORS, 0))
2599 abort = 1;
2600 rdev = conf->disks[i].replacement;
2601 if (rdev
2602 && !test_bit(Faulty, &rdev->flags)
2603 && !test_bit(In_sync, &rdev->flags)
2604 && !rdev_set_badblocks(rdev, sh->sector,
2605 STRIPE_SECTORS, 0))
2606 abort = 1;
2607 }
2608 if (abort)
2609 conf->recovery_disabled =
2610 conf->mddev->recovery_disabled;
7f0da59b 2611 }
18b9837e 2612 md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
7f0da59b
N
2613}
2614
9a3e1101
N
2615static int want_replace(struct stripe_head *sh, int disk_idx)
2616{
2617 struct md_rdev *rdev;
2618 int rv = 0;
2619 /* Doing recovery so rcu locking not required */
2620 rdev = sh->raid_conf->disks[disk_idx].replacement;
2621 if (rdev
2622 && !test_bit(Faulty, &rdev->flags)
2623 && !test_bit(In_sync, &rdev->flags)
2624 && (rdev->recovery_offset <= sh->sector
2625 || rdev->mddev->recovery_cp <= sh->sector))
2626 rv = 1;
2627
2628 return rv;
2629}
2630
93b3dbce 2631/* fetch_block - checks the given member device to see if its data needs
1fe797e6
DW
2632 * to be read or computed to satisfy a request.
2633 *
2634 * Returns 1 when no more member devices need to be checked, otherwise returns
93b3dbce 2635 * 0 to tell the loop in handle_stripe_fill to continue
f38e1219 2636 */
93b3dbce
N
2637static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
2638 int disk_idx, int disks)
a4456856 2639{
5599becc 2640 struct r5dev *dev = &sh->dev[disk_idx];
f2b3b44d
N
2641 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
2642 &sh->dev[s->failed_num[1]] };
5599becc 2643
93b3dbce 2644 /* is the data in this block needed, and can we get it? */
5599becc
YT
2645 if (!test_bit(R5_LOCKED, &dev->flags) &&
2646 !test_bit(R5_UPTODATE, &dev->flags) &&
2647 (dev->toread ||
2648 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2649 s->syncing || s->expanding ||
9a3e1101 2650 (s->replacing && want_replace(sh, disk_idx)) ||
5d35e09c
N
2651 (s->failed >= 1 && fdev[0]->toread) ||
2652 (s->failed >= 2 && fdev[1]->toread) ||
93b3dbce
N
2653 (sh->raid_conf->level <= 5 && s->failed && fdev[0]->towrite &&
2654 !test_bit(R5_OVERWRITE, &fdev[0]->flags)) ||
2655 (sh->raid_conf->level == 6 && s->failed && s->to_write))) {
5599becc
YT
2656 /* we would like to get this block, possibly by computing it,
2657 * otherwise read it if the backing disk is insync
2658 */
2659 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2660 BUG_ON(test_bit(R5_Wantread, &dev->flags));
2661 if ((s->uptodate == disks - 1) &&
f2b3b44d
N
2662 (s->failed && (disk_idx == s->failed_num[0] ||
2663 disk_idx == s->failed_num[1]))) {
5599becc
YT
2664 /* have disk failed, and we're requested to fetch it;
2665 * do compute it
a4456856 2666 */
5599becc
YT
2667 pr_debug("Computing stripe %llu block %d\n",
2668 (unsigned long long)sh->sector, disk_idx);
2669 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2670 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2671 set_bit(R5_Wantcompute, &dev->flags);
2672 sh->ops.target = disk_idx;
2673 sh->ops.target2 = -1; /* no 2nd target */
2674 s->req_compute = 1;
93b3dbce
N
2675 /* Careful: from this point on 'uptodate' is in the eye
2676 * of raid_run_ops which services 'compute' operations
2677 * before writes. R5_Wantcompute flags a block that will
2678 * be R5_UPTODATE by the time it is needed for a
2679 * subsequent operation.
2680 */
5599becc
YT
2681 s->uptodate++;
2682 return 1;
2683 } else if (s->uptodate == disks-2 && s->failed >= 2) {
2684 /* Computing 2-failure is *very* expensive; only
2685 * do it if failed >= 2
2686 */
2687 int other;
2688 for (other = disks; other--; ) {
2689 if (other == disk_idx)
2690 continue;
2691 if (!test_bit(R5_UPTODATE,
2692 &sh->dev[other].flags))
2693 break;
a4456856 2694 }
5599becc
YT
2695 BUG_ON(other < 0);
2696 pr_debug("Computing stripe %llu blocks %d,%d\n",
2697 (unsigned long long)sh->sector,
2698 disk_idx, other);
2699 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2700 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2701 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
2702 set_bit(R5_Wantcompute, &sh->dev[other].flags);
2703 sh->ops.target = disk_idx;
2704 sh->ops.target2 = other;
2705 s->uptodate += 2;
2706 s->req_compute = 1;
2707 return 1;
2708 } else if (test_bit(R5_Insync, &dev->flags)) {
2709 set_bit(R5_LOCKED, &dev->flags);
2710 set_bit(R5_Wantread, &dev->flags);
2711 s->locked++;
2712 pr_debug("Reading block %d (sync=%d)\n",
2713 disk_idx, s->syncing);
a4456856
DW
2714 }
2715 }
5599becc
YT
2716
2717 return 0;
2718}
2719
2720/**
93b3dbce 2721 * handle_stripe_fill - read or compute data to satisfy pending requests.
5599becc 2722 */
93b3dbce
N
2723static void handle_stripe_fill(struct stripe_head *sh,
2724 struct stripe_head_state *s,
2725 int disks)
5599becc
YT
2726{
2727 int i;
2728
2729 /* look for blocks to read/compute, skip this if a compute
2730 * is already in flight, or if the stripe contents are in the
2731 * midst of changing due to a write
2732 */
2733 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2734 !sh->reconstruct_state)
2735 for (i = disks; i--; )
93b3dbce 2736 if (fetch_block(sh, s, i, disks))
5599becc 2737 break;
a4456856
DW
2738 set_bit(STRIPE_HANDLE, &sh->state);
2739}
2740
2741
1fe797e6 2742/* handle_stripe_clean_event
a4456856
DW
2743 * any written block on an uptodate or failed drive can be returned.
2744 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2745 * never LOCKED, so we don't need to test 'failed' directly.
2746 */
d1688a6d 2747static void handle_stripe_clean_event(struct r5conf *conf,
a4456856
DW
2748 struct stripe_head *sh, int disks, struct bio **return_bi)
2749{
2750 int i;
2751 struct r5dev *dev;
2752
2753 for (i = disks; i--; )
2754 if (sh->dev[i].written) {
2755 dev = &sh->dev[i];
2756 if (!test_bit(R5_LOCKED, &dev->flags) &&
9e444768 2757 (test_bit(R5_UPTODATE, &dev->flags) ||
ca64cae9 2758 test_bit(R5_Discard, &dev->flags))) {
a4456856
DW
2759 /* We can return any write requests */
2760 struct bio *wbi, *wbi2;
45b4233c 2761 pr_debug("Return write for disc %d\n", i);
ca64cae9
N
2762 if (test_and_clear_bit(R5_Discard, &dev->flags))
2763 clear_bit(R5_UPTODATE, &dev->flags);
a4456856
DW
2764 wbi = dev->written;
2765 dev->written = NULL;
2766 while (wbi && wbi->bi_sector <
2767 dev->sector + STRIPE_SECTORS) {
2768 wbi2 = r5_next_bio(wbi, dev->sector);
e7836bd6 2769 if (!raid5_dec_bi_active_stripes(wbi)) {
a4456856
DW
2770 md_write_end(conf->mddev);
2771 wbi->bi_next = *return_bi;
2772 *return_bi = wbi;
2773 }
2774 wbi = wbi2;
2775 }
7eaf7e8e
SL
2776 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2777 STRIPE_SECTORS,
a4456856 2778 !test_bit(STRIPE_DEGRADED, &sh->state),
7eaf7e8e 2779 0);
a4456856 2780 }
ca64cae9
N
2781 } else if (test_bit(R5_Discard, &sh->dev[i].flags))
2782 clear_bit(R5_Discard, &sh->dev[i].flags);
8b3e6cdc
DW
2783
2784 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2785 if (atomic_dec_and_test(&conf->pending_full_writes))
2786 md_wakeup_thread(conf->mddev->thread);
a4456856
DW
2787}
2788
d1688a6d 2789static void handle_stripe_dirtying(struct r5conf *conf,
c8ac1803
N
2790 struct stripe_head *sh,
2791 struct stripe_head_state *s,
2792 int disks)
a4456856
DW
2793{
2794 int rmw = 0, rcw = 0, i;
a7854487
AL
2795 sector_t recovery_cp = conf->mddev->recovery_cp;
2796
2797 /* RAID6 requires 'rcw' in current implementation.
2798 * Otherwise, check whether resync is now happening or should start.
2799 * If yes, then the array is dirty (after unclean shutdown or
2800 * initial creation), so parity in some stripes might be inconsistent.
2801 * In this case, we need to always do reconstruct-write, to ensure
2802 * that in case of drive failure or read-error correction, we
2803 * generate correct data from the parity.
2804 */
2805 if (conf->max_degraded == 2 ||
2806 (recovery_cp < MaxSector && sh->sector >= recovery_cp)) {
2807 /* Calculate the real rcw later - for now make it
c8ac1803
N
2808 * look like rcw is cheaper
2809 */
2810 rcw = 1; rmw = 2;
a7854487
AL
2811 pr_debug("force RCW max_degraded=%u, recovery_cp=%llu sh->sector=%llu\n",
2812 conf->max_degraded, (unsigned long long)recovery_cp,
2813 (unsigned long long)sh->sector);
c8ac1803 2814 } else for (i = disks; i--; ) {
a4456856
DW
2815 /* would I have to read this buffer for read_modify_write */
2816 struct r5dev *dev = &sh->dev[i];
2817 if ((dev->towrite || i == sh->pd_idx) &&
2818 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
2819 !(test_bit(R5_UPTODATE, &dev->flags) ||
2820 test_bit(R5_Wantcompute, &dev->flags))) {
a4456856
DW
2821 if (test_bit(R5_Insync, &dev->flags))
2822 rmw++;
2823 else
2824 rmw += 2*disks; /* cannot read it */
2825 }
2826 /* Would I have to read this buffer for reconstruct_write */
2827 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2828 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
2829 !(test_bit(R5_UPTODATE, &dev->flags) ||
2830 test_bit(R5_Wantcompute, &dev->flags))) {
2831 if (test_bit(R5_Insync, &dev->flags)) rcw++;
a4456856
DW
2832 else
2833 rcw += 2*disks;
2834 }
2835 }
45b4233c 2836 pr_debug("for sector %llu, rmw=%d rcw=%d\n",
a4456856
DW
2837 (unsigned long long)sh->sector, rmw, rcw);
2838 set_bit(STRIPE_HANDLE, &sh->state);
a9add5d9 2839 if (rmw < rcw && rmw > 0) {
a4456856 2840 /* prefer read-modify-write, but need to get some data */
e3620a3a
JB
2841 if (conf->mddev->queue)
2842 blk_add_trace_msg(conf->mddev->queue,
2843 "raid5 rmw %llu %d",
2844 (unsigned long long)sh->sector, rmw);
a4456856
DW
2845 for (i = disks; i--; ) {
2846 struct r5dev *dev = &sh->dev[i];
2847 if ((dev->towrite || i == sh->pd_idx) &&
2848 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
2849 !(test_bit(R5_UPTODATE, &dev->flags) ||
2850 test_bit(R5_Wantcompute, &dev->flags)) &&
a4456856
DW
2851 test_bit(R5_Insync, &dev->flags)) {
2852 if (
2853 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
45b4233c 2854 pr_debug("Read_old block "
a9add5d9 2855 "%d for r-m-w\n", i);
a4456856
DW
2856 set_bit(R5_LOCKED, &dev->flags);
2857 set_bit(R5_Wantread, &dev->flags);
2858 s->locked++;
2859 } else {
2860 set_bit(STRIPE_DELAYED, &sh->state);
2861 set_bit(STRIPE_HANDLE, &sh->state);
2862 }
2863 }
2864 }
a9add5d9 2865 }
c8ac1803 2866 if (rcw <= rmw && rcw > 0) {
a4456856 2867 /* want reconstruct write, but need to get some data */
a9add5d9 2868 int qread =0;
c8ac1803 2869 rcw = 0;
a4456856
DW
2870 for (i = disks; i--; ) {
2871 struct r5dev *dev = &sh->dev[i];
2872 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
c8ac1803 2873 i != sh->pd_idx && i != sh->qd_idx &&
a4456856 2874 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219 2875 !(test_bit(R5_UPTODATE, &dev->flags) ||
c8ac1803
N
2876 test_bit(R5_Wantcompute, &dev->flags))) {
2877 rcw++;
2878 if (!test_bit(R5_Insync, &dev->flags))
2879 continue; /* it's a failed drive */
a4456856
DW
2880 if (
2881 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
45b4233c 2882 pr_debug("Read_old block "
a4456856
DW
2883 "%d for Reconstruct\n", i);
2884 set_bit(R5_LOCKED, &dev->flags);
2885 set_bit(R5_Wantread, &dev->flags);
2886 s->locked++;
a9add5d9 2887 qread++;
a4456856
DW
2888 } else {
2889 set_bit(STRIPE_DELAYED, &sh->state);
2890 set_bit(STRIPE_HANDLE, &sh->state);
2891 }
2892 }
2893 }
e3620a3a 2894 if (rcw && conf->mddev->queue)
a9add5d9
N
2895 blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
2896 (unsigned long long)sh->sector,
2897 rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
c8ac1803 2898 }
a4456856
DW
2899 /* now if nothing is locked, and if we have enough data,
2900 * we can start a write request
2901 */
f38e1219
DW
2902 /* since handle_stripe can be called at any time we need to handle the
2903 * case where a compute block operation has been submitted and then a
ac6b53b6
DW
2904 * subsequent call wants to start a write request. raid_run_ops only
2905 * handles the case where compute block and reconstruct are requested
f38e1219
DW
2906 * simultaneously. If this is not the case then new writes need to be
2907 * held off until the compute completes.
2908 */
976ea8d4
DW
2909 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2910 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2911 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
c0f7bddb 2912 schedule_reconstruction(sh, s, rcw == 0, 0);
a4456856
DW
2913}
2914
d1688a6d 2915static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
a4456856
DW
2916 struct stripe_head_state *s, int disks)
2917{
ecc65c9b 2918 struct r5dev *dev = NULL;
bd2ab670 2919
a4456856 2920 set_bit(STRIPE_HANDLE, &sh->state);
e89f8962 2921
ecc65c9b
DW
2922 switch (sh->check_state) {
2923 case check_state_idle:
2924 /* start a new check operation if there are no failures */
bd2ab670 2925 if (s->failed == 0) {
bd2ab670 2926 BUG_ON(s->uptodate != disks);
ecc65c9b
DW
2927 sh->check_state = check_state_run;
2928 set_bit(STRIPE_OP_CHECK, &s->ops_request);
bd2ab670 2929 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
bd2ab670 2930 s->uptodate--;
ecc65c9b 2931 break;
bd2ab670 2932 }
f2b3b44d 2933 dev = &sh->dev[s->failed_num[0]];
ecc65c9b
DW
2934 /* fall through */
2935 case check_state_compute_result:
2936 sh->check_state = check_state_idle;
2937 if (!dev)
2938 dev = &sh->dev[sh->pd_idx];
2939
2940 /* check that a write has not made the stripe insync */
2941 if (test_bit(STRIPE_INSYNC, &sh->state))
2942 break;
c8894419 2943
a4456856 2944 /* either failed parity check, or recovery is happening */
a4456856
DW
2945 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2946 BUG_ON(s->uptodate != disks);
2947
2948 set_bit(R5_LOCKED, &dev->flags);
ecc65c9b 2949 s->locked++;
a4456856 2950 set_bit(R5_Wantwrite, &dev->flags);
830ea016 2951
a4456856 2952 clear_bit(STRIPE_DEGRADED, &sh->state);
a4456856 2953 set_bit(STRIPE_INSYNC, &sh->state);
ecc65c9b
DW
2954 break;
2955 case check_state_run:
2956 break; /* we will be called again upon completion */
2957 case check_state_check_result:
2958 sh->check_state = check_state_idle;
2959
2960 /* if a failure occurred during the check operation, leave
2961 * STRIPE_INSYNC not set and let the stripe be handled again
2962 */
2963 if (s->failed)
2964 break;
2965
2966 /* handle a successful check operation, if parity is correct
2967 * we are done. Otherwise update the mismatch count and repair
2968 * parity if !MD_RECOVERY_CHECK
2969 */
ad283ea4 2970 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
ecc65c9b
DW
2971 /* parity is correct (on disc,
2972 * not in buffer any more)
2973 */
2974 set_bit(STRIPE_INSYNC, &sh->state);
2975 else {
7f7583d4 2976 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
ecc65c9b
DW
2977 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2978 /* don't try to repair!! */
2979 set_bit(STRIPE_INSYNC, &sh->state);
2980 else {
2981 sh->check_state = check_state_compute_run;
976ea8d4 2982 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
ecc65c9b
DW
2983 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2984 set_bit(R5_Wantcompute,
2985 &sh->dev[sh->pd_idx].flags);
2986 sh->ops.target = sh->pd_idx;
ac6b53b6 2987 sh->ops.target2 = -1;
ecc65c9b
DW
2988 s->uptodate++;
2989 }
2990 }
2991 break;
2992 case check_state_compute_run:
2993 break;
2994 default:
2995 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2996 __func__, sh->check_state,
2997 (unsigned long long) sh->sector);
2998 BUG();
a4456856
DW
2999 }
3000}
3001
3002
d1688a6d 3003static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
36d1c647 3004 struct stripe_head_state *s,
f2b3b44d 3005 int disks)
a4456856 3006{
a4456856 3007 int pd_idx = sh->pd_idx;
34e04e87 3008 int qd_idx = sh->qd_idx;
d82dfee0 3009 struct r5dev *dev;
a4456856
DW
3010
3011 set_bit(STRIPE_HANDLE, &sh->state);
3012
3013 BUG_ON(s->failed > 2);
d82dfee0 3014
a4456856
DW
3015 /* Want to check and possibly repair P and Q.
3016 * However there could be one 'failed' device, in which
3017 * case we can only check one of them, possibly using the
3018 * other to generate missing data
3019 */
3020
d82dfee0
DW
3021 switch (sh->check_state) {
3022 case check_state_idle:
3023 /* start a new check operation if there are < 2 failures */
f2b3b44d 3024 if (s->failed == s->q_failed) {
d82dfee0 3025 /* The only possible failed device holds Q, so it
a4456856
DW
3026 * makes sense to check P (If anything else were failed,
3027 * we would have used P to recreate it).
3028 */
d82dfee0 3029 sh->check_state = check_state_run;
a4456856 3030 }
f2b3b44d 3031 if (!s->q_failed && s->failed < 2) {
d82dfee0 3032 /* Q is not failed, and we didn't use it to generate
a4456856
DW
3033 * anything, so it makes sense to check it
3034 */
d82dfee0
DW
3035 if (sh->check_state == check_state_run)
3036 sh->check_state = check_state_run_pq;
3037 else
3038 sh->check_state = check_state_run_q;
a4456856 3039 }
a4456856 3040
d82dfee0
DW
3041 /* discard potentially stale zero_sum_result */
3042 sh->ops.zero_sum_result = 0;
a4456856 3043
d82dfee0
DW
3044 if (sh->check_state == check_state_run) {
3045 /* async_xor_zero_sum destroys the contents of P */
3046 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3047 s->uptodate--;
a4456856 3048 }
d82dfee0
DW
3049 if (sh->check_state >= check_state_run &&
3050 sh->check_state <= check_state_run_pq) {
3051 /* async_syndrome_zero_sum preserves P and Q, so
3052 * no need to mark them !uptodate here
3053 */
3054 set_bit(STRIPE_OP_CHECK, &s->ops_request);
3055 break;
a4456856
DW
3056 }
3057
d82dfee0
DW
3058 /* we have 2-disk failure */
3059 BUG_ON(s->failed != 2);
3060 /* fall through */
3061 case check_state_compute_result:
3062 sh->check_state = check_state_idle;
a4456856 3063
d82dfee0
DW
3064 /* check that a write has not made the stripe insync */
3065 if (test_bit(STRIPE_INSYNC, &sh->state))
3066 break;
a4456856
DW
3067
3068 /* now write out any block on a failed drive,
d82dfee0 3069 * or P or Q if they were recomputed
a4456856 3070 */
d82dfee0 3071 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
a4456856 3072 if (s->failed == 2) {
f2b3b44d 3073 dev = &sh->dev[s->failed_num[1]];
a4456856
DW
3074 s->locked++;
3075 set_bit(R5_LOCKED, &dev->flags);
3076 set_bit(R5_Wantwrite, &dev->flags);
3077 }
3078 if (s->failed >= 1) {
f2b3b44d 3079 dev = &sh->dev[s->failed_num[0]];
a4456856
DW
3080 s->locked++;
3081 set_bit(R5_LOCKED, &dev->flags);
3082 set_bit(R5_Wantwrite, &dev->flags);
3083 }
d82dfee0 3084 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
a4456856
DW
3085 dev = &sh->dev[pd_idx];
3086 s->locked++;
3087 set_bit(R5_LOCKED, &dev->flags);
3088 set_bit(R5_Wantwrite, &dev->flags);
3089 }
d82dfee0 3090 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
a4456856
DW
3091 dev = &sh->dev[qd_idx];
3092 s->locked++;
3093 set_bit(R5_LOCKED, &dev->flags);
3094 set_bit(R5_Wantwrite, &dev->flags);
3095 }
3096 clear_bit(STRIPE_DEGRADED, &sh->state);
3097
3098 set_bit(STRIPE_INSYNC, &sh->state);
d82dfee0
DW
3099 break;
3100 case check_state_run:
3101 case check_state_run_q:
3102 case check_state_run_pq:
3103 break; /* we will be called again upon completion */
3104 case check_state_check_result:
3105 sh->check_state = check_state_idle;
3106
3107 /* handle a successful check operation, if parity is correct
3108 * we are done. Otherwise update the mismatch count and repair
3109 * parity if !MD_RECOVERY_CHECK
3110 */
3111 if (sh->ops.zero_sum_result == 0) {
3112 /* both parities are correct */
3113 if (!s->failed)
3114 set_bit(STRIPE_INSYNC, &sh->state);
3115 else {
3116 /* in contrast to the raid5 case we can validate
3117 * parity, but still have a failure to write
3118 * back
3119 */
3120 sh->check_state = check_state_compute_result;
3121 /* Returning at this point means that we may go
3122 * off and bring p and/or q uptodate again so
3123 * we make sure to check zero_sum_result again
3124 * to verify if p or q need writeback
3125 */
3126 }
3127 } else {
7f7583d4 3128 atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
d82dfee0
DW
3129 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3130 /* don't try to repair!! */
3131 set_bit(STRIPE_INSYNC, &sh->state);
3132 else {
3133 int *target = &sh->ops.target;
3134
3135 sh->ops.target = -1;
3136 sh->ops.target2 = -1;
3137 sh->check_state = check_state_compute_run;
3138 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3139 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3140 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3141 set_bit(R5_Wantcompute,
3142 &sh->dev[pd_idx].flags);
3143 *target = pd_idx;
3144 target = &sh->ops.target2;
3145 s->uptodate++;
3146 }
3147 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3148 set_bit(R5_Wantcompute,
3149 &sh->dev[qd_idx].flags);
3150 *target = qd_idx;
3151 s->uptodate++;
3152 }
3153 }
3154 }
3155 break;
3156 case check_state_compute_run:
3157 break;
3158 default:
3159 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3160 __func__, sh->check_state,
3161 (unsigned long long) sh->sector);
3162 BUG();
a4456856
DW
3163 }
3164}
3165
d1688a6d 3166static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
a4456856
DW
3167{
3168 int i;
3169
3170 /* We have read all the blocks in this stripe and now we need to
3171 * copy some of them into a target stripe for expand.
3172 */
f0a50d37 3173 struct dma_async_tx_descriptor *tx = NULL;
a4456856
DW
3174 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3175 for (i = 0; i < sh->disks; i++)
34e04e87 3176 if (i != sh->pd_idx && i != sh->qd_idx) {
911d4ee8 3177 int dd_idx, j;
a4456856 3178 struct stripe_head *sh2;
a08abd8c 3179 struct async_submit_ctl submit;
a4456856 3180
784052ec 3181 sector_t bn = compute_blocknr(sh, i, 1);
911d4ee8
N
3182 sector_t s = raid5_compute_sector(conf, bn, 0,
3183 &dd_idx, NULL);
a8c906ca 3184 sh2 = get_active_stripe(conf, s, 0, 1, 1);
a4456856
DW
3185 if (sh2 == NULL)
3186 /* so far only the early blocks of this stripe
3187 * have been requested. When later blocks
3188 * get requested, we will try again
3189 */
3190 continue;
3191 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
3192 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
3193 /* must have already done this block */
3194 release_stripe(sh2);
3195 continue;
3196 }
f0a50d37
DW
3197
3198 /* place all the copies on one channel */
a08abd8c 3199 init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
f0a50d37 3200 tx = async_memcpy(sh2->dev[dd_idx].page,
88ba2aa5 3201 sh->dev[i].page, 0, 0, STRIPE_SIZE,
a08abd8c 3202 &submit);
f0a50d37 3203
a4456856
DW
3204 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
3205 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
3206 for (j = 0; j < conf->raid_disks; j++)
3207 if (j != sh2->pd_idx &&
86c374ba 3208 j != sh2->qd_idx &&
a4456856
DW
3209 !test_bit(R5_Expanded, &sh2->dev[j].flags))
3210 break;
3211 if (j == conf->raid_disks) {
3212 set_bit(STRIPE_EXPAND_READY, &sh2->state);
3213 set_bit(STRIPE_HANDLE, &sh2->state);
3214 }
3215 release_stripe(sh2);
f0a50d37 3216
a4456856 3217 }
a2e08551 3218 /* done submitting copies, wait for them to complete */
749586b7 3219 async_tx_quiesce(&tx);
a4456856 3220}
1da177e4
LT
3221
3222/*
3223 * handle_stripe - do things to a stripe.
3224 *
9a3e1101
N
3225 * We lock the stripe by setting STRIPE_ACTIVE and then examine the
3226 * state of various bits to see what needs to be done.
1da177e4 3227 * Possible results:
9a3e1101
N
3228 * return some read requests which now have data
3229 * return some write requests which are safely on storage
1da177e4
LT
3230 * schedule a read on some buffers
3231 * schedule a write of some buffers
3232 * return confirmation of parity correctness
3233 *
1da177e4 3234 */
a4456856 3235
acfe726b 3236static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
1da177e4 3237{
d1688a6d 3238 struct r5conf *conf = sh->raid_conf;
f416885e 3239 int disks = sh->disks;
474af965
N
3240 struct r5dev *dev;
3241 int i;
9a3e1101 3242 int do_recovery = 0;
1da177e4 3243
acfe726b
N
3244 memset(s, 0, sizeof(*s));
3245
acfe726b
N
3246 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3247 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3248 s->failed_num[0] = -1;
3249 s->failed_num[1] = -1;
1da177e4 3250
acfe726b 3251 /* Now to look around and see what can be done */
1da177e4 3252 rcu_read_lock();
16a53ecc 3253 for (i=disks; i--; ) {
3cb03002 3254 struct md_rdev *rdev;
31c176ec
N
3255 sector_t first_bad;
3256 int bad_sectors;
3257 int is_bad = 0;
acfe726b 3258
16a53ecc 3259 dev = &sh->dev[i];
1da177e4 3260
45b4233c 3261 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
9a3e1101
N
3262 i, dev->flags,
3263 dev->toread, dev->towrite, dev->written);
6c0069c0
YT
3264 /* maybe we can reply to a read
3265 *
3266 * new wantfill requests are only permitted while
3267 * ops_complete_biofill is guaranteed to be inactive
3268 */
3269 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3270 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3271 set_bit(R5_Wantfill, &dev->flags);
1da177e4 3272
16a53ecc 3273 /* now count some things */
cc94015a
N
3274 if (test_bit(R5_LOCKED, &dev->flags))
3275 s->locked++;
3276 if (test_bit(R5_UPTODATE, &dev->flags))
3277 s->uptodate++;
2d6e4ecc 3278 if (test_bit(R5_Wantcompute, &dev->flags)) {
cc94015a
N
3279 s->compute++;
3280 BUG_ON(s->compute > 2);
2d6e4ecc 3281 }
1da177e4 3282
acfe726b 3283 if (test_bit(R5_Wantfill, &dev->flags))
cc94015a 3284 s->to_fill++;
acfe726b 3285 else if (dev->toread)
cc94015a 3286 s->to_read++;
16a53ecc 3287 if (dev->towrite) {
cc94015a 3288 s->to_write++;
16a53ecc 3289 if (!test_bit(R5_OVERWRITE, &dev->flags))
cc94015a 3290 s->non_overwrite++;
16a53ecc 3291 }
a4456856 3292 if (dev->written)
cc94015a 3293 s->written++;
14a75d3e
N
3294 /* Prefer to use the replacement for reads, but only
3295 * if it is recovered enough and has no bad blocks.
3296 */
3297 rdev = rcu_dereference(conf->disks[i].replacement);
3298 if (rdev && !test_bit(Faulty, &rdev->flags) &&
3299 rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
3300 !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3301 &first_bad, &bad_sectors))
3302 set_bit(R5_ReadRepl, &dev->flags);
3303 else {
9a3e1101
N
3304 if (rdev)
3305 set_bit(R5_NeedReplace, &dev->flags);
14a75d3e
N
3306 rdev = rcu_dereference(conf->disks[i].rdev);
3307 clear_bit(R5_ReadRepl, &dev->flags);
3308 }
9283d8c5
N
3309 if (rdev && test_bit(Faulty, &rdev->flags))
3310 rdev = NULL;
31c176ec
N
3311 if (rdev) {
3312 is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3313 &first_bad, &bad_sectors);
3314 if (s->blocked_rdev == NULL
3315 && (test_bit(Blocked, &rdev->flags)
3316 || is_bad < 0)) {
3317 if (is_bad < 0)
3318 set_bit(BlockedBadBlocks,
3319 &rdev->flags);
3320 s->blocked_rdev = rdev;
3321 atomic_inc(&rdev->nr_pending);
3322 }
6bfe0b49 3323 }
415e72d0
N
3324 clear_bit(R5_Insync, &dev->flags);
3325 if (!rdev)
3326 /* Not in-sync */;
31c176ec
N
3327 else if (is_bad) {
3328 /* also not in-sync */
18b9837e
N
3329 if (!test_bit(WriteErrorSeen, &rdev->flags) &&
3330 test_bit(R5_UPTODATE, &dev->flags)) {
31c176ec
N
3331 /* treat as in-sync, but with a read error
3332 * which we can now try to correct
3333 */
3334 set_bit(R5_Insync, &dev->flags);
3335 set_bit(R5_ReadError, &dev->flags);
3336 }
3337 } else if (test_bit(In_sync, &rdev->flags))
415e72d0 3338 set_bit(R5_Insync, &dev->flags);
30d7a483 3339 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
415e72d0 3340 /* in sync if before recovery_offset */
30d7a483
N
3341 set_bit(R5_Insync, &dev->flags);
3342 else if (test_bit(R5_UPTODATE, &dev->flags) &&
3343 test_bit(R5_Expanded, &dev->flags))
3344 /* If we've reshaped into here, we assume it is Insync.
3345 * We will shortly update recovery_offset to make
3346 * it official.
3347 */
3348 set_bit(R5_Insync, &dev->flags);
3349
5d8c71f9 3350 if (rdev && test_bit(R5_WriteError, &dev->flags)) {
14a75d3e
N
3351 /* This flag does not apply to '.replacement'
3352 * only to .rdev, so make sure to check that*/
3353 struct md_rdev *rdev2 = rcu_dereference(
3354 conf->disks[i].rdev);
3355 if (rdev2 == rdev)
3356 clear_bit(R5_Insync, &dev->flags);
3357 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
bc2607f3 3358 s->handle_bad_blocks = 1;
14a75d3e 3359 atomic_inc(&rdev2->nr_pending);
bc2607f3
N
3360 } else
3361 clear_bit(R5_WriteError, &dev->flags);
3362 }
5d8c71f9 3363 if (rdev && test_bit(R5_MadeGood, &dev->flags)) {
14a75d3e
N
3364 /* This flag does not apply to '.replacement'
3365 * only to .rdev, so make sure to check that*/
3366 struct md_rdev *rdev2 = rcu_dereference(
3367 conf->disks[i].rdev);
3368 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
b84db560 3369 s->handle_bad_blocks = 1;
14a75d3e 3370 atomic_inc(&rdev2->nr_pending);
b84db560
N
3371 } else
3372 clear_bit(R5_MadeGood, &dev->flags);
3373 }
977df362
N
3374 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
3375 struct md_rdev *rdev2 = rcu_dereference(
3376 conf->disks[i].replacement);
3377 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3378 s->handle_bad_blocks = 1;
3379 atomic_inc(&rdev2->nr_pending);
3380 } else
3381 clear_bit(R5_MadeGoodRepl, &dev->flags);
3382 }
415e72d0 3383 if (!test_bit(R5_Insync, &dev->flags)) {
16a53ecc
N
3384 /* The ReadError flag will just be confusing now */
3385 clear_bit(R5_ReadError, &dev->flags);
3386 clear_bit(R5_ReWrite, &dev->flags);
1da177e4 3387 }
415e72d0
N
3388 if (test_bit(R5_ReadError, &dev->flags))
3389 clear_bit(R5_Insync, &dev->flags);
3390 if (!test_bit(R5_Insync, &dev->flags)) {
cc94015a
N
3391 if (s->failed < 2)
3392 s->failed_num[s->failed] = i;
3393 s->failed++;
9a3e1101
N
3394 if (rdev && !test_bit(Faulty, &rdev->flags))
3395 do_recovery = 1;
415e72d0 3396 }
1da177e4 3397 }
9a3e1101
N
3398 if (test_bit(STRIPE_SYNCING, &sh->state)) {
3399 /* If there is a failed device being replaced,
3400 * we must be recovering.
3401 * else if we are after recovery_cp, we must be syncing
c6d2e084 3402 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
9a3e1101
N
3403 * else we can only be replacing
3404 * sync and recovery both need to read all devices, and so
3405 * use the same flag.
3406 */
3407 if (do_recovery ||
c6d2e084 3408 sh->sector >= conf->mddev->recovery_cp ||
3409 test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
9a3e1101
N
3410 s->syncing = 1;
3411 else
3412 s->replacing = 1;
3413 }
1da177e4 3414 rcu_read_unlock();
cc94015a
N
3415}
3416
3417static void handle_stripe(struct stripe_head *sh)
3418{
3419 struct stripe_head_state s;
d1688a6d 3420 struct r5conf *conf = sh->raid_conf;
3687c061 3421 int i;
84789554
N
3422 int prexor;
3423 int disks = sh->disks;
474af965 3424 struct r5dev *pdev, *qdev;
cc94015a
N
3425
3426 clear_bit(STRIPE_HANDLE, &sh->state);
257a4b42 3427 if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
cc94015a
N
3428 /* already being handled, ensure it gets handled
3429 * again when current action finishes */
3430 set_bit(STRIPE_HANDLE, &sh->state);
3431 return;
3432 }
3433
3434 if (test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3435 set_bit(STRIPE_SYNCING, &sh->state);
3436 clear_bit(STRIPE_INSYNC, &sh->state);
3437 }
3438 clear_bit(STRIPE_DELAYED, &sh->state);
3439
3440 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3441 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3442 (unsigned long long)sh->sector, sh->state,
3443 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
3444 sh->check_state, sh->reconstruct_state);
3687c061 3445
acfe726b 3446 analyse_stripe(sh, &s);
c5a31000 3447
bc2607f3
N
3448 if (s.handle_bad_blocks) {
3449 set_bit(STRIPE_HANDLE, &sh->state);
3450 goto finish;
3451 }
3452
474af965
N
3453 if (unlikely(s.blocked_rdev)) {
3454 if (s.syncing || s.expanding || s.expanded ||
9a3e1101 3455 s.replacing || s.to_write || s.written) {
474af965
N
3456 set_bit(STRIPE_HANDLE, &sh->state);
3457 goto finish;
3458 }
3459 /* There is nothing for the blocked_rdev to block */
3460 rdev_dec_pending(s.blocked_rdev, conf->mddev);
3461 s.blocked_rdev = NULL;
3462 }
3463
3464 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3465 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3466 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3467 }
3468
3469 pr_debug("locked=%d uptodate=%d to_read=%d"
3470 " to_write=%d failed=%d failed_num=%d,%d\n",
3471 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3472 s.failed_num[0], s.failed_num[1]);
3473 /* check if the array has lost more than max_degraded devices and,
3474 * if so, some requests might need to be failed.
3475 */
9a3f530f
N
3476 if (s.failed > conf->max_degraded) {
3477 sh->check_state = 0;
3478 sh->reconstruct_state = 0;
3479 if (s.to_read+s.to_write+s.written)
3480 handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
9a3e1101 3481 if (s.syncing + s.replacing)
9a3f530f
N
3482 handle_failed_sync(conf, sh, &s);
3483 }
474af965 3484
84789554
N
3485 /* Now we check to see if any write operations have recently
3486 * completed
3487 */
3488 prexor = 0;
3489 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3490 prexor = 1;
3491 if (sh->reconstruct_state == reconstruct_state_drain_result ||
3492 sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3493 sh->reconstruct_state = reconstruct_state_idle;
3494
3495 /* All the 'written' buffers and the parity block are ready to
3496 * be written back to disk
3497 */
9e444768
SL
3498 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
3499 !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
84789554 3500 BUG_ON(sh->qd_idx >= 0 &&
9e444768
SL
3501 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
3502 !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
84789554
N
3503 for (i = disks; i--; ) {
3504 struct r5dev *dev = &sh->dev[i];
3505 if (test_bit(R5_LOCKED, &dev->flags) &&
3506 (i == sh->pd_idx || i == sh->qd_idx ||
3507 dev->written)) {
3508 pr_debug("Writing block %d\n", i);
3509 set_bit(R5_Wantwrite, &dev->flags);
3510 if (prexor)
3511 continue;
3512 if (!test_bit(R5_Insync, &dev->flags) ||
3513 ((i == sh->pd_idx || i == sh->qd_idx) &&
3514 s.failed == 0))
3515 set_bit(STRIPE_INSYNC, &sh->state);
3516 }
3517 }
3518 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3519 s.dec_preread_active = 1;
3520 }
3521
ef5b7c69
N
3522 /*
3523 * might be able to return some write requests if the parity blocks
3524 * are safe, or on a failed drive
3525 */
3526 pdev = &sh->dev[sh->pd_idx];
3527 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
3528 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
3529 qdev = &sh->dev[sh->qd_idx];
3530 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
3531 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
3532 || conf->level < 6;
3533
3534 if (s.written &&
3535 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3536 && !test_bit(R5_LOCKED, &pdev->flags)
3537 && (test_bit(R5_UPTODATE, &pdev->flags) ||
3538 test_bit(R5_Discard, &pdev->flags))))) &&
3539 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3540 && !test_bit(R5_LOCKED, &qdev->flags)
3541 && (test_bit(R5_UPTODATE, &qdev->flags) ||
3542 test_bit(R5_Discard, &qdev->flags))))))
3543 handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
3544
3545 /* Now we might consider reading some blocks, either to check/generate
3546 * parity, or to satisfy requests
3547 * or to load a block that is being partially written.
3548 */
3549 if (s.to_read || s.non_overwrite
3550 || (conf->level == 6 && s.to_write && s.failed)
3551 || (s.syncing && (s.uptodate + s.compute < disks))
3552 || s.replacing
3553 || s.expanding)
3554 handle_stripe_fill(sh, &s, disks);
3555
84789554
N
3556 /* Now to consider new write requests and what else, if anything
3557 * should be read. We do not handle new writes when:
3558 * 1/ A 'write' operation (copy+xor) is already in flight.
3559 * 2/ A 'check' operation is in flight, as it may clobber the parity
3560 * block.
3561 */
3562 if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3563 handle_stripe_dirtying(conf, sh, &s, disks);
3564
3565 /* maybe we need to check and possibly fix the parity for this stripe
3566 * Any reads will already have been scheduled, so we just see if enough
3567 * data is available. The parity check is held off while parity
3568 * dependent operations are in flight.
3569 */
3570 if (sh->check_state ||
3571 (s.syncing && s.locked == 0 &&
3572 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3573 !test_bit(STRIPE_INSYNC, &sh->state))) {
3574 if (conf->level == 6)
3575 handle_parity_checks6(conf, sh, &s, disks);
3576 else
3577 handle_parity_checks5(conf, sh, &s, disks);
3578 }
c5a31000 3579
9a3e1101
N
3580 if (s.replacing && s.locked == 0
3581 && !test_bit(STRIPE_INSYNC, &sh->state)) {
3582 /* Write out to replacement devices where possible */
3583 for (i = 0; i < conf->raid_disks; i++)
3584 if (test_bit(R5_UPTODATE, &sh->dev[i].flags) &&
3585 test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
3586 set_bit(R5_WantReplace, &sh->dev[i].flags);
3587 set_bit(R5_LOCKED, &sh->dev[i].flags);
3588 s.locked++;
3589 }
3590 set_bit(STRIPE_INSYNC, &sh->state);
3591 }
3592 if ((s.syncing || s.replacing) && s.locked == 0 &&
3593 test_bit(STRIPE_INSYNC, &sh->state)) {
c5a31000
N
3594 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3595 clear_bit(STRIPE_SYNCING, &sh->state);
3596 }
3597
3598 /* If the failed drives are just a ReadError, then we might need
3599 * to progress the repair/check process
3600 */
3601 if (s.failed <= conf->max_degraded && !conf->mddev->ro)
3602 for (i = 0; i < s.failed; i++) {
3603 struct r5dev *dev = &sh->dev[s.failed_num[i]];
3604 if (test_bit(R5_ReadError, &dev->flags)
3605 && !test_bit(R5_LOCKED, &dev->flags)
3606 && test_bit(R5_UPTODATE, &dev->flags)
3607 ) {
3608 if (!test_bit(R5_ReWrite, &dev->flags)) {
3609 set_bit(R5_Wantwrite, &dev->flags);
3610 set_bit(R5_ReWrite, &dev->flags);
3611 set_bit(R5_LOCKED, &dev->flags);
3612 s.locked++;
3613 } else {
3614 /* let's read it back */
3615 set_bit(R5_Wantread, &dev->flags);
3616 set_bit(R5_LOCKED, &dev->flags);
3617 s.locked++;
3618 }
3619 }
3620 }
3621
3622
3687c061
N
3623 /* Finish reconstruct operations initiated by the expansion process */
3624 if (sh->reconstruct_state == reconstruct_state_result) {
3625 struct stripe_head *sh_src
3626 = get_active_stripe(conf, sh->sector, 1, 1, 1);
3627 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
3628 /* sh cannot be written until sh_src has been read.
3629 * so arrange for sh to be delayed a little
3630 */
3631 set_bit(STRIPE_DELAYED, &sh->state);
3632 set_bit(STRIPE_HANDLE, &sh->state);
3633 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3634 &sh_src->state))
3635 atomic_inc(&conf->preread_active_stripes);
3636 release_stripe(sh_src);
3637 goto finish;
3638 }
3639 if (sh_src)
3640 release_stripe(sh_src);
3641
3642 sh->reconstruct_state = reconstruct_state_idle;
3643 clear_bit(STRIPE_EXPANDING, &sh->state);
3644 for (i = conf->raid_disks; i--; ) {
3645 set_bit(R5_Wantwrite, &sh->dev[i].flags);
3646 set_bit(R5_LOCKED, &sh->dev[i].flags);
3647 s.locked++;
3648 }
3649 }
f416885e 3650
3687c061
N
3651 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3652 !sh->reconstruct_state) {
3653 /* Need to write out all blocks after computing parity */
3654 sh->disks = conf->raid_disks;
3655 stripe_set_idx(sh->sector, conf, 0, sh);
3656 schedule_reconstruction(sh, &s, 1, 1);
3657 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3658 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3659 atomic_dec(&conf->reshape_stripes);
3660 wake_up(&conf->wait_for_overlap);
3661 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3662 }
3663
3664 if (s.expanding && s.locked == 0 &&
3665 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3666 handle_stripe_expansion(conf, sh);
16a53ecc 3667
3687c061 3668finish:
6bfe0b49 3669 /* wait for this device to become unblocked */
5f066c63
N
3670 if (unlikely(s.blocked_rdev)) {
3671 if (conf->mddev->external)
3672 md_wait_for_blocked_rdev(s.blocked_rdev,
3673 conf->mddev);
3674 else
3675 /* Internal metadata will immediately
3676 * be written by raid5d, so we don't
3677 * need to wait here.
3678 */
3679 rdev_dec_pending(s.blocked_rdev,
3680 conf->mddev);
3681 }
6bfe0b49 3682
bc2607f3
N
3683 if (s.handle_bad_blocks)
3684 for (i = disks; i--; ) {
3cb03002 3685 struct md_rdev *rdev;
bc2607f3
N
3686 struct r5dev *dev = &sh->dev[i];
3687 if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
3688 /* We own a safe reference to the rdev */
3689 rdev = conf->disks[i].rdev;
3690 if (!rdev_set_badblocks(rdev, sh->sector,
3691 STRIPE_SECTORS, 0))
3692 md_error(conf->mddev, rdev);
3693 rdev_dec_pending(rdev, conf->mddev);
3694 }
b84db560
N
3695 if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
3696 rdev = conf->disks[i].rdev;
3697 rdev_clear_badblocks(rdev, sh->sector,
c6563a8c 3698 STRIPE_SECTORS, 0);
b84db560
N
3699 rdev_dec_pending(rdev, conf->mddev);
3700 }
977df362
N
3701 if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
3702 rdev = conf->disks[i].replacement;
dd054fce
N
3703 if (!rdev)
3704 /* rdev have been moved down */
3705 rdev = conf->disks[i].rdev;
977df362 3706 rdev_clear_badblocks(rdev, sh->sector,
c6563a8c 3707 STRIPE_SECTORS, 0);
977df362
N
3708 rdev_dec_pending(rdev, conf->mddev);
3709 }
bc2607f3
N
3710 }
3711
6c0069c0
YT
3712 if (s.ops_request)
3713 raid_run_ops(sh, s.ops_request);
3714
f0e43bcd 3715 ops_run_io(sh, &s);
16a53ecc 3716
c5709ef6 3717 if (s.dec_preread_active) {
729a1866 3718 /* We delay this until after ops_run_io so that if make_request
e9c7469b 3719 * is waiting on a flush, it won't continue until the writes
729a1866
N
3720 * have actually been submitted.
3721 */
3722 atomic_dec(&conf->preread_active_stripes);
3723 if (atomic_read(&conf->preread_active_stripes) <
3724 IO_THRESHOLD)
3725 md_wakeup_thread(conf->mddev->thread);
3726 }
3727
c5709ef6 3728 return_io(s.return_bi);
16a53ecc 3729
257a4b42 3730 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
16a53ecc
N
3731}
3732
d1688a6d 3733static void raid5_activate_delayed(struct r5conf *conf)
16a53ecc
N
3734{
3735 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3736 while (!list_empty(&conf->delayed_list)) {
3737 struct list_head *l = conf->delayed_list.next;
3738 struct stripe_head *sh;
3739 sh = list_entry(l, struct stripe_head, lru);
3740 list_del_init(l);
3741 clear_bit(STRIPE_DELAYED, &sh->state);
3742 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3743 atomic_inc(&conf->preread_active_stripes);
8b3e6cdc 3744 list_add_tail(&sh->lru, &conf->hold_list);
16a53ecc 3745 }
482c0834 3746 }
16a53ecc
N
3747}
3748
d1688a6d 3749static void activate_bit_delay(struct r5conf *conf)
16a53ecc
N
3750{
3751 /* device_lock is held */
3752 struct list_head head;
3753 list_add(&head, &conf->bitmap_list);
3754 list_del_init(&conf->bitmap_list);
3755 while (!list_empty(&head)) {
3756 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3757 list_del_init(&sh->lru);
3758 atomic_inc(&sh->count);
3759 __release_stripe(conf, sh);
3760 }
3761}
3762
fd01b88c 3763int md_raid5_congested(struct mddev *mddev, int bits)
f022b2fd 3764{
d1688a6d 3765 struct r5conf *conf = mddev->private;
f022b2fd
N
3766
3767 /* No difference between reads and writes. Just check
3768 * how busy the stripe_cache is
3769 */
3fa841d7 3770
f022b2fd
N
3771 if (conf->inactive_blocked)
3772 return 1;
3773 if (conf->quiesce)
3774 return 1;
3775 if (list_empty_careful(&conf->inactive_list))
3776 return 1;
3777
3778 return 0;
3779}
11d8a6e3
N
3780EXPORT_SYMBOL_GPL(md_raid5_congested);
3781
3782static int raid5_congested(void *data, int bits)
3783{
fd01b88c 3784 struct mddev *mddev = data;
11d8a6e3
N
3785
3786 return mddev_congested(mddev, bits) ||
3787 md_raid5_congested(mddev, bits);
3788}
f022b2fd 3789
23032a0e
RBJ
3790/* We want read requests to align with chunks where possible,
3791 * but write requests don't need to.
3792 */
cc371e66
AK
3793static int raid5_mergeable_bvec(struct request_queue *q,
3794 struct bvec_merge_data *bvm,
3795 struct bio_vec *biovec)
23032a0e 3796{
fd01b88c 3797 struct mddev *mddev = q->queuedata;
cc371e66 3798 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
23032a0e 3799 int max;
9d8f0363 3800 unsigned int chunk_sectors = mddev->chunk_sectors;
cc371e66 3801 unsigned int bio_sectors = bvm->bi_size >> 9;
23032a0e 3802
cc371e66 3803 if ((bvm->bi_rw & 1) == WRITE)
23032a0e
RBJ
3804 return biovec->bv_len; /* always allow writes to be mergeable */
3805
664e7c41
AN
3806 if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3807 chunk_sectors = mddev->new_chunk_sectors;
23032a0e
RBJ
3808 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3809 if (max < 0) max = 0;
3810 if (max <= biovec->bv_len && bio_sectors == 0)
3811 return biovec->bv_len;
3812 else
3813 return max;
3814}
3815
f679623f 3816
fd01b88c 3817static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
f679623f
RBJ
3818{
3819 sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
9d8f0363 3820 unsigned int chunk_sectors = mddev->chunk_sectors;
f679623f
RBJ
3821 unsigned int bio_sectors = bio->bi_size >> 9;
3822
664e7c41
AN
3823 if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3824 chunk_sectors = mddev->new_chunk_sectors;
f679623f
RBJ
3825 return chunk_sectors >=
3826 ((sector & (chunk_sectors - 1)) + bio_sectors);
3827}
3828
46031f9a
RBJ
3829/*
3830 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
3831 * later sampled by raid5d.
3832 */
d1688a6d 3833static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
46031f9a
RBJ
3834{
3835 unsigned long flags;
3836
3837 spin_lock_irqsave(&conf->device_lock, flags);
3838
3839 bi->bi_next = conf->retry_read_aligned_list;
3840 conf->retry_read_aligned_list = bi;
3841
3842 spin_unlock_irqrestore(&conf->device_lock, flags);
3843 md_wakeup_thread(conf->mddev->thread);
3844}
3845
3846
d1688a6d 3847static struct bio *remove_bio_from_retry(struct r5conf *conf)
46031f9a
RBJ
3848{
3849 struct bio *bi;
3850
3851 bi = conf->retry_read_aligned;
3852 if (bi) {
3853 conf->retry_read_aligned = NULL;
3854 return bi;
3855 }
3856 bi = conf->retry_read_aligned_list;
3857 if(bi) {
387bb173 3858 conf->retry_read_aligned_list = bi->bi_next;
46031f9a 3859 bi->bi_next = NULL;
960e739d
JA
3860 /*
3861 * this sets the active strip count to 1 and the processed
3862 * strip count to zero (upper 8 bits)
3863 */
e7836bd6 3864 raid5_set_bi_stripes(bi, 1); /* biased count of active stripes */
46031f9a
RBJ
3865 }
3866
3867 return bi;
3868}
3869
3870
f679623f
RBJ
3871/*
3872 * The "raid5_align_endio" should check if the read succeeded and if it
3873 * did, call bio_endio on the original bio (having bio_put the new bio
3874 * first).
3875 * If the read failed..
3876 */
6712ecf8 3877static void raid5_align_endio(struct bio *bi, int error)
f679623f
RBJ
3878{
3879 struct bio* raid_bi = bi->bi_private;
fd01b88c 3880 struct mddev *mddev;
d1688a6d 3881 struct r5conf *conf;
46031f9a 3882 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3cb03002 3883 struct md_rdev *rdev;
46031f9a 3884
f679623f 3885 bio_put(bi);
46031f9a 3886
46031f9a
RBJ
3887 rdev = (void*)raid_bi->bi_next;
3888 raid_bi->bi_next = NULL;
2b7f2228
N
3889 mddev = rdev->mddev;
3890 conf = mddev->private;
46031f9a
RBJ
3891
3892 rdev_dec_pending(rdev, conf->mddev);
3893
3894 if (!error && uptodate) {
a9add5d9
N
3895 trace_block_bio_complete(bdev_get_queue(raid_bi->bi_bdev),
3896 raid_bi, 0);
6712ecf8 3897 bio_endio(raid_bi, 0);
46031f9a
RBJ
3898 if (atomic_dec_and_test(&conf->active_aligned_reads))
3899 wake_up(&conf->wait_for_stripe);
6712ecf8 3900 return;
46031f9a
RBJ
3901 }
3902
3903
45b4233c 3904 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
46031f9a
RBJ
3905
3906 add_bio_to_retry(raid_bi, conf);
f679623f
RBJ
3907}
3908
387bb173
NB
3909static int bio_fits_rdev(struct bio *bi)
3910{
165125e1 3911 struct request_queue *q = bdev_get_queue(bi->bi_bdev);
387bb173 3912
ae03bf63 3913 if ((bi->bi_size>>9) > queue_max_sectors(q))
387bb173
NB
3914 return 0;
3915 blk_recount_segments(q, bi);
8a78362c 3916 if (bi->bi_phys_segments > queue_max_segments(q))
387bb173
NB
3917 return 0;
3918
3919 if (q->merge_bvec_fn)
3920 /* it's too hard to apply the merge_bvec_fn at this stage,
3921 * just just give up
3922 */
3923 return 0;
3924
3925 return 1;
3926}
3927
3928
fd01b88c 3929static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio)
f679623f 3930{
d1688a6d 3931 struct r5conf *conf = mddev->private;
8553fe7e 3932 int dd_idx;
f679623f 3933 struct bio* align_bi;
3cb03002 3934 struct md_rdev *rdev;
671488cc 3935 sector_t end_sector;
f679623f
RBJ
3936
3937 if (!in_chunk_boundary(mddev, raid_bio)) {
45b4233c 3938 pr_debug("chunk_aligned_read : non aligned\n");
f679623f
RBJ
3939 return 0;
3940 }
3941 /*
a167f663 3942 * use bio_clone_mddev to make a copy of the bio
f679623f 3943 */
a167f663 3944 align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
f679623f
RBJ
3945 if (!align_bi)
3946 return 0;
3947 /*
3948 * set bi_end_io to a new function, and set bi_private to the
3949 * original bio.
3950 */
3951 align_bi->bi_end_io = raid5_align_endio;
3952 align_bi->bi_private = raid_bio;
3953 /*
3954 * compute position
3955 */
112bf897
N
3956 align_bi->bi_sector = raid5_compute_sector(conf, raid_bio->bi_sector,
3957 0,
911d4ee8 3958 &dd_idx, NULL);
f679623f 3959
671488cc 3960 end_sector = align_bi->bi_sector + (align_bi->bi_size >> 9);
f679623f 3961 rcu_read_lock();
671488cc
N
3962 rdev = rcu_dereference(conf->disks[dd_idx].replacement);
3963 if (!rdev || test_bit(Faulty, &rdev->flags) ||
3964 rdev->recovery_offset < end_sector) {
3965 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3966 if (rdev &&
3967 (test_bit(Faulty, &rdev->flags) ||
3968 !(test_bit(In_sync, &rdev->flags) ||
3969 rdev->recovery_offset >= end_sector)))
3970 rdev = NULL;
3971 }
3972 if (rdev) {
31c176ec
N
3973 sector_t first_bad;
3974 int bad_sectors;
3975
f679623f
RBJ
3976 atomic_inc(&rdev->nr_pending);
3977 rcu_read_unlock();
46031f9a
RBJ
3978 raid_bio->bi_next = (void*)rdev;
3979 align_bi->bi_bdev = rdev->bdev;
3980 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
46031f9a 3981
31c176ec
N
3982 if (!bio_fits_rdev(align_bi) ||
3983 is_badblock(rdev, align_bi->bi_sector, align_bi->bi_size>>9,
3984 &first_bad, &bad_sectors)) {
3985 /* too big in some way, or has a known bad block */
387bb173
NB
3986 bio_put(align_bi);
3987 rdev_dec_pending(rdev, mddev);
3988 return 0;
3989 }
3990
6c0544e2 3991 /* No reshape active, so we can trust rdev->data_offset */
3992 align_bi->bi_sector += rdev->data_offset;
3993
46031f9a
RBJ
3994 spin_lock_irq(&conf->device_lock);
3995 wait_event_lock_irq(conf->wait_for_stripe,
3996 conf->quiesce == 0,
eed8c02e 3997 conf->device_lock);
46031f9a
RBJ
3998 atomic_inc(&conf->active_aligned_reads);
3999 spin_unlock_irq(&conf->device_lock);
4000
e3620a3a
JB
4001 if (mddev->gendisk)
4002 trace_block_bio_remap(bdev_get_queue(align_bi->bi_bdev),
4003 align_bi, disk_devt(mddev->gendisk),
4004 raid_bio->bi_sector);
f679623f
RBJ
4005 generic_make_request(align_bi);
4006 return 1;
4007 } else {
4008 rcu_read_unlock();
46031f9a 4009 bio_put(align_bi);
f679623f
RBJ
4010 return 0;
4011 }
4012}
4013
8b3e6cdc
DW
4014/* __get_priority_stripe - get the next stripe to process
4015 *
4016 * Full stripe writes are allowed to pass preread active stripes up until
4017 * the bypass_threshold is exceeded. In general the bypass_count
4018 * increments when the handle_list is handled before the hold_list; however, it
4019 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
4020 * stripe with in flight i/o. The bypass_count will be reset when the
4021 * head of the hold_list has changed, i.e. the head was promoted to the
4022 * handle_list.
4023 */
d1688a6d 4024static struct stripe_head *__get_priority_stripe(struct r5conf *conf)
8b3e6cdc
DW
4025{
4026 struct stripe_head *sh;
4027
4028 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
4029 __func__,
4030 list_empty(&conf->handle_list) ? "empty" : "busy",
4031 list_empty(&conf->hold_list) ? "empty" : "busy",
4032 atomic_read(&conf->pending_full_writes), conf->bypass_count);
4033
4034 if (!list_empty(&conf->handle_list)) {
4035 sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
4036
4037 if (list_empty(&conf->hold_list))
4038 conf->bypass_count = 0;
4039 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
4040 if (conf->hold_list.next == conf->last_hold)
4041 conf->bypass_count++;
4042 else {
4043 conf->last_hold = conf->hold_list.next;
4044 conf->bypass_count -= conf->bypass_threshold;
4045 if (conf->bypass_count < 0)
4046 conf->bypass_count = 0;
4047 }
4048 }
4049 } else if (!list_empty(&conf->hold_list) &&
4050 ((conf->bypass_threshold &&
4051 conf->bypass_count > conf->bypass_threshold) ||
4052 atomic_read(&conf->pending_full_writes) == 0)) {
4053 sh = list_entry(conf->hold_list.next,
4054 typeof(*sh), lru);
4055 conf->bypass_count -= conf->bypass_threshold;
4056 if (conf->bypass_count < 0)
4057 conf->bypass_count = 0;
4058 } else
4059 return NULL;
4060
4061 list_del_init(&sh->lru);
4062 atomic_inc(&sh->count);
4063 BUG_ON(atomic_read(&sh->count) != 1);
4064 return sh;
4065}
f679623f 4066
8811b596
SL
4067struct raid5_plug_cb {
4068 struct blk_plug_cb cb;
4069 struct list_head list;
4070};
4071
4072static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
4073{
4074 struct raid5_plug_cb *cb = container_of(
4075 blk_cb, struct raid5_plug_cb, cb);
4076 struct stripe_head *sh;
4077 struct mddev *mddev = cb->cb.data;
4078 struct r5conf *conf = mddev->private;
a9add5d9 4079 int cnt = 0;
8811b596
SL
4080
4081 if (cb->list.next && !list_empty(&cb->list)) {
4082 spin_lock_irq(&conf->device_lock);
4083 while (!list_empty(&cb->list)) {
4084 sh = list_first_entry(&cb->list, struct stripe_head, lru);
4085 list_del_init(&sh->lru);
4086 /*
4087 * avoid race release_stripe_plug() sees
4088 * STRIPE_ON_UNPLUG_LIST clear but the stripe
4089 * is still in our list
4090 */
4091 smp_mb__before_clear_bit();
4092 clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
4093 __release_stripe(conf, sh);
a9add5d9 4094 cnt++;
8811b596
SL
4095 }
4096 spin_unlock_irq(&conf->device_lock);
4097 }
e3620a3a
JB
4098 if (mddev->queue)
4099 trace_block_unplug(mddev->queue, cnt, !from_schedule);
8811b596
SL
4100 kfree(cb);
4101}
4102
4103static void release_stripe_plug(struct mddev *mddev,
4104 struct stripe_head *sh)
4105{
4106 struct blk_plug_cb *blk_cb = blk_check_plugged(
4107 raid5_unplug, mddev,
4108 sizeof(struct raid5_plug_cb));
4109 struct raid5_plug_cb *cb;
4110
4111 if (!blk_cb) {
4112 release_stripe(sh);
4113 return;
4114 }
4115
4116 cb = container_of(blk_cb, struct raid5_plug_cb, cb);
4117
4118 if (cb->list.next == NULL)
4119 INIT_LIST_HEAD(&cb->list);
4120
4121 if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
4122 list_add_tail(&sh->lru, &cb->list);
4123 else
4124 release_stripe(sh);
4125}
4126
620125f2
SL
4127static void make_discard_request(struct mddev *mddev, struct bio *bi)
4128{
4129 struct r5conf *conf = mddev->private;
4130 sector_t logical_sector, last_sector;
4131 struct stripe_head *sh;
4132 int remaining;
4133 int stripe_sectors;
4134
4135 if (mddev->reshape_position != MaxSector)
4136 /* Skip discard while reshape is happening */
4137 return;
4138
4139 logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4140 last_sector = bi->bi_sector + (bi->bi_size>>9);
4141
4142 bi->bi_next = NULL;
4143 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
4144
4145 stripe_sectors = conf->chunk_sectors *
4146 (conf->raid_disks - conf->max_degraded);
4147 logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
4148 stripe_sectors);
4149 sector_div(last_sector, stripe_sectors);
4150
4151 logical_sector *= conf->chunk_sectors;
4152 last_sector *= conf->chunk_sectors;
4153
4154 for (; logical_sector < last_sector;
4155 logical_sector += STRIPE_SECTORS) {
4156 DEFINE_WAIT(w);
4157 int d;
4158 again:
4159 sh = get_active_stripe(conf, logical_sector, 0, 0, 0);
4160 prepare_to_wait(&conf->wait_for_overlap, &w,
4161 TASK_UNINTERRUPTIBLE);
4162 spin_lock_irq(&sh->stripe_lock);
4163 for (d = 0; d < conf->raid_disks; d++) {
4164 if (d == sh->pd_idx || d == sh->qd_idx)
4165 continue;
4166 if (sh->dev[d].towrite || sh->dev[d].toread) {
4167 set_bit(R5_Overlap, &sh->dev[d].flags);
4168 spin_unlock_irq(&sh->stripe_lock);
4169 release_stripe(sh);
4170 schedule();
4171 goto again;
4172 }
4173 }
4174 finish_wait(&conf->wait_for_overlap, &w);
4175 for (d = 0; d < conf->raid_disks; d++) {
4176 if (d == sh->pd_idx || d == sh->qd_idx)
4177 continue;
4178 sh->dev[d].towrite = bi;
4179 set_bit(R5_OVERWRITE, &sh->dev[d].flags);
4180 raid5_inc_bi_active_stripes(bi);
4181 }
4182 spin_unlock_irq(&sh->stripe_lock);
4183 if (conf->mddev->bitmap) {
4184 for (d = 0;
4185 d < conf->raid_disks - conf->max_degraded;
4186 d++)
4187 bitmap_startwrite(mddev->bitmap,
4188 sh->sector,
4189 STRIPE_SECTORS,
4190 0);
4191 sh->bm_seq = conf->seq_flush + 1;
4192 set_bit(STRIPE_BIT_DELAY, &sh->state);
4193 }
4194
4195 set_bit(STRIPE_HANDLE, &sh->state);
4196 clear_bit(STRIPE_DELAYED, &sh->state);
4197 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4198 atomic_inc(&conf->preread_active_stripes);
4199 release_stripe_plug(mddev, sh);
4200 }
4201
4202 remaining = raid5_dec_bi_active_stripes(bi);
4203 if (remaining == 0) {
4204 md_write_end(mddev);
4205 bio_endio(bi, 0);
4206 }
4207}
4208
b4fdcb02 4209static void make_request(struct mddev *mddev, struct bio * bi)
1da177e4 4210{
d1688a6d 4211 struct r5conf *conf = mddev->private;
911d4ee8 4212 int dd_idx;
1da177e4
LT
4213 sector_t new_sector;
4214 sector_t logical_sector, last_sector;
4215 struct stripe_head *sh;
a362357b 4216 const int rw = bio_data_dir(bi);
49077326 4217 int remaining;
1da177e4 4218
e9c7469b
TH
4219 if (unlikely(bi->bi_rw & REQ_FLUSH)) {
4220 md_flush_request(mddev, bi);
5a7bbad2 4221 return;
e5dcdd80
N
4222 }
4223
3d310eb7 4224 md_write_start(mddev, bi);
06d91a5f 4225
802ba064 4226 if (rw == READ &&
52488615 4227 mddev->reshape_position == MaxSector &&
21a52c6d 4228 chunk_aligned_read(mddev,bi))
5a7bbad2 4229 return;
52488615 4230
620125f2
SL
4231 if (unlikely(bi->bi_rw & REQ_DISCARD)) {
4232 make_discard_request(mddev, bi);
4233 return;
4234 }
4235
1da177e4
LT
4236 logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4237 last_sector = bi->bi_sector + (bi->bi_size>>9);
4238 bi->bi_next = NULL;
4239 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
06d91a5f 4240
1da177e4
LT
4241 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
4242 DEFINE_WAIT(w);
b5663ba4 4243 int previous;
b578d55f 4244
7ecaa1e6 4245 retry:
b5663ba4 4246 previous = 0;
b578d55f 4247 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
b0f9ec04 4248 if (unlikely(conf->reshape_progress != MaxSector)) {
fef9c61f 4249 /* spinlock is needed as reshape_progress may be
df8e7f76
N
4250 * 64bit on a 32bit platform, and so it might be
4251 * possible to see a half-updated value
aeb878b0 4252 * Of course reshape_progress could change after
df8e7f76
N
4253 * the lock is dropped, so once we get a reference
4254 * to the stripe that we think it is, we will have
4255 * to check again.
4256 */
7ecaa1e6 4257 spin_lock_irq(&conf->device_lock);
2c810cdd 4258 if (mddev->reshape_backwards
fef9c61f
N
4259 ? logical_sector < conf->reshape_progress
4260 : logical_sector >= conf->reshape_progress) {
b5663ba4
N
4261 previous = 1;
4262 } else {
2c810cdd 4263 if (mddev->reshape_backwards
fef9c61f
N
4264 ? logical_sector < conf->reshape_safe
4265 : logical_sector >= conf->reshape_safe) {
b578d55f
N
4266 spin_unlock_irq(&conf->device_lock);
4267 schedule();
4268 goto retry;
4269 }
4270 }
7ecaa1e6
N
4271 spin_unlock_irq(&conf->device_lock);
4272 }
16a53ecc 4273
112bf897
N
4274 new_sector = raid5_compute_sector(conf, logical_sector,
4275 previous,
911d4ee8 4276 &dd_idx, NULL);
0c55e022 4277 pr_debug("raid456: make_request, sector %llu logical %llu\n",
1da177e4
LT
4278 (unsigned long long)new_sector,
4279 (unsigned long long)logical_sector);
4280
b5663ba4 4281 sh = get_active_stripe(conf, new_sector, previous,
a8c906ca 4282 (bi->bi_rw&RWA_MASK), 0);
1da177e4 4283 if (sh) {
b0f9ec04 4284 if (unlikely(previous)) {
7ecaa1e6 4285 /* expansion might have moved on while waiting for a
df8e7f76
N
4286 * stripe, so we must do the range check again.
4287 * Expansion could still move past after this
4288 * test, but as we are holding a reference to
4289 * 'sh', we know that if that happens,
4290 * STRIPE_EXPANDING will get set and the expansion
4291 * won't proceed until we finish with the stripe.
7ecaa1e6
N
4292 */
4293 int must_retry = 0;
4294 spin_lock_irq(&conf->device_lock);
2c810cdd 4295 if (mddev->reshape_backwards
b0f9ec04
N
4296 ? logical_sector >= conf->reshape_progress
4297 : logical_sector < conf->reshape_progress)
7ecaa1e6
N
4298 /* mismatch, need to try again */
4299 must_retry = 1;
4300 spin_unlock_irq(&conf->device_lock);
4301 if (must_retry) {
4302 release_stripe(sh);
7a3ab908 4303 schedule();
7ecaa1e6
N
4304 goto retry;
4305 }
4306 }
e62e58a5 4307
ffd96e35 4308 if (rw == WRITE &&
a5c308d4 4309 logical_sector >= mddev->suspend_lo &&
e464eafd
N
4310 logical_sector < mddev->suspend_hi) {
4311 release_stripe(sh);
e62e58a5
N
4312 /* As the suspend_* range is controlled by
4313 * userspace, we want an interruptible
4314 * wait.
4315 */
4316 flush_signals(current);
4317 prepare_to_wait(&conf->wait_for_overlap,
4318 &w, TASK_INTERRUPTIBLE);
4319 if (logical_sector >= mddev->suspend_lo &&
4320 logical_sector < mddev->suspend_hi)
4321 schedule();
e464eafd
N
4322 goto retry;
4323 }
7ecaa1e6
N
4324
4325 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
ffd96e35 4326 !add_stripe_bio(sh, bi, dd_idx, rw)) {
7ecaa1e6
N
4327 /* Stripe is busy expanding or
4328 * add failed due to overlap. Flush everything
1da177e4
LT
4329 * and wait a while
4330 */
482c0834 4331 md_wakeup_thread(mddev->thread);
1da177e4
LT
4332 release_stripe(sh);
4333 schedule();
4334 goto retry;
4335 }
4336 finish_wait(&conf->wait_for_overlap, &w);
6ed3003c
N
4337 set_bit(STRIPE_HANDLE, &sh->state);
4338 clear_bit(STRIPE_DELAYED, &sh->state);
a852d7b8 4339 if ((bi->bi_rw & REQ_SYNC) &&
729a1866
N
4340 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4341 atomic_inc(&conf->preread_active_stripes);
8811b596 4342 release_stripe_plug(mddev, sh);
1da177e4
LT
4343 } else {
4344 /* cannot get stripe for read-ahead, just give-up */
4345 clear_bit(BIO_UPTODATE, &bi->bi_flags);
4346 finish_wait(&conf->wait_for_overlap, &w);
4347 break;
4348 }
1da177e4 4349 }
7c13edc8 4350
e7836bd6 4351 remaining = raid5_dec_bi_active_stripes(bi);
f6344757 4352 if (remaining == 0) {
1da177e4 4353
16a53ecc 4354 if ( rw == WRITE )
1da177e4 4355 md_write_end(mddev);
6712ecf8 4356
a9add5d9
N
4357 trace_block_bio_complete(bdev_get_queue(bi->bi_bdev),
4358 bi, 0);
0e13fe23 4359 bio_endio(bi, 0);
1da177e4 4360 }
1da177e4
LT
4361}
4362
fd01b88c 4363static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
b522adcd 4364
fd01b88c 4365static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
1da177e4 4366{
52c03291
N
4367 /* reshaping is quite different to recovery/resync so it is
4368 * handled quite separately ... here.
4369 *
4370 * On each call to sync_request, we gather one chunk worth of
4371 * destination stripes and flag them as expanding.
4372 * Then we find all the source stripes and request reads.
4373 * As the reads complete, handle_stripe will copy the data
4374 * into the destination stripe and release that stripe.
4375 */
d1688a6d 4376 struct r5conf *conf = mddev->private;
1da177e4 4377 struct stripe_head *sh;
ccfcc3c1 4378 sector_t first_sector, last_sector;
f416885e
N
4379 int raid_disks = conf->previous_raid_disks;
4380 int data_disks = raid_disks - conf->max_degraded;
4381 int new_data_disks = conf->raid_disks - conf->max_degraded;
52c03291
N
4382 int i;
4383 int dd_idx;
c8f517c4 4384 sector_t writepos, readpos, safepos;
ec32a2bd 4385 sector_t stripe_addr;
7a661381 4386 int reshape_sectors;
ab69ae12 4387 struct list_head stripes;
52c03291 4388
fef9c61f
N
4389 if (sector_nr == 0) {
4390 /* If restarting in the middle, skip the initial sectors */
2c810cdd 4391 if (mddev->reshape_backwards &&
fef9c61f
N
4392 conf->reshape_progress < raid5_size(mddev, 0, 0)) {
4393 sector_nr = raid5_size(mddev, 0, 0)
4394 - conf->reshape_progress;
2c810cdd 4395 } else if (!mddev->reshape_backwards &&
fef9c61f
N
4396 conf->reshape_progress > 0)
4397 sector_nr = conf->reshape_progress;
f416885e 4398 sector_div(sector_nr, new_data_disks);
fef9c61f 4399 if (sector_nr) {
8dee7211
N
4400 mddev->curr_resync_completed = sector_nr;
4401 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
fef9c61f
N
4402 *skipped = 1;
4403 return sector_nr;
4404 }
52c03291
N
4405 }
4406
7a661381
N
4407 /* We need to process a full chunk at a time.
4408 * If old and new chunk sizes differ, we need to process the
4409 * largest of these
4410 */
664e7c41
AN
4411 if (mddev->new_chunk_sectors > mddev->chunk_sectors)
4412 reshape_sectors = mddev->new_chunk_sectors;
7a661381 4413 else
9d8f0363 4414 reshape_sectors = mddev->chunk_sectors;
7a661381 4415
b5254dd5
N
4416 /* We update the metadata at least every 10 seconds, or when
4417 * the data about to be copied would over-write the source of
4418 * the data at the front of the range. i.e. one new_stripe
4419 * along from reshape_progress new_maps to after where
4420 * reshape_safe old_maps to
52c03291 4421 */
fef9c61f 4422 writepos = conf->reshape_progress;
f416885e 4423 sector_div(writepos, new_data_disks);
c8f517c4
N
4424 readpos = conf->reshape_progress;
4425 sector_div(readpos, data_disks);
fef9c61f 4426 safepos = conf->reshape_safe;
f416885e 4427 sector_div(safepos, data_disks);
2c810cdd 4428 if (mddev->reshape_backwards) {
ed37d83e 4429 writepos -= min_t(sector_t, reshape_sectors, writepos);
c8f517c4 4430 readpos += reshape_sectors;
7a661381 4431 safepos += reshape_sectors;
fef9c61f 4432 } else {
7a661381 4433 writepos += reshape_sectors;
ed37d83e
N
4434 readpos -= min_t(sector_t, reshape_sectors, readpos);
4435 safepos -= min_t(sector_t, reshape_sectors, safepos);
fef9c61f 4436 }
52c03291 4437
b5254dd5
N
4438 /* Having calculated the 'writepos' possibly use it
4439 * to set 'stripe_addr' which is where we will write to.
4440 */
4441 if (mddev->reshape_backwards) {
4442 BUG_ON(conf->reshape_progress == 0);
4443 stripe_addr = writepos;
4444 BUG_ON((mddev->dev_sectors &
4445 ~((sector_t)reshape_sectors - 1))
4446 - reshape_sectors - stripe_addr
4447 != sector_nr);
4448 } else {
4449 BUG_ON(writepos != sector_nr + reshape_sectors);
4450 stripe_addr = sector_nr;
4451 }
4452
c8f517c4
N
4453 /* 'writepos' is the most advanced device address we might write.
4454 * 'readpos' is the least advanced device address we might read.
4455 * 'safepos' is the least address recorded in the metadata as having
4456 * been reshaped.
b5254dd5
N
4457 * If there is a min_offset_diff, these are adjusted either by
4458 * increasing the safepos/readpos if diff is negative, or
4459 * increasing writepos if diff is positive.
4460 * If 'readpos' is then behind 'writepos', there is no way that we can
c8f517c4
N
4461 * ensure safety in the face of a crash - that must be done by userspace
4462 * making a backup of the data. So in that case there is no particular
4463 * rush to update metadata.
4464 * Otherwise if 'safepos' is behind 'writepos', then we really need to
4465 * update the metadata to advance 'safepos' to match 'readpos' so that
4466 * we can be safe in the event of a crash.
4467 * So we insist on updating metadata if safepos is behind writepos and
4468 * readpos is beyond writepos.
4469 * In any case, update the metadata every 10 seconds.
4470 * Maybe that number should be configurable, but I'm not sure it is
4471 * worth it.... maybe it could be a multiple of safemode_delay???
4472 */
b5254dd5
N
4473 if (conf->min_offset_diff < 0) {
4474 safepos += -conf->min_offset_diff;
4475 readpos += -conf->min_offset_diff;
4476 } else
4477 writepos += conf->min_offset_diff;
4478
2c810cdd 4479 if ((mddev->reshape_backwards
c8f517c4
N
4480 ? (safepos > writepos && readpos < writepos)
4481 : (safepos < writepos && readpos > writepos)) ||
4482 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
52c03291
N
4483 /* Cannot proceed until we've updated the superblock... */
4484 wait_event(conf->wait_for_overlap,
4485 atomic_read(&conf->reshape_stripes)==0);
fef9c61f 4486 mddev->reshape_position = conf->reshape_progress;
75d3da43 4487 mddev->curr_resync_completed = sector_nr;
c8f517c4 4488 conf->reshape_checkpoint = jiffies;
850b2b42 4489 set_bit(MD_CHANGE_DEVS, &mddev->flags);
52c03291 4490 md_wakeup_thread(mddev->thread);
850b2b42 4491 wait_event(mddev->sb_wait, mddev->flags == 0 ||
52c03291
N
4492 kthread_should_stop());
4493 spin_lock_irq(&conf->device_lock);
fef9c61f 4494 conf->reshape_safe = mddev->reshape_position;
52c03291
N
4495 spin_unlock_irq(&conf->device_lock);
4496 wake_up(&conf->wait_for_overlap);
acb180b0 4497 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
52c03291
N
4498 }
4499
ab69ae12 4500 INIT_LIST_HEAD(&stripes);
7a661381 4501 for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
52c03291 4502 int j;
a9f326eb 4503 int skipped_disk = 0;
a8c906ca 4504 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
52c03291
N
4505 set_bit(STRIPE_EXPANDING, &sh->state);
4506 atomic_inc(&conf->reshape_stripes);
4507 /* If any of this stripe is beyond the end of the old
4508 * array, then we need to zero those blocks
4509 */
4510 for (j=sh->disks; j--;) {
4511 sector_t s;
4512 if (j == sh->pd_idx)
4513 continue;
f416885e 4514 if (conf->level == 6 &&
d0dabf7e 4515 j == sh->qd_idx)
f416885e 4516 continue;
784052ec 4517 s = compute_blocknr(sh, j, 0);
b522adcd 4518 if (s < raid5_size(mddev, 0, 0)) {
a9f326eb 4519 skipped_disk = 1;
52c03291
N
4520 continue;
4521 }
4522 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
4523 set_bit(R5_Expanded, &sh->dev[j].flags);
4524 set_bit(R5_UPTODATE, &sh->dev[j].flags);
4525 }
a9f326eb 4526 if (!skipped_disk) {
52c03291
N
4527 set_bit(STRIPE_EXPAND_READY, &sh->state);
4528 set_bit(STRIPE_HANDLE, &sh->state);
4529 }
ab69ae12 4530 list_add(&sh->lru, &stripes);
52c03291
N
4531 }
4532 spin_lock_irq(&conf->device_lock);
2c810cdd 4533 if (mddev->reshape_backwards)
7a661381 4534 conf->reshape_progress -= reshape_sectors * new_data_disks;
fef9c61f 4535 else
7a661381 4536 conf->reshape_progress += reshape_sectors * new_data_disks;
52c03291
N
4537 spin_unlock_irq(&conf->device_lock);
4538 /* Ok, those stripe are ready. We can start scheduling
4539 * reads on the source stripes.
4540 * The source stripes are determined by mapping the first and last
4541 * block on the destination stripes.
4542 */
52c03291 4543 first_sector =
ec32a2bd 4544 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
911d4ee8 4545 1, &dd_idx, NULL);
52c03291 4546 last_sector =
0e6e0271 4547 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
09c9e5fa 4548 * new_data_disks - 1),
911d4ee8 4549 1, &dd_idx, NULL);
58c0fed4
AN
4550 if (last_sector >= mddev->dev_sectors)
4551 last_sector = mddev->dev_sectors - 1;
52c03291 4552 while (first_sector <= last_sector) {
a8c906ca 4553 sh = get_active_stripe(conf, first_sector, 1, 0, 1);
52c03291
N
4554 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4555 set_bit(STRIPE_HANDLE, &sh->state);
4556 release_stripe(sh);
4557 first_sector += STRIPE_SECTORS;
4558 }
ab69ae12
N
4559 /* Now that the sources are clearly marked, we can release
4560 * the destination stripes
4561 */
4562 while (!list_empty(&stripes)) {
4563 sh = list_entry(stripes.next, struct stripe_head, lru);
4564 list_del_init(&sh->lru);
4565 release_stripe(sh);
4566 }
c6207277
N
4567 /* If this takes us to the resync_max point where we have to pause,
4568 * then we need to write out the superblock.
4569 */
7a661381 4570 sector_nr += reshape_sectors;
c03f6a19
N
4571 if ((sector_nr - mddev->curr_resync_completed) * 2
4572 >= mddev->resync_max - mddev->curr_resync_completed) {
c6207277
N
4573 /* Cannot proceed until we've updated the superblock... */
4574 wait_event(conf->wait_for_overlap,
4575 atomic_read(&conf->reshape_stripes) == 0);
fef9c61f 4576 mddev->reshape_position = conf->reshape_progress;
75d3da43 4577 mddev->curr_resync_completed = sector_nr;
c8f517c4 4578 conf->reshape_checkpoint = jiffies;
c6207277
N
4579 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4580 md_wakeup_thread(mddev->thread);
4581 wait_event(mddev->sb_wait,
4582 !test_bit(MD_CHANGE_DEVS, &mddev->flags)
4583 || kthread_should_stop());
4584 spin_lock_irq(&conf->device_lock);
fef9c61f 4585 conf->reshape_safe = mddev->reshape_position;
c6207277
N
4586 spin_unlock_irq(&conf->device_lock);
4587 wake_up(&conf->wait_for_overlap);
acb180b0 4588 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
c6207277 4589 }
7a661381 4590 return reshape_sectors;
52c03291
N
4591}
4592
4593/* FIXME go_faster isn't used */
fd01b88c 4594static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
52c03291 4595{
d1688a6d 4596 struct r5conf *conf = mddev->private;
52c03291 4597 struct stripe_head *sh;
58c0fed4 4598 sector_t max_sector = mddev->dev_sectors;
57dab0bd 4599 sector_t sync_blocks;
16a53ecc
N
4600 int still_degraded = 0;
4601 int i;
1da177e4 4602
72626685 4603 if (sector_nr >= max_sector) {
1da177e4 4604 /* just being told to finish up .. nothing much to do */
cea9c228 4605
29269553
N
4606 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
4607 end_reshape(conf);
4608 return 0;
4609 }
72626685
N
4610
4611 if (mddev->curr_resync < max_sector) /* aborted */
4612 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
4613 &sync_blocks, 1);
16a53ecc 4614 else /* completed sync */
72626685
N
4615 conf->fullsync = 0;
4616 bitmap_close_sync(mddev->bitmap);
4617
1da177e4
LT
4618 return 0;
4619 }
ccfcc3c1 4620
64bd660b
N
4621 /* Allow raid5_quiesce to complete */
4622 wait_event(conf->wait_for_overlap, conf->quiesce != 2);
4623
52c03291
N
4624 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4625 return reshape_request(mddev, sector_nr, skipped);
f6705578 4626
c6207277
N
4627 /* No need to check resync_max as we never do more than one
4628 * stripe, and as resync_max will always be on a chunk boundary,
4629 * if the check in md_do_sync didn't fire, there is no chance
4630 * of overstepping resync_max here
4631 */
4632
16a53ecc 4633 /* if there is too many failed drives and we are trying
1da177e4
LT
4634 * to resync, then assert that we are finished, because there is
4635 * nothing we can do.
4636 */
3285edf1 4637 if (mddev->degraded >= conf->max_degraded &&
16a53ecc 4638 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
58c0fed4 4639 sector_t rv = mddev->dev_sectors - sector_nr;
57afd89f 4640 *skipped = 1;
1da177e4
LT
4641 return rv;
4642 }
72626685 4643 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
3855ad9f 4644 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
72626685
N
4645 !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
4646 /* we can skip this block, and probably more */
4647 sync_blocks /= STRIPE_SECTORS;
4648 *skipped = 1;
4649 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
4650 }
1da177e4 4651
b47490c9
N
4652 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
4653
a8c906ca 4654 sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
1da177e4 4655 if (sh == NULL) {
a8c906ca 4656 sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
1da177e4 4657 /* make sure we don't swamp the stripe cache if someone else
16a53ecc 4658 * is trying to get access
1da177e4 4659 */
66c006a5 4660 schedule_timeout_uninterruptible(1);
1da177e4 4661 }
16a53ecc
N
4662 /* Need to check if array will still be degraded after recovery/resync
4663 * We don't need to check the 'failed' flag as when that gets set,
4664 * recovery aborts.
4665 */
f001a70c 4666 for (i = 0; i < conf->raid_disks; i++)
16a53ecc
N
4667 if (conf->disks[i].rdev == NULL)
4668 still_degraded = 1;
4669
4670 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
4671
83206d66 4672 set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
1da177e4 4673
1442577b 4674 handle_stripe(sh);
1da177e4
LT
4675 release_stripe(sh);
4676
4677 return STRIPE_SECTORS;
4678}
4679
d1688a6d 4680static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
46031f9a
RBJ
4681{
4682 /* We may not be able to submit a whole bio at once as there
4683 * may not be enough stripe_heads available.
4684 * We cannot pre-allocate enough stripe_heads as we may need
4685 * more than exist in the cache (if we allow ever large chunks).
4686 * So we do one stripe head at a time and record in
4687 * ->bi_hw_segments how many have been done.
4688 *
4689 * We *know* that this entire raid_bio is in one chunk, so
4690 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
4691 */
4692 struct stripe_head *sh;
911d4ee8 4693 int dd_idx;
46031f9a
RBJ
4694 sector_t sector, logical_sector, last_sector;
4695 int scnt = 0;
4696 int remaining;
4697 int handled = 0;
4698
4699 logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
112bf897 4700 sector = raid5_compute_sector(conf, logical_sector,
911d4ee8 4701 0, &dd_idx, NULL);
46031f9a
RBJ
4702 last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
4703
4704 for (; logical_sector < last_sector;
387bb173
NB
4705 logical_sector += STRIPE_SECTORS,
4706 sector += STRIPE_SECTORS,
4707 scnt++) {
46031f9a 4708
e7836bd6 4709 if (scnt < raid5_bi_processed_stripes(raid_bio))
46031f9a
RBJ
4710 /* already done this stripe */
4711 continue;
4712
a8c906ca 4713 sh = get_active_stripe(conf, sector, 0, 1, 0);
46031f9a
RBJ
4714
4715 if (!sh) {
4716 /* failed to get a stripe - must wait */
e7836bd6 4717 raid5_set_bi_processed_stripes(raid_bio, scnt);
46031f9a
RBJ
4718 conf->retry_read_aligned = raid_bio;
4719 return handled;
4720 }
4721
387bb173
NB
4722 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
4723 release_stripe(sh);
e7836bd6 4724 raid5_set_bi_processed_stripes(raid_bio, scnt);
387bb173
NB
4725 conf->retry_read_aligned = raid_bio;
4726 return handled;
4727 }
4728
3f9e7c14 4729 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
36d1c647 4730 handle_stripe(sh);
46031f9a
RBJ
4731 release_stripe(sh);
4732 handled++;
4733 }
e7836bd6 4734 remaining = raid5_dec_bi_active_stripes(raid_bio);
a9add5d9
N
4735 if (remaining == 0) {
4736 trace_block_bio_complete(bdev_get_queue(raid_bio->bi_bdev),
4737 raid_bio, 0);
0e13fe23 4738 bio_endio(raid_bio, 0);
a9add5d9 4739 }
46031f9a
RBJ
4740 if (atomic_dec_and_test(&conf->active_aligned_reads))
4741 wake_up(&conf->wait_for_stripe);
4742 return handled;
4743}
4744
46a06401
SL
4745#define MAX_STRIPE_BATCH 8
4746static int handle_active_stripes(struct r5conf *conf)
4747{
4748 struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
4749 int i, batch_size = 0;
4750
4751 while (batch_size < MAX_STRIPE_BATCH &&
4752 (sh = __get_priority_stripe(conf)) != NULL)
4753 batch[batch_size++] = sh;
4754
4755 if (batch_size == 0)
4756 return batch_size;
4757 spin_unlock_irq(&conf->device_lock);
4758
4759 for (i = 0; i < batch_size; i++)
4760 handle_stripe(batch[i]);
4761
4762 cond_resched();
4763
4764 spin_lock_irq(&conf->device_lock);
4765 for (i = 0; i < batch_size; i++)
4766 __release_stripe(conf, batch[i]);
4767 return batch_size;
4768}
46031f9a 4769
1da177e4
LT
4770/*
4771 * This is our raid5 kernel thread.
4772 *
4773 * We scan the hash table for stripes which can be handled now.
4774 * During the scan, completed stripes are saved for us by the interrupt
4775 * handler, so that they will not have to wait for our next wakeup.
4776 */
4ed8731d 4777static void raid5d(struct md_thread *thread)
1da177e4 4778{
4ed8731d 4779 struct mddev *mddev = thread->mddev;
d1688a6d 4780 struct r5conf *conf = mddev->private;
1da177e4 4781 int handled;
e1dfa0a2 4782 struct blk_plug plug;
1da177e4 4783
45b4233c 4784 pr_debug("+++ raid5d active\n");
1da177e4
LT
4785
4786 md_check_recovery(mddev);
1da177e4 4787
e1dfa0a2 4788 blk_start_plug(&plug);
1da177e4
LT
4789 handled = 0;
4790 spin_lock_irq(&conf->device_lock);
4791 while (1) {
46031f9a 4792 struct bio *bio;
46a06401 4793 int batch_size;
1da177e4 4794
0021b7bc 4795 if (
7c13edc8
N
4796 !list_empty(&conf->bitmap_list)) {
4797 /* Now is a good time to flush some bitmap updates */
4798 conf->seq_flush++;
700e432d 4799 spin_unlock_irq(&conf->device_lock);
72626685 4800 bitmap_unplug(mddev->bitmap);
700e432d 4801 spin_lock_irq(&conf->device_lock);
7c13edc8 4802 conf->seq_write = conf->seq_flush;
72626685
N
4803 activate_bit_delay(conf);
4804 }
0021b7bc 4805 raid5_activate_delayed(conf);
72626685 4806
46031f9a
RBJ
4807 while ((bio = remove_bio_from_retry(conf))) {
4808 int ok;
4809 spin_unlock_irq(&conf->device_lock);
4810 ok = retry_aligned_read(conf, bio);
4811 spin_lock_irq(&conf->device_lock);
4812 if (!ok)
4813 break;
4814 handled++;
4815 }
4816
46a06401
SL
4817 batch_size = handle_active_stripes(conf);
4818 if (!batch_size)
1da177e4 4819 break;
46a06401 4820 handled += batch_size;
1da177e4 4821
46a06401
SL
4822 if (mddev->flags & ~(1<<MD_CHANGE_PENDING)) {
4823 spin_unlock_irq(&conf->device_lock);
de393cde 4824 md_check_recovery(mddev);
46a06401
SL
4825 spin_lock_irq(&conf->device_lock);
4826 }
1da177e4 4827 }
45b4233c 4828 pr_debug("%d stripes handled\n", handled);
1da177e4
LT
4829
4830 spin_unlock_irq(&conf->device_lock);
4831
c9f21aaf 4832 async_tx_issue_pending_all();
e1dfa0a2 4833 blk_finish_plug(&plug);
1da177e4 4834
45b4233c 4835 pr_debug("--- raid5d inactive\n");
1da177e4
LT
4836}
4837
3f294f4f 4838static ssize_t
fd01b88c 4839raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
3f294f4f 4840{
d1688a6d 4841 struct r5conf *conf = mddev->private;
96de1e66
N
4842 if (conf)
4843 return sprintf(page, "%d\n", conf->max_nr_stripes);
4844 else
4845 return 0;
3f294f4f
N
4846}
4847
c41d4ac4 4848int
fd01b88c 4849raid5_set_cache_size(struct mddev *mddev, int size)
3f294f4f 4850{
d1688a6d 4851 struct r5conf *conf = mddev->private;
b5470dc5
DW
4852 int err;
4853
c41d4ac4 4854 if (size <= 16 || size > 32768)
3f294f4f 4855 return -EINVAL;
c41d4ac4 4856 while (size < conf->max_nr_stripes) {
3f294f4f
N
4857 if (drop_one_stripe(conf))
4858 conf->max_nr_stripes--;
4859 else
4860 break;
4861 }
b5470dc5
DW
4862 err = md_allow_write(mddev);
4863 if (err)
4864 return err;
c41d4ac4 4865 while (size > conf->max_nr_stripes) {
3f294f4f
N
4866 if (grow_one_stripe(conf))
4867 conf->max_nr_stripes++;
4868 else break;
4869 }
c41d4ac4
N
4870 return 0;
4871}
4872EXPORT_SYMBOL(raid5_set_cache_size);
4873
4874static ssize_t
fd01b88c 4875raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
c41d4ac4 4876{
d1688a6d 4877 struct r5conf *conf = mddev->private;
c41d4ac4
N
4878 unsigned long new;
4879 int err;
4880
4881 if (len >= PAGE_SIZE)
4882 return -EINVAL;
4883 if (!conf)
4884 return -ENODEV;
4885
4886 if (strict_strtoul(page, 10, &new))
4887 return -EINVAL;
4888 err = raid5_set_cache_size(mddev, new);
4889 if (err)
4890 return err;
3f294f4f
N
4891 return len;
4892}
007583c9 4893
96de1e66
N
4894static struct md_sysfs_entry
4895raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4896 raid5_show_stripe_cache_size,
4897 raid5_store_stripe_cache_size);
3f294f4f 4898
8b3e6cdc 4899static ssize_t
fd01b88c 4900raid5_show_preread_threshold(struct mddev *mddev, char *page)
8b3e6cdc 4901{
d1688a6d 4902 struct r5conf *conf = mddev->private;
8b3e6cdc
DW
4903 if (conf)
4904 return sprintf(page, "%d\n", conf->bypass_threshold);
4905 else
4906 return 0;
4907}
4908
4909static ssize_t
fd01b88c 4910raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
8b3e6cdc 4911{
d1688a6d 4912 struct r5conf *conf = mddev->private;
4ef197d8 4913 unsigned long new;
8b3e6cdc
DW
4914 if (len >= PAGE_SIZE)
4915 return -EINVAL;
4916 if (!conf)
4917 return -ENODEV;
4918
4ef197d8 4919 if (strict_strtoul(page, 10, &new))
8b3e6cdc 4920 return -EINVAL;
4ef197d8 4921 if (new > conf->max_nr_stripes)
8b3e6cdc
DW
4922 return -EINVAL;
4923 conf->bypass_threshold = new;
4924 return len;
4925}
4926
4927static struct md_sysfs_entry
4928raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4929 S_IRUGO | S_IWUSR,
4930 raid5_show_preread_threshold,
4931 raid5_store_preread_threshold);
4932
3f294f4f 4933static ssize_t
fd01b88c 4934stripe_cache_active_show(struct mddev *mddev, char *page)
3f294f4f 4935{
d1688a6d 4936 struct r5conf *conf = mddev->private;
96de1e66
N
4937 if (conf)
4938 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4939 else
4940 return 0;
3f294f4f
N
4941}
4942
96de1e66
N
4943static struct md_sysfs_entry
4944raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
3f294f4f 4945
007583c9 4946static struct attribute *raid5_attrs[] = {
3f294f4f
N
4947 &raid5_stripecache_size.attr,
4948 &raid5_stripecache_active.attr,
8b3e6cdc 4949 &raid5_preread_bypass_threshold.attr,
3f294f4f
N
4950 NULL,
4951};
007583c9
N
4952static struct attribute_group raid5_attrs_group = {
4953 .name = NULL,
4954 .attrs = raid5_attrs,
3f294f4f
N
4955};
4956
80c3a6ce 4957static sector_t
fd01b88c 4958raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
80c3a6ce 4959{
d1688a6d 4960 struct r5conf *conf = mddev->private;
80c3a6ce
DW
4961
4962 if (!sectors)
4963 sectors = mddev->dev_sectors;
5e5e3e78 4964 if (!raid_disks)
7ec05478 4965 /* size is defined by the smallest of previous and new size */
5e5e3e78 4966 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
80c3a6ce 4967
9d8f0363 4968 sectors &= ~((sector_t)mddev->chunk_sectors - 1);
664e7c41 4969 sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
80c3a6ce
DW
4970 return sectors * (raid_disks - conf->max_degraded);
4971}
4972
d1688a6d 4973static void raid5_free_percpu(struct r5conf *conf)
36d1c647
DW
4974{
4975 struct raid5_percpu *percpu;
4976 unsigned long cpu;
4977
4978 if (!conf->percpu)
4979 return;
4980
4981 get_online_cpus();
4982 for_each_possible_cpu(cpu) {
4983 percpu = per_cpu_ptr(conf->percpu, cpu);
4984 safe_put_page(percpu->spare_page);
d6f38f31 4985 kfree(percpu->scribble);
36d1c647
DW
4986 }
4987#ifdef CONFIG_HOTPLUG_CPU
4988 unregister_cpu_notifier(&conf->cpu_notify);
4989#endif
4990 put_online_cpus();
4991
4992 free_percpu(conf->percpu);
4993}
4994
d1688a6d 4995static void free_conf(struct r5conf *conf)
95fc17aa
DW
4996{
4997 shrink_stripes(conf);
36d1c647 4998 raid5_free_percpu(conf);
95fc17aa
DW
4999 kfree(conf->disks);
5000 kfree(conf->stripe_hashtbl);
5001 kfree(conf);
5002}
5003
36d1c647
DW
5004#ifdef CONFIG_HOTPLUG_CPU
5005static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
5006 void *hcpu)
5007{
d1688a6d 5008 struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
36d1c647
DW
5009 long cpu = (long)hcpu;
5010 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
5011
5012 switch (action) {
5013 case CPU_UP_PREPARE:
5014 case CPU_UP_PREPARE_FROZEN:
d6f38f31 5015 if (conf->level == 6 && !percpu->spare_page)
36d1c647 5016 percpu->spare_page = alloc_page(GFP_KERNEL);
d6f38f31
DW
5017 if (!percpu->scribble)
5018 percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
5019
5020 if (!percpu->scribble ||
5021 (conf->level == 6 && !percpu->spare_page)) {
5022 safe_put_page(percpu->spare_page);
5023 kfree(percpu->scribble);
36d1c647
DW
5024 pr_err("%s: failed memory allocation for cpu%ld\n",
5025 __func__, cpu);
55af6bb5 5026 return notifier_from_errno(-ENOMEM);
36d1c647
DW
5027 }
5028 break;
5029 case CPU_DEAD:
5030 case CPU_DEAD_FROZEN:
5031 safe_put_page(percpu->spare_page);
d6f38f31 5032 kfree(percpu->scribble);
36d1c647 5033 percpu->spare_page = NULL;
d6f38f31 5034 percpu->scribble = NULL;
36d1c647
DW
5035 break;
5036 default:
5037 break;
5038 }
5039 return NOTIFY_OK;
5040}
5041#endif
5042
d1688a6d 5043static int raid5_alloc_percpu(struct r5conf *conf)
36d1c647
DW
5044{
5045 unsigned long cpu;
5046 struct page *spare_page;
a29d8b8e 5047 struct raid5_percpu __percpu *allcpus;
d6f38f31 5048 void *scribble;
36d1c647
DW
5049 int err;
5050
36d1c647
DW
5051 allcpus = alloc_percpu(struct raid5_percpu);
5052 if (!allcpus)
5053 return -ENOMEM;
5054 conf->percpu = allcpus;
5055
5056 get_online_cpus();
5057 err = 0;
5058 for_each_present_cpu(cpu) {
d6f38f31
DW
5059 if (conf->level == 6) {
5060 spare_page = alloc_page(GFP_KERNEL);
5061 if (!spare_page) {
5062 err = -ENOMEM;
5063 break;
5064 }
5065 per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
5066 }
5e5e3e78 5067 scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
d6f38f31 5068 if (!scribble) {
36d1c647
DW
5069 err = -ENOMEM;
5070 break;
5071 }
d6f38f31 5072 per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
36d1c647
DW
5073 }
5074#ifdef CONFIG_HOTPLUG_CPU
5075 conf->cpu_notify.notifier_call = raid456_cpu_notify;
5076 conf->cpu_notify.priority = 0;
5077 if (err == 0)
5078 err = register_cpu_notifier(&conf->cpu_notify);
5079#endif
5080 put_online_cpus();
5081
5082 return err;
5083}
5084
d1688a6d 5085static struct r5conf *setup_conf(struct mddev *mddev)
1da177e4 5086{
d1688a6d 5087 struct r5conf *conf;
5e5e3e78 5088 int raid_disk, memory, max_disks;
3cb03002 5089 struct md_rdev *rdev;
1da177e4 5090 struct disk_info *disk;
0232605d 5091 char pers_name[6];
1da177e4 5092
91adb564
N
5093 if (mddev->new_level != 5
5094 && mddev->new_level != 4
5095 && mddev->new_level != 6) {
0c55e022 5096 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
91adb564
N
5097 mdname(mddev), mddev->new_level);
5098 return ERR_PTR(-EIO);
1da177e4 5099 }
91adb564
N
5100 if ((mddev->new_level == 5
5101 && !algorithm_valid_raid5(mddev->new_layout)) ||
5102 (mddev->new_level == 6
5103 && !algorithm_valid_raid6(mddev->new_layout))) {
0c55e022 5104 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
91adb564
N
5105 mdname(mddev), mddev->new_layout);
5106 return ERR_PTR(-EIO);
99c0fb5f 5107 }
91adb564 5108 if (mddev->new_level == 6 && mddev->raid_disks < 4) {
0c55e022 5109 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
91adb564
N
5110 mdname(mddev), mddev->raid_disks);
5111 return ERR_PTR(-EINVAL);
4bbf3771
N
5112 }
5113
664e7c41
AN
5114 if (!mddev->new_chunk_sectors ||
5115 (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
5116 !is_power_of_2(mddev->new_chunk_sectors)) {
0c55e022
N
5117 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
5118 mdname(mddev), mddev->new_chunk_sectors << 9);
91adb564 5119 return ERR_PTR(-EINVAL);
f6705578
N
5120 }
5121
d1688a6d 5122 conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
91adb564 5123 if (conf == NULL)
1da177e4 5124 goto abort;
f5efd45a
DW
5125 spin_lock_init(&conf->device_lock);
5126 init_waitqueue_head(&conf->wait_for_stripe);
5127 init_waitqueue_head(&conf->wait_for_overlap);
5128 INIT_LIST_HEAD(&conf->handle_list);
5129 INIT_LIST_HEAD(&conf->hold_list);
5130 INIT_LIST_HEAD(&conf->delayed_list);
5131 INIT_LIST_HEAD(&conf->bitmap_list);
5132 INIT_LIST_HEAD(&conf->inactive_list);
5133 atomic_set(&conf->active_stripes, 0);
5134 atomic_set(&conf->preread_active_stripes, 0);
5135 atomic_set(&conf->active_aligned_reads, 0);
5136 conf->bypass_threshold = BYPASS_THRESHOLD;
d890fa2b 5137 conf->recovery_disabled = mddev->recovery_disabled - 1;
91adb564
N
5138
5139 conf->raid_disks = mddev->raid_disks;
5140 if (mddev->reshape_position == MaxSector)
5141 conf->previous_raid_disks = mddev->raid_disks;
5142 else
f6705578 5143 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
5e5e3e78
N
5144 max_disks = max(conf->raid_disks, conf->previous_raid_disks);
5145 conf->scribble_len = scribble_len(max_disks);
f6705578 5146
5e5e3e78 5147 conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
b55e6bfc
N
5148 GFP_KERNEL);
5149 if (!conf->disks)
5150 goto abort;
9ffae0cf 5151
1da177e4
LT
5152 conf->mddev = mddev;
5153
fccddba0 5154 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
1da177e4 5155 goto abort;
1da177e4 5156
36d1c647
DW
5157 conf->level = mddev->new_level;
5158 if (raid5_alloc_percpu(conf) != 0)
5159 goto abort;
5160
0c55e022 5161 pr_debug("raid456: run(%s) called.\n", mdname(mddev));
1da177e4 5162
dafb20fa 5163 rdev_for_each(rdev, mddev) {
1da177e4 5164 raid_disk = rdev->raid_disk;
5e5e3e78 5165 if (raid_disk >= max_disks
1da177e4
LT
5166 || raid_disk < 0)
5167 continue;
5168 disk = conf->disks + raid_disk;
5169
17045f52
N
5170 if (test_bit(Replacement, &rdev->flags)) {
5171 if (disk->replacement)
5172 goto abort;
5173 disk->replacement = rdev;
5174 } else {
5175 if (disk->rdev)
5176 goto abort;
5177 disk->rdev = rdev;
5178 }
1da177e4 5179
b2d444d7 5180 if (test_bit(In_sync, &rdev->flags)) {
1da177e4 5181 char b[BDEVNAME_SIZE];
0c55e022
N
5182 printk(KERN_INFO "md/raid:%s: device %s operational as raid"
5183 " disk %d\n",
5184 mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
d6b212f4 5185 } else if (rdev->saved_raid_disk != raid_disk)
8c2e870a
NB
5186 /* Cannot rely on bitmap to complete recovery */
5187 conf->fullsync = 1;
1da177e4
LT
5188 }
5189
09c9e5fa 5190 conf->chunk_sectors = mddev->new_chunk_sectors;
91adb564 5191 conf->level = mddev->new_level;
16a53ecc
N
5192 if (conf->level == 6)
5193 conf->max_degraded = 2;
5194 else
5195 conf->max_degraded = 1;
91adb564 5196 conf->algorithm = mddev->new_layout;
1da177e4 5197 conf->max_nr_stripes = NR_STRIPES;
fef9c61f 5198 conf->reshape_progress = mddev->reshape_position;
e183eaed 5199 if (conf->reshape_progress != MaxSector) {
09c9e5fa 5200 conf->prev_chunk_sectors = mddev->chunk_sectors;
e183eaed
N
5201 conf->prev_algo = mddev->layout;
5202 }
1da177e4 5203
91adb564 5204 memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
5e5e3e78 5205 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
91adb564
N
5206 if (grow_stripes(conf, conf->max_nr_stripes)) {
5207 printk(KERN_ERR
0c55e022
N
5208 "md/raid:%s: couldn't allocate %dkB for buffers\n",
5209 mdname(mddev), memory);
91adb564
N
5210 goto abort;
5211 } else
0c55e022
N
5212 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
5213 mdname(mddev), memory);
1da177e4 5214
0232605d
N
5215 sprintf(pers_name, "raid%d", mddev->new_level);
5216 conf->thread = md_register_thread(raid5d, mddev, pers_name);
91adb564
N
5217 if (!conf->thread) {
5218 printk(KERN_ERR
0c55e022 5219 "md/raid:%s: couldn't allocate thread.\n",
91adb564 5220 mdname(mddev));
16a53ecc
N
5221 goto abort;
5222 }
91adb564
N
5223
5224 return conf;
5225
5226 abort:
5227 if (conf) {
95fc17aa 5228 free_conf(conf);
91adb564
N
5229 return ERR_PTR(-EIO);
5230 } else
5231 return ERR_PTR(-ENOMEM);
5232}
5233
c148ffdc
N
5234
5235static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
5236{
5237 switch (algo) {
5238 case ALGORITHM_PARITY_0:
5239 if (raid_disk < max_degraded)
5240 return 1;
5241 break;
5242 case ALGORITHM_PARITY_N:
5243 if (raid_disk >= raid_disks - max_degraded)
5244 return 1;
5245 break;
5246 case ALGORITHM_PARITY_0_6:
5247 if (raid_disk == 0 ||
5248 raid_disk == raid_disks - 1)
5249 return 1;
5250 break;
5251 case ALGORITHM_LEFT_ASYMMETRIC_6:
5252 case ALGORITHM_RIGHT_ASYMMETRIC_6:
5253 case ALGORITHM_LEFT_SYMMETRIC_6:
5254 case ALGORITHM_RIGHT_SYMMETRIC_6:
5255 if (raid_disk == raid_disks - 1)
5256 return 1;
5257 }
5258 return 0;
5259}
5260
fd01b88c 5261static int run(struct mddev *mddev)
91adb564 5262{
d1688a6d 5263 struct r5conf *conf;
9f7c2220 5264 int working_disks = 0;
c148ffdc 5265 int dirty_parity_disks = 0;
3cb03002 5266 struct md_rdev *rdev;
c148ffdc 5267 sector_t reshape_offset = 0;
17045f52 5268 int i;
b5254dd5
N
5269 long long min_offset_diff = 0;
5270 int first = 1;
91adb564 5271
8c6ac868 5272 if (mddev->recovery_cp != MaxSector)
0c55e022 5273 printk(KERN_NOTICE "md/raid:%s: not clean"
8c6ac868
AN
5274 " -- starting background reconstruction\n",
5275 mdname(mddev));
b5254dd5
N
5276
5277 rdev_for_each(rdev, mddev) {
5278 long long diff;
5279 if (rdev->raid_disk < 0)
5280 continue;
5281 diff = (rdev->new_data_offset - rdev->data_offset);
5282 if (first) {
5283 min_offset_diff = diff;
5284 first = 0;
5285 } else if (mddev->reshape_backwards &&
5286 diff < min_offset_diff)
5287 min_offset_diff = diff;
5288 else if (!mddev->reshape_backwards &&
5289 diff > min_offset_diff)
5290 min_offset_diff = diff;
5291 }
5292
91adb564
N
5293 if (mddev->reshape_position != MaxSector) {
5294 /* Check that we can continue the reshape.
b5254dd5
N
5295 * Difficulties arise if the stripe we would write to
5296 * next is at or after the stripe we would read from next.
5297 * For a reshape that changes the number of devices, this
5298 * is only possible for a very short time, and mdadm makes
5299 * sure that time appears to have past before assembling
5300 * the array. So we fail if that time hasn't passed.
5301 * For a reshape that keeps the number of devices the same
5302 * mdadm must be monitoring the reshape can keeping the
5303 * critical areas read-only and backed up. It will start
5304 * the array in read-only mode, so we check for that.
91adb564
N
5305 */
5306 sector_t here_new, here_old;
5307 int old_disks;
18b00334 5308 int max_degraded = (mddev->level == 6 ? 2 : 1);
91adb564 5309
88ce4930 5310 if (mddev->new_level != mddev->level) {
0c55e022 5311 printk(KERN_ERR "md/raid:%s: unsupported reshape "
91adb564
N
5312 "required - aborting.\n",
5313 mdname(mddev));
5314 return -EINVAL;
5315 }
91adb564
N
5316 old_disks = mddev->raid_disks - mddev->delta_disks;
5317 /* reshape_position must be on a new-stripe boundary, and one
5318 * further up in new geometry must map after here in old
5319 * geometry.
5320 */
5321 here_new = mddev->reshape_position;
664e7c41 5322 if (sector_div(here_new, mddev->new_chunk_sectors *
91adb564 5323 (mddev->raid_disks - max_degraded))) {
0c55e022
N
5324 printk(KERN_ERR "md/raid:%s: reshape_position not "
5325 "on a stripe boundary\n", mdname(mddev));
91adb564
N
5326 return -EINVAL;
5327 }
c148ffdc 5328 reshape_offset = here_new * mddev->new_chunk_sectors;
91adb564
N
5329 /* here_new is the stripe we will write to */
5330 here_old = mddev->reshape_position;
9d8f0363 5331 sector_div(here_old, mddev->chunk_sectors *
91adb564
N
5332 (old_disks-max_degraded));
5333 /* here_old is the first stripe that we might need to read
5334 * from */
67ac6011 5335 if (mddev->delta_disks == 0) {
b5254dd5
N
5336 if ((here_new * mddev->new_chunk_sectors !=
5337 here_old * mddev->chunk_sectors)) {
5338 printk(KERN_ERR "md/raid:%s: reshape position is"
5339 " confused - aborting\n", mdname(mddev));
5340 return -EINVAL;
5341 }
67ac6011 5342 /* We cannot be sure it is safe to start an in-place
b5254dd5 5343 * reshape. It is only safe if user-space is monitoring
67ac6011
N
5344 * and taking constant backups.
5345 * mdadm always starts a situation like this in
5346 * readonly mode so it can take control before
5347 * allowing any writes. So just check for that.
5348 */
b5254dd5
N
5349 if (abs(min_offset_diff) >= mddev->chunk_sectors &&
5350 abs(min_offset_diff) >= mddev->new_chunk_sectors)
5351 /* not really in-place - so OK */;
5352 else if (mddev->ro == 0) {
5353 printk(KERN_ERR "md/raid:%s: in-place reshape "
5354 "must be started in read-only mode "
5355 "- aborting\n",
0c55e022 5356 mdname(mddev));
67ac6011
N
5357 return -EINVAL;
5358 }
2c810cdd 5359 } else if (mddev->reshape_backwards
b5254dd5 5360 ? (here_new * mddev->new_chunk_sectors + min_offset_diff <=
67ac6011
N
5361 here_old * mddev->chunk_sectors)
5362 : (here_new * mddev->new_chunk_sectors >=
b5254dd5 5363 here_old * mddev->chunk_sectors + (-min_offset_diff))) {
91adb564 5364 /* Reading from the same stripe as writing to - bad */
0c55e022
N
5365 printk(KERN_ERR "md/raid:%s: reshape_position too early for "
5366 "auto-recovery - aborting.\n",
5367 mdname(mddev));
91adb564
N
5368 return -EINVAL;
5369 }
0c55e022
N
5370 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
5371 mdname(mddev));
91adb564
N
5372 /* OK, we should be able to continue; */
5373 } else {
5374 BUG_ON(mddev->level != mddev->new_level);
5375 BUG_ON(mddev->layout != mddev->new_layout);
664e7c41 5376 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
91adb564 5377 BUG_ON(mddev->delta_disks != 0);
1da177e4 5378 }
91adb564 5379
245f46c2
N
5380 if (mddev->private == NULL)
5381 conf = setup_conf(mddev);
5382 else
5383 conf = mddev->private;
5384
91adb564
N
5385 if (IS_ERR(conf))
5386 return PTR_ERR(conf);
5387
b5254dd5 5388 conf->min_offset_diff = min_offset_diff;
91adb564
N
5389 mddev->thread = conf->thread;
5390 conf->thread = NULL;
5391 mddev->private = conf;
5392
17045f52
N
5393 for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
5394 i++) {
5395 rdev = conf->disks[i].rdev;
5396 if (!rdev && conf->disks[i].replacement) {
5397 /* The replacement is all we have yet */
5398 rdev = conf->disks[i].replacement;
5399 conf->disks[i].replacement = NULL;
5400 clear_bit(Replacement, &rdev->flags);
5401 conf->disks[i].rdev = rdev;
5402 }
5403 if (!rdev)
c148ffdc 5404 continue;
17045f52
N
5405 if (conf->disks[i].replacement &&
5406 conf->reshape_progress != MaxSector) {
5407 /* replacements and reshape simply do not mix. */
5408 printk(KERN_ERR "md: cannot handle concurrent "
5409 "replacement and reshape.\n");
5410 goto abort;
5411 }
2f115882 5412 if (test_bit(In_sync, &rdev->flags)) {
91adb564 5413 working_disks++;
2f115882
N
5414 continue;
5415 }
c148ffdc
N
5416 /* This disc is not fully in-sync. However if it
5417 * just stored parity (beyond the recovery_offset),
5418 * when we don't need to be concerned about the
5419 * array being dirty.
5420 * When reshape goes 'backwards', we never have
5421 * partially completed devices, so we only need
5422 * to worry about reshape going forwards.
5423 */
5424 /* Hack because v0.91 doesn't store recovery_offset properly. */
5425 if (mddev->major_version == 0 &&
5426 mddev->minor_version > 90)
5427 rdev->recovery_offset = reshape_offset;
5428
c148ffdc
N
5429 if (rdev->recovery_offset < reshape_offset) {
5430 /* We need to check old and new layout */
5431 if (!only_parity(rdev->raid_disk,
5432 conf->algorithm,
5433 conf->raid_disks,
5434 conf->max_degraded))
5435 continue;
5436 }
5437 if (!only_parity(rdev->raid_disk,
5438 conf->prev_algo,
5439 conf->previous_raid_disks,
5440 conf->max_degraded))
5441 continue;
5442 dirty_parity_disks++;
5443 }
91adb564 5444
17045f52
N
5445 /*
5446 * 0 for a fully functional array, 1 or 2 for a degraded array.
5447 */
908f4fbd 5448 mddev->degraded = calc_degraded(conf);
91adb564 5449
674806d6 5450 if (has_failed(conf)) {
0c55e022 5451 printk(KERN_ERR "md/raid:%s: not enough operational devices"
1da177e4 5452 " (%d/%d failed)\n",
02c2de8c 5453 mdname(mddev), mddev->degraded, conf->raid_disks);
1da177e4
LT
5454 goto abort;
5455 }
5456
91adb564 5457 /* device size must be a multiple of chunk size */
9d8f0363 5458 mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
91adb564
N
5459 mddev->resync_max_sectors = mddev->dev_sectors;
5460
c148ffdc 5461 if (mddev->degraded > dirty_parity_disks &&
1da177e4 5462 mddev->recovery_cp != MaxSector) {
6ff8d8ec
N
5463 if (mddev->ok_start_degraded)
5464 printk(KERN_WARNING
0c55e022
N
5465 "md/raid:%s: starting dirty degraded array"
5466 " - data corruption possible.\n",
6ff8d8ec
N
5467 mdname(mddev));
5468 else {
5469 printk(KERN_ERR
0c55e022 5470 "md/raid:%s: cannot start dirty degraded array.\n",
6ff8d8ec
N
5471 mdname(mddev));
5472 goto abort;
5473 }
1da177e4
LT
5474 }
5475
1da177e4 5476 if (mddev->degraded == 0)
0c55e022
N
5477 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
5478 " devices, algorithm %d\n", mdname(mddev), conf->level,
e183eaed
N
5479 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
5480 mddev->new_layout);
1da177e4 5481 else
0c55e022
N
5482 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
5483 " out of %d devices, algorithm %d\n",
5484 mdname(mddev), conf->level,
5485 mddev->raid_disks - mddev->degraded,
5486 mddev->raid_disks, mddev->new_layout);
1da177e4
LT
5487
5488 print_raid5_conf(conf);
5489
fef9c61f 5490 if (conf->reshape_progress != MaxSector) {
fef9c61f 5491 conf->reshape_safe = conf->reshape_progress;
f6705578
N
5492 atomic_set(&conf->reshape_stripes, 0);
5493 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5494 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5495 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5496 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5497 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
0da3c619 5498 "reshape");
f6705578
N
5499 }
5500
1da177e4
LT
5501
5502 /* Ok, everything is just fine now */
a64c876f
N
5503 if (mddev->to_remove == &raid5_attrs_group)
5504 mddev->to_remove = NULL;
00bcb4ac
N
5505 else if (mddev->kobj.sd &&
5506 sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
5e55e2f5 5507 printk(KERN_WARNING
4a5add49 5508 "raid5: failed to create sysfs attributes for %s\n",
5e55e2f5 5509 mdname(mddev));
4a5add49 5510 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7a5febe9 5511
4a5add49 5512 if (mddev->queue) {
9f7c2220 5513 int chunk_size;
620125f2 5514 bool discard_supported = true;
4a5add49
N
5515 /* read-ahead size must cover two whole stripes, which
5516 * is 2 * (datadisks) * chunksize where 'n' is the
5517 * number of raid devices
5518 */
5519 int data_disks = conf->previous_raid_disks - conf->max_degraded;
5520 int stripe = data_disks *
5521 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
5522 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5523 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
91adb564 5524
4a5add49 5525 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
f022b2fd 5526
11d8a6e3
N
5527 mddev->queue->backing_dev_info.congested_data = mddev;
5528 mddev->queue->backing_dev_info.congested_fn = raid5_congested;
7a5febe9 5529
9f7c2220
N
5530 chunk_size = mddev->chunk_sectors << 9;
5531 blk_queue_io_min(mddev->queue, chunk_size);
5532 blk_queue_io_opt(mddev->queue, chunk_size *
5533 (conf->raid_disks - conf->max_degraded));
620125f2
SL
5534 /*
5535 * We can only discard a whole stripe. It doesn't make sense to
5536 * discard data disk but write parity disk
5537 */
5538 stripe = stripe * PAGE_SIZE;
4ac6875e
N
5539 /* Round up to power of 2, as discard handling
5540 * currently assumes that */
5541 while ((stripe-1) & stripe)
5542 stripe = (stripe | (stripe-1)) + 1;
620125f2
SL
5543 mddev->queue->limits.discard_alignment = stripe;
5544 mddev->queue->limits.discard_granularity = stripe;
5545 /*
5546 * unaligned part of discard request will be ignored, so can't
5547 * guarantee discard_zerors_data
5548 */
5549 mddev->queue->limits.discard_zeroes_data = 0;
8f6c2e4b 5550
05616be5 5551 rdev_for_each(rdev, mddev) {
9f7c2220
N
5552 disk_stack_limits(mddev->gendisk, rdev->bdev,
5553 rdev->data_offset << 9);
05616be5
N
5554 disk_stack_limits(mddev->gendisk, rdev->bdev,
5555 rdev->new_data_offset << 9);
620125f2
SL
5556 /*
5557 * discard_zeroes_data is required, otherwise data
5558 * could be lost. Consider a scenario: discard a stripe
5559 * (the stripe could be inconsistent if
5560 * discard_zeroes_data is 0); write one disk of the
5561 * stripe (the stripe could be inconsistent again
5562 * depending on which disks are used to calculate
5563 * parity); the disk is broken; The stripe data of this
5564 * disk is lost.
5565 */
5566 if (!blk_queue_discard(bdev_get_queue(rdev->bdev)) ||
5567 !bdev_get_queue(rdev->bdev)->
5568 limits.discard_zeroes_data)
5569 discard_supported = false;
05616be5 5570 }
620125f2
SL
5571
5572 if (discard_supported &&
5573 mddev->queue->limits.max_discard_sectors >= stripe &&
5574 mddev->queue->limits.discard_granularity >= stripe)
5575 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
5576 mddev->queue);
5577 else
5578 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
5579 mddev->queue);
9f7c2220 5580 }
23032a0e 5581
1da177e4
LT
5582 return 0;
5583abort:
01f96c0a 5584 md_unregister_thread(&mddev->thread);
e4f869d9
N
5585 print_raid5_conf(conf);
5586 free_conf(conf);
1da177e4 5587 mddev->private = NULL;
0c55e022 5588 printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
1da177e4
LT
5589 return -EIO;
5590}
5591
fd01b88c 5592static int stop(struct mddev *mddev)
1da177e4 5593{
d1688a6d 5594 struct r5conf *conf = mddev->private;
1da177e4 5595
01f96c0a 5596 md_unregister_thread(&mddev->thread);
11d8a6e3
N
5597 if (mddev->queue)
5598 mddev->queue->backing_dev_info.congested_fn = NULL;
95fc17aa 5599 free_conf(conf);
a64c876f
N
5600 mddev->private = NULL;
5601 mddev->to_remove = &raid5_attrs_group;
1da177e4
LT
5602 return 0;
5603}
5604
fd01b88c 5605static void status(struct seq_file *seq, struct mddev *mddev)
1da177e4 5606{
d1688a6d 5607 struct r5conf *conf = mddev->private;
1da177e4
LT
5608 int i;
5609
9d8f0363
AN
5610 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
5611 mddev->chunk_sectors / 2, mddev->layout);
02c2de8c 5612 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
1da177e4
LT
5613 for (i = 0; i < conf->raid_disks; i++)
5614 seq_printf (seq, "%s",
5615 conf->disks[i].rdev &&
b2d444d7 5616 test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
1da177e4 5617 seq_printf (seq, "]");
1da177e4
LT
5618}
5619
d1688a6d 5620static void print_raid5_conf (struct r5conf *conf)
1da177e4
LT
5621{
5622 int i;
5623 struct disk_info *tmp;
5624
0c55e022 5625 printk(KERN_DEBUG "RAID conf printout:\n");
1da177e4
LT
5626 if (!conf) {
5627 printk("(conf==NULL)\n");
5628 return;
5629 }
0c55e022
N
5630 printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
5631 conf->raid_disks,
5632 conf->raid_disks - conf->mddev->degraded);
1da177e4
LT
5633
5634 for (i = 0; i < conf->raid_disks; i++) {
5635 char b[BDEVNAME_SIZE];
5636 tmp = conf->disks + i;
5637 if (tmp->rdev)
0c55e022
N
5638 printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
5639 i, !test_bit(Faulty, &tmp->rdev->flags),
5640 bdevname(tmp->rdev->bdev, b));
1da177e4
LT
5641 }
5642}
5643
fd01b88c 5644static int raid5_spare_active(struct mddev *mddev)
1da177e4
LT
5645{
5646 int i;
d1688a6d 5647 struct r5conf *conf = mddev->private;
1da177e4 5648 struct disk_info *tmp;
6b965620
N
5649 int count = 0;
5650 unsigned long flags;
1da177e4
LT
5651
5652 for (i = 0; i < conf->raid_disks; i++) {
5653 tmp = conf->disks + i;
dd054fce
N
5654 if (tmp->replacement
5655 && tmp->replacement->recovery_offset == MaxSector
5656 && !test_bit(Faulty, &tmp->replacement->flags)
5657 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
5658 /* Replacement has just become active. */
5659 if (!tmp->rdev
5660 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
5661 count++;
5662 if (tmp->rdev) {
5663 /* Replaced device not technically faulty,
5664 * but we need to be sure it gets removed
5665 * and never re-added.
5666 */
5667 set_bit(Faulty, &tmp->rdev->flags);
5668 sysfs_notify_dirent_safe(
5669 tmp->rdev->sysfs_state);
5670 }
5671 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
5672 } else if (tmp->rdev
70fffd0b 5673 && tmp->rdev->recovery_offset == MaxSector
b2d444d7 5674 && !test_bit(Faulty, &tmp->rdev->flags)
c04be0aa 5675 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
6b965620 5676 count++;
43c73ca4 5677 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1da177e4
LT
5678 }
5679 }
6b965620 5680 spin_lock_irqsave(&conf->device_lock, flags);
908f4fbd 5681 mddev->degraded = calc_degraded(conf);
6b965620 5682 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 5683 print_raid5_conf(conf);
6b965620 5684 return count;
1da177e4
LT
5685}
5686
b8321b68 5687static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 5688{
d1688a6d 5689 struct r5conf *conf = mddev->private;
1da177e4 5690 int err = 0;
b8321b68 5691 int number = rdev->raid_disk;
657e3e4d 5692 struct md_rdev **rdevp;
1da177e4
LT
5693 struct disk_info *p = conf->disks + number;
5694
5695 print_raid5_conf(conf);
657e3e4d
N
5696 if (rdev == p->rdev)
5697 rdevp = &p->rdev;
5698 else if (rdev == p->replacement)
5699 rdevp = &p->replacement;
5700 else
5701 return 0;
5702
5703 if (number >= conf->raid_disks &&
5704 conf->reshape_progress == MaxSector)
5705 clear_bit(In_sync, &rdev->flags);
5706
5707 if (test_bit(In_sync, &rdev->flags) ||
5708 atomic_read(&rdev->nr_pending)) {
5709 err = -EBUSY;
5710 goto abort;
5711 }
5712 /* Only remove non-faulty devices if recovery
5713 * isn't possible.
5714 */
5715 if (!test_bit(Faulty, &rdev->flags) &&
5716 mddev->recovery_disabled != conf->recovery_disabled &&
5717 !has_failed(conf) &&
dd054fce 5718 (!p->replacement || p->replacement == rdev) &&
657e3e4d
N
5719 number < conf->raid_disks) {
5720 err = -EBUSY;
5721 goto abort;
5722 }
5723 *rdevp = NULL;
5724 synchronize_rcu();
5725 if (atomic_read(&rdev->nr_pending)) {
5726 /* lost the race, try later */
5727 err = -EBUSY;
5728 *rdevp = rdev;
dd054fce
N
5729 } else if (p->replacement) {
5730 /* We must have just cleared 'rdev' */
5731 p->rdev = p->replacement;
5732 clear_bit(Replacement, &p->replacement->flags);
5733 smp_mb(); /* Make sure other CPUs may see both as identical
5734 * but will never see neither - if they are careful
5735 */
5736 p->replacement = NULL;
5737 clear_bit(WantReplacement, &rdev->flags);
5738 } else
5739 /* We might have just removed the Replacement as faulty-
5740 * clear the bit just in case
5741 */
5742 clear_bit(WantReplacement, &rdev->flags);
1da177e4
LT
5743abort:
5744
5745 print_raid5_conf(conf);
5746 return err;
5747}
5748
fd01b88c 5749static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 5750{
d1688a6d 5751 struct r5conf *conf = mddev->private;
199050ea 5752 int err = -EEXIST;
1da177e4
LT
5753 int disk;
5754 struct disk_info *p;
6c2fce2e
NB
5755 int first = 0;
5756 int last = conf->raid_disks - 1;
1da177e4 5757
7f0da59b
N
5758 if (mddev->recovery_disabled == conf->recovery_disabled)
5759 return -EBUSY;
5760
dc10c643 5761 if (rdev->saved_raid_disk < 0 && has_failed(conf))
1da177e4 5762 /* no point adding a device */
199050ea 5763 return -EINVAL;
1da177e4 5764
6c2fce2e
NB
5765 if (rdev->raid_disk >= 0)
5766 first = last = rdev->raid_disk;
1da177e4
LT
5767
5768 /*
16a53ecc
N
5769 * find the disk ... but prefer rdev->saved_raid_disk
5770 * if possible.
1da177e4 5771 */
16a53ecc 5772 if (rdev->saved_raid_disk >= 0 &&
6c2fce2e 5773 rdev->saved_raid_disk >= first &&
16a53ecc 5774 conf->disks[rdev->saved_raid_disk].rdev == NULL)
5cfb22a1
N
5775 first = rdev->saved_raid_disk;
5776
5777 for (disk = first; disk <= last; disk++) {
7bfec5f3
N
5778 p = conf->disks + disk;
5779 if (p->rdev == NULL) {
b2d444d7 5780 clear_bit(In_sync, &rdev->flags);
1da177e4 5781 rdev->raid_disk = disk;
199050ea 5782 err = 0;
72626685
N
5783 if (rdev->saved_raid_disk != disk)
5784 conf->fullsync = 1;
d6065f7b 5785 rcu_assign_pointer(p->rdev, rdev);
5cfb22a1 5786 goto out;
1da177e4 5787 }
5cfb22a1
N
5788 }
5789 for (disk = first; disk <= last; disk++) {
5790 p = conf->disks + disk;
7bfec5f3
N
5791 if (test_bit(WantReplacement, &p->rdev->flags) &&
5792 p->replacement == NULL) {
5793 clear_bit(In_sync, &rdev->flags);
5794 set_bit(Replacement, &rdev->flags);
5795 rdev->raid_disk = disk;
5796 err = 0;
5797 conf->fullsync = 1;
5798 rcu_assign_pointer(p->replacement, rdev);
5799 break;
5800 }
5801 }
5cfb22a1 5802out:
1da177e4 5803 print_raid5_conf(conf);
199050ea 5804 return err;
1da177e4
LT
5805}
5806
fd01b88c 5807static int raid5_resize(struct mddev *mddev, sector_t sectors)
1da177e4
LT
5808{
5809 /* no resync is happening, and there is enough space
5810 * on all devices, so we can resize.
5811 * We need to make sure resync covers any new space.
5812 * If the array is shrinking we should possibly wait until
5813 * any io in the removed space completes, but it hardly seems
5814 * worth it.
5815 */
a4a6125a 5816 sector_t newsize;
9d8f0363 5817 sectors &= ~((sector_t)mddev->chunk_sectors - 1);
a4a6125a
N
5818 newsize = raid5_size(mddev, sectors, mddev->raid_disks);
5819 if (mddev->external_size &&
5820 mddev->array_sectors > newsize)
b522adcd 5821 return -EINVAL;
a4a6125a
N
5822 if (mddev->bitmap) {
5823 int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
5824 if (ret)
5825 return ret;
5826 }
5827 md_set_array_sectors(mddev, newsize);
f233ea5c 5828 set_capacity(mddev->gendisk, mddev->array_sectors);
449aad3e 5829 revalidate_disk(mddev->gendisk);
b098636c
N
5830 if (sectors > mddev->dev_sectors &&
5831 mddev->recovery_cp > mddev->dev_sectors) {
58c0fed4 5832 mddev->recovery_cp = mddev->dev_sectors;
1da177e4
LT
5833 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5834 }
58c0fed4 5835 mddev->dev_sectors = sectors;
4b5c7ae8 5836 mddev->resync_max_sectors = sectors;
1da177e4
LT
5837 return 0;
5838}
5839
fd01b88c 5840static int check_stripe_cache(struct mddev *mddev)
01ee22b4
N
5841{
5842 /* Can only proceed if there are plenty of stripe_heads.
5843 * We need a minimum of one full stripe,, and for sensible progress
5844 * it is best to have about 4 times that.
5845 * If we require 4 times, then the default 256 4K stripe_heads will
5846 * allow for chunk sizes up to 256K, which is probably OK.
5847 * If the chunk size is greater, user-space should request more
5848 * stripe_heads first.
5849 */
d1688a6d 5850 struct r5conf *conf = mddev->private;
01ee22b4
N
5851 if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
5852 > conf->max_nr_stripes ||
5853 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
5854 > conf->max_nr_stripes) {
0c55e022
N
5855 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes. Needed %lu\n",
5856 mdname(mddev),
01ee22b4
N
5857 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
5858 / STRIPE_SIZE)*4);
5859 return 0;
5860 }
5861 return 1;
5862}
5863
fd01b88c 5864static int check_reshape(struct mddev *mddev)
29269553 5865{
d1688a6d 5866 struct r5conf *conf = mddev->private;
29269553 5867
88ce4930
N
5868 if (mddev->delta_disks == 0 &&
5869 mddev->new_layout == mddev->layout &&
664e7c41 5870 mddev->new_chunk_sectors == mddev->chunk_sectors)
50ac168a 5871 return 0; /* nothing to do */
674806d6 5872 if (has_failed(conf))
ec32a2bd
N
5873 return -EINVAL;
5874 if (mddev->delta_disks < 0) {
5875 /* We might be able to shrink, but the devices must
5876 * be made bigger first.
5877 * For raid6, 4 is the minimum size.
5878 * Otherwise 2 is the minimum
5879 */
5880 int min = 2;
5881 if (mddev->level == 6)
5882 min = 4;
5883 if (mddev->raid_disks + mddev->delta_disks < min)
5884 return -EINVAL;
5885 }
29269553 5886
01ee22b4 5887 if (!check_stripe_cache(mddev))
29269553 5888 return -ENOSPC;
29269553 5889
e56108d6
N
5890 return resize_stripes(conf, (conf->previous_raid_disks
5891 + mddev->delta_disks));
63c70c4f
N
5892}
5893
fd01b88c 5894static int raid5_start_reshape(struct mddev *mddev)
63c70c4f 5895{
d1688a6d 5896 struct r5conf *conf = mddev->private;
3cb03002 5897 struct md_rdev *rdev;
63c70c4f 5898 int spares = 0;
c04be0aa 5899 unsigned long flags;
63c70c4f 5900
f416885e 5901 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
63c70c4f
N
5902 return -EBUSY;
5903
01ee22b4
N
5904 if (!check_stripe_cache(mddev))
5905 return -ENOSPC;
5906
30b67645
N
5907 if (has_failed(conf))
5908 return -EINVAL;
5909
c6563a8c 5910 rdev_for_each(rdev, mddev) {
469518a3
N
5911 if (!test_bit(In_sync, &rdev->flags)
5912 && !test_bit(Faulty, &rdev->flags))
29269553 5913 spares++;
c6563a8c 5914 }
63c70c4f 5915
f416885e 5916 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
29269553
N
5917 /* Not enough devices even to make a degraded array
5918 * of that size
5919 */
5920 return -EINVAL;
5921
ec32a2bd
N
5922 /* Refuse to reduce size of the array. Any reductions in
5923 * array size must be through explicit setting of array_size
5924 * attribute.
5925 */
5926 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
5927 < mddev->array_sectors) {
0c55e022 5928 printk(KERN_ERR "md/raid:%s: array size must be reduced "
ec32a2bd
N
5929 "before number of disks\n", mdname(mddev));
5930 return -EINVAL;
5931 }
5932
f6705578 5933 atomic_set(&conf->reshape_stripes, 0);
29269553
N
5934 spin_lock_irq(&conf->device_lock);
5935 conf->previous_raid_disks = conf->raid_disks;
63c70c4f 5936 conf->raid_disks += mddev->delta_disks;
09c9e5fa
AN
5937 conf->prev_chunk_sectors = conf->chunk_sectors;
5938 conf->chunk_sectors = mddev->new_chunk_sectors;
88ce4930
N
5939 conf->prev_algo = conf->algorithm;
5940 conf->algorithm = mddev->new_layout;
05616be5
N
5941 conf->generation++;
5942 /* Code that selects data_offset needs to see the generation update
5943 * if reshape_progress has been set - so a memory barrier needed.
5944 */
5945 smp_mb();
2c810cdd 5946 if (mddev->reshape_backwards)
fef9c61f
N
5947 conf->reshape_progress = raid5_size(mddev, 0, 0);
5948 else
5949 conf->reshape_progress = 0;
5950 conf->reshape_safe = conf->reshape_progress;
29269553
N
5951 spin_unlock_irq(&conf->device_lock);
5952
5953 /* Add some new drives, as many as will fit.
5954 * We know there are enough to make the newly sized array work.
3424bf6a
N
5955 * Don't add devices if we are reducing the number of
5956 * devices in the array. This is because it is not possible
5957 * to correctly record the "partially reconstructed" state of
5958 * such devices during the reshape and confusion could result.
29269553 5959 */
87a8dec9 5960 if (mddev->delta_disks >= 0) {
dafb20fa 5961 rdev_for_each(rdev, mddev)
87a8dec9
N
5962 if (rdev->raid_disk < 0 &&
5963 !test_bit(Faulty, &rdev->flags)) {
5964 if (raid5_add_disk(mddev, rdev) == 0) {
87a8dec9 5965 if (rdev->raid_disk
9d4c7d87 5966 >= conf->previous_raid_disks)
87a8dec9 5967 set_bit(In_sync, &rdev->flags);
9d4c7d87 5968 else
87a8dec9 5969 rdev->recovery_offset = 0;
36fad858
NK
5970
5971 if (sysfs_link_rdev(mddev, rdev))
87a8dec9 5972 /* Failure here is OK */;
50da0840 5973 }
87a8dec9
N
5974 } else if (rdev->raid_disk >= conf->previous_raid_disks
5975 && !test_bit(Faulty, &rdev->flags)) {
5976 /* This is a spare that was manually added */
5977 set_bit(In_sync, &rdev->flags);
87a8dec9 5978 }
29269553 5979
87a8dec9
N
5980 /* When a reshape changes the number of devices,
5981 * ->degraded is measured against the larger of the
5982 * pre and post number of devices.
5983 */
ec32a2bd 5984 spin_lock_irqsave(&conf->device_lock, flags);
908f4fbd 5985 mddev->degraded = calc_degraded(conf);
ec32a2bd
N
5986 spin_unlock_irqrestore(&conf->device_lock, flags);
5987 }
63c70c4f 5988 mddev->raid_disks = conf->raid_disks;
e516402c 5989 mddev->reshape_position = conf->reshape_progress;
850b2b42 5990 set_bit(MD_CHANGE_DEVS, &mddev->flags);
f6705578 5991
29269553
N
5992 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5993 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5994 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5995 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5996 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
0da3c619 5997 "reshape");
29269553
N
5998 if (!mddev->sync_thread) {
5999 mddev->recovery = 0;
6000 spin_lock_irq(&conf->device_lock);
6001 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
05616be5
N
6002 rdev_for_each(rdev, mddev)
6003 rdev->new_data_offset = rdev->data_offset;
6004 smp_wmb();
fef9c61f 6005 conf->reshape_progress = MaxSector;
1e3fa9bd 6006 mddev->reshape_position = MaxSector;
29269553
N
6007 spin_unlock_irq(&conf->device_lock);
6008 return -EAGAIN;
6009 }
c8f517c4 6010 conf->reshape_checkpoint = jiffies;
29269553
N
6011 md_wakeup_thread(mddev->sync_thread);
6012 md_new_event(mddev);
6013 return 0;
6014}
29269553 6015
ec32a2bd
N
6016/* This is called from the reshape thread and should make any
6017 * changes needed in 'conf'
6018 */
d1688a6d 6019static void end_reshape(struct r5conf *conf)
29269553 6020{
29269553 6021
f6705578 6022 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
05616be5 6023 struct md_rdev *rdev;
f6705578 6024
f6705578 6025 spin_lock_irq(&conf->device_lock);
cea9c228 6026 conf->previous_raid_disks = conf->raid_disks;
05616be5
N
6027 rdev_for_each(rdev, conf->mddev)
6028 rdev->data_offset = rdev->new_data_offset;
6029 smp_wmb();
fef9c61f 6030 conf->reshape_progress = MaxSector;
f6705578 6031 spin_unlock_irq(&conf->device_lock);
b0f9ec04 6032 wake_up(&conf->wait_for_overlap);
16a53ecc
N
6033
6034 /* read-ahead size must cover two whole stripes, which is
6035 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
6036 */
4a5add49 6037 if (conf->mddev->queue) {
cea9c228 6038 int data_disks = conf->raid_disks - conf->max_degraded;
09c9e5fa 6039 int stripe = data_disks * ((conf->chunk_sectors << 9)
cea9c228 6040 / PAGE_SIZE);
16a53ecc
N
6041 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
6042 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
6043 }
29269553 6044 }
29269553
N
6045}
6046
ec32a2bd
N
6047/* This is called from the raid5d thread with mddev_lock held.
6048 * It makes config changes to the device.
6049 */
fd01b88c 6050static void raid5_finish_reshape(struct mddev *mddev)
cea9c228 6051{
d1688a6d 6052 struct r5conf *conf = mddev->private;
cea9c228
N
6053
6054 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
6055
ec32a2bd
N
6056 if (mddev->delta_disks > 0) {
6057 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
6058 set_capacity(mddev->gendisk, mddev->array_sectors);
449aad3e 6059 revalidate_disk(mddev->gendisk);
ec32a2bd
N
6060 } else {
6061 int d;
908f4fbd
N
6062 spin_lock_irq(&conf->device_lock);
6063 mddev->degraded = calc_degraded(conf);
6064 spin_unlock_irq(&conf->device_lock);
ec32a2bd
N
6065 for (d = conf->raid_disks ;
6066 d < conf->raid_disks - mddev->delta_disks;
1a67dde0 6067 d++) {
3cb03002 6068 struct md_rdev *rdev = conf->disks[d].rdev;
da7613b8
N
6069 if (rdev)
6070 clear_bit(In_sync, &rdev->flags);
6071 rdev = conf->disks[d].replacement;
6072 if (rdev)
6073 clear_bit(In_sync, &rdev->flags);
1a67dde0 6074 }
cea9c228 6075 }
88ce4930 6076 mddev->layout = conf->algorithm;
09c9e5fa 6077 mddev->chunk_sectors = conf->chunk_sectors;
ec32a2bd
N
6078 mddev->reshape_position = MaxSector;
6079 mddev->delta_disks = 0;
2c810cdd 6080 mddev->reshape_backwards = 0;
cea9c228
N
6081 }
6082}
6083
fd01b88c 6084static void raid5_quiesce(struct mddev *mddev, int state)
72626685 6085{
d1688a6d 6086 struct r5conf *conf = mddev->private;
72626685
N
6087
6088 switch(state) {
e464eafd
N
6089 case 2: /* resume for a suspend */
6090 wake_up(&conf->wait_for_overlap);
6091 break;
6092
72626685
N
6093 case 1: /* stop all writes */
6094 spin_lock_irq(&conf->device_lock);
64bd660b
N
6095 /* '2' tells resync/reshape to pause so that all
6096 * active stripes can drain
6097 */
6098 conf->quiesce = 2;
72626685 6099 wait_event_lock_irq(conf->wait_for_stripe,
46031f9a
RBJ
6100 atomic_read(&conf->active_stripes) == 0 &&
6101 atomic_read(&conf->active_aligned_reads) == 0,
eed8c02e 6102 conf->device_lock);
64bd660b 6103 conf->quiesce = 1;
72626685 6104 spin_unlock_irq(&conf->device_lock);
64bd660b
N
6105 /* allow reshape to continue */
6106 wake_up(&conf->wait_for_overlap);
72626685
N
6107 break;
6108
6109 case 0: /* re-enable writes */
6110 spin_lock_irq(&conf->device_lock);
6111 conf->quiesce = 0;
6112 wake_up(&conf->wait_for_stripe);
e464eafd 6113 wake_up(&conf->wait_for_overlap);
72626685
N
6114 spin_unlock_irq(&conf->device_lock);
6115 break;
6116 }
72626685 6117}
b15c2e57 6118
d562b0c4 6119
fd01b88c 6120static void *raid45_takeover_raid0(struct mddev *mddev, int level)
54071b38 6121{
e373ab10 6122 struct r0conf *raid0_conf = mddev->private;
d76c8420 6123 sector_t sectors;
54071b38 6124
f1b29bca 6125 /* for raid0 takeover only one zone is supported */
e373ab10 6126 if (raid0_conf->nr_strip_zones > 1) {
0c55e022
N
6127 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
6128 mdname(mddev));
f1b29bca
DW
6129 return ERR_PTR(-EINVAL);
6130 }
6131
e373ab10
N
6132 sectors = raid0_conf->strip_zone[0].zone_end;
6133 sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
3b71bd93 6134 mddev->dev_sectors = sectors;
f1b29bca 6135 mddev->new_level = level;
54071b38
TM
6136 mddev->new_layout = ALGORITHM_PARITY_N;
6137 mddev->new_chunk_sectors = mddev->chunk_sectors;
6138 mddev->raid_disks += 1;
6139 mddev->delta_disks = 1;
6140 /* make sure it will be not marked as dirty */
6141 mddev->recovery_cp = MaxSector;
6142
6143 return setup_conf(mddev);
6144}
6145
6146
fd01b88c 6147static void *raid5_takeover_raid1(struct mddev *mddev)
d562b0c4
N
6148{
6149 int chunksect;
6150
6151 if (mddev->raid_disks != 2 ||
6152 mddev->degraded > 1)
6153 return ERR_PTR(-EINVAL);
6154
6155 /* Should check if there are write-behind devices? */
6156
6157 chunksect = 64*2; /* 64K by default */
6158
6159 /* The array must be an exact multiple of chunksize */
6160 while (chunksect && (mddev->array_sectors & (chunksect-1)))
6161 chunksect >>= 1;
6162
6163 if ((chunksect<<9) < STRIPE_SIZE)
6164 /* array size does not allow a suitable chunk size */
6165 return ERR_PTR(-EINVAL);
6166
6167 mddev->new_level = 5;
6168 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
664e7c41 6169 mddev->new_chunk_sectors = chunksect;
d562b0c4
N
6170
6171 return setup_conf(mddev);
6172}
6173
fd01b88c 6174static void *raid5_takeover_raid6(struct mddev *mddev)
fc9739c6
N
6175{
6176 int new_layout;
6177
6178 switch (mddev->layout) {
6179 case ALGORITHM_LEFT_ASYMMETRIC_6:
6180 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
6181 break;
6182 case ALGORITHM_RIGHT_ASYMMETRIC_6:
6183 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
6184 break;
6185 case ALGORITHM_LEFT_SYMMETRIC_6:
6186 new_layout = ALGORITHM_LEFT_SYMMETRIC;
6187 break;
6188 case ALGORITHM_RIGHT_SYMMETRIC_6:
6189 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
6190 break;
6191 case ALGORITHM_PARITY_0_6:
6192 new_layout = ALGORITHM_PARITY_0;
6193 break;
6194 case ALGORITHM_PARITY_N:
6195 new_layout = ALGORITHM_PARITY_N;
6196 break;
6197 default:
6198 return ERR_PTR(-EINVAL);
6199 }
6200 mddev->new_level = 5;
6201 mddev->new_layout = new_layout;
6202 mddev->delta_disks = -1;
6203 mddev->raid_disks -= 1;
6204 return setup_conf(mddev);
6205}
6206
d562b0c4 6207
fd01b88c 6208static int raid5_check_reshape(struct mddev *mddev)
b3546035 6209{
88ce4930
N
6210 /* For a 2-drive array, the layout and chunk size can be changed
6211 * immediately as not restriping is needed.
6212 * For larger arrays we record the new value - after validation
6213 * to be used by a reshape pass.
b3546035 6214 */
d1688a6d 6215 struct r5conf *conf = mddev->private;
597a711b 6216 int new_chunk = mddev->new_chunk_sectors;
b3546035 6217
597a711b 6218 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
b3546035
N
6219 return -EINVAL;
6220 if (new_chunk > 0) {
0ba459d2 6221 if (!is_power_of_2(new_chunk))
b3546035 6222 return -EINVAL;
597a711b 6223 if (new_chunk < (PAGE_SIZE>>9))
b3546035 6224 return -EINVAL;
597a711b 6225 if (mddev->array_sectors & (new_chunk-1))
b3546035
N
6226 /* not factor of array size */
6227 return -EINVAL;
6228 }
6229
6230 /* They look valid */
6231
88ce4930 6232 if (mddev->raid_disks == 2) {
597a711b
N
6233 /* can make the change immediately */
6234 if (mddev->new_layout >= 0) {
6235 conf->algorithm = mddev->new_layout;
6236 mddev->layout = mddev->new_layout;
88ce4930
N
6237 }
6238 if (new_chunk > 0) {
597a711b
N
6239 conf->chunk_sectors = new_chunk ;
6240 mddev->chunk_sectors = new_chunk;
88ce4930
N
6241 }
6242 set_bit(MD_CHANGE_DEVS, &mddev->flags);
6243 md_wakeup_thread(mddev->thread);
b3546035 6244 }
50ac168a 6245 return check_reshape(mddev);
88ce4930
N
6246}
6247
fd01b88c 6248static int raid6_check_reshape(struct mddev *mddev)
88ce4930 6249{
597a711b 6250 int new_chunk = mddev->new_chunk_sectors;
50ac168a 6251
597a711b 6252 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
88ce4930 6253 return -EINVAL;
b3546035 6254 if (new_chunk > 0) {
0ba459d2 6255 if (!is_power_of_2(new_chunk))
88ce4930 6256 return -EINVAL;
597a711b 6257 if (new_chunk < (PAGE_SIZE >> 9))
88ce4930 6258 return -EINVAL;
597a711b 6259 if (mddev->array_sectors & (new_chunk-1))
88ce4930
N
6260 /* not factor of array size */
6261 return -EINVAL;
b3546035 6262 }
88ce4930
N
6263
6264 /* They look valid */
50ac168a 6265 return check_reshape(mddev);
b3546035
N
6266}
6267
fd01b88c 6268static void *raid5_takeover(struct mddev *mddev)
d562b0c4
N
6269{
6270 /* raid5 can take over:
f1b29bca 6271 * raid0 - if there is only one strip zone - make it a raid4 layout
d562b0c4
N
6272 * raid1 - if there are two drives. We need to know the chunk size
6273 * raid4 - trivial - just use a raid4 layout.
6274 * raid6 - Providing it is a *_6 layout
d562b0c4 6275 */
f1b29bca
DW
6276 if (mddev->level == 0)
6277 return raid45_takeover_raid0(mddev, 5);
d562b0c4
N
6278 if (mddev->level == 1)
6279 return raid5_takeover_raid1(mddev);
e9d4758f
N
6280 if (mddev->level == 4) {
6281 mddev->new_layout = ALGORITHM_PARITY_N;
6282 mddev->new_level = 5;
6283 return setup_conf(mddev);
6284 }
fc9739c6
N
6285 if (mddev->level == 6)
6286 return raid5_takeover_raid6(mddev);
d562b0c4
N
6287
6288 return ERR_PTR(-EINVAL);
6289}
6290
fd01b88c 6291static void *raid4_takeover(struct mddev *mddev)
a78d38a1 6292{
f1b29bca
DW
6293 /* raid4 can take over:
6294 * raid0 - if there is only one strip zone
6295 * raid5 - if layout is right
a78d38a1 6296 */
f1b29bca
DW
6297 if (mddev->level == 0)
6298 return raid45_takeover_raid0(mddev, 4);
a78d38a1
N
6299 if (mddev->level == 5 &&
6300 mddev->layout == ALGORITHM_PARITY_N) {
6301 mddev->new_layout = 0;
6302 mddev->new_level = 4;
6303 return setup_conf(mddev);
6304 }
6305 return ERR_PTR(-EINVAL);
6306}
d562b0c4 6307
84fc4b56 6308static struct md_personality raid5_personality;
245f46c2 6309
fd01b88c 6310static void *raid6_takeover(struct mddev *mddev)
245f46c2
N
6311{
6312 /* Currently can only take over a raid5. We map the
6313 * personality to an equivalent raid6 personality
6314 * with the Q block at the end.
6315 */
6316 int new_layout;
6317
6318 if (mddev->pers != &raid5_personality)
6319 return ERR_PTR(-EINVAL);
6320 if (mddev->degraded > 1)
6321 return ERR_PTR(-EINVAL);
6322 if (mddev->raid_disks > 253)
6323 return ERR_PTR(-EINVAL);
6324 if (mddev->raid_disks < 3)
6325 return ERR_PTR(-EINVAL);
6326
6327 switch (mddev->layout) {
6328 case ALGORITHM_LEFT_ASYMMETRIC:
6329 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
6330 break;
6331 case ALGORITHM_RIGHT_ASYMMETRIC:
6332 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
6333 break;
6334 case ALGORITHM_LEFT_SYMMETRIC:
6335 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
6336 break;
6337 case ALGORITHM_RIGHT_SYMMETRIC:
6338 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
6339 break;
6340 case ALGORITHM_PARITY_0:
6341 new_layout = ALGORITHM_PARITY_0_6;
6342 break;
6343 case ALGORITHM_PARITY_N:
6344 new_layout = ALGORITHM_PARITY_N;
6345 break;
6346 default:
6347 return ERR_PTR(-EINVAL);
6348 }
6349 mddev->new_level = 6;
6350 mddev->new_layout = new_layout;
6351 mddev->delta_disks = 1;
6352 mddev->raid_disks += 1;
6353 return setup_conf(mddev);
6354}
6355
6356
84fc4b56 6357static struct md_personality raid6_personality =
16a53ecc
N
6358{
6359 .name = "raid6",
6360 .level = 6,
6361 .owner = THIS_MODULE,
6362 .make_request = make_request,
6363 .run = run,
6364 .stop = stop,
6365 .status = status,
6366 .error_handler = error,
6367 .hot_add_disk = raid5_add_disk,
6368 .hot_remove_disk= raid5_remove_disk,
6369 .spare_active = raid5_spare_active,
6370 .sync_request = sync_request,
6371 .resize = raid5_resize,
80c3a6ce 6372 .size = raid5_size,
50ac168a 6373 .check_reshape = raid6_check_reshape,
f416885e 6374 .start_reshape = raid5_start_reshape,
cea9c228 6375 .finish_reshape = raid5_finish_reshape,
16a53ecc 6376 .quiesce = raid5_quiesce,
245f46c2 6377 .takeover = raid6_takeover,
16a53ecc 6378};
84fc4b56 6379static struct md_personality raid5_personality =
1da177e4
LT
6380{
6381 .name = "raid5",
2604b703 6382 .level = 5,
1da177e4
LT
6383 .owner = THIS_MODULE,
6384 .make_request = make_request,
6385 .run = run,
6386 .stop = stop,
6387 .status = status,
6388 .error_handler = error,
6389 .hot_add_disk = raid5_add_disk,
6390 .hot_remove_disk= raid5_remove_disk,
6391 .spare_active = raid5_spare_active,
6392 .sync_request = sync_request,
6393 .resize = raid5_resize,
80c3a6ce 6394 .size = raid5_size,
63c70c4f
N
6395 .check_reshape = raid5_check_reshape,
6396 .start_reshape = raid5_start_reshape,
cea9c228 6397 .finish_reshape = raid5_finish_reshape,
72626685 6398 .quiesce = raid5_quiesce,
d562b0c4 6399 .takeover = raid5_takeover,
1da177e4
LT
6400};
6401
84fc4b56 6402static struct md_personality raid4_personality =
1da177e4 6403{
2604b703
N
6404 .name = "raid4",
6405 .level = 4,
6406 .owner = THIS_MODULE,
6407 .make_request = make_request,
6408 .run = run,
6409 .stop = stop,
6410 .status = status,
6411 .error_handler = error,
6412 .hot_add_disk = raid5_add_disk,
6413 .hot_remove_disk= raid5_remove_disk,
6414 .spare_active = raid5_spare_active,
6415 .sync_request = sync_request,
6416 .resize = raid5_resize,
80c3a6ce 6417 .size = raid5_size,
3d37890b
N
6418 .check_reshape = raid5_check_reshape,
6419 .start_reshape = raid5_start_reshape,
cea9c228 6420 .finish_reshape = raid5_finish_reshape,
2604b703 6421 .quiesce = raid5_quiesce,
a78d38a1 6422 .takeover = raid4_takeover,
2604b703
N
6423};
6424
6425static int __init raid5_init(void)
6426{
16a53ecc 6427 register_md_personality(&raid6_personality);
2604b703
N
6428 register_md_personality(&raid5_personality);
6429 register_md_personality(&raid4_personality);
6430 return 0;
1da177e4
LT
6431}
6432
2604b703 6433static void raid5_exit(void)
1da177e4 6434{
16a53ecc 6435 unregister_md_personality(&raid6_personality);
2604b703
N
6436 unregister_md_personality(&raid5_personality);
6437 unregister_md_personality(&raid4_personality);
1da177e4
LT
6438}
6439
6440module_init(raid5_init);
6441module_exit(raid5_exit);
6442MODULE_LICENSE("GPL");
0efb9e61 6443MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
1da177e4 6444MODULE_ALIAS("md-personality-4"); /* RAID5 */
d9d166c2
N
6445MODULE_ALIAS("md-raid5");
6446MODULE_ALIAS("md-raid4");
2604b703
N
6447MODULE_ALIAS("md-level-5");
6448MODULE_ALIAS("md-level-4");
16a53ecc
N
6449MODULE_ALIAS("md-personality-8"); /* RAID6 */
6450MODULE_ALIAS("md-raid6");
6451MODULE_ALIAS("md-level-6");
6452
6453/* This used to be two separate modules, they were: */
6454MODULE_ALIAS("raid5");
6455MODULE_ALIAS("raid6");