md/raid5: Allow recovered part of partially recovered devices to be in-sync
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / md / raid5.c
CommitLineData
1da177e4
LT
1/*
2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
16a53ecc 5 * Copyright (C) 2002, 2003 H. Peter Anvin
1da177e4 6 *
16a53ecc
N
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
1da177e4
LT
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
ae3c20cc
N
21/*
22 * BITMAP UNPLUGGING:
23 *
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
26 * explanation.
27 *
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
30 * conf->bm_write is the number of the last batch successfully written.
31 * conf->bm_flush is the number of the last batch that was closed to
32 * new additions.
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35 * the number of the batch it will be in. This is bm_flush+1.
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
39 * batch.
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
43 * miss any bits.
44 */
1da177e4 45
bff61975 46#include <linux/blkdev.h>
f6705578 47#include <linux/kthread.h>
f701d589 48#include <linux/raid/pq.h>
91c00924 49#include <linux/async_tx.h>
07a3b417 50#include <linux/async.h>
bff61975 51#include <linux/seq_file.h>
36d1c647 52#include <linux/cpu.h>
5a0e3ad6 53#include <linux/slab.h>
43b2e5d8 54#include "md.h"
bff61975 55#include "raid5.h"
54071b38 56#include "raid0.h"
ef740c37 57#include "bitmap.h"
72626685 58
1da177e4
LT
59/*
60 * Stripe cache
61 */
62
63#define NR_STRIPES 256
64#define STRIPE_SIZE PAGE_SIZE
65#define STRIPE_SHIFT (PAGE_SHIFT - 9)
66#define STRIPE_SECTORS (STRIPE_SIZE>>9)
67#define IO_THRESHOLD 1
8b3e6cdc 68#define BYPASS_THRESHOLD 1
fccddba0 69#define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
1da177e4
LT
70#define HASH_MASK (NR_HASH - 1)
71
fccddba0 72#define stripe_hash(conf, sect) (&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
1da177e4
LT
73
74/* bio's attached to a stripe+device for I/O are linked together in bi_sector
75 * order without overlap. There may be several bio's per stripe+device, and
76 * a bio could span several devices.
77 * When walking this list for a particular stripe+device, we must never proceed
78 * beyond a bio that extends past this device, as the next bio might no longer
79 * be valid.
80 * This macro is used to determine the 'next' bio in the list, given the sector
81 * of the current stripe+device
82 */
83#define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
84/*
85 * The following can be used to debug the driver
86 */
1da177e4
LT
87#define RAID5_PARANOIA 1
88#if RAID5_PARANOIA && defined(CONFIG_SMP)
89# define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
90#else
91# define CHECK_DEVLOCK()
92#endif
93
45b4233c 94#ifdef DEBUG
1da177e4
LT
95#define inline
96#define __inline__
97#endif
98
6be9d494
BS
99#define printk_rl(args...) ((void) (printk_ratelimit() && printk(args)))
100
960e739d 101/*
5b99c2ff
JA
102 * We maintain a biased count of active stripes in the bottom 16 bits of
103 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
960e739d
JA
104 */
105static inline int raid5_bi_phys_segments(struct bio *bio)
106{
5b99c2ff 107 return bio->bi_phys_segments & 0xffff;
960e739d
JA
108}
109
110static inline int raid5_bi_hw_segments(struct bio *bio)
111{
5b99c2ff 112 return (bio->bi_phys_segments >> 16) & 0xffff;
960e739d
JA
113}
114
115static inline int raid5_dec_bi_phys_segments(struct bio *bio)
116{
117 --bio->bi_phys_segments;
118 return raid5_bi_phys_segments(bio);
119}
120
121static inline int raid5_dec_bi_hw_segments(struct bio *bio)
122{
123 unsigned short val = raid5_bi_hw_segments(bio);
124
125 --val;
5b99c2ff 126 bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio);
960e739d
JA
127 return val;
128}
129
130static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt)
131{
5b99c2ff 132 bio->bi_phys_segments = raid5_bi_phys_segments(bio) || (cnt << 16);
960e739d
JA
133}
134
d0dabf7e
N
135/* Find first data disk in a raid6 stripe */
136static inline int raid6_d0(struct stripe_head *sh)
137{
67cc2b81
N
138 if (sh->ddf_layout)
139 /* ddf always start from first device */
140 return 0;
141 /* md starts just after Q block */
d0dabf7e
N
142 if (sh->qd_idx == sh->disks - 1)
143 return 0;
144 else
145 return sh->qd_idx + 1;
146}
16a53ecc
N
147static inline int raid6_next_disk(int disk, int raid_disks)
148{
149 disk++;
150 return (disk < raid_disks) ? disk : 0;
151}
a4456856 152
d0dabf7e
N
153/* When walking through the disks in a raid5, starting at raid6_d0,
154 * We need to map each disk to a 'slot', where the data disks are slot
155 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
156 * is raid_disks-1. This help does that mapping.
157 */
67cc2b81
N
158static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
159 int *count, int syndrome_disks)
d0dabf7e 160{
6629542e 161 int slot = *count;
67cc2b81 162
e4424fee 163 if (sh->ddf_layout)
6629542e 164 (*count)++;
d0dabf7e 165 if (idx == sh->pd_idx)
67cc2b81 166 return syndrome_disks;
d0dabf7e 167 if (idx == sh->qd_idx)
67cc2b81 168 return syndrome_disks + 1;
e4424fee 169 if (!sh->ddf_layout)
6629542e 170 (*count)++;
d0dabf7e
N
171 return slot;
172}
173
a4456856
DW
174static void return_io(struct bio *return_bi)
175{
176 struct bio *bi = return_bi;
177 while (bi) {
a4456856
DW
178
179 return_bi = bi->bi_next;
180 bi->bi_next = NULL;
181 bi->bi_size = 0;
0e13fe23 182 bio_endio(bi, 0);
a4456856
DW
183 bi = return_bi;
184 }
185}
186
1da177e4
LT
187static void print_raid5_conf (raid5_conf_t *conf);
188
600aa109
DW
189static int stripe_operations_active(struct stripe_head *sh)
190{
191 return sh->check_state || sh->reconstruct_state ||
192 test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
193 test_bit(STRIPE_COMPUTE_RUN, &sh->state);
194}
195
858119e1 196static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
1da177e4
LT
197{
198 if (atomic_dec_and_test(&sh->count)) {
78bafebd
ES
199 BUG_ON(!list_empty(&sh->lru));
200 BUG_ON(atomic_read(&conf->active_stripes)==0);
1da177e4 201 if (test_bit(STRIPE_HANDLE, &sh->state)) {
7c785b7a 202 if (test_bit(STRIPE_DELAYED, &sh->state)) {
1da177e4 203 list_add_tail(&sh->lru, &conf->delayed_list);
7c785b7a
N
204 blk_plug_device(conf->mddev->queue);
205 } else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
ae3c20cc 206 sh->bm_seq - conf->seq_write > 0) {
72626685 207 list_add_tail(&sh->lru, &conf->bitmap_list);
7c785b7a
N
208 blk_plug_device(conf->mddev->queue);
209 } else {
72626685 210 clear_bit(STRIPE_BIT_DELAY, &sh->state);
1da177e4 211 list_add_tail(&sh->lru, &conf->handle_list);
72626685 212 }
1da177e4
LT
213 md_wakeup_thread(conf->mddev->thread);
214 } else {
600aa109 215 BUG_ON(stripe_operations_active(sh));
1da177e4
LT
216 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
217 atomic_dec(&conf->preread_active_stripes);
218 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
219 md_wakeup_thread(conf->mddev->thread);
220 }
1da177e4 221 atomic_dec(&conf->active_stripes);
ccfcc3c1
N
222 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
223 list_add_tail(&sh->lru, &conf->inactive_list);
1da177e4 224 wake_up(&conf->wait_for_stripe);
46031f9a
RBJ
225 if (conf->retry_read_aligned)
226 md_wakeup_thread(conf->mddev->thread);
ccfcc3c1 227 }
1da177e4
LT
228 }
229 }
230}
d0dabf7e 231
1da177e4
LT
232static void release_stripe(struct stripe_head *sh)
233{
234 raid5_conf_t *conf = sh->raid_conf;
235 unsigned long flags;
16a53ecc 236
1da177e4
LT
237 spin_lock_irqsave(&conf->device_lock, flags);
238 __release_stripe(conf, sh);
239 spin_unlock_irqrestore(&conf->device_lock, flags);
240}
241
fccddba0 242static inline void remove_hash(struct stripe_head *sh)
1da177e4 243{
45b4233c
DW
244 pr_debug("remove_hash(), stripe %llu\n",
245 (unsigned long long)sh->sector);
1da177e4 246
fccddba0 247 hlist_del_init(&sh->hash);
1da177e4
LT
248}
249
16a53ecc 250static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
1da177e4 251{
fccddba0 252 struct hlist_head *hp = stripe_hash(conf, sh->sector);
1da177e4 253
45b4233c
DW
254 pr_debug("insert_hash(), stripe %llu\n",
255 (unsigned long long)sh->sector);
1da177e4
LT
256
257 CHECK_DEVLOCK();
fccddba0 258 hlist_add_head(&sh->hash, hp);
1da177e4
LT
259}
260
261
262/* find an idle stripe, make sure it is unhashed, and return it. */
263static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
264{
265 struct stripe_head *sh = NULL;
266 struct list_head *first;
267
268 CHECK_DEVLOCK();
269 if (list_empty(&conf->inactive_list))
270 goto out;
271 first = conf->inactive_list.next;
272 sh = list_entry(first, struct stripe_head, lru);
273 list_del_init(first);
274 remove_hash(sh);
275 atomic_inc(&conf->active_stripes);
276out:
277 return sh;
278}
279
e4e11e38 280static void shrink_buffers(struct stripe_head *sh)
1da177e4
LT
281{
282 struct page *p;
283 int i;
e4e11e38 284 int num = sh->raid_conf->pool_size;
1da177e4 285
e4e11e38 286 for (i = 0; i < num ; i++) {
1da177e4
LT
287 p = sh->dev[i].page;
288 if (!p)
289 continue;
290 sh->dev[i].page = NULL;
2d1f3b5d 291 put_page(p);
1da177e4
LT
292 }
293}
294
e4e11e38 295static int grow_buffers(struct stripe_head *sh)
1da177e4
LT
296{
297 int i;
e4e11e38 298 int num = sh->raid_conf->pool_size;
1da177e4 299
e4e11e38 300 for (i = 0; i < num; i++) {
1da177e4
LT
301 struct page *page;
302
303 if (!(page = alloc_page(GFP_KERNEL))) {
304 return 1;
305 }
306 sh->dev[i].page = page;
307 }
308 return 0;
309}
310
784052ec 311static void raid5_build_block(struct stripe_head *sh, int i, int previous);
911d4ee8
N
312static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
313 struct stripe_head *sh);
1da177e4 314
b5663ba4 315static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
1da177e4
LT
316{
317 raid5_conf_t *conf = sh->raid_conf;
7ecaa1e6 318 int i;
1da177e4 319
78bafebd
ES
320 BUG_ON(atomic_read(&sh->count) != 0);
321 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
600aa109 322 BUG_ON(stripe_operations_active(sh));
d84e0f10 323
1da177e4 324 CHECK_DEVLOCK();
45b4233c 325 pr_debug("init_stripe called, stripe %llu\n",
1da177e4
LT
326 (unsigned long long)sh->sector);
327
328 remove_hash(sh);
16a53ecc 329
86b42c71 330 sh->generation = conf->generation - previous;
b5663ba4 331 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
1da177e4 332 sh->sector = sector;
911d4ee8 333 stripe_set_idx(sector, conf, previous, sh);
1da177e4
LT
334 sh->state = 0;
335
7ecaa1e6
N
336
337 for (i = sh->disks; i--; ) {
1da177e4
LT
338 struct r5dev *dev = &sh->dev[i];
339
d84e0f10 340 if (dev->toread || dev->read || dev->towrite || dev->written ||
1da177e4 341 test_bit(R5_LOCKED, &dev->flags)) {
d84e0f10 342 printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
1da177e4 343 (unsigned long long)sh->sector, i, dev->toread,
d84e0f10 344 dev->read, dev->towrite, dev->written,
1da177e4
LT
345 test_bit(R5_LOCKED, &dev->flags));
346 BUG();
347 }
348 dev->flags = 0;
784052ec 349 raid5_build_block(sh, i, previous);
1da177e4
LT
350 }
351 insert_hash(conf, sh);
352}
353
86b42c71
N
354static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector,
355 short generation)
1da177e4
LT
356{
357 struct stripe_head *sh;
fccddba0 358 struct hlist_node *hn;
1da177e4
LT
359
360 CHECK_DEVLOCK();
45b4233c 361 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
fccddba0 362 hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
86b42c71 363 if (sh->sector == sector && sh->generation == generation)
1da177e4 364 return sh;
45b4233c 365 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
1da177e4
LT
366 return NULL;
367}
368
674806d6
N
369/*
370 * Need to check if array has failed when deciding whether to:
371 * - start an array
372 * - remove non-faulty devices
373 * - add a spare
374 * - allow a reshape
375 * This determination is simple when no reshape is happening.
376 * However if there is a reshape, we need to carefully check
377 * both the before and after sections.
378 * This is because some failed devices may only affect one
379 * of the two sections, and some non-in_sync devices may
380 * be insync in the section most affected by failed devices.
381 */
382static int has_failed(raid5_conf_t *conf)
383{
384 int degraded;
385 int i;
386 if (conf->mddev->reshape_position == MaxSector)
387 return conf->mddev->degraded > conf->max_degraded;
388
389 rcu_read_lock();
390 degraded = 0;
391 for (i = 0; i < conf->previous_raid_disks; i++) {
392 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
393 if (!rdev || test_bit(Faulty, &rdev->flags))
394 degraded++;
395 else if (test_bit(In_sync, &rdev->flags))
396 ;
397 else
398 /* not in-sync or faulty.
399 * If the reshape increases the number of devices,
400 * this is being recovered by the reshape, so
401 * this 'previous' section is not in_sync.
402 * If the number of devices is being reduced however,
403 * the device can only be part of the array if
404 * we are reverting a reshape, so this section will
405 * be in-sync.
406 */
407 if (conf->raid_disks >= conf->previous_raid_disks)
408 degraded++;
409 }
410 rcu_read_unlock();
411 if (degraded > conf->max_degraded)
412 return 1;
413 rcu_read_lock();
414 degraded = 0;
415 for (i = 0; i < conf->raid_disks; i++) {
416 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
417 if (!rdev || test_bit(Faulty, &rdev->flags))
418 degraded++;
419 else if (test_bit(In_sync, &rdev->flags))
420 ;
421 else
422 /* not in-sync or faulty.
423 * If reshape increases the number of devices, this
424 * section has already been recovered, else it
425 * almost certainly hasn't.
426 */
427 if (conf->raid_disks <= conf->previous_raid_disks)
428 degraded++;
429 }
430 rcu_read_unlock();
431 if (degraded > conf->max_degraded)
432 return 1;
433 return 0;
434}
435
1da177e4 436static void unplug_slaves(mddev_t *mddev);
165125e1 437static void raid5_unplug_device(struct request_queue *q);
1da177e4 438
b5663ba4
N
439static struct stripe_head *
440get_active_stripe(raid5_conf_t *conf, sector_t sector,
a8c906ca 441 int previous, int noblock, int noquiesce)
1da177e4
LT
442{
443 struct stripe_head *sh;
444
45b4233c 445 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
1da177e4
LT
446
447 spin_lock_irq(&conf->device_lock);
448
449 do {
72626685 450 wait_event_lock_irq(conf->wait_for_stripe,
a8c906ca 451 conf->quiesce == 0 || noquiesce,
72626685 452 conf->device_lock, /* nothing */);
86b42c71 453 sh = __find_stripe(conf, sector, conf->generation - previous);
1da177e4
LT
454 if (!sh) {
455 if (!conf->inactive_blocked)
456 sh = get_free_stripe(conf);
457 if (noblock && sh == NULL)
458 break;
459 if (!sh) {
460 conf->inactive_blocked = 1;
461 wait_event_lock_irq(conf->wait_for_stripe,
462 !list_empty(&conf->inactive_list) &&
5036805b
N
463 (atomic_read(&conf->active_stripes)
464 < (conf->max_nr_stripes *3/4)
1da177e4
LT
465 || !conf->inactive_blocked),
466 conf->device_lock,
f4370781 467 raid5_unplug_device(conf->mddev->queue)
1da177e4
LT
468 );
469 conf->inactive_blocked = 0;
470 } else
b5663ba4 471 init_stripe(sh, sector, previous);
1da177e4
LT
472 } else {
473 if (atomic_read(&sh->count)) {
ab69ae12
N
474 BUG_ON(!list_empty(&sh->lru)
475 && !test_bit(STRIPE_EXPANDING, &sh->state));
1da177e4
LT
476 } else {
477 if (!test_bit(STRIPE_HANDLE, &sh->state))
478 atomic_inc(&conf->active_stripes);
ff4e8d9a
N
479 if (list_empty(&sh->lru) &&
480 !test_bit(STRIPE_EXPANDING, &sh->state))
16a53ecc
N
481 BUG();
482 list_del_init(&sh->lru);
1da177e4
LT
483 }
484 }
485 } while (sh == NULL);
486
487 if (sh)
488 atomic_inc(&sh->count);
489
490 spin_unlock_irq(&conf->device_lock);
491 return sh;
492}
493
6712ecf8
N
494static void
495raid5_end_read_request(struct bio *bi, int error);
496static void
497raid5_end_write_request(struct bio *bi, int error);
91c00924 498
c4e5ac0a 499static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
91c00924
DW
500{
501 raid5_conf_t *conf = sh->raid_conf;
502 int i, disks = sh->disks;
503
504 might_sleep();
505
506 for (i = disks; i--; ) {
507 int rw;
508 struct bio *bi;
509 mdk_rdev_t *rdev;
510 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
511 rw = WRITE;
512 else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
513 rw = READ;
514 else
515 continue;
516
517 bi = &sh->dev[i].req;
518
519 bi->bi_rw = rw;
520 if (rw == WRITE)
521 bi->bi_end_io = raid5_end_write_request;
522 else
523 bi->bi_end_io = raid5_end_read_request;
524
525 rcu_read_lock();
526 rdev = rcu_dereference(conf->disks[i].rdev);
527 if (rdev && test_bit(Faulty, &rdev->flags))
528 rdev = NULL;
529 if (rdev)
530 atomic_inc(&rdev->nr_pending);
531 rcu_read_unlock();
532
533 if (rdev) {
c4e5ac0a 534 if (s->syncing || s->expanding || s->expanded)
91c00924
DW
535 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
536
2b7497f0
DW
537 set_bit(STRIPE_IO_STARTED, &sh->state);
538
91c00924
DW
539 bi->bi_bdev = rdev->bdev;
540 pr_debug("%s: for %llu schedule op %ld on disc %d\n",
e46b272b 541 __func__, (unsigned long long)sh->sector,
91c00924
DW
542 bi->bi_rw, i);
543 atomic_inc(&sh->count);
544 bi->bi_sector = sh->sector + rdev->data_offset;
545 bi->bi_flags = 1 << BIO_UPTODATE;
546 bi->bi_vcnt = 1;
547 bi->bi_max_vecs = 1;
548 bi->bi_idx = 0;
549 bi->bi_io_vec = &sh->dev[i].vec;
550 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
551 bi->bi_io_vec[0].bv_offset = 0;
552 bi->bi_size = STRIPE_SIZE;
553 bi->bi_next = NULL;
554 if (rw == WRITE &&
555 test_bit(R5_ReWrite, &sh->dev[i].flags))
556 atomic_add(STRIPE_SECTORS,
557 &rdev->corrected_errors);
558 generic_make_request(bi);
559 } else {
560 if (rw == WRITE)
561 set_bit(STRIPE_DEGRADED, &sh->state);
562 pr_debug("skip op %ld on disc %d for sector %llu\n",
563 bi->bi_rw, i, (unsigned long long)sh->sector);
564 clear_bit(R5_LOCKED, &sh->dev[i].flags);
565 set_bit(STRIPE_HANDLE, &sh->state);
566 }
567 }
568}
569
570static struct dma_async_tx_descriptor *
571async_copy_data(int frombio, struct bio *bio, struct page *page,
572 sector_t sector, struct dma_async_tx_descriptor *tx)
573{
574 struct bio_vec *bvl;
575 struct page *bio_page;
576 int i;
577 int page_offset;
a08abd8c 578 struct async_submit_ctl submit;
0403e382 579 enum async_tx_flags flags = 0;
91c00924
DW
580
581 if (bio->bi_sector >= sector)
582 page_offset = (signed)(bio->bi_sector - sector) * 512;
583 else
584 page_offset = (signed)(sector - bio->bi_sector) * -512;
a08abd8c 585
0403e382
DW
586 if (frombio)
587 flags |= ASYNC_TX_FENCE;
588 init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
589
91c00924
DW
590 bio_for_each_segment(bvl, bio, i) {
591 int len = bio_iovec_idx(bio, i)->bv_len;
592 int clen;
593 int b_offset = 0;
594
595 if (page_offset < 0) {
596 b_offset = -page_offset;
597 page_offset += b_offset;
598 len -= b_offset;
599 }
600
601 if (len > 0 && page_offset + len > STRIPE_SIZE)
602 clen = STRIPE_SIZE - page_offset;
603 else
604 clen = len;
605
606 if (clen > 0) {
607 b_offset += bio_iovec_idx(bio, i)->bv_offset;
608 bio_page = bio_iovec_idx(bio, i)->bv_page;
609 if (frombio)
610 tx = async_memcpy(page, bio_page, page_offset,
a08abd8c 611 b_offset, clen, &submit);
91c00924
DW
612 else
613 tx = async_memcpy(bio_page, page, b_offset,
a08abd8c 614 page_offset, clen, &submit);
91c00924 615 }
a08abd8c
DW
616 /* chain the operations */
617 submit.depend_tx = tx;
618
91c00924
DW
619 if (clen < len) /* hit end of page */
620 break;
621 page_offset += len;
622 }
623
624 return tx;
625}
626
627static void ops_complete_biofill(void *stripe_head_ref)
628{
629 struct stripe_head *sh = stripe_head_ref;
630 struct bio *return_bi = NULL;
631 raid5_conf_t *conf = sh->raid_conf;
e4d84909 632 int i;
91c00924 633
e46b272b 634 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
635 (unsigned long long)sh->sector);
636
637 /* clear completed biofills */
83de75cc 638 spin_lock_irq(&conf->device_lock);
91c00924
DW
639 for (i = sh->disks; i--; ) {
640 struct r5dev *dev = &sh->dev[i];
91c00924
DW
641
642 /* acknowledge completion of a biofill operation */
e4d84909
DW
643 /* and check if we need to reply to a read request,
644 * new R5_Wantfill requests are held off until
83de75cc 645 * !STRIPE_BIOFILL_RUN
e4d84909
DW
646 */
647 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
91c00924 648 struct bio *rbi, *rbi2;
91c00924 649
91c00924
DW
650 BUG_ON(!dev->read);
651 rbi = dev->read;
652 dev->read = NULL;
653 while (rbi && rbi->bi_sector <
654 dev->sector + STRIPE_SECTORS) {
655 rbi2 = r5_next_bio(rbi, dev->sector);
960e739d 656 if (!raid5_dec_bi_phys_segments(rbi)) {
91c00924
DW
657 rbi->bi_next = return_bi;
658 return_bi = rbi;
659 }
91c00924
DW
660 rbi = rbi2;
661 }
662 }
663 }
83de75cc
DW
664 spin_unlock_irq(&conf->device_lock);
665 clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
91c00924
DW
666
667 return_io(return_bi);
668
e4d84909 669 set_bit(STRIPE_HANDLE, &sh->state);
91c00924
DW
670 release_stripe(sh);
671}
672
673static void ops_run_biofill(struct stripe_head *sh)
674{
675 struct dma_async_tx_descriptor *tx = NULL;
676 raid5_conf_t *conf = sh->raid_conf;
a08abd8c 677 struct async_submit_ctl submit;
91c00924
DW
678 int i;
679
e46b272b 680 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
681 (unsigned long long)sh->sector);
682
683 for (i = sh->disks; i--; ) {
684 struct r5dev *dev = &sh->dev[i];
685 if (test_bit(R5_Wantfill, &dev->flags)) {
686 struct bio *rbi;
687 spin_lock_irq(&conf->device_lock);
688 dev->read = rbi = dev->toread;
689 dev->toread = NULL;
690 spin_unlock_irq(&conf->device_lock);
691 while (rbi && rbi->bi_sector <
692 dev->sector + STRIPE_SECTORS) {
693 tx = async_copy_data(0, rbi, dev->page,
694 dev->sector, tx);
695 rbi = r5_next_bio(rbi, dev->sector);
696 }
697 }
698 }
699
700 atomic_inc(&sh->count);
a08abd8c
DW
701 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
702 async_trigger_callback(&submit);
91c00924
DW
703}
704
4e7d2c0a 705static void mark_target_uptodate(struct stripe_head *sh, int target)
91c00924 706{
4e7d2c0a 707 struct r5dev *tgt;
91c00924 708
4e7d2c0a
DW
709 if (target < 0)
710 return;
91c00924 711
4e7d2c0a 712 tgt = &sh->dev[target];
91c00924
DW
713 set_bit(R5_UPTODATE, &tgt->flags);
714 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
715 clear_bit(R5_Wantcompute, &tgt->flags);
4e7d2c0a
DW
716}
717
ac6b53b6 718static void ops_complete_compute(void *stripe_head_ref)
91c00924
DW
719{
720 struct stripe_head *sh = stripe_head_ref;
91c00924 721
e46b272b 722 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
723 (unsigned long long)sh->sector);
724
ac6b53b6 725 /* mark the computed target(s) as uptodate */
4e7d2c0a 726 mark_target_uptodate(sh, sh->ops.target);
ac6b53b6 727 mark_target_uptodate(sh, sh->ops.target2);
4e7d2c0a 728
ecc65c9b
DW
729 clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
730 if (sh->check_state == check_state_compute_run)
731 sh->check_state = check_state_compute_result;
91c00924
DW
732 set_bit(STRIPE_HANDLE, &sh->state);
733 release_stripe(sh);
734}
735
d6f38f31
DW
736/* return a pointer to the address conversion region of the scribble buffer */
737static addr_conv_t *to_addr_conv(struct stripe_head *sh,
738 struct raid5_percpu *percpu)
739{
740 return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
741}
742
743static struct dma_async_tx_descriptor *
744ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
91c00924 745{
91c00924 746 int disks = sh->disks;
d6f38f31 747 struct page **xor_srcs = percpu->scribble;
91c00924
DW
748 int target = sh->ops.target;
749 struct r5dev *tgt = &sh->dev[target];
750 struct page *xor_dest = tgt->page;
751 int count = 0;
752 struct dma_async_tx_descriptor *tx;
a08abd8c 753 struct async_submit_ctl submit;
91c00924
DW
754 int i;
755
756 pr_debug("%s: stripe %llu block: %d\n",
e46b272b 757 __func__, (unsigned long long)sh->sector, target);
91c00924
DW
758 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
759
760 for (i = disks; i--; )
761 if (i != target)
762 xor_srcs[count++] = sh->dev[i].page;
763
764 atomic_inc(&sh->count);
765
0403e382 766 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
ac6b53b6 767 ops_complete_compute, sh, to_addr_conv(sh, percpu));
91c00924 768 if (unlikely(count == 1))
a08abd8c 769 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
91c00924 770 else
a08abd8c 771 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
91c00924 772
91c00924
DW
773 return tx;
774}
775
ac6b53b6
DW
776/* set_syndrome_sources - populate source buffers for gen_syndrome
777 * @srcs - (struct page *) array of size sh->disks
778 * @sh - stripe_head to parse
779 *
780 * Populates srcs in proper layout order for the stripe and returns the
781 * 'count' of sources to be used in a call to async_gen_syndrome. The P
782 * destination buffer is recorded in srcs[count] and the Q destination
783 * is recorded in srcs[count+1]].
784 */
785static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
786{
787 int disks = sh->disks;
788 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
789 int d0_idx = raid6_d0(sh);
790 int count;
791 int i;
792
793 for (i = 0; i < disks; i++)
5dd33c9a 794 srcs[i] = NULL;
ac6b53b6
DW
795
796 count = 0;
797 i = d0_idx;
798 do {
799 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
800
801 srcs[slot] = sh->dev[i].page;
802 i = raid6_next_disk(i, disks);
803 } while (i != d0_idx);
ac6b53b6 804
e4424fee 805 return syndrome_disks;
ac6b53b6
DW
806}
807
808static struct dma_async_tx_descriptor *
809ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
810{
811 int disks = sh->disks;
812 struct page **blocks = percpu->scribble;
813 int target;
814 int qd_idx = sh->qd_idx;
815 struct dma_async_tx_descriptor *tx;
816 struct async_submit_ctl submit;
817 struct r5dev *tgt;
818 struct page *dest;
819 int i;
820 int count;
821
822 if (sh->ops.target < 0)
823 target = sh->ops.target2;
824 else if (sh->ops.target2 < 0)
825 target = sh->ops.target;
91c00924 826 else
ac6b53b6
DW
827 /* we should only have one valid target */
828 BUG();
829 BUG_ON(target < 0);
830 pr_debug("%s: stripe %llu block: %d\n",
831 __func__, (unsigned long long)sh->sector, target);
832
833 tgt = &sh->dev[target];
834 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
835 dest = tgt->page;
836
837 atomic_inc(&sh->count);
838
839 if (target == qd_idx) {
840 count = set_syndrome_sources(blocks, sh);
841 blocks[count] = NULL; /* regenerating p is not necessary */
842 BUG_ON(blocks[count+1] != dest); /* q should already be set */
0403e382
DW
843 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
844 ops_complete_compute, sh,
ac6b53b6
DW
845 to_addr_conv(sh, percpu));
846 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
847 } else {
848 /* Compute any data- or p-drive using XOR */
849 count = 0;
850 for (i = disks; i-- ; ) {
851 if (i == target || i == qd_idx)
852 continue;
853 blocks[count++] = sh->dev[i].page;
854 }
855
0403e382
DW
856 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
857 NULL, ops_complete_compute, sh,
ac6b53b6
DW
858 to_addr_conv(sh, percpu));
859 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
860 }
91c00924 861
91c00924
DW
862 return tx;
863}
864
ac6b53b6
DW
865static struct dma_async_tx_descriptor *
866ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
867{
868 int i, count, disks = sh->disks;
869 int syndrome_disks = sh->ddf_layout ? disks : disks-2;
870 int d0_idx = raid6_d0(sh);
871 int faila = -1, failb = -1;
872 int target = sh->ops.target;
873 int target2 = sh->ops.target2;
874 struct r5dev *tgt = &sh->dev[target];
875 struct r5dev *tgt2 = &sh->dev[target2];
876 struct dma_async_tx_descriptor *tx;
877 struct page **blocks = percpu->scribble;
878 struct async_submit_ctl submit;
879
880 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
881 __func__, (unsigned long long)sh->sector, target, target2);
882 BUG_ON(target < 0 || target2 < 0);
883 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
884 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
885
6c910a78 886 /* we need to open-code set_syndrome_sources to handle the
ac6b53b6
DW
887 * slot number conversion for 'faila' and 'failb'
888 */
889 for (i = 0; i < disks ; i++)
5dd33c9a 890 blocks[i] = NULL;
ac6b53b6
DW
891 count = 0;
892 i = d0_idx;
893 do {
894 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
895
896 blocks[slot] = sh->dev[i].page;
897
898 if (i == target)
899 faila = slot;
900 if (i == target2)
901 failb = slot;
902 i = raid6_next_disk(i, disks);
903 } while (i != d0_idx);
ac6b53b6
DW
904
905 BUG_ON(faila == failb);
906 if (failb < faila)
907 swap(faila, failb);
908 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
909 __func__, (unsigned long long)sh->sector, faila, failb);
910
911 atomic_inc(&sh->count);
912
913 if (failb == syndrome_disks+1) {
914 /* Q disk is one of the missing disks */
915 if (faila == syndrome_disks) {
916 /* Missing P+Q, just recompute */
0403e382
DW
917 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
918 ops_complete_compute, sh,
919 to_addr_conv(sh, percpu));
e4424fee 920 return async_gen_syndrome(blocks, 0, syndrome_disks+2,
ac6b53b6
DW
921 STRIPE_SIZE, &submit);
922 } else {
923 struct page *dest;
924 int data_target;
925 int qd_idx = sh->qd_idx;
926
927 /* Missing D+Q: recompute D from P, then recompute Q */
928 if (target == qd_idx)
929 data_target = target2;
930 else
931 data_target = target;
932
933 count = 0;
934 for (i = disks; i-- ; ) {
935 if (i == data_target || i == qd_idx)
936 continue;
937 blocks[count++] = sh->dev[i].page;
938 }
939 dest = sh->dev[data_target].page;
0403e382
DW
940 init_async_submit(&submit,
941 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
942 NULL, NULL, NULL,
943 to_addr_conv(sh, percpu));
ac6b53b6
DW
944 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
945 &submit);
946
947 count = set_syndrome_sources(blocks, sh);
0403e382
DW
948 init_async_submit(&submit, ASYNC_TX_FENCE, tx,
949 ops_complete_compute, sh,
950 to_addr_conv(sh, percpu));
ac6b53b6
DW
951 return async_gen_syndrome(blocks, 0, count+2,
952 STRIPE_SIZE, &submit);
953 }
ac6b53b6 954 } else {
6c910a78
DW
955 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
956 ops_complete_compute, sh,
957 to_addr_conv(sh, percpu));
958 if (failb == syndrome_disks) {
959 /* We're missing D+P. */
960 return async_raid6_datap_recov(syndrome_disks+2,
961 STRIPE_SIZE, faila,
962 blocks, &submit);
963 } else {
964 /* We're missing D+D. */
965 return async_raid6_2data_recov(syndrome_disks+2,
966 STRIPE_SIZE, faila, failb,
967 blocks, &submit);
968 }
ac6b53b6
DW
969 }
970}
971
972
91c00924
DW
973static void ops_complete_prexor(void *stripe_head_ref)
974{
975 struct stripe_head *sh = stripe_head_ref;
976
e46b272b 977 pr_debug("%s: stripe %llu\n", __func__,
91c00924 978 (unsigned long long)sh->sector);
91c00924
DW
979}
980
981static struct dma_async_tx_descriptor *
d6f38f31
DW
982ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
983 struct dma_async_tx_descriptor *tx)
91c00924 984{
91c00924 985 int disks = sh->disks;
d6f38f31 986 struct page **xor_srcs = percpu->scribble;
91c00924 987 int count = 0, pd_idx = sh->pd_idx, i;
a08abd8c 988 struct async_submit_ctl submit;
91c00924
DW
989
990 /* existing parity data subtracted */
991 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
992
e46b272b 993 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
994 (unsigned long long)sh->sector);
995
996 for (i = disks; i--; ) {
997 struct r5dev *dev = &sh->dev[i];
998 /* Only process blocks that are known to be uptodate */
d8ee0728 999 if (test_bit(R5_Wantdrain, &dev->flags))
91c00924
DW
1000 xor_srcs[count++] = dev->page;
1001 }
1002
0403e382 1003 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
d6f38f31 1004 ops_complete_prexor, sh, to_addr_conv(sh, percpu));
a08abd8c 1005 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
91c00924
DW
1006
1007 return tx;
1008}
1009
1010static struct dma_async_tx_descriptor *
d8ee0728 1011ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
91c00924
DW
1012{
1013 int disks = sh->disks;
d8ee0728 1014 int i;
91c00924 1015
e46b272b 1016 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1017 (unsigned long long)sh->sector);
1018
1019 for (i = disks; i--; ) {
1020 struct r5dev *dev = &sh->dev[i];
1021 struct bio *chosen;
91c00924 1022
d8ee0728 1023 if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
91c00924
DW
1024 struct bio *wbi;
1025
1026 spin_lock(&sh->lock);
1027 chosen = dev->towrite;
1028 dev->towrite = NULL;
1029 BUG_ON(dev->written);
1030 wbi = dev->written = chosen;
1031 spin_unlock(&sh->lock);
1032
1033 while (wbi && wbi->bi_sector <
1034 dev->sector + STRIPE_SECTORS) {
1035 tx = async_copy_data(1, wbi, dev->page,
1036 dev->sector, tx);
1037 wbi = r5_next_bio(wbi, dev->sector);
1038 }
1039 }
1040 }
1041
1042 return tx;
1043}
1044
ac6b53b6 1045static void ops_complete_reconstruct(void *stripe_head_ref)
91c00924
DW
1046{
1047 struct stripe_head *sh = stripe_head_ref;
ac6b53b6
DW
1048 int disks = sh->disks;
1049 int pd_idx = sh->pd_idx;
1050 int qd_idx = sh->qd_idx;
1051 int i;
91c00924 1052
e46b272b 1053 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1054 (unsigned long long)sh->sector);
1055
1056 for (i = disks; i--; ) {
1057 struct r5dev *dev = &sh->dev[i];
ac6b53b6
DW
1058
1059 if (dev->written || i == pd_idx || i == qd_idx)
91c00924
DW
1060 set_bit(R5_UPTODATE, &dev->flags);
1061 }
1062
d8ee0728
DW
1063 if (sh->reconstruct_state == reconstruct_state_drain_run)
1064 sh->reconstruct_state = reconstruct_state_drain_result;
1065 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1066 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1067 else {
1068 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1069 sh->reconstruct_state = reconstruct_state_result;
1070 }
91c00924
DW
1071
1072 set_bit(STRIPE_HANDLE, &sh->state);
1073 release_stripe(sh);
1074}
1075
1076static void
ac6b53b6
DW
1077ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1078 struct dma_async_tx_descriptor *tx)
91c00924 1079{
91c00924 1080 int disks = sh->disks;
d6f38f31 1081 struct page **xor_srcs = percpu->scribble;
a08abd8c 1082 struct async_submit_ctl submit;
91c00924
DW
1083 int count = 0, pd_idx = sh->pd_idx, i;
1084 struct page *xor_dest;
d8ee0728 1085 int prexor = 0;
91c00924 1086 unsigned long flags;
91c00924 1087
e46b272b 1088 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1089 (unsigned long long)sh->sector);
1090
1091 /* check if prexor is active which means only process blocks
1092 * that are part of a read-modify-write (written)
1093 */
d8ee0728
DW
1094 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1095 prexor = 1;
91c00924
DW
1096 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1097 for (i = disks; i--; ) {
1098 struct r5dev *dev = &sh->dev[i];
1099 if (dev->written)
1100 xor_srcs[count++] = dev->page;
1101 }
1102 } else {
1103 xor_dest = sh->dev[pd_idx].page;
1104 for (i = disks; i--; ) {
1105 struct r5dev *dev = &sh->dev[i];
1106 if (i != pd_idx)
1107 xor_srcs[count++] = dev->page;
1108 }
1109 }
1110
91c00924
DW
1111 /* 1/ if we prexor'd then the dest is reused as a source
1112 * 2/ if we did not prexor then we are redoing the parity
1113 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1114 * for the synchronous xor case
1115 */
88ba2aa5 1116 flags = ASYNC_TX_ACK |
91c00924
DW
1117 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1118
1119 atomic_inc(&sh->count);
1120
ac6b53b6 1121 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
d6f38f31 1122 to_addr_conv(sh, percpu));
a08abd8c
DW
1123 if (unlikely(count == 1))
1124 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1125 else
1126 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
91c00924
DW
1127}
1128
ac6b53b6
DW
1129static void
1130ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1131 struct dma_async_tx_descriptor *tx)
1132{
1133 struct async_submit_ctl submit;
1134 struct page **blocks = percpu->scribble;
1135 int count;
1136
1137 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1138
1139 count = set_syndrome_sources(blocks, sh);
1140
1141 atomic_inc(&sh->count);
1142
1143 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1144 sh, to_addr_conv(sh, percpu));
1145 async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
91c00924
DW
1146}
1147
1148static void ops_complete_check(void *stripe_head_ref)
1149{
1150 struct stripe_head *sh = stripe_head_ref;
91c00924 1151
e46b272b 1152 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1153 (unsigned long long)sh->sector);
1154
ecc65c9b 1155 sh->check_state = check_state_check_result;
91c00924
DW
1156 set_bit(STRIPE_HANDLE, &sh->state);
1157 release_stripe(sh);
1158}
1159
ac6b53b6 1160static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
91c00924 1161{
91c00924 1162 int disks = sh->disks;
ac6b53b6
DW
1163 int pd_idx = sh->pd_idx;
1164 int qd_idx = sh->qd_idx;
1165 struct page *xor_dest;
d6f38f31 1166 struct page **xor_srcs = percpu->scribble;
91c00924 1167 struct dma_async_tx_descriptor *tx;
a08abd8c 1168 struct async_submit_ctl submit;
ac6b53b6
DW
1169 int count;
1170 int i;
91c00924 1171
e46b272b 1172 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1173 (unsigned long long)sh->sector);
1174
ac6b53b6
DW
1175 count = 0;
1176 xor_dest = sh->dev[pd_idx].page;
1177 xor_srcs[count++] = xor_dest;
91c00924 1178 for (i = disks; i--; ) {
ac6b53b6
DW
1179 if (i == pd_idx || i == qd_idx)
1180 continue;
1181 xor_srcs[count++] = sh->dev[i].page;
91c00924
DW
1182 }
1183
d6f38f31
DW
1184 init_async_submit(&submit, 0, NULL, NULL, NULL,
1185 to_addr_conv(sh, percpu));
099f53cb 1186 tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
a08abd8c 1187 &sh->ops.zero_sum_result, &submit);
91c00924 1188
91c00924 1189 atomic_inc(&sh->count);
a08abd8c
DW
1190 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1191 tx = async_trigger_callback(&submit);
91c00924
DW
1192}
1193
ac6b53b6
DW
1194static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1195{
1196 struct page **srcs = percpu->scribble;
1197 struct async_submit_ctl submit;
1198 int count;
1199
1200 pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1201 (unsigned long long)sh->sector, checkp);
1202
1203 count = set_syndrome_sources(srcs, sh);
1204 if (!checkp)
1205 srcs[count] = NULL;
91c00924 1206
91c00924 1207 atomic_inc(&sh->count);
ac6b53b6
DW
1208 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1209 sh, to_addr_conv(sh, percpu));
1210 async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1211 &sh->ops.zero_sum_result, percpu->spare_page, &submit);
91c00924
DW
1212}
1213
417b8d4a 1214static void __raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
91c00924
DW
1215{
1216 int overlap_clear = 0, i, disks = sh->disks;
1217 struct dma_async_tx_descriptor *tx = NULL;
d6f38f31 1218 raid5_conf_t *conf = sh->raid_conf;
ac6b53b6 1219 int level = conf->level;
d6f38f31
DW
1220 struct raid5_percpu *percpu;
1221 unsigned long cpu;
91c00924 1222
d6f38f31
DW
1223 cpu = get_cpu();
1224 percpu = per_cpu_ptr(conf->percpu, cpu);
83de75cc 1225 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
91c00924
DW
1226 ops_run_biofill(sh);
1227 overlap_clear++;
1228 }
1229
7b3a871e 1230 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
ac6b53b6
DW
1231 if (level < 6)
1232 tx = ops_run_compute5(sh, percpu);
1233 else {
1234 if (sh->ops.target2 < 0 || sh->ops.target < 0)
1235 tx = ops_run_compute6_1(sh, percpu);
1236 else
1237 tx = ops_run_compute6_2(sh, percpu);
1238 }
1239 /* terminate the chain if reconstruct is not set to be run */
1240 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
7b3a871e
DW
1241 async_tx_ack(tx);
1242 }
91c00924 1243
600aa109 1244 if (test_bit(STRIPE_OP_PREXOR, &ops_request))
d6f38f31 1245 tx = ops_run_prexor(sh, percpu, tx);
91c00924 1246
600aa109 1247 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
d8ee0728 1248 tx = ops_run_biodrain(sh, tx);
91c00924
DW
1249 overlap_clear++;
1250 }
1251
ac6b53b6
DW
1252 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1253 if (level < 6)
1254 ops_run_reconstruct5(sh, percpu, tx);
1255 else
1256 ops_run_reconstruct6(sh, percpu, tx);
1257 }
91c00924 1258
ac6b53b6
DW
1259 if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1260 if (sh->check_state == check_state_run)
1261 ops_run_check_p(sh, percpu);
1262 else if (sh->check_state == check_state_run_q)
1263 ops_run_check_pq(sh, percpu, 0);
1264 else if (sh->check_state == check_state_run_pq)
1265 ops_run_check_pq(sh, percpu, 1);
1266 else
1267 BUG();
1268 }
91c00924 1269
91c00924
DW
1270 if (overlap_clear)
1271 for (i = disks; i--; ) {
1272 struct r5dev *dev = &sh->dev[i];
1273 if (test_and_clear_bit(R5_Overlap, &dev->flags))
1274 wake_up(&sh->raid_conf->wait_for_overlap);
1275 }
d6f38f31 1276 put_cpu();
91c00924
DW
1277}
1278
417b8d4a
DW
1279#ifdef CONFIG_MULTICORE_RAID456
1280static void async_run_ops(void *param, async_cookie_t cookie)
1281{
1282 struct stripe_head *sh = param;
1283 unsigned long ops_request = sh->ops.request;
1284
1285 clear_bit_unlock(STRIPE_OPS_REQ_PENDING, &sh->state);
1286 wake_up(&sh->ops.wait_for_ops);
1287
1288 __raid_run_ops(sh, ops_request);
1289 release_stripe(sh);
1290}
1291
1292static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1293{
1294 /* since handle_stripe can be called outside of raid5d context
1295 * we need to ensure sh->ops.request is de-staged before another
1296 * request arrives
1297 */
1298 wait_event(sh->ops.wait_for_ops,
1299 !test_and_set_bit_lock(STRIPE_OPS_REQ_PENDING, &sh->state));
1300 sh->ops.request = ops_request;
1301
1302 atomic_inc(&sh->count);
1303 async_schedule(async_run_ops, sh);
1304}
1305#else
1306#define raid_run_ops __raid_run_ops
1307#endif
1308
3f294f4f 1309static int grow_one_stripe(raid5_conf_t *conf)
1da177e4
LT
1310{
1311 struct stripe_head *sh;
3f294f4f
N
1312 sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL);
1313 if (!sh)
1314 return 0;
e4e11e38 1315 memset(sh, 0, sizeof(*sh) + (conf->pool_size-1)*sizeof(struct r5dev));
3f294f4f
N
1316 sh->raid_conf = conf;
1317 spin_lock_init(&sh->lock);
417b8d4a
DW
1318 #ifdef CONFIG_MULTICORE_RAID456
1319 init_waitqueue_head(&sh->ops.wait_for_ops);
1320 #endif
3f294f4f 1321
e4e11e38
N
1322 if (grow_buffers(sh)) {
1323 shrink_buffers(sh);
3f294f4f
N
1324 kmem_cache_free(conf->slab_cache, sh);
1325 return 0;
1326 }
1327 /* we just created an active stripe so... */
1328 atomic_set(&sh->count, 1);
1329 atomic_inc(&conf->active_stripes);
1330 INIT_LIST_HEAD(&sh->lru);
1331 release_stripe(sh);
1332 return 1;
1333}
1334
1335static int grow_stripes(raid5_conf_t *conf, int num)
1336{
e18b890b 1337 struct kmem_cache *sc;
5e5e3e78 1338 int devs = max(conf->raid_disks, conf->previous_raid_disks);
1da177e4 1339
245f46c2
N
1340 sprintf(conf->cache_name[0],
1341 "raid%d-%s", conf->level, mdname(conf->mddev));
1342 sprintf(conf->cache_name[1],
1343 "raid%d-%s-alt", conf->level, mdname(conf->mddev));
ad01c9e3
N
1344 conf->active_name = 0;
1345 sc = kmem_cache_create(conf->cache_name[conf->active_name],
1da177e4 1346 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
20c2df83 1347 0, 0, NULL);
1da177e4
LT
1348 if (!sc)
1349 return 1;
1350 conf->slab_cache = sc;
ad01c9e3 1351 conf->pool_size = devs;
16a53ecc 1352 while (num--)
3f294f4f 1353 if (!grow_one_stripe(conf))
1da177e4 1354 return 1;
1da177e4
LT
1355 return 0;
1356}
29269553 1357
d6f38f31
DW
1358/**
1359 * scribble_len - return the required size of the scribble region
1360 * @num - total number of disks in the array
1361 *
1362 * The size must be enough to contain:
1363 * 1/ a struct page pointer for each device in the array +2
1364 * 2/ room to convert each entry in (1) to its corresponding dma
1365 * (dma_map_page()) or page (page_address()) address.
1366 *
1367 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1368 * calculate over all devices (not just the data blocks), using zeros in place
1369 * of the P and Q blocks.
1370 */
1371static size_t scribble_len(int num)
1372{
1373 size_t len;
1374
1375 len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1376
1377 return len;
1378}
1379
ad01c9e3
N
1380static int resize_stripes(raid5_conf_t *conf, int newsize)
1381{
1382 /* Make all the stripes able to hold 'newsize' devices.
1383 * New slots in each stripe get 'page' set to a new page.
1384 *
1385 * This happens in stages:
1386 * 1/ create a new kmem_cache and allocate the required number of
1387 * stripe_heads.
1388 * 2/ gather all the old stripe_heads and tranfer the pages across
1389 * to the new stripe_heads. This will have the side effect of
1390 * freezing the array as once all stripe_heads have been collected,
1391 * no IO will be possible. Old stripe heads are freed once their
1392 * pages have been transferred over, and the old kmem_cache is
1393 * freed when all stripes are done.
1394 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
1395 * we simple return a failre status - no need to clean anything up.
1396 * 4/ allocate new pages for the new slots in the new stripe_heads.
1397 * If this fails, we don't bother trying the shrink the
1398 * stripe_heads down again, we just leave them as they are.
1399 * As each stripe_head is processed the new one is released into
1400 * active service.
1401 *
1402 * Once step2 is started, we cannot afford to wait for a write,
1403 * so we use GFP_NOIO allocations.
1404 */
1405 struct stripe_head *osh, *nsh;
1406 LIST_HEAD(newstripes);
1407 struct disk_info *ndisks;
d6f38f31 1408 unsigned long cpu;
b5470dc5 1409 int err;
e18b890b 1410 struct kmem_cache *sc;
ad01c9e3
N
1411 int i;
1412
1413 if (newsize <= conf->pool_size)
1414 return 0; /* never bother to shrink */
1415
b5470dc5
DW
1416 err = md_allow_write(conf->mddev);
1417 if (err)
1418 return err;
2a2275d6 1419
ad01c9e3
N
1420 /* Step 1 */
1421 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1422 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
20c2df83 1423 0, 0, NULL);
ad01c9e3
N
1424 if (!sc)
1425 return -ENOMEM;
1426
1427 for (i = conf->max_nr_stripes; i; i--) {
1428 nsh = kmem_cache_alloc(sc, GFP_KERNEL);
1429 if (!nsh)
1430 break;
1431
1432 memset(nsh, 0, sizeof(*nsh) + (newsize-1)*sizeof(struct r5dev));
1433
1434 nsh->raid_conf = conf;
1435 spin_lock_init(&nsh->lock);
417b8d4a
DW
1436 #ifdef CONFIG_MULTICORE_RAID456
1437 init_waitqueue_head(&nsh->ops.wait_for_ops);
1438 #endif
ad01c9e3
N
1439
1440 list_add(&nsh->lru, &newstripes);
1441 }
1442 if (i) {
1443 /* didn't get enough, give up */
1444 while (!list_empty(&newstripes)) {
1445 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1446 list_del(&nsh->lru);
1447 kmem_cache_free(sc, nsh);
1448 }
1449 kmem_cache_destroy(sc);
1450 return -ENOMEM;
1451 }
1452 /* Step 2 - Must use GFP_NOIO now.
1453 * OK, we have enough stripes, start collecting inactive
1454 * stripes and copying them over
1455 */
1456 list_for_each_entry(nsh, &newstripes, lru) {
1457 spin_lock_irq(&conf->device_lock);
1458 wait_event_lock_irq(conf->wait_for_stripe,
1459 !list_empty(&conf->inactive_list),
1460 conf->device_lock,
b3b46be3 1461 unplug_slaves(conf->mddev)
ad01c9e3
N
1462 );
1463 osh = get_free_stripe(conf);
1464 spin_unlock_irq(&conf->device_lock);
1465 atomic_set(&nsh->count, 1);
1466 for(i=0; i<conf->pool_size; i++)
1467 nsh->dev[i].page = osh->dev[i].page;
1468 for( ; i<newsize; i++)
1469 nsh->dev[i].page = NULL;
1470 kmem_cache_free(conf->slab_cache, osh);
1471 }
1472 kmem_cache_destroy(conf->slab_cache);
1473
1474 /* Step 3.
1475 * At this point, we are holding all the stripes so the array
1476 * is completely stalled, so now is a good time to resize
d6f38f31 1477 * conf->disks and the scribble region
ad01c9e3
N
1478 */
1479 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1480 if (ndisks) {
1481 for (i=0; i<conf->raid_disks; i++)
1482 ndisks[i] = conf->disks[i];
1483 kfree(conf->disks);
1484 conf->disks = ndisks;
1485 } else
1486 err = -ENOMEM;
1487
d6f38f31
DW
1488 get_online_cpus();
1489 conf->scribble_len = scribble_len(newsize);
1490 for_each_present_cpu(cpu) {
1491 struct raid5_percpu *percpu;
1492 void *scribble;
1493
1494 percpu = per_cpu_ptr(conf->percpu, cpu);
1495 scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1496
1497 if (scribble) {
1498 kfree(percpu->scribble);
1499 percpu->scribble = scribble;
1500 } else {
1501 err = -ENOMEM;
1502 break;
1503 }
1504 }
1505 put_online_cpus();
1506
ad01c9e3
N
1507 /* Step 4, return new stripes to service */
1508 while(!list_empty(&newstripes)) {
1509 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1510 list_del_init(&nsh->lru);
d6f38f31 1511
ad01c9e3
N
1512 for (i=conf->raid_disks; i < newsize; i++)
1513 if (nsh->dev[i].page == NULL) {
1514 struct page *p = alloc_page(GFP_NOIO);
1515 nsh->dev[i].page = p;
1516 if (!p)
1517 err = -ENOMEM;
1518 }
1519 release_stripe(nsh);
1520 }
1521 /* critical section pass, GFP_NOIO no longer needed */
1522
1523 conf->slab_cache = sc;
1524 conf->active_name = 1-conf->active_name;
1525 conf->pool_size = newsize;
1526 return err;
1527}
1da177e4 1528
3f294f4f 1529static int drop_one_stripe(raid5_conf_t *conf)
1da177e4
LT
1530{
1531 struct stripe_head *sh;
1532
3f294f4f
N
1533 spin_lock_irq(&conf->device_lock);
1534 sh = get_free_stripe(conf);
1535 spin_unlock_irq(&conf->device_lock);
1536 if (!sh)
1537 return 0;
78bafebd 1538 BUG_ON(atomic_read(&sh->count));
e4e11e38 1539 shrink_buffers(sh);
3f294f4f
N
1540 kmem_cache_free(conf->slab_cache, sh);
1541 atomic_dec(&conf->active_stripes);
1542 return 1;
1543}
1544
1545static void shrink_stripes(raid5_conf_t *conf)
1546{
1547 while (drop_one_stripe(conf))
1548 ;
1549
29fc7e3e
N
1550 if (conf->slab_cache)
1551 kmem_cache_destroy(conf->slab_cache);
1da177e4
LT
1552 conf->slab_cache = NULL;
1553}
1554
6712ecf8 1555static void raid5_end_read_request(struct bio * bi, int error)
1da177e4 1556{
99c0fb5f 1557 struct stripe_head *sh = bi->bi_private;
1da177e4 1558 raid5_conf_t *conf = sh->raid_conf;
7ecaa1e6 1559 int disks = sh->disks, i;
1da177e4 1560 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
d6950432
N
1561 char b[BDEVNAME_SIZE];
1562 mdk_rdev_t *rdev;
1da177e4 1563
1da177e4
LT
1564
1565 for (i=0 ; i<disks; i++)
1566 if (bi == &sh->dev[i].req)
1567 break;
1568
45b4233c
DW
1569 pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1570 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1da177e4
LT
1571 uptodate);
1572 if (i == disks) {
1573 BUG();
6712ecf8 1574 return;
1da177e4
LT
1575 }
1576
1577 if (uptodate) {
1da177e4 1578 set_bit(R5_UPTODATE, &sh->dev[i].flags);
4e5314b5 1579 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
d6950432 1580 rdev = conf->disks[i].rdev;
0c55e022 1581 printk_rl(KERN_INFO "md/raid:%s: read error corrected"
6be9d494
BS
1582 " (%lu sectors at %llu on %s)\n",
1583 mdname(conf->mddev), STRIPE_SECTORS,
1584 (unsigned long long)(sh->sector
1585 + rdev->data_offset),
1586 bdevname(rdev->bdev, b));
4e5314b5
N
1587 clear_bit(R5_ReadError, &sh->dev[i].flags);
1588 clear_bit(R5_ReWrite, &sh->dev[i].flags);
1589 }
ba22dcbf
N
1590 if (atomic_read(&conf->disks[i].rdev->read_errors))
1591 atomic_set(&conf->disks[i].rdev->read_errors, 0);
1da177e4 1592 } else {
d6950432 1593 const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
ba22dcbf 1594 int retry = 0;
d6950432
N
1595 rdev = conf->disks[i].rdev;
1596
1da177e4 1597 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
d6950432 1598 atomic_inc(&rdev->read_errors);
7b0bb536 1599 if (conf->mddev->degraded >= conf->max_degraded)
6be9d494 1600 printk_rl(KERN_WARNING
0c55e022 1601 "md/raid:%s: read error not correctable "
6be9d494
BS
1602 "(sector %llu on %s).\n",
1603 mdname(conf->mddev),
1604 (unsigned long long)(sh->sector
1605 + rdev->data_offset),
1606 bdn);
ba22dcbf 1607 else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
4e5314b5 1608 /* Oh, no!!! */
6be9d494 1609 printk_rl(KERN_WARNING
0c55e022 1610 "md/raid:%s: read error NOT corrected!! "
6be9d494
BS
1611 "(sector %llu on %s).\n",
1612 mdname(conf->mddev),
1613 (unsigned long long)(sh->sector
1614 + rdev->data_offset),
1615 bdn);
d6950432 1616 else if (atomic_read(&rdev->read_errors)
ba22dcbf 1617 > conf->max_nr_stripes)
14f8d26b 1618 printk(KERN_WARNING
0c55e022 1619 "md/raid:%s: Too many read errors, failing device %s.\n",
d6950432 1620 mdname(conf->mddev), bdn);
ba22dcbf
N
1621 else
1622 retry = 1;
1623 if (retry)
1624 set_bit(R5_ReadError, &sh->dev[i].flags);
1625 else {
4e5314b5
N
1626 clear_bit(R5_ReadError, &sh->dev[i].flags);
1627 clear_bit(R5_ReWrite, &sh->dev[i].flags);
d6950432 1628 md_error(conf->mddev, rdev);
ba22dcbf 1629 }
1da177e4
LT
1630 }
1631 rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1da177e4
LT
1632 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1633 set_bit(STRIPE_HANDLE, &sh->state);
1634 release_stripe(sh);
1da177e4
LT
1635}
1636
d710e138 1637static void raid5_end_write_request(struct bio *bi, int error)
1da177e4 1638{
99c0fb5f 1639 struct stripe_head *sh = bi->bi_private;
1da177e4 1640 raid5_conf_t *conf = sh->raid_conf;
7ecaa1e6 1641 int disks = sh->disks, i;
1da177e4
LT
1642 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1643
1da177e4
LT
1644 for (i=0 ; i<disks; i++)
1645 if (bi == &sh->dev[i].req)
1646 break;
1647
45b4233c 1648 pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1da177e4
LT
1649 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1650 uptodate);
1651 if (i == disks) {
1652 BUG();
6712ecf8 1653 return;
1da177e4
LT
1654 }
1655
1da177e4
LT
1656 if (!uptodate)
1657 md_error(conf->mddev, conf->disks[i].rdev);
1658
1659 rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1660
1661 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1662 set_bit(STRIPE_HANDLE, &sh->state);
c04be0aa 1663 release_stripe(sh);
1da177e4
LT
1664}
1665
1666
784052ec 1667static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
1da177e4 1668
784052ec 1669static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1da177e4
LT
1670{
1671 struct r5dev *dev = &sh->dev[i];
1672
1673 bio_init(&dev->req);
1674 dev->req.bi_io_vec = &dev->vec;
1675 dev->req.bi_vcnt++;
1676 dev->req.bi_max_vecs++;
1677 dev->vec.bv_page = dev->page;
1678 dev->vec.bv_len = STRIPE_SIZE;
1679 dev->vec.bv_offset = 0;
1680
1681 dev->req.bi_sector = sh->sector;
1682 dev->req.bi_private = sh;
1683
1684 dev->flags = 0;
784052ec 1685 dev->sector = compute_blocknr(sh, i, previous);
1da177e4
LT
1686}
1687
1688static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1689{
1690 char b[BDEVNAME_SIZE];
7b92813c 1691 raid5_conf_t *conf = mddev->private;
0c55e022 1692 pr_debug("raid456: error called\n");
1da177e4 1693
b2d444d7 1694 if (!test_bit(Faulty, &rdev->flags)) {
850b2b42 1695 set_bit(MD_CHANGE_DEVS, &mddev->flags);
c04be0aa
N
1696 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1697 unsigned long flags;
1698 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 1699 mddev->degraded++;
c04be0aa 1700 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
1701 /*
1702 * if recovery was running, make sure it aborts.
1703 */
dfc70645 1704 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1da177e4 1705 }
b2d444d7 1706 set_bit(Faulty, &rdev->flags);
d710e138 1707 printk(KERN_ALERT
0c55e022
N
1708 "md/raid:%s: Disk failure on %s, disabling device.\n"
1709 KERN_ALERT
1710 "md/raid:%s: Operation continuing on %d devices.\n",
1711 mdname(mddev),
1712 bdevname(rdev->bdev, b),
1713 mdname(mddev),
1714 conf->raid_disks - mddev->degraded);
1da177e4 1715 }
16a53ecc 1716}
1da177e4
LT
1717
1718/*
1719 * Input: a 'big' sector number,
1720 * Output: index of the data and parity disk, and the sector # in them.
1721 */
112bf897 1722static sector_t raid5_compute_sector(raid5_conf_t *conf, sector_t r_sector,
911d4ee8
N
1723 int previous, int *dd_idx,
1724 struct stripe_head *sh)
1da177e4 1725{
6e3b96ed 1726 sector_t stripe, stripe2;
35f2a591 1727 sector_t chunk_number;
1da177e4 1728 unsigned int chunk_offset;
911d4ee8 1729 int pd_idx, qd_idx;
67cc2b81 1730 int ddf_layout = 0;
1da177e4 1731 sector_t new_sector;
e183eaed
N
1732 int algorithm = previous ? conf->prev_algo
1733 : conf->algorithm;
09c9e5fa
AN
1734 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1735 : conf->chunk_sectors;
112bf897
N
1736 int raid_disks = previous ? conf->previous_raid_disks
1737 : conf->raid_disks;
1738 int data_disks = raid_disks - conf->max_degraded;
1da177e4
LT
1739
1740 /* First compute the information on this sector */
1741
1742 /*
1743 * Compute the chunk number and the sector offset inside the chunk
1744 */
1745 chunk_offset = sector_div(r_sector, sectors_per_chunk);
1746 chunk_number = r_sector;
1da177e4
LT
1747
1748 /*
1749 * Compute the stripe number
1750 */
35f2a591
N
1751 stripe = chunk_number;
1752 *dd_idx = sector_div(stripe, data_disks);
6e3b96ed 1753 stripe2 = stripe;
1da177e4
LT
1754 /*
1755 * Select the parity disk based on the user selected algorithm.
1756 */
911d4ee8 1757 pd_idx = qd_idx = ~0;
16a53ecc
N
1758 switch(conf->level) {
1759 case 4:
911d4ee8 1760 pd_idx = data_disks;
16a53ecc
N
1761 break;
1762 case 5:
e183eaed 1763 switch (algorithm) {
1da177e4 1764 case ALGORITHM_LEFT_ASYMMETRIC:
6e3b96ed 1765 pd_idx = data_disks - sector_div(stripe2, raid_disks);
911d4ee8 1766 if (*dd_idx >= pd_idx)
1da177e4
LT
1767 (*dd_idx)++;
1768 break;
1769 case ALGORITHM_RIGHT_ASYMMETRIC:
6e3b96ed 1770 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8 1771 if (*dd_idx >= pd_idx)
1da177e4
LT
1772 (*dd_idx)++;
1773 break;
1774 case ALGORITHM_LEFT_SYMMETRIC:
6e3b96ed 1775 pd_idx = data_disks - sector_div(stripe2, raid_disks);
911d4ee8 1776 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1da177e4
LT
1777 break;
1778 case ALGORITHM_RIGHT_SYMMETRIC:
6e3b96ed 1779 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8 1780 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1da177e4 1781 break;
99c0fb5f
N
1782 case ALGORITHM_PARITY_0:
1783 pd_idx = 0;
1784 (*dd_idx)++;
1785 break;
1786 case ALGORITHM_PARITY_N:
1787 pd_idx = data_disks;
1788 break;
1da177e4 1789 default:
99c0fb5f 1790 BUG();
16a53ecc
N
1791 }
1792 break;
1793 case 6:
1794
e183eaed 1795 switch (algorithm) {
16a53ecc 1796 case ALGORITHM_LEFT_ASYMMETRIC:
6e3b96ed 1797 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
911d4ee8
N
1798 qd_idx = pd_idx + 1;
1799 if (pd_idx == raid_disks-1) {
99c0fb5f 1800 (*dd_idx)++; /* Q D D D P */
911d4ee8
N
1801 qd_idx = 0;
1802 } else if (*dd_idx >= pd_idx)
16a53ecc
N
1803 (*dd_idx) += 2; /* D D P Q D */
1804 break;
1805 case ALGORITHM_RIGHT_ASYMMETRIC:
6e3b96ed 1806 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8
N
1807 qd_idx = pd_idx + 1;
1808 if (pd_idx == raid_disks-1) {
99c0fb5f 1809 (*dd_idx)++; /* Q D D D P */
911d4ee8
N
1810 qd_idx = 0;
1811 } else if (*dd_idx >= pd_idx)
16a53ecc
N
1812 (*dd_idx) += 2; /* D D P Q D */
1813 break;
1814 case ALGORITHM_LEFT_SYMMETRIC:
6e3b96ed 1815 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
911d4ee8
N
1816 qd_idx = (pd_idx + 1) % raid_disks;
1817 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
16a53ecc
N
1818 break;
1819 case ALGORITHM_RIGHT_SYMMETRIC:
6e3b96ed 1820 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8
N
1821 qd_idx = (pd_idx + 1) % raid_disks;
1822 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
16a53ecc 1823 break;
99c0fb5f
N
1824
1825 case ALGORITHM_PARITY_0:
1826 pd_idx = 0;
1827 qd_idx = 1;
1828 (*dd_idx) += 2;
1829 break;
1830 case ALGORITHM_PARITY_N:
1831 pd_idx = data_disks;
1832 qd_idx = data_disks + 1;
1833 break;
1834
1835 case ALGORITHM_ROTATING_ZERO_RESTART:
1836 /* Exactly the same as RIGHT_ASYMMETRIC, but or
1837 * of blocks for computing Q is different.
1838 */
6e3b96ed 1839 pd_idx = sector_div(stripe2, raid_disks);
99c0fb5f
N
1840 qd_idx = pd_idx + 1;
1841 if (pd_idx == raid_disks-1) {
1842 (*dd_idx)++; /* Q D D D P */
1843 qd_idx = 0;
1844 } else if (*dd_idx >= pd_idx)
1845 (*dd_idx) += 2; /* D D P Q D */
67cc2b81 1846 ddf_layout = 1;
99c0fb5f
N
1847 break;
1848
1849 case ALGORITHM_ROTATING_N_RESTART:
1850 /* Same a left_asymmetric, by first stripe is
1851 * D D D P Q rather than
1852 * Q D D D P
1853 */
6e3b96ed
N
1854 stripe2 += 1;
1855 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
99c0fb5f
N
1856 qd_idx = pd_idx + 1;
1857 if (pd_idx == raid_disks-1) {
1858 (*dd_idx)++; /* Q D D D P */
1859 qd_idx = 0;
1860 } else if (*dd_idx >= pd_idx)
1861 (*dd_idx) += 2; /* D D P Q D */
67cc2b81 1862 ddf_layout = 1;
99c0fb5f
N
1863 break;
1864
1865 case ALGORITHM_ROTATING_N_CONTINUE:
1866 /* Same as left_symmetric but Q is before P */
6e3b96ed 1867 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
99c0fb5f
N
1868 qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
1869 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
67cc2b81 1870 ddf_layout = 1;
99c0fb5f
N
1871 break;
1872
1873 case ALGORITHM_LEFT_ASYMMETRIC_6:
1874 /* RAID5 left_asymmetric, with Q on last device */
6e3b96ed 1875 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
99c0fb5f
N
1876 if (*dd_idx >= pd_idx)
1877 (*dd_idx)++;
1878 qd_idx = raid_disks - 1;
1879 break;
1880
1881 case ALGORITHM_RIGHT_ASYMMETRIC_6:
6e3b96ed 1882 pd_idx = sector_div(stripe2, raid_disks-1);
99c0fb5f
N
1883 if (*dd_idx >= pd_idx)
1884 (*dd_idx)++;
1885 qd_idx = raid_disks - 1;
1886 break;
1887
1888 case ALGORITHM_LEFT_SYMMETRIC_6:
6e3b96ed 1889 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
99c0fb5f
N
1890 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1891 qd_idx = raid_disks - 1;
1892 break;
1893
1894 case ALGORITHM_RIGHT_SYMMETRIC_6:
6e3b96ed 1895 pd_idx = sector_div(stripe2, raid_disks-1);
99c0fb5f
N
1896 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1897 qd_idx = raid_disks - 1;
1898 break;
1899
1900 case ALGORITHM_PARITY_0_6:
1901 pd_idx = 0;
1902 (*dd_idx)++;
1903 qd_idx = raid_disks - 1;
1904 break;
1905
16a53ecc 1906 default:
99c0fb5f 1907 BUG();
16a53ecc
N
1908 }
1909 break;
1da177e4
LT
1910 }
1911
911d4ee8
N
1912 if (sh) {
1913 sh->pd_idx = pd_idx;
1914 sh->qd_idx = qd_idx;
67cc2b81 1915 sh->ddf_layout = ddf_layout;
911d4ee8 1916 }
1da177e4
LT
1917 /*
1918 * Finally, compute the new sector number
1919 */
1920 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
1921 return new_sector;
1922}
1923
1924
784052ec 1925static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
1da177e4
LT
1926{
1927 raid5_conf_t *conf = sh->raid_conf;
b875e531
N
1928 int raid_disks = sh->disks;
1929 int data_disks = raid_disks - conf->max_degraded;
1da177e4 1930 sector_t new_sector = sh->sector, check;
09c9e5fa
AN
1931 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1932 : conf->chunk_sectors;
e183eaed
N
1933 int algorithm = previous ? conf->prev_algo
1934 : conf->algorithm;
1da177e4
LT
1935 sector_t stripe;
1936 int chunk_offset;
35f2a591
N
1937 sector_t chunk_number;
1938 int dummy1, dd_idx = i;
1da177e4 1939 sector_t r_sector;
911d4ee8 1940 struct stripe_head sh2;
1da177e4 1941
16a53ecc 1942
1da177e4
LT
1943 chunk_offset = sector_div(new_sector, sectors_per_chunk);
1944 stripe = new_sector;
1da177e4 1945
16a53ecc
N
1946 if (i == sh->pd_idx)
1947 return 0;
1948 switch(conf->level) {
1949 case 4: break;
1950 case 5:
e183eaed 1951 switch (algorithm) {
1da177e4
LT
1952 case ALGORITHM_LEFT_ASYMMETRIC:
1953 case ALGORITHM_RIGHT_ASYMMETRIC:
1954 if (i > sh->pd_idx)
1955 i--;
1956 break;
1957 case ALGORITHM_LEFT_SYMMETRIC:
1958 case ALGORITHM_RIGHT_SYMMETRIC:
1959 if (i < sh->pd_idx)
1960 i += raid_disks;
1961 i -= (sh->pd_idx + 1);
1962 break;
99c0fb5f
N
1963 case ALGORITHM_PARITY_0:
1964 i -= 1;
1965 break;
1966 case ALGORITHM_PARITY_N:
1967 break;
1da177e4 1968 default:
99c0fb5f 1969 BUG();
16a53ecc
N
1970 }
1971 break;
1972 case 6:
d0dabf7e 1973 if (i == sh->qd_idx)
16a53ecc 1974 return 0; /* It is the Q disk */
e183eaed 1975 switch (algorithm) {
16a53ecc
N
1976 case ALGORITHM_LEFT_ASYMMETRIC:
1977 case ALGORITHM_RIGHT_ASYMMETRIC:
99c0fb5f
N
1978 case ALGORITHM_ROTATING_ZERO_RESTART:
1979 case ALGORITHM_ROTATING_N_RESTART:
1980 if (sh->pd_idx == raid_disks-1)
1981 i--; /* Q D D D P */
16a53ecc
N
1982 else if (i > sh->pd_idx)
1983 i -= 2; /* D D P Q D */
1984 break;
1985 case ALGORITHM_LEFT_SYMMETRIC:
1986 case ALGORITHM_RIGHT_SYMMETRIC:
1987 if (sh->pd_idx == raid_disks-1)
1988 i--; /* Q D D D P */
1989 else {
1990 /* D D P Q D */
1991 if (i < sh->pd_idx)
1992 i += raid_disks;
1993 i -= (sh->pd_idx + 2);
1994 }
1995 break;
99c0fb5f
N
1996 case ALGORITHM_PARITY_0:
1997 i -= 2;
1998 break;
1999 case ALGORITHM_PARITY_N:
2000 break;
2001 case ALGORITHM_ROTATING_N_CONTINUE:
e4424fee 2002 /* Like left_symmetric, but P is before Q */
99c0fb5f
N
2003 if (sh->pd_idx == 0)
2004 i--; /* P D D D Q */
e4424fee
N
2005 else {
2006 /* D D Q P D */
2007 if (i < sh->pd_idx)
2008 i += raid_disks;
2009 i -= (sh->pd_idx + 1);
2010 }
99c0fb5f
N
2011 break;
2012 case ALGORITHM_LEFT_ASYMMETRIC_6:
2013 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2014 if (i > sh->pd_idx)
2015 i--;
2016 break;
2017 case ALGORITHM_LEFT_SYMMETRIC_6:
2018 case ALGORITHM_RIGHT_SYMMETRIC_6:
2019 if (i < sh->pd_idx)
2020 i += data_disks + 1;
2021 i -= (sh->pd_idx + 1);
2022 break;
2023 case ALGORITHM_PARITY_0_6:
2024 i -= 1;
2025 break;
16a53ecc 2026 default:
99c0fb5f 2027 BUG();
16a53ecc
N
2028 }
2029 break;
1da177e4
LT
2030 }
2031
2032 chunk_number = stripe * data_disks + i;
35f2a591 2033 r_sector = chunk_number * sectors_per_chunk + chunk_offset;
1da177e4 2034
112bf897 2035 check = raid5_compute_sector(conf, r_sector,
784052ec 2036 previous, &dummy1, &sh2);
911d4ee8
N
2037 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2038 || sh2.qd_idx != sh->qd_idx) {
0c55e022
N
2039 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2040 mdname(conf->mddev));
1da177e4
LT
2041 return 0;
2042 }
2043 return r_sector;
2044}
2045
2046
600aa109 2047static void
c0f7bddb 2048schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
600aa109 2049 int rcw, int expand)
e33129d8
DW
2050{
2051 int i, pd_idx = sh->pd_idx, disks = sh->disks;
c0f7bddb
YT
2052 raid5_conf_t *conf = sh->raid_conf;
2053 int level = conf->level;
e33129d8
DW
2054
2055 if (rcw) {
2056 /* if we are not expanding this is a proper write request, and
2057 * there will be bios with new data to be drained into the
2058 * stripe cache
2059 */
2060 if (!expand) {
600aa109
DW
2061 sh->reconstruct_state = reconstruct_state_drain_run;
2062 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2063 } else
2064 sh->reconstruct_state = reconstruct_state_run;
16a53ecc 2065
ac6b53b6 2066 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
e33129d8
DW
2067
2068 for (i = disks; i--; ) {
2069 struct r5dev *dev = &sh->dev[i];
2070
2071 if (dev->towrite) {
2072 set_bit(R5_LOCKED, &dev->flags);
d8ee0728 2073 set_bit(R5_Wantdrain, &dev->flags);
e33129d8
DW
2074 if (!expand)
2075 clear_bit(R5_UPTODATE, &dev->flags);
600aa109 2076 s->locked++;
e33129d8
DW
2077 }
2078 }
c0f7bddb 2079 if (s->locked + conf->max_degraded == disks)
8b3e6cdc 2080 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
c0f7bddb 2081 atomic_inc(&conf->pending_full_writes);
e33129d8 2082 } else {
c0f7bddb 2083 BUG_ON(level == 6);
e33129d8
DW
2084 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2085 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2086
d8ee0728 2087 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
600aa109
DW
2088 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2089 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
ac6b53b6 2090 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
e33129d8
DW
2091
2092 for (i = disks; i--; ) {
2093 struct r5dev *dev = &sh->dev[i];
2094 if (i == pd_idx)
2095 continue;
2096
e33129d8
DW
2097 if (dev->towrite &&
2098 (test_bit(R5_UPTODATE, &dev->flags) ||
d8ee0728
DW
2099 test_bit(R5_Wantcompute, &dev->flags))) {
2100 set_bit(R5_Wantdrain, &dev->flags);
e33129d8
DW
2101 set_bit(R5_LOCKED, &dev->flags);
2102 clear_bit(R5_UPTODATE, &dev->flags);
600aa109 2103 s->locked++;
e33129d8
DW
2104 }
2105 }
2106 }
2107
c0f7bddb 2108 /* keep the parity disk(s) locked while asynchronous operations
e33129d8
DW
2109 * are in flight
2110 */
2111 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2112 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
600aa109 2113 s->locked++;
e33129d8 2114
c0f7bddb
YT
2115 if (level == 6) {
2116 int qd_idx = sh->qd_idx;
2117 struct r5dev *dev = &sh->dev[qd_idx];
2118
2119 set_bit(R5_LOCKED, &dev->flags);
2120 clear_bit(R5_UPTODATE, &dev->flags);
2121 s->locked++;
2122 }
2123
600aa109 2124 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
e46b272b 2125 __func__, (unsigned long long)sh->sector,
600aa109 2126 s->locked, s->ops_request);
e33129d8 2127}
16a53ecc 2128
1da177e4
LT
2129/*
2130 * Each stripe/dev can have one or more bion attached.
16a53ecc 2131 * toread/towrite point to the first in a chain.
1da177e4
LT
2132 * The bi_next chain must be in order.
2133 */
2134static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2135{
2136 struct bio **bip;
2137 raid5_conf_t *conf = sh->raid_conf;
72626685 2138 int firstwrite=0;
1da177e4 2139
45b4233c 2140 pr_debug("adding bh b#%llu to stripe s#%llu\n",
1da177e4
LT
2141 (unsigned long long)bi->bi_sector,
2142 (unsigned long long)sh->sector);
2143
2144
2145 spin_lock(&sh->lock);
2146 spin_lock_irq(&conf->device_lock);
72626685 2147 if (forwrite) {
1da177e4 2148 bip = &sh->dev[dd_idx].towrite;
72626685
N
2149 if (*bip == NULL && sh->dev[dd_idx].written == NULL)
2150 firstwrite = 1;
2151 } else
1da177e4
LT
2152 bip = &sh->dev[dd_idx].toread;
2153 while (*bip && (*bip)->bi_sector < bi->bi_sector) {
2154 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
2155 goto overlap;
2156 bip = & (*bip)->bi_next;
2157 }
2158 if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
2159 goto overlap;
2160
78bafebd 2161 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
1da177e4
LT
2162 if (*bip)
2163 bi->bi_next = *bip;
2164 *bip = bi;
960e739d 2165 bi->bi_phys_segments++;
1da177e4
LT
2166 spin_unlock_irq(&conf->device_lock);
2167 spin_unlock(&sh->lock);
2168
45b4233c 2169 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
1da177e4
LT
2170 (unsigned long long)bi->bi_sector,
2171 (unsigned long long)sh->sector, dd_idx);
2172
72626685 2173 if (conf->mddev->bitmap && firstwrite) {
72626685
N
2174 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2175 STRIPE_SECTORS, 0);
ae3c20cc 2176 sh->bm_seq = conf->seq_flush+1;
72626685
N
2177 set_bit(STRIPE_BIT_DELAY, &sh->state);
2178 }
2179
1da177e4
LT
2180 if (forwrite) {
2181 /* check if page is covered */
2182 sector_t sector = sh->dev[dd_idx].sector;
2183 for (bi=sh->dev[dd_idx].towrite;
2184 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2185 bi && bi->bi_sector <= sector;
2186 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2187 if (bi->bi_sector + (bi->bi_size>>9) >= sector)
2188 sector = bi->bi_sector + (bi->bi_size>>9);
2189 }
2190 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2191 set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2192 }
2193 return 1;
2194
2195 overlap:
2196 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2197 spin_unlock_irq(&conf->device_lock);
2198 spin_unlock(&sh->lock);
2199 return 0;
2200}
2201
29269553
N
2202static void end_reshape(raid5_conf_t *conf);
2203
911d4ee8
N
2204static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
2205 struct stripe_head *sh)
ccfcc3c1 2206{
784052ec 2207 int sectors_per_chunk =
09c9e5fa 2208 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
911d4ee8 2209 int dd_idx;
2d2063ce 2210 int chunk_offset = sector_div(stripe, sectors_per_chunk);
112bf897 2211 int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2d2063ce 2212
112bf897
N
2213 raid5_compute_sector(conf,
2214 stripe * (disks - conf->max_degraded)
b875e531 2215 *sectors_per_chunk + chunk_offset,
112bf897 2216 previous,
911d4ee8 2217 &dd_idx, sh);
ccfcc3c1
N
2218}
2219
a4456856 2220static void
1fe797e6 2221handle_failed_stripe(raid5_conf_t *conf, struct stripe_head *sh,
a4456856
DW
2222 struct stripe_head_state *s, int disks,
2223 struct bio **return_bi)
2224{
2225 int i;
2226 for (i = disks; i--; ) {
2227 struct bio *bi;
2228 int bitmap_end = 0;
2229
2230 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2231 mdk_rdev_t *rdev;
2232 rcu_read_lock();
2233 rdev = rcu_dereference(conf->disks[i].rdev);
2234 if (rdev && test_bit(In_sync, &rdev->flags))
2235 /* multiple read failures in one stripe */
2236 md_error(conf->mddev, rdev);
2237 rcu_read_unlock();
2238 }
2239 spin_lock_irq(&conf->device_lock);
2240 /* fail all writes first */
2241 bi = sh->dev[i].towrite;
2242 sh->dev[i].towrite = NULL;
2243 if (bi) {
2244 s->to_write--;
2245 bitmap_end = 1;
2246 }
2247
2248 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2249 wake_up(&conf->wait_for_overlap);
2250
2251 while (bi && bi->bi_sector <
2252 sh->dev[i].sector + STRIPE_SECTORS) {
2253 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2254 clear_bit(BIO_UPTODATE, &bi->bi_flags);
960e739d 2255 if (!raid5_dec_bi_phys_segments(bi)) {
a4456856
DW
2256 md_write_end(conf->mddev);
2257 bi->bi_next = *return_bi;
2258 *return_bi = bi;
2259 }
2260 bi = nextbi;
2261 }
2262 /* and fail all 'written' */
2263 bi = sh->dev[i].written;
2264 sh->dev[i].written = NULL;
2265 if (bi) bitmap_end = 1;
2266 while (bi && bi->bi_sector <
2267 sh->dev[i].sector + STRIPE_SECTORS) {
2268 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2269 clear_bit(BIO_UPTODATE, &bi->bi_flags);
960e739d 2270 if (!raid5_dec_bi_phys_segments(bi)) {
a4456856
DW
2271 md_write_end(conf->mddev);
2272 bi->bi_next = *return_bi;
2273 *return_bi = bi;
2274 }
2275 bi = bi2;
2276 }
2277
b5e98d65
DW
2278 /* fail any reads if this device is non-operational and
2279 * the data has not reached the cache yet.
2280 */
2281 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2282 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2283 test_bit(R5_ReadError, &sh->dev[i].flags))) {
a4456856
DW
2284 bi = sh->dev[i].toread;
2285 sh->dev[i].toread = NULL;
2286 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2287 wake_up(&conf->wait_for_overlap);
2288 if (bi) s->to_read--;
2289 while (bi && bi->bi_sector <
2290 sh->dev[i].sector + STRIPE_SECTORS) {
2291 struct bio *nextbi =
2292 r5_next_bio(bi, sh->dev[i].sector);
2293 clear_bit(BIO_UPTODATE, &bi->bi_flags);
960e739d 2294 if (!raid5_dec_bi_phys_segments(bi)) {
a4456856
DW
2295 bi->bi_next = *return_bi;
2296 *return_bi = bi;
2297 }
2298 bi = nextbi;
2299 }
2300 }
2301 spin_unlock_irq(&conf->device_lock);
2302 if (bitmap_end)
2303 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2304 STRIPE_SECTORS, 0, 0);
2305 }
2306
8b3e6cdc
DW
2307 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2308 if (atomic_dec_and_test(&conf->pending_full_writes))
2309 md_wakeup_thread(conf->mddev->thread);
a4456856
DW
2310}
2311
1fe797e6
DW
2312/* fetch_block5 - checks the given member device to see if its data needs
2313 * to be read or computed to satisfy a request.
2314 *
2315 * Returns 1 when no more member devices need to be checked, otherwise returns
2316 * 0 to tell the loop in handle_stripe_fill5 to continue
f38e1219 2317 */
1fe797e6
DW
2318static int fetch_block5(struct stripe_head *sh, struct stripe_head_state *s,
2319 int disk_idx, int disks)
f38e1219
DW
2320{
2321 struct r5dev *dev = &sh->dev[disk_idx];
2322 struct r5dev *failed_dev = &sh->dev[s->failed_num];
2323
f38e1219
DW
2324 /* is the data in this block needed, and can we get it? */
2325 if (!test_bit(R5_LOCKED, &dev->flags) &&
1fe797e6
DW
2326 !test_bit(R5_UPTODATE, &dev->flags) &&
2327 (dev->toread ||
2328 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2329 s->syncing || s->expanding ||
2330 (s->failed &&
2331 (failed_dev->toread ||
2332 (failed_dev->towrite &&
2333 !test_bit(R5_OVERWRITE, &failed_dev->flags)))))) {
976ea8d4
DW
2334 /* We would like to get this block, possibly by computing it,
2335 * otherwise read it if the backing disk is insync
f38e1219
DW
2336 */
2337 if ((s->uptodate == disks - 1) &&
ecc65c9b 2338 (s->failed && disk_idx == s->failed_num)) {
976ea8d4
DW
2339 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2340 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
f38e1219
DW
2341 set_bit(R5_Wantcompute, &dev->flags);
2342 sh->ops.target = disk_idx;
ac6b53b6 2343 sh->ops.target2 = -1;
f38e1219 2344 s->req_compute = 1;
f38e1219 2345 /* Careful: from this point on 'uptodate' is in the eye
ac6b53b6 2346 * of raid_run_ops which services 'compute' operations
f38e1219
DW
2347 * before writes. R5_Wantcompute flags a block that will
2348 * be R5_UPTODATE by the time it is needed for a
2349 * subsequent operation.
2350 */
2351 s->uptodate++;
1fe797e6 2352 return 1; /* uptodate + compute == disks */
7a1fc53c 2353 } else if (test_bit(R5_Insync, &dev->flags)) {
f38e1219
DW
2354 set_bit(R5_LOCKED, &dev->flags);
2355 set_bit(R5_Wantread, &dev->flags);
f38e1219
DW
2356 s->locked++;
2357 pr_debug("Reading block %d (sync=%d)\n", disk_idx,
2358 s->syncing);
2359 }
2360 }
2361
1fe797e6 2362 return 0;
f38e1219
DW
2363}
2364
1fe797e6
DW
2365/**
2366 * handle_stripe_fill5 - read or compute data to satisfy pending requests.
2367 */
2368static void handle_stripe_fill5(struct stripe_head *sh,
a4456856
DW
2369 struct stripe_head_state *s, int disks)
2370{
2371 int i;
f38e1219 2372
f38e1219
DW
2373 /* look for blocks to read/compute, skip this if a compute
2374 * is already in flight, or if the stripe contents are in the
2375 * midst of changing due to a write
2376 */
976ea8d4 2377 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
1fe797e6 2378 !sh->reconstruct_state)
f38e1219 2379 for (i = disks; i--; )
1fe797e6 2380 if (fetch_block5(sh, s, i, disks))
f38e1219 2381 break;
a4456856
DW
2382 set_bit(STRIPE_HANDLE, &sh->state);
2383}
2384
5599becc
YT
2385/* fetch_block6 - checks the given member device to see if its data needs
2386 * to be read or computed to satisfy a request.
2387 *
2388 * Returns 1 when no more member devices need to be checked, otherwise returns
2389 * 0 to tell the loop in handle_stripe_fill6 to continue
2390 */
2391static int fetch_block6(struct stripe_head *sh, struct stripe_head_state *s,
2392 struct r6_state *r6s, int disk_idx, int disks)
a4456856 2393{
5599becc
YT
2394 struct r5dev *dev = &sh->dev[disk_idx];
2395 struct r5dev *fdev[2] = { &sh->dev[r6s->failed_num[0]],
2396 &sh->dev[r6s->failed_num[1]] };
2397
2398 if (!test_bit(R5_LOCKED, &dev->flags) &&
2399 !test_bit(R5_UPTODATE, &dev->flags) &&
2400 (dev->toread ||
2401 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2402 s->syncing || s->expanding ||
2403 (s->failed >= 1 &&
2404 (fdev[0]->toread || s->to_write)) ||
2405 (s->failed >= 2 &&
2406 (fdev[1]->toread || s->to_write)))) {
2407 /* we would like to get this block, possibly by computing it,
2408 * otherwise read it if the backing disk is insync
2409 */
2410 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2411 BUG_ON(test_bit(R5_Wantread, &dev->flags));
2412 if ((s->uptodate == disks - 1) &&
2413 (s->failed && (disk_idx == r6s->failed_num[0] ||
2414 disk_idx == r6s->failed_num[1]))) {
2415 /* have disk failed, and we're requested to fetch it;
2416 * do compute it
a4456856 2417 */
5599becc
YT
2418 pr_debug("Computing stripe %llu block %d\n",
2419 (unsigned long long)sh->sector, disk_idx);
2420 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2421 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2422 set_bit(R5_Wantcompute, &dev->flags);
2423 sh->ops.target = disk_idx;
2424 sh->ops.target2 = -1; /* no 2nd target */
2425 s->req_compute = 1;
2426 s->uptodate++;
2427 return 1;
2428 } else if (s->uptodate == disks-2 && s->failed >= 2) {
2429 /* Computing 2-failure is *very* expensive; only
2430 * do it if failed >= 2
2431 */
2432 int other;
2433 for (other = disks; other--; ) {
2434 if (other == disk_idx)
2435 continue;
2436 if (!test_bit(R5_UPTODATE,
2437 &sh->dev[other].flags))
2438 break;
a4456856 2439 }
5599becc
YT
2440 BUG_ON(other < 0);
2441 pr_debug("Computing stripe %llu blocks %d,%d\n",
2442 (unsigned long long)sh->sector,
2443 disk_idx, other);
2444 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2445 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2446 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
2447 set_bit(R5_Wantcompute, &sh->dev[other].flags);
2448 sh->ops.target = disk_idx;
2449 sh->ops.target2 = other;
2450 s->uptodate += 2;
2451 s->req_compute = 1;
2452 return 1;
2453 } else if (test_bit(R5_Insync, &dev->flags)) {
2454 set_bit(R5_LOCKED, &dev->flags);
2455 set_bit(R5_Wantread, &dev->flags);
2456 s->locked++;
2457 pr_debug("Reading block %d (sync=%d)\n",
2458 disk_idx, s->syncing);
a4456856
DW
2459 }
2460 }
5599becc
YT
2461
2462 return 0;
2463}
2464
2465/**
2466 * handle_stripe_fill6 - read or compute data to satisfy pending requests.
2467 */
2468static void handle_stripe_fill6(struct stripe_head *sh,
2469 struct stripe_head_state *s, struct r6_state *r6s,
2470 int disks)
2471{
2472 int i;
2473
2474 /* look for blocks to read/compute, skip this if a compute
2475 * is already in flight, or if the stripe contents are in the
2476 * midst of changing due to a write
2477 */
2478 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2479 !sh->reconstruct_state)
2480 for (i = disks; i--; )
2481 if (fetch_block6(sh, s, r6s, i, disks))
2482 break;
a4456856
DW
2483 set_bit(STRIPE_HANDLE, &sh->state);
2484}
2485
2486
1fe797e6 2487/* handle_stripe_clean_event
a4456856
DW
2488 * any written block on an uptodate or failed drive can be returned.
2489 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2490 * never LOCKED, so we don't need to test 'failed' directly.
2491 */
1fe797e6 2492static void handle_stripe_clean_event(raid5_conf_t *conf,
a4456856
DW
2493 struct stripe_head *sh, int disks, struct bio **return_bi)
2494{
2495 int i;
2496 struct r5dev *dev;
2497
2498 for (i = disks; i--; )
2499 if (sh->dev[i].written) {
2500 dev = &sh->dev[i];
2501 if (!test_bit(R5_LOCKED, &dev->flags) &&
2502 test_bit(R5_UPTODATE, &dev->flags)) {
2503 /* We can return any write requests */
2504 struct bio *wbi, *wbi2;
2505 int bitmap_end = 0;
45b4233c 2506 pr_debug("Return write for disc %d\n", i);
a4456856
DW
2507 spin_lock_irq(&conf->device_lock);
2508 wbi = dev->written;
2509 dev->written = NULL;
2510 while (wbi && wbi->bi_sector <
2511 dev->sector + STRIPE_SECTORS) {
2512 wbi2 = r5_next_bio(wbi, dev->sector);
960e739d 2513 if (!raid5_dec_bi_phys_segments(wbi)) {
a4456856
DW
2514 md_write_end(conf->mddev);
2515 wbi->bi_next = *return_bi;
2516 *return_bi = wbi;
2517 }
2518 wbi = wbi2;
2519 }
2520 if (dev->towrite == NULL)
2521 bitmap_end = 1;
2522 spin_unlock_irq(&conf->device_lock);
2523 if (bitmap_end)
2524 bitmap_endwrite(conf->mddev->bitmap,
2525 sh->sector,
2526 STRIPE_SECTORS,
2527 !test_bit(STRIPE_DEGRADED, &sh->state),
2528 0);
2529 }
2530 }
8b3e6cdc
DW
2531
2532 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2533 if (atomic_dec_and_test(&conf->pending_full_writes))
2534 md_wakeup_thread(conf->mddev->thread);
a4456856
DW
2535}
2536
1fe797e6 2537static void handle_stripe_dirtying5(raid5_conf_t *conf,
a4456856
DW
2538 struct stripe_head *sh, struct stripe_head_state *s, int disks)
2539{
2540 int rmw = 0, rcw = 0, i;
2541 for (i = disks; i--; ) {
2542 /* would I have to read this buffer for read_modify_write */
2543 struct r5dev *dev = &sh->dev[i];
2544 if ((dev->towrite || i == sh->pd_idx) &&
2545 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
2546 !(test_bit(R5_UPTODATE, &dev->flags) ||
2547 test_bit(R5_Wantcompute, &dev->flags))) {
a4456856
DW
2548 if (test_bit(R5_Insync, &dev->flags))
2549 rmw++;
2550 else
2551 rmw += 2*disks; /* cannot read it */
2552 }
2553 /* Would I have to read this buffer for reconstruct_write */
2554 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2555 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
2556 !(test_bit(R5_UPTODATE, &dev->flags) ||
2557 test_bit(R5_Wantcompute, &dev->flags))) {
2558 if (test_bit(R5_Insync, &dev->flags)) rcw++;
a4456856
DW
2559 else
2560 rcw += 2*disks;
2561 }
2562 }
45b4233c 2563 pr_debug("for sector %llu, rmw=%d rcw=%d\n",
a4456856
DW
2564 (unsigned long long)sh->sector, rmw, rcw);
2565 set_bit(STRIPE_HANDLE, &sh->state);
2566 if (rmw < rcw && rmw > 0)
2567 /* prefer read-modify-write, but need to get some data */
2568 for (i = disks; i--; ) {
2569 struct r5dev *dev = &sh->dev[i];
2570 if ((dev->towrite || i == sh->pd_idx) &&
2571 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
2572 !(test_bit(R5_UPTODATE, &dev->flags) ||
2573 test_bit(R5_Wantcompute, &dev->flags)) &&
a4456856
DW
2574 test_bit(R5_Insync, &dev->flags)) {
2575 if (
2576 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
45b4233c 2577 pr_debug("Read_old block "
a4456856
DW
2578 "%d for r-m-w\n", i);
2579 set_bit(R5_LOCKED, &dev->flags);
2580 set_bit(R5_Wantread, &dev->flags);
2581 s->locked++;
2582 } else {
2583 set_bit(STRIPE_DELAYED, &sh->state);
2584 set_bit(STRIPE_HANDLE, &sh->state);
2585 }
2586 }
2587 }
2588 if (rcw <= rmw && rcw > 0)
2589 /* want reconstruct write, but need to get some data */
2590 for (i = disks; i--; ) {
2591 struct r5dev *dev = &sh->dev[i];
2592 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2593 i != sh->pd_idx &&
2594 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
2595 !(test_bit(R5_UPTODATE, &dev->flags) ||
2596 test_bit(R5_Wantcompute, &dev->flags)) &&
a4456856
DW
2597 test_bit(R5_Insync, &dev->flags)) {
2598 if (
2599 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
45b4233c 2600 pr_debug("Read_old block "
a4456856
DW
2601 "%d for Reconstruct\n", i);
2602 set_bit(R5_LOCKED, &dev->flags);
2603 set_bit(R5_Wantread, &dev->flags);
2604 s->locked++;
2605 } else {
2606 set_bit(STRIPE_DELAYED, &sh->state);
2607 set_bit(STRIPE_HANDLE, &sh->state);
2608 }
2609 }
2610 }
2611 /* now if nothing is locked, and if we have enough data,
2612 * we can start a write request
2613 */
f38e1219
DW
2614 /* since handle_stripe can be called at any time we need to handle the
2615 * case where a compute block operation has been submitted and then a
ac6b53b6
DW
2616 * subsequent call wants to start a write request. raid_run_ops only
2617 * handles the case where compute block and reconstruct are requested
f38e1219
DW
2618 * simultaneously. If this is not the case then new writes need to be
2619 * held off until the compute completes.
2620 */
976ea8d4
DW
2621 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2622 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2623 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
c0f7bddb 2624 schedule_reconstruction(sh, s, rcw == 0, 0);
a4456856
DW
2625}
2626
1fe797e6 2627static void handle_stripe_dirtying6(raid5_conf_t *conf,
a4456856
DW
2628 struct stripe_head *sh, struct stripe_head_state *s,
2629 struct r6_state *r6s, int disks)
2630{
a9b39a74 2631 int rcw = 0, pd_idx = sh->pd_idx, i;
34e04e87 2632 int qd_idx = sh->qd_idx;
a9b39a74
YT
2633
2634 set_bit(STRIPE_HANDLE, &sh->state);
a4456856
DW
2635 for (i = disks; i--; ) {
2636 struct r5dev *dev = &sh->dev[i];
a9b39a74
YT
2637 /* check if we haven't enough data */
2638 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2639 i != pd_idx && i != qd_idx &&
2640 !test_bit(R5_LOCKED, &dev->flags) &&
2641 !(test_bit(R5_UPTODATE, &dev->flags) ||
2642 test_bit(R5_Wantcompute, &dev->flags))) {
2643 rcw++;
2644 if (!test_bit(R5_Insync, &dev->flags))
2645 continue; /* it's a failed drive */
2646
2647 if (
2648 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2649 pr_debug("Read_old stripe %llu "
2650 "block %d for Reconstruct\n",
2651 (unsigned long long)sh->sector, i);
2652 set_bit(R5_LOCKED, &dev->flags);
2653 set_bit(R5_Wantread, &dev->flags);
2654 s->locked++;
2655 } else {
2656 pr_debug("Request delayed stripe %llu "
2657 "block %d for Reconstruct\n",
2658 (unsigned long long)sh->sector, i);
2659 set_bit(STRIPE_DELAYED, &sh->state);
2660 set_bit(STRIPE_HANDLE, &sh->state);
a4456856
DW
2661 }
2662 }
2663 }
a4456856
DW
2664 /* now if nothing is locked, and if we have enough data, we can start a
2665 * write request
2666 */
a9b39a74
YT
2667 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2668 s->locked == 0 && rcw == 0 &&
a4456856 2669 !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
a9b39a74 2670 schedule_reconstruction(sh, s, 1, 0);
a4456856
DW
2671 }
2672}
2673
2674static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
2675 struct stripe_head_state *s, int disks)
2676{
ecc65c9b 2677 struct r5dev *dev = NULL;
bd2ab670 2678
a4456856 2679 set_bit(STRIPE_HANDLE, &sh->state);
e89f8962 2680
ecc65c9b
DW
2681 switch (sh->check_state) {
2682 case check_state_idle:
2683 /* start a new check operation if there are no failures */
bd2ab670 2684 if (s->failed == 0) {
bd2ab670 2685 BUG_ON(s->uptodate != disks);
ecc65c9b
DW
2686 sh->check_state = check_state_run;
2687 set_bit(STRIPE_OP_CHECK, &s->ops_request);
bd2ab670 2688 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
bd2ab670 2689 s->uptodate--;
ecc65c9b 2690 break;
bd2ab670 2691 }
ecc65c9b
DW
2692 dev = &sh->dev[s->failed_num];
2693 /* fall through */
2694 case check_state_compute_result:
2695 sh->check_state = check_state_idle;
2696 if (!dev)
2697 dev = &sh->dev[sh->pd_idx];
2698
2699 /* check that a write has not made the stripe insync */
2700 if (test_bit(STRIPE_INSYNC, &sh->state))
2701 break;
c8894419 2702
a4456856 2703 /* either failed parity check, or recovery is happening */
a4456856
DW
2704 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2705 BUG_ON(s->uptodate != disks);
2706
2707 set_bit(R5_LOCKED, &dev->flags);
ecc65c9b 2708 s->locked++;
a4456856 2709 set_bit(R5_Wantwrite, &dev->flags);
830ea016 2710
a4456856 2711 clear_bit(STRIPE_DEGRADED, &sh->state);
a4456856 2712 set_bit(STRIPE_INSYNC, &sh->state);
ecc65c9b
DW
2713 break;
2714 case check_state_run:
2715 break; /* we will be called again upon completion */
2716 case check_state_check_result:
2717 sh->check_state = check_state_idle;
2718
2719 /* if a failure occurred during the check operation, leave
2720 * STRIPE_INSYNC not set and let the stripe be handled again
2721 */
2722 if (s->failed)
2723 break;
2724
2725 /* handle a successful check operation, if parity is correct
2726 * we are done. Otherwise update the mismatch count and repair
2727 * parity if !MD_RECOVERY_CHECK
2728 */
ad283ea4 2729 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
ecc65c9b
DW
2730 /* parity is correct (on disc,
2731 * not in buffer any more)
2732 */
2733 set_bit(STRIPE_INSYNC, &sh->state);
2734 else {
2735 conf->mddev->resync_mismatches += STRIPE_SECTORS;
2736 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2737 /* don't try to repair!! */
2738 set_bit(STRIPE_INSYNC, &sh->state);
2739 else {
2740 sh->check_state = check_state_compute_run;
976ea8d4 2741 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
ecc65c9b
DW
2742 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2743 set_bit(R5_Wantcompute,
2744 &sh->dev[sh->pd_idx].flags);
2745 sh->ops.target = sh->pd_idx;
ac6b53b6 2746 sh->ops.target2 = -1;
ecc65c9b
DW
2747 s->uptodate++;
2748 }
2749 }
2750 break;
2751 case check_state_compute_run:
2752 break;
2753 default:
2754 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2755 __func__, sh->check_state,
2756 (unsigned long long) sh->sector);
2757 BUG();
a4456856
DW
2758 }
2759}
2760
2761
2762static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
36d1c647
DW
2763 struct stripe_head_state *s,
2764 struct r6_state *r6s, int disks)
a4456856 2765{
a4456856 2766 int pd_idx = sh->pd_idx;
34e04e87 2767 int qd_idx = sh->qd_idx;
d82dfee0 2768 struct r5dev *dev;
a4456856
DW
2769
2770 set_bit(STRIPE_HANDLE, &sh->state);
2771
2772 BUG_ON(s->failed > 2);
d82dfee0 2773
a4456856
DW
2774 /* Want to check and possibly repair P and Q.
2775 * However there could be one 'failed' device, in which
2776 * case we can only check one of them, possibly using the
2777 * other to generate missing data
2778 */
2779
d82dfee0
DW
2780 switch (sh->check_state) {
2781 case check_state_idle:
2782 /* start a new check operation if there are < 2 failures */
a4456856 2783 if (s->failed == r6s->q_failed) {
d82dfee0 2784 /* The only possible failed device holds Q, so it
a4456856
DW
2785 * makes sense to check P (If anything else were failed,
2786 * we would have used P to recreate it).
2787 */
d82dfee0 2788 sh->check_state = check_state_run;
a4456856
DW
2789 }
2790 if (!r6s->q_failed && s->failed < 2) {
d82dfee0 2791 /* Q is not failed, and we didn't use it to generate
a4456856
DW
2792 * anything, so it makes sense to check it
2793 */
d82dfee0
DW
2794 if (sh->check_state == check_state_run)
2795 sh->check_state = check_state_run_pq;
2796 else
2797 sh->check_state = check_state_run_q;
a4456856 2798 }
a4456856 2799
d82dfee0
DW
2800 /* discard potentially stale zero_sum_result */
2801 sh->ops.zero_sum_result = 0;
a4456856 2802
d82dfee0
DW
2803 if (sh->check_state == check_state_run) {
2804 /* async_xor_zero_sum destroys the contents of P */
2805 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2806 s->uptodate--;
a4456856 2807 }
d82dfee0
DW
2808 if (sh->check_state >= check_state_run &&
2809 sh->check_state <= check_state_run_pq) {
2810 /* async_syndrome_zero_sum preserves P and Q, so
2811 * no need to mark them !uptodate here
2812 */
2813 set_bit(STRIPE_OP_CHECK, &s->ops_request);
2814 break;
a4456856
DW
2815 }
2816
d82dfee0
DW
2817 /* we have 2-disk failure */
2818 BUG_ON(s->failed != 2);
2819 /* fall through */
2820 case check_state_compute_result:
2821 sh->check_state = check_state_idle;
a4456856 2822
d82dfee0
DW
2823 /* check that a write has not made the stripe insync */
2824 if (test_bit(STRIPE_INSYNC, &sh->state))
2825 break;
a4456856
DW
2826
2827 /* now write out any block on a failed drive,
d82dfee0 2828 * or P or Q if they were recomputed
a4456856 2829 */
d82dfee0 2830 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
a4456856
DW
2831 if (s->failed == 2) {
2832 dev = &sh->dev[r6s->failed_num[1]];
2833 s->locked++;
2834 set_bit(R5_LOCKED, &dev->flags);
2835 set_bit(R5_Wantwrite, &dev->flags);
2836 }
2837 if (s->failed >= 1) {
2838 dev = &sh->dev[r6s->failed_num[0]];
2839 s->locked++;
2840 set_bit(R5_LOCKED, &dev->flags);
2841 set_bit(R5_Wantwrite, &dev->flags);
2842 }
d82dfee0 2843 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
a4456856
DW
2844 dev = &sh->dev[pd_idx];
2845 s->locked++;
2846 set_bit(R5_LOCKED, &dev->flags);
2847 set_bit(R5_Wantwrite, &dev->flags);
2848 }
d82dfee0 2849 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
a4456856
DW
2850 dev = &sh->dev[qd_idx];
2851 s->locked++;
2852 set_bit(R5_LOCKED, &dev->flags);
2853 set_bit(R5_Wantwrite, &dev->flags);
2854 }
2855 clear_bit(STRIPE_DEGRADED, &sh->state);
2856
2857 set_bit(STRIPE_INSYNC, &sh->state);
d82dfee0
DW
2858 break;
2859 case check_state_run:
2860 case check_state_run_q:
2861 case check_state_run_pq:
2862 break; /* we will be called again upon completion */
2863 case check_state_check_result:
2864 sh->check_state = check_state_idle;
2865
2866 /* handle a successful check operation, if parity is correct
2867 * we are done. Otherwise update the mismatch count and repair
2868 * parity if !MD_RECOVERY_CHECK
2869 */
2870 if (sh->ops.zero_sum_result == 0) {
2871 /* both parities are correct */
2872 if (!s->failed)
2873 set_bit(STRIPE_INSYNC, &sh->state);
2874 else {
2875 /* in contrast to the raid5 case we can validate
2876 * parity, but still have a failure to write
2877 * back
2878 */
2879 sh->check_state = check_state_compute_result;
2880 /* Returning at this point means that we may go
2881 * off and bring p and/or q uptodate again so
2882 * we make sure to check zero_sum_result again
2883 * to verify if p or q need writeback
2884 */
2885 }
2886 } else {
2887 conf->mddev->resync_mismatches += STRIPE_SECTORS;
2888 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2889 /* don't try to repair!! */
2890 set_bit(STRIPE_INSYNC, &sh->state);
2891 else {
2892 int *target = &sh->ops.target;
2893
2894 sh->ops.target = -1;
2895 sh->ops.target2 = -1;
2896 sh->check_state = check_state_compute_run;
2897 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2898 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2899 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2900 set_bit(R5_Wantcompute,
2901 &sh->dev[pd_idx].flags);
2902 *target = pd_idx;
2903 target = &sh->ops.target2;
2904 s->uptodate++;
2905 }
2906 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2907 set_bit(R5_Wantcompute,
2908 &sh->dev[qd_idx].flags);
2909 *target = qd_idx;
2910 s->uptodate++;
2911 }
2912 }
2913 }
2914 break;
2915 case check_state_compute_run:
2916 break;
2917 default:
2918 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2919 __func__, sh->check_state,
2920 (unsigned long long) sh->sector);
2921 BUG();
a4456856
DW
2922 }
2923}
2924
2925static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh,
2926 struct r6_state *r6s)
2927{
2928 int i;
2929
2930 /* We have read all the blocks in this stripe and now we need to
2931 * copy some of them into a target stripe for expand.
2932 */
f0a50d37 2933 struct dma_async_tx_descriptor *tx = NULL;
a4456856
DW
2934 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2935 for (i = 0; i < sh->disks; i++)
34e04e87 2936 if (i != sh->pd_idx && i != sh->qd_idx) {
911d4ee8 2937 int dd_idx, j;
a4456856 2938 struct stripe_head *sh2;
a08abd8c 2939 struct async_submit_ctl submit;
a4456856 2940
784052ec 2941 sector_t bn = compute_blocknr(sh, i, 1);
911d4ee8
N
2942 sector_t s = raid5_compute_sector(conf, bn, 0,
2943 &dd_idx, NULL);
a8c906ca 2944 sh2 = get_active_stripe(conf, s, 0, 1, 1);
a4456856
DW
2945 if (sh2 == NULL)
2946 /* so far only the early blocks of this stripe
2947 * have been requested. When later blocks
2948 * get requested, we will try again
2949 */
2950 continue;
2951 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
2952 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
2953 /* must have already done this block */
2954 release_stripe(sh2);
2955 continue;
2956 }
f0a50d37
DW
2957
2958 /* place all the copies on one channel */
a08abd8c 2959 init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
f0a50d37 2960 tx = async_memcpy(sh2->dev[dd_idx].page,
88ba2aa5 2961 sh->dev[i].page, 0, 0, STRIPE_SIZE,
a08abd8c 2962 &submit);
f0a50d37 2963
a4456856
DW
2964 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
2965 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
2966 for (j = 0; j < conf->raid_disks; j++)
2967 if (j != sh2->pd_idx &&
d0dabf7e 2968 (!r6s || j != sh2->qd_idx) &&
a4456856
DW
2969 !test_bit(R5_Expanded, &sh2->dev[j].flags))
2970 break;
2971 if (j == conf->raid_disks) {
2972 set_bit(STRIPE_EXPAND_READY, &sh2->state);
2973 set_bit(STRIPE_HANDLE, &sh2->state);
2974 }
2975 release_stripe(sh2);
f0a50d37 2976
a4456856 2977 }
a2e08551
N
2978 /* done submitting copies, wait for them to complete */
2979 if (tx) {
2980 async_tx_ack(tx);
2981 dma_wait_for_async_tx(tx);
2982 }
a4456856 2983}
1da177e4 2984
6bfe0b49 2985
1da177e4
LT
2986/*
2987 * handle_stripe - do things to a stripe.
2988 *
2989 * We lock the stripe and then examine the state of various bits
2990 * to see what needs to be done.
2991 * Possible results:
2992 * return some read request which now have data
2993 * return some write requests which are safely on disc
2994 * schedule a read on some buffers
2995 * schedule a write of some buffers
2996 * return confirmation of parity correctness
2997 *
1da177e4
LT
2998 * buffers are taken off read_list or write_list, and bh_cache buffers
2999 * get BH_Lock set before the stripe lock is released.
3000 *
3001 */
a4456856 3002
1442577b 3003static void handle_stripe5(struct stripe_head *sh)
1da177e4
LT
3004{
3005 raid5_conf_t *conf = sh->raid_conf;
a4456856
DW
3006 int disks = sh->disks, i;
3007 struct bio *return_bi = NULL;
3008 struct stripe_head_state s;
1da177e4 3009 struct r5dev *dev;
6bfe0b49 3010 mdk_rdev_t *blocked_rdev = NULL;
e0a115e5 3011 int prexor;
729a1866 3012 int dec_preread_active = 0;
1da177e4 3013
a4456856 3014 memset(&s, 0, sizeof(s));
600aa109
DW
3015 pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d check:%d "
3016 "reconstruct:%d\n", (unsigned long long)sh->sector, sh->state,
3017 atomic_read(&sh->count), sh->pd_idx, sh->check_state,
3018 sh->reconstruct_state);
1da177e4
LT
3019
3020 spin_lock(&sh->lock);
3021 clear_bit(STRIPE_HANDLE, &sh->state);
3022 clear_bit(STRIPE_DELAYED, &sh->state);
3023
a4456856
DW
3024 s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
3025 s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3026 s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
def6ae26 3027
83de75cc 3028 /* Now to look around and see what can be done */
9910f16a 3029 rcu_read_lock();
1da177e4
LT
3030 for (i=disks; i--; ) {
3031 mdk_rdev_t *rdev;
a9f326eb
N
3032
3033 dev = &sh->dev[i];
1da177e4 3034
b5e98d65
DW
3035 pr_debug("check %d: state 0x%lx toread %p read %p write %p "
3036 "written %p\n", i, dev->flags, dev->toread, dev->read,
3037 dev->towrite, dev->written);
3038
3039 /* maybe we can request a biofill operation
3040 *
3041 * new wantfill requests are only permitted while
83de75cc 3042 * ops_complete_biofill is guaranteed to be inactive
b5e98d65
DW
3043 */
3044 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
83de75cc 3045 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
b5e98d65 3046 set_bit(R5_Wantfill, &dev->flags);
1da177e4
LT
3047
3048 /* now count some things */
a4456856
DW
3049 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
3050 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
f38e1219 3051 if (test_bit(R5_Wantcompute, &dev->flags)) s.compute++;
1da177e4 3052
b5e98d65
DW
3053 if (test_bit(R5_Wantfill, &dev->flags))
3054 s.to_fill++;
3055 else if (dev->toread)
a4456856 3056 s.to_read++;
1da177e4 3057 if (dev->towrite) {
a4456856 3058 s.to_write++;
1da177e4 3059 if (!test_bit(R5_OVERWRITE, &dev->flags))
a4456856 3060 s.non_overwrite++;
1da177e4 3061 }
a4456856
DW
3062 if (dev->written)
3063 s.written++;
9910f16a 3064 rdev = rcu_dereference(conf->disks[i].rdev);
ac4090d2
N
3065 if (blocked_rdev == NULL &&
3066 rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
6bfe0b49
DW
3067 blocked_rdev = rdev;
3068 atomic_inc(&rdev->nr_pending);
6bfe0b49 3069 }
415e72d0
N
3070 clear_bit(R5_Insync, &dev->flags);
3071 if (!rdev)
3072 /* Not in-sync */;
3073 else if (test_bit(In_sync, &rdev->flags))
3074 set_bit(R5_Insync, &dev->flags);
3075 else {
3076 /* could be in-sync depending on recovery/reshape status */
3077 if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3078 set_bit(R5_Insync, &dev->flags);
3079 }
3080 if (!test_bit(R5_Insync, &dev->flags)) {
14f8d26b 3081 /* The ReadError flag will just be confusing now */
4e5314b5
N
3082 clear_bit(R5_ReadError, &dev->flags);
3083 clear_bit(R5_ReWrite, &dev->flags);
3084 }
415e72d0
N
3085 if (test_bit(R5_ReadError, &dev->flags))
3086 clear_bit(R5_Insync, &dev->flags);
3087 if (!test_bit(R5_Insync, &dev->flags)) {
a4456856
DW
3088 s.failed++;
3089 s.failed_num = i;
415e72d0 3090 }
1da177e4 3091 }
9910f16a 3092 rcu_read_unlock();
b5e98d65 3093
6bfe0b49 3094 if (unlikely(blocked_rdev)) {
ac4090d2
N
3095 if (s.syncing || s.expanding || s.expanded ||
3096 s.to_write || s.written) {
3097 set_bit(STRIPE_HANDLE, &sh->state);
3098 goto unlock;
3099 }
3100 /* There is nothing for the blocked_rdev to block */
3101 rdev_dec_pending(blocked_rdev, conf->mddev);
3102 blocked_rdev = NULL;
6bfe0b49
DW
3103 }
3104
83de75cc
DW
3105 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3106 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3107 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3108 }
b5e98d65 3109
45b4233c 3110 pr_debug("locked=%d uptodate=%d to_read=%d"
1da177e4 3111 " to_write=%d failed=%d failed_num=%d\n",
a4456856
DW
3112 s.locked, s.uptodate, s.to_read, s.to_write,
3113 s.failed, s.failed_num);
1da177e4
LT
3114 /* check if the array has lost two devices and, if so, some requests might
3115 * need to be failed
3116 */
a4456856 3117 if (s.failed > 1 && s.to_read+s.to_write+s.written)
1fe797e6 3118 handle_failed_stripe(conf, sh, &s, disks, &return_bi);
a4456856 3119 if (s.failed > 1 && s.syncing) {
1da177e4
LT
3120 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
3121 clear_bit(STRIPE_SYNCING, &sh->state);
a4456856 3122 s.syncing = 0;
1da177e4
LT
3123 }
3124
3125 /* might be able to return some write requests if the parity block
3126 * is safe, or on a failed drive
3127 */
3128 dev = &sh->dev[sh->pd_idx];
a4456856
DW
3129 if ( s.written &&
3130 ((test_bit(R5_Insync, &dev->flags) &&
3131 !test_bit(R5_LOCKED, &dev->flags) &&
3132 test_bit(R5_UPTODATE, &dev->flags)) ||
3133 (s.failed == 1 && s.failed_num == sh->pd_idx)))
1fe797e6 3134 handle_stripe_clean_event(conf, sh, disks, &return_bi);
1da177e4
LT
3135
3136 /* Now we might consider reading some blocks, either to check/generate
3137 * parity, or to satisfy requests
3138 * or to load a block that is being partially written.
3139 */
a4456856 3140 if (s.to_read || s.non_overwrite ||
976ea8d4 3141 (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
1fe797e6 3142 handle_stripe_fill5(sh, &s, disks);
1da177e4 3143
e33129d8
DW
3144 /* Now we check to see if any write operations have recently
3145 * completed
3146 */
e0a115e5 3147 prexor = 0;
d8ee0728 3148 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
e0a115e5 3149 prexor = 1;
d8ee0728
DW
3150 if (sh->reconstruct_state == reconstruct_state_drain_result ||
3151 sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
600aa109 3152 sh->reconstruct_state = reconstruct_state_idle;
e33129d8
DW
3153
3154 /* All the 'written' buffers and the parity block are ready to
3155 * be written back to disk
3156 */
3157 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
3158 for (i = disks; i--; ) {
3159 dev = &sh->dev[i];
3160 if (test_bit(R5_LOCKED, &dev->flags) &&
3161 (i == sh->pd_idx || dev->written)) {
3162 pr_debug("Writing block %d\n", i);
3163 set_bit(R5_Wantwrite, &dev->flags);
e0a115e5
DW
3164 if (prexor)
3165 continue;
e33129d8
DW
3166 if (!test_bit(R5_Insync, &dev->flags) ||
3167 (i == sh->pd_idx && s.failed == 0))
3168 set_bit(STRIPE_INSYNC, &sh->state);
3169 }
3170 }
729a1866
N
3171 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3172 dec_preread_active = 1;
e33129d8
DW
3173 }
3174
3175 /* Now to consider new write requests and what else, if anything
3176 * should be read. We do not handle new writes when:
3177 * 1/ A 'write' operation (copy+xor) is already in flight.
3178 * 2/ A 'check' operation is in flight, as it may clobber the parity
3179 * block.
3180 */
600aa109 3181 if (s.to_write && !sh->reconstruct_state && !sh->check_state)
1fe797e6 3182 handle_stripe_dirtying5(conf, sh, &s, disks);
1da177e4
LT
3183
3184 /* maybe we need to check and possibly fix the parity for this stripe
e89f8962
DW
3185 * Any reads will already have been scheduled, so we just see if enough
3186 * data is available. The parity check is held off while parity
3187 * dependent operations are in flight.
1da177e4 3188 */
ecc65c9b
DW
3189 if (sh->check_state ||
3190 (s.syncing && s.locked == 0 &&
976ea8d4 3191 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
ecc65c9b 3192 !test_bit(STRIPE_INSYNC, &sh->state)))
a4456856 3193 handle_parity_checks5(conf, sh, &s, disks);
e89f8962 3194
a4456856 3195 if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
1da177e4
LT
3196 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
3197 clear_bit(STRIPE_SYNCING, &sh->state);
3198 }
4e5314b5
N
3199
3200 /* If the failed drive is just a ReadError, then we might need to progress
3201 * the repair/check process
3202 */
a4456856
DW
3203 if (s.failed == 1 && !conf->mddev->ro &&
3204 test_bit(R5_ReadError, &sh->dev[s.failed_num].flags)
3205 && !test_bit(R5_LOCKED, &sh->dev[s.failed_num].flags)
3206 && test_bit(R5_UPTODATE, &sh->dev[s.failed_num].flags)
4e5314b5 3207 ) {
a4456856 3208 dev = &sh->dev[s.failed_num];
4e5314b5
N
3209 if (!test_bit(R5_ReWrite, &dev->flags)) {
3210 set_bit(R5_Wantwrite, &dev->flags);
3211 set_bit(R5_ReWrite, &dev->flags);
3212 set_bit(R5_LOCKED, &dev->flags);
a4456856 3213 s.locked++;
4e5314b5
N
3214 } else {
3215 /* let's read it back */
3216 set_bit(R5_Wantread, &dev->flags);
3217 set_bit(R5_LOCKED, &dev->flags);
a4456856 3218 s.locked++;
4e5314b5
N
3219 }
3220 }
3221
600aa109
DW
3222 /* Finish reconstruct operations initiated by the expansion process */
3223 if (sh->reconstruct_state == reconstruct_state_result) {
ab69ae12 3224 struct stripe_head *sh2
a8c906ca 3225 = get_active_stripe(conf, sh->sector, 1, 1, 1);
ab69ae12
N
3226 if (sh2 && test_bit(STRIPE_EXPAND_SOURCE, &sh2->state)) {
3227 /* sh cannot be written until sh2 has been read.
3228 * so arrange for sh to be delayed a little
3229 */
3230 set_bit(STRIPE_DELAYED, &sh->state);
3231 set_bit(STRIPE_HANDLE, &sh->state);
3232 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3233 &sh2->state))
3234 atomic_inc(&conf->preread_active_stripes);
3235 release_stripe(sh2);
3236 goto unlock;
3237 }
3238 if (sh2)
3239 release_stripe(sh2);
3240
600aa109 3241 sh->reconstruct_state = reconstruct_state_idle;
f0a50d37 3242 clear_bit(STRIPE_EXPANDING, &sh->state);
23397883 3243 for (i = conf->raid_disks; i--; ) {
ccfcc3c1 3244 set_bit(R5_Wantwrite, &sh->dev[i].flags);
23397883 3245 set_bit(R5_LOCKED, &sh->dev[i].flags);
efe31143 3246 s.locked++;
23397883 3247 }
f0a50d37
DW
3248 }
3249
3250 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
600aa109 3251 !sh->reconstruct_state) {
f0a50d37
DW
3252 /* Need to write out all blocks after computing parity */
3253 sh->disks = conf->raid_disks;
911d4ee8 3254 stripe_set_idx(sh->sector, conf, 0, sh);
c0f7bddb 3255 schedule_reconstruction(sh, &s, 1, 1);
600aa109 3256 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
ccfcc3c1 3257 clear_bit(STRIPE_EXPAND_READY, &sh->state);
f6705578 3258 atomic_dec(&conf->reshape_stripes);
ccfcc3c1
N
3259 wake_up(&conf->wait_for_overlap);
3260 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3261 }
3262
0f94e87c 3263 if (s.expanding && s.locked == 0 &&
976ea8d4 3264 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
a4456856 3265 handle_stripe_expansion(conf, sh, NULL);
ccfcc3c1 3266
6bfe0b49 3267 unlock:
1da177e4
LT
3268 spin_unlock(&sh->lock);
3269
6bfe0b49
DW
3270 /* wait for this device to become unblocked */
3271 if (unlikely(blocked_rdev))
3272 md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
3273
600aa109 3274 if (s.ops_request)
ac6b53b6 3275 raid_run_ops(sh, s.ops_request);
d84e0f10 3276
c4e5ac0a 3277 ops_run_io(sh, &s);
1da177e4 3278
729a1866
N
3279 if (dec_preread_active) {
3280 /* We delay this until after ops_run_io so that if make_request
3281 * is waiting on a barrier, it won't continue until the writes
3282 * have actually been submitted.
3283 */
3284 atomic_dec(&conf->preread_active_stripes);
3285 if (atomic_read(&conf->preread_active_stripes) <
3286 IO_THRESHOLD)
3287 md_wakeup_thread(conf->mddev->thread);
3288 }
a4456856 3289 return_io(return_bi);
1da177e4
LT
3290}
3291
1442577b 3292static void handle_stripe6(struct stripe_head *sh)
1da177e4 3293{
bff61975 3294 raid5_conf_t *conf = sh->raid_conf;
f416885e 3295 int disks = sh->disks;
a4456856 3296 struct bio *return_bi = NULL;
34e04e87 3297 int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx;
a4456856
DW
3298 struct stripe_head_state s;
3299 struct r6_state r6s;
16a53ecc 3300 struct r5dev *dev, *pdev, *qdev;
6bfe0b49 3301 mdk_rdev_t *blocked_rdev = NULL;
729a1866 3302 int dec_preread_active = 0;
1da177e4 3303
45b4233c 3304 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
6c0069c0 3305 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
a4456856 3306 (unsigned long long)sh->sector, sh->state,
6c0069c0
YT
3307 atomic_read(&sh->count), pd_idx, qd_idx,
3308 sh->check_state, sh->reconstruct_state);
a4456856 3309 memset(&s, 0, sizeof(s));
72626685 3310
16a53ecc
N
3311 spin_lock(&sh->lock);
3312 clear_bit(STRIPE_HANDLE, &sh->state);
3313 clear_bit(STRIPE_DELAYED, &sh->state);
3314
a4456856
DW
3315 s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
3316 s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3317 s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
16a53ecc 3318 /* Now to look around and see what can be done */
1da177e4
LT
3319
3320 rcu_read_lock();
16a53ecc
N
3321 for (i=disks; i--; ) {
3322 mdk_rdev_t *rdev;
3323 dev = &sh->dev[i];
1da177e4 3324
45b4233c 3325 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
16a53ecc 3326 i, dev->flags, dev->toread, dev->towrite, dev->written);
6c0069c0
YT
3327 /* maybe we can reply to a read
3328 *
3329 * new wantfill requests are only permitted while
3330 * ops_complete_biofill is guaranteed to be inactive
3331 */
3332 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3333 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3334 set_bit(R5_Wantfill, &dev->flags);
1da177e4 3335
16a53ecc 3336 /* now count some things */
a4456856
DW
3337 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
3338 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
2d6e4ecc
DW
3339 if (test_bit(R5_Wantcompute, &dev->flags)) {
3340 s.compute++;
3341 BUG_ON(s.compute > 2);
3342 }
1da177e4 3343
6c0069c0
YT
3344 if (test_bit(R5_Wantfill, &dev->flags)) {
3345 s.to_fill++;
3346 } else if (dev->toread)
a4456856 3347 s.to_read++;
16a53ecc 3348 if (dev->towrite) {
a4456856 3349 s.to_write++;
16a53ecc 3350 if (!test_bit(R5_OVERWRITE, &dev->flags))
a4456856 3351 s.non_overwrite++;
16a53ecc 3352 }
a4456856
DW
3353 if (dev->written)
3354 s.written++;
16a53ecc 3355 rdev = rcu_dereference(conf->disks[i].rdev);
ac4090d2
N
3356 if (blocked_rdev == NULL &&
3357 rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
6bfe0b49
DW
3358 blocked_rdev = rdev;
3359 atomic_inc(&rdev->nr_pending);
6bfe0b49 3360 }
415e72d0
N
3361 clear_bit(R5_Insync, &dev->flags);
3362 if (!rdev)
3363 /* Not in-sync */;
3364 else if (test_bit(In_sync, &rdev->flags))
3365 set_bit(R5_Insync, &dev->flags);
3366 else {
3367 /* in sync if before recovery_offset */
3368 if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3369 set_bit(R5_Insync, &dev->flags);
3370 }
3371 if (!test_bit(R5_Insync, &dev->flags)) {
16a53ecc
N
3372 /* The ReadError flag will just be confusing now */
3373 clear_bit(R5_ReadError, &dev->flags);
3374 clear_bit(R5_ReWrite, &dev->flags);
1da177e4 3375 }
415e72d0
N
3376 if (test_bit(R5_ReadError, &dev->flags))
3377 clear_bit(R5_Insync, &dev->flags);
3378 if (!test_bit(R5_Insync, &dev->flags)) {
a4456856
DW
3379 if (s.failed < 2)
3380 r6s.failed_num[s.failed] = i;
3381 s.failed++;
415e72d0 3382 }
1da177e4
LT
3383 }
3384 rcu_read_unlock();
6bfe0b49
DW
3385
3386 if (unlikely(blocked_rdev)) {
ac4090d2
N
3387 if (s.syncing || s.expanding || s.expanded ||
3388 s.to_write || s.written) {
3389 set_bit(STRIPE_HANDLE, &sh->state);
3390 goto unlock;
3391 }
3392 /* There is nothing for the blocked_rdev to block */
3393 rdev_dec_pending(blocked_rdev, conf->mddev);
3394 blocked_rdev = NULL;
6bfe0b49 3395 }
ac4090d2 3396
6c0069c0
YT
3397 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3398 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3399 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3400 }
3401
45b4233c 3402 pr_debug("locked=%d uptodate=%d to_read=%d"
16a53ecc 3403 " to_write=%d failed=%d failed_num=%d,%d\n",
a4456856
DW
3404 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3405 r6s.failed_num[0], r6s.failed_num[1]);
3406 /* check if the array has lost >2 devices and, if so, some requests
3407 * might need to be failed
16a53ecc 3408 */
a4456856 3409 if (s.failed > 2 && s.to_read+s.to_write+s.written)
1fe797e6 3410 handle_failed_stripe(conf, sh, &s, disks, &return_bi);
a4456856 3411 if (s.failed > 2 && s.syncing) {
16a53ecc
N
3412 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
3413 clear_bit(STRIPE_SYNCING, &sh->state);
a4456856 3414 s.syncing = 0;
16a53ecc
N
3415 }
3416
3417 /*
3418 * might be able to return some write requests if the parity blocks
3419 * are safe, or on a failed drive
3420 */
3421 pdev = &sh->dev[pd_idx];
a4456856
DW
3422 r6s.p_failed = (s.failed >= 1 && r6s.failed_num[0] == pd_idx)
3423 || (s.failed >= 2 && r6s.failed_num[1] == pd_idx);
34e04e87
N
3424 qdev = &sh->dev[qd_idx];
3425 r6s.q_failed = (s.failed >= 1 && r6s.failed_num[0] == qd_idx)
3426 || (s.failed >= 2 && r6s.failed_num[1] == qd_idx);
a4456856
DW
3427
3428 if ( s.written &&
3429 ( r6s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
16a53ecc 3430 && !test_bit(R5_LOCKED, &pdev->flags)
a4456856
DW
3431 && test_bit(R5_UPTODATE, &pdev->flags)))) &&
3432 ( r6s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
16a53ecc 3433 && !test_bit(R5_LOCKED, &qdev->flags)
a4456856 3434 && test_bit(R5_UPTODATE, &qdev->flags)))))
1fe797e6 3435 handle_stripe_clean_event(conf, sh, disks, &return_bi);
16a53ecc
N
3436
3437 /* Now we might consider reading some blocks, either to check/generate
3438 * parity, or to satisfy requests
3439 * or to load a block that is being partially written.
3440 */
a4456856 3441 if (s.to_read || s.non_overwrite || (s.to_write && s.failed) ||
6c0069c0 3442 (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
1fe797e6 3443 handle_stripe_fill6(sh, &s, &r6s, disks);
16a53ecc 3444
6c0069c0
YT
3445 /* Now we check to see if any write operations have recently
3446 * completed
3447 */
3448 if (sh->reconstruct_state == reconstruct_state_drain_result) {
6c0069c0
YT
3449
3450 sh->reconstruct_state = reconstruct_state_idle;
3451 /* All the 'written' buffers and the parity blocks are ready to
3452 * be written back to disk
3453 */
3454 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
3455 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags));
3456 for (i = disks; i--; ) {
3457 dev = &sh->dev[i];
3458 if (test_bit(R5_LOCKED, &dev->flags) &&
3459 (i == sh->pd_idx || i == qd_idx ||
3460 dev->written)) {
3461 pr_debug("Writing block %d\n", i);
3462 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3463 set_bit(R5_Wantwrite, &dev->flags);
3464 if (!test_bit(R5_Insync, &dev->flags) ||
3465 ((i == sh->pd_idx || i == qd_idx) &&
3466 s.failed == 0))
3467 set_bit(STRIPE_INSYNC, &sh->state);
3468 }
3469 }
729a1866
N
3470 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3471 dec_preread_active = 1;
6c0069c0
YT
3472 }
3473
a9b39a74
YT
3474 /* Now to consider new write requests and what else, if anything
3475 * should be read. We do not handle new writes when:
3476 * 1/ A 'write' operation (copy+gen_syndrome) is already in flight.
3477 * 2/ A 'check' operation is in flight, as it may clobber the parity
3478 * block.
3479 */
3480 if (s.to_write && !sh->reconstruct_state && !sh->check_state)
1fe797e6 3481 handle_stripe_dirtying6(conf, sh, &s, &r6s, disks);
16a53ecc
N
3482
3483 /* maybe we need to check and possibly fix the parity for this stripe
a4456856 3484 * Any reads will already have been scheduled, so we just see if enough
6c0069c0
YT
3485 * data is available. The parity check is held off while parity
3486 * dependent operations are in flight.
16a53ecc 3487 */
6c0069c0
YT
3488 if (sh->check_state ||
3489 (s.syncing && s.locked == 0 &&
3490 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3491 !test_bit(STRIPE_INSYNC, &sh->state)))
36d1c647 3492 handle_parity_checks6(conf, sh, &s, &r6s, disks);
16a53ecc 3493
a4456856 3494 if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
16a53ecc
N
3495 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
3496 clear_bit(STRIPE_SYNCING, &sh->state);
3497 }
3498
3499 /* If the failed drives are just a ReadError, then we might need
3500 * to progress the repair/check process
3501 */
a4456856
DW
3502 if (s.failed <= 2 && !conf->mddev->ro)
3503 for (i = 0; i < s.failed; i++) {
3504 dev = &sh->dev[r6s.failed_num[i]];
16a53ecc
N
3505 if (test_bit(R5_ReadError, &dev->flags)
3506 && !test_bit(R5_LOCKED, &dev->flags)
3507 && test_bit(R5_UPTODATE, &dev->flags)
3508 ) {
3509 if (!test_bit(R5_ReWrite, &dev->flags)) {
3510 set_bit(R5_Wantwrite, &dev->flags);
3511 set_bit(R5_ReWrite, &dev->flags);
3512 set_bit(R5_LOCKED, &dev->flags);
6c0069c0 3513 s.locked++;
16a53ecc
N
3514 } else {
3515 /* let's read it back */
3516 set_bit(R5_Wantread, &dev->flags);
3517 set_bit(R5_LOCKED, &dev->flags);
6c0069c0 3518 s.locked++;
16a53ecc
N
3519 }
3520 }
3521 }
f416885e 3522
6c0069c0
YT
3523 /* Finish reconstruct operations initiated by the expansion process */
3524 if (sh->reconstruct_state == reconstruct_state_result) {
3525 sh->reconstruct_state = reconstruct_state_idle;
3526 clear_bit(STRIPE_EXPANDING, &sh->state);
3527 for (i = conf->raid_disks; i--; ) {
3528 set_bit(R5_Wantwrite, &sh->dev[i].flags);
3529 set_bit(R5_LOCKED, &sh->dev[i].flags);
3530 s.locked++;
3531 }
3532 }
3533
3534 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3535 !sh->reconstruct_state) {
ab69ae12 3536 struct stripe_head *sh2
a8c906ca 3537 = get_active_stripe(conf, sh->sector, 1, 1, 1);
ab69ae12
N
3538 if (sh2 && test_bit(STRIPE_EXPAND_SOURCE, &sh2->state)) {
3539 /* sh cannot be written until sh2 has been read.
3540 * so arrange for sh to be delayed a little
3541 */
3542 set_bit(STRIPE_DELAYED, &sh->state);
3543 set_bit(STRIPE_HANDLE, &sh->state);
3544 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3545 &sh2->state))
3546 atomic_inc(&conf->preread_active_stripes);
3547 release_stripe(sh2);
3548 goto unlock;
3549 }
3550 if (sh2)
3551 release_stripe(sh2);
3552
f416885e
N
3553 /* Need to write out all blocks after computing P&Q */
3554 sh->disks = conf->raid_disks;
911d4ee8 3555 stripe_set_idx(sh->sector, conf, 0, sh);
6c0069c0
YT
3556 schedule_reconstruction(sh, &s, 1, 1);
3557 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
f416885e
N
3558 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3559 atomic_dec(&conf->reshape_stripes);
3560 wake_up(&conf->wait_for_overlap);
3561 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3562 }
3563
0f94e87c 3564 if (s.expanding && s.locked == 0 &&
976ea8d4 3565 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
a4456856 3566 handle_stripe_expansion(conf, sh, &r6s);
f416885e 3567
6bfe0b49 3568 unlock:
16a53ecc
N
3569 spin_unlock(&sh->lock);
3570
6bfe0b49
DW
3571 /* wait for this device to become unblocked */
3572 if (unlikely(blocked_rdev))
3573 md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
3574
6c0069c0
YT
3575 if (s.ops_request)
3576 raid_run_ops(sh, s.ops_request);
3577
f0e43bcd 3578 ops_run_io(sh, &s);
16a53ecc 3579
729a1866
N
3580
3581 if (dec_preread_active) {
3582 /* We delay this until after ops_run_io so that if make_request
3583 * is waiting on a barrier, it won't continue until the writes
3584 * have actually been submitted.
3585 */
3586 atomic_dec(&conf->preread_active_stripes);
3587 if (atomic_read(&conf->preread_active_stripes) <
3588 IO_THRESHOLD)
3589 md_wakeup_thread(conf->mddev->thread);
3590 }
3591
f0e43bcd 3592 return_io(return_bi);
16a53ecc
N
3593}
3594
1442577b 3595static void handle_stripe(struct stripe_head *sh)
16a53ecc
N
3596{
3597 if (sh->raid_conf->level == 6)
1442577b 3598 handle_stripe6(sh);
16a53ecc 3599 else
1442577b 3600 handle_stripe5(sh);
16a53ecc
N
3601}
3602
16a53ecc
N
3603static void raid5_activate_delayed(raid5_conf_t *conf)
3604{
3605 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3606 while (!list_empty(&conf->delayed_list)) {
3607 struct list_head *l = conf->delayed_list.next;
3608 struct stripe_head *sh;
3609 sh = list_entry(l, struct stripe_head, lru);
3610 list_del_init(l);
3611 clear_bit(STRIPE_DELAYED, &sh->state);
3612 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3613 atomic_inc(&conf->preread_active_stripes);
8b3e6cdc 3614 list_add_tail(&sh->lru, &conf->hold_list);
16a53ecc 3615 }
6ed3003c
N
3616 } else
3617 blk_plug_device(conf->mddev->queue);
16a53ecc
N
3618}
3619
3620static void activate_bit_delay(raid5_conf_t *conf)
3621{
3622 /* device_lock is held */
3623 struct list_head head;
3624 list_add(&head, &conf->bitmap_list);
3625 list_del_init(&conf->bitmap_list);
3626 while (!list_empty(&head)) {
3627 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3628 list_del_init(&sh->lru);
3629 atomic_inc(&sh->count);
3630 __release_stripe(conf, sh);
3631 }
3632}
3633
3634static void unplug_slaves(mddev_t *mddev)
3635{
070ec55d 3636 raid5_conf_t *conf = mddev->private;
16a53ecc 3637 int i;
5e5e3e78 3638 int devs = max(conf->raid_disks, conf->previous_raid_disks);
16a53ecc
N
3639
3640 rcu_read_lock();
5e5e3e78 3641 for (i = 0; i < devs; i++) {
16a53ecc
N
3642 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
3643 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
165125e1 3644 struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
16a53ecc
N
3645
3646 atomic_inc(&rdev->nr_pending);
3647 rcu_read_unlock();
3648
2ad8b1ef 3649 blk_unplug(r_queue);
16a53ecc
N
3650
3651 rdev_dec_pending(rdev, mddev);
3652 rcu_read_lock();
3653 }
3654 }
3655 rcu_read_unlock();
3656}
3657
165125e1 3658static void raid5_unplug_device(struct request_queue *q)
16a53ecc
N
3659{
3660 mddev_t *mddev = q->queuedata;
070ec55d 3661 raid5_conf_t *conf = mddev->private;
16a53ecc
N
3662 unsigned long flags;
3663
3664 spin_lock_irqsave(&conf->device_lock, flags);
3665
3666 if (blk_remove_plug(q)) {
3667 conf->seq_flush++;
3668 raid5_activate_delayed(conf);
72626685 3669 }
1da177e4
LT
3670 md_wakeup_thread(mddev->thread);
3671
3672 spin_unlock_irqrestore(&conf->device_lock, flags);
3673
3674 unplug_slaves(mddev);
3675}
3676
f022b2fd
N
3677static int raid5_congested(void *data, int bits)
3678{
3679 mddev_t *mddev = data;
070ec55d 3680 raid5_conf_t *conf = mddev->private;
f022b2fd
N
3681
3682 /* No difference between reads and writes. Just check
3683 * how busy the stripe_cache is
3684 */
3fa841d7
N
3685
3686 if (mddev_congested(mddev, bits))
3687 return 1;
f022b2fd
N
3688 if (conf->inactive_blocked)
3689 return 1;
3690 if (conf->quiesce)
3691 return 1;
3692 if (list_empty_careful(&conf->inactive_list))
3693 return 1;
3694
3695 return 0;
3696}
3697
23032a0e
RBJ
3698/* We want read requests to align with chunks where possible,
3699 * but write requests don't need to.
3700 */
cc371e66
AK
3701static int raid5_mergeable_bvec(struct request_queue *q,
3702 struct bvec_merge_data *bvm,
3703 struct bio_vec *biovec)
23032a0e
RBJ
3704{
3705 mddev_t *mddev = q->queuedata;
cc371e66 3706 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
23032a0e 3707 int max;
9d8f0363 3708 unsigned int chunk_sectors = mddev->chunk_sectors;
cc371e66 3709 unsigned int bio_sectors = bvm->bi_size >> 9;
23032a0e 3710
cc371e66 3711 if ((bvm->bi_rw & 1) == WRITE)
23032a0e
RBJ
3712 return biovec->bv_len; /* always allow writes to be mergeable */
3713
664e7c41
AN
3714 if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3715 chunk_sectors = mddev->new_chunk_sectors;
23032a0e
RBJ
3716 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3717 if (max < 0) max = 0;
3718 if (max <= biovec->bv_len && bio_sectors == 0)
3719 return biovec->bv_len;
3720 else
3721 return max;
3722}
3723
f679623f
RBJ
3724
3725static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
3726{
3727 sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
9d8f0363 3728 unsigned int chunk_sectors = mddev->chunk_sectors;
f679623f
RBJ
3729 unsigned int bio_sectors = bio->bi_size >> 9;
3730
664e7c41
AN
3731 if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3732 chunk_sectors = mddev->new_chunk_sectors;
f679623f
RBJ
3733 return chunk_sectors >=
3734 ((sector & (chunk_sectors - 1)) + bio_sectors);
3735}
3736
46031f9a
RBJ
3737/*
3738 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
3739 * later sampled by raid5d.
3740 */
3741static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
3742{
3743 unsigned long flags;
3744
3745 spin_lock_irqsave(&conf->device_lock, flags);
3746
3747 bi->bi_next = conf->retry_read_aligned_list;
3748 conf->retry_read_aligned_list = bi;
3749
3750 spin_unlock_irqrestore(&conf->device_lock, flags);
3751 md_wakeup_thread(conf->mddev->thread);
3752}
3753
3754
3755static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
3756{
3757 struct bio *bi;
3758
3759 bi = conf->retry_read_aligned;
3760 if (bi) {
3761 conf->retry_read_aligned = NULL;
3762 return bi;
3763 }
3764 bi = conf->retry_read_aligned_list;
3765 if(bi) {
387bb173 3766 conf->retry_read_aligned_list = bi->bi_next;
46031f9a 3767 bi->bi_next = NULL;
960e739d
JA
3768 /*
3769 * this sets the active strip count to 1 and the processed
3770 * strip count to zero (upper 8 bits)
3771 */
46031f9a 3772 bi->bi_phys_segments = 1; /* biased count of active stripes */
46031f9a
RBJ
3773 }
3774
3775 return bi;
3776}
3777
3778
f679623f
RBJ
3779/*
3780 * The "raid5_align_endio" should check if the read succeeded and if it
3781 * did, call bio_endio on the original bio (having bio_put the new bio
3782 * first).
3783 * If the read failed..
3784 */
6712ecf8 3785static void raid5_align_endio(struct bio *bi, int error)
f679623f
RBJ
3786{
3787 struct bio* raid_bi = bi->bi_private;
46031f9a
RBJ
3788 mddev_t *mddev;
3789 raid5_conf_t *conf;
3790 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3791 mdk_rdev_t *rdev;
3792
f679623f 3793 bio_put(bi);
46031f9a 3794
46031f9a
RBJ
3795 rdev = (void*)raid_bi->bi_next;
3796 raid_bi->bi_next = NULL;
2b7f2228
N
3797 mddev = rdev->mddev;
3798 conf = mddev->private;
46031f9a
RBJ
3799
3800 rdev_dec_pending(rdev, conf->mddev);
3801
3802 if (!error && uptodate) {
6712ecf8 3803 bio_endio(raid_bi, 0);
46031f9a
RBJ
3804 if (atomic_dec_and_test(&conf->active_aligned_reads))
3805 wake_up(&conf->wait_for_stripe);
6712ecf8 3806 return;
46031f9a
RBJ
3807 }
3808
3809
45b4233c 3810 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
46031f9a
RBJ
3811
3812 add_bio_to_retry(raid_bi, conf);
f679623f
RBJ
3813}
3814
387bb173
NB
3815static int bio_fits_rdev(struct bio *bi)
3816{
165125e1 3817 struct request_queue *q = bdev_get_queue(bi->bi_bdev);
387bb173 3818
ae03bf63 3819 if ((bi->bi_size>>9) > queue_max_sectors(q))
387bb173
NB
3820 return 0;
3821 blk_recount_segments(q, bi);
8a78362c 3822 if (bi->bi_phys_segments > queue_max_segments(q))
387bb173
NB
3823 return 0;
3824
3825 if (q->merge_bvec_fn)
3826 /* it's too hard to apply the merge_bvec_fn at this stage,
3827 * just just give up
3828 */
3829 return 0;
3830
3831 return 1;
3832}
3833
3834
21a52c6d 3835static int chunk_aligned_read(mddev_t *mddev, struct bio * raid_bio)
f679623f 3836{
070ec55d 3837 raid5_conf_t *conf = mddev->private;
8553fe7e 3838 int dd_idx;
f679623f
RBJ
3839 struct bio* align_bi;
3840 mdk_rdev_t *rdev;
3841
3842 if (!in_chunk_boundary(mddev, raid_bio)) {
45b4233c 3843 pr_debug("chunk_aligned_read : non aligned\n");
f679623f
RBJ
3844 return 0;
3845 }
3846 /*
99c0fb5f 3847 * use bio_clone to make a copy of the bio
f679623f
RBJ
3848 */
3849 align_bi = bio_clone(raid_bio, GFP_NOIO);
3850 if (!align_bi)
3851 return 0;
3852 /*
3853 * set bi_end_io to a new function, and set bi_private to the
3854 * original bio.
3855 */
3856 align_bi->bi_end_io = raid5_align_endio;
3857 align_bi->bi_private = raid_bio;
3858 /*
3859 * compute position
3860 */
112bf897
N
3861 align_bi->bi_sector = raid5_compute_sector(conf, raid_bio->bi_sector,
3862 0,
911d4ee8 3863 &dd_idx, NULL);
f679623f
RBJ
3864
3865 rcu_read_lock();
3866 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3867 if (rdev && test_bit(In_sync, &rdev->flags)) {
f679623f
RBJ
3868 atomic_inc(&rdev->nr_pending);
3869 rcu_read_unlock();
46031f9a
RBJ
3870 raid_bio->bi_next = (void*)rdev;
3871 align_bi->bi_bdev = rdev->bdev;
3872 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3873 align_bi->bi_sector += rdev->data_offset;
3874
387bb173
NB
3875 if (!bio_fits_rdev(align_bi)) {
3876 /* too big in some way */
3877 bio_put(align_bi);
3878 rdev_dec_pending(rdev, mddev);
3879 return 0;
3880 }
3881
46031f9a
RBJ
3882 spin_lock_irq(&conf->device_lock);
3883 wait_event_lock_irq(conf->wait_for_stripe,
3884 conf->quiesce == 0,
3885 conf->device_lock, /* nothing */);
3886 atomic_inc(&conf->active_aligned_reads);
3887 spin_unlock_irq(&conf->device_lock);
3888
f679623f
RBJ
3889 generic_make_request(align_bi);
3890 return 1;
3891 } else {
3892 rcu_read_unlock();
46031f9a 3893 bio_put(align_bi);
f679623f
RBJ
3894 return 0;
3895 }
3896}
3897
8b3e6cdc
DW
3898/* __get_priority_stripe - get the next stripe to process
3899 *
3900 * Full stripe writes are allowed to pass preread active stripes up until
3901 * the bypass_threshold is exceeded. In general the bypass_count
3902 * increments when the handle_list is handled before the hold_list; however, it
3903 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3904 * stripe with in flight i/o. The bypass_count will be reset when the
3905 * head of the hold_list has changed, i.e. the head was promoted to the
3906 * handle_list.
3907 */
3908static struct stripe_head *__get_priority_stripe(raid5_conf_t *conf)
3909{
3910 struct stripe_head *sh;
3911
3912 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3913 __func__,
3914 list_empty(&conf->handle_list) ? "empty" : "busy",
3915 list_empty(&conf->hold_list) ? "empty" : "busy",
3916 atomic_read(&conf->pending_full_writes), conf->bypass_count);
3917
3918 if (!list_empty(&conf->handle_list)) {
3919 sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
3920
3921 if (list_empty(&conf->hold_list))
3922 conf->bypass_count = 0;
3923 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
3924 if (conf->hold_list.next == conf->last_hold)
3925 conf->bypass_count++;
3926 else {
3927 conf->last_hold = conf->hold_list.next;
3928 conf->bypass_count -= conf->bypass_threshold;
3929 if (conf->bypass_count < 0)
3930 conf->bypass_count = 0;
3931 }
3932 }
3933 } else if (!list_empty(&conf->hold_list) &&
3934 ((conf->bypass_threshold &&
3935 conf->bypass_count > conf->bypass_threshold) ||
3936 atomic_read(&conf->pending_full_writes) == 0)) {
3937 sh = list_entry(conf->hold_list.next,
3938 typeof(*sh), lru);
3939 conf->bypass_count -= conf->bypass_threshold;
3940 if (conf->bypass_count < 0)
3941 conf->bypass_count = 0;
3942 } else
3943 return NULL;
3944
3945 list_del_init(&sh->lru);
3946 atomic_inc(&sh->count);
3947 BUG_ON(atomic_read(&sh->count) != 1);
3948 return sh;
3949}
f679623f 3950
21a52c6d 3951static int make_request(mddev_t *mddev, struct bio * bi)
1da177e4 3952{
070ec55d 3953 raid5_conf_t *conf = mddev->private;
911d4ee8 3954 int dd_idx;
1da177e4
LT
3955 sector_t new_sector;
3956 sector_t logical_sector, last_sector;
3957 struct stripe_head *sh;
a362357b 3958 const int rw = bio_data_dir(bi);
49077326 3959 int remaining;
1da177e4 3960
1f98a13f 3961 if (unlikely(bio_rw_flagged(bi, BIO_RW_BARRIER))) {
a2826aa9
N
3962 /* Drain all pending writes. We only really need
3963 * to ensure they have been submitted, but this is
3964 * easier.
3965 */
3966 mddev->pers->quiesce(mddev, 1);
3967 mddev->pers->quiesce(mddev, 0);
3968 md_barrier_request(mddev, bi);
e5dcdd80
N
3969 return 0;
3970 }
3971
3d310eb7 3972 md_write_start(mddev, bi);
06d91a5f 3973
802ba064 3974 if (rw == READ &&
52488615 3975 mddev->reshape_position == MaxSector &&
21a52c6d 3976 chunk_aligned_read(mddev,bi))
99c0fb5f 3977 return 0;
52488615 3978
1da177e4
LT
3979 logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3980 last_sector = bi->bi_sector + (bi->bi_size>>9);
3981 bi->bi_next = NULL;
3982 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
06d91a5f 3983
1da177e4
LT
3984 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
3985 DEFINE_WAIT(w);
16a53ecc 3986 int disks, data_disks;
b5663ba4 3987 int previous;
b578d55f 3988
7ecaa1e6 3989 retry:
b5663ba4 3990 previous = 0;
b0f9ec04 3991 disks = conf->raid_disks;
b578d55f 3992 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
b0f9ec04 3993 if (unlikely(conf->reshape_progress != MaxSector)) {
fef9c61f 3994 /* spinlock is needed as reshape_progress may be
df8e7f76
N
3995 * 64bit on a 32bit platform, and so it might be
3996 * possible to see a half-updated value
fef9c61f 3997 * Ofcourse reshape_progress could change after
df8e7f76
N
3998 * the lock is dropped, so once we get a reference
3999 * to the stripe that we think it is, we will have
4000 * to check again.
4001 */
7ecaa1e6 4002 spin_lock_irq(&conf->device_lock);
fef9c61f
N
4003 if (mddev->delta_disks < 0
4004 ? logical_sector < conf->reshape_progress
4005 : logical_sector >= conf->reshape_progress) {
7ecaa1e6 4006 disks = conf->previous_raid_disks;
b5663ba4
N
4007 previous = 1;
4008 } else {
fef9c61f
N
4009 if (mddev->delta_disks < 0
4010 ? logical_sector < conf->reshape_safe
4011 : logical_sector >= conf->reshape_safe) {
b578d55f
N
4012 spin_unlock_irq(&conf->device_lock);
4013 schedule();
4014 goto retry;
4015 }
4016 }
7ecaa1e6
N
4017 spin_unlock_irq(&conf->device_lock);
4018 }
16a53ecc
N
4019 data_disks = disks - conf->max_degraded;
4020
112bf897
N
4021 new_sector = raid5_compute_sector(conf, logical_sector,
4022 previous,
911d4ee8 4023 &dd_idx, NULL);
0c55e022 4024 pr_debug("raid456: make_request, sector %llu logical %llu\n",
1da177e4
LT
4025 (unsigned long long)new_sector,
4026 (unsigned long long)logical_sector);
4027
b5663ba4 4028 sh = get_active_stripe(conf, new_sector, previous,
a8c906ca 4029 (bi->bi_rw&RWA_MASK), 0);
1da177e4 4030 if (sh) {
b0f9ec04 4031 if (unlikely(previous)) {
7ecaa1e6 4032 /* expansion might have moved on while waiting for a
df8e7f76
N
4033 * stripe, so we must do the range check again.
4034 * Expansion could still move past after this
4035 * test, but as we are holding a reference to
4036 * 'sh', we know that if that happens,
4037 * STRIPE_EXPANDING will get set and the expansion
4038 * won't proceed until we finish with the stripe.
7ecaa1e6
N
4039 */
4040 int must_retry = 0;
4041 spin_lock_irq(&conf->device_lock);
b0f9ec04
N
4042 if (mddev->delta_disks < 0
4043 ? logical_sector >= conf->reshape_progress
4044 : logical_sector < conf->reshape_progress)
7ecaa1e6
N
4045 /* mismatch, need to try again */
4046 must_retry = 1;
4047 spin_unlock_irq(&conf->device_lock);
4048 if (must_retry) {
4049 release_stripe(sh);
7a3ab908 4050 schedule();
7ecaa1e6
N
4051 goto retry;
4052 }
4053 }
e62e58a5 4054
a5c308d4
N
4055 if (bio_data_dir(bi) == WRITE &&
4056 logical_sector >= mddev->suspend_lo &&
e464eafd
N
4057 logical_sector < mddev->suspend_hi) {
4058 release_stripe(sh);
e62e58a5
N
4059 /* As the suspend_* range is controlled by
4060 * userspace, we want an interruptible
4061 * wait.
4062 */
4063 flush_signals(current);
4064 prepare_to_wait(&conf->wait_for_overlap,
4065 &w, TASK_INTERRUPTIBLE);
4066 if (logical_sector >= mddev->suspend_lo &&
4067 logical_sector < mddev->suspend_hi)
4068 schedule();
e464eafd
N
4069 goto retry;
4070 }
7ecaa1e6
N
4071
4072 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
4073 !add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) {
4074 /* Stripe is busy expanding or
4075 * add failed due to overlap. Flush everything
1da177e4
LT
4076 * and wait a while
4077 */
4078 raid5_unplug_device(mddev->queue);
4079 release_stripe(sh);
4080 schedule();
4081 goto retry;
4082 }
4083 finish_wait(&conf->wait_for_overlap, &w);
6ed3003c
N
4084 set_bit(STRIPE_HANDLE, &sh->state);
4085 clear_bit(STRIPE_DELAYED, &sh->state);
729a1866
N
4086 if (mddev->barrier &&
4087 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4088 atomic_inc(&conf->preread_active_stripes);
1da177e4 4089 release_stripe(sh);
1da177e4
LT
4090 } else {
4091 /* cannot get stripe for read-ahead, just give-up */
4092 clear_bit(BIO_UPTODATE, &bi->bi_flags);
4093 finish_wait(&conf->wait_for_overlap, &w);
4094 break;
4095 }
4096
4097 }
4098 spin_lock_irq(&conf->device_lock);
960e739d 4099 remaining = raid5_dec_bi_phys_segments(bi);
f6344757
N
4100 spin_unlock_irq(&conf->device_lock);
4101 if (remaining == 0) {
1da177e4 4102
16a53ecc 4103 if ( rw == WRITE )
1da177e4 4104 md_write_end(mddev);
6712ecf8 4105
0e13fe23 4106 bio_endio(bi, 0);
1da177e4 4107 }
729a1866
N
4108
4109 if (mddev->barrier) {
4110 /* We need to wait for the stripes to all be handled.
4111 * So: wait for preread_active_stripes to drop to 0.
4112 */
4113 wait_event(mddev->thread->wqueue,
4114 atomic_read(&conf->preread_active_stripes) == 0);
4115 }
1da177e4
LT
4116 return 0;
4117}
4118
b522adcd
DW
4119static sector_t raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks);
4120
52c03291 4121static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
1da177e4 4122{
52c03291
N
4123 /* reshaping is quite different to recovery/resync so it is
4124 * handled quite separately ... here.
4125 *
4126 * On each call to sync_request, we gather one chunk worth of
4127 * destination stripes and flag them as expanding.
4128 * Then we find all the source stripes and request reads.
4129 * As the reads complete, handle_stripe will copy the data
4130 * into the destination stripe and release that stripe.
4131 */
7b92813c 4132 raid5_conf_t *conf = mddev->private;
1da177e4 4133 struct stripe_head *sh;
ccfcc3c1 4134 sector_t first_sector, last_sector;
f416885e
N
4135 int raid_disks = conf->previous_raid_disks;
4136 int data_disks = raid_disks - conf->max_degraded;
4137 int new_data_disks = conf->raid_disks - conf->max_degraded;
52c03291
N
4138 int i;
4139 int dd_idx;
c8f517c4 4140 sector_t writepos, readpos, safepos;
ec32a2bd 4141 sector_t stripe_addr;
7a661381 4142 int reshape_sectors;
ab69ae12 4143 struct list_head stripes;
52c03291 4144
fef9c61f
N
4145 if (sector_nr == 0) {
4146 /* If restarting in the middle, skip the initial sectors */
4147 if (mddev->delta_disks < 0 &&
4148 conf->reshape_progress < raid5_size(mddev, 0, 0)) {
4149 sector_nr = raid5_size(mddev, 0, 0)
4150 - conf->reshape_progress;
a639755c 4151 } else if (mddev->delta_disks >= 0 &&
fef9c61f
N
4152 conf->reshape_progress > 0)
4153 sector_nr = conf->reshape_progress;
f416885e 4154 sector_div(sector_nr, new_data_disks);
fef9c61f 4155 if (sector_nr) {
8dee7211
N
4156 mddev->curr_resync_completed = sector_nr;
4157 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
fef9c61f
N
4158 *skipped = 1;
4159 return sector_nr;
4160 }
52c03291
N
4161 }
4162
7a661381
N
4163 /* We need to process a full chunk at a time.
4164 * If old and new chunk sizes differ, we need to process the
4165 * largest of these
4166 */
664e7c41
AN
4167 if (mddev->new_chunk_sectors > mddev->chunk_sectors)
4168 reshape_sectors = mddev->new_chunk_sectors;
7a661381 4169 else
9d8f0363 4170 reshape_sectors = mddev->chunk_sectors;
7a661381 4171
52c03291
N
4172 /* we update the metadata when there is more than 3Meg
4173 * in the block range (that is rather arbitrary, should
4174 * probably be time based) or when the data about to be
4175 * copied would over-write the source of the data at
4176 * the front of the range.
fef9c61f
N
4177 * i.e. one new_stripe along from reshape_progress new_maps
4178 * to after where reshape_safe old_maps to
52c03291 4179 */
fef9c61f 4180 writepos = conf->reshape_progress;
f416885e 4181 sector_div(writepos, new_data_disks);
c8f517c4
N
4182 readpos = conf->reshape_progress;
4183 sector_div(readpos, data_disks);
fef9c61f 4184 safepos = conf->reshape_safe;
f416885e 4185 sector_div(safepos, data_disks);
fef9c61f 4186 if (mddev->delta_disks < 0) {
ed37d83e 4187 writepos -= min_t(sector_t, reshape_sectors, writepos);
c8f517c4 4188 readpos += reshape_sectors;
7a661381 4189 safepos += reshape_sectors;
fef9c61f 4190 } else {
7a661381 4191 writepos += reshape_sectors;
ed37d83e
N
4192 readpos -= min_t(sector_t, reshape_sectors, readpos);
4193 safepos -= min_t(sector_t, reshape_sectors, safepos);
fef9c61f 4194 }
52c03291 4195
c8f517c4
N
4196 /* 'writepos' is the most advanced device address we might write.
4197 * 'readpos' is the least advanced device address we might read.
4198 * 'safepos' is the least address recorded in the metadata as having
4199 * been reshaped.
4200 * If 'readpos' is behind 'writepos', then there is no way that we can
4201 * ensure safety in the face of a crash - that must be done by userspace
4202 * making a backup of the data. So in that case there is no particular
4203 * rush to update metadata.
4204 * Otherwise if 'safepos' is behind 'writepos', then we really need to
4205 * update the metadata to advance 'safepos' to match 'readpos' so that
4206 * we can be safe in the event of a crash.
4207 * So we insist on updating metadata if safepos is behind writepos and
4208 * readpos is beyond writepos.
4209 * In any case, update the metadata every 10 seconds.
4210 * Maybe that number should be configurable, but I'm not sure it is
4211 * worth it.... maybe it could be a multiple of safemode_delay???
4212 */
fef9c61f 4213 if ((mddev->delta_disks < 0
c8f517c4
N
4214 ? (safepos > writepos && readpos < writepos)
4215 : (safepos < writepos && readpos > writepos)) ||
4216 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
52c03291
N
4217 /* Cannot proceed until we've updated the superblock... */
4218 wait_event(conf->wait_for_overlap,
4219 atomic_read(&conf->reshape_stripes)==0);
fef9c61f 4220 mddev->reshape_position = conf->reshape_progress;
acb180b0 4221 mddev->curr_resync_completed = mddev->curr_resync;
c8f517c4 4222 conf->reshape_checkpoint = jiffies;
850b2b42 4223 set_bit(MD_CHANGE_DEVS, &mddev->flags);
52c03291 4224 md_wakeup_thread(mddev->thread);
850b2b42 4225 wait_event(mddev->sb_wait, mddev->flags == 0 ||
52c03291
N
4226 kthread_should_stop());
4227 spin_lock_irq(&conf->device_lock);
fef9c61f 4228 conf->reshape_safe = mddev->reshape_position;
52c03291
N
4229 spin_unlock_irq(&conf->device_lock);
4230 wake_up(&conf->wait_for_overlap);
acb180b0 4231 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
52c03291
N
4232 }
4233
ec32a2bd
N
4234 if (mddev->delta_disks < 0) {
4235 BUG_ON(conf->reshape_progress == 0);
4236 stripe_addr = writepos;
4237 BUG_ON((mddev->dev_sectors &
7a661381
N
4238 ~((sector_t)reshape_sectors - 1))
4239 - reshape_sectors - stripe_addr
ec32a2bd
N
4240 != sector_nr);
4241 } else {
7a661381 4242 BUG_ON(writepos != sector_nr + reshape_sectors);
ec32a2bd
N
4243 stripe_addr = sector_nr;
4244 }
ab69ae12 4245 INIT_LIST_HEAD(&stripes);
7a661381 4246 for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
52c03291 4247 int j;
a9f326eb 4248 int skipped_disk = 0;
a8c906ca 4249 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
52c03291
N
4250 set_bit(STRIPE_EXPANDING, &sh->state);
4251 atomic_inc(&conf->reshape_stripes);
4252 /* If any of this stripe is beyond the end of the old
4253 * array, then we need to zero those blocks
4254 */
4255 for (j=sh->disks; j--;) {
4256 sector_t s;
4257 if (j == sh->pd_idx)
4258 continue;
f416885e 4259 if (conf->level == 6 &&
d0dabf7e 4260 j == sh->qd_idx)
f416885e 4261 continue;
784052ec 4262 s = compute_blocknr(sh, j, 0);
b522adcd 4263 if (s < raid5_size(mddev, 0, 0)) {
a9f326eb 4264 skipped_disk = 1;
52c03291
N
4265 continue;
4266 }
4267 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
4268 set_bit(R5_Expanded, &sh->dev[j].flags);
4269 set_bit(R5_UPTODATE, &sh->dev[j].flags);
4270 }
a9f326eb 4271 if (!skipped_disk) {
52c03291
N
4272 set_bit(STRIPE_EXPAND_READY, &sh->state);
4273 set_bit(STRIPE_HANDLE, &sh->state);
4274 }
ab69ae12 4275 list_add(&sh->lru, &stripes);
52c03291
N
4276 }
4277 spin_lock_irq(&conf->device_lock);
fef9c61f 4278 if (mddev->delta_disks < 0)
7a661381 4279 conf->reshape_progress -= reshape_sectors * new_data_disks;
fef9c61f 4280 else
7a661381 4281 conf->reshape_progress += reshape_sectors * new_data_disks;
52c03291
N
4282 spin_unlock_irq(&conf->device_lock);
4283 /* Ok, those stripe are ready. We can start scheduling
4284 * reads on the source stripes.
4285 * The source stripes are determined by mapping the first and last
4286 * block on the destination stripes.
4287 */
52c03291 4288 first_sector =
ec32a2bd 4289 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
911d4ee8 4290 1, &dd_idx, NULL);
52c03291 4291 last_sector =
0e6e0271 4292 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
09c9e5fa 4293 * new_data_disks - 1),
911d4ee8 4294 1, &dd_idx, NULL);
58c0fed4
AN
4295 if (last_sector >= mddev->dev_sectors)
4296 last_sector = mddev->dev_sectors - 1;
52c03291 4297 while (first_sector <= last_sector) {
a8c906ca 4298 sh = get_active_stripe(conf, first_sector, 1, 0, 1);
52c03291
N
4299 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4300 set_bit(STRIPE_HANDLE, &sh->state);
4301 release_stripe(sh);
4302 first_sector += STRIPE_SECTORS;
4303 }
ab69ae12
N
4304 /* Now that the sources are clearly marked, we can release
4305 * the destination stripes
4306 */
4307 while (!list_empty(&stripes)) {
4308 sh = list_entry(stripes.next, struct stripe_head, lru);
4309 list_del_init(&sh->lru);
4310 release_stripe(sh);
4311 }
c6207277
N
4312 /* If this takes us to the resync_max point where we have to pause,
4313 * then we need to write out the superblock.
4314 */
7a661381 4315 sector_nr += reshape_sectors;
c03f6a19
N
4316 if ((sector_nr - mddev->curr_resync_completed) * 2
4317 >= mddev->resync_max - mddev->curr_resync_completed) {
c6207277
N
4318 /* Cannot proceed until we've updated the superblock... */
4319 wait_event(conf->wait_for_overlap,
4320 atomic_read(&conf->reshape_stripes) == 0);
fef9c61f 4321 mddev->reshape_position = conf->reshape_progress;
48606a9f 4322 mddev->curr_resync_completed = mddev->curr_resync + reshape_sectors;
c8f517c4 4323 conf->reshape_checkpoint = jiffies;
c6207277
N
4324 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4325 md_wakeup_thread(mddev->thread);
4326 wait_event(mddev->sb_wait,
4327 !test_bit(MD_CHANGE_DEVS, &mddev->flags)
4328 || kthread_should_stop());
4329 spin_lock_irq(&conf->device_lock);
fef9c61f 4330 conf->reshape_safe = mddev->reshape_position;
c6207277
N
4331 spin_unlock_irq(&conf->device_lock);
4332 wake_up(&conf->wait_for_overlap);
acb180b0 4333 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
c6207277 4334 }
7a661381 4335 return reshape_sectors;
52c03291
N
4336}
4337
4338/* FIXME go_faster isn't used */
4339static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
4340{
7b92813c 4341 raid5_conf_t *conf = mddev->private;
52c03291 4342 struct stripe_head *sh;
58c0fed4 4343 sector_t max_sector = mddev->dev_sectors;
72626685 4344 int sync_blocks;
16a53ecc
N
4345 int still_degraded = 0;
4346 int i;
1da177e4 4347
72626685 4348 if (sector_nr >= max_sector) {
1da177e4
LT
4349 /* just being told to finish up .. nothing much to do */
4350 unplug_slaves(mddev);
cea9c228 4351
29269553
N
4352 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
4353 end_reshape(conf);
4354 return 0;
4355 }
72626685
N
4356
4357 if (mddev->curr_resync < max_sector) /* aborted */
4358 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
4359 &sync_blocks, 1);
16a53ecc 4360 else /* completed sync */
72626685
N
4361 conf->fullsync = 0;
4362 bitmap_close_sync(mddev->bitmap);
4363
1da177e4
LT
4364 return 0;
4365 }
ccfcc3c1 4366
64bd660b
N
4367 /* Allow raid5_quiesce to complete */
4368 wait_event(conf->wait_for_overlap, conf->quiesce != 2);
4369
52c03291
N
4370 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4371 return reshape_request(mddev, sector_nr, skipped);
f6705578 4372
c6207277
N
4373 /* No need to check resync_max as we never do more than one
4374 * stripe, and as resync_max will always be on a chunk boundary,
4375 * if the check in md_do_sync didn't fire, there is no chance
4376 * of overstepping resync_max here
4377 */
4378
16a53ecc 4379 /* if there is too many failed drives and we are trying
1da177e4
LT
4380 * to resync, then assert that we are finished, because there is
4381 * nothing we can do.
4382 */
3285edf1 4383 if (mddev->degraded >= conf->max_degraded &&
16a53ecc 4384 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
58c0fed4 4385 sector_t rv = mddev->dev_sectors - sector_nr;
57afd89f 4386 *skipped = 1;
1da177e4
LT
4387 return rv;
4388 }
72626685 4389 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
3855ad9f 4390 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
72626685
N
4391 !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
4392 /* we can skip this block, and probably more */
4393 sync_blocks /= STRIPE_SECTORS;
4394 *skipped = 1;
4395 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
4396 }
1da177e4 4397
b47490c9
N
4398
4399 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
4400
a8c906ca 4401 sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
1da177e4 4402 if (sh == NULL) {
a8c906ca 4403 sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
1da177e4 4404 /* make sure we don't swamp the stripe cache if someone else
16a53ecc 4405 * is trying to get access
1da177e4 4406 */
66c006a5 4407 schedule_timeout_uninterruptible(1);
1da177e4 4408 }
16a53ecc
N
4409 /* Need to check if array will still be degraded after recovery/resync
4410 * We don't need to check the 'failed' flag as when that gets set,
4411 * recovery aborts.
4412 */
f001a70c 4413 for (i = 0; i < conf->raid_disks; i++)
16a53ecc
N
4414 if (conf->disks[i].rdev == NULL)
4415 still_degraded = 1;
4416
4417 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
4418
4419 spin_lock(&sh->lock);
1da177e4
LT
4420 set_bit(STRIPE_SYNCING, &sh->state);
4421 clear_bit(STRIPE_INSYNC, &sh->state);
4422 spin_unlock(&sh->lock);
4423
1442577b 4424 handle_stripe(sh);
1da177e4
LT
4425 release_stripe(sh);
4426
4427 return STRIPE_SECTORS;
4428}
4429
46031f9a
RBJ
4430static int retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
4431{
4432 /* We may not be able to submit a whole bio at once as there
4433 * may not be enough stripe_heads available.
4434 * We cannot pre-allocate enough stripe_heads as we may need
4435 * more than exist in the cache (if we allow ever large chunks).
4436 * So we do one stripe head at a time and record in
4437 * ->bi_hw_segments how many have been done.
4438 *
4439 * We *know* that this entire raid_bio is in one chunk, so
4440 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
4441 */
4442 struct stripe_head *sh;
911d4ee8 4443 int dd_idx;
46031f9a
RBJ
4444 sector_t sector, logical_sector, last_sector;
4445 int scnt = 0;
4446 int remaining;
4447 int handled = 0;
4448
4449 logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
112bf897 4450 sector = raid5_compute_sector(conf, logical_sector,
911d4ee8 4451 0, &dd_idx, NULL);
46031f9a
RBJ
4452 last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
4453
4454 for (; logical_sector < last_sector;
387bb173
NB
4455 logical_sector += STRIPE_SECTORS,
4456 sector += STRIPE_SECTORS,
4457 scnt++) {
46031f9a 4458
960e739d 4459 if (scnt < raid5_bi_hw_segments(raid_bio))
46031f9a
RBJ
4460 /* already done this stripe */
4461 continue;
4462
a8c906ca 4463 sh = get_active_stripe(conf, sector, 0, 1, 0);
46031f9a
RBJ
4464
4465 if (!sh) {
4466 /* failed to get a stripe - must wait */
960e739d 4467 raid5_set_bi_hw_segments(raid_bio, scnt);
46031f9a
RBJ
4468 conf->retry_read_aligned = raid_bio;
4469 return handled;
4470 }
4471
4472 set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
387bb173
NB
4473 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
4474 release_stripe(sh);
960e739d 4475 raid5_set_bi_hw_segments(raid_bio, scnt);
387bb173
NB
4476 conf->retry_read_aligned = raid_bio;
4477 return handled;
4478 }
4479
36d1c647 4480 handle_stripe(sh);
46031f9a
RBJ
4481 release_stripe(sh);
4482 handled++;
4483 }
4484 spin_lock_irq(&conf->device_lock);
960e739d 4485 remaining = raid5_dec_bi_phys_segments(raid_bio);
46031f9a 4486 spin_unlock_irq(&conf->device_lock);
0e13fe23
NB
4487 if (remaining == 0)
4488 bio_endio(raid_bio, 0);
46031f9a
RBJ
4489 if (atomic_dec_and_test(&conf->active_aligned_reads))
4490 wake_up(&conf->wait_for_stripe);
4491 return handled;
4492}
4493
46031f9a 4494
1da177e4
LT
4495/*
4496 * This is our raid5 kernel thread.
4497 *
4498 * We scan the hash table for stripes which can be handled now.
4499 * During the scan, completed stripes are saved for us by the interrupt
4500 * handler, so that they will not have to wait for our next wakeup.
4501 */
6ed3003c 4502static void raid5d(mddev_t *mddev)
1da177e4
LT
4503{
4504 struct stripe_head *sh;
070ec55d 4505 raid5_conf_t *conf = mddev->private;
1da177e4
LT
4506 int handled;
4507
45b4233c 4508 pr_debug("+++ raid5d active\n");
1da177e4
LT
4509
4510 md_check_recovery(mddev);
1da177e4
LT
4511
4512 handled = 0;
4513 spin_lock_irq(&conf->device_lock);
4514 while (1) {
46031f9a 4515 struct bio *bio;
1da177e4 4516
ae3c20cc 4517 if (conf->seq_flush != conf->seq_write) {
72626685 4518 int seq = conf->seq_flush;
700e432d 4519 spin_unlock_irq(&conf->device_lock);
72626685 4520 bitmap_unplug(mddev->bitmap);
700e432d 4521 spin_lock_irq(&conf->device_lock);
72626685
N
4522 conf->seq_write = seq;
4523 activate_bit_delay(conf);
4524 }
4525
46031f9a
RBJ
4526 while ((bio = remove_bio_from_retry(conf))) {
4527 int ok;
4528 spin_unlock_irq(&conf->device_lock);
4529 ok = retry_aligned_read(conf, bio);
4530 spin_lock_irq(&conf->device_lock);
4531 if (!ok)
4532 break;
4533 handled++;
4534 }
4535
8b3e6cdc
DW
4536 sh = __get_priority_stripe(conf);
4537
c9f21aaf 4538 if (!sh)
1da177e4 4539 break;
1da177e4
LT
4540 spin_unlock_irq(&conf->device_lock);
4541
4542 handled++;
417b8d4a
DW
4543 handle_stripe(sh);
4544 release_stripe(sh);
4545 cond_resched();
1da177e4
LT
4546
4547 spin_lock_irq(&conf->device_lock);
4548 }
45b4233c 4549 pr_debug("%d stripes handled\n", handled);
1da177e4
LT
4550
4551 spin_unlock_irq(&conf->device_lock);
4552
c9f21aaf 4553 async_tx_issue_pending_all();
1da177e4
LT
4554 unplug_slaves(mddev);
4555
45b4233c 4556 pr_debug("--- raid5d inactive\n");
1da177e4
LT
4557}
4558
3f294f4f 4559static ssize_t
007583c9 4560raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
3f294f4f 4561{
070ec55d 4562 raid5_conf_t *conf = mddev->private;
96de1e66
N
4563 if (conf)
4564 return sprintf(page, "%d\n", conf->max_nr_stripes);
4565 else
4566 return 0;
3f294f4f
N
4567}
4568
4569static ssize_t
007583c9 4570raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
3f294f4f 4571{
070ec55d 4572 raid5_conf_t *conf = mddev->private;
4ef197d8 4573 unsigned long new;
b5470dc5
DW
4574 int err;
4575
3f294f4f
N
4576 if (len >= PAGE_SIZE)
4577 return -EINVAL;
96de1e66
N
4578 if (!conf)
4579 return -ENODEV;
3f294f4f 4580
4ef197d8 4581 if (strict_strtoul(page, 10, &new))
3f294f4f
N
4582 return -EINVAL;
4583 if (new <= 16 || new > 32768)
4584 return -EINVAL;
4585 while (new < conf->max_nr_stripes) {
4586 if (drop_one_stripe(conf))
4587 conf->max_nr_stripes--;
4588 else
4589 break;
4590 }
b5470dc5
DW
4591 err = md_allow_write(mddev);
4592 if (err)
4593 return err;
3f294f4f
N
4594 while (new > conf->max_nr_stripes) {
4595 if (grow_one_stripe(conf))
4596 conf->max_nr_stripes++;
4597 else break;
4598 }
4599 return len;
4600}
007583c9 4601
96de1e66
N
4602static struct md_sysfs_entry
4603raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4604 raid5_show_stripe_cache_size,
4605 raid5_store_stripe_cache_size);
3f294f4f 4606
8b3e6cdc
DW
4607static ssize_t
4608raid5_show_preread_threshold(mddev_t *mddev, char *page)
4609{
070ec55d 4610 raid5_conf_t *conf = mddev->private;
8b3e6cdc
DW
4611 if (conf)
4612 return sprintf(page, "%d\n", conf->bypass_threshold);
4613 else
4614 return 0;
4615}
4616
4617static ssize_t
4618raid5_store_preread_threshold(mddev_t *mddev, const char *page, size_t len)
4619{
070ec55d 4620 raid5_conf_t *conf = mddev->private;
4ef197d8 4621 unsigned long new;
8b3e6cdc
DW
4622 if (len >= PAGE_SIZE)
4623 return -EINVAL;
4624 if (!conf)
4625 return -ENODEV;
4626
4ef197d8 4627 if (strict_strtoul(page, 10, &new))
8b3e6cdc 4628 return -EINVAL;
4ef197d8 4629 if (new > conf->max_nr_stripes)
8b3e6cdc
DW
4630 return -EINVAL;
4631 conf->bypass_threshold = new;
4632 return len;
4633}
4634
4635static struct md_sysfs_entry
4636raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4637 S_IRUGO | S_IWUSR,
4638 raid5_show_preread_threshold,
4639 raid5_store_preread_threshold);
4640
3f294f4f 4641static ssize_t
96de1e66 4642stripe_cache_active_show(mddev_t *mddev, char *page)
3f294f4f 4643{
070ec55d 4644 raid5_conf_t *conf = mddev->private;
96de1e66
N
4645 if (conf)
4646 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4647 else
4648 return 0;
3f294f4f
N
4649}
4650
96de1e66
N
4651static struct md_sysfs_entry
4652raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
3f294f4f 4653
007583c9 4654static struct attribute *raid5_attrs[] = {
3f294f4f
N
4655 &raid5_stripecache_size.attr,
4656 &raid5_stripecache_active.attr,
8b3e6cdc 4657 &raid5_preread_bypass_threshold.attr,
3f294f4f
N
4658 NULL,
4659};
007583c9
N
4660static struct attribute_group raid5_attrs_group = {
4661 .name = NULL,
4662 .attrs = raid5_attrs,
3f294f4f
N
4663};
4664
80c3a6ce
DW
4665static sector_t
4666raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks)
4667{
070ec55d 4668 raid5_conf_t *conf = mddev->private;
80c3a6ce
DW
4669
4670 if (!sectors)
4671 sectors = mddev->dev_sectors;
5e5e3e78 4672 if (!raid_disks)
7ec05478 4673 /* size is defined by the smallest of previous and new size */
5e5e3e78 4674 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
80c3a6ce 4675
9d8f0363 4676 sectors &= ~((sector_t)mddev->chunk_sectors - 1);
664e7c41 4677 sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
80c3a6ce
DW
4678 return sectors * (raid_disks - conf->max_degraded);
4679}
4680
36d1c647
DW
4681static void raid5_free_percpu(raid5_conf_t *conf)
4682{
4683 struct raid5_percpu *percpu;
4684 unsigned long cpu;
4685
4686 if (!conf->percpu)
4687 return;
4688
4689 get_online_cpus();
4690 for_each_possible_cpu(cpu) {
4691 percpu = per_cpu_ptr(conf->percpu, cpu);
4692 safe_put_page(percpu->spare_page);
d6f38f31 4693 kfree(percpu->scribble);
36d1c647
DW
4694 }
4695#ifdef CONFIG_HOTPLUG_CPU
4696 unregister_cpu_notifier(&conf->cpu_notify);
4697#endif
4698 put_online_cpus();
4699
4700 free_percpu(conf->percpu);
4701}
4702
95fc17aa
DW
4703static void free_conf(raid5_conf_t *conf)
4704{
4705 shrink_stripes(conf);
36d1c647 4706 raid5_free_percpu(conf);
95fc17aa
DW
4707 kfree(conf->disks);
4708 kfree(conf->stripe_hashtbl);
4709 kfree(conf);
4710}
4711
36d1c647
DW
4712#ifdef CONFIG_HOTPLUG_CPU
4713static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
4714 void *hcpu)
4715{
4716 raid5_conf_t *conf = container_of(nfb, raid5_conf_t, cpu_notify);
4717 long cpu = (long)hcpu;
4718 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
4719
4720 switch (action) {
4721 case CPU_UP_PREPARE:
4722 case CPU_UP_PREPARE_FROZEN:
d6f38f31 4723 if (conf->level == 6 && !percpu->spare_page)
36d1c647 4724 percpu->spare_page = alloc_page(GFP_KERNEL);
d6f38f31
DW
4725 if (!percpu->scribble)
4726 percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4727
4728 if (!percpu->scribble ||
4729 (conf->level == 6 && !percpu->spare_page)) {
4730 safe_put_page(percpu->spare_page);
4731 kfree(percpu->scribble);
36d1c647
DW
4732 pr_err("%s: failed memory allocation for cpu%ld\n",
4733 __func__, cpu);
55af6bb5 4734 return notifier_from_errno(-ENOMEM);
36d1c647
DW
4735 }
4736 break;
4737 case CPU_DEAD:
4738 case CPU_DEAD_FROZEN:
4739 safe_put_page(percpu->spare_page);
d6f38f31 4740 kfree(percpu->scribble);
36d1c647 4741 percpu->spare_page = NULL;
d6f38f31 4742 percpu->scribble = NULL;
36d1c647
DW
4743 break;
4744 default:
4745 break;
4746 }
4747 return NOTIFY_OK;
4748}
4749#endif
4750
4751static int raid5_alloc_percpu(raid5_conf_t *conf)
4752{
4753 unsigned long cpu;
4754 struct page *spare_page;
a29d8b8e 4755 struct raid5_percpu __percpu *allcpus;
d6f38f31 4756 void *scribble;
36d1c647
DW
4757 int err;
4758
36d1c647
DW
4759 allcpus = alloc_percpu(struct raid5_percpu);
4760 if (!allcpus)
4761 return -ENOMEM;
4762 conf->percpu = allcpus;
4763
4764 get_online_cpus();
4765 err = 0;
4766 for_each_present_cpu(cpu) {
d6f38f31
DW
4767 if (conf->level == 6) {
4768 spare_page = alloc_page(GFP_KERNEL);
4769 if (!spare_page) {
4770 err = -ENOMEM;
4771 break;
4772 }
4773 per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
4774 }
5e5e3e78 4775 scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
d6f38f31 4776 if (!scribble) {
36d1c647
DW
4777 err = -ENOMEM;
4778 break;
4779 }
d6f38f31 4780 per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
36d1c647
DW
4781 }
4782#ifdef CONFIG_HOTPLUG_CPU
4783 conf->cpu_notify.notifier_call = raid456_cpu_notify;
4784 conf->cpu_notify.priority = 0;
4785 if (err == 0)
4786 err = register_cpu_notifier(&conf->cpu_notify);
4787#endif
4788 put_online_cpus();
4789
4790 return err;
4791}
4792
91adb564 4793static raid5_conf_t *setup_conf(mddev_t *mddev)
1da177e4
LT
4794{
4795 raid5_conf_t *conf;
5e5e3e78 4796 int raid_disk, memory, max_disks;
1da177e4
LT
4797 mdk_rdev_t *rdev;
4798 struct disk_info *disk;
1da177e4 4799
91adb564
N
4800 if (mddev->new_level != 5
4801 && mddev->new_level != 4
4802 && mddev->new_level != 6) {
0c55e022 4803 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
91adb564
N
4804 mdname(mddev), mddev->new_level);
4805 return ERR_PTR(-EIO);
1da177e4 4806 }
91adb564
N
4807 if ((mddev->new_level == 5
4808 && !algorithm_valid_raid5(mddev->new_layout)) ||
4809 (mddev->new_level == 6
4810 && !algorithm_valid_raid6(mddev->new_layout))) {
0c55e022 4811 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
91adb564
N
4812 mdname(mddev), mddev->new_layout);
4813 return ERR_PTR(-EIO);
99c0fb5f 4814 }
91adb564 4815 if (mddev->new_level == 6 && mddev->raid_disks < 4) {
0c55e022 4816 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
91adb564
N
4817 mdname(mddev), mddev->raid_disks);
4818 return ERR_PTR(-EINVAL);
4bbf3771
N
4819 }
4820
664e7c41
AN
4821 if (!mddev->new_chunk_sectors ||
4822 (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
4823 !is_power_of_2(mddev->new_chunk_sectors)) {
0c55e022
N
4824 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
4825 mdname(mddev), mddev->new_chunk_sectors << 9);
91adb564 4826 return ERR_PTR(-EINVAL);
f6705578
N
4827 }
4828
91adb564
N
4829 conf = kzalloc(sizeof(raid5_conf_t), GFP_KERNEL);
4830 if (conf == NULL)
1da177e4 4831 goto abort;
f5efd45a
DW
4832 spin_lock_init(&conf->device_lock);
4833 init_waitqueue_head(&conf->wait_for_stripe);
4834 init_waitqueue_head(&conf->wait_for_overlap);
4835 INIT_LIST_HEAD(&conf->handle_list);
4836 INIT_LIST_HEAD(&conf->hold_list);
4837 INIT_LIST_HEAD(&conf->delayed_list);
4838 INIT_LIST_HEAD(&conf->bitmap_list);
4839 INIT_LIST_HEAD(&conf->inactive_list);
4840 atomic_set(&conf->active_stripes, 0);
4841 atomic_set(&conf->preread_active_stripes, 0);
4842 atomic_set(&conf->active_aligned_reads, 0);
4843 conf->bypass_threshold = BYPASS_THRESHOLD;
91adb564
N
4844
4845 conf->raid_disks = mddev->raid_disks;
4846 if (mddev->reshape_position == MaxSector)
4847 conf->previous_raid_disks = mddev->raid_disks;
4848 else
f6705578 4849 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
5e5e3e78
N
4850 max_disks = max(conf->raid_disks, conf->previous_raid_disks);
4851 conf->scribble_len = scribble_len(max_disks);
f6705578 4852
5e5e3e78 4853 conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
b55e6bfc
N
4854 GFP_KERNEL);
4855 if (!conf->disks)
4856 goto abort;
9ffae0cf 4857
1da177e4
LT
4858 conf->mddev = mddev;
4859
fccddba0 4860 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
1da177e4 4861 goto abort;
1da177e4 4862
36d1c647
DW
4863 conf->level = mddev->new_level;
4864 if (raid5_alloc_percpu(conf) != 0)
4865 goto abort;
4866
0c55e022 4867 pr_debug("raid456: run(%s) called.\n", mdname(mddev));
1da177e4 4868
159ec1fc 4869 list_for_each_entry(rdev, &mddev->disks, same_set) {
1da177e4 4870 raid_disk = rdev->raid_disk;
5e5e3e78 4871 if (raid_disk >= max_disks
1da177e4
LT
4872 || raid_disk < 0)
4873 continue;
4874 disk = conf->disks + raid_disk;
4875
4876 disk->rdev = rdev;
4877
b2d444d7 4878 if (test_bit(In_sync, &rdev->flags)) {
1da177e4 4879 char b[BDEVNAME_SIZE];
0c55e022
N
4880 printk(KERN_INFO "md/raid:%s: device %s operational as raid"
4881 " disk %d\n",
4882 mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
8c2e870a
NB
4883 } else
4884 /* Cannot rely on bitmap to complete recovery */
4885 conf->fullsync = 1;
1da177e4
LT
4886 }
4887
09c9e5fa 4888 conf->chunk_sectors = mddev->new_chunk_sectors;
91adb564 4889 conf->level = mddev->new_level;
16a53ecc
N
4890 if (conf->level == 6)
4891 conf->max_degraded = 2;
4892 else
4893 conf->max_degraded = 1;
91adb564 4894 conf->algorithm = mddev->new_layout;
1da177e4 4895 conf->max_nr_stripes = NR_STRIPES;
fef9c61f 4896 conf->reshape_progress = mddev->reshape_position;
e183eaed 4897 if (conf->reshape_progress != MaxSector) {
09c9e5fa 4898 conf->prev_chunk_sectors = mddev->chunk_sectors;
e183eaed
N
4899 conf->prev_algo = mddev->layout;
4900 }
1da177e4 4901
91adb564 4902 memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
5e5e3e78 4903 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
91adb564
N
4904 if (grow_stripes(conf, conf->max_nr_stripes)) {
4905 printk(KERN_ERR
0c55e022
N
4906 "md/raid:%s: couldn't allocate %dkB for buffers\n",
4907 mdname(mddev), memory);
91adb564
N
4908 goto abort;
4909 } else
0c55e022
N
4910 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
4911 mdname(mddev), memory);
1da177e4 4912
0da3c619 4913 conf->thread = md_register_thread(raid5d, mddev, NULL);
91adb564
N
4914 if (!conf->thread) {
4915 printk(KERN_ERR
0c55e022 4916 "md/raid:%s: couldn't allocate thread.\n",
91adb564 4917 mdname(mddev));
16a53ecc
N
4918 goto abort;
4919 }
91adb564
N
4920
4921 return conf;
4922
4923 abort:
4924 if (conf) {
95fc17aa 4925 free_conf(conf);
91adb564
N
4926 return ERR_PTR(-EIO);
4927 } else
4928 return ERR_PTR(-ENOMEM);
4929}
4930
c148ffdc
N
4931
4932static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
4933{
4934 switch (algo) {
4935 case ALGORITHM_PARITY_0:
4936 if (raid_disk < max_degraded)
4937 return 1;
4938 break;
4939 case ALGORITHM_PARITY_N:
4940 if (raid_disk >= raid_disks - max_degraded)
4941 return 1;
4942 break;
4943 case ALGORITHM_PARITY_0_6:
4944 if (raid_disk == 0 ||
4945 raid_disk == raid_disks - 1)
4946 return 1;
4947 break;
4948 case ALGORITHM_LEFT_ASYMMETRIC_6:
4949 case ALGORITHM_RIGHT_ASYMMETRIC_6:
4950 case ALGORITHM_LEFT_SYMMETRIC_6:
4951 case ALGORITHM_RIGHT_SYMMETRIC_6:
4952 if (raid_disk == raid_disks - 1)
4953 return 1;
4954 }
4955 return 0;
4956}
4957
91adb564
N
4958static int run(mddev_t *mddev)
4959{
4960 raid5_conf_t *conf;
8f6c2e4b 4961 int working_disks = 0, chunk_size;
c148ffdc 4962 int dirty_parity_disks = 0;
91adb564 4963 mdk_rdev_t *rdev;
c148ffdc 4964 sector_t reshape_offset = 0;
91adb564 4965
8c6ac868 4966 if (mddev->recovery_cp != MaxSector)
0c55e022 4967 printk(KERN_NOTICE "md/raid:%s: not clean"
8c6ac868
AN
4968 " -- starting background reconstruction\n",
4969 mdname(mddev));
91adb564
N
4970 if (mddev->reshape_position != MaxSector) {
4971 /* Check that we can continue the reshape.
4972 * Currently only disks can change, it must
4973 * increase, and we must be past the point where
4974 * a stripe over-writes itself
4975 */
4976 sector_t here_new, here_old;
4977 int old_disks;
18b00334 4978 int max_degraded = (mddev->level == 6 ? 2 : 1);
91adb564 4979
88ce4930 4980 if (mddev->new_level != mddev->level) {
0c55e022 4981 printk(KERN_ERR "md/raid:%s: unsupported reshape "
91adb564
N
4982 "required - aborting.\n",
4983 mdname(mddev));
4984 return -EINVAL;
4985 }
91adb564
N
4986 old_disks = mddev->raid_disks - mddev->delta_disks;
4987 /* reshape_position must be on a new-stripe boundary, and one
4988 * further up in new geometry must map after here in old
4989 * geometry.
4990 */
4991 here_new = mddev->reshape_position;
664e7c41 4992 if (sector_div(here_new, mddev->new_chunk_sectors *
91adb564 4993 (mddev->raid_disks - max_degraded))) {
0c55e022
N
4994 printk(KERN_ERR "md/raid:%s: reshape_position not "
4995 "on a stripe boundary\n", mdname(mddev));
91adb564
N
4996 return -EINVAL;
4997 }
c148ffdc 4998 reshape_offset = here_new * mddev->new_chunk_sectors;
91adb564
N
4999 /* here_new is the stripe we will write to */
5000 here_old = mddev->reshape_position;
9d8f0363 5001 sector_div(here_old, mddev->chunk_sectors *
91adb564
N
5002 (old_disks-max_degraded));
5003 /* here_old is the first stripe that we might need to read
5004 * from */
67ac6011
N
5005 if (mddev->delta_disks == 0) {
5006 /* We cannot be sure it is safe to start an in-place
5007 * reshape. It is only safe if user-space if monitoring
5008 * and taking constant backups.
5009 * mdadm always starts a situation like this in
5010 * readonly mode so it can take control before
5011 * allowing any writes. So just check for that.
5012 */
5013 if ((here_new * mddev->new_chunk_sectors !=
5014 here_old * mddev->chunk_sectors) ||
5015 mddev->ro == 0) {
0c55e022
N
5016 printk(KERN_ERR "md/raid:%s: in-place reshape must be started"
5017 " in read-only mode - aborting\n",
5018 mdname(mddev));
67ac6011
N
5019 return -EINVAL;
5020 }
5021 } else if (mddev->delta_disks < 0
5022 ? (here_new * mddev->new_chunk_sectors <=
5023 here_old * mddev->chunk_sectors)
5024 : (here_new * mddev->new_chunk_sectors >=
5025 here_old * mddev->chunk_sectors)) {
91adb564 5026 /* Reading from the same stripe as writing to - bad */
0c55e022
N
5027 printk(KERN_ERR "md/raid:%s: reshape_position too early for "
5028 "auto-recovery - aborting.\n",
5029 mdname(mddev));
91adb564
N
5030 return -EINVAL;
5031 }
0c55e022
N
5032 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
5033 mdname(mddev));
91adb564
N
5034 /* OK, we should be able to continue; */
5035 } else {
5036 BUG_ON(mddev->level != mddev->new_level);
5037 BUG_ON(mddev->layout != mddev->new_layout);
664e7c41 5038 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
91adb564 5039 BUG_ON(mddev->delta_disks != 0);
1da177e4 5040 }
91adb564 5041
245f46c2
N
5042 if (mddev->private == NULL)
5043 conf = setup_conf(mddev);
5044 else
5045 conf = mddev->private;
5046
91adb564
N
5047 if (IS_ERR(conf))
5048 return PTR_ERR(conf);
5049
5050 mddev->thread = conf->thread;
5051 conf->thread = NULL;
5052 mddev->private = conf;
5053
5054 /*
5055 * 0 for a fully functional array, 1 or 2 for a degraded array.
5056 */
c148ffdc
N
5057 list_for_each_entry(rdev, &mddev->disks, same_set) {
5058 if (rdev->raid_disk < 0)
5059 continue;
5060 if (test_bit(In_sync, &rdev->flags))
91adb564 5061 working_disks++;
c148ffdc
N
5062 /* This disc is not fully in-sync. However if it
5063 * just stored parity (beyond the recovery_offset),
5064 * when we don't need to be concerned about the
5065 * array being dirty.
5066 * When reshape goes 'backwards', we never have
5067 * partially completed devices, so we only need
5068 * to worry about reshape going forwards.
5069 */
5070 /* Hack because v0.91 doesn't store recovery_offset properly. */
5071 if (mddev->major_version == 0 &&
5072 mddev->minor_version > 90)
5073 rdev->recovery_offset = reshape_offset;
5074
c148ffdc
N
5075 if (rdev->recovery_offset < reshape_offset) {
5076 /* We need to check old and new layout */
5077 if (!only_parity(rdev->raid_disk,
5078 conf->algorithm,
5079 conf->raid_disks,
5080 conf->max_degraded))
5081 continue;
5082 }
5083 if (!only_parity(rdev->raid_disk,
5084 conf->prev_algo,
5085 conf->previous_raid_disks,
5086 conf->max_degraded))
5087 continue;
5088 dirty_parity_disks++;
5089 }
91adb564 5090
5e5e3e78
N
5091 mddev->degraded = (max(conf->raid_disks, conf->previous_raid_disks)
5092 - working_disks);
91adb564 5093
674806d6 5094 if (has_failed(conf)) {
0c55e022 5095 printk(KERN_ERR "md/raid:%s: not enough operational devices"
1da177e4 5096 " (%d/%d failed)\n",
02c2de8c 5097 mdname(mddev), mddev->degraded, conf->raid_disks);
1da177e4
LT
5098 goto abort;
5099 }
5100
91adb564 5101 /* device size must be a multiple of chunk size */
9d8f0363 5102 mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
91adb564
N
5103 mddev->resync_max_sectors = mddev->dev_sectors;
5104
c148ffdc 5105 if (mddev->degraded > dirty_parity_disks &&
1da177e4 5106 mddev->recovery_cp != MaxSector) {
6ff8d8ec
N
5107 if (mddev->ok_start_degraded)
5108 printk(KERN_WARNING
0c55e022
N
5109 "md/raid:%s: starting dirty degraded array"
5110 " - data corruption possible.\n",
6ff8d8ec
N
5111 mdname(mddev));
5112 else {
5113 printk(KERN_ERR
0c55e022 5114 "md/raid:%s: cannot start dirty degraded array.\n",
6ff8d8ec
N
5115 mdname(mddev));
5116 goto abort;
5117 }
1da177e4
LT
5118 }
5119
1da177e4 5120 if (mddev->degraded == 0)
0c55e022
N
5121 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
5122 " devices, algorithm %d\n", mdname(mddev), conf->level,
e183eaed
N
5123 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
5124 mddev->new_layout);
1da177e4 5125 else
0c55e022
N
5126 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
5127 " out of %d devices, algorithm %d\n",
5128 mdname(mddev), conf->level,
5129 mddev->raid_disks - mddev->degraded,
5130 mddev->raid_disks, mddev->new_layout);
1da177e4
LT
5131
5132 print_raid5_conf(conf);
5133
fef9c61f 5134 if (conf->reshape_progress != MaxSector) {
fef9c61f 5135 conf->reshape_safe = conf->reshape_progress;
f6705578
N
5136 atomic_set(&conf->reshape_stripes, 0);
5137 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5138 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5139 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5140 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5141 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
0da3c619 5142 "reshape");
f6705578
N
5143 }
5144
1da177e4 5145 /* read-ahead size must cover two whole stripes, which is
16a53ecc 5146 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
1da177e4
LT
5147 */
5148 {
16a53ecc
N
5149 int data_disks = conf->previous_raid_disks - conf->max_degraded;
5150 int stripe = data_disks *
9d8f0363 5151 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
1da177e4
LT
5152 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5153 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5154 }
5155
5156 /* Ok, everything is just fine now */
a64c876f
N
5157 if (mddev->to_remove == &raid5_attrs_group)
5158 mddev->to_remove = NULL;
5159 else if (sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
5e55e2f5 5160 printk(KERN_WARNING
0c55e022 5161 "md/raid:%s: failed to create sysfs attributes.\n",
5e55e2f5 5162 mdname(mddev));
7a5febe9 5163
91adb564
N
5164 mddev->queue->queue_lock = &conf->device_lock;
5165
7a5febe9 5166 mddev->queue->unplug_fn = raid5_unplug_device;
f022b2fd 5167 mddev->queue->backing_dev_info.congested_data = mddev;
041ae52e 5168 mddev->queue->backing_dev_info.congested_fn = raid5_congested;
f022b2fd 5169
1f403624 5170 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7a5febe9 5171
23032a0e 5172 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
8f6c2e4b
MP
5173 chunk_size = mddev->chunk_sectors << 9;
5174 blk_queue_io_min(mddev->queue, chunk_size);
5175 blk_queue_io_opt(mddev->queue, chunk_size *
5176 (conf->raid_disks - conf->max_degraded));
5177
5178 list_for_each_entry(rdev, &mddev->disks, same_set)
5179 disk_stack_limits(mddev->gendisk, rdev->bdev,
5180 rdev->data_offset << 9);
23032a0e 5181
1da177e4
LT
5182 return 0;
5183abort:
e0cf8f04 5184 md_unregister_thread(mddev->thread);
91adb564 5185 mddev->thread = NULL;
1da177e4
LT
5186 if (conf) {
5187 print_raid5_conf(conf);
95fc17aa 5188 free_conf(conf);
1da177e4
LT
5189 }
5190 mddev->private = NULL;
0c55e022 5191 printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
1da177e4
LT
5192 return -EIO;
5193}
5194
3f294f4f 5195static int stop(mddev_t *mddev)
1da177e4 5196{
7b92813c 5197 raid5_conf_t *conf = mddev->private;
1da177e4
LT
5198
5199 md_unregister_thread(mddev->thread);
5200 mddev->thread = NULL;
041ae52e 5201 mddev->queue->backing_dev_info.congested_fn = NULL;
1da177e4 5202 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
95fc17aa 5203 free_conf(conf);
a64c876f
N
5204 mddev->private = NULL;
5205 mddev->to_remove = &raid5_attrs_group;
1da177e4
LT
5206 return 0;
5207}
5208
45b4233c 5209#ifdef DEBUG
d710e138 5210static void print_sh(struct seq_file *seq, struct stripe_head *sh)
1da177e4
LT
5211{
5212 int i;
5213
16a53ecc
N
5214 seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
5215 (unsigned long long)sh->sector, sh->pd_idx, sh->state);
5216 seq_printf(seq, "sh %llu, count %d.\n",
5217 (unsigned long long)sh->sector, atomic_read(&sh->count));
5218 seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
7ecaa1e6 5219 for (i = 0; i < sh->disks; i++) {
16a53ecc
N
5220 seq_printf(seq, "(cache%d: %p %ld) ",
5221 i, sh->dev[i].page, sh->dev[i].flags);
1da177e4 5222 }
16a53ecc 5223 seq_printf(seq, "\n");
1da177e4
LT
5224}
5225
d710e138 5226static void printall(struct seq_file *seq, raid5_conf_t *conf)
1da177e4
LT
5227{
5228 struct stripe_head *sh;
fccddba0 5229 struct hlist_node *hn;
1da177e4
LT
5230 int i;
5231
5232 spin_lock_irq(&conf->device_lock);
5233 for (i = 0; i < NR_HASH; i++) {
fccddba0 5234 hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
1da177e4
LT
5235 if (sh->raid_conf != conf)
5236 continue;
16a53ecc 5237 print_sh(seq, sh);
1da177e4
LT
5238 }
5239 }
5240 spin_unlock_irq(&conf->device_lock);
5241}
5242#endif
5243
d710e138 5244static void status(struct seq_file *seq, mddev_t *mddev)
1da177e4 5245{
7b92813c 5246 raid5_conf_t *conf = mddev->private;
1da177e4
LT
5247 int i;
5248
9d8f0363
AN
5249 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
5250 mddev->chunk_sectors / 2, mddev->layout);
02c2de8c 5251 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
1da177e4
LT
5252 for (i = 0; i < conf->raid_disks; i++)
5253 seq_printf (seq, "%s",
5254 conf->disks[i].rdev &&
b2d444d7 5255 test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
1da177e4 5256 seq_printf (seq, "]");
45b4233c 5257#ifdef DEBUG
16a53ecc
N
5258 seq_printf (seq, "\n");
5259 printall(seq, conf);
1da177e4
LT
5260#endif
5261}
5262
5263static void print_raid5_conf (raid5_conf_t *conf)
5264{
5265 int i;
5266 struct disk_info *tmp;
5267
0c55e022 5268 printk(KERN_DEBUG "RAID conf printout:\n");
1da177e4
LT
5269 if (!conf) {
5270 printk("(conf==NULL)\n");
5271 return;
5272 }
0c55e022
N
5273 printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
5274 conf->raid_disks,
5275 conf->raid_disks - conf->mddev->degraded);
1da177e4
LT
5276
5277 for (i = 0; i < conf->raid_disks; i++) {
5278 char b[BDEVNAME_SIZE];
5279 tmp = conf->disks + i;
5280 if (tmp->rdev)
0c55e022
N
5281 printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
5282 i, !test_bit(Faulty, &tmp->rdev->flags),
5283 bdevname(tmp->rdev->bdev, b));
1da177e4
LT
5284 }
5285}
5286
5287static int raid5_spare_active(mddev_t *mddev)
5288{
5289 int i;
5290 raid5_conf_t *conf = mddev->private;
5291 struct disk_info *tmp;
5292
5293 for (i = 0; i < conf->raid_disks; i++) {
5294 tmp = conf->disks + i;
5295 if (tmp->rdev
70fffd0b 5296 && tmp->rdev->recovery_offset == MaxSector
b2d444d7 5297 && !test_bit(Faulty, &tmp->rdev->flags)
c04be0aa
N
5298 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
5299 unsigned long flags;
5300 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 5301 mddev->degraded--;
c04be0aa 5302 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
5303 }
5304 }
5305 print_raid5_conf(conf);
5306 return 0;
5307}
5308
5309static int raid5_remove_disk(mddev_t *mddev, int number)
5310{
5311 raid5_conf_t *conf = mddev->private;
5312 int err = 0;
5313 mdk_rdev_t *rdev;
5314 struct disk_info *p = conf->disks + number;
5315
5316 print_raid5_conf(conf);
5317 rdev = p->rdev;
5318 if (rdev) {
ec32a2bd
N
5319 if (number >= conf->raid_disks &&
5320 conf->reshape_progress == MaxSector)
5321 clear_bit(In_sync, &rdev->flags);
5322
b2d444d7 5323 if (test_bit(In_sync, &rdev->flags) ||
1da177e4
LT
5324 atomic_read(&rdev->nr_pending)) {
5325 err = -EBUSY;
5326 goto abort;
5327 }
dfc70645
N
5328 /* Only remove non-faulty devices if recovery
5329 * isn't possible.
5330 */
5331 if (!test_bit(Faulty, &rdev->flags) &&
674806d6 5332 !has_failed(conf) &&
ec32a2bd 5333 number < conf->raid_disks) {
dfc70645
N
5334 err = -EBUSY;
5335 goto abort;
5336 }
1da177e4 5337 p->rdev = NULL;
fbd568a3 5338 synchronize_rcu();
1da177e4
LT
5339 if (atomic_read(&rdev->nr_pending)) {
5340 /* lost the race, try later */
5341 err = -EBUSY;
5342 p->rdev = rdev;
5343 }
5344 }
5345abort:
5346
5347 print_raid5_conf(conf);
5348 return err;
5349}
5350
5351static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
5352{
5353 raid5_conf_t *conf = mddev->private;
199050ea 5354 int err = -EEXIST;
1da177e4
LT
5355 int disk;
5356 struct disk_info *p;
6c2fce2e
NB
5357 int first = 0;
5358 int last = conf->raid_disks - 1;
1da177e4 5359
674806d6 5360 if (has_failed(conf))
1da177e4 5361 /* no point adding a device */
199050ea 5362 return -EINVAL;
1da177e4 5363
6c2fce2e
NB
5364 if (rdev->raid_disk >= 0)
5365 first = last = rdev->raid_disk;
1da177e4
LT
5366
5367 /*
16a53ecc
N
5368 * find the disk ... but prefer rdev->saved_raid_disk
5369 * if possible.
1da177e4 5370 */
16a53ecc 5371 if (rdev->saved_raid_disk >= 0 &&
6c2fce2e 5372 rdev->saved_raid_disk >= first &&
16a53ecc
N
5373 conf->disks[rdev->saved_raid_disk].rdev == NULL)
5374 disk = rdev->saved_raid_disk;
5375 else
6c2fce2e
NB
5376 disk = first;
5377 for ( ; disk <= last ; disk++)
1da177e4 5378 if ((p=conf->disks + disk)->rdev == NULL) {
b2d444d7 5379 clear_bit(In_sync, &rdev->flags);
1da177e4 5380 rdev->raid_disk = disk;
199050ea 5381 err = 0;
72626685
N
5382 if (rdev->saved_raid_disk != disk)
5383 conf->fullsync = 1;
d6065f7b 5384 rcu_assign_pointer(p->rdev, rdev);
1da177e4
LT
5385 break;
5386 }
5387 print_raid5_conf(conf);
199050ea 5388 return err;
1da177e4
LT
5389}
5390
5391static int raid5_resize(mddev_t *mddev, sector_t sectors)
5392{
5393 /* no resync is happening, and there is enough space
5394 * on all devices, so we can resize.
5395 * We need to make sure resync covers any new space.
5396 * If the array is shrinking we should possibly wait until
5397 * any io in the removed space completes, but it hardly seems
5398 * worth it.
5399 */
9d8f0363 5400 sectors &= ~((sector_t)mddev->chunk_sectors - 1);
1f403624
DW
5401 md_set_array_sectors(mddev, raid5_size(mddev, sectors,
5402 mddev->raid_disks));
b522adcd
DW
5403 if (mddev->array_sectors >
5404 raid5_size(mddev, sectors, mddev->raid_disks))
5405 return -EINVAL;
f233ea5c 5406 set_capacity(mddev->gendisk, mddev->array_sectors);
449aad3e 5407 revalidate_disk(mddev->gendisk);
58c0fed4
AN
5408 if (sectors > mddev->dev_sectors && mddev->recovery_cp == MaxSector) {
5409 mddev->recovery_cp = mddev->dev_sectors;
1da177e4
LT
5410 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5411 }
58c0fed4 5412 mddev->dev_sectors = sectors;
4b5c7ae8 5413 mddev->resync_max_sectors = sectors;
1da177e4
LT
5414 return 0;
5415}
5416
01ee22b4
N
5417static int check_stripe_cache(mddev_t *mddev)
5418{
5419 /* Can only proceed if there are plenty of stripe_heads.
5420 * We need a minimum of one full stripe,, and for sensible progress
5421 * it is best to have about 4 times that.
5422 * If we require 4 times, then the default 256 4K stripe_heads will
5423 * allow for chunk sizes up to 256K, which is probably OK.
5424 * If the chunk size is greater, user-space should request more
5425 * stripe_heads first.
5426 */
5427 raid5_conf_t *conf = mddev->private;
5428 if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
5429 > conf->max_nr_stripes ||
5430 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
5431 > conf->max_nr_stripes) {
0c55e022
N
5432 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes. Needed %lu\n",
5433 mdname(mddev),
01ee22b4
N
5434 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
5435 / STRIPE_SIZE)*4);
5436 return 0;
5437 }
5438 return 1;
5439}
5440
50ac168a 5441static int check_reshape(mddev_t *mddev)
29269553 5442{
070ec55d 5443 raid5_conf_t *conf = mddev->private;
29269553 5444
88ce4930
N
5445 if (mddev->delta_disks == 0 &&
5446 mddev->new_layout == mddev->layout &&
664e7c41 5447 mddev->new_chunk_sectors == mddev->chunk_sectors)
50ac168a 5448 return 0; /* nothing to do */
dba034ee
N
5449 if (mddev->bitmap)
5450 /* Cannot grow a bitmap yet */
5451 return -EBUSY;
674806d6 5452 if (has_failed(conf))
ec32a2bd
N
5453 return -EINVAL;
5454 if (mddev->delta_disks < 0) {
5455 /* We might be able to shrink, but the devices must
5456 * be made bigger first.
5457 * For raid6, 4 is the minimum size.
5458 * Otherwise 2 is the minimum
5459 */
5460 int min = 2;
5461 if (mddev->level == 6)
5462 min = 4;
5463 if (mddev->raid_disks + mddev->delta_disks < min)
5464 return -EINVAL;
5465 }
29269553 5466
01ee22b4 5467 if (!check_stripe_cache(mddev))
29269553 5468 return -ENOSPC;
29269553 5469
ec32a2bd 5470 return resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
63c70c4f
N
5471}
5472
5473static int raid5_start_reshape(mddev_t *mddev)
5474{
070ec55d 5475 raid5_conf_t *conf = mddev->private;
63c70c4f 5476 mdk_rdev_t *rdev;
63c70c4f
N
5477 int spares = 0;
5478 int added_devices = 0;
c04be0aa 5479 unsigned long flags;
63c70c4f 5480
f416885e 5481 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
63c70c4f
N
5482 return -EBUSY;
5483
01ee22b4
N
5484 if (!check_stripe_cache(mddev))
5485 return -ENOSPC;
5486
159ec1fc 5487 list_for_each_entry(rdev, &mddev->disks, same_set)
29269553
N
5488 if (rdev->raid_disk < 0 &&
5489 !test_bit(Faulty, &rdev->flags))
5490 spares++;
63c70c4f 5491
f416885e 5492 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
29269553
N
5493 /* Not enough devices even to make a degraded array
5494 * of that size
5495 */
5496 return -EINVAL;
5497
ec32a2bd
N
5498 /* Refuse to reduce size of the array. Any reductions in
5499 * array size must be through explicit setting of array_size
5500 * attribute.
5501 */
5502 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
5503 < mddev->array_sectors) {
0c55e022 5504 printk(KERN_ERR "md/raid:%s: array size must be reduced "
ec32a2bd
N
5505 "before number of disks\n", mdname(mddev));
5506 return -EINVAL;
5507 }
5508
f6705578 5509 atomic_set(&conf->reshape_stripes, 0);
29269553
N
5510 spin_lock_irq(&conf->device_lock);
5511 conf->previous_raid_disks = conf->raid_disks;
63c70c4f 5512 conf->raid_disks += mddev->delta_disks;
09c9e5fa
AN
5513 conf->prev_chunk_sectors = conf->chunk_sectors;
5514 conf->chunk_sectors = mddev->new_chunk_sectors;
88ce4930
N
5515 conf->prev_algo = conf->algorithm;
5516 conf->algorithm = mddev->new_layout;
fef9c61f
N
5517 if (mddev->delta_disks < 0)
5518 conf->reshape_progress = raid5_size(mddev, 0, 0);
5519 else
5520 conf->reshape_progress = 0;
5521 conf->reshape_safe = conf->reshape_progress;
86b42c71 5522 conf->generation++;
29269553
N
5523 spin_unlock_irq(&conf->device_lock);
5524
5525 /* Add some new drives, as many as will fit.
5526 * We know there are enough to make the newly sized array work.
5527 */
159ec1fc 5528 list_for_each_entry(rdev, &mddev->disks, same_set)
29269553
N
5529 if (rdev->raid_disk < 0 &&
5530 !test_bit(Faulty, &rdev->flags)) {
199050ea 5531 if (raid5_add_disk(mddev, rdev) == 0) {
29269553 5532 char nm[20];
9eb07c25 5533 if (rdev->raid_disk >= conf->previous_raid_disks) {
7ef90146 5534 set_bit(In_sync, &rdev->flags);
9eb07c25
N
5535 added_devices++;
5536 } else
7ef90146 5537 rdev->recovery_offset = 0;
29269553 5538 sprintf(nm, "rd%d", rdev->raid_disk);
5e55e2f5
N
5539 if (sysfs_create_link(&mddev->kobj,
5540 &rdev->kobj, nm))
5541 printk(KERN_WARNING
0c55e022
N
5542 "md/raid:%s: failed to create "
5543 " link %s\n",
5544 mdname(mddev), nm);
29269553
N
5545 } else
5546 break;
5547 }
5548
9eb07c25
N
5549 /* When a reshape changes the number of devices, ->degraded
5550 * is measured against the large of the pre and post number of
5551 * devices.*/
ec32a2bd
N
5552 if (mddev->delta_disks > 0) {
5553 spin_lock_irqsave(&conf->device_lock, flags);
9eb07c25 5554 mddev->degraded += (conf->raid_disks - conf->previous_raid_disks)
ec32a2bd
N
5555 - added_devices;
5556 spin_unlock_irqrestore(&conf->device_lock, flags);
5557 }
63c70c4f 5558 mddev->raid_disks = conf->raid_disks;
e516402c 5559 mddev->reshape_position = conf->reshape_progress;
850b2b42 5560 set_bit(MD_CHANGE_DEVS, &mddev->flags);
f6705578 5561
29269553
N
5562 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5563 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5564 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5565 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5566 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
0da3c619 5567 "reshape");
29269553
N
5568 if (!mddev->sync_thread) {
5569 mddev->recovery = 0;
5570 spin_lock_irq(&conf->device_lock);
5571 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
fef9c61f 5572 conf->reshape_progress = MaxSector;
29269553
N
5573 spin_unlock_irq(&conf->device_lock);
5574 return -EAGAIN;
5575 }
c8f517c4 5576 conf->reshape_checkpoint = jiffies;
29269553
N
5577 md_wakeup_thread(mddev->sync_thread);
5578 md_new_event(mddev);
5579 return 0;
5580}
29269553 5581
ec32a2bd
N
5582/* This is called from the reshape thread and should make any
5583 * changes needed in 'conf'
5584 */
29269553
N
5585static void end_reshape(raid5_conf_t *conf)
5586{
29269553 5587
f6705578 5588 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
f6705578 5589
f6705578 5590 spin_lock_irq(&conf->device_lock);
cea9c228 5591 conf->previous_raid_disks = conf->raid_disks;
fef9c61f 5592 conf->reshape_progress = MaxSector;
f6705578 5593 spin_unlock_irq(&conf->device_lock);
b0f9ec04 5594 wake_up(&conf->wait_for_overlap);
16a53ecc
N
5595
5596 /* read-ahead size must cover two whole stripes, which is
5597 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
5598 */
5599 {
cea9c228 5600 int data_disks = conf->raid_disks - conf->max_degraded;
09c9e5fa 5601 int stripe = data_disks * ((conf->chunk_sectors << 9)
cea9c228 5602 / PAGE_SIZE);
16a53ecc
N
5603 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5604 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5605 }
29269553 5606 }
29269553
N
5607}
5608
ec32a2bd
N
5609/* This is called from the raid5d thread with mddev_lock held.
5610 * It makes config changes to the device.
5611 */
cea9c228
N
5612static void raid5_finish_reshape(mddev_t *mddev)
5613{
070ec55d 5614 raid5_conf_t *conf = mddev->private;
cea9c228
N
5615
5616 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5617
ec32a2bd
N
5618 if (mddev->delta_disks > 0) {
5619 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5620 set_capacity(mddev->gendisk, mddev->array_sectors);
449aad3e 5621 revalidate_disk(mddev->gendisk);
ec32a2bd
N
5622 } else {
5623 int d;
ec32a2bd
N
5624 mddev->degraded = conf->raid_disks;
5625 for (d = 0; d < conf->raid_disks ; d++)
5626 if (conf->disks[d].rdev &&
5627 test_bit(In_sync,
5628 &conf->disks[d].rdev->flags))
5629 mddev->degraded--;
5630 for (d = conf->raid_disks ;
5631 d < conf->raid_disks - mddev->delta_disks;
1a67dde0
N
5632 d++) {
5633 mdk_rdev_t *rdev = conf->disks[d].rdev;
5634 if (rdev && raid5_remove_disk(mddev, d) == 0) {
5635 char nm[20];
5636 sprintf(nm, "rd%d", rdev->raid_disk);
5637 sysfs_remove_link(&mddev->kobj, nm);
5638 rdev->raid_disk = -1;
5639 }
5640 }
cea9c228 5641 }
88ce4930 5642 mddev->layout = conf->algorithm;
09c9e5fa 5643 mddev->chunk_sectors = conf->chunk_sectors;
ec32a2bd
N
5644 mddev->reshape_position = MaxSector;
5645 mddev->delta_disks = 0;
cea9c228
N
5646 }
5647}
5648
72626685
N
5649static void raid5_quiesce(mddev_t *mddev, int state)
5650{
070ec55d 5651 raid5_conf_t *conf = mddev->private;
72626685
N
5652
5653 switch(state) {
e464eafd
N
5654 case 2: /* resume for a suspend */
5655 wake_up(&conf->wait_for_overlap);
5656 break;
5657
72626685
N
5658 case 1: /* stop all writes */
5659 spin_lock_irq(&conf->device_lock);
64bd660b
N
5660 /* '2' tells resync/reshape to pause so that all
5661 * active stripes can drain
5662 */
5663 conf->quiesce = 2;
72626685 5664 wait_event_lock_irq(conf->wait_for_stripe,
46031f9a
RBJ
5665 atomic_read(&conf->active_stripes) == 0 &&
5666 atomic_read(&conf->active_aligned_reads) == 0,
72626685 5667 conf->device_lock, /* nothing */);
64bd660b 5668 conf->quiesce = 1;
72626685 5669 spin_unlock_irq(&conf->device_lock);
64bd660b
N
5670 /* allow reshape to continue */
5671 wake_up(&conf->wait_for_overlap);
72626685
N
5672 break;
5673
5674 case 0: /* re-enable writes */
5675 spin_lock_irq(&conf->device_lock);
5676 conf->quiesce = 0;
5677 wake_up(&conf->wait_for_stripe);
e464eafd 5678 wake_up(&conf->wait_for_overlap);
72626685
N
5679 spin_unlock_irq(&conf->device_lock);
5680 break;
5681 }
72626685 5682}
b15c2e57 5683
d562b0c4 5684
f1b29bca 5685static void *raid45_takeover_raid0(mddev_t *mddev, int level)
54071b38 5686{
f1b29bca 5687 struct raid0_private_data *raid0_priv = mddev->private;
54071b38 5688
f1b29bca
DW
5689 /* for raid0 takeover only one zone is supported */
5690 if (raid0_priv->nr_strip_zones > 1) {
0c55e022
N
5691 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
5692 mdname(mddev));
f1b29bca
DW
5693 return ERR_PTR(-EINVAL);
5694 }
5695
5696 mddev->new_level = level;
54071b38
TM
5697 mddev->new_layout = ALGORITHM_PARITY_N;
5698 mddev->new_chunk_sectors = mddev->chunk_sectors;
5699 mddev->raid_disks += 1;
5700 mddev->delta_disks = 1;
5701 /* make sure it will be not marked as dirty */
5702 mddev->recovery_cp = MaxSector;
5703
5704 return setup_conf(mddev);
5705}
5706
5707
d562b0c4
N
5708static void *raid5_takeover_raid1(mddev_t *mddev)
5709{
5710 int chunksect;
5711
5712 if (mddev->raid_disks != 2 ||
5713 mddev->degraded > 1)
5714 return ERR_PTR(-EINVAL);
5715
5716 /* Should check if there are write-behind devices? */
5717
5718 chunksect = 64*2; /* 64K by default */
5719
5720 /* The array must be an exact multiple of chunksize */
5721 while (chunksect && (mddev->array_sectors & (chunksect-1)))
5722 chunksect >>= 1;
5723
5724 if ((chunksect<<9) < STRIPE_SIZE)
5725 /* array size does not allow a suitable chunk size */
5726 return ERR_PTR(-EINVAL);
5727
5728 mddev->new_level = 5;
5729 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
664e7c41 5730 mddev->new_chunk_sectors = chunksect;
d562b0c4
N
5731
5732 return setup_conf(mddev);
5733}
5734
fc9739c6
N
5735static void *raid5_takeover_raid6(mddev_t *mddev)
5736{
5737 int new_layout;
5738
5739 switch (mddev->layout) {
5740 case ALGORITHM_LEFT_ASYMMETRIC_6:
5741 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
5742 break;
5743 case ALGORITHM_RIGHT_ASYMMETRIC_6:
5744 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
5745 break;
5746 case ALGORITHM_LEFT_SYMMETRIC_6:
5747 new_layout = ALGORITHM_LEFT_SYMMETRIC;
5748 break;
5749 case ALGORITHM_RIGHT_SYMMETRIC_6:
5750 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
5751 break;
5752 case ALGORITHM_PARITY_0_6:
5753 new_layout = ALGORITHM_PARITY_0;
5754 break;
5755 case ALGORITHM_PARITY_N:
5756 new_layout = ALGORITHM_PARITY_N;
5757 break;
5758 default:
5759 return ERR_PTR(-EINVAL);
5760 }
5761 mddev->new_level = 5;
5762 mddev->new_layout = new_layout;
5763 mddev->delta_disks = -1;
5764 mddev->raid_disks -= 1;
5765 return setup_conf(mddev);
5766}
5767
d562b0c4 5768
50ac168a 5769static int raid5_check_reshape(mddev_t *mddev)
b3546035 5770{
88ce4930
N
5771 /* For a 2-drive array, the layout and chunk size can be changed
5772 * immediately as not restriping is needed.
5773 * For larger arrays we record the new value - after validation
5774 * to be used by a reshape pass.
b3546035 5775 */
070ec55d 5776 raid5_conf_t *conf = mddev->private;
597a711b 5777 int new_chunk = mddev->new_chunk_sectors;
b3546035 5778
597a711b 5779 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
b3546035
N
5780 return -EINVAL;
5781 if (new_chunk > 0) {
0ba459d2 5782 if (!is_power_of_2(new_chunk))
b3546035 5783 return -EINVAL;
597a711b 5784 if (new_chunk < (PAGE_SIZE>>9))
b3546035 5785 return -EINVAL;
597a711b 5786 if (mddev->array_sectors & (new_chunk-1))
b3546035
N
5787 /* not factor of array size */
5788 return -EINVAL;
5789 }
5790
5791 /* They look valid */
5792
88ce4930 5793 if (mddev->raid_disks == 2) {
597a711b
N
5794 /* can make the change immediately */
5795 if (mddev->new_layout >= 0) {
5796 conf->algorithm = mddev->new_layout;
5797 mddev->layout = mddev->new_layout;
88ce4930
N
5798 }
5799 if (new_chunk > 0) {
597a711b
N
5800 conf->chunk_sectors = new_chunk ;
5801 mddev->chunk_sectors = new_chunk;
88ce4930
N
5802 }
5803 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5804 md_wakeup_thread(mddev->thread);
b3546035 5805 }
50ac168a 5806 return check_reshape(mddev);
88ce4930
N
5807}
5808
50ac168a 5809static int raid6_check_reshape(mddev_t *mddev)
88ce4930 5810{
597a711b 5811 int new_chunk = mddev->new_chunk_sectors;
50ac168a 5812
597a711b 5813 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
88ce4930 5814 return -EINVAL;
b3546035 5815 if (new_chunk > 0) {
0ba459d2 5816 if (!is_power_of_2(new_chunk))
88ce4930 5817 return -EINVAL;
597a711b 5818 if (new_chunk < (PAGE_SIZE >> 9))
88ce4930 5819 return -EINVAL;
597a711b 5820 if (mddev->array_sectors & (new_chunk-1))
88ce4930
N
5821 /* not factor of array size */
5822 return -EINVAL;
b3546035 5823 }
88ce4930
N
5824
5825 /* They look valid */
50ac168a 5826 return check_reshape(mddev);
b3546035
N
5827}
5828
d562b0c4
N
5829static void *raid5_takeover(mddev_t *mddev)
5830{
5831 /* raid5 can take over:
f1b29bca 5832 * raid0 - if there is only one strip zone - make it a raid4 layout
d562b0c4
N
5833 * raid1 - if there are two drives. We need to know the chunk size
5834 * raid4 - trivial - just use a raid4 layout.
5835 * raid6 - Providing it is a *_6 layout
d562b0c4 5836 */
f1b29bca
DW
5837 if (mddev->level == 0)
5838 return raid45_takeover_raid0(mddev, 5);
d562b0c4
N
5839 if (mddev->level == 1)
5840 return raid5_takeover_raid1(mddev);
e9d4758f
N
5841 if (mddev->level == 4) {
5842 mddev->new_layout = ALGORITHM_PARITY_N;
5843 mddev->new_level = 5;
5844 return setup_conf(mddev);
5845 }
fc9739c6
N
5846 if (mddev->level == 6)
5847 return raid5_takeover_raid6(mddev);
d562b0c4
N
5848
5849 return ERR_PTR(-EINVAL);
5850}
5851
a78d38a1
N
5852static void *raid4_takeover(mddev_t *mddev)
5853{
f1b29bca
DW
5854 /* raid4 can take over:
5855 * raid0 - if there is only one strip zone
5856 * raid5 - if layout is right
a78d38a1 5857 */
f1b29bca
DW
5858 if (mddev->level == 0)
5859 return raid45_takeover_raid0(mddev, 4);
a78d38a1
N
5860 if (mddev->level == 5 &&
5861 mddev->layout == ALGORITHM_PARITY_N) {
5862 mddev->new_layout = 0;
5863 mddev->new_level = 4;
5864 return setup_conf(mddev);
5865 }
5866 return ERR_PTR(-EINVAL);
5867}
d562b0c4 5868
245f46c2
N
5869static struct mdk_personality raid5_personality;
5870
5871static void *raid6_takeover(mddev_t *mddev)
5872{
5873 /* Currently can only take over a raid5. We map the
5874 * personality to an equivalent raid6 personality
5875 * with the Q block at the end.
5876 */
5877 int new_layout;
5878
5879 if (mddev->pers != &raid5_personality)
5880 return ERR_PTR(-EINVAL);
5881 if (mddev->degraded > 1)
5882 return ERR_PTR(-EINVAL);
5883 if (mddev->raid_disks > 253)
5884 return ERR_PTR(-EINVAL);
5885 if (mddev->raid_disks < 3)
5886 return ERR_PTR(-EINVAL);
5887
5888 switch (mddev->layout) {
5889 case ALGORITHM_LEFT_ASYMMETRIC:
5890 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
5891 break;
5892 case ALGORITHM_RIGHT_ASYMMETRIC:
5893 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
5894 break;
5895 case ALGORITHM_LEFT_SYMMETRIC:
5896 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
5897 break;
5898 case ALGORITHM_RIGHT_SYMMETRIC:
5899 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
5900 break;
5901 case ALGORITHM_PARITY_0:
5902 new_layout = ALGORITHM_PARITY_0_6;
5903 break;
5904 case ALGORITHM_PARITY_N:
5905 new_layout = ALGORITHM_PARITY_N;
5906 break;
5907 default:
5908 return ERR_PTR(-EINVAL);
5909 }
5910 mddev->new_level = 6;
5911 mddev->new_layout = new_layout;
5912 mddev->delta_disks = 1;
5913 mddev->raid_disks += 1;
5914 return setup_conf(mddev);
5915}
5916
5917
16a53ecc
N
5918static struct mdk_personality raid6_personality =
5919{
5920 .name = "raid6",
5921 .level = 6,
5922 .owner = THIS_MODULE,
5923 .make_request = make_request,
5924 .run = run,
5925 .stop = stop,
5926 .status = status,
5927 .error_handler = error,
5928 .hot_add_disk = raid5_add_disk,
5929 .hot_remove_disk= raid5_remove_disk,
5930 .spare_active = raid5_spare_active,
5931 .sync_request = sync_request,
5932 .resize = raid5_resize,
80c3a6ce 5933 .size = raid5_size,
50ac168a 5934 .check_reshape = raid6_check_reshape,
f416885e 5935 .start_reshape = raid5_start_reshape,
cea9c228 5936 .finish_reshape = raid5_finish_reshape,
16a53ecc 5937 .quiesce = raid5_quiesce,
245f46c2 5938 .takeover = raid6_takeover,
16a53ecc 5939};
2604b703 5940static struct mdk_personality raid5_personality =
1da177e4
LT
5941{
5942 .name = "raid5",
2604b703 5943 .level = 5,
1da177e4
LT
5944 .owner = THIS_MODULE,
5945 .make_request = make_request,
5946 .run = run,
5947 .stop = stop,
5948 .status = status,
5949 .error_handler = error,
5950 .hot_add_disk = raid5_add_disk,
5951 .hot_remove_disk= raid5_remove_disk,
5952 .spare_active = raid5_spare_active,
5953 .sync_request = sync_request,
5954 .resize = raid5_resize,
80c3a6ce 5955 .size = raid5_size,
63c70c4f
N
5956 .check_reshape = raid5_check_reshape,
5957 .start_reshape = raid5_start_reshape,
cea9c228 5958 .finish_reshape = raid5_finish_reshape,
72626685 5959 .quiesce = raid5_quiesce,
d562b0c4 5960 .takeover = raid5_takeover,
1da177e4
LT
5961};
5962
2604b703 5963static struct mdk_personality raid4_personality =
1da177e4 5964{
2604b703
N
5965 .name = "raid4",
5966 .level = 4,
5967 .owner = THIS_MODULE,
5968 .make_request = make_request,
5969 .run = run,
5970 .stop = stop,
5971 .status = status,
5972 .error_handler = error,
5973 .hot_add_disk = raid5_add_disk,
5974 .hot_remove_disk= raid5_remove_disk,
5975 .spare_active = raid5_spare_active,
5976 .sync_request = sync_request,
5977 .resize = raid5_resize,
80c3a6ce 5978 .size = raid5_size,
3d37890b
N
5979 .check_reshape = raid5_check_reshape,
5980 .start_reshape = raid5_start_reshape,
cea9c228 5981 .finish_reshape = raid5_finish_reshape,
2604b703 5982 .quiesce = raid5_quiesce,
a78d38a1 5983 .takeover = raid4_takeover,
2604b703
N
5984};
5985
5986static int __init raid5_init(void)
5987{
16a53ecc 5988 register_md_personality(&raid6_personality);
2604b703
N
5989 register_md_personality(&raid5_personality);
5990 register_md_personality(&raid4_personality);
5991 return 0;
1da177e4
LT
5992}
5993
2604b703 5994static void raid5_exit(void)
1da177e4 5995{
16a53ecc 5996 unregister_md_personality(&raid6_personality);
2604b703
N
5997 unregister_md_personality(&raid5_personality);
5998 unregister_md_personality(&raid4_personality);
1da177e4
LT
5999}
6000
6001module_init(raid5_init);
6002module_exit(raid5_exit);
6003MODULE_LICENSE("GPL");
0efb9e61 6004MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
1da177e4 6005MODULE_ALIAS("md-personality-4"); /* RAID5 */
d9d166c2
N
6006MODULE_ALIAS("md-raid5");
6007MODULE_ALIAS("md-raid4");
2604b703
N
6008MODULE_ALIAS("md-level-5");
6009MODULE_ALIAS("md-level-4");
16a53ecc
N
6010MODULE_ALIAS("md-personality-8"); /* RAID6 */
6011MODULE_ALIAS("md-raid6");
6012MODULE_ALIAS("md-level-6");
6013
6014/* This used to be two separate modules, they were: */
6015MODULE_ALIAS("raid5");
6016MODULE_ALIAS("raid6");