md/raid10: Don't try to recovery unmatched (and unused) chunks.
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / md / raid5.c
CommitLineData
1da177e4
LT
1/*
2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
16a53ecc 5 * Copyright (C) 2002, 2003 H. Peter Anvin
1da177e4 6 *
16a53ecc
N
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
1da177e4
LT
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
ae3c20cc
N
21/*
22 * BITMAP UNPLUGGING:
23 *
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
26 * explanation.
27 *
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
7c13edc8
N
30 * conf->seq_write is the number of the last batch successfully written.
31 * conf->seq_flush is the number of the last batch that was closed to
ae3c20cc
N
32 * new additions.
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
7c13edc8 35 * the number of the batch it will be in. This is seq_flush+1.
ae3c20cc
N
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
39 * batch.
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
43 * miss any bits.
44 */
1da177e4 45
bff61975 46#include <linux/blkdev.h>
f6705578 47#include <linux/kthread.h>
f701d589 48#include <linux/raid/pq.h>
91c00924 49#include <linux/async_tx.h>
056075c7 50#include <linux/module.h>
07a3b417 51#include <linux/async.h>
bff61975 52#include <linux/seq_file.h>
36d1c647 53#include <linux/cpu.h>
5a0e3ad6 54#include <linux/slab.h>
8bda470e 55#include <linux/ratelimit.h>
43b2e5d8 56#include "md.h"
bff61975 57#include "raid5.h"
54071b38 58#include "raid0.h"
ef740c37 59#include "bitmap.h"
72626685 60
1da177e4
LT
61/*
62 * Stripe cache
63 */
64
65#define NR_STRIPES 256
66#define STRIPE_SIZE PAGE_SIZE
67#define STRIPE_SHIFT (PAGE_SHIFT - 9)
68#define STRIPE_SECTORS (STRIPE_SIZE>>9)
69#define IO_THRESHOLD 1
8b3e6cdc 70#define BYPASS_THRESHOLD 1
fccddba0 71#define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
1da177e4
LT
72#define HASH_MASK (NR_HASH - 1)
73
d1688a6d 74static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
db298e19
N
75{
76 int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
77 return &conf->stripe_hashtbl[hash];
78}
1da177e4
LT
79
80/* bio's attached to a stripe+device for I/O are linked together in bi_sector
81 * order without overlap. There may be several bio's per stripe+device, and
82 * a bio could span several devices.
83 * When walking this list for a particular stripe+device, we must never proceed
84 * beyond a bio that extends past this device, as the next bio might no longer
85 * be valid.
db298e19 86 * This function is used to determine the 'next' bio in the list, given the sector
1da177e4
LT
87 * of the current stripe+device
88 */
db298e19
N
89static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
90{
91 int sectors = bio->bi_size >> 9;
92 if (bio->bi_sector + sectors < sector + STRIPE_SECTORS)
93 return bio->bi_next;
94 else
95 return NULL;
96}
1da177e4 97
960e739d 98/*
5b99c2ff
JA
99 * We maintain a biased count of active stripes in the bottom 16 bits of
100 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
960e739d
JA
101 */
102static inline int raid5_bi_phys_segments(struct bio *bio)
103{
5b99c2ff 104 return bio->bi_phys_segments & 0xffff;
960e739d
JA
105}
106
107static inline int raid5_bi_hw_segments(struct bio *bio)
108{
5b99c2ff 109 return (bio->bi_phys_segments >> 16) & 0xffff;
960e739d
JA
110}
111
112static inline int raid5_dec_bi_phys_segments(struct bio *bio)
113{
114 --bio->bi_phys_segments;
115 return raid5_bi_phys_segments(bio);
116}
117
118static inline int raid5_dec_bi_hw_segments(struct bio *bio)
119{
120 unsigned short val = raid5_bi_hw_segments(bio);
121
122 --val;
5b99c2ff 123 bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio);
960e739d
JA
124 return val;
125}
126
127static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt)
128{
9b2dc8b6 129 bio->bi_phys_segments = raid5_bi_phys_segments(bio) | (cnt << 16);
960e739d
JA
130}
131
d0dabf7e
N
132/* Find first data disk in a raid6 stripe */
133static inline int raid6_d0(struct stripe_head *sh)
134{
67cc2b81
N
135 if (sh->ddf_layout)
136 /* ddf always start from first device */
137 return 0;
138 /* md starts just after Q block */
d0dabf7e
N
139 if (sh->qd_idx == sh->disks - 1)
140 return 0;
141 else
142 return sh->qd_idx + 1;
143}
16a53ecc
N
144static inline int raid6_next_disk(int disk, int raid_disks)
145{
146 disk++;
147 return (disk < raid_disks) ? disk : 0;
148}
a4456856 149
d0dabf7e
N
150/* When walking through the disks in a raid5, starting at raid6_d0,
151 * We need to map each disk to a 'slot', where the data disks are slot
152 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
153 * is raid_disks-1. This help does that mapping.
154 */
67cc2b81
N
155static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
156 int *count, int syndrome_disks)
d0dabf7e 157{
6629542e 158 int slot = *count;
67cc2b81 159
e4424fee 160 if (sh->ddf_layout)
6629542e 161 (*count)++;
d0dabf7e 162 if (idx == sh->pd_idx)
67cc2b81 163 return syndrome_disks;
d0dabf7e 164 if (idx == sh->qd_idx)
67cc2b81 165 return syndrome_disks + 1;
e4424fee 166 if (!sh->ddf_layout)
6629542e 167 (*count)++;
d0dabf7e
N
168 return slot;
169}
170
a4456856
DW
171static void return_io(struct bio *return_bi)
172{
173 struct bio *bi = return_bi;
174 while (bi) {
a4456856
DW
175
176 return_bi = bi->bi_next;
177 bi->bi_next = NULL;
178 bi->bi_size = 0;
0e13fe23 179 bio_endio(bi, 0);
a4456856
DW
180 bi = return_bi;
181 }
182}
183
d1688a6d 184static void print_raid5_conf (struct r5conf *conf);
1da177e4 185
600aa109
DW
186static int stripe_operations_active(struct stripe_head *sh)
187{
188 return sh->check_state || sh->reconstruct_state ||
189 test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
190 test_bit(STRIPE_COMPUTE_RUN, &sh->state);
191}
192
d1688a6d 193static void __release_stripe(struct r5conf *conf, struct stripe_head *sh)
1da177e4
LT
194{
195 if (atomic_dec_and_test(&sh->count)) {
78bafebd
ES
196 BUG_ON(!list_empty(&sh->lru));
197 BUG_ON(atomic_read(&conf->active_stripes)==0);
1da177e4 198 if (test_bit(STRIPE_HANDLE, &sh->state)) {
482c0834 199 if (test_bit(STRIPE_DELAYED, &sh->state))
1da177e4 200 list_add_tail(&sh->lru, &conf->delayed_list);
482c0834
N
201 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
202 sh->bm_seq - conf->seq_write > 0)
72626685 203 list_add_tail(&sh->lru, &conf->bitmap_list);
482c0834 204 else {
72626685 205 clear_bit(STRIPE_BIT_DELAY, &sh->state);
1da177e4 206 list_add_tail(&sh->lru, &conf->handle_list);
72626685 207 }
1da177e4
LT
208 md_wakeup_thread(conf->mddev->thread);
209 } else {
600aa109 210 BUG_ON(stripe_operations_active(sh));
41fe75f6 211 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
212 if (atomic_dec_return(&conf->preread_active_stripes)
213 < IO_THRESHOLD)
1da177e4 214 md_wakeup_thread(conf->mddev->thread);
1da177e4 215 atomic_dec(&conf->active_stripes);
ccfcc3c1
N
216 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
217 list_add_tail(&sh->lru, &conf->inactive_list);
1da177e4 218 wake_up(&conf->wait_for_stripe);
46031f9a
RBJ
219 if (conf->retry_read_aligned)
220 md_wakeup_thread(conf->mddev->thread);
ccfcc3c1 221 }
1da177e4
LT
222 }
223 }
224}
d0dabf7e 225
1da177e4
LT
226static void release_stripe(struct stripe_head *sh)
227{
d1688a6d 228 struct r5conf *conf = sh->raid_conf;
1da177e4 229 unsigned long flags;
16a53ecc 230
1da177e4
LT
231 spin_lock_irqsave(&conf->device_lock, flags);
232 __release_stripe(conf, sh);
233 spin_unlock_irqrestore(&conf->device_lock, flags);
234}
235
fccddba0 236static inline void remove_hash(struct stripe_head *sh)
1da177e4 237{
45b4233c
DW
238 pr_debug("remove_hash(), stripe %llu\n",
239 (unsigned long long)sh->sector);
1da177e4 240
fccddba0 241 hlist_del_init(&sh->hash);
1da177e4
LT
242}
243
d1688a6d 244static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
1da177e4 245{
fccddba0 246 struct hlist_head *hp = stripe_hash(conf, sh->sector);
1da177e4 247
45b4233c
DW
248 pr_debug("insert_hash(), stripe %llu\n",
249 (unsigned long long)sh->sector);
1da177e4 250
fccddba0 251 hlist_add_head(&sh->hash, hp);
1da177e4
LT
252}
253
254
255/* find an idle stripe, make sure it is unhashed, and return it. */
d1688a6d 256static struct stripe_head *get_free_stripe(struct r5conf *conf)
1da177e4
LT
257{
258 struct stripe_head *sh = NULL;
259 struct list_head *first;
260
1da177e4
LT
261 if (list_empty(&conf->inactive_list))
262 goto out;
263 first = conf->inactive_list.next;
264 sh = list_entry(first, struct stripe_head, lru);
265 list_del_init(first);
266 remove_hash(sh);
267 atomic_inc(&conf->active_stripes);
268out:
269 return sh;
270}
271
e4e11e38 272static void shrink_buffers(struct stripe_head *sh)
1da177e4
LT
273{
274 struct page *p;
275 int i;
e4e11e38 276 int num = sh->raid_conf->pool_size;
1da177e4 277
e4e11e38 278 for (i = 0; i < num ; i++) {
1da177e4
LT
279 p = sh->dev[i].page;
280 if (!p)
281 continue;
282 sh->dev[i].page = NULL;
2d1f3b5d 283 put_page(p);
1da177e4
LT
284 }
285}
286
e4e11e38 287static int grow_buffers(struct stripe_head *sh)
1da177e4
LT
288{
289 int i;
e4e11e38 290 int num = sh->raid_conf->pool_size;
1da177e4 291
e4e11e38 292 for (i = 0; i < num; i++) {
1da177e4
LT
293 struct page *page;
294
295 if (!(page = alloc_page(GFP_KERNEL))) {
296 return 1;
297 }
298 sh->dev[i].page = page;
299 }
300 return 0;
301}
302
784052ec 303static void raid5_build_block(struct stripe_head *sh, int i, int previous);
d1688a6d 304static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
911d4ee8 305 struct stripe_head *sh);
1da177e4 306
b5663ba4 307static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
1da177e4 308{
d1688a6d 309 struct r5conf *conf = sh->raid_conf;
7ecaa1e6 310 int i;
1da177e4 311
78bafebd
ES
312 BUG_ON(atomic_read(&sh->count) != 0);
313 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
600aa109 314 BUG_ON(stripe_operations_active(sh));
d84e0f10 315
45b4233c 316 pr_debug("init_stripe called, stripe %llu\n",
1da177e4
LT
317 (unsigned long long)sh->sector);
318
319 remove_hash(sh);
16a53ecc 320
86b42c71 321 sh->generation = conf->generation - previous;
b5663ba4 322 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
1da177e4 323 sh->sector = sector;
911d4ee8 324 stripe_set_idx(sector, conf, previous, sh);
1da177e4
LT
325 sh->state = 0;
326
7ecaa1e6
N
327
328 for (i = sh->disks; i--; ) {
1da177e4
LT
329 struct r5dev *dev = &sh->dev[i];
330
d84e0f10 331 if (dev->toread || dev->read || dev->towrite || dev->written ||
1da177e4 332 test_bit(R5_LOCKED, &dev->flags)) {
d84e0f10 333 printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
1da177e4 334 (unsigned long long)sh->sector, i, dev->toread,
d84e0f10 335 dev->read, dev->towrite, dev->written,
1da177e4 336 test_bit(R5_LOCKED, &dev->flags));
8cfa7b0f 337 WARN_ON(1);
1da177e4
LT
338 }
339 dev->flags = 0;
784052ec 340 raid5_build_block(sh, i, previous);
1da177e4
LT
341 }
342 insert_hash(conf, sh);
343}
344
d1688a6d 345static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
86b42c71 346 short generation)
1da177e4
LT
347{
348 struct stripe_head *sh;
fccddba0 349 struct hlist_node *hn;
1da177e4 350
45b4233c 351 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
fccddba0 352 hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
86b42c71 353 if (sh->sector == sector && sh->generation == generation)
1da177e4 354 return sh;
45b4233c 355 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
1da177e4
LT
356 return NULL;
357}
358
674806d6
N
359/*
360 * Need to check if array has failed when deciding whether to:
361 * - start an array
362 * - remove non-faulty devices
363 * - add a spare
364 * - allow a reshape
365 * This determination is simple when no reshape is happening.
366 * However if there is a reshape, we need to carefully check
367 * both the before and after sections.
368 * This is because some failed devices may only affect one
369 * of the two sections, and some non-in_sync devices may
370 * be insync in the section most affected by failed devices.
371 */
908f4fbd 372static int calc_degraded(struct r5conf *conf)
674806d6 373{
908f4fbd 374 int degraded, degraded2;
674806d6 375 int i;
674806d6
N
376
377 rcu_read_lock();
378 degraded = 0;
379 for (i = 0; i < conf->previous_raid_disks; i++) {
3cb03002 380 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
674806d6
N
381 if (!rdev || test_bit(Faulty, &rdev->flags))
382 degraded++;
383 else if (test_bit(In_sync, &rdev->flags))
384 ;
385 else
386 /* not in-sync or faulty.
387 * If the reshape increases the number of devices,
388 * this is being recovered by the reshape, so
389 * this 'previous' section is not in_sync.
390 * If the number of devices is being reduced however,
391 * the device can only be part of the array if
392 * we are reverting a reshape, so this section will
393 * be in-sync.
394 */
395 if (conf->raid_disks >= conf->previous_raid_disks)
396 degraded++;
397 }
398 rcu_read_unlock();
908f4fbd
N
399 if (conf->raid_disks == conf->previous_raid_disks)
400 return degraded;
674806d6 401 rcu_read_lock();
908f4fbd 402 degraded2 = 0;
674806d6 403 for (i = 0; i < conf->raid_disks; i++) {
3cb03002 404 struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
674806d6 405 if (!rdev || test_bit(Faulty, &rdev->flags))
908f4fbd 406 degraded2++;
674806d6
N
407 else if (test_bit(In_sync, &rdev->flags))
408 ;
409 else
410 /* not in-sync or faulty.
411 * If reshape increases the number of devices, this
412 * section has already been recovered, else it
413 * almost certainly hasn't.
414 */
415 if (conf->raid_disks <= conf->previous_raid_disks)
908f4fbd 416 degraded2++;
674806d6
N
417 }
418 rcu_read_unlock();
908f4fbd
N
419 if (degraded2 > degraded)
420 return degraded2;
421 return degraded;
422}
423
424static int has_failed(struct r5conf *conf)
425{
426 int degraded;
427
428 if (conf->mddev->reshape_position == MaxSector)
429 return conf->mddev->degraded > conf->max_degraded;
430
431 degraded = calc_degraded(conf);
674806d6
N
432 if (degraded > conf->max_degraded)
433 return 1;
434 return 0;
435}
436
b5663ba4 437static struct stripe_head *
d1688a6d 438get_active_stripe(struct r5conf *conf, sector_t sector,
a8c906ca 439 int previous, int noblock, int noquiesce)
1da177e4
LT
440{
441 struct stripe_head *sh;
442
45b4233c 443 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
1da177e4
LT
444
445 spin_lock_irq(&conf->device_lock);
446
447 do {
72626685 448 wait_event_lock_irq(conf->wait_for_stripe,
a8c906ca 449 conf->quiesce == 0 || noquiesce,
72626685 450 conf->device_lock, /* nothing */);
86b42c71 451 sh = __find_stripe(conf, sector, conf->generation - previous);
1da177e4
LT
452 if (!sh) {
453 if (!conf->inactive_blocked)
454 sh = get_free_stripe(conf);
455 if (noblock && sh == NULL)
456 break;
457 if (!sh) {
458 conf->inactive_blocked = 1;
459 wait_event_lock_irq(conf->wait_for_stripe,
460 !list_empty(&conf->inactive_list) &&
5036805b
N
461 (atomic_read(&conf->active_stripes)
462 < (conf->max_nr_stripes *3/4)
1da177e4
LT
463 || !conf->inactive_blocked),
464 conf->device_lock,
7c13edc8 465 );
1da177e4
LT
466 conf->inactive_blocked = 0;
467 } else
b5663ba4 468 init_stripe(sh, sector, previous);
1da177e4
LT
469 } else {
470 if (atomic_read(&sh->count)) {
ab69ae12
N
471 BUG_ON(!list_empty(&sh->lru)
472 && !test_bit(STRIPE_EXPANDING, &sh->state));
1da177e4
LT
473 } else {
474 if (!test_bit(STRIPE_HANDLE, &sh->state))
475 atomic_inc(&conf->active_stripes);
ff4e8d9a
N
476 if (list_empty(&sh->lru) &&
477 !test_bit(STRIPE_EXPANDING, &sh->state))
16a53ecc
N
478 BUG();
479 list_del_init(&sh->lru);
1da177e4
LT
480 }
481 }
482 } while (sh == NULL);
483
484 if (sh)
485 atomic_inc(&sh->count);
486
487 spin_unlock_irq(&conf->device_lock);
488 return sh;
489}
490
05616be5
N
491/* Determine if 'data_offset' or 'new_data_offset' should be used
492 * in this stripe_head.
493 */
494static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
495{
496 sector_t progress = conf->reshape_progress;
497 /* Need a memory barrier to make sure we see the value
498 * of conf->generation, or ->data_offset that was set before
499 * reshape_progress was updated.
500 */
501 smp_rmb();
502 if (progress == MaxSector)
503 return 0;
504 if (sh->generation == conf->generation - 1)
505 return 0;
506 /* We are in a reshape, and this is a new-generation stripe,
507 * so use new_data_offset.
508 */
509 return 1;
510}
511
6712ecf8
N
512static void
513raid5_end_read_request(struct bio *bi, int error);
514static void
515raid5_end_write_request(struct bio *bi, int error);
91c00924 516
c4e5ac0a 517static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
91c00924 518{
d1688a6d 519 struct r5conf *conf = sh->raid_conf;
91c00924
DW
520 int i, disks = sh->disks;
521
522 might_sleep();
523
524 for (i = disks; i--; ) {
525 int rw;
9a3e1101 526 int replace_only = 0;
977df362
N
527 struct bio *bi, *rbi;
528 struct md_rdev *rdev, *rrdev = NULL;
e9c7469b
TH
529 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
530 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
531 rw = WRITE_FUA;
532 else
533 rw = WRITE;
534 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
91c00924 535 rw = READ;
9a3e1101
N
536 else if (test_and_clear_bit(R5_WantReplace,
537 &sh->dev[i].flags)) {
538 rw = WRITE;
539 replace_only = 1;
540 } else
91c00924 541 continue;
bc0934f0
SL
542 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
543 rw |= REQ_SYNC;
91c00924
DW
544
545 bi = &sh->dev[i].req;
977df362 546 rbi = &sh->dev[i].rreq; /* For writing to replacement */
91c00924
DW
547
548 bi->bi_rw = rw;
977df362
N
549 rbi->bi_rw = rw;
550 if (rw & WRITE) {
91c00924 551 bi->bi_end_io = raid5_end_write_request;
977df362
N
552 rbi->bi_end_io = raid5_end_write_request;
553 } else
91c00924
DW
554 bi->bi_end_io = raid5_end_read_request;
555
556 rcu_read_lock();
9a3e1101 557 rrdev = rcu_dereference(conf->disks[i].replacement);
dd054fce
N
558 smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
559 rdev = rcu_dereference(conf->disks[i].rdev);
560 if (!rdev) {
561 rdev = rrdev;
562 rrdev = NULL;
563 }
9a3e1101
N
564 if (rw & WRITE) {
565 if (replace_only)
566 rdev = NULL;
dd054fce
N
567 if (rdev == rrdev)
568 /* We raced and saw duplicates */
569 rrdev = NULL;
9a3e1101 570 } else {
dd054fce 571 if (test_bit(R5_ReadRepl, &sh->dev[i].flags) && rrdev)
9a3e1101
N
572 rdev = rrdev;
573 rrdev = NULL;
574 }
977df362 575
91c00924
DW
576 if (rdev && test_bit(Faulty, &rdev->flags))
577 rdev = NULL;
578 if (rdev)
579 atomic_inc(&rdev->nr_pending);
977df362
N
580 if (rrdev && test_bit(Faulty, &rrdev->flags))
581 rrdev = NULL;
582 if (rrdev)
583 atomic_inc(&rrdev->nr_pending);
91c00924
DW
584 rcu_read_unlock();
585
73e92e51 586 /* We have already checked bad blocks for reads. Now
977df362
N
587 * need to check for writes. We never accept write errors
588 * on the replacement, so we don't to check rrdev.
73e92e51
N
589 */
590 while ((rw & WRITE) && rdev &&
591 test_bit(WriteErrorSeen, &rdev->flags)) {
592 sector_t first_bad;
593 int bad_sectors;
594 int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
595 &first_bad, &bad_sectors);
596 if (!bad)
597 break;
598
599 if (bad < 0) {
600 set_bit(BlockedBadBlocks, &rdev->flags);
601 if (!conf->mddev->external &&
602 conf->mddev->flags) {
603 /* It is very unlikely, but we might
604 * still need to write out the
605 * bad block log - better give it
606 * a chance*/
607 md_check_recovery(conf->mddev);
608 }
609 md_wait_for_blocked_rdev(rdev, conf->mddev);
610 } else {
611 /* Acknowledged bad block - skip the write */
612 rdev_dec_pending(rdev, conf->mddev);
613 rdev = NULL;
614 }
615 }
616
91c00924 617 if (rdev) {
9a3e1101
N
618 if (s->syncing || s->expanding || s->expanded
619 || s->replacing)
91c00924
DW
620 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
621
2b7497f0
DW
622 set_bit(STRIPE_IO_STARTED, &sh->state);
623
91c00924
DW
624 bi->bi_bdev = rdev->bdev;
625 pr_debug("%s: for %llu schedule op %ld on disc %d\n",
e46b272b 626 __func__, (unsigned long long)sh->sector,
91c00924
DW
627 bi->bi_rw, i);
628 atomic_inc(&sh->count);
05616be5
N
629 if (use_new_offset(conf, sh))
630 bi->bi_sector = (sh->sector
631 + rdev->new_data_offset);
632 else
633 bi->bi_sector = (sh->sector
634 + rdev->data_offset);
91c00924 635 bi->bi_flags = 1 << BIO_UPTODATE;
91c00924 636 bi->bi_idx = 0;
91c00924
DW
637 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
638 bi->bi_io_vec[0].bv_offset = 0;
639 bi->bi_size = STRIPE_SIZE;
640 bi->bi_next = NULL;
977df362
N
641 if (rrdev)
642 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
91c00924 643 generic_make_request(bi);
977df362
N
644 }
645 if (rrdev) {
9a3e1101
N
646 if (s->syncing || s->expanding || s->expanded
647 || s->replacing)
977df362
N
648 md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
649
650 set_bit(STRIPE_IO_STARTED, &sh->state);
651
652 rbi->bi_bdev = rrdev->bdev;
653 pr_debug("%s: for %llu schedule op %ld on "
654 "replacement disc %d\n",
655 __func__, (unsigned long long)sh->sector,
656 rbi->bi_rw, i);
657 atomic_inc(&sh->count);
05616be5
N
658 if (use_new_offset(conf, sh))
659 rbi->bi_sector = (sh->sector
660 + rrdev->new_data_offset);
661 else
662 rbi->bi_sector = (sh->sector
663 + rrdev->data_offset);
977df362
N
664 rbi->bi_flags = 1 << BIO_UPTODATE;
665 rbi->bi_idx = 0;
666 rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
667 rbi->bi_io_vec[0].bv_offset = 0;
668 rbi->bi_size = STRIPE_SIZE;
669 rbi->bi_next = NULL;
670 generic_make_request(rbi);
671 }
672 if (!rdev && !rrdev) {
b062962e 673 if (rw & WRITE)
91c00924
DW
674 set_bit(STRIPE_DEGRADED, &sh->state);
675 pr_debug("skip op %ld on disc %d for sector %llu\n",
676 bi->bi_rw, i, (unsigned long long)sh->sector);
677 clear_bit(R5_LOCKED, &sh->dev[i].flags);
678 set_bit(STRIPE_HANDLE, &sh->state);
679 }
680 }
681}
682
683static struct dma_async_tx_descriptor *
684async_copy_data(int frombio, struct bio *bio, struct page *page,
685 sector_t sector, struct dma_async_tx_descriptor *tx)
686{
687 struct bio_vec *bvl;
688 struct page *bio_page;
689 int i;
690 int page_offset;
a08abd8c 691 struct async_submit_ctl submit;
0403e382 692 enum async_tx_flags flags = 0;
91c00924
DW
693
694 if (bio->bi_sector >= sector)
695 page_offset = (signed)(bio->bi_sector - sector) * 512;
696 else
697 page_offset = (signed)(sector - bio->bi_sector) * -512;
a08abd8c 698
0403e382
DW
699 if (frombio)
700 flags |= ASYNC_TX_FENCE;
701 init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
702
91c00924 703 bio_for_each_segment(bvl, bio, i) {
fcde9075 704 int len = bvl->bv_len;
91c00924
DW
705 int clen;
706 int b_offset = 0;
707
708 if (page_offset < 0) {
709 b_offset = -page_offset;
710 page_offset += b_offset;
711 len -= b_offset;
712 }
713
714 if (len > 0 && page_offset + len > STRIPE_SIZE)
715 clen = STRIPE_SIZE - page_offset;
716 else
717 clen = len;
718
719 if (clen > 0) {
fcde9075
NK
720 b_offset += bvl->bv_offset;
721 bio_page = bvl->bv_page;
91c00924
DW
722 if (frombio)
723 tx = async_memcpy(page, bio_page, page_offset,
a08abd8c 724 b_offset, clen, &submit);
91c00924
DW
725 else
726 tx = async_memcpy(bio_page, page, b_offset,
a08abd8c 727 page_offset, clen, &submit);
91c00924 728 }
a08abd8c
DW
729 /* chain the operations */
730 submit.depend_tx = tx;
731
91c00924
DW
732 if (clen < len) /* hit end of page */
733 break;
734 page_offset += len;
735 }
736
737 return tx;
738}
739
740static void ops_complete_biofill(void *stripe_head_ref)
741{
742 struct stripe_head *sh = stripe_head_ref;
743 struct bio *return_bi = NULL;
d1688a6d 744 struct r5conf *conf = sh->raid_conf;
e4d84909 745 int i;
91c00924 746
e46b272b 747 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
748 (unsigned long long)sh->sector);
749
750 /* clear completed biofills */
83de75cc 751 spin_lock_irq(&conf->device_lock);
91c00924
DW
752 for (i = sh->disks; i--; ) {
753 struct r5dev *dev = &sh->dev[i];
91c00924
DW
754
755 /* acknowledge completion of a biofill operation */
e4d84909
DW
756 /* and check if we need to reply to a read request,
757 * new R5_Wantfill requests are held off until
83de75cc 758 * !STRIPE_BIOFILL_RUN
e4d84909
DW
759 */
760 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
91c00924 761 struct bio *rbi, *rbi2;
91c00924 762
91c00924
DW
763 BUG_ON(!dev->read);
764 rbi = dev->read;
765 dev->read = NULL;
766 while (rbi && rbi->bi_sector <
767 dev->sector + STRIPE_SECTORS) {
768 rbi2 = r5_next_bio(rbi, dev->sector);
960e739d 769 if (!raid5_dec_bi_phys_segments(rbi)) {
91c00924
DW
770 rbi->bi_next = return_bi;
771 return_bi = rbi;
772 }
91c00924
DW
773 rbi = rbi2;
774 }
775 }
776 }
83de75cc
DW
777 spin_unlock_irq(&conf->device_lock);
778 clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
91c00924
DW
779
780 return_io(return_bi);
781
e4d84909 782 set_bit(STRIPE_HANDLE, &sh->state);
91c00924
DW
783 release_stripe(sh);
784}
785
786static void ops_run_biofill(struct stripe_head *sh)
787{
788 struct dma_async_tx_descriptor *tx = NULL;
d1688a6d 789 struct r5conf *conf = sh->raid_conf;
a08abd8c 790 struct async_submit_ctl submit;
91c00924
DW
791 int i;
792
e46b272b 793 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
794 (unsigned long long)sh->sector);
795
796 for (i = sh->disks; i--; ) {
797 struct r5dev *dev = &sh->dev[i];
798 if (test_bit(R5_Wantfill, &dev->flags)) {
799 struct bio *rbi;
800 spin_lock_irq(&conf->device_lock);
801 dev->read = rbi = dev->toread;
802 dev->toread = NULL;
803 spin_unlock_irq(&conf->device_lock);
804 while (rbi && rbi->bi_sector <
805 dev->sector + STRIPE_SECTORS) {
806 tx = async_copy_data(0, rbi, dev->page,
807 dev->sector, tx);
808 rbi = r5_next_bio(rbi, dev->sector);
809 }
810 }
811 }
812
813 atomic_inc(&sh->count);
a08abd8c
DW
814 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
815 async_trigger_callback(&submit);
91c00924
DW
816}
817
4e7d2c0a 818static void mark_target_uptodate(struct stripe_head *sh, int target)
91c00924 819{
4e7d2c0a 820 struct r5dev *tgt;
91c00924 821
4e7d2c0a
DW
822 if (target < 0)
823 return;
91c00924 824
4e7d2c0a 825 tgt = &sh->dev[target];
91c00924
DW
826 set_bit(R5_UPTODATE, &tgt->flags);
827 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
828 clear_bit(R5_Wantcompute, &tgt->flags);
4e7d2c0a
DW
829}
830
ac6b53b6 831static void ops_complete_compute(void *stripe_head_ref)
91c00924
DW
832{
833 struct stripe_head *sh = stripe_head_ref;
91c00924 834
e46b272b 835 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
836 (unsigned long long)sh->sector);
837
ac6b53b6 838 /* mark the computed target(s) as uptodate */
4e7d2c0a 839 mark_target_uptodate(sh, sh->ops.target);
ac6b53b6 840 mark_target_uptodate(sh, sh->ops.target2);
4e7d2c0a 841
ecc65c9b
DW
842 clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
843 if (sh->check_state == check_state_compute_run)
844 sh->check_state = check_state_compute_result;
91c00924
DW
845 set_bit(STRIPE_HANDLE, &sh->state);
846 release_stripe(sh);
847}
848
d6f38f31
DW
849/* return a pointer to the address conversion region of the scribble buffer */
850static addr_conv_t *to_addr_conv(struct stripe_head *sh,
851 struct raid5_percpu *percpu)
852{
853 return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
854}
855
856static struct dma_async_tx_descriptor *
857ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
91c00924 858{
91c00924 859 int disks = sh->disks;
d6f38f31 860 struct page **xor_srcs = percpu->scribble;
91c00924
DW
861 int target = sh->ops.target;
862 struct r5dev *tgt = &sh->dev[target];
863 struct page *xor_dest = tgt->page;
864 int count = 0;
865 struct dma_async_tx_descriptor *tx;
a08abd8c 866 struct async_submit_ctl submit;
91c00924
DW
867 int i;
868
869 pr_debug("%s: stripe %llu block: %d\n",
e46b272b 870 __func__, (unsigned long long)sh->sector, target);
91c00924
DW
871 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
872
873 for (i = disks; i--; )
874 if (i != target)
875 xor_srcs[count++] = sh->dev[i].page;
876
877 atomic_inc(&sh->count);
878
0403e382 879 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
ac6b53b6 880 ops_complete_compute, sh, to_addr_conv(sh, percpu));
91c00924 881 if (unlikely(count == 1))
a08abd8c 882 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
91c00924 883 else
a08abd8c 884 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
91c00924 885
91c00924
DW
886 return tx;
887}
888
ac6b53b6
DW
889/* set_syndrome_sources - populate source buffers for gen_syndrome
890 * @srcs - (struct page *) array of size sh->disks
891 * @sh - stripe_head to parse
892 *
893 * Populates srcs in proper layout order for the stripe and returns the
894 * 'count' of sources to be used in a call to async_gen_syndrome. The P
895 * destination buffer is recorded in srcs[count] and the Q destination
896 * is recorded in srcs[count+1]].
897 */
898static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
899{
900 int disks = sh->disks;
901 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
902 int d0_idx = raid6_d0(sh);
903 int count;
904 int i;
905
906 for (i = 0; i < disks; i++)
5dd33c9a 907 srcs[i] = NULL;
ac6b53b6
DW
908
909 count = 0;
910 i = d0_idx;
911 do {
912 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
913
914 srcs[slot] = sh->dev[i].page;
915 i = raid6_next_disk(i, disks);
916 } while (i != d0_idx);
ac6b53b6 917
e4424fee 918 return syndrome_disks;
ac6b53b6
DW
919}
920
921static struct dma_async_tx_descriptor *
922ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
923{
924 int disks = sh->disks;
925 struct page **blocks = percpu->scribble;
926 int target;
927 int qd_idx = sh->qd_idx;
928 struct dma_async_tx_descriptor *tx;
929 struct async_submit_ctl submit;
930 struct r5dev *tgt;
931 struct page *dest;
932 int i;
933 int count;
934
935 if (sh->ops.target < 0)
936 target = sh->ops.target2;
937 else if (sh->ops.target2 < 0)
938 target = sh->ops.target;
91c00924 939 else
ac6b53b6
DW
940 /* we should only have one valid target */
941 BUG();
942 BUG_ON(target < 0);
943 pr_debug("%s: stripe %llu block: %d\n",
944 __func__, (unsigned long long)sh->sector, target);
945
946 tgt = &sh->dev[target];
947 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
948 dest = tgt->page;
949
950 atomic_inc(&sh->count);
951
952 if (target == qd_idx) {
953 count = set_syndrome_sources(blocks, sh);
954 blocks[count] = NULL; /* regenerating p is not necessary */
955 BUG_ON(blocks[count+1] != dest); /* q should already be set */
0403e382
DW
956 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
957 ops_complete_compute, sh,
ac6b53b6
DW
958 to_addr_conv(sh, percpu));
959 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
960 } else {
961 /* Compute any data- or p-drive using XOR */
962 count = 0;
963 for (i = disks; i-- ; ) {
964 if (i == target || i == qd_idx)
965 continue;
966 blocks[count++] = sh->dev[i].page;
967 }
968
0403e382
DW
969 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
970 NULL, ops_complete_compute, sh,
ac6b53b6
DW
971 to_addr_conv(sh, percpu));
972 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
973 }
91c00924 974
91c00924
DW
975 return tx;
976}
977
ac6b53b6
DW
978static struct dma_async_tx_descriptor *
979ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
980{
981 int i, count, disks = sh->disks;
982 int syndrome_disks = sh->ddf_layout ? disks : disks-2;
983 int d0_idx = raid6_d0(sh);
984 int faila = -1, failb = -1;
985 int target = sh->ops.target;
986 int target2 = sh->ops.target2;
987 struct r5dev *tgt = &sh->dev[target];
988 struct r5dev *tgt2 = &sh->dev[target2];
989 struct dma_async_tx_descriptor *tx;
990 struct page **blocks = percpu->scribble;
991 struct async_submit_ctl submit;
992
993 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
994 __func__, (unsigned long long)sh->sector, target, target2);
995 BUG_ON(target < 0 || target2 < 0);
996 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
997 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
998
6c910a78 999 /* we need to open-code set_syndrome_sources to handle the
ac6b53b6
DW
1000 * slot number conversion for 'faila' and 'failb'
1001 */
1002 for (i = 0; i < disks ; i++)
5dd33c9a 1003 blocks[i] = NULL;
ac6b53b6
DW
1004 count = 0;
1005 i = d0_idx;
1006 do {
1007 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1008
1009 blocks[slot] = sh->dev[i].page;
1010
1011 if (i == target)
1012 faila = slot;
1013 if (i == target2)
1014 failb = slot;
1015 i = raid6_next_disk(i, disks);
1016 } while (i != d0_idx);
ac6b53b6
DW
1017
1018 BUG_ON(faila == failb);
1019 if (failb < faila)
1020 swap(faila, failb);
1021 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1022 __func__, (unsigned long long)sh->sector, faila, failb);
1023
1024 atomic_inc(&sh->count);
1025
1026 if (failb == syndrome_disks+1) {
1027 /* Q disk is one of the missing disks */
1028 if (faila == syndrome_disks) {
1029 /* Missing P+Q, just recompute */
0403e382
DW
1030 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1031 ops_complete_compute, sh,
1032 to_addr_conv(sh, percpu));
e4424fee 1033 return async_gen_syndrome(blocks, 0, syndrome_disks+2,
ac6b53b6
DW
1034 STRIPE_SIZE, &submit);
1035 } else {
1036 struct page *dest;
1037 int data_target;
1038 int qd_idx = sh->qd_idx;
1039
1040 /* Missing D+Q: recompute D from P, then recompute Q */
1041 if (target == qd_idx)
1042 data_target = target2;
1043 else
1044 data_target = target;
1045
1046 count = 0;
1047 for (i = disks; i-- ; ) {
1048 if (i == data_target || i == qd_idx)
1049 continue;
1050 blocks[count++] = sh->dev[i].page;
1051 }
1052 dest = sh->dev[data_target].page;
0403e382
DW
1053 init_async_submit(&submit,
1054 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1055 NULL, NULL, NULL,
1056 to_addr_conv(sh, percpu));
ac6b53b6
DW
1057 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1058 &submit);
1059
1060 count = set_syndrome_sources(blocks, sh);
0403e382
DW
1061 init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1062 ops_complete_compute, sh,
1063 to_addr_conv(sh, percpu));
ac6b53b6
DW
1064 return async_gen_syndrome(blocks, 0, count+2,
1065 STRIPE_SIZE, &submit);
1066 }
ac6b53b6 1067 } else {
6c910a78
DW
1068 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1069 ops_complete_compute, sh,
1070 to_addr_conv(sh, percpu));
1071 if (failb == syndrome_disks) {
1072 /* We're missing D+P. */
1073 return async_raid6_datap_recov(syndrome_disks+2,
1074 STRIPE_SIZE, faila,
1075 blocks, &submit);
1076 } else {
1077 /* We're missing D+D. */
1078 return async_raid6_2data_recov(syndrome_disks+2,
1079 STRIPE_SIZE, faila, failb,
1080 blocks, &submit);
1081 }
ac6b53b6
DW
1082 }
1083}
1084
1085
91c00924
DW
1086static void ops_complete_prexor(void *stripe_head_ref)
1087{
1088 struct stripe_head *sh = stripe_head_ref;
1089
e46b272b 1090 pr_debug("%s: stripe %llu\n", __func__,
91c00924 1091 (unsigned long long)sh->sector);
91c00924
DW
1092}
1093
1094static struct dma_async_tx_descriptor *
d6f38f31
DW
1095ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
1096 struct dma_async_tx_descriptor *tx)
91c00924 1097{
91c00924 1098 int disks = sh->disks;
d6f38f31 1099 struct page **xor_srcs = percpu->scribble;
91c00924 1100 int count = 0, pd_idx = sh->pd_idx, i;
a08abd8c 1101 struct async_submit_ctl submit;
91c00924
DW
1102
1103 /* existing parity data subtracted */
1104 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1105
e46b272b 1106 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1107 (unsigned long long)sh->sector);
1108
1109 for (i = disks; i--; ) {
1110 struct r5dev *dev = &sh->dev[i];
1111 /* Only process blocks that are known to be uptodate */
d8ee0728 1112 if (test_bit(R5_Wantdrain, &dev->flags))
91c00924
DW
1113 xor_srcs[count++] = dev->page;
1114 }
1115
0403e382 1116 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
d6f38f31 1117 ops_complete_prexor, sh, to_addr_conv(sh, percpu));
a08abd8c 1118 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
91c00924
DW
1119
1120 return tx;
1121}
1122
1123static struct dma_async_tx_descriptor *
d8ee0728 1124ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
91c00924
DW
1125{
1126 int disks = sh->disks;
d8ee0728 1127 int i;
91c00924 1128
e46b272b 1129 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1130 (unsigned long long)sh->sector);
1131
1132 for (i = disks; i--; ) {
1133 struct r5dev *dev = &sh->dev[i];
1134 struct bio *chosen;
91c00924 1135
d8ee0728 1136 if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
91c00924
DW
1137 struct bio *wbi;
1138
cbe47ec5 1139 spin_lock_irq(&sh->raid_conf->device_lock);
91c00924
DW
1140 chosen = dev->towrite;
1141 dev->towrite = NULL;
1142 BUG_ON(dev->written);
1143 wbi = dev->written = chosen;
cbe47ec5 1144 spin_unlock_irq(&sh->raid_conf->device_lock);
91c00924
DW
1145
1146 while (wbi && wbi->bi_sector <
1147 dev->sector + STRIPE_SECTORS) {
e9c7469b
TH
1148 if (wbi->bi_rw & REQ_FUA)
1149 set_bit(R5_WantFUA, &dev->flags);
bc0934f0
SL
1150 if (wbi->bi_rw & REQ_SYNC)
1151 set_bit(R5_SyncIO, &dev->flags);
91c00924
DW
1152 tx = async_copy_data(1, wbi, dev->page,
1153 dev->sector, tx);
1154 wbi = r5_next_bio(wbi, dev->sector);
1155 }
1156 }
1157 }
1158
1159 return tx;
1160}
1161
ac6b53b6 1162static void ops_complete_reconstruct(void *stripe_head_ref)
91c00924
DW
1163{
1164 struct stripe_head *sh = stripe_head_ref;
ac6b53b6
DW
1165 int disks = sh->disks;
1166 int pd_idx = sh->pd_idx;
1167 int qd_idx = sh->qd_idx;
1168 int i;
bc0934f0 1169 bool fua = false, sync = false;
91c00924 1170
e46b272b 1171 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1172 (unsigned long long)sh->sector);
1173
bc0934f0 1174 for (i = disks; i--; ) {
e9c7469b 1175 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
bc0934f0
SL
1176 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1177 }
e9c7469b 1178
91c00924
DW
1179 for (i = disks; i--; ) {
1180 struct r5dev *dev = &sh->dev[i];
ac6b53b6 1181
e9c7469b 1182 if (dev->written || i == pd_idx || i == qd_idx) {
91c00924 1183 set_bit(R5_UPTODATE, &dev->flags);
e9c7469b
TH
1184 if (fua)
1185 set_bit(R5_WantFUA, &dev->flags);
bc0934f0
SL
1186 if (sync)
1187 set_bit(R5_SyncIO, &dev->flags);
e9c7469b 1188 }
91c00924
DW
1189 }
1190
d8ee0728
DW
1191 if (sh->reconstruct_state == reconstruct_state_drain_run)
1192 sh->reconstruct_state = reconstruct_state_drain_result;
1193 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1194 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1195 else {
1196 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1197 sh->reconstruct_state = reconstruct_state_result;
1198 }
91c00924
DW
1199
1200 set_bit(STRIPE_HANDLE, &sh->state);
1201 release_stripe(sh);
1202}
1203
1204static void
ac6b53b6
DW
1205ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1206 struct dma_async_tx_descriptor *tx)
91c00924 1207{
91c00924 1208 int disks = sh->disks;
d6f38f31 1209 struct page **xor_srcs = percpu->scribble;
a08abd8c 1210 struct async_submit_ctl submit;
91c00924
DW
1211 int count = 0, pd_idx = sh->pd_idx, i;
1212 struct page *xor_dest;
d8ee0728 1213 int prexor = 0;
91c00924 1214 unsigned long flags;
91c00924 1215
e46b272b 1216 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1217 (unsigned long long)sh->sector);
1218
1219 /* check if prexor is active which means only process blocks
1220 * that are part of a read-modify-write (written)
1221 */
d8ee0728
DW
1222 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1223 prexor = 1;
91c00924
DW
1224 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1225 for (i = disks; i--; ) {
1226 struct r5dev *dev = &sh->dev[i];
1227 if (dev->written)
1228 xor_srcs[count++] = dev->page;
1229 }
1230 } else {
1231 xor_dest = sh->dev[pd_idx].page;
1232 for (i = disks; i--; ) {
1233 struct r5dev *dev = &sh->dev[i];
1234 if (i != pd_idx)
1235 xor_srcs[count++] = dev->page;
1236 }
1237 }
1238
91c00924
DW
1239 /* 1/ if we prexor'd then the dest is reused as a source
1240 * 2/ if we did not prexor then we are redoing the parity
1241 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1242 * for the synchronous xor case
1243 */
88ba2aa5 1244 flags = ASYNC_TX_ACK |
91c00924
DW
1245 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1246
1247 atomic_inc(&sh->count);
1248
ac6b53b6 1249 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
d6f38f31 1250 to_addr_conv(sh, percpu));
a08abd8c
DW
1251 if (unlikely(count == 1))
1252 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1253 else
1254 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
91c00924
DW
1255}
1256
ac6b53b6
DW
1257static void
1258ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1259 struct dma_async_tx_descriptor *tx)
1260{
1261 struct async_submit_ctl submit;
1262 struct page **blocks = percpu->scribble;
1263 int count;
1264
1265 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1266
1267 count = set_syndrome_sources(blocks, sh);
1268
1269 atomic_inc(&sh->count);
1270
1271 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1272 sh, to_addr_conv(sh, percpu));
1273 async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
91c00924
DW
1274}
1275
1276static void ops_complete_check(void *stripe_head_ref)
1277{
1278 struct stripe_head *sh = stripe_head_ref;
91c00924 1279
e46b272b 1280 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1281 (unsigned long long)sh->sector);
1282
ecc65c9b 1283 sh->check_state = check_state_check_result;
91c00924
DW
1284 set_bit(STRIPE_HANDLE, &sh->state);
1285 release_stripe(sh);
1286}
1287
ac6b53b6 1288static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
91c00924 1289{
91c00924 1290 int disks = sh->disks;
ac6b53b6
DW
1291 int pd_idx = sh->pd_idx;
1292 int qd_idx = sh->qd_idx;
1293 struct page *xor_dest;
d6f38f31 1294 struct page **xor_srcs = percpu->scribble;
91c00924 1295 struct dma_async_tx_descriptor *tx;
a08abd8c 1296 struct async_submit_ctl submit;
ac6b53b6
DW
1297 int count;
1298 int i;
91c00924 1299
e46b272b 1300 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
1301 (unsigned long long)sh->sector);
1302
ac6b53b6
DW
1303 count = 0;
1304 xor_dest = sh->dev[pd_idx].page;
1305 xor_srcs[count++] = xor_dest;
91c00924 1306 for (i = disks; i--; ) {
ac6b53b6
DW
1307 if (i == pd_idx || i == qd_idx)
1308 continue;
1309 xor_srcs[count++] = sh->dev[i].page;
91c00924
DW
1310 }
1311
d6f38f31
DW
1312 init_async_submit(&submit, 0, NULL, NULL, NULL,
1313 to_addr_conv(sh, percpu));
099f53cb 1314 tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
a08abd8c 1315 &sh->ops.zero_sum_result, &submit);
91c00924 1316
91c00924 1317 atomic_inc(&sh->count);
a08abd8c
DW
1318 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1319 tx = async_trigger_callback(&submit);
91c00924
DW
1320}
1321
ac6b53b6
DW
1322static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1323{
1324 struct page **srcs = percpu->scribble;
1325 struct async_submit_ctl submit;
1326 int count;
1327
1328 pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1329 (unsigned long long)sh->sector, checkp);
1330
1331 count = set_syndrome_sources(srcs, sh);
1332 if (!checkp)
1333 srcs[count] = NULL;
91c00924 1334
91c00924 1335 atomic_inc(&sh->count);
ac6b53b6
DW
1336 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1337 sh, to_addr_conv(sh, percpu));
1338 async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1339 &sh->ops.zero_sum_result, percpu->spare_page, &submit);
91c00924
DW
1340}
1341
417b8d4a 1342static void __raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
91c00924
DW
1343{
1344 int overlap_clear = 0, i, disks = sh->disks;
1345 struct dma_async_tx_descriptor *tx = NULL;
d1688a6d 1346 struct r5conf *conf = sh->raid_conf;
ac6b53b6 1347 int level = conf->level;
d6f38f31
DW
1348 struct raid5_percpu *percpu;
1349 unsigned long cpu;
91c00924 1350
d6f38f31
DW
1351 cpu = get_cpu();
1352 percpu = per_cpu_ptr(conf->percpu, cpu);
83de75cc 1353 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
91c00924
DW
1354 ops_run_biofill(sh);
1355 overlap_clear++;
1356 }
1357
7b3a871e 1358 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
ac6b53b6
DW
1359 if (level < 6)
1360 tx = ops_run_compute5(sh, percpu);
1361 else {
1362 if (sh->ops.target2 < 0 || sh->ops.target < 0)
1363 tx = ops_run_compute6_1(sh, percpu);
1364 else
1365 tx = ops_run_compute6_2(sh, percpu);
1366 }
1367 /* terminate the chain if reconstruct is not set to be run */
1368 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
7b3a871e
DW
1369 async_tx_ack(tx);
1370 }
91c00924 1371
600aa109 1372 if (test_bit(STRIPE_OP_PREXOR, &ops_request))
d6f38f31 1373 tx = ops_run_prexor(sh, percpu, tx);
91c00924 1374
600aa109 1375 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
d8ee0728 1376 tx = ops_run_biodrain(sh, tx);
91c00924
DW
1377 overlap_clear++;
1378 }
1379
ac6b53b6
DW
1380 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1381 if (level < 6)
1382 ops_run_reconstruct5(sh, percpu, tx);
1383 else
1384 ops_run_reconstruct6(sh, percpu, tx);
1385 }
91c00924 1386
ac6b53b6
DW
1387 if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1388 if (sh->check_state == check_state_run)
1389 ops_run_check_p(sh, percpu);
1390 else if (sh->check_state == check_state_run_q)
1391 ops_run_check_pq(sh, percpu, 0);
1392 else if (sh->check_state == check_state_run_pq)
1393 ops_run_check_pq(sh, percpu, 1);
1394 else
1395 BUG();
1396 }
91c00924 1397
91c00924
DW
1398 if (overlap_clear)
1399 for (i = disks; i--; ) {
1400 struct r5dev *dev = &sh->dev[i];
1401 if (test_and_clear_bit(R5_Overlap, &dev->flags))
1402 wake_up(&sh->raid_conf->wait_for_overlap);
1403 }
d6f38f31 1404 put_cpu();
91c00924
DW
1405}
1406
417b8d4a
DW
1407#ifdef CONFIG_MULTICORE_RAID456
1408static void async_run_ops(void *param, async_cookie_t cookie)
1409{
1410 struct stripe_head *sh = param;
1411 unsigned long ops_request = sh->ops.request;
1412
1413 clear_bit_unlock(STRIPE_OPS_REQ_PENDING, &sh->state);
1414 wake_up(&sh->ops.wait_for_ops);
1415
1416 __raid_run_ops(sh, ops_request);
1417 release_stripe(sh);
1418}
1419
1420static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1421{
1422 /* since handle_stripe can be called outside of raid5d context
1423 * we need to ensure sh->ops.request is de-staged before another
1424 * request arrives
1425 */
1426 wait_event(sh->ops.wait_for_ops,
1427 !test_and_set_bit_lock(STRIPE_OPS_REQ_PENDING, &sh->state));
1428 sh->ops.request = ops_request;
1429
1430 atomic_inc(&sh->count);
1431 async_schedule(async_run_ops, sh);
1432}
1433#else
1434#define raid_run_ops __raid_run_ops
1435#endif
1436
d1688a6d 1437static int grow_one_stripe(struct r5conf *conf)
1da177e4
LT
1438{
1439 struct stripe_head *sh;
6ce32846 1440 sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL);
3f294f4f
N
1441 if (!sh)
1442 return 0;
6ce32846 1443
3f294f4f 1444 sh->raid_conf = conf;
417b8d4a
DW
1445 #ifdef CONFIG_MULTICORE_RAID456
1446 init_waitqueue_head(&sh->ops.wait_for_ops);
1447 #endif
3f294f4f 1448
e4e11e38
N
1449 if (grow_buffers(sh)) {
1450 shrink_buffers(sh);
3f294f4f
N
1451 kmem_cache_free(conf->slab_cache, sh);
1452 return 0;
1453 }
1454 /* we just created an active stripe so... */
1455 atomic_set(&sh->count, 1);
1456 atomic_inc(&conf->active_stripes);
1457 INIT_LIST_HEAD(&sh->lru);
1458 release_stripe(sh);
1459 return 1;
1460}
1461
d1688a6d 1462static int grow_stripes(struct r5conf *conf, int num)
3f294f4f 1463{
e18b890b 1464 struct kmem_cache *sc;
5e5e3e78 1465 int devs = max(conf->raid_disks, conf->previous_raid_disks);
1da177e4 1466
f4be6b43
N
1467 if (conf->mddev->gendisk)
1468 sprintf(conf->cache_name[0],
1469 "raid%d-%s", conf->level, mdname(conf->mddev));
1470 else
1471 sprintf(conf->cache_name[0],
1472 "raid%d-%p", conf->level, conf->mddev);
1473 sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
1474
ad01c9e3
N
1475 conf->active_name = 0;
1476 sc = kmem_cache_create(conf->cache_name[conf->active_name],
1da177e4 1477 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
20c2df83 1478 0, 0, NULL);
1da177e4
LT
1479 if (!sc)
1480 return 1;
1481 conf->slab_cache = sc;
ad01c9e3 1482 conf->pool_size = devs;
16a53ecc 1483 while (num--)
3f294f4f 1484 if (!grow_one_stripe(conf))
1da177e4 1485 return 1;
1da177e4
LT
1486 return 0;
1487}
29269553 1488
d6f38f31
DW
1489/**
1490 * scribble_len - return the required size of the scribble region
1491 * @num - total number of disks in the array
1492 *
1493 * The size must be enough to contain:
1494 * 1/ a struct page pointer for each device in the array +2
1495 * 2/ room to convert each entry in (1) to its corresponding dma
1496 * (dma_map_page()) or page (page_address()) address.
1497 *
1498 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1499 * calculate over all devices (not just the data blocks), using zeros in place
1500 * of the P and Q blocks.
1501 */
1502static size_t scribble_len(int num)
1503{
1504 size_t len;
1505
1506 len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1507
1508 return len;
1509}
1510
d1688a6d 1511static int resize_stripes(struct r5conf *conf, int newsize)
ad01c9e3
N
1512{
1513 /* Make all the stripes able to hold 'newsize' devices.
1514 * New slots in each stripe get 'page' set to a new page.
1515 *
1516 * This happens in stages:
1517 * 1/ create a new kmem_cache and allocate the required number of
1518 * stripe_heads.
1519 * 2/ gather all the old stripe_heads and tranfer the pages across
1520 * to the new stripe_heads. This will have the side effect of
1521 * freezing the array as once all stripe_heads have been collected,
1522 * no IO will be possible. Old stripe heads are freed once their
1523 * pages have been transferred over, and the old kmem_cache is
1524 * freed when all stripes are done.
1525 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
1526 * we simple return a failre status - no need to clean anything up.
1527 * 4/ allocate new pages for the new slots in the new stripe_heads.
1528 * If this fails, we don't bother trying the shrink the
1529 * stripe_heads down again, we just leave them as they are.
1530 * As each stripe_head is processed the new one is released into
1531 * active service.
1532 *
1533 * Once step2 is started, we cannot afford to wait for a write,
1534 * so we use GFP_NOIO allocations.
1535 */
1536 struct stripe_head *osh, *nsh;
1537 LIST_HEAD(newstripes);
1538 struct disk_info *ndisks;
d6f38f31 1539 unsigned long cpu;
b5470dc5 1540 int err;
e18b890b 1541 struct kmem_cache *sc;
ad01c9e3
N
1542 int i;
1543
1544 if (newsize <= conf->pool_size)
1545 return 0; /* never bother to shrink */
1546
b5470dc5
DW
1547 err = md_allow_write(conf->mddev);
1548 if (err)
1549 return err;
2a2275d6 1550
ad01c9e3
N
1551 /* Step 1 */
1552 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1553 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
20c2df83 1554 0, 0, NULL);
ad01c9e3
N
1555 if (!sc)
1556 return -ENOMEM;
1557
1558 for (i = conf->max_nr_stripes; i; i--) {
6ce32846 1559 nsh = kmem_cache_zalloc(sc, GFP_KERNEL);
ad01c9e3
N
1560 if (!nsh)
1561 break;
1562
ad01c9e3 1563 nsh->raid_conf = conf;
417b8d4a
DW
1564 #ifdef CONFIG_MULTICORE_RAID456
1565 init_waitqueue_head(&nsh->ops.wait_for_ops);
1566 #endif
ad01c9e3
N
1567
1568 list_add(&nsh->lru, &newstripes);
1569 }
1570 if (i) {
1571 /* didn't get enough, give up */
1572 while (!list_empty(&newstripes)) {
1573 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1574 list_del(&nsh->lru);
1575 kmem_cache_free(sc, nsh);
1576 }
1577 kmem_cache_destroy(sc);
1578 return -ENOMEM;
1579 }
1580 /* Step 2 - Must use GFP_NOIO now.
1581 * OK, we have enough stripes, start collecting inactive
1582 * stripes and copying them over
1583 */
1584 list_for_each_entry(nsh, &newstripes, lru) {
1585 spin_lock_irq(&conf->device_lock);
1586 wait_event_lock_irq(conf->wait_for_stripe,
1587 !list_empty(&conf->inactive_list),
1588 conf->device_lock,
482c0834 1589 );
ad01c9e3
N
1590 osh = get_free_stripe(conf);
1591 spin_unlock_irq(&conf->device_lock);
1592 atomic_set(&nsh->count, 1);
1593 for(i=0; i<conf->pool_size; i++)
1594 nsh->dev[i].page = osh->dev[i].page;
1595 for( ; i<newsize; i++)
1596 nsh->dev[i].page = NULL;
1597 kmem_cache_free(conf->slab_cache, osh);
1598 }
1599 kmem_cache_destroy(conf->slab_cache);
1600
1601 /* Step 3.
1602 * At this point, we are holding all the stripes so the array
1603 * is completely stalled, so now is a good time to resize
d6f38f31 1604 * conf->disks and the scribble region
ad01c9e3
N
1605 */
1606 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1607 if (ndisks) {
1608 for (i=0; i<conf->raid_disks; i++)
1609 ndisks[i] = conf->disks[i];
1610 kfree(conf->disks);
1611 conf->disks = ndisks;
1612 } else
1613 err = -ENOMEM;
1614
d6f38f31
DW
1615 get_online_cpus();
1616 conf->scribble_len = scribble_len(newsize);
1617 for_each_present_cpu(cpu) {
1618 struct raid5_percpu *percpu;
1619 void *scribble;
1620
1621 percpu = per_cpu_ptr(conf->percpu, cpu);
1622 scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1623
1624 if (scribble) {
1625 kfree(percpu->scribble);
1626 percpu->scribble = scribble;
1627 } else {
1628 err = -ENOMEM;
1629 break;
1630 }
1631 }
1632 put_online_cpus();
1633
ad01c9e3
N
1634 /* Step 4, return new stripes to service */
1635 while(!list_empty(&newstripes)) {
1636 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1637 list_del_init(&nsh->lru);
d6f38f31 1638
ad01c9e3
N
1639 for (i=conf->raid_disks; i < newsize; i++)
1640 if (nsh->dev[i].page == NULL) {
1641 struct page *p = alloc_page(GFP_NOIO);
1642 nsh->dev[i].page = p;
1643 if (!p)
1644 err = -ENOMEM;
1645 }
1646 release_stripe(nsh);
1647 }
1648 /* critical section pass, GFP_NOIO no longer needed */
1649
1650 conf->slab_cache = sc;
1651 conf->active_name = 1-conf->active_name;
1652 conf->pool_size = newsize;
1653 return err;
1654}
1da177e4 1655
d1688a6d 1656static int drop_one_stripe(struct r5conf *conf)
1da177e4
LT
1657{
1658 struct stripe_head *sh;
1659
3f294f4f
N
1660 spin_lock_irq(&conf->device_lock);
1661 sh = get_free_stripe(conf);
1662 spin_unlock_irq(&conf->device_lock);
1663 if (!sh)
1664 return 0;
78bafebd 1665 BUG_ON(atomic_read(&sh->count));
e4e11e38 1666 shrink_buffers(sh);
3f294f4f
N
1667 kmem_cache_free(conf->slab_cache, sh);
1668 atomic_dec(&conf->active_stripes);
1669 return 1;
1670}
1671
d1688a6d 1672static void shrink_stripes(struct r5conf *conf)
3f294f4f
N
1673{
1674 while (drop_one_stripe(conf))
1675 ;
1676
29fc7e3e
N
1677 if (conf->slab_cache)
1678 kmem_cache_destroy(conf->slab_cache);
1da177e4
LT
1679 conf->slab_cache = NULL;
1680}
1681
6712ecf8 1682static void raid5_end_read_request(struct bio * bi, int error)
1da177e4 1683{
99c0fb5f 1684 struct stripe_head *sh = bi->bi_private;
d1688a6d 1685 struct r5conf *conf = sh->raid_conf;
7ecaa1e6 1686 int disks = sh->disks, i;
1da177e4 1687 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
d6950432 1688 char b[BDEVNAME_SIZE];
dd054fce 1689 struct md_rdev *rdev = NULL;
05616be5 1690 sector_t s;
1da177e4
LT
1691
1692 for (i=0 ; i<disks; i++)
1693 if (bi == &sh->dev[i].req)
1694 break;
1695
45b4233c
DW
1696 pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1697 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1da177e4
LT
1698 uptodate);
1699 if (i == disks) {
1700 BUG();
6712ecf8 1701 return;
1da177e4 1702 }
14a75d3e 1703 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
dd054fce
N
1704 /* If replacement finished while this request was outstanding,
1705 * 'replacement' might be NULL already.
1706 * In that case it moved down to 'rdev'.
1707 * rdev is not removed until all requests are finished.
1708 */
14a75d3e 1709 rdev = conf->disks[i].replacement;
dd054fce 1710 if (!rdev)
14a75d3e 1711 rdev = conf->disks[i].rdev;
1da177e4 1712
05616be5
N
1713 if (use_new_offset(conf, sh))
1714 s = sh->sector + rdev->new_data_offset;
1715 else
1716 s = sh->sector + rdev->data_offset;
1da177e4 1717 if (uptodate) {
1da177e4 1718 set_bit(R5_UPTODATE, &sh->dev[i].flags);
4e5314b5 1719 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
14a75d3e
N
1720 /* Note that this cannot happen on a
1721 * replacement device. We just fail those on
1722 * any error
1723 */
8bda470e
CD
1724 printk_ratelimited(
1725 KERN_INFO
1726 "md/raid:%s: read error corrected"
1727 " (%lu sectors at %llu on %s)\n",
1728 mdname(conf->mddev), STRIPE_SECTORS,
05616be5 1729 (unsigned long long)s,
8bda470e 1730 bdevname(rdev->bdev, b));
ddd5115f 1731 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
4e5314b5
N
1732 clear_bit(R5_ReadError, &sh->dev[i].flags);
1733 clear_bit(R5_ReWrite, &sh->dev[i].flags);
1734 }
14a75d3e
N
1735 if (atomic_read(&rdev->read_errors))
1736 atomic_set(&rdev->read_errors, 0);
1da177e4 1737 } else {
14a75d3e 1738 const char *bdn = bdevname(rdev->bdev, b);
ba22dcbf 1739 int retry = 0;
d6950432 1740
1da177e4 1741 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
d6950432 1742 atomic_inc(&rdev->read_errors);
14a75d3e
N
1743 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
1744 printk_ratelimited(
1745 KERN_WARNING
1746 "md/raid:%s: read error on replacement device "
1747 "(sector %llu on %s).\n",
1748 mdname(conf->mddev),
05616be5 1749 (unsigned long long)s,
14a75d3e
N
1750 bdn);
1751 else if (conf->mddev->degraded >= conf->max_degraded)
8bda470e
CD
1752 printk_ratelimited(
1753 KERN_WARNING
1754 "md/raid:%s: read error not correctable "
1755 "(sector %llu on %s).\n",
1756 mdname(conf->mddev),
05616be5 1757 (unsigned long long)s,
8bda470e 1758 bdn);
ba22dcbf 1759 else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
4e5314b5 1760 /* Oh, no!!! */
8bda470e
CD
1761 printk_ratelimited(
1762 KERN_WARNING
1763 "md/raid:%s: read error NOT corrected!! "
1764 "(sector %llu on %s).\n",
1765 mdname(conf->mddev),
05616be5 1766 (unsigned long long)s,
8bda470e 1767 bdn);
d6950432 1768 else if (atomic_read(&rdev->read_errors)
ba22dcbf 1769 > conf->max_nr_stripes)
14f8d26b 1770 printk(KERN_WARNING
0c55e022 1771 "md/raid:%s: Too many read errors, failing device %s.\n",
d6950432 1772 mdname(conf->mddev), bdn);
ba22dcbf
N
1773 else
1774 retry = 1;
1775 if (retry)
1776 set_bit(R5_ReadError, &sh->dev[i].flags);
1777 else {
4e5314b5
N
1778 clear_bit(R5_ReadError, &sh->dev[i].flags);
1779 clear_bit(R5_ReWrite, &sh->dev[i].flags);
d6950432 1780 md_error(conf->mddev, rdev);
ba22dcbf 1781 }
1da177e4 1782 }
14a75d3e 1783 rdev_dec_pending(rdev, conf->mddev);
1da177e4
LT
1784 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1785 set_bit(STRIPE_HANDLE, &sh->state);
1786 release_stripe(sh);
1da177e4
LT
1787}
1788
d710e138 1789static void raid5_end_write_request(struct bio *bi, int error)
1da177e4 1790{
99c0fb5f 1791 struct stripe_head *sh = bi->bi_private;
d1688a6d 1792 struct r5conf *conf = sh->raid_conf;
7ecaa1e6 1793 int disks = sh->disks, i;
977df362 1794 struct md_rdev *uninitialized_var(rdev);
1da177e4 1795 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
b84db560
N
1796 sector_t first_bad;
1797 int bad_sectors;
977df362 1798 int replacement = 0;
1da177e4 1799
977df362
N
1800 for (i = 0 ; i < disks; i++) {
1801 if (bi == &sh->dev[i].req) {
1802 rdev = conf->disks[i].rdev;
1da177e4 1803 break;
977df362
N
1804 }
1805 if (bi == &sh->dev[i].rreq) {
1806 rdev = conf->disks[i].replacement;
dd054fce
N
1807 if (rdev)
1808 replacement = 1;
1809 else
1810 /* rdev was removed and 'replacement'
1811 * replaced it. rdev is not removed
1812 * until all requests are finished.
1813 */
1814 rdev = conf->disks[i].rdev;
977df362
N
1815 break;
1816 }
1817 }
45b4233c 1818 pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1da177e4
LT
1819 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1820 uptodate);
1821 if (i == disks) {
1822 BUG();
6712ecf8 1823 return;
1da177e4
LT
1824 }
1825
977df362
N
1826 if (replacement) {
1827 if (!uptodate)
1828 md_error(conf->mddev, rdev);
1829 else if (is_badblock(rdev, sh->sector,
1830 STRIPE_SECTORS,
1831 &first_bad, &bad_sectors))
1832 set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
1833 } else {
1834 if (!uptodate) {
1835 set_bit(WriteErrorSeen, &rdev->flags);
1836 set_bit(R5_WriteError, &sh->dev[i].flags);
3a6de292
N
1837 if (!test_and_set_bit(WantReplacement, &rdev->flags))
1838 set_bit(MD_RECOVERY_NEEDED,
1839 &rdev->mddev->recovery);
977df362
N
1840 } else if (is_badblock(rdev, sh->sector,
1841 STRIPE_SECTORS,
1842 &first_bad, &bad_sectors))
1843 set_bit(R5_MadeGood, &sh->dev[i].flags);
1844 }
1845 rdev_dec_pending(rdev, conf->mddev);
1da177e4 1846
977df362
N
1847 if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
1848 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1da177e4 1849 set_bit(STRIPE_HANDLE, &sh->state);
c04be0aa 1850 release_stripe(sh);
1da177e4
LT
1851}
1852
784052ec 1853static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
1da177e4 1854
784052ec 1855static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1da177e4
LT
1856{
1857 struct r5dev *dev = &sh->dev[i];
1858
1859 bio_init(&dev->req);
1860 dev->req.bi_io_vec = &dev->vec;
1861 dev->req.bi_vcnt++;
1862 dev->req.bi_max_vecs++;
1da177e4 1863 dev->req.bi_private = sh;
995c4275 1864 dev->vec.bv_page = dev->page;
1da177e4 1865
977df362
N
1866 bio_init(&dev->rreq);
1867 dev->rreq.bi_io_vec = &dev->rvec;
1868 dev->rreq.bi_vcnt++;
1869 dev->rreq.bi_max_vecs++;
1870 dev->rreq.bi_private = sh;
1871 dev->rvec.bv_page = dev->page;
1872
1da177e4 1873 dev->flags = 0;
784052ec 1874 dev->sector = compute_blocknr(sh, i, previous);
1da177e4
LT
1875}
1876
fd01b88c 1877static void error(struct mddev *mddev, struct md_rdev *rdev)
1da177e4
LT
1878{
1879 char b[BDEVNAME_SIZE];
d1688a6d 1880 struct r5conf *conf = mddev->private;
908f4fbd 1881 unsigned long flags;
0c55e022 1882 pr_debug("raid456: error called\n");
1da177e4 1883
908f4fbd
N
1884 spin_lock_irqsave(&conf->device_lock, flags);
1885 clear_bit(In_sync, &rdev->flags);
1886 mddev->degraded = calc_degraded(conf);
1887 spin_unlock_irqrestore(&conf->device_lock, flags);
1888 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1889
de393cde 1890 set_bit(Blocked, &rdev->flags);
6f8d0c77
N
1891 set_bit(Faulty, &rdev->flags);
1892 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1893 printk(KERN_ALERT
1894 "md/raid:%s: Disk failure on %s, disabling device.\n"
1895 "md/raid:%s: Operation continuing on %d devices.\n",
1896 mdname(mddev),
1897 bdevname(rdev->bdev, b),
1898 mdname(mddev),
1899 conf->raid_disks - mddev->degraded);
16a53ecc 1900}
1da177e4
LT
1901
1902/*
1903 * Input: a 'big' sector number,
1904 * Output: index of the data and parity disk, and the sector # in them.
1905 */
d1688a6d 1906static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
911d4ee8
N
1907 int previous, int *dd_idx,
1908 struct stripe_head *sh)
1da177e4 1909{
6e3b96ed 1910 sector_t stripe, stripe2;
35f2a591 1911 sector_t chunk_number;
1da177e4 1912 unsigned int chunk_offset;
911d4ee8 1913 int pd_idx, qd_idx;
67cc2b81 1914 int ddf_layout = 0;
1da177e4 1915 sector_t new_sector;
e183eaed
N
1916 int algorithm = previous ? conf->prev_algo
1917 : conf->algorithm;
09c9e5fa
AN
1918 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1919 : conf->chunk_sectors;
112bf897
N
1920 int raid_disks = previous ? conf->previous_raid_disks
1921 : conf->raid_disks;
1922 int data_disks = raid_disks - conf->max_degraded;
1da177e4
LT
1923
1924 /* First compute the information on this sector */
1925
1926 /*
1927 * Compute the chunk number and the sector offset inside the chunk
1928 */
1929 chunk_offset = sector_div(r_sector, sectors_per_chunk);
1930 chunk_number = r_sector;
1da177e4
LT
1931
1932 /*
1933 * Compute the stripe number
1934 */
35f2a591
N
1935 stripe = chunk_number;
1936 *dd_idx = sector_div(stripe, data_disks);
6e3b96ed 1937 stripe2 = stripe;
1da177e4
LT
1938 /*
1939 * Select the parity disk based on the user selected algorithm.
1940 */
84789554 1941 pd_idx = qd_idx = -1;
16a53ecc
N
1942 switch(conf->level) {
1943 case 4:
911d4ee8 1944 pd_idx = data_disks;
16a53ecc
N
1945 break;
1946 case 5:
e183eaed 1947 switch (algorithm) {
1da177e4 1948 case ALGORITHM_LEFT_ASYMMETRIC:
6e3b96ed 1949 pd_idx = data_disks - sector_div(stripe2, raid_disks);
911d4ee8 1950 if (*dd_idx >= pd_idx)
1da177e4
LT
1951 (*dd_idx)++;
1952 break;
1953 case ALGORITHM_RIGHT_ASYMMETRIC:
6e3b96ed 1954 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8 1955 if (*dd_idx >= pd_idx)
1da177e4
LT
1956 (*dd_idx)++;
1957 break;
1958 case ALGORITHM_LEFT_SYMMETRIC:
6e3b96ed 1959 pd_idx = data_disks - sector_div(stripe2, raid_disks);
911d4ee8 1960 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1da177e4
LT
1961 break;
1962 case ALGORITHM_RIGHT_SYMMETRIC:
6e3b96ed 1963 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8 1964 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1da177e4 1965 break;
99c0fb5f
N
1966 case ALGORITHM_PARITY_0:
1967 pd_idx = 0;
1968 (*dd_idx)++;
1969 break;
1970 case ALGORITHM_PARITY_N:
1971 pd_idx = data_disks;
1972 break;
1da177e4 1973 default:
99c0fb5f 1974 BUG();
16a53ecc
N
1975 }
1976 break;
1977 case 6:
1978
e183eaed 1979 switch (algorithm) {
16a53ecc 1980 case ALGORITHM_LEFT_ASYMMETRIC:
6e3b96ed 1981 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
911d4ee8
N
1982 qd_idx = pd_idx + 1;
1983 if (pd_idx == raid_disks-1) {
99c0fb5f 1984 (*dd_idx)++; /* Q D D D P */
911d4ee8
N
1985 qd_idx = 0;
1986 } else if (*dd_idx >= pd_idx)
16a53ecc
N
1987 (*dd_idx) += 2; /* D D P Q D */
1988 break;
1989 case ALGORITHM_RIGHT_ASYMMETRIC:
6e3b96ed 1990 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8
N
1991 qd_idx = pd_idx + 1;
1992 if (pd_idx == raid_disks-1) {
99c0fb5f 1993 (*dd_idx)++; /* Q D D D P */
911d4ee8
N
1994 qd_idx = 0;
1995 } else if (*dd_idx >= pd_idx)
16a53ecc
N
1996 (*dd_idx) += 2; /* D D P Q D */
1997 break;
1998 case ALGORITHM_LEFT_SYMMETRIC:
6e3b96ed 1999 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
911d4ee8
N
2000 qd_idx = (pd_idx + 1) % raid_disks;
2001 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
16a53ecc
N
2002 break;
2003 case ALGORITHM_RIGHT_SYMMETRIC:
6e3b96ed 2004 pd_idx = sector_div(stripe2, raid_disks);
911d4ee8
N
2005 qd_idx = (pd_idx + 1) % raid_disks;
2006 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
16a53ecc 2007 break;
99c0fb5f
N
2008
2009 case ALGORITHM_PARITY_0:
2010 pd_idx = 0;
2011 qd_idx = 1;
2012 (*dd_idx) += 2;
2013 break;
2014 case ALGORITHM_PARITY_N:
2015 pd_idx = data_disks;
2016 qd_idx = data_disks + 1;
2017 break;
2018
2019 case ALGORITHM_ROTATING_ZERO_RESTART:
2020 /* Exactly the same as RIGHT_ASYMMETRIC, but or
2021 * of blocks for computing Q is different.
2022 */
6e3b96ed 2023 pd_idx = sector_div(stripe2, raid_disks);
99c0fb5f
N
2024 qd_idx = pd_idx + 1;
2025 if (pd_idx == raid_disks-1) {
2026 (*dd_idx)++; /* Q D D D P */
2027 qd_idx = 0;
2028 } else if (*dd_idx >= pd_idx)
2029 (*dd_idx) += 2; /* D D P Q D */
67cc2b81 2030 ddf_layout = 1;
99c0fb5f
N
2031 break;
2032
2033 case ALGORITHM_ROTATING_N_RESTART:
2034 /* Same a left_asymmetric, by first stripe is
2035 * D D D P Q rather than
2036 * Q D D D P
2037 */
6e3b96ed
N
2038 stripe2 += 1;
2039 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
99c0fb5f
N
2040 qd_idx = pd_idx + 1;
2041 if (pd_idx == raid_disks-1) {
2042 (*dd_idx)++; /* Q D D D P */
2043 qd_idx = 0;
2044 } else if (*dd_idx >= pd_idx)
2045 (*dd_idx) += 2; /* D D P Q D */
67cc2b81 2046 ddf_layout = 1;
99c0fb5f
N
2047 break;
2048
2049 case ALGORITHM_ROTATING_N_CONTINUE:
2050 /* Same as left_symmetric but Q is before P */
6e3b96ed 2051 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
99c0fb5f
N
2052 qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2053 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
67cc2b81 2054 ddf_layout = 1;
99c0fb5f
N
2055 break;
2056
2057 case ALGORITHM_LEFT_ASYMMETRIC_6:
2058 /* RAID5 left_asymmetric, with Q on last device */
6e3b96ed 2059 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
99c0fb5f
N
2060 if (*dd_idx >= pd_idx)
2061 (*dd_idx)++;
2062 qd_idx = raid_disks - 1;
2063 break;
2064
2065 case ALGORITHM_RIGHT_ASYMMETRIC_6:
6e3b96ed 2066 pd_idx = sector_div(stripe2, raid_disks-1);
99c0fb5f
N
2067 if (*dd_idx >= pd_idx)
2068 (*dd_idx)++;
2069 qd_idx = raid_disks - 1;
2070 break;
2071
2072 case ALGORITHM_LEFT_SYMMETRIC_6:
6e3b96ed 2073 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
99c0fb5f
N
2074 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2075 qd_idx = raid_disks - 1;
2076 break;
2077
2078 case ALGORITHM_RIGHT_SYMMETRIC_6:
6e3b96ed 2079 pd_idx = sector_div(stripe2, raid_disks-1);
99c0fb5f
N
2080 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2081 qd_idx = raid_disks - 1;
2082 break;
2083
2084 case ALGORITHM_PARITY_0_6:
2085 pd_idx = 0;
2086 (*dd_idx)++;
2087 qd_idx = raid_disks - 1;
2088 break;
2089
16a53ecc 2090 default:
99c0fb5f 2091 BUG();
16a53ecc
N
2092 }
2093 break;
1da177e4
LT
2094 }
2095
911d4ee8
N
2096 if (sh) {
2097 sh->pd_idx = pd_idx;
2098 sh->qd_idx = qd_idx;
67cc2b81 2099 sh->ddf_layout = ddf_layout;
911d4ee8 2100 }
1da177e4
LT
2101 /*
2102 * Finally, compute the new sector number
2103 */
2104 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2105 return new_sector;
2106}
2107
2108
784052ec 2109static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
1da177e4 2110{
d1688a6d 2111 struct r5conf *conf = sh->raid_conf;
b875e531
N
2112 int raid_disks = sh->disks;
2113 int data_disks = raid_disks - conf->max_degraded;
1da177e4 2114 sector_t new_sector = sh->sector, check;
09c9e5fa
AN
2115 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2116 : conf->chunk_sectors;
e183eaed
N
2117 int algorithm = previous ? conf->prev_algo
2118 : conf->algorithm;
1da177e4
LT
2119 sector_t stripe;
2120 int chunk_offset;
35f2a591
N
2121 sector_t chunk_number;
2122 int dummy1, dd_idx = i;
1da177e4 2123 sector_t r_sector;
911d4ee8 2124 struct stripe_head sh2;
1da177e4 2125
16a53ecc 2126
1da177e4
LT
2127 chunk_offset = sector_div(new_sector, sectors_per_chunk);
2128 stripe = new_sector;
1da177e4 2129
16a53ecc
N
2130 if (i == sh->pd_idx)
2131 return 0;
2132 switch(conf->level) {
2133 case 4: break;
2134 case 5:
e183eaed 2135 switch (algorithm) {
1da177e4
LT
2136 case ALGORITHM_LEFT_ASYMMETRIC:
2137 case ALGORITHM_RIGHT_ASYMMETRIC:
2138 if (i > sh->pd_idx)
2139 i--;
2140 break;
2141 case ALGORITHM_LEFT_SYMMETRIC:
2142 case ALGORITHM_RIGHT_SYMMETRIC:
2143 if (i < sh->pd_idx)
2144 i += raid_disks;
2145 i -= (sh->pd_idx + 1);
2146 break;
99c0fb5f
N
2147 case ALGORITHM_PARITY_0:
2148 i -= 1;
2149 break;
2150 case ALGORITHM_PARITY_N:
2151 break;
1da177e4 2152 default:
99c0fb5f 2153 BUG();
16a53ecc
N
2154 }
2155 break;
2156 case 6:
d0dabf7e 2157 if (i == sh->qd_idx)
16a53ecc 2158 return 0; /* It is the Q disk */
e183eaed 2159 switch (algorithm) {
16a53ecc
N
2160 case ALGORITHM_LEFT_ASYMMETRIC:
2161 case ALGORITHM_RIGHT_ASYMMETRIC:
99c0fb5f
N
2162 case ALGORITHM_ROTATING_ZERO_RESTART:
2163 case ALGORITHM_ROTATING_N_RESTART:
2164 if (sh->pd_idx == raid_disks-1)
2165 i--; /* Q D D D P */
16a53ecc
N
2166 else if (i > sh->pd_idx)
2167 i -= 2; /* D D P Q D */
2168 break;
2169 case ALGORITHM_LEFT_SYMMETRIC:
2170 case ALGORITHM_RIGHT_SYMMETRIC:
2171 if (sh->pd_idx == raid_disks-1)
2172 i--; /* Q D D D P */
2173 else {
2174 /* D D P Q D */
2175 if (i < sh->pd_idx)
2176 i += raid_disks;
2177 i -= (sh->pd_idx + 2);
2178 }
2179 break;
99c0fb5f
N
2180 case ALGORITHM_PARITY_0:
2181 i -= 2;
2182 break;
2183 case ALGORITHM_PARITY_N:
2184 break;
2185 case ALGORITHM_ROTATING_N_CONTINUE:
e4424fee 2186 /* Like left_symmetric, but P is before Q */
99c0fb5f
N
2187 if (sh->pd_idx == 0)
2188 i--; /* P D D D Q */
e4424fee
N
2189 else {
2190 /* D D Q P D */
2191 if (i < sh->pd_idx)
2192 i += raid_disks;
2193 i -= (sh->pd_idx + 1);
2194 }
99c0fb5f
N
2195 break;
2196 case ALGORITHM_LEFT_ASYMMETRIC_6:
2197 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2198 if (i > sh->pd_idx)
2199 i--;
2200 break;
2201 case ALGORITHM_LEFT_SYMMETRIC_6:
2202 case ALGORITHM_RIGHT_SYMMETRIC_6:
2203 if (i < sh->pd_idx)
2204 i += data_disks + 1;
2205 i -= (sh->pd_idx + 1);
2206 break;
2207 case ALGORITHM_PARITY_0_6:
2208 i -= 1;
2209 break;
16a53ecc 2210 default:
99c0fb5f 2211 BUG();
16a53ecc
N
2212 }
2213 break;
1da177e4
LT
2214 }
2215
2216 chunk_number = stripe * data_disks + i;
35f2a591 2217 r_sector = chunk_number * sectors_per_chunk + chunk_offset;
1da177e4 2218
112bf897 2219 check = raid5_compute_sector(conf, r_sector,
784052ec 2220 previous, &dummy1, &sh2);
911d4ee8
N
2221 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2222 || sh2.qd_idx != sh->qd_idx) {
0c55e022
N
2223 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2224 mdname(conf->mddev));
1da177e4
LT
2225 return 0;
2226 }
2227 return r_sector;
2228}
2229
2230
600aa109 2231static void
c0f7bddb 2232schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
600aa109 2233 int rcw, int expand)
e33129d8
DW
2234{
2235 int i, pd_idx = sh->pd_idx, disks = sh->disks;
d1688a6d 2236 struct r5conf *conf = sh->raid_conf;
c0f7bddb 2237 int level = conf->level;
e33129d8
DW
2238
2239 if (rcw) {
2240 /* if we are not expanding this is a proper write request, and
2241 * there will be bios with new data to be drained into the
2242 * stripe cache
2243 */
2244 if (!expand) {
600aa109
DW
2245 sh->reconstruct_state = reconstruct_state_drain_run;
2246 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2247 } else
2248 sh->reconstruct_state = reconstruct_state_run;
16a53ecc 2249
ac6b53b6 2250 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
e33129d8
DW
2251
2252 for (i = disks; i--; ) {
2253 struct r5dev *dev = &sh->dev[i];
2254
2255 if (dev->towrite) {
2256 set_bit(R5_LOCKED, &dev->flags);
d8ee0728 2257 set_bit(R5_Wantdrain, &dev->flags);
e33129d8
DW
2258 if (!expand)
2259 clear_bit(R5_UPTODATE, &dev->flags);
600aa109 2260 s->locked++;
e33129d8
DW
2261 }
2262 }
c0f7bddb 2263 if (s->locked + conf->max_degraded == disks)
8b3e6cdc 2264 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
c0f7bddb 2265 atomic_inc(&conf->pending_full_writes);
e33129d8 2266 } else {
c0f7bddb 2267 BUG_ON(level == 6);
e33129d8
DW
2268 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2269 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2270
d8ee0728 2271 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
600aa109
DW
2272 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2273 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
ac6b53b6 2274 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
e33129d8
DW
2275
2276 for (i = disks; i--; ) {
2277 struct r5dev *dev = &sh->dev[i];
2278 if (i == pd_idx)
2279 continue;
2280
e33129d8
DW
2281 if (dev->towrite &&
2282 (test_bit(R5_UPTODATE, &dev->flags) ||
d8ee0728
DW
2283 test_bit(R5_Wantcompute, &dev->flags))) {
2284 set_bit(R5_Wantdrain, &dev->flags);
e33129d8
DW
2285 set_bit(R5_LOCKED, &dev->flags);
2286 clear_bit(R5_UPTODATE, &dev->flags);
600aa109 2287 s->locked++;
e33129d8
DW
2288 }
2289 }
2290 }
2291
c0f7bddb 2292 /* keep the parity disk(s) locked while asynchronous operations
e33129d8
DW
2293 * are in flight
2294 */
2295 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2296 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
600aa109 2297 s->locked++;
e33129d8 2298
c0f7bddb
YT
2299 if (level == 6) {
2300 int qd_idx = sh->qd_idx;
2301 struct r5dev *dev = &sh->dev[qd_idx];
2302
2303 set_bit(R5_LOCKED, &dev->flags);
2304 clear_bit(R5_UPTODATE, &dev->flags);
2305 s->locked++;
2306 }
2307
600aa109 2308 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
e46b272b 2309 __func__, (unsigned long long)sh->sector,
600aa109 2310 s->locked, s->ops_request);
e33129d8 2311}
16a53ecc 2312
1da177e4
LT
2313/*
2314 * Each stripe/dev can have one or more bion attached.
16a53ecc 2315 * toread/towrite point to the first in a chain.
1da177e4
LT
2316 * The bi_next chain must be in order.
2317 */
2318static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2319{
2320 struct bio **bip;
d1688a6d 2321 struct r5conf *conf = sh->raid_conf;
72626685 2322 int firstwrite=0;
1da177e4 2323
cbe47ec5 2324 pr_debug("adding bi b#%llu to stripe s#%llu\n",
1da177e4
LT
2325 (unsigned long long)bi->bi_sector,
2326 (unsigned long long)sh->sector);
2327
2328
1da177e4 2329 spin_lock_irq(&conf->device_lock);
72626685 2330 if (forwrite) {
1da177e4 2331 bip = &sh->dev[dd_idx].towrite;
72626685
N
2332 if (*bip == NULL && sh->dev[dd_idx].written == NULL)
2333 firstwrite = 1;
2334 } else
1da177e4
LT
2335 bip = &sh->dev[dd_idx].toread;
2336 while (*bip && (*bip)->bi_sector < bi->bi_sector) {
2337 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
2338 goto overlap;
2339 bip = & (*bip)->bi_next;
2340 }
2341 if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
2342 goto overlap;
2343
78bafebd 2344 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
1da177e4
LT
2345 if (*bip)
2346 bi->bi_next = *bip;
2347 *bip = bi;
960e739d 2348 bi->bi_phys_segments++;
72626685 2349
1da177e4
LT
2350 if (forwrite) {
2351 /* check if page is covered */
2352 sector_t sector = sh->dev[dd_idx].sector;
2353 for (bi=sh->dev[dd_idx].towrite;
2354 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2355 bi && bi->bi_sector <= sector;
2356 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2357 if (bi->bi_sector + (bi->bi_size>>9) >= sector)
2358 sector = bi->bi_sector + (bi->bi_size>>9);
2359 }
2360 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2361 set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2362 }
cbe47ec5 2363 spin_unlock_irq(&conf->device_lock);
cbe47ec5
N
2364
2365 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2366 (unsigned long long)(*bip)->bi_sector,
2367 (unsigned long long)sh->sector, dd_idx);
2368
2369 if (conf->mddev->bitmap && firstwrite) {
2370 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2371 STRIPE_SECTORS, 0);
2372 sh->bm_seq = conf->seq_flush+1;
2373 set_bit(STRIPE_BIT_DELAY, &sh->state);
2374 }
1da177e4
LT
2375 return 1;
2376
2377 overlap:
2378 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2379 spin_unlock_irq(&conf->device_lock);
1da177e4
LT
2380 return 0;
2381}
2382
d1688a6d 2383static void end_reshape(struct r5conf *conf);
29269553 2384
d1688a6d 2385static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
911d4ee8 2386 struct stripe_head *sh)
ccfcc3c1 2387{
784052ec 2388 int sectors_per_chunk =
09c9e5fa 2389 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
911d4ee8 2390 int dd_idx;
2d2063ce 2391 int chunk_offset = sector_div(stripe, sectors_per_chunk);
112bf897 2392 int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2d2063ce 2393
112bf897
N
2394 raid5_compute_sector(conf,
2395 stripe * (disks - conf->max_degraded)
b875e531 2396 *sectors_per_chunk + chunk_offset,
112bf897 2397 previous,
911d4ee8 2398 &dd_idx, sh);
ccfcc3c1
N
2399}
2400
a4456856 2401static void
d1688a6d 2402handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
a4456856
DW
2403 struct stripe_head_state *s, int disks,
2404 struct bio **return_bi)
2405{
2406 int i;
2407 for (i = disks; i--; ) {
2408 struct bio *bi;
2409 int bitmap_end = 0;
2410
2411 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3cb03002 2412 struct md_rdev *rdev;
a4456856
DW
2413 rcu_read_lock();
2414 rdev = rcu_dereference(conf->disks[i].rdev);
2415 if (rdev && test_bit(In_sync, &rdev->flags))
7f0da59b
N
2416 atomic_inc(&rdev->nr_pending);
2417 else
2418 rdev = NULL;
a4456856 2419 rcu_read_unlock();
7f0da59b
N
2420 if (rdev) {
2421 if (!rdev_set_badblocks(
2422 rdev,
2423 sh->sector,
2424 STRIPE_SECTORS, 0))
2425 md_error(conf->mddev, rdev);
2426 rdev_dec_pending(rdev, conf->mddev);
2427 }
a4456856
DW
2428 }
2429 spin_lock_irq(&conf->device_lock);
2430 /* fail all writes first */
2431 bi = sh->dev[i].towrite;
2432 sh->dev[i].towrite = NULL;
2433 if (bi) {
2434 s->to_write--;
2435 bitmap_end = 1;
2436 }
2437
2438 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2439 wake_up(&conf->wait_for_overlap);
2440
2441 while (bi && bi->bi_sector <
2442 sh->dev[i].sector + STRIPE_SECTORS) {
2443 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2444 clear_bit(BIO_UPTODATE, &bi->bi_flags);
960e739d 2445 if (!raid5_dec_bi_phys_segments(bi)) {
a4456856
DW
2446 md_write_end(conf->mddev);
2447 bi->bi_next = *return_bi;
2448 *return_bi = bi;
2449 }
2450 bi = nextbi;
2451 }
2452 /* and fail all 'written' */
2453 bi = sh->dev[i].written;
2454 sh->dev[i].written = NULL;
2455 if (bi) bitmap_end = 1;
2456 while (bi && bi->bi_sector <
2457 sh->dev[i].sector + STRIPE_SECTORS) {
2458 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2459 clear_bit(BIO_UPTODATE, &bi->bi_flags);
960e739d 2460 if (!raid5_dec_bi_phys_segments(bi)) {
a4456856
DW
2461 md_write_end(conf->mddev);
2462 bi->bi_next = *return_bi;
2463 *return_bi = bi;
2464 }
2465 bi = bi2;
2466 }
2467
b5e98d65
DW
2468 /* fail any reads if this device is non-operational and
2469 * the data has not reached the cache yet.
2470 */
2471 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2472 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2473 test_bit(R5_ReadError, &sh->dev[i].flags))) {
a4456856
DW
2474 bi = sh->dev[i].toread;
2475 sh->dev[i].toread = NULL;
2476 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2477 wake_up(&conf->wait_for_overlap);
2478 if (bi) s->to_read--;
2479 while (bi && bi->bi_sector <
2480 sh->dev[i].sector + STRIPE_SECTORS) {
2481 struct bio *nextbi =
2482 r5_next_bio(bi, sh->dev[i].sector);
2483 clear_bit(BIO_UPTODATE, &bi->bi_flags);
960e739d 2484 if (!raid5_dec_bi_phys_segments(bi)) {
a4456856
DW
2485 bi->bi_next = *return_bi;
2486 *return_bi = bi;
2487 }
2488 bi = nextbi;
2489 }
2490 }
2491 spin_unlock_irq(&conf->device_lock);
2492 if (bitmap_end)
2493 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2494 STRIPE_SECTORS, 0, 0);
8cfa7b0f
N
2495 /* If we were in the middle of a write the parity block might
2496 * still be locked - so just clear all R5_LOCKED flags
2497 */
2498 clear_bit(R5_LOCKED, &sh->dev[i].flags);
a4456856
DW
2499 }
2500
8b3e6cdc
DW
2501 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2502 if (atomic_dec_and_test(&conf->pending_full_writes))
2503 md_wakeup_thread(conf->mddev->thread);
a4456856
DW
2504}
2505
7f0da59b 2506static void
d1688a6d 2507handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
7f0da59b
N
2508 struct stripe_head_state *s)
2509{
2510 int abort = 0;
2511 int i;
2512
7f0da59b
N
2513 clear_bit(STRIPE_SYNCING, &sh->state);
2514 s->syncing = 0;
9a3e1101 2515 s->replacing = 0;
7f0da59b 2516 /* There is nothing more to do for sync/check/repair.
18b9837e
N
2517 * Don't even need to abort as that is handled elsewhere
2518 * if needed, and not always wanted e.g. if there is a known
2519 * bad block here.
9a3e1101 2520 * For recover/replace we need to record a bad block on all
7f0da59b
N
2521 * non-sync devices, or abort the recovery
2522 */
18b9837e
N
2523 if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
2524 /* During recovery devices cannot be removed, so
2525 * locking and refcounting of rdevs is not needed
2526 */
2527 for (i = 0; i < conf->raid_disks; i++) {
2528 struct md_rdev *rdev = conf->disks[i].rdev;
2529 if (rdev
2530 && !test_bit(Faulty, &rdev->flags)
2531 && !test_bit(In_sync, &rdev->flags)
2532 && !rdev_set_badblocks(rdev, sh->sector,
2533 STRIPE_SECTORS, 0))
2534 abort = 1;
2535 rdev = conf->disks[i].replacement;
2536 if (rdev
2537 && !test_bit(Faulty, &rdev->flags)
2538 && !test_bit(In_sync, &rdev->flags)
2539 && !rdev_set_badblocks(rdev, sh->sector,
2540 STRIPE_SECTORS, 0))
2541 abort = 1;
2542 }
2543 if (abort)
2544 conf->recovery_disabled =
2545 conf->mddev->recovery_disabled;
7f0da59b 2546 }
18b9837e 2547 md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
7f0da59b
N
2548}
2549
9a3e1101
N
2550static int want_replace(struct stripe_head *sh, int disk_idx)
2551{
2552 struct md_rdev *rdev;
2553 int rv = 0;
2554 /* Doing recovery so rcu locking not required */
2555 rdev = sh->raid_conf->disks[disk_idx].replacement;
2556 if (rdev
2557 && !test_bit(Faulty, &rdev->flags)
2558 && !test_bit(In_sync, &rdev->flags)
2559 && (rdev->recovery_offset <= sh->sector
2560 || rdev->mddev->recovery_cp <= sh->sector))
2561 rv = 1;
2562
2563 return rv;
2564}
2565
93b3dbce 2566/* fetch_block - checks the given member device to see if its data needs
1fe797e6
DW
2567 * to be read or computed to satisfy a request.
2568 *
2569 * Returns 1 when no more member devices need to be checked, otherwise returns
93b3dbce 2570 * 0 to tell the loop in handle_stripe_fill to continue
f38e1219 2571 */
93b3dbce
N
2572static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
2573 int disk_idx, int disks)
a4456856 2574{
5599becc 2575 struct r5dev *dev = &sh->dev[disk_idx];
f2b3b44d
N
2576 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
2577 &sh->dev[s->failed_num[1]] };
5599becc 2578
93b3dbce 2579 /* is the data in this block needed, and can we get it? */
5599becc
YT
2580 if (!test_bit(R5_LOCKED, &dev->flags) &&
2581 !test_bit(R5_UPTODATE, &dev->flags) &&
2582 (dev->toread ||
2583 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2584 s->syncing || s->expanding ||
9a3e1101 2585 (s->replacing && want_replace(sh, disk_idx)) ||
5d35e09c
N
2586 (s->failed >= 1 && fdev[0]->toread) ||
2587 (s->failed >= 2 && fdev[1]->toread) ||
93b3dbce
N
2588 (sh->raid_conf->level <= 5 && s->failed && fdev[0]->towrite &&
2589 !test_bit(R5_OVERWRITE, &fdev[0]->flags)) ||
2590 (sh->raid_conf->level == 6 && s->failed && s->to_write))) {
5599becc
YT
2591 /* we would like to get this block, possibly by computing it,
2592 * otherwise read it if the backing disk is insync
2593 */
2594 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2595 BUG_ON(test_bit(R5_Wantread, &dev->flags));
2596 if ((s->uptodate == disks - 1) &&
f2b3b44d
N
2597 (s->failed && (disk_idx == s->failed_num[0] ||
2598 disk_idx == s->failed_num[1]))) {
5599becc
YT
2599 /* have disk failed, and we're requested to fetch it;
2600 * do compute it
a4456856 2601 */
5599becc
YT
2602 pr_debug("Computing stripe %llu block %d\n",
2603 (unsigned long long)sh->sector, disk_idx);
2604 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2605 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2606 set_bit(R5_Wantcompute, &dev->flags);
2607 sh->ops.target = disk_idx;
2608 sh->ops.target2 = -1; /* no 2nd target */
2609 s->req_compute = 1;
93b3dbce
N
2610 /* Careful: from this point on 'uptodate' is in the eye
2611 * of raid_run_ops which services 'compute' operations
2612 * before writes. R5_Wantcompute flags a block that will
2613 * be R5_UPTODATE by the time it is needed for a
2614 * subsequent operation.
2615 */
5599becc
YT
2616 s->uptodate++;
2617 return 1;
2618 } else if (s->uptodate == disks-2 && s->failed >= 2) {
2619 /* Computing 2-failure is *very* expensive; only
2620 * do it if failed >= 2
2621 */
2622 int other;
2623 for (other = disks; other--; ) {
2624 if (other == disk_idx)
2625 continue;
2626 if (!test_bit(R5_UPTODATE,
2627 &sh->dev[other].flags))
2628 break;
a4456856 2629 }
5599becc
YT
2630 BUG_ON(other < 0);
2631 pr_debug("Computing stripe %llu blocks %d,%d\n",
2632 (unsigned long long)sh->sector,
2633 disk_idx, other);
2634 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2635 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2636 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
2637 set_bit(R5_Wantcompute, &sh->dev[other].flags);
2638 sh->ops.target = disk_idx;
2639 sh->ops.target2 = other;
2640 s->uptodate += 2;
2641 s->req_compute = 1;
2642 return 1;
2643 } else if (test_bit(R5_Insync, &dev->flags)) {
2644 set_bit(R5_LOCKED, &dev->flags);
2645 set_bit(R5_Wantread, &dev->flags);
2646 s->locked++;
2647 pr_debug("Reading block %d (sync=%d)\n",
2648 disk_idx, s->syncing);
a4456856
DW
2649 }
2650 }
5599becc
YT
2651
2652 return 0;
2653}
2654
2655/**
93b3dbce 2656 * handle_stripe_fill - read or compute data to satisfy pending requests.
5599becc 2657 */
93b3dbce
N
2658static void handle_stripe_fill(struct stripe_head *sh,
2659 struct stripe_head_state *s,
2660 int disks)
5599becc
YT
2661{
2662 int i;
2663
2664 /* look for blocks to read/compute, skip this if a compute
2665 * is already in flight, or if the stripe contents are in the
2666 * midst of changing due to a write
2667 */
2668 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2669 !sh->reconstruct_state)
2670 for (i = disks; i--; )
93b3dbce 2671 if (fetch_block(sh, s, i, disks))
5599becc 2672 break;
a4456856
DW
2673 set_bit(STRIPE_HANDLE, &sh->state);
2674}
2675
2676
1fe797e6 2677/* handle_stripe_clean_event
a4456856
DW
2678 * any written block on an uptodate or failed drive can be returned.
2679 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2680 * never LOCKED, so we don't need to test 'failed' directly.
2681 */
d1688a6d 2682static void handle_stripe_clean_event(struct r5conf *conf,
a4456856
DW
2683 struct stripe_head *sh, int disks, struct bio **return_bi)
2684{
2685 int i;
2686 struct r5dev *dev;
2687
2688 for (i = disks; i--; )
2689 if (sh->dev[i].written) {
2690 dev = &sh->dev[i];
2691 if (!test_bit(R5_LOCKED, &dev->flags) &&
2692 test_bit(R5_UPTODATE, &dev->flags)) {
2693 /* We can return any write requests */
2694 struct bio *wbi, *wbi2;
2695 int bitmap_end = 0;
45b4233c 2696 pr_debug("Return write for disc %d\n", i);
a4456856
DW
2697 spin_lock_irq(&conf->device_lock);
2698 wbi = dev->written;
2699 dev->written = NULL;
2700 while (wbi && wbi->bi_sector <
2701 dev->sector + STRIPE_SECTORS) {
2702 wbi2 = r5_next_bio(wbi, dev->sector);
960e739d 2703 if (!raid5_dec_bi_phys_segments(wbi)) {
a4456856
DW
2704 md_write_end(conf->mddev);
2705 wbi->bi_next = *return_bi;
2706 *return_bi = wbi;
2707 }
2708 wbi = wbi2;
2709 }
2710 if (dev->towrite == NULL)
2711 bitmap_end = 1;
2712 spin_unlock_irq(&conf->device_lock);
2713 if (bitmap_end)
2714 bitmap_endwrite(conf->mddev->bitmap,
2715 sh->sector,
2716 STRIPE_SECTORS,
2717 !test_bit(STRIPE_DEGRADED, &sh->state),
2718 0);
2719 }
2720 }
8b3e6cdc
DW
2721
2722 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2723 if (atomic_dec_and_test(&conf->pending_full_writes))
2724 md_wakeup_thread(conf->mddev->thread);
a4456856
DW
2725}
2726
d1688a6d 2727static void handle_stripe_dirtying(struct r5conf *conf,
c8ac1803
N
2728 struct stripe_head *sh,
2729 struct stripe_head_state *s,
2730 int disks)
a4456856
DW
2731{
2732 int rmw = 0, rcw = 0, i;
c8ac1803
N
2733 if (conf->max_degraded == 2) {
2734 /* RAID6 requires 'rcw' in current implementation
2735 * Calculate the real rcw later - for now fake it
2736 * look like rcw is cheaper
2737 */
2738 rcw = 1; rmw = 2;
2739 } else for (i = disks; i--; ) {
a4456856
DW
2740 /* would I have to read this buffer for read_modify_write */
2741 struct r5dev *dev = &sh->dev[i];
2742 if ((dev->towrite || i == sh->pd_idx) &&
2743 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
2744 !(test_bit(R5_UPTODATE, &dev->flags) ||
2745 test_bit(R5_Wantcompute, &dev->flags))) {
a4456856
DW
2746 if (test_bit(R5_Insync, &dev->flags))
2747 rmw++;
2748 else
2749 rmw += 2*disks; /* cannot read it */
2750 }
2751 /* Would I have to read this buffer for reconstruct_write */
2752 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2753 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
2754 !(test_bit(R5_UPTODATE, &dev->flags) ||
2755 test_bit(R5_Wantcompute, &dev->flags))) {
2756 if (test_bit(R5_Insync, &dev->flags)) rcw++;
a4456856
DW
2757 else
2758 rcw += 2*disks;
2759 }
2760 }
45b4233c 2761 pr_debug("for sector %llu, rmw=%d rcw=%d\n",
a4456856
DW
2762 (unsigned long long)sh->sector, rmw, rcw);
2763 set_bit(STRIPE_HANDLE, &sh->state);
2764 if (rmw < rcw && rmw > 0)
2765 /* prefer read-modify-write, but need to get some data */
2766 for (i = disks; i--; ) {
2767 struct r5dev *dev = &sh->dev[i];
2768 if ((dev->towrite || i == sh->pd_idx) &&
2769 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
2770 !(test_bit(R5_UPTODATE, &dev->flags) ||
2771 test_bit(R5_Wantcompute, &dev->flags)) &&
a4456856
DW
2772 test_bit(R5_Insync, &dev->flags)) {
2773 if (
2774 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
45b4233c 2775 pr_debug("Read_old block "
a4456856
DW
2776 "%d for r-m-w\n", i);
2777 set_bit(R5_LOCKED, &dev->flags);
2778 set_bit(R5_Wantread, &dev->flags);
2779 s->locked++;
2780 } else {
2781 set_bit(STRIPE_DELAYED, &sh->state);
2782 set_bit(STRIPE_HANDLE, &sh->state);
2783 }
2784 }
2785 }
c8ac1803 2786 if (rcw <= rmw && rcw > 0) {
a4456856 2787 /* want reconstruct write, but need to get some data */
c8ac1803 2788 rcw = 0;
a4456856
DW
2789 for (i = disks; i--; ) {
2790 struct r5dev *dev = &sh->dev[i];
2791 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
c8ac1803 2792 i != sh->pd_idx && i != sh->qd_idx &&
a4456856 2793 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219 2794 !(test_bit(R5_UPTODATE, &dev->flags) ||
c8ac1803
N
2795 test_bit(R5_Wantcompute, &dev->flags))) {
2796 rcw++;
2797 if (!test_bit(R5_Insync, &dev->flags))
2798 continue; /* it's a failed drive */
a4456856
DW
2799 if (
2800 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
45b4233c 2801 pr_debug("Read_old block "
a4456856
DW
2802 "%d for Reconstruct\n", i);
2803 set_bit(R5_LOCKED, &dev->flags);
2804 set_bit(R5_Wantread, &dev->flags);
2805 s->locked++;
2806 } else {
2807 set_bit(STRIPE_DELAYED, &sh->state);
2808 set_bit(STRIPE_HANDLE, &sh->state);
2809 }
2810 }
2811 }
c8ac1803 2812 }
a4456856
DW
2813 /* now if nothing is locked, and if we have enough data,
2814 * we can start a write request
2815 */
f38e1219
DW
2816 /* since handle_stripe can be called at any time we need to handle the
2817 * case where a compute block operation has been submitted and then a
ac6b53b6
DW
2818 * subsequent call wants to start a write request. raid_run_ops only
2819 * handles the case where compute block and reconstruct are requested
f38e1219
DW
2820 * simultaneously. If this is not the case then new writes need to be
2821 * held off until the compute completes.
2822 */
976ea8d4
DW
2823 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2824 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2825 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
c0f7bddb 2826 schedule_reconstruction(sh, s, rcw == 0, 0);
a4456856
DW
2827}
2828
d1688a6d 2829static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
a4456856
DW
2830 struct stripe_head_state *s, int disks)
2831{
ecc65c9b 2832 struct r5dev *dev = NULL;
bd2ab670 2833
a4456856 2834 set_bit(STRIPE_HANDLE, &sh->state);
e89f8962 2835
ecc65c9b
DW
2836 switch (sh->check_state) {
2837 case check_state_idle:
2838 /* start a new check operation if there are no failures */
bd2ab670 2839 if (s->failed == 0) {
bd2ab670 2840 BUG_ON(s->uptodate != disks);
ecc65c9b
DW
2841 sh->check_state = check_state_run;
2842 set_bit(STRIPE_OP_CHECK, &s->ops_request);
bd2ab670 2843 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
bd2ab670 2844 s->uptodate--;
ecc65c9b 2845 break;
bd2ab670 2846 }
f2b3b44d 2847 dev = &sh->dev[s->failed_num[0]];
ecc65c9b
DW
2848 /* fall through */
2849 case check_state_compute_result:
2850 sh->check_state = check_state_idle;
2851 if (!dev)
2852 dev = &sh->dev[sh->pd_idx];
2853
2854 /* check that a write has not made the stripe insync */
2855 if (test_bit(STRIPE_INSYNC, &sh->state))
2856 break;
c8894419 2857
a4456856 2858 /* either failed parity check, or recovery is happening */
a4456856
DW
2859 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2860 BUG_ON(s->uptodate != disks);
2861
2862 set_bit(R5_LOCKED, &dev->flags);
ecc65c9b 2863 s->locked++;
a4456856 2864 set_bit(R5_Wantwrite, &dev->flags);
830ea016 2865
a4456856 2866 clear_bit(STRIPE_DEGRADED, &sh->state);
a4456856 2867 set_bit(STRIPE_INSYNC, &sh->state);
ecc65c9b
DW
2868 break;
2869 case check_state_run:
2870 break; /* we will be called again upon completion */
2871 case check_state_check_result:
2872 sh->check_state = check_state_idle;
2873
2874 /* if a failure occurred during the check operation, leave
2875 * STRIPE_INSYNC not set and let the stripe be handled again
2876 */
2877 if (s->failed)
2878 break;
2879
2880 /* handle a successful check operation, if parity is correct
2881 * we are done. Otherwise update the mismatch count and repair
2882 * parity if !MD_RECOVERY_CHECK
2883 */
ad283ea4 2884 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
ecc65c9b
DW
2885 /* parity is correct (on disc,
2886 * not in buffer any more)
2887 */
2888 set_bit(STRIPE_INSYNC, &sh->state);
2889 else {
2890 conf->mddev->resync_mismatches += STRIPE_SECTORS;
2891 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2892 /* don't try to repair!! */
2893 set_bit(STRIPE_INSYNC, &sh->state);
2894 else {
2895 sh->check_state = check_state_compute_run;
976ea8d4 2896 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
ecc65c9b
DW
2897 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2898 set_bit(R5_Wantcompute,
2899 &sh->dev[sh->pd_idx].flags);
2900 sh->ops.target = sh->pd_idx;
ac6b53b6 2901 sh->ops.target2 = -1;
ecc65c9b
DW
2902 s->uptodate++;
2903 }
2904 }
2905 break;
2906 case check_state_compute_run:
2907 break;
2908 default:
2909 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2910 __func__, sh->check_state,
2911 (unsigned long long) sh->sector);
2912 BUG();
a4456856
DW
2913 }
2914}
2915
2916
d1688a6d 2917static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
36d1c647 2918 struct stripe_head_state *s,
f2b3b44d 2919 int disks)
a4456856 2920{
a4456856 2921 int pd_idx = sh->pd_idx;
34e04e87 2922 int qd_idx = sh->qd_idx;
d82dfee0 2923 struct r5dev *dev;
a4456856
DW
2924
2925 set_bit(STRIPE_HANDLE, &sh->state);
2926
2927 BUG_ON(s->failed > 2);
d82dfee0 2928
a4456856
DW
2929 /* Want to check and possibly repair P and Q.
2930 * However there could be one 'failed' device, in which
2931 * case we can only check one of them, possibly using the
2932 * other to generate missing data
2933 */
2934
d82dfee0
DW
2935 switch (sh->check_state) {
2936 case check_state_idle:
2937 /* start a new check operation if there are < 2 failures */
f2b3b44d 2938 if (s->failed == s->q_failed) {
d82dfee0 2939 /* The only possible failed device holds Q, so it
a4456856
DW
2940 * makes sense to check P (If anything else were failed,
2941 * we would have used P to recreate it).
2942 */
d82dfee0 2943 sh->check_state = check_state_run;
a4456856 2944 }
f2b3b44d 2945 if (!s->q_failed && s->failed < 2) {
d82dfee0 2946 /* Q is not failed, and we didn't use it to generate
a4456856
DW
2947 * anything, so it makes sense to check it
2948 */
d82dfee0
DW
2949 if (sh->check_state == check_state_run)
2950 sh->check_state = check_state_run_pq;
2951 else
2952 sh->check_state = check_state_run_q;
a4456856 2953 }
a4456856 2954
d82dfee0
DW
2955 /* discard potentially stale zero_sum_result */
2956 sh->ops.zero_sum_result = 0;
a4456856 2957
d82dfee0
DW
2958 if (sh->check_state == check_state_run) {
2959 /* async_xor_zero_sum destroys the contents of P */
2960 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2961 s->uptodate--;
a4456856 2962 }
d82dfee0
DW
2963 if (sh->check_state >= check_state_run &&
2964 sh->check_state <= check_state_run_pq) {
2965 /* async_syndrome_zero_sum preserves P and Q, so
2966 * no need to mark them !uptodate here
2967 */
2968 set_bit(STRIPE_OP_CHECK, &s->ops_request);
2969 break;
a4456856
DW
2970 }
2971
d82dfee0
DW
2972 /* we have 2-disk failure */
2973 BUG_ON(s->failed != 2);
2974 /* fall through */
2975 case check_state_compute_result:
2976 sh->check_state = check_state_idle;
a4456856 2977
d82dfee0
DW
2978 /* check that a write has not made the stripe insync */
2979 if (test_bit(STRIPE_INSYNC, &sh->state))
2980 break;
a4456856
DW
2981
2982 /* now write out any block on a failed drive,
d82dfee0 2983 * or P or Q if they were recomputed
a4456856 2984 */
d82dfee0 2985 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
a4456856 2986 if (s->failed == 2) {
f2b3b44d 2987 dev = &sh->dev[s->failed_num[1]];
a4456856
DW
2988 s->locked++;
2989 set_bit(R5_LOCKED, &dev->flags);
2990 set_bit(R5_Wantwrite, &dev->flags);
2991 }
2992 if (s->failed >= 1) {
f2b3b44d 2993 dev = &sh->dev[s->failed_num[0]];
a4456856
DW
2994 s->locked++;
2995 set_bit(R5_LOCKED, &dev->flags);
2996 set_bit(R5_Wantwrite, &dev->flags);
2997 }
d82dfee0 2998 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
a4456856
DW
2999 dev = &sh->dev[pd_idx];
3000 s->locked++;
3001 set_bit(R5_LOCKED, &dev->flags);
3002 set_bit(R5_Wantwrite, &dev->flags);
3003 }
d82dfee0 3004 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
a4456856
DW
3005 dev = &sh->dev[qd_idx];
3006 s->locked++;
3007 set_bit(R5_LOCKED, &dev->flags);
3008 set_bit(R5_Wantwrite, &dev->flags);
3009 }
3010 clear_bit(STRIPE_DEGRADED, &sh->state);
3011
3012 set_bit(STRIPE_INSYNC, &sh->state);
d82dfee0
DW
3013 break;
3014 case check_state_run:
3015 case check_state_run_q:
3016 case check_state_run_pq:
3017 break; /* we will be called again upon completion */
3018 case check_state_check_result:
3019 sh->check_state = check_state_idle;
3020
3021 /* handle a successful check operation, if parity is correct
3022 * we are done. Otherwise update the mismatch count and repair
3023 * parity if !MD_RECOVERY_CHECK
3024 */
3025 if (sh->ops.zero_sum_result == 0) {
3026 /* both parities are correct */
3027 if (!s->failed)
3028 set_bit(STRIPE_INSYNC, &sh->state);
3029 else {
3030 /* in contrast to the raid5 case we can validate
3031 * parity, but still have a failure to write
3032 * back
3033 */
3034 sh->check_state = check_state_compute_result;
3035 /* Returning at this point means that we may go
3036 * off and bring p and/or q uptodate again so
3037 * we make sure to check zero_sum_result again
3038 * to verify if p or q need writeback
3039 */
3040 }
3041 } else {
3042 conf->mddev->resync_mismatches += STRIPE_SECTORS;
3043 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
3044 /* don't try to repair!! */
3045 set_bit(STRIPE_INSYNC, &sh->state);
3046 else {
3047 int *target = &sh->ops.target;
3048
3049 sh->ops.target = -1;
3050 sh->ops.target2 = -1;
3051 sh->check_state = check_state_compute_run;
3052 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3053 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3054 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
3055 set_bit(R5_Wantcompute,
3056 &sh->dev[pd_idx].flags);
3057 *target = pd_idx;
3058 target = &sh->ops.target2;
3059 s->uptodate++;
3060 }
3061 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
3062 set_bit(R5_Wantcompute,
3063 &sh->dev[qd_idx].flags);
3064 *target = qd_idx;
3065 s->uptodate++;
3066 }
3067 }
3068 }
3069 break;
3070 case check_state_compute_run:
3071 break;
3072 default:
3073 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
3074 __func__, sh->check_state,
3075 (unsigned long long) sh->sector);
3076 BUG();
a4456856
DW
3077 }
3078}
3079
d1688a6d 3080static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
a4456856
DW
3081{
3082 int i;
3083
3084 /* We have read all the blocks in this stripe and now we need to
3085 * copy some of them into a target stripe for expand.
3086 */
f0a50d37 3087 struct dma_async_tx_descriptor *tx = NULL;
a4456856
DW
3088 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3089 for (i = 0; i < sh->disks; i++)
34e04e87 3090 if (i != sh->pd_idx && i != sh->qd_idx) {
911d4ee8 3091 int dd_idx, j;
a4456856 3092 struct stripe_head *sh2;
a08abd8c 3093 struct async_submit_ctl submit;
a4456856 3094
784052ec 3095 sector_t bn = compute_blocknr(sh, i, 1);
911d4ee8
N
3096 sector_t s = raid5_compute_sector(conf, bn, 0,
3097 &dd_idx, NULL);
a8c906ca 3098 sh2 = get_active_stripe(conf, s, 0, 1, 1);
a4456856
DW
3099 if (sh2 == NULL)
3100 /* so far only the early blocks of this stripe
3101 * have been requested. When later blocks
3102 * get requested, we will try again
3103 */
3104 continue;
3105 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
3106 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
3107 /* must have already done this block */
3108 release_stripe(sh2);
3109 continue;
3110 }
f0a50d37
DW
3111
3112 /* place all the copies on one channel */
a08abd8c 3113 init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
f0a50d37 3114 tx = async_memcpy(sh2->dev[dd_idx].page,
88ba2aa5 3115 sh->dev[i].page, 0, 0, STRIPE_SIZE,
a08abd8c 3116 &submit);
f0a50d37 3117
a4456856
DW
3118 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
3119 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
3120 for (j = 0; j < conf->raid_disks; j++)
3121 if (j != sh2->pd_idx &&
86c374ba 3122 j != sh2->qd_idx &&
a4456856
DW
3123 !test_bit(R5_Expanded, &sh2->dev[j].flags))
3124 break;
3125 if (j == conf->raid_disks) {
3126 set_bit(STRIPE_EXPAND_READY, &sh2->state);
3127 set_bit(STRIPE_HANDLE, &sh2->state);
3128 }
3129 release_stripe(sh2);
f0a50d37 3130
a4456856 3131 }
a2e08551
N
3132 /* done submitting copies, wait for them to complete */
3133 if (tx) {
3134 async_tx_ack(tx);
3135 dma_wait_for_async_tx(tx);
3136 }
a4456856 3137}
1da177e4
LT
3138
3139/*
3140 * handle_stripe - do things to a stripe.
3141 *
9a3e1101
N
3142 * We lock the stripe by setting STRIPE_ACTIVE and then examine the
3143 * state of various bits to see what needs to be done.
1da177e4 3144 * Possible results:
9a3e1101
N
3145 * return some read requests which now have data
3146 * return some write requests which are safely on storage
1da177e4
LT
3147 * schedule a read on some buffers
3148 * schedule a write of some buffers
3149 * return confirmation of parity correctness
3150 *
1da177e4 3151 */
a4456856 3152
acfe726b 3153static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
1da177e4 3154{
d1688a6d 3155 struct r5conf *conf = sh->raid_conf;
f416885e 3156 int disks = sh->disks;
474af965
N
3157 struct r5dev *dev;
3158 int i;
9a3e1101 3159 int do_recovery = 0;
1da177e4 3160
acfe726b
N
3161 memset(s, 0, sizeof(*s));
3162
acfe726b
N
3163 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3164 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3165 s->failed_num[0] = -1;
3166 s->failed_num[1] = -1;
1da177e4 3167
acfe726b 3168 /* Now to look around and see what can be done */
1da177e4 3169 rcu_read_lock();
c4c1663b 3170 spin_lock_irq(&conf->device_lock);
16a53ecc 3171 for (i=disks; i--; ) {
3cb03002 3172 struct md_rdev *rdev;
31c176ec
N
3173 sector_t first_bad;
3174 int bad_sectors;
3175 int is_bad = 0;
acfe726b 3176
16a53ecc 3177 dev = &sh->dev[i];
1da177e4 3178
45b4233c 3179 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
9a3e1101
N
3180 i, dev->flags,
3181 dev->toread, dev->towrite, dev->written);
6c0069c0
YT
3182 /* maybe we can reply to a read
3183 *
3184 * new wantfill requests are only permitted while
3185 * ops_complete_biofill is guaranteed to be inactive
3186 */
3187 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3188 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3189 set_bit(R5_Wantfill, &dev->flags);
1da177e4 3190
16a53ecc 3191 /* now count some things */
cc94015a
N
3192 if (test_bit(R5_LOCKED, &dev->flags))
3193 s->locked++;
3194 if (test_bit(R5_UPTODATE, &dev->flags))
3195 s->uptodate++;
2d6e4ecc 3196 if (test_bit(R5_Wantcompute, &dev->flags)) {
cc94015a
N
3197 s->compute++;
3198 BUG_ON(s->compute > 2);
2d6e4ecc 3199 }
1da177e4 3200
acfe726b 3201 if (test_bit(R5_Wantfill, &dev->flags))
cc94015a 3202 s->to_fill++;
acfe726b 3203 else if (dev->toread)
cc94015a 3204 s->to_read++;
16a53ecc 3205 if (dev->towrite) {
cc94015a 3206 s->to_write++;
16a53ecc 3207 if (!test_bit(R5_OVERWRITE, &dev->flags))
cc94015a 3208 s->non_overwrite++;
16a53ecc 3209 }
a4456856 3210 if (dev->written)
cc94015a 3211 s->written++;
14a75d3e
N
3212 /* Prefer to use the replacement for reads, but only
3213 * if it is recovered enough and has no bad blocks.
3214 */
3215 rdev = rcu_dereference(conf->disks[i].replacement);
3216 if (rdev && !test_bit(Faulty, &rdev->flags) &&
3217 rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
3218 !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3219 &first_bad, &bad_sectors))
3220 set_bit(R5_ReadRepl, &dev->flags);
3221 else {
9a3e1101
N
3222 if (rdev)
3223 set_bit(R5_NeedReplace, &dev->flags);
14a75d3e
N
3224 rdev = rcu_dereference(conf->disks[i].rdev);
3225 clear_bit(R5_ReadRepl, &dev->flags);
3226 }
9283d8c5
N
3227 if (rdev && test_bit(Faulty, &rdev->flags))
3228 rdev = NULL;
31c176ec
N
3229 if (rdev) {
3230 is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3231 &first_bad, &bad_sectors);
3232 if (s->blocked_rdev == NULL
3233 && (test_bit(Blocked, &rdev->flags)
3234 || is_bad < 0)) {
3235 if (is_bad < 0)
3236 set_bit(BlockedBadBlocks,
3237 &rdev->flags);
3238 s->blocked_rdev = rdev;
3239 atomic_inc(&rdev->nr_pending);
3240 }
6bfe0b49 3241 }
415e72d0
N
3242 clear_bit(R5_Insync, &dev->flags);
3243 if (!rdev)
3244 /* Not in-sync */;
31c176ec
N
3245 else if (is_bad) {
3246 /* also not in-sync */
18b9837e
N
3247 if (!test_bit(WriteErrorSeen, &rdev->flags) &&
3248 test_bit(R5_UPTODATE, &dev->flags)) {
31c176ec
N
3249 /* treat as in-sync, but with a read error
3250 * which we can now try to correct
3251 */
3252 set_bit(R5_Insync, &dev->flags);
3253 set_bit(R5_ReadError, &dev->flags);
3254 }
3255 } else if (test_bit(In_sync, &rdev->flags))
415e72d0 3256 set_bit(R5_Insync, &dev->flags);
30d7a483 3257 else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
415e72d0 3258 /* in sync if before recovery_offset */
30d7a483
N
3259 set_bit(R5_Insync, &dev->flags);
3260 else if (test_bit(R5_UPTODATE, &dev->flags) &&
3261 test_bit(R5_Expanded, &dev->flags))
3262 /* If we've reshaped into here, we assume it is Insync.
3263 * We will shortly update recovery_offset to make
3264 * it official.
3265 */
3266 set_bit(R5_Insync, &dev->flags);
3267
5d8c71f9 3268 if (rdev && test_bit(R5_WriteError, &dev->flags)) {
14a75d3e
N
3269 /* This flag does not apply to '.replacement'
3270 * only to .rdev, so make sure to check that*/
3271 struct md_rdev *rdev2 = rcu_dereference(
3272 conf->disks[i].rdev);
3273 if (rdev2 == rdev)
3274 clear_bit(R5_Insync, &dev->flags);
3275 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
bc2607f3 3276 s->handle_bad_blocks = 1;
14a75d3e 3277 atomic_inc(&rdev2->nr_pending);
bc2607f3
N
3278 } else
3279 clear_bit(R5_WriteError, &dev->flags);
3280 }
5d8c71f9 3281 if (rdev && test_bit(R5_MadeGood, &dev->flags)) {
14a75d3e
N
3282 /* This flag does not apply to '.replacement'
3283 * only to .rdev, so make sure to check that*/
3284 struct md_rdev *rdev2 = rcu_dereference(
3285 conf->disks[i].rdev);
3286 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
b84db560 3287 s->handle_bad_blocks = 1;
14a75d3e 3288 atomic_inc(&rdev2->nr_pending);
b84db560
N
3289 } else
3290 clear_bit(R5_MadeGood, &dev->flags);
3291 }
977df362
N
3292 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
3293 struct md_rdev *rdev2 = rcu_dereference(
3294 conf->disks[i].replacement);
3295 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
3296 s->handle_bad_blocks = 1;
3297 atomic_inc(&rdev2->nr_pending);
3298 } else
3299 clear_bit(R5_MadeGoodRepl, &dev->flags);
3300 }
415e72d0 3301 if (!test_bit(R5_Insync, &dev->flags)) {
16a53ecc
N
3302 /* The ReadError flag will just be confusing now */
3303 clear_bit(R5_ReadError, &dev->flags);
3304 clear_bit(R5_ReWrite, &dev->flags);
1da177e4 3305 }
415e72d0
N
3306 if (test_bit(R5_ReadError, &dev->flags))
3307 clear_bit(R5_Insync, &dev->flags);
3308 if (!test_bit(R5_Insync, &dev->flags)) {
cc94015a
N
3309 if (s->failed < 2)
3310 s->failed_num[s->failed] = i;
3311 s->failed++;
9a3e1101
N
3312 if (rdev && !test_bit(Faulty, &rdev->flags))
3313 do_recovery = 1;
415e72d0 3314 }
1da177e4 3315 }
c4c1663b 3316 spin_unlock_irq(&conf->device_lock);
9a3e1101
N
3317 if (test_bit(STRIPE_SYNCING, &sh->state)) {
3318 /* If there is a failed device being replaced,
3319 * we must be recovering.
3320 * else if we are after recovery_cp, we must be syncing
c6d2e084 3321 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
9a3e1101
N
3322 * else we can only be replacing
3323 * sync and recovery both need to read all devices, and so
3324 * use the same flag.
3325 */
3326 if (do_recovery ||
c6d2e084 3327 sh->sector >= conf->mddev->recovery_cp ||
3328 test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
9a3e1101
N
3329 s->syncing = 1;
3330 else
3331 s->replacing = 1;
3332 }
1da177e4 3333 rcu_read_unlock();
cc94015a
N
3334}
3335
3336static void handle_stripe(struct stripe_head *sh)
3337{
3338 struct stripe_head_state s;
d1688a6d 3339 struct r5conf *conf = sh->raid_conf;
3687c061 3340 int i;
84789554
N
3341 int prexor;
3342 int disks = sh->disks;
474af965 3343 struct r5dev *pdev, *qdev;
cc94015a
N
3344
3345 clear_bit(STRIPE_HANDLE, &sh->state);
257a4b42 3346 if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
cc94015a
N
3347 /* already being handled, ensure it gets handled
3348 * again when current action finishes */
3349 set_bit(STRIPE_HANDLE, &sh->state);
3350 return;
3351 }
3352
3353 if (test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3354 set_bit(STRIPE_SYNCING, &sh->state);
3355 clear_bit(STRIPE_INSYNC, &sh->state);
3356 }
3357 clear_bit(STRIPE_DELAYED, &sh->state);
3358
3359 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3360 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3361 (unsigned long long)sh->sector, sh->state,
3362 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
3363 sh->check_state, sh->reconstruct_state);
3687c061 3364
acfe726b 3365 analyse_stripe(sh, &s);
c5a31000 3366
bc2607f3
N
3367 if (s.handle_bad_blocks) {
3368 set_bit(STRIPE_HANDLE, &sh->state);
3369 goto finish;
3370 }
3371
474af965
N
3372 if (unlikely(s.blocked_rdev)) {
3373 if (s.syncing || s.expanding || s.expanded ||
9a3e1101 3374 s.replacing || s.to_write || s.written) {
474af965
N
3375 set_bit(STRIPE_HANDLE, &sh->state);
3376 goto finish;
3377 }
3378 /* There is nothing for the blocked_rdev to block */
3379 rdev_dec_pending(s.blocked_rdev, conf->mddev);
3380 s.blocked_rdev = NULL;
3381 }
3382
3383 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3384 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3385 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3386 }
3387
3388 pr_debug("locked=%d uptodate=%d to_read=%d"
3389 " to_write=%d failed=%d failed_num=%d,%d\n",
3390 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3391 s.failed_num[0], s.failed_num[1]);
3392 /* check if the array has lost more than max_degraded devices and,
3393 * if so, some requests might need to be failed.
3394 */
9a3f530f
N
3395 if (s.failed > conf->max_degraded) {
3396 sh->check_state = 0;
3397 sh->reconstruct_state = 0;
3398 if (s.to_read+s.to_write+s.written)
3399 handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
9a3e1101 3400 if (s.syncing + s.replacing)
9a3f530f
N
3401 handle_failed_sync(conf, sh, &s);
3402 }
474af965
N
3403
3404 /*
3405 * might be able to return some write requests if the parity blocks
3406 * are safe, or on a failed drive
3407 */
3408 pdev = &sh->dev[sh->pd_idx];
3409 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
3410 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
3411 qdev = &sh->dev[sh->qd_idx];
3412 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
3413 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
3414 || conf->level < 6;
3415
3416 if (s.written &&
3417 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3418 && !test_bit(R5_LOCKED, &pdev->flags)
3419 && test_bit(R5_UPTODATE, &pdev->flags)))) &&
3420 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3421 && !test_bit(R5_LOCKED, &qdev->flags)
3422 && test_bit(R5_UPTODATE, &qdev->flags)))))
3423 handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
3424
3425 /* Now we might consider reading some blocks, either to check/generate
3426 * parity, or to satisfy requests
3427 * or to load a block that is being partially written.
3428 */
3429 if (s.to_read || s.non_overwrite
3430 || (conf->level == 6 && s.to_write && s.failed)
9a3e1101
N
3431 || (s.syncing && (s.uptodate + s.compute < disks))
3432 || s.replacing
3433 || s.expanding)
474af965
N
3434 handle_stripe_fill(sh, &s, disks);
3435
84789554
N
3436 /* Now we check to see if any write operations have recently
3437 * completed
3438 */
3439 prexor = 0;
3440 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3441 prexor = 1;
3442 if (sh->reconstruct_state == reconstruct_state_drain_result ||
3443 sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3444 sh->reconstruct_state = reconstruct_state_idle;
3445
3446 /* All the 'written' buffers and the parity block are ready to
3447 * be written back to disk
3448 */
3449 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
3450 BUG_ON(sh->qd_idx >= 0 &&
3451 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags));
3452 for (i = disks; i--; ) {
3453 struct r5dev *dev = &sh->dev[i];
3454 if (test_bit(R5_LOCKED, &dev->flags) &&
3455 (i == sh->pd_idx || i == sh->qd_idx ||
3456 dev->written)) {
3457 pr_debug("Writing block %d\n", i);
3458 set_bit(R5_Wantwrite, &dev->flags);
3459 if (prexor)
3460 continue;
3461 if (!test_bit(R5_Insync, &dev->flags) ||
3462 ((i == sh->pd_idx || i == sh->qd_idx) &&
3463 s.failed == 0))
3464 set_bit(STRIPE_INSYNC, &sh->state);
3465 }
3466 }
3467 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3468 s.dec_preread_active = 1;
3469 }
3470
3471 /* Now to consider new write requests and what else, if anything
3472 * should be read. We do not handle new writes when:
3473 * 1/ A 'write' operation (copy+xor) is already in flight.
3474 * 2/ A 'check' operation is in flight, as it may clobber the parity
3475 * block.
3476 */
3477 if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3478 handle_stripe_dirtying(conf, sh, &s, disks);
3479
3480 /* maybe we need to check and possibly fix the parity for this stripe
3481 * Any reads will already have been scheduled, so we just see if enough
3482 * data is available. The parity check is held off while parity
3483 * dependent operations are in flight.
3484 */
3485 if (sh->check_state ||
3486 (s.syncing && s.locked == 0 &&
3487 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3488 !test_bit(STRIPE_INSYNC, &sh->state))) {
3489 if (conf->level == 6)
3490 handle_parity_checks6(conf, sh, &s, disks);
3491 else
3492 handle_parity_checks5(conf, sh, &s, disks);
3493 }
c5a31000 3494
9a3e1101
N
3495 if (s.replacing && s.locked == 0
3496 && !test_bit(STRIPE_INSYNC, &sh->state)) {
3497 /* Write out to replacement devices where possible */
3498 for (i = 0; i < conf->raid_disks; i++)
3499 if (test_bit(R5_UPTODATE, &sh->dev[i].flags) &&
3500 test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
3501 set_bit(R5_WantReplace, &sh->dev[i].flags);
3502 set_bit(R5_LOCKED, &sh->dev[i].flags);
3503 s.locked++;
3504 }
3505 set_bit(STRIPE_INSYNC, &sh->state);
3506 }
3507 if ((s.syncing || s.replacing) && s.locked == 0 &&
3508 test_bit(STRIPE_INSYNC, &sh->state)) {
c5a31000
N
3509 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3510 clear_bit(STRIPE_SYNCING, &sh->state);
3511 }
3512
3513 /* If the failed drives are just a ReadError, then we might need
3514 * to progress the repair/check process
3515 */
3516 if (s.failed <= conf->max_degraded && !conf->mddev->ro)
3517 for (i = 0; i < s.failed; i++) {
3518 struct r5dev *dev = &sh->dev[s.failed_num[i]];
3519 if (test_bit(R5_ReadError, &dev->flags)
3520 && !test_bit(R5_LOCKED, &dev->flags)
3521 && test_bit(R5_UPTODATE, &dev->flags)
3522 ) {
3523 if (!test_bit(R5_ReWrite, &dev->flags)) {
3524 set_bit(R5_Wantwrite, &dev->flags);
3525 set_bit(R5_ReWrite, &dev->flags);
3526 set_bit(R5_LOCKED, &dev->flags);
3527 s.locked++;
3528 } else {
3529 /* let's read it back */
3530 set_bit(R5_Wantread, &dev->flags);
3531 set_bit(R5_LOCKED, &dev->flags);
3532 s.locked++;
3533 }
3534 }
3535 }
3536
3537
3687c061
N
3538 /* Finish reconstruct operations initiated by the expansion process */
3539 if (sh->reconstruct_state == reconstruct_state_result) {
3540 struct stripe_head *sh_src
3541 = get_active_stripe(conf, sh->sector, 1, 1, 1);
3542 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
3543 /* sh cannot be written until sh_src has been read.
3544 * so arrange for sh to be delayed a little
3545 */
3546 set_bit(STRIPE_DELAYED, &sh->state);
3547 set_bit(STRIPE_HANDLE, &sh->state);
3548 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3549 &sh_src->state))
3550 atomic_inc(&conf->preread_active_stripes);
3551 release_stripe(sh_src);
3552 goto finish;
3553 }
3554 if (sh_src)
3555 release_stripe(sh_src);
3556
3557 sh->reconstruct_state = reconstruct_state_idle;
3558 clear_bit(STRIPE_EXPANDING, &sh->state);
3559 for (i = conf->raid_disks; i--; ) {
3560 set_bit(R5_Wantwrite, &sh->dev[i].flags);
3561 set_bit(R5_LOCKED, &sh->dev[i].flags);
3562 s.locked++;
3563 }
3564 }
f416885e 3565
3687c061
N
3566 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3567 !sh->reconstruct_state) {
3568 /* Need to write out all blocks after computing parity */
3569 sh->disks = conf->raid_disks;
3570 stripe_set_idx(sh->sector, conf, 0, sh);
3571 schedule_reconstruction(sh, &s, 1, 1);
3572 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3573 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3574 atomic_dec(&conf->reshape_stripes);
3575 wake_up(&conf->wait_for_overlap);
3576 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3577 }
3578
3579 if (s.expanding && s.locked == 0 &&
3580 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3581 handle_stripe_expansion(conf, sh);
16a53ecc 3582
3687c061 3583finish:
6bfe0b49 3584 /* wait for this device to become unblocked */
43220aa0 3585 if (conf->mddev->external && unlikely(s.blocked_rdev))
c5709ef6 3586 md_wait_for_blocked_rdev(s.blocked_rdev, conf->mddev);
6bfe0b49 3587
bc2607f3
N
3588 if (s.handle_bad_blocks)
3589 for (i = disks; i--; ) {
3cb03002 3590 struct md_rdev *rdev;
bc2607f3
N
3591 struct r5dev *dev = &sh->dev[i];
3592 if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
3593 /* We own a safe reference to the rdev */
3594 rdev = conf->disks[i].rdev;
3595 if (!rdev_set_badblocks(rdev, sh->sector,
3596 STRIPE_SECTORS, 0))
3597 md_error(conf->mddev, rdev);
3598 rdev_dec_pending(rdev, conf->mddev);
3599 }
b84db560
N
3600 if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
3601 rdev = conf->disks[i].rdev;
3602 rdev_clear_badblocks(rdev, sh->sector,
c6563a8c 3603 STRIPE_SECTORS, 0);
b84db560
N
3604 rdev_dec_pending(rdev, conf->mddev);
3605 }
977df362
N
3606 if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
3607 rdev = conf->disks[i].replacement;
dd054fce
N
3608 if (!rdev)
3609 /* rdev have been moved down */
3610 rdev = conf->disks[i].rdev;
977df362 3611 rdev_clear_badblocks(rdev, sh->sector,
c6563a8c 3612 STRIPE_SECTORS, 0);
977df362
N
3613 rdev_dec_pending(rdev, conf->mddev);
3614 }
bc2607f3
N
3615 }
3616
6c0069c0
YT
3617 if (s.ops_request)
3618 raid_run_ops(sh, s.ops_request);
3619
f0e43bcd 3620 ops_run_io(sh, &s);
16a53ecc 3621
c5709ef6 3622 if (s.dec_preread_active) {
729a1866 3623 /* We delay this until after ops_run_io so that if make_request
e9c7469b 3624 * is waiting on a flush, it won't continue until the writes
729a1866
N
3625 * have actually been submitted.
3626 */
3627 atomic_dec(&conf->preread_active_stripes);
3628 if (atomic_read(&conf->preread_active_stripes) <
3629 IO_THRESHOLD)
3630 md_wakeup_thread(conf->mddev->thread);
3631 }
3632
c5709ef6 3633 return_io(s.return_bi);
16a53ecc 3634
257a4b42 3635 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
16a53ecc
N
3636}
3637
d1688a6d 3638static void raid5_activate_delayed(struct r5conf *conf)
16a53ecc
N
3639{
3640 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3641 while (!list_empty(&conf->delayed_list)) {
3642 struct list_head *l = conf->delayed_list.next;
3643 struct stripe_head *sh;
3644 sh = list_entry(l, struct stripe_head, lru);
3645 list_del_init(l);
3646 clear_bit(STRIPE_DELAYED, &sh->state);
3647 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3648 atomic_inc(&conf->preread_active_stripes);
8b3e6cdc 3649 list_add_tail(&sh->lru, &conf->hold_list);
16a53ecc 3650 }
482c0834 3651 }
16a53ecc
N
3652}
3653
d1688a6d 3654static void activate_bit_delay(struct r5conf *conf)
16a53ecc
N
3655{
3656 /* device_lock is held */
3657 struct list_head head;
3658 list_add(&head, &conf->bitmap_list);
3659 list_del_init(&conf->bitmap_list);
3660 while (!list_empty(&head)) {
3661 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3662 list_del_init(&sh->lru);
3663 atomic_inc(&sh->count);
3664 __release_stripe(conf, sh);
3665 }
3666}
3667
fd01b88c 3668int md_raid5_congested(struct mddev *mddev, int bits)
f022b2fd 3669{
d1688a6d 3670 struct r5conf *conf = mddev->private;
f022b2fd
N
3671
3672 /* No difference between reads and writes. Just check
3673 * how busy the stripe_cache is
3674 */
3fa841d7 3675
f022b2fd
N
3676 if (conf->inactive_blocked)
3677 return 1;
3678 if (conf->quiesce)
3679 return 1;
3680 if (list_empty_careful(&conf->inactive_list))
3681 return 1;
3682
3683 return 0;
3684}
11d8a6e3
N
3685EXPORT_SYMBOL_GPL(md_raid5_congested);
3686
3687static int raid5_congested(void *data, int bits)
3688{
fd01b88c 3689 struct mddev *mddev = data;
11d8a6e3
N
3690
3691 return mddev_congested(mddev, bits) ||
3692 md_raid5_congested(mddev, bits);
3693}
f022b2fd 3694
23032a0e
RBJ
3695/* We want read requests to align with chunks where possible,
3696 * but write requests don't need to.
3697 */
cc371e66
AK
3698static int raid5_mergeable_bvec(struct request_queue *q,
3699 struct bvec_merge_data *bvm,
3700 struct bio_vec *biovec)
23032a0e 3701{
fd01b88c 3702 struct mddev *mddev = q->queuedata;
cc371e66 3703 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
23032a0e 3704 int max;
9d8f0363 3705 unsigned int chunk_sectors = mddev->chunk_sectors;
cc371e66 3706 unsigned int bio_sectors = bvm->bi_size >> 9;
23032a0e 3707
cc371e66 3708 if ((bvm->bi_rw & 1) == WRITE)
23032a0e
RBJ
3709 return biovec->bv_len; /* always allow writes to be mergeable */
3710
664e7c41
AN
3711 if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3712 chunk_sectors = mddev->new_chunk_sectors;
23032a0e
RBJ
3713 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3714 if (max < 0) max = 0;
3715 if (max <= biovec->bv_len && bio_sectors == 0)
3716 return biovec->bv_len;
3717 else
3718 return max;
3719}
3720
f679623f 3721
fd01b88c 3722static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
f679623f
RBJ
3723{
3724 sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
9d8f0363 3725 unsigned int chunk_sectors = mddev->chunk_sectors;
f679623f
RBJ
3726 unsigned int bio_sectors = bio->bi_size >> 9;
3727
664e7c41
AN
3728 if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3729 chunk_sectors = mddev->new_chunk_sectors;
f679623f
RBJ
3730 return chunk_sectors >=
3731 ((sector & (chunk_sectors - 1)) + bio_sectors);
3732}
3733
46031f9a
RBJ
3734/*
3735 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
3736 * later sampled by raid5d.
3737 */
d1688a6d 3738static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
46031f9a
RBJ
3739{
3740 unsigned long flags;
3741
3742 spin_lock_irqsave(&conf->device_lock, flags);
3743
3744 bi->bi_next = conf->retry_read_aligned_list;
3745 conf->retry_read_aligned_list = bi;
3746
3747 spin_unlock_irqrestore(&conf->device_lock, flags);
3748 md_wakeup_thread(conf->mddev->thread);
3749}
3750
3751
d1688a6d 3752static struct bio *remove_bio_from_retry(struct r5conf *conf)
46031f9a
RBJ
3753{
3754 struct bio *bi;
3755
3756 bi = conf->retry_read_aligned;
3757 if (bi) {
3758 conf->retry_read_aligned = NULL;
3759 return bi;
3760 }
3761 bi = conf->retry_read_aligned_list;
3762 if(bi) {
387bb173 3763 conf->retry_read_aligned_list = bi->bi_next;
46031f9a 3764 bi->bi_next = NULL;
960e739d
JA
3765 /*
3766 * this sets the active strip count to 1 and the processed
3767 * strip count to zero (upper 8 bits)
3768 */
46031f9a 3769 bi->bi_phys_segments = 1; /* biased count of active stripes */
46031f9a
RBJ
3770 }
3771
3772 return bi;
3773}
3774
3775
f679623f
RBJ
3776/*
3777 * The "raid5_align_endio" should check if the read succeeded and if it
3778 * did, call bio_endio on the original bio (having bio_put the new bio
3779 * first).
3780 * If the read failed..
3781 */
6712ecf8 3782static void raid5_align_endio(struct bio *bi, int error)
f679623f
RBJ
3783{
3784 struct bio* raid_bi = bi->bi_private;
fd01b88c 3785 struct mddev *mddev;
d1688a6d 3786 struct r5conf *conf;
46031f9a 3787 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3cb03002 3788 struct md_rdev *rdev;
46031f9a 3789
f679623f 3790 bio_put(bi);
46031f9a 3791
46031f9a
RBJ
3792 rdev = (void*)raid_bi->bi_next;
3793 raid_bi->bi_next = NULL;
2b7f2228
N
3794 mddev = rdev->mddev;
3795 conf = mddev->private;
46031f9a
RBJ
3796
3797 rdev_dec_pending(rdev, conf->mddev);
3798
3799 if (!error && uptodate) {
6712ecf8 3800 bio_endio(raid_bi, 0);
46031f9a
RBJ
3801 if (atomic_dec_and_test(&conf->active_aligned_reads))
3802 wake_up(&conf->wait_for_stripe);
6712ecf8 3803 return;
46031f9a
RBJ
3804 }
3805
3806
45b4233c 3807 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
46031f9a
RBJ
3808
3809 add_bio_to_retry(raid_bi, conf);
f679623f
RBJ
3810}
3811
387bb173
NB
3812static int bio_fits_rdev(struct bio *bi)
3813{
165125e1 3814 struct request_queue *q = bdev_get_queue(bi->bi_bdev);
387bb173 3815
ae03bf63 3816 if ((bi->bi_size>>9) > queue_max_sectors(q))
387bb173
NB
3817 return 0;
3818 blk_recount_segments(q, bi);
8a78362c 3819 if (bi->bi_phys_segments > queue_max_segments(q))
387bb173
NB
3820 return 0;
3821
3822 if (q->merge_bvec_fn)
3823 /* it's too hard to apply the merge_bvec_fn at this stage,
3824 * just just give up
3825 */
3826 return 0;
3827
3828 return 1;
3829}
3830
3831
fd01b88c 3832static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio)
f679623f 3833{
d1688a6d 3834 struct r5conf *conf = mddev->private;
8553fe7e 3835 int dd_idx;
f679623f 3836 struct bio* align_bi;
3cb03002 3837 struct md_rdev *rdev;
671488cc 3838 sector_t end_sector;
f679623f
RBJ
3839
3840 if (!in_chunk_boundary(mddev, raid_bio)) {
45b4233c 3841 pr_debug("chunk_aligned_read : non aligned\n");
f679623f
RBJ
3842 return 0;
3843 }
3844 /*
a167f663 3845 * use bio_clone_mddev to make a copy of the bio
f679623f 3846 */
a167f663 3847 align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
f679623f
RBJ
3848 if (!align_bi)
3849 return 0;
3850 /*
3851 * set bi_end_io to a new function, and set bi_private to the
3852 * original bio.
3853 */
3854 align_bi->bi_end_io = raid5_align_endio;
3855 align_bi->bi_private = raid_bio;
3856 /*
3857 * compute position
3858 */
112bf897
N
3859 align_bi->bi_sector = raid5_compute_sector(conf, raid_bio->bi_sector,
3860 0,
911d4ee8 3861 &dd_idx, NULL);
f679623f 3862
671488cc 3863 end_sector = align_bi->bi_sector + (align_bi->bi_size >> 9);
f679623f 3864 rcu_read_lock();
671488cc
N
3865 rdev = rcu_dereference(conf->disks[dd_idx].replacement);
3866 if (!rdev || test_bit(Faulty, &rdev->flags) ||
3867 rdev->recovery_offset < end_sector) {
3868 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3869 if (rdev &&
3870 (test_bit(Faulty, &rdev->flags) ||
3871 !(test_bit(In_sync, &rdev->flags) ||
3872 rdev->recovery_offset >= end_sector)))
3873 rdev = NULL;
3874 }
3875 if (rdev) {
31c176ec
N
3876 sector_t first_bad;
3877 int bad_sectors;
3878
f679623f
RBJ
3879 atomic_inc(&rdev->nr_pending);
3880 rcu_read_unlock();
46031f9a
RBJ
3881 raid_bio->bi_next = (void*)rdev;
3882 align_bi->bi_bdev = rdev->bdev;
3883 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
05616be5 3884 /* No reshape active, so we can trust rdev->data_offset */
46031f9a
RBJ
3885 align_bi->bi_sector += rdev->data_offset;
3886
31c176ec
N
3887 if (!bio_fits_rdev(align_bi) ||
3888 is_badblock(rdev, align_bi->bi_sector, align_bi->bi_size>>9,
3889 &first_bad, &bad_sectors)) {
3890 /* too big in some way, or has a known bad block */
387bb173
NB
3891 bio_put(align_bi);
3892 rdev_dec_pending(rdev, mddev);
3893 return 0;
3894 }
3895
46031f9a
RBJ
3896 spin_lock_irq(&conf->device_lock);
3897 wait_event_lock_irq(conf->wait_for_stripe,
3898 conf->quiesce == 0,
3899 conf->device_lock, /* nothing */);
3900 atomic_inc(&conf->active_aligned_reads);
3901 spin_unlock_irq(&conf->device_lock);
3902
f679623f
RBJ
3903 generic_make_request(align_bi);
3904 return 1;
3905 } else {
3906 rcu_read_unlock();
46031f9a 3907 bio_put(align_bi);
f679623f
RBJ
3908 return 0;
3909 }
3910}
3911
8b3e6cdc
DW
3912/* __get_priority_stripe - get the next stripe to process
3913 *
3914 * Full stripe writes are allowed to pass preread active stripes up until
3915 * the bypass_threshold is exceeded. In general the bypass_count
3916 * increments when the handle_list is handled before the hold_list; however, it
3917 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3918 * stripe with in flight i/o. The bypass_count will be reset when the
3919 * head of the hold_list has changed, i.e. the head was promoted to the
3920 * handle_list.
3921 */
d1688a6d 3922static struct stripe_head *__get_priority_stripe(struct r5conf *conf)
8b3e6cdc
DW
3923{
3924 struct stripe_head *sh;
3925
3926 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3927 __func__,
3928 list_empty(&conf->handle_list) ? "empty" : "busy",
3929 list_empty(&conf->hold_list) ? "empty" : "busy",
3930 atomic_read(&conf->pending_full_writes), conf->bypass_count);
3931
3932 if (!list_empty(&conf->handle_list)) {
3933 sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
3934
3935 if (list_empty(&conf->hold_list))
3936 conf->bypass_count = 0;
3937 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
3938 if (conf->hold_list.next == conf->last_hold)
3939 conf->bypass_count++;
3940 else {
3941 conf->last_hold = conf->hold_list.next;
3942 conf->bypass_count -= conf->bypass_threshold;
3943 if (conf->bypass_count < 0)
3944 conf->bypass_count = 0;
3945 }
3946 }
3947 } else if (!list_empty(&conf->hold_list) &&
3948 ((conf->bypass_threshold &&
3949 conf->bypass_count > conf->bypass_threshold) ||
3950 atomic_read(&conf->pending_full_writes) == 0)) {
3951 sh = list_entry(conf->hold_list.next,
3952 typeof(*sh), lru);
3953 conf->bypass_count -= conf->bypass_threshold;
3954 if (conf->bypass_count < 0)
3955 conf->bypass_count = 0;
3956 } else
3957 return NULL;
3958
3959 list_del_init(&sh->lru);
3960 atomic_inc(&sh->count);
3961 BUG_ON(atomic_read(&sh->count) != 1);
3962 return sh;
3963}
f679623f 3964
b4fdcb02 3965static void make_request(struct mddev *mddev, struct bio * bi)
1da177e4 3966{
d1688a6d 3967 struct r5conf *conf = mddev->private;
911d4ee8 3968 int dd_idx;
1da177e4
LT
3969 sector_t new_sector;
3970 sector_t logical_sector, last_sector;
3971 struct stripe_head *sh;
a362357b 3972 const int rw = bio_data_dir(bi);
49077326 3973 int remaining;
7c13edc8 3974 int plugged;
1da177e4 3975
e9c7469b
TH
3976 if (unlikely(bi->bi_rw & REQ_FLUSH)) {
3977 md_flush_request(mddev, bi);
5a7bbad2 3978 return;
e5dcdd80
N
3979 }
3980
3d310eb7 3981 md_write_start(mddev, bi);
06d91a5f 3982
802ba064 3983 if (rw == READ &&
52488615 3984 mddev->reshape_position == MaxSector &&
21a52c6d 3985 chunk_aligned_read(mddev,bi))
5a7bbad2 3986 return;
52488615 3987
1da177e4
LT
3988 logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3989 last_sector = bi->bi_sector + (bi->bi_size>>9);
3990 bi->bi_next = NULL;
3991 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
06d91a5f 3992
7c13edc8 3993 plugged = mddev_check_plugged(mddev);
1da177e4
LT
3994 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
3995 DEFINE_WAIT(w);
b5663ba4 3996 int previous;
b578d55f 3997
7ecaa1e6 3998 retry:
b5663ba4 3999 previous = 0;
b578d55f 4000 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
b0f9ec04 4001 if (unlikely(conf->reshape_progress != MaxSector)) {
fef9c61f 4002 /* spinlock is needed as reshape_progress may be
df8e7f76
N
4003 * 64bit on a 32bit platform, and so it might be
4004 * possible to see a half-updated value
aeb878b0 4005 * Of course reshape_progress could change after
df8e7f76
N
4006 * the lock is dropped, so once we get a reference
4007 * to the stripe that we think it is, we will have
4008 * to check again.
4009 */
7ecaa1e6 4010 spin_lock_irq(&conf->device_lock);
2c810cdd 4011 if (mddev->reshape_backwards
fef9c61f
N
4012 ? logical_sector < conf->reshape_progress
4013 : logical_sector >= conf->reshape_progress) {
b5663ba4
N
4014 previous = 1;
4015 } else {
2c810cdd 4016 if (mddev->reshape_backwards
fef9c61f
N
4017 ? logical_sector < conf->reshape_safe
4018 : logical_sector >= conf->reshape_safe) {
b578d55f
N
4019 spin_unlock_irq(&conf->device_lock);
4020 schedule();
4021 goto retry;
4022 }
4023 }
7ecaa1e6
N
4024 spin_unlock_irq(&conf->device_lock);
4025 }
16a53ecc 4026
112bf897
N
4027 new_sector = raid5_compute_sector(conf, logical_sector,
4028 previous,
911d4ee8 4029 &dd_idx, NULL);
0c55e022 4030 pr_debug("raid456: make_request, sector %llu logical %llu\n",
1da177e4
LT
4031 (unsigned long long)new_sector,
4032 (unsigned long long)logical_sector);
4033
b5663ba4 4034 sh = get_active_stripe(conf, new_sector, previous,
a8c906ca 4035 (bi->bi_rw&RWA_MASK), 0);
1da177e4 4036 if (sh) {
b0f9ec04 4037 if (unlikely(previous)) {
7ecaa1e6 4038 /* expansion might have moved on while waiting for a
df8e7f76
N
4039 * stripe, so we must do the range check again.
4040 * Expansion could still move past after this
4041 * test, but as we are holding a reference to
4042 * 'sh', we know that if that happens,
4043 * STRIPE_EXPANDING will get set and the expansion
4044 * won't proceed until we finish with the stripe.
7ecaa1e6
N
4045 */
4046 int must_retry = 0;
4047 spin_lock_irq(&conf->device_lock);
2c810cdd 4048 if (mddev->reshape_backwards
b0f9ec04
N
4049 ? logical_sector >= conf->reshape_progress
4050 : logical_sector < conf->reshape_progress)
7ecaa1e6
N
4051 /* mismatch, need to try again */
4052 must_retry = 1;
4053 spin_unlock_irq(&conf->device_lock);
4054 if (must_retry) {
4055 release_stripe(sh);
7a3ab908 4056 schedule();
7ecaa1e6
N
4057 goto retry;
4058 }
4059 }
e62e58a5 4060
ffd96e35 4061 if (rw == WRITE &&
a5c308d4 4062 logical_sector >= mddev->suspend_lo &&
e464eafd
N
4063 logical_sector < mddev->suspend_hi) {
4064 release_stripe(sh);
e62e58a5
N
4065 /* As the suspend_* range is controlled by
4066 * userspace, we want an interruptible
4067 * wait.
4068 */
4069 flush_signals(current);
4070 prepare_to_wait(&conf->wait_for_overlap,
4071 &w, TASK_INTERRUPTIBLE);
4072 if (logical_sector >= mddev->suspend_lo &&
4073 logical_sector < mddev->suspend_hi)
4074 schedule();
e464eafd
N
4075 goto retry;
4076 }
7ecaa1e6
N
4077
4078 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
ffd96e35 4079 !add_stripe_bio(sh, bi, dd_idx, rw)) {
7ecaa1e6
N
4080 /* Stripe is busy expanding or
4081 * add failed due to overlap. Flush everything
1da177e4
LT
4082 * and wait a while
4083 */
482c0834 4084 md_wakeup_thread(mddev->thread);
1da177e4
LT
4085 release_stripe(sh);
4086 schedule();
4087 goto retry;
4088 }
4089 finish_wait(&conf->wait_for_overlap, &w);
6ed3003c
N
4090 set_bit(STRIPE_HANDLE, &sh->state);
4091 clear_bit(STRIPE_DELAYED, &sh->state);
e9c7469b 4092 if ((bi->bi_rw & REQ_SYNC) &&
729a1866
N
4093 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4094 atomic_inc(&conf->preread_active_stripes);
1da177e4 4095 release_stripe(sh);
1da177e4
LT
4096 } else {
4097 /* cannot get stripe for read-ahead, just give-up */
4098 clear_bit(BIO_UPTODATE, &bi->bi_flags);
4099 finish_wait(&conf->wait_for_overlap, &w);
4100 break;
4101 }
4102
4103 }
7c13edc8
N
4104 if (!plugged)
4105 md_wakeup_thread(mddev->thread);
4106
1da177e4 4107 spin_lock_irq(&conf->device_lock);
960e739d 4108 remaining = raid5_dec_bi_phys_segments(bi);
f6344757
N
4109 spin_unlock_irq(&conf->device_lock);
4110 if (remaining == 0) {
1da177e4 4111
16a53ecc 4112 if ( rw == WRITE )
1da177e4 4113 md_write_end(mddev);
6712ecf8 4114
0e13fe23 4115 bio_endio(bi, 0);
1da177e4 4116 }
1da177e4
LT
4117}
4118
fd01b88c 4119static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
b522adcd 4120
fd01b88c 4121static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
1da177e4 4122{
52c03291
N
4123 /* reshaping is quite different to recovery/resync so it is
4124 * handled quite separately ... here.
4125 *
4126 * On each call to sync_request, we gather one chunk worth of
4127 * destination stripes and flag them as expanding.
4128 * Then we find all the source stripes and request reads.
4129 * As the reads complete, handle_stripe will copy the data
4130 * into the destination stripe and release that stripe.
4131 */
d1688a6d 4132 struct r5conf *conf = mddev->private;
1da177e4 4133 struct stripe_head *sh;
ccfcc3c1 4134 sector_t first_sector, last_sector;
f416885e
N
4135 int raid_disks = conf->previous_raid_disks;
4136 int data_disks = raid_disks - conf->max_degraded;
4137 int new_data_disks = conf->raid_disks - conf->max_degraded;
52c03291
N
4138 int i;
4139 int dd_idx;
c8f517c4 4140 sector_t writepos, readpos, safepos;
ec32a2bd 4141 sector_t stripe_addr;
7a661381 4142 int reshape_sectors;
ab69ae12 4143 struct list_head stripes;
52c03291 4144
fef9c61f
N
4145 if (sector_nr == 0) {
4146 /* If restarting in the middle, skip the initial sectors */
2c810cdd 4147 if (mddev->reshape_backwards &&
fef9c61f
N
4148 conf->reshape_progress < raid5_size(mddev, 0, 0)) {
4149 sector_nr = raid5_size(mddev, 0, 0)
4150 - conf->reshape_progress;
2c810cdd 4151 } else if (!mddev->reshape_backwards &&
fef9c61f
N
4152 conf->reshape_progress > 0)
4153 sector_nr = conf->reshape_progress;
f416885e 4154 sector_div(sector_nr, new_data_disks);
fef9c61f 4155 if (sector_nr) {
8dee7211
N
4156 mddev->curr_resync_completed = sector_nr;
4157 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
fef9c61f
N
4158 *skipped = 1;
4159 return sector_nr;
4160 }
52c03291
N
4161 }
4162
7a661381
N
4163 /* We need to process a full chunk at a time.
4164 * If old and new chunk sizes differ, we need to process the
4165 * largest of these
4166 */
664e7c41
AN
4167 if (mddev->new_chunk_sectors > mddev->chunk_sectors)
4168 reshape_sectors = mddev->new_chunk_sectors;
7a661381 4169 else
9d8f0363 4170 reshape_sectors = mddev->chunk_sectors;
7a661381 4171
b5254dd5
N
4172 /* We update the metadata at least every 10 seconds, or when
4173 * the data about to be copied would over-write the source of
4174 * the data at the front of the range. i.e. one new_stripe
4175 * along from reshape_progress new_maps to after where
4176 * reshape_safe old_maps to
52c03291 4177 */
fef9c61f 4178 writepos = conf->reshape_progress;
f416885e 4179 sector_div(writepos, new_data_disks);
c8f517c4
N
4180 readpos = conf->reshape_progress;
4181 sector_div(readpos, data_disks);
fef9c61f 4182 safepos = conf->reshape_safe;
f416885e 4183 sector_div(safepos, data_disks);
2c810cdd 4184 if (mddev->reshape_backwards) {
ed37d83e 4185 writepos -= min_t(sector_t, reshape_sectors, writepos);
c8f517c4 4186 readpos += reshape_sectors;
7a661381 4187 safepos += reshape_sectors;
fef9c61f 4188 } else {
7a661381 4189 writepos += reshape_sectors;
ed37d83e
N
4190 readpos -= min_t(sector_t, reshape_sectors, readpos);
4191 safepos -= min_t(sector_t, reshape_sectors, safepos);
fef9c61f 4192 }
52c03291 4193
b5254dd5
N
4194 /* Having calculated the 'writepos' possibly use it
4195 * to set 'stripe_addr' which is where we will write to.
4196 */
4197 if (mddev->reshape_backwards) {
4198 BUG_ON(conf->reshape_progress == 0);
4199 stripe_addr = writepos;
4200 BUG_ON((mddev->dev_sectors &
4201 ~((sector_t)reshape_sectors - 1))
4202 - reshape_sectors - stripe_addr
4203 != sector_nr);
4204 } else {
4205 BUG_ON(writepos != sector_nr + reshape_sectors);
4206 stripe_addr = sector_nr;
4207 }
4208
c8f517c4
N
4209 /* 'writepos' is the most advanced device address we might write.
4210 * 'readpos' is the least advanced device address we might read.
4211 * 'safepos' is the least address recorded in the metadata as having
4212 * been reshaped.
b5254dd5
N
4213 * If there is a min_offset_diff, these are adjusted either by
4214 * increasing the safepos/readpos if diff is negative, or
4215 * increasing writepos if diff is positive.
4216 * If 'readpos' is then behind 'writepos', there is no way that we can
c8f517c4
N
4217 * ensure safety in the face of a crash - that must be done by userspace
4218 * making a backup of the data. So in that case there is no particular
4219 * rush to update metadata.
4220 * Otherwise if 'safepos' is behind 'writepos', then we really need to
4221 * update the metadata to advance 'safepos' to match 'readpos' so that
4222 * we can be safe in the event of a crash.
4223 * So we insist on updating metadata if safepos is behind writepos and
4224 * readpos is beyond writepos.
4225 * In any case, update the metadata every 10 seconds.
4226 * Maybe that number should be configurable, but I'm not sure it is
4227 * worth it.... maybe it could be a multiple of safemode_delay???
4228 */
b5254dd5
N
4229 if (conf->min_offset_diff < 0) {
4230 safepos += -conf->min_offset_diff;
4231 readpos += -conf->min_offset_diff;
4232 } else
4233 writepos += conf->min_offset_diff;
4234
2c810cdd 4235 if ((mddev->reshape_backwards
c8f517c4
N
4236 ? (safepos > writepos && readpos < writepos)
4237 : (safepos < writepos && readpos > writepos)) ||
4238 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
52c03291
N
4239 /* Cannot proceed until we've updated the superblock... */
4240 wait_event(conf->wait_for_overlap,
4241 atomic_read(&conf->reshape_stripes)==0);
fef9c61f 4242 mddev->reshape_position = conf->reshape_progress;
75d3da43 4243 mddev->curr_resync_completed = sector_nr;
c8f517c4 4244 conf->reshape_checkpoint = jiffies;
850b2b42 4245 set_bit(MD_CHANGE_DEVS, &mddev->flags);
52c03291 4246 md_wakeup_thread(mddev->thread);
850b2b42 4247 wait_event(mddev->sb_wait, mddev->flags == 0 ||
52c03291
N
4248 kthread_should_stop());
4249 spin_lock_irq(&conf->device_lock);
fef9c61f 4250 conf->reshape_safe = mddev->reshape_position;
52c03291
N
4251 spin_unlock_irq(&conf->device_lock);
4252 wake_up(&conf->wait_for_overlap);
acb180b0 4253 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
52c03291
N
4254 }
4255
ab69ae12 4256 INIT_LIST_HEAD(&stripes);
7a661381 4257 for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
52c03291 4258 int j;
a9f326eb 4259 int skipped_disk = 0;
a8c906ca 4260 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
52c03291
N
4261 set_bit(STRIPE_EXPANDING, &sh->state);
4262 atomic_inc(&conf->reshape_stripes);
4263 /* If any of this stripe is beyond the end of the old
4264 * array, then we need to zero those blocks
4265 */
4266 for (j=sh->disks; j--;) {
4267 sector_t s;
4268 if (j == sh->pd_idx)
4269 continue;
f416885e 4270 if (conf->level == 6 &&
d0dabf7e 4271 j == sh->qd_idx)
f416885e 4272 continue;
784052ec 4273 s = compute_blocknr(sh, j, 0);
b522adcd 4274 if (s < raid5_size(mddev, 0, 0)) {
a9f326eb 4275 skipped_disk = 1;
52c03291
N
4276 continue;
4277 }
4278 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
4279 set_bit(R5_Expanded, &sh->dev[j].flags);
4280 set_bit(R5_UPTODATE, &sh->dev[j].flags);
4281 }
a9f326eb 4282 if (!skipped_disk) {
52c03291
N
4283 set_bit(STRIPE_EXPAND_READY, &sh->state);
4284 set_bit(STRIPE_HANDLE, &sh->state);
4285 }
ab69ae12 4286 list_add(&sh->lru, &stripes);
52c03291
N
4287 }
4288 spin_lock_irq(&conf->device_lock);
2c810cdd 4289 if (mddev->reshape_backwards)
7a661381 4290 conf->reshape_progress -= reshape_sectors * new_data_disks;
fef9c61f 4291 else
7a661381 4292 conf->reshape_progress += reshape_sectors * new_data_disks;
52c03291
N
4293 spin_unlock_irq(&conf->device_lock);
4294 /* Ok, those stripe are ready. We can start scheduling
4295 * reads on the source stripes.
4296 * The source stripes are determined by mapping the first and last
4297 * block on the destination stripes.
4298 */
52c03291 4299 first_sector =
ec32a2bd 4300 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
911d4ee8 4301 1, &dd_idx, NULL);
52c03291 4302 last_sector =
0e6e0271 4303 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
09c9e5fa 4304 * new_data_disks - 1),
911d4ee8 4305 1, &dd_idx, NULL);
58c0fed4
AN
4306 if (last_sector >= mddev->dev_sectors)
4307 last_sector = mddev->dev_sectors - 1;
52c03291 4308 while (first_sector <= last_sector) {
a8c906ca 4309 sh = get_active_stripe(conf, first_sector, 1, 0, 1);
52c03291
N
4310 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4311 set_bit(STRIPE_HANDLE, &sh->state);
4312 release_stripe(sh);
4313 first_sector += STRIPE_SECTORS;
4314 }
ab69ae12
N
4315 /* Now that the sources are clearly marked, we can release
4316 * the destination stripes
4317 */
4318 while (!list_empty(&stripes)) {
4319 sh = list_entry(stripes.next, struct stripe_head, lru);
4320 list_del_init(&sh->lru);
4321 release_stripe(sh);
4322 }
c6207277
N
4323 /* If this takes us to the resync_max point where we have to pause,
4324 * then we need to write out the superblock.
4325 */
7a661381 4326 sector_nr += reshape_sectors;
c03f6a19
N
4327 if ((sector_nr - mddev->curr_resync_completed) * 2
4328 >= mddev->resync_max - mddev->curr_resync_completed) {
c6207277
N
4329 /* Cannot proceed until we've updated the superblock... */
4330 wait_event(conf->wait_for_overlap,
4331 atomic_read(&conf->reshape_stripes) == 0);
fef9c61f 4332 mddev->reshape_position = conf->reshape_progress;
75d3da43 4333 mddev->curr_resync_completed = sector_nr;
c8f517c4 4334 conf->reshape_checkpoint = jiffies;
c6207277
N
4335 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4336 md_wakeup_thread(mddev->thread);
4337 wait_event(mddev->sb_wait,
4338 !test_bit(MD_CHANGE_DEVS, &mddev->flags)
4339 || kthread_should_stop());
4340 spin_lock_irq(&conf->device_lock);
fef9c61f 4341 conf->reshape_safe = mddev->reshape_position;
c6207277
N
4342 spin_unlock_irq(&conf->device_lock);
4343 wake_up(&conf->wait_for_overlap);
acb180b0 4344 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
c6207277 4345 }
7a661381 4346 return reshape_sectors;
52c03291
N
4347}
4348
4349/* FIXME go_faster isn't used */
fd01b88c 4350static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
52c03291 4351{
d1688a6d 4352 struct r5conf *conf = mddev->private;
52c03291 4353 struct stripe_head *sh;
58c0fed4 4354 sector_t max_sector = mddev->dev_sectors;
57dab0bd 4355 sector_t sync_blocks;
16a53ecc
N
4356 int still_degraded = 0;
4357 int i;
1da177e4 4358
72626685 4359 if (sector_nr >= max_sector) {
1da177e4 4360 /* just being told to finish up .. nothing much to do */
cea9c228 4361
29269553
N
4362 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
4363 end_reshape(conf);
4364 return 0;
4365 }
72626685
N
4366
4367 if (mddev->curr_resync < max_sector) /* aborted */
4368 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
4369 &sync_blocks, 1);
16a53ecc 4370 else /* completed sync */
72626685
N
4371 conf->fullsync = 0;
4372 bitmap_close_sync(mddev->bitmap);
4373
1da177e4
LT
4374 return 0;
4375 }
ccfcc3c1 4376
64bd660b
N
4377 /* Allow raid5_quiesce to complete */
4378 wait_event(conf->wait_for_overlap, conf->quiesce != 2);
4379
52c03291
N
4380 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4381 return reshape_request(mddev, sector_nr, skipped);
f6705578 4382
c6207277
N
4383 /* No need to check resync_max as we never do more than one
4384 * stripe, and as resync_max will always be on a chunk boundary,
4385 * if the check in md_do_sync didn't fire, there is no chance
4386 * of overstepping resync_max here
4387 */
4388
16a53ecc 4389 /* if there is too many failed drives and we are trying
1da177e4
LT
4390 * to resync, then assert that we are finished, because there is
4391 * nothing we can do.
4392 */
3285edf1 4393 if (mddev->degraded >= conf->max_degraded &&
16a53ecc 4394 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
58c0fed4 4395 sector_t rv = mddev->dev_sectors - sector_nr;
57afd89f 4396 *skipped = 1;
1da177e4
LT
4397 return rv;
4398 }
72626685 4399 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
3855ad9f 4400 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
72626685
N
4401 !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
4402 /* we can skip this block, and probably more */
4403 sync_blocks /= STRIPE_SECTORS;
4404 *skipped = 1;
4405 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
4406 }
1da177e4 4407
b47490c9
N
4408 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
4409
a8c906ca 4410 sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
1da177e4 4411 if (sh == NULL) {
a8c906ca 4412 sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
1da177e4 4413 /* make sure we don't swamp the stripe cache if someone else
16a53ecc 4414 * is trying to get access
1da177e4 4415 */
66c006a5 4416 schedule_timeout_uninterruptible(1);
1da177e4 4417 }
16a53ecc
N
4418 /* Need to check if array will still be degraded after recovery/resync
4419 * We don't need to check the 'failed' flag as when that gets set,
4420 * recovery aborts.
4421 */
f001a70c 4422 for (i = 0; i < conf->raid_disks; i++)
16a53ecc
N
4423 if (conf->disks[i].rdev == NULL)
4424 still_degraded = 1;
4425
4426 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
4427
83206d66 4428 set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
1da177e4 4429
1442577b 4430 handle_stripe(sh);
1da177e4
LT
4431 release_stripe(sh);
4432
4433 return STRIPE_SECTORS;
4434}
4435
d1688a6d 4436static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
46031f9a
RBJ
4437{
4438 /* We may not be able to submit a whole bio at once as there
4439 * may not be enough stripe_heads available.
4440 * We cannot pre-allocate enough stripe_heads as we may need
4441 * more than exist in the cache (if we allow ever large chunks).
4442 * So we do one stripe head at a time and record in
4443 * ->bi_hw_segments how many have been done.
4444 *
4445 * We *know* that this entire raid_bio is in one chunk, so
4446 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
4447 */
4448 struct stripe_head *sh;
911d4ee8 4449 int dd_idx;
46031f9a
RBJ
4450 sector_t sector, logical_sector, last_sector;
4451 int scnt = 0;
4452 int remaining;
4453 int handled = 0;
4454
4455 logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
112bf897 4456 sector = raid5_compute_sector(conf, logical_sector,
911d4ee8 4457 0, &dd_idx, NULL);
46031f9a
RBJ
4458 last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
4459
4460 for (; logical_sector < last_sector;
387bb173
NB
4461 logical_sector += STRIPE_SECTORS,
4462 sector += STRIPE_SECTORS,
4463 scnt++) {
46031f9a 4464
960e739d 4465 if (scnt < raid5_bi_hw_segments(raid_bio))
46031f9a
RBJ
4466 /* already done this stripe */
4467 continue;
4468
a8c906ca 4469 sh = get_active_stripe(conf, sector, 0, 1, 0);
46031f9a
RBJ
4470
4471 if (!sh) {
4472 /* failed to get a stripe - must wait */
960e739d 4473 raid5_set_bi_hw_segments(raid_bio, scnt);
46031f9a
RBJ
4474 conf->retry_read_aligned = raid_bio;
4475 return handled;
4476 }
4477
387bb173
NB
4478 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
4479 release_stripe(sh);
960e739d 4480 raid5_set_bi_hw_segments(raid_bio, scnt);
387bb173
NB
4481 conf->retry_read_aligned = raid_bio;
4482 return handled;
4483 }
4484
36d1c647 4485 handle_stripe(sh);
46031f9a
RBJ
4486 release_stripe(sh);
4487 handled++;
4488 }
4489 spin_lock_irq(&conf->device_lock);
960e739d 4490 remaining = raid5_dec_bi_phys_segments(raid_bio);
46031f9a 4491 spin_unlock_irq(&conf->device_lock);
0e13fe23
NB
4492 if (remaining == 0)
4493 bio_endio(raid_bio, 0);
46031f9a
RBJ
4494 if (atomic_dec_and_test(&conf->active_aligned_reads))
4495 wake_up(&conf->wait_for_stripe);
4496 return handled;
4497}
4498
46031f9a 4499
1da177e4
LT
4500/*
4501 * This is our raid5 kernel thread.
4502 *
4503 * We scan the hash table for stripes which can be handled now.
4504 * During the scan, completed stripes are saved for us by the interrupt
4505 * handler, so that they will not have to wait for our next wakeup.
4506 */
fd01b88c 4507static void raid5d(struct mddev *mddev)
1da177e4
LT
4508{
4509 struct stripe_head *sh;
d1688a6d 4510 struct r5conf *conf = mddev->private;
1da177e4 4511 int handled;
e1dfa0a2 4512 struct blk_plug plug;
1da177e4 4513
45b4233c 4514 pr_debug("+++ raid5d active\n");
1da177e4
LT
4515
4516 md_check_recovery(mddev);
1da177e4 4517
e1dfa0a2 4518 blk_start_plug(&plug);
1da177e4
LT
4519 handled = 0;
4520 spin_lock_irq(&conf->device_lock);
4521 while (1) {
46031f9a 4522 struct bio *bio;
1da177e4 4523
7c13edc8
N
4524 if (atomic_read(&mddev->plug_cnt) == 0 &&
4525 !list_empty(&conf->bitmap_list)) {
4526 /* Now is a good time to flush some bitmap updates */
4527 conf->seq_flush++;
700e432d 4528 spin_unlock_irq(&conf->device_lock);
72626685 4529 bitmap_unplug(mddev->bitmap);
700e432d 4530 spin_lock_irq(&conf->device_lock);
7c13edc8 4531 conf->seq_write = conf->seq_flush;
72626685
N
4532 activate_bit_delay(conf);
4533 }
7c13edc8
N
4534 if (atomic_read(&mddev->plug_cnt) == 0)
4535 raid5_activate_delayed(conf);
72626685 4536
46031f9a
RBJ
4537 while ((bio = remove_bio_from_retry(conf))) {
4538 int ok;
4539 spin_unlock_irq(&conf->device_lock);
4540 ok = retry_aligned_read(conf, bio);
4541 spin_lock_irq(&conf->device_lock);
4542 if (!ok)
4543 break;
4544 handled++;
4545 }
4546
8b3e6cdc
DW
4547 sh = __get_priority_stripe(conf);
4548
c9f21aaf 4549 if (!sh)
1da177e4 4550 break;
1da177e4
LT
4551 spin_unlock_irq(&conf->device_lock);
4552
4553 handled++;
417b8d4a
DW
4554 handle_stripe(sh);
4555 release_stripe(sh);
4556 cond_resched();
1da177e4 4557
de393cde
N
4558 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
4559 md_check_recovery(mddev);
4560
1da177e4
LT
4561 spin_lock_irq(&conf->device_lock);
4562 }
45b4233c 4563 pr_debug("%d stripes handled\n", handled);
1da177e4
LT
4564
4565 spin_unlock_irq(&conf->device_lock);
4566
c9f21aaf 4567 async_tx_issue_pending_all();
e1dfa0a2 4568 blk_finish_plug(&plug);
1da177e4 4569
45b4233c 4570 pr_debug("--- raid5d inactive\n");
1da177e4
LT
4571}
4572
3f294f4f 4573static ssize_t
fd01b88c 4574raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
3f294f4f 4575{
d1688a6d 4576 struct r5conf *conf = mddev->private;
96de1e66
N
4577 if (conf)
4578 return sprintf(page, "%d\n", conf->max_nr_stripes);
4579 else
4580 return 0;
3f294f4f
N
4581}
4582
c41d4ac4 4583int
fd01b88c 4584raid5_set_cache_size(struct mddev *mddev, int size)
3f294f4f 4585{
d1688a6d 4586 struct r5conf *conf = mddev->private;
b5470dc5
DW
4587 int err;
4588
c41d4ac4 4589 if (size <= 16 || size > 32768)
3f294f4f 4590 return -EINVAL;
c41d4ac4 4591 while (size < conf->max_nr_stripes) {
3f294f4f
N
4592 if (drop_one_stripe(conf))
4593 conf->max_nr_stripes--;
4594 else
4595 break;
4596 }
b5470dc5
DW
4597 err = md_allow_write(mddev);
4598 if (err)
4599 return err;
c41d4ac4 4600 while (size > conf->max_nr_stripes) {
3f294f4f
N
4601 if (grow_one_stripe(conf))
4602 conf->max_nr_stripes++;
4603 else break;
4604 }
c41d4ac4
N
4605 return 0;
4606}
4607EXPORT_SYMBOL(raid5_set_cache_size);
4608
4609static ssize_t
fd01b88c 4610raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
c41d4ac4 4611{
d1688a6d 4612 struct r5conf *conf = mddev->private;
c41d4ac4
N
4613 unsigned long new;
4614 int err;
4615
4616 if (len >= PAGE_SIZE)
4617 return -EINVAL;
4618 if (!conf)
4619 return -ENODEV;
4620
4621 if (strict_strtoul(page, 10, &new))
4622 return -EINVAL;
4623 err = raid5_set_cache_size(mddev, new);
4624 if (err)
4625 return err;
3f294f4f
N
4626 return len;
4627}
007583c9 4628
96de1e66
N
4629static struct md_sysfs_entry
4630raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4631 raid5_show_stripe_cache_size,
4632 raid5_store_stripe_cache_size);
3f294f4f 4633
8b3e6cdc 4634static ssize_t
fd01b88c 4635raid5_show_preread_threshold(struct mddev *mddev, char *page)
8b3e6cdc 4636{
d1688a6d 4637 struct r5conf *conf = mddev->private;
8b3e6cdc
DW
4638 if (conf)
4639 return sprintf(page, "%d\n", conf->bypass_threshold);
4640 else
4641 return 0;
4642}
4643
4644static ssize_t
fd01b88c 4645raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
8b3e6cdc 4646{
d1688a6d 4647 struct r5conf *conf = mddev->private;
4ef197d8 4648 unsigned long new;
8b3e6cdc
DW
4649 if (len >= PAGE_SIZE)
4650 return -EINVAL;
4651 if (!conf)
4652 return -ENODEV;
4653
4ef197d8 4654 if (strict_strtoul(page, 10, &new))
8b3e6cdc 4655 return -EINVAL;
4ef197d8 4656 if (new > conf->max_nr_stripes)
8b3e6cdc
DW
4657 return -EINVAL;
4658 conf->bypass_threshold = new;
4659 return len;
4660}
4661
4662static struct md_sysfs_entry
4663raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4664 S_IRUGO | S_IWUSR,
4665 raid5_show_preread_threshold,
4666 raid5_store_preread_threshold);
4667
3f294f4f 4668static ssize_t
fd01b88c 4669stripe_cache_active_show(struct mddev *mddev, char *page)
3f294f4f 4670{
d1688a6d 4671 struct r5conf *conf = mddev->private;
96de1e66
N
4672 if (conf)
4673 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4674 else
4675 return 0;
3f294f4f
N
4676}
4677
96de1e66
N
4678static struct md_sysfs_entry
4679raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
3f294f4f 4680
007583c9 4681static struct attribute *raid5_attrs[] = {
3f294f4f
N
4682 &raid5_stripecache_size.attr,
4683 &raid5_stripecache_active.attr,
8b3e6cdc 4684 &raid5_preread_bypass_threshold.attr,
3f294f4f
N
4685 NULL,
4686};
007583c9
N
4687static struct attribute_group raid5_attrs_group = {
4688 .name = NULL,
4689 .attrs = raid5_attrs,
3f294f4f
N
4690};
4691
80c3a6ce 4692static sector_t
fd01b88c 4693raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
80c3a6ce 4694{
d1688a6d 4695 struct r5conf *conf = mddev->private;
80c3a6ce
DW
4696
4697 if (!sectors)
4698 sectors = mddev->dev_sectors;
5e5e3e78 4699 if (!raid_disks)
7ec05478 4700 /* size is defined by the smallest of previous and new size */
5e5e3e78 4701 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
80c3a6ce 4702
9d8f0363 4703 sectors &= ~((sector_t)mddev->chunk_sectors - 1);
664e7c41 4704 sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
80c3a6ce
DW
4705 return sectors * (raid_disks - conf->max_degraded);
4706}
4707
d1688a6d 4708static void raid5_free_percpu(struct r5conf *conf)
36d1c647
DW
4709{
4710 struct raid5_percpu *percpu;
4711 unsigned long cpu;
4712
4713 if (!conf->percpu)
4714 return;
4715
4716 get_online_cpus();
4717 for_each_possible_cpu(cpu) {
4718 percpu = per_cpu_ptr(conf->percpu, cpu);
4719 safe_put_page(percpu->spare_page);
d6f38f31 4720 kfree(percpu->scribble);
36d1c647
DW
4721 }
4722#ifdef CONFIG_HOTPLUG_CPU
4723 unregister_cpu_notifier(&conf->cpu_notify);
4724#endif
4725 put_online_cpus();
4726
4727 free_percpu(conf->percpu);
4728}
4729
d1688a6d 4730static void free_conf(struct r5conf *conf)
95fc17aa
DW
4731{
4732 shrink_stripes(conf);
36d1c647 4733 raid5_free_percpu(conf);
95fc17aa
DW
4734 kfree(conf->disks);
4735 kfree(conf->stripe_hashtbl);
4736 kfree(conf);
4737}
4738
36d1c647
DW
4739#ifdef CONFIG_HOTPLUG_CPU
4740static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
4741 void *hcpu)
4742{
d1688a6d 4743 struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
36d1c647
DW
4744 long cpu = (long)hcpu;
4745 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
4746
4747 switch (action) {
4748 case CPU_UP_PREPARE:
4749 case CPU_UP_PREPARE_FROZEN:
d6f38f31 4750 if (conf->level == 6 && !percpu->spare_page)
36d1c647 4751 percpu->spare_page = alloc_page(GFP_KERNEL);
d6f38f31
DW
4752 if (!percpu->scribble)
4753 percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4754
4755 if (!percpu->scribble ||
4756 (conf->level == 6 && !percpu->spare_page)) {
4757 safe_put_page(percpu->spare_page);
4758 kfree(percpu->scribble);
36d1c647
DW
4759 pr_err("%s: failed memory allocation for cpu%ld\n",
4760 __func__, cpu);
55af6bb5 4761 return notifier_from_errno(-ENOMEM);
36d1c647
DW
4762 }
4763 break;
4764 case CPU_DEAD:
4765 case CPU_DEAD_FROZEN:
4766 safe_put_page(percpu->spare_page);
d6f38f31 4767 kfree(percpu->scribble);
36d1c647 4768 percpu->spare_page = NULL;
d6f38f31 4769 percpu->scribble = NULL;
36d1c647
DW
4770 break;
4771 default:
4772 break;
4773 }
4774 return NOTIFY_OK;
4775}
4776#endif
4777
d1688a6d 4778static int raid5_alloc_percpu(struct r5conf *conf)
36d1c647
DW
4779{
4780 unsigned long cpu;
4781 struct page *spare_page;
a29d8b8e 4782 struct raid5_percpu __percpu *allcpus;
d6f38f31 4783 void *scribble;
36d1c647
DW
4784 int err;
4785
36d1c647
DW
4786 allcpus = alloc_percpu(struct raid5_percpu);
4787 if (!allcpus)
4788 return -ENOMEM;
4789 conf->percpu = allcpus;
4790
4791 get_online_cpus();
4792 err = 0;
4793 for_each_present_cpu(cpu) {
d6f38f31
DW
4794 if (conf->level == 6) {
4795 spare_page = alloc_page(GFP_KERNEL);
4796 if (!spare_page) {
4797 err = -ENOMEM;
4798 break;
4799 }
4800 per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
4801 }
5e5e3e78 4802 scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
d6f38f31 4803 if (!scribble) {
36d1c647
DW
4804 err = -ENOMEM;
4805 break;
4806 }
d6f38f31 4807 per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
36d1c647
DW
4808 }
4809#ifdef CONFIG_HOTPLUG_CPU
4810 conf->cpu_notify.notifier_call = raid456_cpu_notify;
4811 conf->cpu_notify.priority = 0;
4812 if (err == 0)
4813 err = register_cpu_notifier(&conf->cpu_notify);
4814#endif
4815 put_online_cpus();
4816
4817 return err;
4818}
4819
d1688a6d 4820static struct r5conf *setup_conf(struct mddev *mddev)
1da177e4 4821{
d1688a6d 4822 struct r5conf *conf;
5e5e3e78 4823 int raid_disk, memory, max_disks;
3cb03002 4824 struct md_rdev *rdev;
1da177e4 4825 struct disk_info *disk;
1da177e4 4826
91adb564
N
4827 if (mddev->new_level != 5
4828 && mddev->new_level != 4
4829 && mddev->new_level != 6) {
0c55e022 4830 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
91adb564
N
4831 mdname(mddev), mddev->new_level);
4832 return ERR_PTR(-EIO);
1da177e4 4833 }
91adb564
N
4834 if ((mddev->new_level == 5
4835 && !algorithm_valid_raid5(mddev->new_layout)) ||
4836 (mddev->new_level == 6
4837 && !algorithm_valid_raid6(mddev->new_layout))) {
0c55e022 4838 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
91adb564
N
4839 mdname(mddev), mddev->new_layout);
4840 return ERR_PTR(-EIO);
99c0fb5f 4841 }
91adb564 4842 if (mddev->new_level == 6 && mddev->raid_disks < 4) {
0c55e022 4843 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
91adb564
N
4844 mdname(mddev), mddev->raid_disks);
4845 return ERR_PTR(-EINVAL);
4bbf3771
N
4846 }
4847
664e7c41
AN
4848 if (!mddev->new_chunk_sectors ||
4849 (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
4850 !is_power_of_2(mddev->new_chunk_sectors)) {
0c55e022
N
4851 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
4852 mdname(mddev), mddev->new_chunk_sectors << 9);
91adb564 4853 return ERR_PTR(-EINVAL);
f6705578
N
4854 }
4855
d1688a6d 4856 conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
91adb564 4857 if (conf == NULL)
1da177e4 4858 goto abort;
f5efd45a
DW
4859 spin_lock_init(&conf->device_lock);
4860 init_waitqueue_head(&conf->wait_for_stripe);
4861 init_waitqueue_head(&conf->wait_for_overlap);
4862 INIT_LIST_HEAD(&conf->handle_list);
4863 INIT_LIST_HEAD(&conf->hold_list);
4864 INIT_LIST_HEAD(&conf->delayed_list);
4865 INIT_LIST_HEAD(&conf->bitmap_list);
4866 INIT_LIST_HEAD(&conf->inactive_list);
4867 atomic_set(&conf->active_stripes, 0);
4868 atomic_set(&conf->preread_active_stripes, 0);
4869 atomic_set(&conf->active_aligned_reads, 0);
4870 conf->bypass_threshold = BYPASS_THRESHOLD;
d890fa2b 4871 conf->recovery_disabled = mddev->recovery_disabled - 1;
91adb564
N
4872
4873 conf->raid_disks = mddev->raid_disks;
4874 if (mddev->reshape_position == MaxSector)
4875 conf->previous_raid_disks = mddev->raid_disks;
4876 else
f6705578 4877 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
5e5e3e78
N
4878 max_disks = max(conf->raid_disks, conf->previous_raid_disks);
4879 conf->scribble_len = scribble_len(max_disks);
f6705578 4880
5e5e3e78 4881 conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
b55e6bfc
N
4882 GFP_KERNEL);
4883 if (!conf->disks)
4884 goto abort;
9ffae0cf 4885
1da177e4
LT
4886 conf->mddev = mddev;
4887
fccddba0 4888 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
1da177e4 4889 goto abort;
1da177e4 4890
36d1c647
DW
4891 conf->level = mddev->new_level;
4892 if (raid5_alloc_percpu(conf) != 0)
4893 goto abort;
4894
0c55e022 4895 pr_debug("raid456: run(%s) called.\n", mdname(mddev));
1da177e4 4896
dafb20fa 4897 rdev_for_each(rdev, mddev) {
1da177e4 4898 raid_disk = rdev->raid_disk;
5e5e3e78 4899 if (raid_disk >= max_disks
1da177e4
LT
4900 || raid_disk < 0)
4901 continue;
4902 disk = conf->disks + raid_disk;
4903
17045f52
N
4904 if (test_bit(Replacement, &rdev->flags)) {
4905 if (disk->replacement)
4906 goto abort;
4907 disk->replacement = rdev;
4908 } else {
4909 if (disk->rdev)
4910 goto abort;
4911 disk->rdev = rdev;
4912 }
1da177e4 4913
b2d444d7 4914 if (test_bit(In_sync, &rdev->flags)) {
1da177e4 4915 char b[BDEVNAME_SIZE];
0c55e022
N
4916 printk(KERN_INFO "md/raid:%s: device %s operational as raid"
4917 " disk %d\n",
4918 mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
d6b212f4 4919 } else if (rdev->saved_raid_disk != raid_disk)
8c2e870a
NB
4920 /* Cannot rely on bitmap to complete recovery */
4921 conf->fullsync = 1;
1da177e4
LT
4922 }
4923
09c9e5fa 4924 conf->chunk_sectors = mddev->new_chunk_sectors;
91adb564 4925 conf->level = mddev->new_level;
16a53ecc
N
4926 if (conf->level == 6)
4927 conf->max_degraded = 2;
4928 else
4929 conf->max_degraded = 1;
91adb564 4930 conf->algorithm = mddev->new_layout;
1da177e4 4931 conf->max_nr_stripes = NR_STRIPES;
fef9c61f 4932 conf->reshape_progress = mddev->reshape_position;
e183eaed 4933 if (conf->reshape_progress != MaxSector) {
09c9e5fa 4934 conf->prev_chunk_sectors = mddev->chunk_sectors;
e183eaed
N
4935 conf->prev_algo = mddev->layout;
4936 }
1da177e4 4937
91adb564 4938 memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
5e5e3e78 4939 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
91adb564
N
4940 if (grow_stripes(conf, conf->max_nr_stripes)) {
4941 printk(KERN_ERR
0c55e022
N
4942 "md/raid:%s: couldn't allocate %dkB for buffers\n",
4943 mdname(mddev), memory);
91adb564
N
4944 goto abort;
4945 } else
0c55e022
N
4946 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
4947 mdname(mddev), memory);
1da177e4 4948
0da3c619 4949 conf->thread = md_register_thread(raid5d, mddev, NULL);
91adb564
N
4950 if (!conf->thread) {
4951 printk(KERN_ERR
0c55e022 4952 "md/raid:%s: couldn't allocate thread.\n",
91adb564 4953 mdname(mddev));
16a53ecc
N
4954 goto abort;
4955 }
91adb564
N
4956
4957 return conf;
4958
4959 abort:
4960 if (conf) {
95fc17aa 4961 free_conf(conf);
91adb564
N
4962 return ERR_PTR(-EIO);
4963 } else
4964 return ERR_PTR(-ENOMEM);
4965}
4966
c148ffdc
N
4967
4968static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
4969{
4970 switch (algo) {
4971 case ALGORITHM_PARITY_0:
4972 if (raid_disk < max_degraded)
4973 return 1;
4974 break;
4975 case ALGORITHM_PARITY_N:
4976 if (raid_disk >= raid_disks - max_degraded)
4977 return 1;
4978 break;
4979 case ALGORITHM_PARITY_0_6:
4980 if (raid_disk == 0 ||
4981 raid_disk == raid_disks - 1)
4982 return 1;
4983 break;
4984 case ALGORITHM_LEFT_ASYMMETRIC_6:
4985 case ALGORITHM_RIGHT_ASYMMETRIC_6:
4986 case ALGORITHM_LEFT_SYMMETRIC_6:
4987 case ALGORITHM_RIGHT_SYMMETRIC_6:
4988 if (raid_disk == raid_disks - 1)
4989 return 1;
4990 }
4991 return 0;
4992}
4993
fd01b88c 4994static int run(struct mddev *mddev)
91adb564 4995{
d1688a6d 4996 struct r5conf *conf;
9f7c2220 4997 int working_disks = 0;
c148ffdc 4998 int dirty_parity_disks = 0;
3cb03002 4999 struct md_rdev *rdev;
c148ffdc 5000 sector_t reshape_offset = 0;
17045f52 5001 int i;
b5254dd5
N
5002 long long min_offset_diff = 0;
5003 int first = 1;
91adb564 5004
8c6ac868 5005 if (mddev->recovery_cp != MaxSector)
0c55e022 5006 printk(KERN_NOTICE "md/raid:%s: not clean"
8c6ac868
AN
5007 " -- starting background reconstruction\n",
5008 mdname(mddev));
b5254dd5
N
5009
5010 rdev_for_each(rdev, mddev) {
5011 long long diff;
5012 if (rdev->raid_disk < 0)
5013 continue;
5014 diff = (rdev->new_data_offset - rdev->data_offset);
5015 if (first) {
5016 min_offset_diff = diff;
5017 first = 0;
5018 } else if (mddev->reshape_backwards &&
5019 diff < min_offset_diff)
5020 min_offset_diff = diff;
5021 else if (!mddev->reshape_backwards &&
5022 diff > min_offset_diff)
5023 min_offset_diff = diff;
5024 }
5025
91adb564
N
5026 if (mddev->reshape_position != MaxSector) {
5027 /* Check that we can continue the reshape.
b5254dd5
N
5028 * Difficulties arise if the stripe we would write to
5029 * next is at or after the stripe we would read from next.
5030 * For a reshape that changes the number of devices, this
5031 * is only possible for a very short time, and mdadm makes
5032 * sure that time appears to have past before assembling
5033 * the array. So we fail if that time hasn't passed.
5034 * For a reshape that keeps the number of devices the same
5035 * mdadm must be monitoring the reshape can keeping the
5036 * critical areas read-only and backed up. It will start
5037 * the array in read-only mode, so we check for that.
91adb564
N
5038 */
5039 sector_t here_new, here_old;
5040 int old_disks;
18b00334 5041 int max_degraded = (mddev->level == 6 ? 2 : 1);
91adb564 5042
88ce4930 5043 if (mddev->new_level != mddev->level) {
0c55e022 5044 printk(KERN_ERR "md/raid:%s: unsupported reshape "
91adb564
N
5045 "required - aborting.\n",
5046 mdname(mddev));
5047 return -EINVAL;
5048 }
91adb564
N
5049 old_disks = mddev->raid_disks - mddev->delta_disks;
5050 /* reshape_position must be on a new-stripe boundary, and one
5051 * further up in new geometry must map after here in old
5052 * geometry.
5053 */
5054 here_new = mddev->reshape_position;
664e7c41 5055 if (sector_div(here_new, mddev->new_chunk_sectors *
91adb564 5056 (mddev->raid_disks - max_degraded))) {
0c55e022
N
5057 printk(KERN_ERR "md/raid:%s: reshape_position not "
5058 "on a stripe boundary\n", mdname(mddev));
91adb564
N
5059 return -EINVAL;
5060 }
c148ffdc 5061 reshape_offset = here_new * mddev->new_chunk_sectors;
91adb564
N
5062 /* here_new is the stripe we will write to */
5063 here_old = mddev->reshape_position;
9d8f0363 5064 sector_div(here_old, mddev->chunk_sectors *
91adb564
N
5065 (old_disks-max_degraded));
5066 /* here_old is the first stripe that we might need to read
5067 * from */
67ac6011 5068 if (mddev->delta_disks == 0) {
b5254dd5
N
5069 if ((here_new * mddev->new_chunk_sectors !=
5070 here_old * mddev->chunk_sectors)) {
5071 printk(KERN_ERR "md/raid:%s: reshape position is"
5072 " confused - aborting\n", mdname(mddev));
5073 return -EINVAL;
5074 }
67ac6011 5075 /* We cannot be sure it is safe to start an in-place
b5254dd5 5076 * reshape. It is only safe if user-space is monitoring
67ac6011
N
5077 * and taking constant backups.
5078 * mdadm always starts a situation like this in
5079 * readonly mode so it can take control before
5080 * allowing any writes. So just check for that.
5081 */
b5254dd5
N
5082 if (abs(min_offset_diff) >= mddev->chunk_sectors &&
5083 abs(min_offset_diff) >= mddev->new_chunk_sectors)
5084 /* not really in-place - so OK */;
5085 else if (mddev->ro == 0) {
5086 printk(KERN_ERR "md/raid:%s: in-place reshape "
5087 "must be started in read-only mode "
5088 "- aborting\n",
0c55e022 5089 mdname(mddev));
67ac6011
N
5090 return -EINVAL;
5091 }
2c810cdd 5092 } else if (mddev->reshape_backwards
b5254dd5 5093 ? (here_new * mddev->new_chunk_sectors + min_offset_diff <=
67ac6011
N
5094 here_old * mddev->chunk_sectors)
5095 : (here_new * mddev->new_chunk_sectors >=
b5254dd5 5096 here_old * mddev->chunk_sectors + (-min_offset_diff))) {
91adb564 5097 /* Reading from the same stripe as writing to - bad */
0c55e022
N
5098 printk(KERN_ERR "md/raid:%s: reshape_position too early for "
5099 "auto-recovery - aborting.\n",
5100 mdname(mddev));
91adb564
N
5101 return -EINVAL;
5102 }
0c55e022
N
5103 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
5104 mdname(mddev));
91adb564
N
5105 /* OK, we should be able to continue; */
5106 } else {
5107 BUG_ON(mddev->level != mddev->new_level);
5108 BUG_ON(mddev->layout != mddev->new_layout);
664e7c41 5109 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
91adb564 5110 BUG_ON(mddev->delta_disks != 0);
1da177e4 5111 }
91adb564 5112
245f46c2
N
5113 if (mddev->private == NULL)
5114 conf = setup_conf(mddev);
5115 else
5116 conf = mddev->private;
5117
91adb564
N
5118 if (IS_ERR(conf))
5119 return PTR_ERR(conf);
5120
b5254dd5 5121 conf->min_offset_diff = min_offset_diff;
91adb564
N
5122 mddev->thread = conf->thread;
5123 conf->thread = NULL;
5124 mddev->private = conf;
5125
17045f52
N
5126 for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
5127 i++) {
5128 rdev = conf->disks[i].rdev;
5129 if (!rdev && conf->disks[i].replacement) {
5130 /* The replacement is all we have yet */
5131 rdev = conf->disks[i].replacement;
5132 conf->disks[i].replacement = NULL;
5133 clear_bit(Replacement, &rdev->flags);
5134 conf->disks[i].rdev = rdev;
5135 }
5136 if (!rdev)
c148ffdc 5137 continue;
17045f52
N
5138 if (conf->disks[i].replacement &&
5139 conf->reshape_progress != MaxSector) {
5140 /* replacements and reshape simply do not mix. */
5141 printk(KERN_ERR "md: cannot handle concurrent "
5142 "replacement and reshape.\n");
5143 goto abort;
5144 }
2f115882 5145 if (test_bit(In_sync, &rdev->flags)) {
91adb564 5146 working_disks++;
2f115882
N
5147 continue;
5148 }
c148ffdc
N
5149 /* This disc is not fully in-sync. However if it
5150 * just stored parity (beyond the recovery_offset),
5151 * when we don't need to be concerned about the
5152 * array being dirty.
5153 * When reshape goes 'backwards', we never have
5154 * partially completed devices, so we only need
5155 * to worry about reshape going forwards.
5156 */
5157 /* Hack because v0.91 doesn't store recovery_offset properly. */
5158 if (mddev->major_version == 0 &&
5159 mddev->minor_version > 90)
5160 rdev->recovery_offset = reshape_offset;
5161
c148ffdc
N
5162 if (rdev->recovery_offset < reshape_offset) {
5163 /* We need to check old and new layout */
5164 if (!only_parity(rdev->raid_disk,
5165 conf->algorithm,
5166 conf->raid_disks,
5167 conf->max_degraded))
5168 continue;
5169 }
5170 if (!only_parity(rdev->raid_disk,
5171 conf->prev_algo,
5172 conf->previous_raid_disks,
5173 conf->max_degraded))
5174 continue;
5175 dirty_parity_disks++;
5176 }
91adb564 5177
17045f52
N
5178 /*
5179 * 0 for a fully functional array, 1 or 2 for a degraded array.
5180 */
908f4fbd 5181 mddev->degraded = calc_degraded(conf);
91adb564 5182
674806d6 5183 if (has_failed(conf)) {
0c55e022 5184 printk(KERN_ERR "md/raid:%s: not enough operational devices"
1da177e4 5185 " (%d/%d failed)\n",
02c2de8c 5186 mdname(mddev), mddev->degraded, conf->raid_disks);
1da177e4
LT
5187 goto abort;
5188 }
5189
91adb564 5190 /* device size must be a multiple of chunk size */
9d8f0363 5191 mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
91adb564
N
5192 mddev->resync_max_sectors = mddev->dev_sectors;
5193
c148ffdc 5194 if (mddev->degraded > dirty_parity_disks &&
1da177e4 5195 mddev->recovery_cp != MaxSector) {
6ff8d8ec
N
5196 if (mddev->ok_start_degraded)
5197 printk(KERN_WARNING
0c55e022
N
5198 "md/raid:%s: starting dirty degraded array"
5199 " - data corruption possible.\n",
6ff8d8ec
N
5200 mdname(mddev));
5201 else {
5202 printk(KERN_ERR
0c55e022 5203 "md/raid:%s: cannot start dirty degraded array.\n",
6ff8d8ec
N
5204 mdname(mddev));
5205 goto abort;
5206 }
1da177e4
LT
5207 }
5208
1da177e4 5209 if (mddev->degraded == 0)
0c55e022
N
5210 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
5211 " devices, algorithm %d\n", mdname(mddev), conf->level,
e183eaed
N
5212 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
5213 mddev->new_layout);
1da177e4 5214 else
0c55e022
N
5215 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
5216 " out of %d devices, algorithm %d\n",
5217 mdname(mddev), conf->level,
5218 mddev->raid_disks - mddev->degraded,
5219 mddev->raid_disks, mddev->new_layout);
1da177e4
LT
5220
5221 print_raid5_conf(conf);
5222
fef9c61f 5223 if (conf->reshape_progress != MaxSector) {
fef9c61f 5224 conf->reshape_safe = conf->reshape_progress;
f6705578
N
5225 atomic_set(&conf->reshape_stripes, 0);
5226 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5227 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5228 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5229 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5230 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
0da3c619 5231 "reshape");
f6705578
N
5232 }
5233
1da177e4
LT
5234
5235 /* Ok, everything is just fine now */
a64c876f
N
5236 if (mddev->to_remove == &raid5_attrs_group)
5237 mddev->to_remove = NULL;
00bcb4ac
N
5238 else if (mddev->kobj.sd &&
5239 sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
5e55e2f5 5240 printk(KERN_WARNING
4a5add49 5241 "raid5: failed to create sysfs attributes for %s\n",
5e55e2f5 5242 mdname(mddev));
4a5add49 5243 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7a5febe9 5244
4a5add49 5245 if (mddev->queue) {
9f7c2220 5246 int chunk_size;
4a5add49
N
5247 /* read-ahead size must cover two whole stripes, which
5248 * is 2 * (datadisks) * chunksize where 'n' is the
5249 * number of raid devices
5250 */
5251 int data_disks = conf->previous_raid_disks - conf->max_degraded;
5252 int stripe = data_disks *
5253 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
5254 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5255 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
91adb564 5256
4a5add49 5257 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
f022b2fd 5258
11d8a6e3
N
5259 mddev->queue->backing_dev_info.congested_data = mddev;
5260 mddev->queue->backing_dev_info.congested_fn = raid5_congested;
7a5febe9 5261
9f7c2220
N
5262 chunk_size = mddev->chunk_sectors << 9;
5263 blk_queue_io_min(mddev->queue, chunk_size);
5264 blk_queue_io_opt(mddev->queue, chunk_size *
5265 (conf->raid_disks - conf->max_degraded));
8f6c2e4b 5266
05616be5 5267 rdev_for_each(rdev, mddev) {
9f7c2220
N
5268 disk_stack_limits(mddev->gendisk, rdev->bdev,
5269 rdev->data_offset << 9);
05616be5
N
5270 disk_stack_limits(mddev->gendisk, rdev->bdev,
5271 rdev->new_data_offset << 9);
5272 }
9f7c2220 5273 }
23032a0e 5274
1da177e4
LT
5275 return 0;
5276abort:
01f96c0a 5277 md_unregister_thread(&mddev->thread);
e4f869d9
N
5278 print_raid5_conf(conf);
5279 free_conf(conf);
1da177e4 5280 mddev->private = NULL;
0c55e022 5281 printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
1da177e4
LT
5282 return -EIO;
5283}
5284
fd01b88c 5285static int stop(struct mddev *mddev)
1da177e4 5286{
d1688a6d 5287 struct r5conf *conf = mddev->private;
1da177e4 5288
01f96c0a 5289 md_unregister_thread(&mddev->thread);
11d8a6e3
N
5290 if (mddev->queue)
5291 mddev->queue->backing_dev_info.congested_fn = NULL;
95fc17aa 5292 free_conf(conf);
a64c876f
N
5293 mddev->private = NULL;
5294 mddev->to_remove = &raid5_attrs_group;
1da177e4
LT
5295 return 0;
5296}
5297
fd01b88c 5298static void status(struct seq_file *seq, struct mddev *mddev)
1da177e4 5299{
d1688a6d 5300 struct r5conf *conf = mddev->private;
1da177e4
LT
5301 int i;
5302
9d8f0363
AN
5303 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
5304 mddev->chunk_sectors / 2, mddev->layout);
02c2de8c 5305 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
1da177e4
LT
5306 for (i = 0; i < conf->raid_disks; i++)
5307 seq_printf (seq, "%s",
5308 conf->disks[i].rdev &&
b2d444d7 5309 test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
1da177e4 5310 seq_printf (seq, "]");
1da177e4
LT
5311}
5312
d1688a6d 5313static void print_raid5_conf (struct r5conf *conf)
1da177e4
LT
5314{
5315 int i;
5316 struct disk_info *tmp;
5317
0c55e022 5318 printk(KERN_DEBUG "RAID conf printout:\n");
1da177e4
LT
5319 if (!conf) {
5320 printk("(conf==NULL)\n");
5321 return;
5322 }
0c55e022
N
5323 printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
5324 conf->raid_disks,
5325 conf->raid_disks - conf->mddev->degraded);
1da177e4
LT
5326
5327 for (i = 0; i < conf->raid_disks; i++) {
5328 char b[BDEVNAME_SIZE];
5329 tmp = conf->disks + i;
5330 if (tmp->rdev)
0c55e022
N
5331 printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
5332 i, !test_bit(Faulty, &tmp->rdev->flags),
5333 bdevname(tmp->rdev->bdev, b));
1da177e4
LT
5334 }
5335}
5336
fd01b88c 5337static int raid5_spare_active(struct mddev *mddev)
1da177e4
LT
5338{
5339 int i;
d1688a6d 5340 struct r5conf *conf = mddev->private;
1da177e4 5341 struct disk_info *tmp;
6b965620
N
5342 int count = 0;
5343 unsigned long flags;
1da177e4
LT
5344
5345 for (i = 0; i < conf->raid_disks; i++) {
5346 tmp = conf->disks + i;
dd054fce
N
5347 if (tmp->replacement
5348 && tmp->replacement->recovery_offset == MaxSector
5349 && !test_bit(Faulty, &tmp->replacement->flags)
5350 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
5351 /* Replacement has just become active. */
5352 if (!tmp->rdev
5353 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
5354 count++;
5355 if (tmp->rdev) {
5356 /* Replaced device not technically faulty,
5357 * but we need to be sure it gets removed
5358 * and never re-added.
5359 */
5360 set_bit(Faulty, &tmp->rdev->flags);
5361 sysfs_notify_dirent_safe(
5362 tmp->rdev->sysfs_state);
5363 }
5364 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
5365 } else if (tmp->rdev
70fffd0b 5366 && tmp->rdev->recovery_offset == MaxSector
b2d444d7 5367 && !test_bit(Faulty, &tmp->rdev->flags)
c04be0aa 5368 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
6b965620 5369 count++;
43c73ca4 5370 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1da177e4
LT
5371 }
5372 }
6b965620 5373 spin_lock_irqsave(&conf->device_lock, flags);
908f4fbd 5374 mddev->degraded = calc_degraded(conf);
6b965620 5375 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 5376 print_raid5_conf(conf);
6b965620 5377 return count;
1da177e4
LT
5378}
5379
b8321b68 5380static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 5381{
d1688a6d 5382 struct r5conf *conf = mddev->private;
1da177e4 5383 int err = 0;
b8321b68 5384 int number = rdev->raid_disk;
657e3e4d 5385 struct md_rdev **rdevp;
1da177e4
LT
5386 struct disk_info *p = conf->disks + number;
5387
5388 print_raid5_conf(conf);
657e3e4d
N
5389 if (rdev == p->rdev)
5390 rdevp = &p->rdev;
5391 else if (rdev == p->replacement)
5392 rdevp = &p->replacement;
5393 else
5394 return 0;
5395
5396 if (number >= conf->raid_disks &&
5397 conf->reshape_progress == MaxSector)
5398 clear_bit(In_sync, &rdev->flags);
5399
5400 if (test_bit(In_sync, &rdev->flags) ||
5401 atomic_read(&rdev->nr_pending)) {
5402 err = -EBUSY;
5403 goto abort;
5404 }
5405 /* Only remove non-faulty devices if recovery
5406 * isn't possible.
5407 */
5408 if (!test_bit(Faulty, &rdev->flags) &&
5409 mddev->recovery_disabled != conf->recovery_disabled &&
5410 !has_failed(conf) &&
dd054fce 5411 (!p->replacement || p->replacement == rdev) &&
657e3e4d
N
5412 number < conf->raid_disks) {
5413 err = -EBUSY;
5414 goto abort;
5415 }
5416 *rdevp = NULL;
5417 synchronize_rcu();
5418 if (atomic_read(&rdev->nr_pending)) {
5419 /* lost the race, try later */
5420 err = -EBUSY;
5421 *rdevp = rdev;
dd054fce
N
5422 } else if (p->replacement) {
5423 /* We must have just cleared 'rdev' */
5424 p->rdev = p->replacement;
5425 clear_bit(Replacement, &p->replacement->flags);
5426 smp_mb(); /* Make sure other CPUs may see both as identical
5427 * but will never see neither - if they are careful
5428 */
5429 p->replacement = NULL;
5430 clear_bit(WantReplacement, &rdev->flags);
5431 } else
5432 /* We might have just removed the Replacement as faulty-
5433 * clear the bit just in case
5434 */
5435 clear_bit(WantReplacement, &rdev->flags);
1da177e4
LT
5436abort:
5437
5438 print_raid5_conf(conf);
5439 return err;
5440}
5441
fd01b88c 5442static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 5443{
d1688a6d 5444 struct r5conf *conf = mddev->private;
199050ea 5445 int err = -EEXIST;
1da177e4
LT
5446 int disk;
5447 struct disk_info *p;
6c2fce2e
NB
5448 int first = 0;
5449 int last = conf->raid_disks - 1;
1da177e4 5450
7f0da59b
N
5451 if (mddev->recovery_disabled == conf->recovery_disabled)
5452 return -EBUSY;
5453
dc10c643 5454 if (rdev->saved_raid_disk < 0 && has_failed(conf))
1da177e4 5455 /* no point adding a device */
199050ea 5456 return -EINVAL;
1da177e4 5457
6c2fce2e
NB
5458 if (rdev->raid_disk >= 0)
5459 first = last = rdev->raid_disk;
1da177e4
LT
5460
5461 /*
16a53ecc
N
5462 * find the disk ... but prefer rdev->saved_raid_disk
5463 * if possible.
1da177e4 5464 */
16a53ecc 5465 if (rdev->saved_raid_disk >= 0 &&
6c2fce2e 5466 rdev->saved_raid_disk >= first &&
16a53ecc
N
5467 conf->disks[rdev->saved_raid_disk].rdev == NULL)
5468 disk = rdev->saved_raid_disk;
5469 else
6c2fce2e 5470 disk = first;
7bfec5f3
N
5471 for ( ; disk <= last ; disk++) {
5472 p = conf->disks + disk;
5473 if (p->rdev == NULL) {
b2d444d7 5474 clear_bit(In_sync, &rdev->flags);
1da177e4 5475 rdev->raid_disk = disk;
199050ea 5476 err = 0;
72626685
N
5477 if (rdev->saved_raid_disk != disk)
5478 conf->fullsync = 1;
d6065f7b 5479 rcu_assign_pointer(p->rdev, rdev);
1da177e4
LT
5480 break;
5481 }
7bfec5f3
N
5482 if (test_bit(WantReplacement, &p->rdev->flags) &&
5483 p->replacement == NULL) {
5484 clear_bit(In_sync, &rdev->flags);
5485 set_bit(Replacement, &rdev->flags);
5486 rdev->raid_disk = disk;
5487 err = 0;
5488 conf->fullsync = 1;
5489 rcu_assign_pointer(p->replacement, rdev);
5490 break;
5491 }
5492 }
1da177e4 5493 print_raid5_conf(conf);
199050ea 5494 return err;
1da177e4
LT
5495}
5496
fd01b88c 5497static int raid5_resize(struct mddev *mddev, sector_t sectors)
1da177e4
LT
5498{
5499 /* no resync is happening, and there is enough space
5500 * on all devices, so we can resize.
5501 * We need to make sure resync covers any new space.
5502 * If the array is shrinking we should possibly wait until
5503 * any io in the removed space completes, but it hardly seems
5504 * worth it.
5505 */
a4a6125a 5506 sector_t newsize;
9d8f0363 5507 sectors &= ~((sector_t)mddev->chunk_sectors - 1);
a4a6125a
N
5508 newsize = raid5_size(mddev, sectors, mddev->raid_disks);
5509 if (mddev->external_size &&
5510 mddev->array_sectors > newsize)
b522adcd 5511 return -EINVAL;
a4a6125a
N
5512 if (mddev->bitmap) {
5513 int ret = bitmap_resize(mddev->bitmap, sectors, 0, 0);
5514 if (ret)
5515 return ret;
5516 }
5517 md_set_array_sectors(mddev, newsize);
f233ea5c 5518 set_capacity(mddev->gendisk, mddev->array_sectors);
449aad3e 5519 revalidate_disk(mddev->gendisk);
b098636c
N
5520 if (sectors > mddev->dev_sectors &&
5521 mddev->recovery_cp > mddev->dev_sectors) {
58c0fed4 5522 mddev->recovery_cp = mddev->dev_sectors;
1da177e4
LT
5523 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5524 }
58c0fed4 5525 mddev->dev_sectors = sectors;
4b5c7ae8 5526 mddev->resync_max_sectors = sectors;
1da177e4
LT
5527 return 0;
5528}
5529
fd01b88c 5530static int check_stripe_cache(struct mddev *mddev)
01ee22b4
N
5531{
5532 /* Can only proceed if there are plenty of stripe_heads.
5533 * We need a minimum of one full stripe,, and for sensible progress
5534 * it is best to have about 4 times that.
5535 * If we require 4 times, then the default 256 4K stripe_heads will
5536 * allow for chunk sizes up to 256K, which is probably OK.
5537 * If the chunk size is greater, user-space should request more
5538 * stripe_heads first.
5539 */
d1688a6d 5540 struct r5conf *conf = mddev->private;
01ee22b4
N
5541 if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
5542 > conf->max_nr_stripes ||
5543 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
5544 > conf->max_nr_stripes) {
0c55e022
N
5545 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes. Needed %lu\n",
5546 mdname(mddev),
01ee22b4
N
5547 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
5548 / STRIPE_SIZE)*4);
5549 return 0;
5550 }
5551 return 1;
5552}
5553
fd01b88c 5554static int check_reshape(struct mddev *mddev)
29269553 5555{
d1688a6d 5556 struct r5conf *conf = mddev->private;
29269553 5557
88ce4930
N
5558 if (mddev->delta_disks == 0 &&
5559 mddev->new_layout == mddev->layout &&
664e7c41 5560 mddev->new_chunk_sectors == mddev->chunk_sectors)
50ac168a 5561 return 0; /* nothing to do */
674806d6 5562 if (has_failed(conf))
ec32a2bd
N
5563 return -EINVAL;
5564 if (mddev->delta_disks < 0) {
5565 /* We might be able to shrink, but the devices must
5566 * be made bigger first.
5567 * For raid6, 4 is the minimum size.
5568 * Otherwise 2 is the minimum
5569 */
5570 int min = 2;
5571 if (mddev->level == 6)
5572 min = 4;
5573 if (mddev->raid_disks + mddev->delta_disks < min)
5574 return -EINVAL;
5575 }
29269553 5576
01ee22b4 5577 if (!check_stripe_cache(mddev))
29269553 5578 return -ENOSPC;
29269553 5579
ec32a2bd 5580 return resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
63c70c4f
N
5581}
5582
fd01b88c 5583static int raid5_start_reshape(struct mddev *mddev)
63c70c4f 5584{
d1688a6d 5585 struct r5conf *conf = mddev->private;
3cb03002 5586 struct md_rdev *rdev;
63c70c4f 5587 int spares = 0;
c04be0aa 5588 unsigned long flags;
63c70c4f 5589
f416885e 5590 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
63c70c4f
N
5591 return -EBUSY;
5592
01ee22b4
N
5593 if (!check_stripe_cache(mddev))
5594 return -ENOSPC;
5595
30b67645
N
5596 if (has_failed(conf))
5597 return -EINVAL;
5598
c6563a8c 5599 rdev_for_each(rdev, mddev) {
469518a3
N
5600 if (!test_bit(In_sync, &rdev->flags)
5601 && !test_bit(Faulty, &rdev->flags))
29269553 5602 spares++;
c6563a8c 5603 }
63c70c4f 5604
f416885e 5605 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
29269553
N
5606 /* Not enough devices even to make a degraded array
5607 * of that size
5608 */
5609 return -EINVAL;
5610
ec32a2bd
N
5611 /* Refuse to reduce size of the array. Any reductions in
5612 * array size must be through explicit setting of array_size
5613 * attribute.
5614 */
5615 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
5616 < mddev->array_sectors) {
0c55e022 5617 printk(KERN_ERR "md/raid:%s: array size must be reduced "
ec32a2bd
N
5618 "before number of disks\n", mdname(mddev));
5619 return -EINVAL;
5620 }
5621
f6705578 5622 atomic_set(&conf->reshape_stripes, 0);
29269553
N
5623 spin_lock_irq(&conf->device_lock);
5624 conf->previous_raid_disks = conf->raid_disks;
63c70c4f 5625 conf->raid_disks += mddev->delta_disks;
09c9e5fa
AN
5626 conf->prev_chunk_sectors = conf->chunk_sectors;
5627 conf->chunk_sectors = mddev->new_chunk_sectors;
88ce4930
N
5628 conf->prev_algo = conf->algorithm;
5629 conf->algorithm = mddev->new_layout;
05616be5
N
5630 conf->generation++;
5631 /* Code that selects data_offset needs to see the generation update
5632 * if reshape_progress has been set - so a memory barrier needed.
5633 */
5634 smp_mb();
2c810cdd 5635 if (mddev->reshape_backwards)
fef9c61f
N
5636 conf->reshape_progress = raid5_size(mddev, 0, 0);
5637 else
5638 conf->reshape_progress = 0;
5639 conf->reshape_safe = conf->reshape_progress;
29269553
N
5640 spin_unlock_irq(&conf->device_lock);
5641
5642 /* Add some new drives, as many as will fit.
5643 * We know there are enough to make the newly sized array work.
3424bf6a
N
5644 * Don't add devices if we are reducing the number of
5645 * devices in the array. This is because it is not possible
5646 * to correctly record the "partially reconstructed" state of
5647 * such devices during the reshape and confusion could result.
29269553 5648 */
87a8dec9 5649 if (mddev->delta_disks >= 0) {
dafb20fa 5650 rdev_for_each(rdev, mddev)
87a8dec9
N
5651 if (rdev->raid_disk < 0 &&
5652 !test_bit(Faulty, &rdev->flags)) {
5653 if (raid5_add_disk(mddev, rdev) == 0) {
87a8dec9 5654 if (rdev->raid_disk
9d4c7d87 5655 >= conf->previous_raid_disks)
87a8dec9 5656 set_bit(In_sync, &rdev->flags);
9d4c7d87 5657 else
87a8dec9 5658 rdev->recovery_offset = 0;
36fad858
NK
5659
5660 if (sysfs_link_rdev(mddev, rdev))
87a8dec9 5661 /* Failure here is OK */;
50da0840 5662 }
87a8dec9
N
5663 } else if (rdev->raid_disk >= conf->previous_raid_disks
5664 && !test_bit(Faulty, &rdev->flags)) {
5665 /* This is a spare that was manually added */
5666 set_bit(In_sync, &rdev->flags);
87a8dec9 5667 }
29269553 5668
87a8dec9
N
5669 /* When a reshape changes the number of devices,
5670 * ->degraded is measured against the larger of the
5671 * pre and post number of devices.
5672 */
ec32a2bd 5673 spin_lock_irqsave(&conf->device_lock, flags);
908f4fbd 5674 mddev->degraded = calc_degraded(conf);
ec32a2bd
N
5675 spin_unlock_irqrestore(&conf->device_lock, flags);
5676 }
63c70c4f 5677 mddev->raid_disks = conf->raid_disks;
e516402c 5678 mddev->reshape_position = conf->reshape_progress;
850b2b42 5679 set_bit(MD_CHANGE_DEVS, &mddev->flags);
f6705578 5680
29269553
N
5681 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5682 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5683 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5684 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5685 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
0da3c619 5686 "reshape");
29269553
N
5687 if (!mddev->sync_thread) {
5688 mddev->recovery = 0;
5689 spin_lock_irq(&conf->device_lock);
5690 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
05616be5
N
5691 rdev_for_each(rdev, mddev)
5692 rdev->new_data_offset = rdev->data_offset;
5693 smp_wmb();
fef9c61f 5694 conf->reshape_progress = MaxSector;
1e3fa9bd 5695 mddev->reshape_position = MaxSector;
29269553
N
5696 spin_unlock_irq(&conf->device_lock);
5697 return -EAGAIN;
5698 }
c8f517c4 5699 conf->reshape_checkpoint = jiffies;
29269553
N
5700 md_wakeup_thread(mddev->sync_thread);
5701 md_new_event(mddev);
5702 return 0;
5703}
29269553 5704
ec32a2bd
N
5705/* This is called from the reshape thread and should make any
5706 * changes needed in 'conf'
5707 */
d1688a6d 5708static void end_reshape(struct r5conf *conf)
29269553 5709{
29269553 5710
f6705578 5711 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
05616be5 5712 struct md_rdev *rdev;
f6705578 5713
f6705578 5714 spin_lock_irq(&conf->device_lock);
cea9c228 5715 conf->previous_raid_disks = conf->raid_disks;
05616be5
N
5716 rdev_for_each(rdev, conf->mddev)
5717 rdev->data_offset = rdev->new_data_offset;
5718 smp_wmb();
fef9c61f 5719 conf->reshape_progress = MaxSector;
f6705578 5720 spin_unlock_irq(&conf->device_lock);
b0f9ec04 5721 wake_up(&conf->wait_for_overlap);
16a53ecc
N
5722
5723 /* read-ahead size must cover two whole stripes, which is
5724 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
5725 */
4a5add49 5726 if (conf->mddev->queue) {
cea9c228 5727 int data_disks = conf->raid_disks - conf->max_degraded;
09c9e5fa 5728 int stripe = data_disks * ((conf->chunk_sectors << 9)
cea9c228 5729 / PAGE_SIZE);
16a53ecc
N
5730 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5731 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5732 }
29269553 5733 }
29269553
N
5734}
5735
ec32a2bd
N
5736/* This is called from the raid5d thread with mddev_lock held.
5737 * It makes config changes to the device.
5738 */
fd01b88c 5739static void raid5_finish_reshape(struct mddev *mddev)
cea9c228 5740{
d1688a6d 5741 struct r5conf *conf = mddev->private;
cea9c228
N
5742
5743 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5744
ec32a2bd
N
5745 if (mddev->delta_disks > 0) {
5746 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5747 set_capacity(mddev->gendisk, mddev->array_sectors);
449aad3e 5748 revalidate_disk(mddev->gendisk);
ec32a2bd
N
5749 } else {
5750 int d;
908f4fbd
N
5751 spin_lock_irq(&conf->device_lock);
5752 mddev->degraded = calc_degraded(conf);
5753 spin_unlock_irq(&conf->device_lock);
ec32a2bd
N
5754 for (d = conf->raid_disks ;
5755 d < conf->raid_disks - mddev->delta_disks;
1a67dde0 5756 d++) {
3cb03002 5757 struct md_rdev *rdev = conf->disks[d].rdev;
da7613b8
N
5758 if (rdev)
5759 clear_bit(In_sync, &rdev->flags);
5760 rdev = conf->disks[d].replacement;
5761 if (rdev)
5762 clear_bit(In_sync, &rdev->flags);
1a67dde0 5763 }
cea9c228 5764 }
88ce4930 5765 mddev->layout = conf->algorithm;
09c9e5fa 5766 mddev->chunk_sectors = conf->chunk_sectors;
ec32a2bd
N
5767 mddev->reshape_position = MaxSector;
5768 mddev->delta_disks = 0;
2c810cdd 5769 mddev->reshape_backwards = 0;
cea9c228
N
5770 }
5771}
5772
fd01b88c 5773static void raid5_quiesce(struct mddev *mddev, int state)
72626685 5774{
d1688a6d 5775 struct r5conf *conf = mddev->private;
72626685
N
5776
5777 switch(state) {
e464eafd
N
5778 case 2: /* resume for a suspend */
5779 wake_up(&conf->wait_for_overlap);
5780 break;
5781
72626685
N
5782 case 1: /* stop all writes */
5783 spin_lock_irq(&conf->device_lock);
64bd660b
N
5784 /* '2' tells resync/reshape to pause so that all
5785 * active stripes can drain
5786 */
5787 conf->quiesce = 2;
72626685 5788 wait_event_lock_irq(conf->wait_for_stripe,
46031f9a
RBJ
5789 atomic_read(&conf->active_stripes) == 0 &&
5790 atomic_read(&conf->active_aligned_reads) == 0,
72626685 5791 conf->device_lock, /* nothing */);
64bd660b 5792 conf->quiesce = 1;
72626685 5793 spin_unlock_irq(&conf->device_lock);
64bd660b
N
5794 /* allow reshape to continue */
5795 wake_up(&conf->wait_for_overlap);
72626685
N
5796 break;
5797
5798 case 0: /* re-enable writes */
5799 spin_lock_irq(&conf->device_lock);
5800 conf->quiesce = 0;
5801 wake_up(&conf->wait_for_stripe);
e464eafd 5802 wake_up(&conf->wait_for_overlap);
72626685
N
5803 spin_unlock_irq(&conf->device_lock);
5804 break;
5805 }
72626685 5806}
b15c2e57 5807
d562b0c4 5808
fd01b88c 5809static void *raid45_takeover_raid0(struct mddev *mddev, int level)
54071b38 5810{
e373ab10 5811 struct r0conf *raid0_conf = mddev->private;
d76c8420 5812 sector_t sectors;
54071b38 5813
f1b29bca 5814 /* for raid0 takeover only one zone is supported */
e373ab10 5815 if (raid0_conf->nr_strip_zones > 1) {
0c55e022
N
5816 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
5817 mdname(mddev));
f1b29bca
DW
5818 return ERR_PTR(-EINVAL);
5819 }
5820
e373ab10
N
5821 sectors = raid0_conf->strip_zone[0].zone_end;
5822 sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
3b71bd93 5823 mddev->dev_sectors = sectors;
f1b29bca 5824 mddev->new_level = level;
54071b38
TM
5825 mddev->new_layout = ALGORITHM_PARITY_N;
5826 mddev->new_chunk_sectors = mddev->chunk_sectors;
5827 mddev->raid_disks += 1;
5828 mddev->delta_disks = 1;
5829 /* make sure it will be not marked as dirty */
5830 mddev->recovery_cp = MaxSector;
5831
5832 return setup_conf(mddev);
5833}
5834
5835
fd01b88c 5836static void *raid5_takeover_raid1(struct mddev *mddev)
d562b0c4
N
5837{
5838 int chunksect;
5839
5840 if (mddev->raid_disks != 2 ||
5841 mddev->degraded > 1)
5842 return ERR_PTR(-EINVAL);
5843
5844 /* Should check if there are write-behind devices? */
5845
5846 chunksect = 64*2; /* 64K by default */
5847
5848 /* The array must be an exact multiple of chunksize */
5849 while (chunksect && (mddev->array_sectors & (chunksect-1)))
5850 chunksect >>= 1;
5851
5852 if ((chunksect<<9) < STRIPE_SIZE)
5853 /* array size does not allow a suitable chunk size */
5854 return ERR_PTR(-EINVAL);
5855
5856 mddev->new_level = 5;
5857 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
664e7c41 5858 mddev->new_chunk_sectors = chunksect;
d562b0c4
N
5859
5860 return setup_conf(mddev);
5861}
5862
fd01b88c 5863static void *raid5_takeover_raid6(struct mddev *mddev)
fc9739c6
N
5864{
5865 int new_layout;
5866
5867 switch (mddev->layout) {
5868 case ALGORITHM_LEFT_ASYMMETRIC_6:
5869 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
5870 break;
5871 case ALGORITHM_RIGHT_ASYMMETRIC_6:
5872 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
5873 break;
5874 case ALGORITHM_LEFT_SYMMETRIC_6:
5875 new_layout = ALGORITHM_LEFT_SYMMETRIC;
5876 break;
5877 case ALGORITHM_RIGHT_SYMMETRIC_6:
5878 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
5879 break;
5880 case ALGORITHM_PARITY_0_6:
5881 new_layout = ALGORITHM_PARITY_0;
5882 break;
5883 case ALGORITHM_PARITY_N:
5884 new_layout = ALGORITHM_PARITY_N;
5885 break;
5886 default:
5887 return ERR_PTR(-EINVAL);
5888 }
5889 mddev->new_level = 5;
5890 mddev->new_layout = new_layout;
5891 mddev->delta_disks = -1;
5892 mddev->raid_disks -= 1;
5893 return setup_conf(mddev);
5894}
5895
d562b0c4 5896
fd01b88c 5897static int raid5_check_reshape(struct mddev *mddev)
b3546035 5898{
88ce4930
N
5899 /* For a 2-drive array, the layout and chunk size can be changed
5900 * immediately as not restriping is needed.
5901 * For larger arrays we record the new value - after validation
5902 * to be used by a reshape pass.
b3546035 5903 */
d1688a6d 5904 struct r5conf *conf = mddev->private;
597a711b 5905 int new_chunk = mddev->new_chunk_sectors;
b3546035 5906
597a711b 5907 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
b3546035
N
5908 return -EINVAL;
5909 if (new_chunk > 0) {
0ba459d2 5910 if (!is_power_of_2(new_chunk))
b3546035 5911 return -EINVAL;
597a711b 5912 if (new_chunk < (PAGE_SIZE>>9))
b3546035 5913 return -EINVAL;
597a711b 5914 if (mddev->array_sectors & (new_chunk-1))
b3546035
N
5915 /* not factor of array size */
5916 return -EINVAL;
5917 }
5918
5919 /* They look valid */
5920
88ce4930 5921 if (mddev->raid_disks == 2) {
597a711b
N
5922 /* can make the change immediately */
5923 if (mddev->new_layout >= 0) {
5924 conf->algorithm = mddev->new_layout;
5925 mddev->layout = mddev->new_layout;
88ce4930
N
5926 }
5927 if (new_chunk > 0) {
597a711b
N
5928 conf->chunk_sectors = new_chunk ;
5929 mddev->chunk_sectors = new_chunk;
88ce4930
N
5930 }
5931 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5932 md_wakeup_thread(mddev->thread);
b3546035 5933 }
50ac168a 5934 return check_reshape(mddev);
88ce4930
N
5935}
5936
fd01b88c 5937static int raid6_check_reshape(struct mddev *mddev)
88ce4930 5938{
597a711b 5939 int new_chunk = mddev->new_chunk_sectors;
50ac168a 5940
597a711b 5941 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
88ce4930 5942 return -EINVAL;
b3546035 5943 if (new_chunk > 0) {
0ba459d2 5944 if (!is_power_of_2(new_chunk))
88ce4930 5945 return -EINVAL;
597a711b 5946 if (new_chunk < (PAGE_SIZE >> 9))
88ce4930 5947 return -EINVAL;
597a711b 5948 if (mddev->array_sectors & (new_chunk-1))
88ce4930
N
5949 /* not factor of array size */
5950 return -EINVAL;
b3546035 5951 }
88ce4930
N
5952
5953 /* They look valid */
50ac168a 5954 return check_reshape(mddev);
b3546035
N
5955}
5956
fd01b88c 5957static void *raid5_takeover(struct mddev *mddev)
d562b0c4
N
5958{
5959 /* raid5 can take over:
f1b29bca 5960 * raid0 - if there is only one strip zone - make it a raid4 layout
d562b0c4
N
5961 * raid1 - if there are two drives. We need to know the chunk size
5962 * raid4 - trivial - just use a raid4 layout.
5963 * raid6 - Providing it is a *_6 layout
d562b0c4 5964 */
f1b29bca
DW
5965 if (mddev->level == 0)
5966 return raid45_takeover_raid0(mddev, 5);
d562b0c4
N
5967 if (mddev->level == 1)
5968 return raid5_takeover_raid1(mddev);
e9d4758f
N
5969 if (mddev->level == 4) {
5970 mddev->new_layout = ALGORITHM_PARITY_N;
5971 mddev->new_level = 5;
5972 return setup_conf(mddev);
5973 }
fc9739c6
N
5974 if (mddev->level == 6)
5975 return raid5_takeover_raid6(mddev);
d562b0c4
N
5976
5977 return ERR_PTR(-EINVAL);
5978}
5979
fd01b88c 5980static void *raid4_takeover(struct mddev *mddev)
a78d38a1 5981{
f1b29bca
DW
5982 /* raid4 can take over:
5983 * raid0 - if there is only one strip zone
5984 * raid5 - if layout is right
a78d38a1 5985 */
f1b29bca
DW
5986 if (mddev->level == 0)
5987 return raid45_takeover_raid0(mddev, 4);
a78d38a1
N
5988 if (mddev->level == 5 &&
5989 mddev->layout == ALGORITHM_PARITY_N) {
5990 mddev->new_layout = 0;
5991 mddev->new_level = 4;
5992 return setup_conf(mddev);
5993 }
5994 return ERR_PTR(-EINVAL);
5995}
d562b0c4 5996
84fc4b56 5997static struct md_personality raid5_personality;
245f46c2 5998
fd01b88c 5999static void *raid6_takeover(struct mddev *mddev)
245f46c2
N
6000{
6001 /* Currently can only take over a raid5. We map the
6002 * personality to an equivalent raid6 personality
6003 * with the Q block at the end.
6004 */
6005 int new_layout;
6006
6007 if (mddev->pers != &raid5_personality)
6008 return ERR_PTR(-EINVAL);
6009 if (mddev->degraded > 1)
6010 return ERR_PTR(-EINVAL);
6011 if (mddev->raid_disks > 253)
6012 return ERR_PTR(-EINVAL);
6013 if (mddev->raid_disks < 3)
6014 return ERR_PTR(-EINVAL);
6015
6016 switch (mddev->layout) {
6017 case ALGORITHM_LEFT_ASYMMETRIC:
6018 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
6019 break;
6020 case ALGORITHM_RIGHT_ASYMMETRIC:
6021 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
6022 break;
6023 case ALGORITHM_LEFT_SYMMETRIC:
6024 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
6025 break;
6026 case ALGORITHM_RIGHT_SYMMETRIC:
6027 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
6028 break;
6029 case ALGORITHM_PARITY_0:
6030 new_layout = ALGORITHM_PARITY_0_6;
6031 break;
6032 case ALGORITHM_PARITY_N:
6033 new_layout = ALGORITHM_PARITY_N;
6034 break;
6035 default:
6036 return ERR_PTR(-EINVAL);
6037 }
6038 mddev->new_level = 6;
6039 mddev->new_layout = new_layout;
6040 mddev->delta_disks = 1;
6041 mddev->raid_disks += 1;
6042 return setup_conf(mddev);
6043}
6044
6045
84fc4b56 6046static struct md_personality raid6_personality =
16a53ecc
N
6047{
6048 .name = "raid6",
6049 .level = 6,
6050 .owner = THIS_MODULE,
6051 .make_request = make_request,
6052 .run = run,
6053 .stop = stop,
6054 .status = status,
6055 .error_handler = error,
6056 .hot_add_disk = raid5_add_disk,
6057 .hot_remove_disk= raid5_remove_disk,
6058 .spare_active = raid5_spare_active,
6059 .sync_request = sync_request,
6060 .resize = raid5_resize,
80c3a6ce 6061 .size = raid5_size,
50ac168a 6062 .check_reshape = raid6_check_reshape,
f416885e 6063 .start_reshape = raid5_start_reshape,
cea9c228 6064 .finish_reshape = raid5_finish_reshape,
16a53ecc 6065 .quiesce = raid5_quiesce,
245f46c2 6066 .takeover = raid6_takeover,
16a53ecc 6067};
84fc4b56 6068static struct md_personality raid5_personality =
1da177e4
LT
6069{
6070 .name = "raid5",
2604b703 6071 .level = 5,
1da177e4
LT
6072 .owner = THIS_MODULE,
6073 .make_request = make_request,
6074 .run = run,
6075 .stop = stop,
6076 .status = status,
6077 .error_handler = error,
6078 .hot_add_disk = raid5_add_disk,
6079 .hot_remove_disk= raid5_remove_disk,
6080 .spare_active = raid5_spare_active,
6081 .sync_request = sync_request,
6082 .resize = raid5_resize,
80c3a6ce 6083 .size = raid5_size,
63c70c4f
N
6084 .check_reshape = raid5_check_reshape,
6085 .start_reshape = raid5_start_reshape,
cea9c228 6086 .finish_reshape = raid5_finish_reshape,
72626685 6087 .quiesce = raid5_quiesce,
d562b0c4 6088 .takeover = raid5_takeover,
1da177e4
LT
6089};
6090
84fc4b56 6091static struct md_personality raid4_personality =
1da177e4 6092{
2604b703
N
6093 .name = "raid4",
6094 .level = 4,
6095 .owner = THIS_MODULE,
6096 .make_request = make_request,
6097 .run = run,
6098 .stop = stop,
6099 .status = status,
6100 .error_handler = error,
6101 .hot_add_disk = raid5_add_disk,
6102 .hot_remove_disk= raid5_remove_disk,
6103 .spare_active = raid5_spare_active,
6104 .sync_request = sync_request,
6105 .resize = raid5_resize,
80c3a6ce 6106 .size = raid5_size,
3d37890b
N
6107 .check_reshape = raid5_check_reshape,
6108 .start_reshape = raid5_start_reshape,
cea9c228 6109 .finish_reshape = raid5_finish_reshape,
2604b703 6110 .quiesce = raid5_quiesce,
a78d38a1 6111 .takeover = raid4_takeover,
2604b703
N
6112};
6113
6114static int __init raid5_init(void)
6115{
16a53ecc 6116 register_md_personality(&raid6_personality);
2604b703
N
6117 register_md_personality(&raid5_personality);
6118 register_md_personality(&raid4_personality);
6119 return 0;
1da177e4
LT
6120}
6121
2604b703 6122static void raid5_exit(void)
1da177e4 6123{
16a53ecc 6124 unregister_md_personality(&raid6_personality);
2604b703
N
6125 unregister_md_personality(&raid5_personality);
6126 unregister_md_personality(&raid4_personality);
1da177e4
LT
6127}
6128
6129module_init(raid5_init);
6130module_exit(raid5_exit);
6131MODULE_LICENSE("GPL");
0efb9e61 6132MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
1da177e4 6133MODULE_ALIAS("md-personality-4"); /* RAID5 */
d9d166c2
N
6134MODULE_ALIAS("md-raid5");
6135MODULE_ALIAS("md-raid4");
2604b703
N
6136MODULE_ALIAS("md-level-5");
6137MODULE_ALIAS("md-level-4");
16a53ecc
N
6138MODULE_ALIAS("md-personality-8"); /* RAID6 */
6139MODULE_ALIAS("md-raid6");
6140MODULE_ALIAS("md-level-6");
6141
6142/* This used to be two separate modules, they were: */
6143MODULE_ALIAS("raid5");
6144MODULE_ALIAS("raid6");