async_tx: raid6 recovery self test
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / md / raid5.c
CommitLineData
1da177e4
LT
1/*
2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
16a53ecc 5 * Copyright (C) 2002, 2003 H. Peter Anvin
1da177e4 6 *
16a53ecc
N
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
1da177e4
LT
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
ae3c20cc
N
21/*
22 * BITMAP UNPLUGGING:
23 *
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
26 * explanation.
27 *
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
30 * conf->bm_write is the number of the last batch successfully written.
31 * conf->bm_flush is the number of the last batch that was closed to
32 * new additions.
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35 * the number of the batch it will be in. This is bm_flush+1.
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
39 * batch.
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
43 * miss any bits.
44 */
1da177e4 45
bff61975 46#include <linux/blkdev.h>
f6705578 47#include <linux/kthread.h>
f701d589 48#include <linux/raid/pq.h>
91c00924 49#include <linux/async_tx.h>
bff61975 50#include <linux/seq_file.h>
36d1c647 51#include <linux/cpu.h>
43b2e5d8 52#include "md.h"
bff61975 53#include "raid5.h"
ef740c37 54#include "bitmap.h"
72626685 55
1da177e4
LT
56/*
57 * Stripe cache
58 */
59
60#define NR_STRIPES 256
61#define STRIPE_SIZE PAGE_SIZE
62#define STRIPE_SHIFT (PAGE_SHIFT - 9)
63#define STRIPE_SECTORS (STRIPE_SIZE>>9)
64#define IO_THRESHOLD 1
8b3e6cdc 65#define BYPASS_THRESHOLD 1
fccddba0 66#define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
1da177e4
LT
67#define HASH_MASK (NR_HASH - 1)
68
fccddba0 69#define stripe_hash(conf, sect) (&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
1da177e4
LT
70
71/* bio's attached to a stripe+device for I/O are linked together in bi_sector
72 * order without overlap. There may be several bio's per stripe+device, and
73 * a bio could span several devices.
74 * When walking this list for a particular stripe+device, we must never proceed
75 * beyond a bio that extends past this device, as the next bio might no longer
76 * be valid.
77 * This macro is used to determine the 'next' bio in the list, given the sector
78 * of the current stripe+device
79 */
80#define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
81/*
82 * The following can be used to debug the driver
83 */
1da177e4
LT
84#define RAID5_PARANOIA 1
85#if RAID5_PARANOIA && defined(CONFIG_SMP)
86# define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
87#else
88# define CHECK_DEVLOCK()
89#endif
90
45b4233c 91#ifdef DEBUG
1da177e4
LT
92#define inline
93#define __inline__
94#endif
95
6be9d494
BS
96#define printk_rl(args...) ((void) (printk_ratelimit() && printk(args)))
97
960e739d 98/*
5b99c2ff
JA
99 * We maintain a biased count of active stripes in the bottom 16 bits of
100 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
960e739d
JA
101 */
102static inline int raid5_bi_phys_segments(struct bio *bio)
103{
5b99c2ff 104 return bio->bi_phys_segments & 0xffff;
960e739d
JA
105}
106
107static inline int raid5_bi_hw_segments(struct bio *bio)
108{
5b99c2ff 109 return (bio->bi_phys_segments >> 16) & 0xffff;
960e739d
JA
110}
111
112static inline int raid5_dec_bi_phys_segments(struct bio *bio)
113{
114 --bio->bi_phys_segments;
115 return raid5_bi_phys_segments(bio);
116}
117
118static inline int raid5_dec_bi_hw_segments(struct bio *bio)
119{
120 unsigned short val = raid5_bi_hw_segments(bio);
121
122 --val;
5b99c2ff 123 bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio);
960e739d
JA
124 return val;
125}
126
127static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt)
128{
5b99c2ff 129 bio->bi_phys_segments = raid5_bi_phys_segments(bio) || (cnt << 16);
960e739d
JA
130}
131
d0dabf7e
N
132/* Find first data disk in a raid6 stripe */
133static inline int raid6_d0(struct stripe_head *sh)
134{
67cc2b81
N
135 if (sh->ddf_layout)
136 /* ddf always start from first device */
137 return 0;
138 /* md starts just after Q block */
d0dabf7e
N
139 if (sh->qd_idx == sh->disks - 1)
140 return 0;
141 else
142 return sh->qd_idx + 1;
143}
16a53ecc
N
144static inline int raid6_next_disk(int disk, int raid_disks)
145{
146 disk++;
147 return (disk < raid_disks) ? disk : 0;
148}
a4456856 149
d0dabf7e
N
150/* When walking through the disks in a raid5, starting at raid6_d0,
151 * We need to map each disk to a 'slot', where the data disks are slot
152 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
153 * is raid_disks-1. This help does that mapping.
154 */
67cc2b81
N
155static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
156 int *count, int syndrome_disks)
d0dabf7e
N
157{
158 int slot;
67cc2b81 159
d0dabf7e 160 if (idx == sh->pd_idx)
67cc2b81 161 return syndrome_disks;
d0dabf7e 162 if (idx == sh->qd_idx)
67cc2b81 163 return syndrome_disks + 1;
d0dabf7e
N
164 slot = (*count)++;
165 return slot;
166}
167
a4456856
DW
168static void return_io(struct bio *return_bi)
169{
170 struct bio *bi = return_bi;
171 while (bi) {
a4456856
DW
172
173 return_bi = bi->bi_next;
174 bi->bi_next = NULL;
175 bi->bi_size = 0;
0e13fe23 176 bio_endio(bi, 0);
a4456856
DW
177 bi = return_bi;
178 }
179}
180
1da177e4
LT
181static void print_raid5_conf (raid5_conf_t *conf);
182
600aa109
DW
183static int stripe_operations_active(struct stripe_head *sh)
184{
185 return sh->check_state || sh->reconstruct_state ||
186 test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
187 test_bit(STRIPE_COMPUTE_RUN, &sh->state);
188}
189
858119e1 190static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
1da177e4
LT
191{
192 if (atomic_dec_and_test(&sh->count)) {
78bafebd
ES
193 BUG_ON(!list_empty(&sh->lru));
194 BUG_ON(atomic_read(&conf->active_stripes)==0);
1da177e4 195 if (test_bit(STRIPE_HANDLE, &sh->state)) {
7c785b7a 196 if (test_bit(STRIPE_DELAYED, &sh->state)) {
1da177e4 197 list_add_tail(&sh->lru, &conf->delayed_list);
7c785b7a
N
198 blk_plug_device(conf->mddev->queue);
199 } else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
ae3c20cc 200 sh->bm_seq - conf->seq_write > 0) {
72626685 201 list_add_tail(&sh->lru, &conf->bitmap_list);
7c785b7a
N
202 blk_plug_device(conf->mddev->queue);
203 } else {
72626685 204 clear_bit(STRIPE_BIT_DELAY, &sh->state);
1da177e4 205 list_add_tail(&sh->lru, &conf->handle_list);
72626685 206 }
1da177e4
LT
207 md_wakeup_thread(conf->mddev->thread);
208 } else {
600aa109 209 BUG_ON(stripe_operations_active(sh));
1da177e4
LT
210 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
211 atomic_dec(&conf->preread_active_stripes);
212 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
213 md_wakeup_thread(conf->mddev->thread);
214 }
1da177e4 215 atomic_dec(&conf->active_stripes);
ccfcc3c1
N
216 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
217 list_add_tail(&sh->lru, &conf->inactive_list);
1da177e4 218 wake_up(&conf->wait_for_stripe);
46031f9a
RBJ
219 if (conf->retry_read_aligned)
220 md_wakeup_thread(conf->mddev->thread);
ccfcc3c1 221 }
1da177e4
LT
222 }
223 }
224}
d0dabf7e 225
1da177e4
LT
226static void release_stripe(struct stripe_head *sh)
227{
228 raid5_conf_t *conf = sh->raid_conf;
229 unsigned long flags;
16a53ecc 230
1da177e4
LT
231 spin_lock_irqsave(&conf->device_lock, flags);
232 __release_stripe(conf, sh);
233 spin_unlock_irqrestore(&conf->device_lock, flags);
234}
235
fccddba0 236static inline void remove_hash(struct stripe_head *sh)
1da177e4 237{
45b4233c
DW
238 pr_debug("remove_hash(), stripe %llu\n",
239 (unsigned long long)sh->sector);
1da177e4 240
fccddba0 241 hlist_del_init(&sh->hash);
1da177e4
LT
242}
243
16a53ecc 244static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
1da177e4 245{
fccddba0 246 struct hlist_head *hp = stripe_hash(conf, sh->sector);
1da177e4 247
45b4233c
DW
248 pr_debug("insert_hash(), stripe %llu\n",
249 (unsigned long long)sh->sector);
1da177e4
LT
250
251 CHECK_DEVLOCK();
fccddba0 252 hlist_add_head(&sh->hash, hp);
1da177e4
LT
253}
254
255
256/* find an idle stripe, make sure it is unhashed, and return it. */
257static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
258{
259 struct stripe_head *sh = NULL;
260 struct list_head *first;
261
262 CHECK_DEVLOCK();
263 if (list_empty(&conf->inactive_list))
264 goto out;
265 first = conf->inactive_list.next;
266 sh = list_entry(first, struct stripe_head, lru);
267 list_del_init(first);
268 remove_hash(sh);
269 atomic_inc(&conf->active_stripes);
270out:
271 return sh;
272}
273
274static void shrink_buffers(struct stripe_head *sh, int num)
275{
276 struct page *p;
277 int i;
278
279 for (i=0; i<num ; i++) {
280 p = sh->dev[i].page;
281 if (!p)
282 continue;
283 sh->dev[i].page = NULL;
2d1f3b5d 284 put_page(p);
1da177e4
LT
285 }
286}
287
288static int grow_buffers(struct stripe_head *sh, int num)
289{
290 int i;
291
292 for (i=0; i<num; i++) {
293 struct page *page;
294
295 if (!(page = alloc_page(GFP_KERNEL))) {
296 return 1;
297 }
298 sh->dev[i].page = page;
299 }
300 return 0;
301}
302
784052ec 303static void raid5_build_block(struct stripe_head *sh, int i, int previous);
911d4ee8
N
304static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
305 struct stripe_head *sh);
1da177e4 306
b5663ba4 307static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
1da177e4
LT
308{
309 raid5_conf_t *conf = sh->raid_conf;
7ecaa1e6 310 int i;
1da177e4 311
78bafebd
ES
312 BUG_ON(atomic_read(&sh->count) != 0);
313 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
600aa109 314 BUG_ON(stripe_operations_active(sh));
d84e0f10 315
1da177e4 316 CHECK_DEVLOCK();
45b4233c 317 pr_debug("init_stripe called, stripe %llu\n",
1da177e4
LT
318 (unsigned long long)sh->sector);
319
320 remove_hash(sh);
16a53ecc 321
86b42c71 322 sh->generation = conf->generation - previous;
b5663ba4 323 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
1da177e4 324 sh->sector = sector;
911d4ee8 325 stripe_set_idx(sector, conf, previous, sh);
1da177e4
LT
326 sh->state = 0;
327
7ecaa1e6
N
328
329 for (i = sh->disks; i--; ) {
1da177e4
LT
330 struct r5dev *dev = &sh->dev[i];
331
d84e0f10 332 if (dev->toread || dev->read || dev->towrite || dev->written ||
1da177e4 333 test_bit(R5_LOCKED, &dev->flags)) {
d84e0f10 334 printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
1da177e4 335 (unsigned long long)sh->sector, i, dev->toread,
d84e0f10 336 dev->read, dev->towrite, dev->written,
1da177e4
LT
337 test_bit(R5_LOCKED, &dev->flags));
338 BUG();
339 }
340 dev->flags = 0;
784052ec 341 raid5_build_block(sh, i, previous);
1da177e4
LT
342 }
343 insert_hash(conf, sh);
344}
345
86b42c71
N
346static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector,
347 short generation)
1da177e4
LT
348{
349 struct stripe_head *sh;
fccddba0 350 struct hlist_node *hn;
1da177e4
LT
351
352 CHECK_DEVLOCK();
45b4233c 353 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
fccddba0 354 hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
86b42c71 355 if (sh->sector == sector && sh->generation == generation)
1da177e4 356 return sh;
45b4233c 357 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
1da177e4
LT
358 return NULL;
359}
360
361static void unplug_slaves(mddev_t *mddev);
165125e1 362static void raid5_unplug_device(struct request_queue *q);
1da177e4 363
b5663ba4
N
364static struct stripe_head *
365get_active_stripe(raid5_conf_t *conf, sector_t sector,
366 int previous, int noblock)
1da177e4
LT
367{
368 struct stripe_head *sh;
369
45b4233c 370 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
1da177e4
LT
371
372 spin_lock_irq(&conf->device_lock);
373
374 do {
72626685
N
375 wait_event_lock_irq(conf->wait_for_stripe,
376 conf->quiesce == 0,
377 conf->device_lock, /* nothing */);
86b42c71 378 sh = __find_stripe(conf, sector, conf->generation - previous);
1da177e4
LT
379 if (!sh) {
380 if (!conf->inactive_blocked)
381 sh = get_free_stripe(conf);
382 if (noblock && sh == NULL)
383 break;
384 if (!sh) {
385 conf->inactive_blocked = 1;
386 wait_event_lock_irq(conf->wait_for_stripe,
387 !list_empty(&conf->inactive_list) &&
5036805b
N
388 (atomic_read(&conf->active_stripes)
389 < (conf->max_nr_stripes *3/4)
1da177e4
LT
390 || !conf->inactive_blocked),
391 conf->device_lock,
f4370781 392 raid5_unplug_device(conf->mddev->queue)
1da177e4
LT
393 );
394 conf->inactive_blocked = 0;
395 } else
b5663ba4 396 init_stripe(sh, sector, previous);
1da177e4
LT
397 } else {
398 if (atomic_read(&sh->count)) {
ab69ae12
N
399 BUG_ON(!list_empty(&sh->lru)
400 && !test_bit(STRIPE_EXPANDING, &sh->state));
1da177e4
LT
401 } else {
402 if (!test_bit(STRIPE_HANDLE, &sh->state))
403 atomic_inc(&conf->active_stripes);
ff4e8d9a
N
404 if (list_empty(&sh->lru) &&
405 !test_bit(STRIPE_EXPANDING, &sh->state))
16a53ecc
N
406 BUG();
407 list_del_init(&sh->lru);
1da177e4
LT
408 }
409 }
410 } while (sh == NULL);
411
412 if (sh)
413 atomic_inc(&sh->count);
414
415 spin_unlock_irq(&conf->device_lock);
416 return sh;
417}
418
6712ecf8
N
419static void
420raid5_end_read_request(struct bio *bi, int error);
421static void
422raid5_end_write_request(struct bio *bi, int error);
91c00924 423
c4e5ac0a 424static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
91c00924
DW
425{
426 raid5_conf_t *conf = sh->raid_conf;
427 int i, disks = sh->disks;
428
429 might_sleep();
430
431 for (i = disks; i--; ) {
432 int rw;
433 struct bio *bi;
434 mdk_rdev_t *rdev;
435 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
436 rw = WRITE;
437 else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
438 rw = READ;
439 else
440 continue;
441
442 bi = &sh->dev[i].req;
443
444 bi->bi_rw = rw;
445 if (rw == WRITE)
446 bi->bi_end_io = raid5_end_write_request;
447 else
448 bi->bi_end_io = raid5_end_read_request;
449
450 rcu_read_lock();
451 rdev = rcu_dereference(conf->disks[i].rdev);
452 if (rdev && test_bit(Faulty, &rdev->flags))
453 rdev = NULL;
454 if (rdev)
455 atomic_inc(&rdev->nr_pending);
456 rcu_read_unlock();
457
458 if (rdev) {
c4e5ac0a 459 if (s->syncing || s->expanding || s->expanded)
91c00924
DW
460 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
461
2b7497f0
DW
462 set_bit(STRIPE_IO_STARTED, &sh->state);
463
91c00924
DW
464 bi->bi_bdev = rdev->bdev;
465 pr_debug("%s: for %llu schedule op %ld on disc %d\n",
e46b272b 466 __func__, (unsigned long long)sh->sector,
91c00924
DW
467 bi->bi_rw, i);
468 atomic_inc(&sh->count);
469 bi->bi_sector = sh->sector + rdev->data_offset;
470 bi->bi_flags = 1 << BIO_UPTODATE;
471 bi->bi_vcnt = 1;
472 bi->bi_max_vecs = 1;
473 bi->bi_idx = 0;
474 bi->bi_io_vec = &sh->dev[i].vec;
475 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
476 bi->bi_io_vec[0].bv_offset = 0;
477 bi->bi_size = STRIPE_SIZE;
478 bi->bi_next = NULL;
479 if (rw == WRITE &&
480 test_bit(R5_ReWrite, &sh->dev[i].flags))
481 atomic_add(STRIPE_SECTORS,
482 &rdev->corrected_errors);
483 generic_make_request(bi);
484 } else {
485 if (rw == WRITE)
486 set_bit(STRIPE_DEGRADED, &sh->state);
487 pr_debug("skip op %ld on disc %d for sector %llu\n",
488 bi->bi_rw, i, (unsigned long long)sh->sector);
489 clear_bit(R5_LOCKED, &sh->dev[i].flags);
490 set_bit(STRIPE_HANDLE, &sh->state);
491 }
492 }
493}
494
495static struct dma_async_tx_descriptor *
496async_copy_data(int frombio, struct bio *bio, struct page *page,
497 sector_t sector, struct dma_async_tx_descriptor *tx)
498{
499 struct bio_vec *bvl;
500 struct page *bio_page;
501 int i;
502 int page_offset;
a08abd8c 503 struct async_submit_ctl submit;
91c00924
DW
504
505 if (bio->bi_sector >= sector)
506 page_offset = (signed)(bio->bi_sector - sector) * 512;
507 else
508 page_offset = (signed)(sector - bio->bi_sector) * -512;
a08abd8c
DW
509
510 init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
91c00924
DW
511 bio_for_each_segment(bvl, bio, i) {
512 int len = bio_iovec_idx(bio, i)->bv_len;
513 int clen;
514 int b_offset = 0;
515
516 if (page_offset < 0) {
517 b_offset = -page_offset;
518 page_offset += b_offset;
519 len -= b_offset;
520 }
521
522 if (len > 0 && page_offset + len > STRIPE_SIZE)
523 clen = STRIPE_SIZE - page_offset;
524 else
525 clen = len;
526
527 if (clen > 0) {
528 b_offset += bio_iovec_idx(bio, i)->bv_offset;
529 bio_page = bio_iovec_idx(bio, i)->bv_page;
530 if (frombio)
531 tx = async_memcpy(page, bio_page, page_offset,
a08abd8c 532 b_offset, clen, &submit);
91c00924
DW
533 else
534 tx = async_memcpy(bio_page, page, b_offset,
a08abd8c 535 page_offset, clen, &submit);
91c00924 536 }
a08abd8c
DW
537 /* chain the operations */
538 submit.depend_tx = tx;
539
91c00924
DW
540 if (clen < len) /* hit end of page */
541 break;
542 page_offset += len;
543 }
544
545 return tx;
546}
547
548static void ops_complete_biofill(void *stripe_head_ref)
549{
550 struct stripe_head *sh = stripe_head_ref;
551 struct bio *return_bi = NULL;
552 raid5_conf_t *conf = sh->raid_conf;
e4d84909 553 int i;
91c00924 554
e46b272b 555 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
556 (unsigned long long)sh->sector);
557
558 /* clear completed biofills */
83de75cc 559 spin_lock_irq(&conf->device_lock);
91c00924
DW
560 for (i = sh->disks; i--; ) {
561 struct r5dev *dev = &sh->dev[i];
91c00924
DW
562
563 /* acknowledge completion of a biofill operation */
e4d84909
DW
564 /* and check if we need to reply to a read request,
565 * new R5_Wantfill requests are held off until
83de75cc 566 * !STRIPE_BIOFILL_RUN
e4d84909
DW
567 */
568 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
91c00924 569 struct bio *rbi, *rbi2;
91c00924 570
91c00924
DW
571 BUG_ON(!dev->read);
572 rbi = dev->read;
573 dev->read = NULL;
574 while (rbi && rbi->bi_sector <
575 dev->sector + STRIPE_SECTORS) {
576 rbi2 = r5_next_bio(rbi, dev->sector);
960e739d 577 if (!raid5_dec_bi_phys_segments(rbi)) {
91c00924
DW
578 rbi->bi_next = return_bi;
579 return_bi = rbi;
580 }
91c00924
DW
581 rbi = rbi2;
582 }
583 }
584 }
83de75cc
DW
585 spin_unlock_irq(&conf->device_lock);
586 clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
91c00924
DW
587
588 return_io(return_bi);
589
e4d84909 590 set_bit(STRIPE_HANDLE, &sh->state);
91c00924
DW
591 release_stripe(sh);
592}
593
594static void ops_run_biofill(struct stripe_head *sh)
595{
596 struct dma_async_tx_descriptor *tx = NULL;
597 raid5_conf_t *conf = sh->raid_conf;
a08abd8c 598 struct async_submit_ctl submit;
91c00924
DW
599 int i;
600
e46b272b 601 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
602 (unsigned long long)sh->sector);
603
604 for (i = sh->disks; i--; ) {
605 struct r5dev *dev = &sh->dev[i];
606 if (test_bit(R5_Wantfill, &dev->flags)) {
607 struct bio *rbi;
608 spin_lock_irq(&conf->device_lock);
609 dev->read = rbi = dev->toread;
610 dev->toread = NULL;
611 spin_unlock_irq(&conf->device_lock);
612 while (rbi && rbi->bi_sector <
613 dev->sector + STRIPE_SECTORS) {
614 tx = async_copy_data(0, rbi, dev->page,
615 dev->sector, tx);
616 rbi = r5_next_bio(rbi, dev->sector);
617 }
618 }
619 }
620
621 atomic_inc(&sh->count);
a08abd8c
DW
622 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
623 async_trigger_callback(&submit);
91c00924
DW
624}
625
626static void ops_complete_compute5(void *stripe_head_ref)
627{
628 struct stripe_head *sh = stripe_head_ref;
629 int target = sh->ops.target;
630 struct r5dev *tgt = &sh->dev[target];
631
e46b272b 632 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
633 (unsigned long long)sh->sector);
634
635 set_bit(R5_UPTODATE, &tgt->flags);
636 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
637 clear_bit(R5_Wantcompute, &tgt->flags);
ecc65c9b
DW
638 clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
639 if (sh->check_state == check_state_compute_run)
640 sh->check_state = check_state_compute_result;
91c00924
DW
641 set_bit(STRIPE_HANDLE, &sh->state);
642 release_stripe(sh);
643}
644
d6f38f31
DW
645/* return a pointer to the address conversion region of the scribble buffer */
646static addr_conv_t *to_addr_conv(struct stripe_head *sh,
647 struct raid5_percpu *percpu)
648{
649 return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
650}
651
652static struct dma_async_tx_descriptor *
653ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
91c00924 654{
91c00924 655 int disks = sh->disks;
d6f38f31 656 struct page **xor_srcs = percpu->scribble;
91c00924
DW
657 int target = sh->ops.target;
658 struct r5dev *tgt = &sh->dev[target];
659 struct page *xor_dest = tgt->page;
660 int count = 0;
661 struct dma_async_tx_descriptor *tx;
a08abd8c 662 struct async_submit_ctl submit;
91c00924
DW
663 int i;
664
665 pr_debug("%s: stripe %llu block: %d\n",
e46b272b 666 __func__, (unsigned long long)sh->sector, target);
91c00924
DW
667 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
668
669 for (i = disks; i--; )
670 if (i != target)
671 xor_srcs[count++] = sh->dev[i].page;
672
673 atomic_inc(&sh->count);
674
a08abd8c 675 init_async_submit(&submit, ASYNC_TX_XOR_ZERO_DST, NULL,
d6f38f31 676 ops_complete_compute5, sh, to_addr_conv(sh, percpu));
91c00924 677 if (unlikely(count == 1))
a08abd8c 678 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
91c00924 679 else
a08abd8c 680 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
91c00924 681
91c00924
DW
682 return tx;
683}
684
685static void ops_complete_prexor(void *stripe_head_ref)
686{
687 struct stripe_head *sh = stripe_head_ref;
688
e46b272b 689 pr_debug("%s: stripe %llu\n", __func__,
91c00924 690 (unsigned long long)sh->sector);
91c00924
DW
691}
692
693static struct dma_async_tx_descriptor *
d6f38f31
DW
694ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
695 struct dma_async_tx_descriptor *tx)
91c00924 696{
91c00924 697 int disks = sh->disks;
d6f38f31 698 struct page **xor_srcs = percpu->scribble;
91c00924 699 int count = 0, pd_idx = sh->pd_idx, i;
a08abd8c 700 struct async_submit_ctl submit;
91c00924
DW
701
702 /* existing parity data subtracted */
703 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
704
e46b272b 705 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
706 (unsigned long long)sh->sector);
707
708 for (i = disks; i--; ) {
709 struct r5dev *dev = &sh->dev[i];
710 /* Only process blocks that are known to be uptodate */
d8ee0728 711 if (test_bit(R5_Wantdrain, &dev->flags))
91c00924
DW
712 xor_srcs[count++] = dev->page;
713 }
714
a08abd8c 715 init_async_submit(&submit, ASYNC_TX_XOR_DROP_DST, tx,
d6f38f31 716 ops_complete_prexor, sh, to_addr_conv(sh, percpu));
a08abd8c 717 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
91c00924
DW
718
719 return tx;
720}
721
722static struct dma_async_tx_descriptor *
d8ee0728 723ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
91c00924
DW
724{
725 int disks = sh->disks;
d8ee0728 726 int i;
91c00924 727
e46b272b 728 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
729 (unsigned long long)sh->sector);
730
731 for (i = disks; i--; ) {
732 struct r5dev *dev = &sh->dev[i];
733 struct bio *chosen;
91c00924 734
d8ee0728 735 if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
91c00924
DW
736 struct bio *wbi;
737
738 spin_lock(&sh->lock);
739 chosen = dev->towrite;
740 dev->towrite = NULL;
741 BUG_ON(dev->written);
742 wbi = dev->written = chosen;
743 spin_unlock(&sh->lock);
744
745 while (wbi && wbi->bi_sector <
746 dev->sector + STRIPE_SECTORS) {
747 tx = async_copy_data(1, wbi, dev->page,
748 dev->sector, tx);
749 wbi = r5_next_bio(wbi, dev->sector);
750 }
751 }
752 }
753
754 return tx;
755}
756
757static void ops_complete_postxor(void *stripe_head_ref)
91c00924
DW
758{
759 struct stripe_head *sh = stripe_head_ref;
760 int disks = sh->disks, i, pd_idx = sh->pd_idx;
761
e46b272b 762 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
763 (unsigned long long)sh->sector);
764
765 for (i = disks; i--; ) {
766 struct r5dev *dev = &sh->dev[i];
767 if (dev->written || i == pd_idx)
768 set_bit(R5_UPTODATE, &dev->flags);
769 }
770
d8ee0728
DW
771 if (sh->reconstruct_state == reconstruct_state_drain_run)
772 sh->reconstruct_state = reconstruct_state_drain_result;
773 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
774 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
775 else {
776 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
777 sh->reconstruct_state = reconstruct_state_result;
778 }
91c00924
DW
779
780 set_bit(STRIPE_HANDLE, &sh->state);
781 release_stripe(sh);
782}
783
784static void
d6f38f31
DW
785ops_run_postxor(struct stripe_head *sh, struct raid5_percpu *percpu,
786 struct dma_async_tx_descriptor *tx)
91c00924 787{
91c00924 788 int disks = sh->disks;
d6f38f31 789 struct page **xor_srcs = percpu->scribble;
a08abd8c 790 struct async_submit_ctl submit;
91c00924
DW
791 int count = 0, pd_idx = sh->pd_idx, i;
792 struct page *xor_dest;
d8ee0728 793 int prexor = 0;
91c00924 794 unsigned long flags;
91c00924 795
e46b272b 796 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
797 (unsigned long long)sh->sector);
798
799 /* check if prexor is active which means only process blocks
800 * that are part of a read-modify-write (written)
801 */
d8ee0728
DW
802 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
803 prexor = 1;
91c00924
DW
804 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
805 for (i = disks; i--; ) {
806 struct r5dev *dev = &sh->dev[i];
807 if (dev->written)
808 xor_srcs[count++] = dev->page;
809 }
810 } else {
811 xor_dest = sh->dev[pd_idx].page;
812 for (i = disks; i--; ) {
813 struct r5dev *dev = &sh->dev[i];
814 if (i != pd_idx)
815 xor_srcs[count++] = dev->page;
816 }
817 }
818
91c00924
DW
819 /* 1/ if we prexor'd then the dest is reused as a source
820 * 2/ if we did not prexor then we are redoing the parity
821 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
822 * for the synchronous xor case
823 */
88ba2aa5 824 flags = ASYNC_TX_ACK |
91c00924
DW
825 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
826
827 atomic_inc(&sh->count);
828
d6f38f31
DW
829 init_async_submit(&submit, flags, tx, ops_complete_postxor, sh,
830 to_addr_conv(sh, percpu));
a08abd8c
DW
831 if (unlikely(count == 1))
832 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
833 else
834 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
91c00924
DW
835}
836
837static void ops_complete_check(void *stripe_head_ref)
838{
839 struct stripe_head *sh = stripe_head_ref;
91c00924 840
e46b272b 841 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
842 (unsigned long long)sh->sector);
843
ecc65c9b 844 sh->check_state = check_state_check_result;
91c00924
DW
845 set_bit(STRIPE_HANDLE, &sh->state);
846 release_stripe(sh);
847}
848
d6f38f31 849static void ops_run_check(struct stripe_head *sh, struct raid5_percpu *percpu)
91c00924 850{
91c00924 851 int disks = sh->disks;
d6f38f31 852 struct page **xor_srcs = percpu->scribble;
91c00924 853 struct dma_async_tx_descriptor *tx;
a08abd8c 854 struct async_submit_ctl submit;
91c00924
DW
855
856 int count = 0, pd_idx = sh->pd_idx, i;
857 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
858
e46b272b 859 pr_debug("%s: stripe %llu\n", __func__,
91c00924
DW
860 (unsigned long long)sh->sector);
861
862 for (i = disks; i--; ) {
863 struct r5dev *dev = &sh->dev[i];
864 if (i != pd_idx)
865 xor_srcs[count++] = dev->page;
866 }
867
d6f38f31
DW
868 init_async_submit(&submit, 0, NULL, NULL, NULL,
869 to_addr_conv(sh, percpu));
099f53cb 870 tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
a08abd8c 871 &sh->ops.zero_sum_result, &submit);
91c00924 872
91c00924 873 atomic_inc(&sh->count);
a08abd8c
DW
874 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
875 tx = async_trigger_callback(&submit);
91c00924
DW
876}
877
600aa109 878static void raid5_run_ops(struct stripe_head *sh, unsigned long ops_request)
91c00924
DW
879{
880 int overlap_clear = 0, i, disks = sh->disks;
881 struct dma_async_tx_descriptor *tx = NULL;
d6f38f31
DW
882 raid5_conf_t *conf = sh->raid_conf;
883 struct raid5_percpu *percpu;
884 unsigned long cpu;
91c00924 885
d6f38f31
DW
886 cpu = get_cpu();
887 percpu = per_cpu_ptr(conf->percpu, cpu);
83de75cc 888 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
91c00924
DW
889 ops_run_biofill(sh);
890 overlap_clear++;
891 }
892
7b3a871e 893 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
d6f38f31 894 tx = ops_run_compute5(sh, percpu);
7b3a871e
DW
895 /* terminate the chain if postxor is not set to be run */
896 if (tx && !test_bit(STRIPE_OP_POSTXOR, &ops_request))
897 async_tx_ack(tx);
898 }
91c00924 899
600aa109 900 if (test_bit(STRIPE_OP_PREXOR, &ops_request))
d6f38f31 901 tx = ops_run_prexor(sh, percpu, tx);
91c00924 902
600aa109 903 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
d8ee0728 904 tx = ops_run_biodrain(sh, tx);
91c00924
DW
905 overlap_clear++;
906 }
907
600aa109 908 if (test_bit(STRIPE_OP_POSTXOR, &ops_request))
d6f38f31 909 ops_run_postxor(sh, percpu, tx);
91c00924 910
ecc65c9b 911 if (test_bit(STRIPE_OP_CHECK, &ops_request))
d6f38f31 912 ops_run_check(sh, percpu);
91c00924 913
91c00924
DW
914 if (overlap_clear)
915 for (i = disks; i--; ) {
916 struct r5dev *dev = &sh->dev[i];
917 if (test_and_clear_bit(R5_Overlap, &dev->flags))
918 wake_up(&sh->raid_conf->wait_for_overlap);
919 }
d6f38f31 920 put_cpu();
91c00924
DW
921}
922
3f294f4f 923static int grow_one_stripe(raid5_conf_t *conf)
1da177e4
LT
924{
925 struct stripe_head *sh;
3f294f4f
N
926 sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL);
927 if (!sh)
928 return 0;
929 memset(sh, 0, sizeof(*sh) + (conf->raid_disks-1)*sizeof(struct r5dev));
930 sh->raid_conf = conf;
931 spin_lock_init(&sh->lock);
932
933 if (grow_buffers(sh, conf->raid_disks)) {
934 shrink_buffers(sh, conf->raid_disks);
935 kmem_cache_free(conf->slab_cache, sh);
936 return 0;
937 }
7ecaa1e6 938 sh->disks = conf->raid_disks;
3f294f4f
N
939 /* we just created an active stripe so... */
940 atomic_set(&sh->count, 1);
941 atomic_inc(&conf->active_stripes);
942 INIT_LIST_HEAD(&sh->lru);
943 release_stripe(sh);
944 return 1;
945}
946
947static int grow_stripes(raid5_conf_t *conf, int num)
948{
e18b890b 949 struct kmem_cache *sc;
1da177e4
LT
950 int devs = conf->raid_disks;
951
245f46c2
N
952 sprintf(conf->cache_name[0],
953 "raid%d-%s", conf->level, mdname(conf->mddev));
954 sprintf(conf->cache_name[1],
955 "raid%d-%s-alt", conf->level, mdname(conf->mddev));
ad01c9e3
N
956 conf->active_name = 0;
957 sc = kmem_cache_create(conf->cache_name[conf->active_name],
1da177e4 958 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
20c2df83 959 0, 0, NULL);
1da177e4
LT
960 if (!sc)
961 return 1;
962 conf->slab_cache = sc;
ad01c9e3 963 conf->pool_size = devs;
16a53ecc 964 while (num--)
3f294f4f 965 if (!grow_one_stripe(conf))
1da177e4 966 return 1;
1da177e4
LT
967 return 0;
968}
29269553 969
d6f38f31
DW
970/**
971 * scribble_len - return the required size of the scribble region
972 * @num - total number of disks in the array
973 *
974 * The size must be enough to contain:
975 * 1/ a struct page pointer for each device in the array +2
976 * 2/ room to convert each entry in (1) to its corresponding dma
977 * (dma_map_page()) or page (page_address()) address.
978 *
979 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
980 * calculate over all devices (not just the data blocks), using zeros in place
981 * of the P and Q blocks.
982 */
983static size_t scribble_len(int num)
984{
985 size_t len;
986
987 len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
988
989 return len;
990}
991
ad01c9e3
N
992static int resize_stripes(raid5_conf_t *conf, int newsize)
993{
994 /* Make all the stripes able to hold 'newsize' devices.
995 * New slots in each stripe get 'page' set to a new page.
996 *
997 * This happens in stages:
998 * 1/ create a new kmem_cache and allocate the required number of
999 * stripe_heads.
1000 * 2/ gather all the old stripe_heads and tranfer the pages across
1001 * to the new stripe_heads. This will have the side effect of
1002 * freezing the array as once all stripe_heads have been collected,
1003 * no IO will be possible. Old stripe heads are freed once their
1004 * pages have been transferred over, and the old kmem_cache is
1005 * freed when all stripes are done.
1006 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
1007 * we simple return a failre status - no need to clean anything up.
1008 * 4/ allocate new pages for the new slots in the new stripe_heads.
1009 * If this fails, we don't bother trying the shrink the
1010 * stripe_heads down again, we just leave them as they are.
1011 * As each stripe_head is processed the new one is released into
1012 * active service.
1013 *
1014 * Once step2 is started, we cannot afford to wait for a write,
1015 * so we use GFP_NOIO allocations.
1016 */
1017 struct stripe_head *osh, *nsh;
1018 LIST_HEAD(newstripes);
1019 struct disk_info *ndisks;
d6f38f31 1020 unsigned long cpu;
b5470dc5 1021 int err;
e18b890b 1022 struct kmem_cache *sc;
ad01c9e3
N
1023 int i;
1024
1025 if (newsize <= conf->pool_size)
1026 return 0; /* never bother to shrink */
1027
b5470dc5
DW
1028 err = md_allow_write(conf->mddev);
1029 if (err)
1030 return err;
2a2275d6 1031
ad01c9e3
N
1032 /* Step 1 */
1033 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1034 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
20c2df83 1035 0, 0, NULL);
ad01c9e3
N
1036 if (!sc)
1037 return -ENOMEM;
1038
1039 for (i = conf->max_nr_stripes; i; i--) {
1040 nsh = kmem_cache_alloc(sc, GFP_KERNEL);
1041 if (!nsh)
1042 break;
1043
1044 memset(nsh, 0, sizeof(*nsh) + (newsize-1)*sizeof(struct r5dev));
1045
1046 nsh->raid_conf = conf;
1047 spin_lock_init(&nsh->lock);
1048
1049 list_add(&nsh->lru, &newstripes);
1050 }
1051 if (i) {
1052 /* didn't get enough, give up */
1053 while (!list_empty(&newstripes)) {
1054 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1055 list_del(&nsh->lru);
1056 kmem_cache_free(sc, nsh);
1057 }
1058 kmem_cache_destroy(sc);
1059 return -ENOMEM;
1060 }
1061 /* Step 2 - Must use GFP_NOIO now.
1062 * OK, we have enough stripes, start collecting inactive
1063 * stripes and copying them over
1064 */
1065 list_for_each_entry(nsh, &newstripes, lru) {
1066 spin_lock_irq(&conf->device_lock);
1067 wait_event_lock_irq(conf->wait_for_stripe,
1068 !list_empty(&conf->inactive_list),
1069 conf->device_lock,
b3b46be3 1070 unplug_slaves(conf->mddev)
ad01c9e3
N
1071 );
1072 osh = get_free_stripe(conf);
1073 spin_unlock_irq(&conf->device_lock);
1074 atomic_set(&nsh->count, 1);
1075 for(i=0; i<conf->pool_size; i++)
1076 nsh->dev[i].page = osh->dev[i].page;
1077 for( ; i<newsize; i++)
1078 nsh->dev[i].page = NULL;
1079 kmem_cache_free(conf->slab_cache, osh);
1080 }
1081 kmem_cache_destroy(conf->slab_cache);
1082
1083 /* Step 3.
1084 * At this point, we are holding all the stripes so the array
1085 * is completely stalled, so now is a good time to resize
d6f38f31 1086 * conf->disks and the scribble region
ad01c9e3
N
1087 */
1088 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1089 if (ndisks) {
1090 for (i=0; i<conf->raid_disks; i++)
1091 ndisks[i] = conf->disks[i];
1092 kfree(conf->disks);
1093 conf->disks = ndisks;
1094 } else
1095 err = -ENOMEM;
1096
d6f38f31
DW
1097 get_online_cpus();
1098 conf->scribble_len = scribble_len(newsize);
1099 for_each_present_cpu(cpu) {
1100 struct raid5_percpu *percpu;
1101 void *scribble;
1102
1103 percpu = per_cpu_ptr(conf->percpu, cpu);
1104 scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1105
1106 if (scribble) {
1107 kfree(percpu->scribble);
1108 percpu->scribble = scribble;
1109 } else {
1110 err = -ENOMEM;
1111 break;
1112 }
1113 }
1114 put_online_cpus();
1115
ad01c9e3
N
1116 /* Step 4, return new stripes to service */
1117 while(!list_empty(&newstripes)) {
1118 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1119 list_del_init(&nsh->lru);
d6f38f31 1120
ad01c9e3
N
1121 for (i=conf->raid_disks; i < newsize; i++)
1122 if (nsh->dev[i].page == NULL) {
1123 struct page *p = alloc_page(GFP_NOIO);
1124 nsh->dev[i].page = p;
1125 if (!p)
1126 err = -ENOMEM;
1127 }
1128 release_stripe(nsh);
1129 }
1130 /* critical section pass, GFP_NOIO no longer needed */
1131
1132 conf->slab_cache = sc;
1133 conf->active_name = 1-conf->active_name;
1134 conf->pool_size = newsize;
1135 return err;
1136}
1da177e4 1137
3f294f4f 1138static int drop_one_stripe(raid5_conf_t *conf)
1da177e4
LT
1139{
1140 struct stripe_head *sh;
1141
3f294f4f
N
1142 spin_lock_irq(&conf->device_lock);
1143 sh = get_free_stripe(conf);
1144 spin_unlock_irq(&conf->device_lock);
1145 if (!sh)
1146 return 0;
78bafebd 1147 BUG_ON(atomic_read(&sh->count));
ad01c9e3 1148 shrink_buffers(sh, conf->pool_size);
3f294f4f
N
1149 kmem_cache_free(conf->slab_cache, sh);
1150 atomic_dec(&conf->active_stripes);
1151 return 1;
1152}
1153
1154static void shrink_stripes(raid5_conf_t *conf)
1155{
1156 while (drop_one_stripe(conf))
1157 ;
1158
29fc7e3e
N
1159 if (conf->slab_cache)
1160 kmem_cache_destroy(conf->slab_cache);
1da177e4
LT
1161 conf->slab_cache = NULL;
1162}
1163
6712ecf8 1164static void raid5_end_read_request(struct bio * bi, int error)
1da177e4 1165{
99c0fb5f 1166 struct stripe_head *sh = bi->bi_private;
1da177e4 1167 raid5_conf_t *conf = sh->raid_conf;
7ecaa1e6 1168 int disks = sh->disks, i;
1da177e4 1169 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
d6950432
N
1170 char b[BDEVNAME_SIZE];
1171 mdk_rdev_t *rdev;
1da177e4 1172
1da177e4
LT
1173
1174 for (i=0 ; i<disks; i++)
1175 if (bi == &sh->dev[i].req)
1176 break;
1177
45b4233c
DW
1178 pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1179 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1da177e4
LT
1180 uptodate);
1181 if (i == disks) {
1182 BUG();
6712ecf8 1183 return;
1da177e4
LT
1184 }
1185
1186 if (uptodate) {
1da177e4 1187 set_bit(R5_UPTODATE, &sh->dev[i].flags);
4e5314b5 1188 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
d6950432 1189 rdev = conf->disks[i].rdev;
6be9d494
BS
1190 printk_rl(KERN_INFO "raid5:%s: read error corrected"
1191 " (%lu sectors at %llu on %s)\n",
1192 mdname(conf->mddev), STRIPE_SECTORS,
1193 (unsigned long long)(sh->sector
1194 + rdev->data_offset),
1195 bdevname(rdev->bdev, b));
4e5314b5
N
1196 clear_bit(R5_ReadError, &sh->dev[i].flags);
1197 clear_bit(R5_ReWrite, &sh->dev[i].flags);
1198 }
ba22dcbf
N
1199 if (atomic_read(&conf->disks[i].rdev->read_errors))
1200 atomic_set(&conf->disks[i].rdev->read_errors, 0);
1da177e4 1201 } else {
d6950432 1202 const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
ba22dcbf 1203 int retry = 0;
d6950432
N
1204 rdev = conf->disks[i].rdev;
1205
1da177e4 1206 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
d6950432 1207 atomic_inc(&rdev->read_errors);
ba22dcbf 1208 if (conf->mddev->degraded)
6be9d494
BS
1209 printk_rl(KERN_WARNING
1210 "raid5:%s: read error not correctable "
1211 "(sector %llu on %s).\n",
1212 mdname(conf->mddev),
1213 (unsigned long long)(sh->sector
1214 + rdev->data_offset),
1215 bdn);
ba22dcbf 1216 else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
4e5314b5 1217 /* Oh, no!!! */
6be9d494
BS
1218 printk_rl(KERN_WARNING
1219 "raid5:%s: read error NOT corrected!! "
1220 "(sector %llu on %s).\n",
1221 mdname(conf->mddev),
1222 (unsigned long long)(sh->sector
1223 + rdev->data_offset),
1224 bdn);
d6950432 1225 else if (atomic_read(&rdev->read_errors)
ba22dcbf 1226 > conf->max_nr_stripes)
14f8d26b 1227 printk(KERN_WARNING
d6950432
N
1228 "raid5:%s: Too many read errors, failing device %s.\n",
1229 mdname(conf->mddev), bdn);
ba22dcbf
N
1230 else
1231 retry = 1;
1232 if (retry)
1233 set_bit(R5_ReadError, &sh->dev[i].flags);
1234 else {
4e5314b5
N
1235 clear_bit(R5_ReadError, &sh->dev[i].flags);
1236 clear_bit(R5_ReWrite, &sh->dev[i].flags);
d6950432 1237 md_error(conf->mddev, rdev);
ba22dcbf 1238 }
1da177e4
LT
1239 }
1240 rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1da177e4
LT
1241 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1242 set_bit(STRIPE_HANDLE, &sh->state);
1243 release_stripe(sh);
1da177e4
LT
1244}
1245
d710e138 1246static void raid5_end_write_request(struct bio *bi, int error)
1da177e4 1247{
99c0fb5f 1248 struct stripe_head *sh = bi->bi_private;
1da177e4 1249 raid5_conf_t *conf = sh->raid_conf;
7ecaa1e6 1250 int disks = sh->disks, i;
1da177e4
LT
1251 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1252
1da177e4
LT
1253 for (i=0 ; i<disks; i++)
1254 if (bi == &sh->dev[i].req)
1255 break;
1256
45b4233c 1257 pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1da177e4
LT
1258 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1259 uptodate);
1260 if (i == disks) {
1261 BUG();
6712ecf8 1262 return;
1da177e4
LT
1263 }
1264
1da177e4
LT
1265 if (!uptodate)
1266 md_error(conf->mddev, conf->disks[i].rdev);
1267
1268 rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1269
1270 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1271 set_bit(STRIPE_HANDLE, &sh->state);
c04be0aa 1272 release_stripe(sh);
1da177e4
LT
1273}
1274
1275
784052ec 1276static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
1da177e4 1277
784052ec 1278static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1da177e4
LT
1279{
1280 struct r5dev *dev = &sh->dev[i];
1281
1282 bio_init(&dev->req);
1283 dev->req.bi_io_vec = &dev->vec;
1284 dev->req.bi_vcnt++;
1285 dev->req.bi_max_vecs++;
1286 dev->vec.bv_page = dev->page;
1287 dev->vec.bv_len = STRIPE_SIZE;
1288 dev->vec.bv_offset = 0;
1289
1290 dev->req.bi_sector = sh->sector;
1291 dev->req.bi_private = sh;
1292
1293 dev->flags = 0;
784052ec 1294 dev->sector = compute_blocknr(sh, i, previous);
1da177e4
LT
1295}
1296
1297static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1298{
1299 char b[BDEVNAME_SIZE];
1300 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
45b4233c 1301 pr_debug("raid5: error called\n");
1da177e4 1302
b2d444d7 1303 if (!test_bit(Faulty, &rdev->flags)) {
850b2b42 1304 set_bit(MD_CHANGE_DEVS, &mddev->flags);
c04be0aa
N
1305 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1306 unsigned long flags;
1307 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 1308 mddev->degraded++;
c04be0aa 1309 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
1310 /*
1311 * if recovery was running, make sure it aborts.
1312 */
dfc70645 1313 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1da177e4 1314 }
b2d444d7 1315 set_bit(Faulty, &rdev->flags);
d710e138
N
1316 printk(KERN_ALERT
1317 "raid5: Disk failure on %s, disabling device.\n"
1318 "raid5: Operation continuing on %d devices.\n",
1319 bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
1da177e4 1320 }
16a53ecc 1321}
1da177e4
LT
1322
1323/*
1324 * Input: a 'big' sector number,
1325 * Output: index of the data and parity disk, and the sector # in them.
1326 */
112bf897 1327static sector_t raid5_compute_sector(raid5_conf_t *conf, sector_t r_sector,
911d4ee8
N
1328 int previous, int *dd_idx,
1329 struct stripe_head *sh)
1da177e4
LT
1330{
1331 long stripe;
1332 unsigned long chunk_number;
1333 unsigned int chunk_offset;
911d4ee8 1334 int pd_idx, qd_idx;
67cc2b81 1335 int ddf_layout = 0;
1da177e4 1336 sector_t new_sector;
e183eaed
N
1337 int algorithm = previous ? conf->prev_algo
1338 : conf->algorithm;
784052ec
N
1339 int sectors_per_chunk = previous ? (conf->prev_chunk >> 9)
1340 : (conf->chunk_size >> 9);
112bf897
N
1341 int raid_disks = previous ? conf->previous_raid_disks
1342 : conf->raid_disks;
1343 int data_disks = raid_disks - conf->max_degraded;
1da177e4
LT
1344
1345 /* First compute the information on this sector */
1346
1347 /*
1348 * Compute the chunk number and the sector offset inside the chunk
1349 */
1350 chunk_offset = sector_div(r_sector, sectors_per_chunk);
1351 chunk_number = r_sector;
1352 BUG_ON(r_sector != chunk_number);
1353
1354 /*
1355 * Compute the stripe number
1356 */
1357 stripe = chunk_number / data_disks;
1358
1359 /*
1360 * Compute the data disk and parity disk indexes inside the stripe
1361 */
1362 *dd_idx = chunk_number % data_disks;
1363
1364 /*
1365 * Select the parity disk based on the user selected algorithm.
1366 */
911d4ee8 1367 pd_idx = qd_idx = ~0;
16a53ecc
N
1368 switch(conf->level) {
1369 case 4:
911d4ee8 1370 pd_idx = data_disks;
16a53ecc
N
1371 break;
1372 case 5:
e183eaed 1373 switch (algorithm) {
1da177e4 1374 case ALGORITHM_LEFT_ASYMMETRIC:
911d4ee8
N
1375 pd_idx = data_disks - stripe % raid_disks;
1376 if (*dd_idx >= pd_idx)
1da177e4
LT
1377 (*dd_idx)++;
1378 break;
1379 case ALGORITHM_RIGHT_ASYMMETRIC:
911d4ee8
N
1380 pd_idx = stripe % raid_disks;
1381 if (*dd_idx >= pd_idx)
1da177e4
LT
1382 (*dd_idx)++;
1383 break;
1384 case ALGORITHM_LEFT_SYMMETRIC:
911d4ee8
N
1385 pd_idx = data_disks - stripe % raid_disks;
1386 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1da177e4
LT
1387 break;
1388 case ALGORITHM_RIGHT_SYMMETRIC:
911d4ee8
N
1389 pd_idx = stripe % raid_disks;
1390 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1da177e4 1391 break;
99c0fb5f
N
1392 case ALGORITHM_PARITY_0:
1393 pd_idx = 0;
1394 (*dd_idx)++;
1395 break;
1396 case ALGORITHM_PARITY_N:
1397 pd_idx = data_disks;
1398 break;
1da177e4 1399 default:
14f8d26b 1400 printk(KERN_ERR "raid5: unsupported algorithm %d\n",
e183eaed 1401 algorithm);
99c0fb5f 1402 BUG();
16a53ecc
N
1403 }
1404 break;
1405 case 6:
1406
e183eaed 1407 switch (algorithm) {
16a53ecc 1408 case ALGORITHM_LEFT_ASYMMETRIC:
911d4ee8
N
1409 pd_idx = raid_disks - 1 - (stripe % raid_disks);
1410 qd_idx = pd_idx + 1;
1411 if (pd_idx == raid_disks-1) {
99c0fb5f 1412 (*dd_idx)++; /* Q D D D P */
911d4ee8
N
1413 qd_idx = 0;
1414 } else if (*dd_idx >= pd_idx)
16a53ecc
N
1415 (*dd_idx) += 2; /* D D P Q D */
1416 break;
1417 case ALGORITHM_RIGHT_ASYMMETRIC:
911d4ee8
N
1418 pd_idx = stripe % raid_disks;
1419 qd_idx = pd_idx + 1;
1420 if (pd_idx == raid_disks-1) {
99c0fb5f 1421 (*dd_idx)++; /* Q D D D P */
911d4ee8
N
1422 qd_idx = 0;
1423 } else if (*dd_idx >= pd_idx)
16a53ecc
N
1424 (*dd_idx) += 2; /* D D P Q D */
1425 break;
1426 case ALGORITHM_LEFT_SYMMETRIC:
911d4ee8
N
1427 pd_idx = raid_disks - 1 - (stripe % raid_disks);
1428 qd_idx = (pd_idx + 1) % raid_disks;
1429 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
16a53ecc
N
1430 break;
1431 case ALGORITHM_RIGHT_SYMMETRIC:
911d4ee8
N
1432 pd_idx = stripe % raid_disks;
1433 qd_idx = (pd_idx + 1) % raid_disks;
1434 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
16a53ecc 1435 break;
99c0fb5f
N
1436
1437 case ALGORITHM_PARITY_0:
1438 pd_idx = 0;
1439 qd_idx = 1;
1440 (*dd_idx) += 2;
1441 break;
1442 case ALGORITHM_PARITY_N:
1443 pd_idx = data_disks;
1444 qd_idx = data_disks + 1;
1445 break;
1446
1447 case ALGORITHM_ROTATING_ZERO_RESTART:
1448 /* Exactly the same as RIGHT_ASYMMETRIC, but or
1449 * of blocks for computing Q is different.
1450 */
1451 pd_idx = stripe % raid_disks;
1452 qd_idx = pd_idx + 1;
1453 if (pd_idx == raid_disks-1) {
1454 (*dd_idx)++; /* Q D D D P */
1455 qd_idx = 0;
1456 } else if (*dd_idx >= pd_idx)
1457 (*dd_idx) += 2; /* D D P Q D */
67cc2b81 1458 ddf_layout = 1;
99c0fb5f
N
1459 break;
1460
1461 case ALGORITHM_ROTATING_N_RESTART:
1462 /* Same a left_asymmetric, by first stripe is
1463 * D D D P Q rather than
1464 * Q D D D P
1465 */
1466 pd_idx = raid_disks - 1 - ((stripe + 1) % raid_disks);
1467 qd_idx = pd_idx + 1;
1468 if (pd_idx == raid_disks-1) {
1469 (*dd_idx)++; /* Q D D D P */
1470 qd_idx = 0;
1471 } else if (*dd_idx >= pd_idx)
1472 (*dd_idx) += 2; /* D D P Q D */
67cc2b81 1473 ddf_layout = 1;
99c0fb5f
N
1474 break;
1475
1476 case ALGORITHM_ROTATING_N_CONTINUE:
1477 /* Same as left_symmetric but Q is before P */
1478 pd_idx = raid_disks - 1 - (stripe % raid_disks);
1479 qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
1480 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
67cc2b81 1481 ddf_layout = 1;
99c0fb5f
N
1482 break;
1483
1484 case ALGORITHM_LEFT_ASYMMETRIC_6:
1485 /* RAID5 left_asymmetric, with Q on last device */
1486 pd_idx = data_disks - stripe % (raid_disks-1);
1487 if (*dd_idx >= pd_idx)
1488 (*dd_idx)++;
1489 qd_idx = raid_disks - 1;
1490 break;
1491
1492 case ALGORITHM_RIGHT_ASYMMETRIC_6:
1493 pd_idx = stripe % (raid_disks-1);
1494 if (*dd_idx >= pd_idx)
1495 (*dd_idx)++;
1496 qd_idx = raid_disks - 1;
1497 break;
1498
1499 case ALGORITHM_LEFT_SYMMETRIC_6:
1500 pd_idx = data_disks - stripe % (raid_disks-1);
1501 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1502 qd_idx = raid_disks - 1;
1503 break;
1504
1505 case ALGORITHM_RIGHT_SYMMETRIC_6:
1506 pd_idx = stripe % (raid_disks-1);
1507 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1508 qd_idx = raid_disks - 1;
1509 break;
1510
1511 case ALGORITHM_PARITY_0_6:
1512 pd_idx = 0;
1513 (*dd_idx)++;
1514 qd_idx = raid_disks - 1;
1515 break;
1516
1517
16a53ecc 1518 default:
d710e138 1519 printk(KERN_CRIT "raid6: unsupported algorithm %d\n",
e183eaed 1520 algorithm);
99c0fb5f 1521 BUG();
16a53ecc
N
1522 }
1523 break;
1da177e4
LT
1524 }
1525
911d4ee8
N
1526 if (sh) {
1527 sh->pd_idx = pd_idx;
1528 sh->qd_idx = qd_idx;
67cc2b81 1529 sh->ddf_layout = ddf_layout;
911d4ee8 1530 }
1da177e4
LT
1531 /*
1532 * Finally, compute the new sector number
1533 */
1534 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
1535 return new_sector;
1536}
1537
1538
784052ec 1539static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
1da177e4
LT
1540{
1541 raid5_conf_t *conf = sh->raid_conf;
b875e531
N
1542 int raid_disks = sh->disks;
1543 int data_disks = raid_disks - conf->max_degraded;
1da177e4 1544 sector_t new_sector = sh->sector, check;
784052ec
N
1545 int sectors_per_chunk = previous ? (conf->prev_chunk >> 9)
1546 : (conf->chunk_size >> 9);
e183eaed
N
1547 int algorithm = previous ? conf->prev_algo
1548 : conf->algorithm;
1da177e4
LT
1549 sector_t stripe;
1550 int chunk_offset;
911d4ee8 1551 int chunk_number, dummy1, dd_idx = i;
1da177e4 1552 sector_t r_sector;
911d4ee8 1553 struct stripe_head sh2;
1da177e4 1554
16a53ecc 1555
1da177e4
LT
1556 chunk_offset = sector_div(new_sector, sectors_per_chunk);
1557 stripe = new_sector;
1558 BUG_ON(new_sector != stripe);
1559
16a53ecc
N
1560 if (i == sh->pd_idx)
1561 return 0;
1562 switch(conf->level) {
1563 case 4: break;
1564 case 5:
e183eaed 1565 switch (algorithm) {
1da177e4
LT
1566 case ALGORITHM_LEFT_ASYMMETRIC:
1567 case ALGORITHM_RIGHT_ASYMMETRIC:
1568 if (i > sh->pd_idx)
1569 i--;
1570 break;
1571 case ALGORITHM_LEFT_SYMMETRIC:
1572 case ALGORITHM_RIGHT_SYMMETRIC:
1573 if (i < sh->pd_idx)
1574 i += raid_disks;
1575 i -= (sh->pd_idx + 1);
1576 break;
99c0fb5f
N
1577 case ALGORITHM_PARITY_0:
1578 i -= 1;
1579 break;
1580 case ALGORITHM_PARITY_N:
1581 break;
1da177e4 1582 default:
14f8d26b 1583 printk(KERN_ERR "raid5: unsupported algorithm %d\n",
e183eaed 1584 algorithm);
99c0fb5f 1585 BUG();
16a53ecc
N
1586 }
1587 break;
1588 case 6:
d0dabf7e 1589 if (i == sh->qd_idx)
16a53ecc 1590 return 0; /* It is the Q disk */
e183eaed 1591 switch (algorithm) {
16a53ecc
N
1592 case ALGORITHM_LEFT_ASYMMETRIC:
1593 case ALGORITHM_RIGHT_ASYMMETRIC:
99c0fb5f
N
1594 case ALGORITHM_ROTATING_ZERO_RESTART:
1595 case ALGORITHM_ROTATING_N_RESTART:
1596 if (sh->pd_idx == raid_disks-1)
1597 i--; /* Q D D D P */
16a53ecc
N
1598 else if (i > sh->pd_idx)
1599 i -= 2; /* D D P Q D */
1600 break;
1601 case ALGORITHM_LEFT_SYMMETRIC:
1602 case ALGORITHM_RIGHT_SYMMETRIC:
1603 if (sh->pd_idx == raid_disks-1)
1604 i--; /* Q D D D P */
1605 else {
1606 /* D D P Q D */
1607 if (i < sh->pd_idx)
1608 i += raid_disks;
1609 i -= (sh->pd_idx + 2);
1610 }
1611 break;
99c0fb5f
N
1612 case ALGORITHM_PARITY_0:
1613 i -= 2;
1614 break;
1615 case ALGORITHM_PARITY_N:
1616 break;
1617 case ALGORITHM_ROTATING_N_CONTINUE:
1618 if (sh->pd_idx == 0)
1619 i--; /* P D D D Q */
1620 else if (i > sh->pd_idx)
1621 i -= 2; /* D D Q P D */
1622 break;
1623 case ALGORITHM_LEFT_ASYMMETRIC_6:
1624 case ALGORITHM_RIGHT_ASYMMETRIC_6:
1625 if (i > sh->pd_idx)
1626 i--;
1627 break;
1628 case ALGORITHM_LEFT_SYMMETRIC_6:
1629 case ALGORITHM_RIGHT_SYMMETRIC_6:
1630 if (i < sh->pd_idx)
1631 i += data_disks + 1;
1632 i -= (sh->pd_idx + 1);
1633 break;
1634 case ALGORITHM_PARITY_0_6:
1635 i -= 1;
1636 break;
16a53ecc 1637 default:
d710e138 1638 printk(KERN_CRIT "raid6: unsupported algorithm %d\n",
e183eaed 1639 algorithm);
99c0fb5f 1640 BUG();
16a53ecc
N
1641 }
1642 break;
1da177e4
LT
1643 }
1644
1645 chunk_number = stripe * data_disks + i;
1646 r_sector = (sector_t)chunk_number * sectors_per_chunk + chunk_offset;
1647
112bf897 1648 check = raid5_compute_sector(conf, r_sector,
784052ec 1649 previous, &dummy1, &sh2);
911d4ee8
N
1650 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
1651 || sh2.qd_idx != sh->qd_idx) {
14f8d26b 1652 printk(KERN_ERR "compute_blocknr: map not correct\n");
1da177e4
LT
1653 return 0;
1654 }
1655 return r_sector;
1656}
1657
1658
1659
1660/*
16a53ecc
N
1661 * Copy data between a page in the stripe cache, and one or more bion
1662 * The page could align with the middle of the bio, or there could be
1663 * several bion, each with several bio_vecs, which cover part of the page
1664 * Multiple bion are linked together on bi_next. There may be extras
1665 * at the end of this list. We ignore them.
1da177e4
LT
1666 */
1667static void copy_data(int frombio, struct bio *bio,
1668 struct page *page,
1669 sector_t sector)
1670{
1671 char *pa = page_address(page);
1672 struct bio_vec *bvl;
1673 int i;
1674 int page_offset;
1675
1676 if (bio->bi_sector >= sector)
1677 page_offset = (signed)(bio->bi_sector - sector) * 512;
1678 else
1679 page_offset = (signed)(sector - bio->bi_sector) * -512;
1680 bio_for_each_segment(bvl, bio, i) {
1681 int len = bio_iovec_idx(bio,i)->bv_len;
1682 int clen;
1683 int b_offset = 0;
1684
1685 if (page_offset < 0) {
1686 b_offset = -page_offset;
1687 page_offset += b_offset;
1688 len -= b_offset;
1689 }
1690
1691 if (len > 0 && page_offset + len > STRIPE_SIZE)
1692 clen = STRIPE_SIZE - page_offset;
1693 else clen = len;
16a53ecc 1694
1da177e4
LT
1695 if (clen > 0) {
1696 char *ba = __bio_kmap_atomic(bio, i, KM_USER0);
1697 if (frombio)
1698 memcpy(pa+page_offset, ba+b_offset, clen);
1699 else
1700 memcpy(ba+b_offset, pa+page_offset, clen);
1701 __bio_kunmap_atomic(ba, KM_USER0);
1702 }
1703 if (clen < len) /* hit end of page */
1704 break;
1705 page_offset += len;
1706 }
1707}
1708
9bc89cd8
DW
1709#define check_xor() do { \
1710 if (count == MAX_XOR_BLOCKS) { \
1711 xor_blocks(count, STRIPE_SIZE, dest, ptr);\
1712 count = 0; \
1713 } \
1da177e4
LT
1714 } while(0)
1715
16a53ecc
N
1716static void compute_parity6(struct stripe_head *sh, int method)
1717{
bff61975 1718 raid5_conf_t *conf = sh->raid_conf;
d0dabf7e 1719 int i, pd_idx, qd_idx, d0_idx, disks = sh->disks, count;
67cc2b81 1720 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
16a53ecc
N
1721 struct bio *chosen;
1722 /**** FIX THIS: This could be very bad if disks is close to 256 ****/
67cc2b81 1723 void *ptrs[syndrome_disks+2];
16a53ecc 1724
d0dabf7e
N
1725 pd_idx = sh->pd_idx;
1726 qd_idx = sh->qd_idx;
1727 d0_idx = raid6_d0(sh);
16a53ecc 1728
45b4233c 1729 pr_debug("compute_parity, stripe %llu, method %d\n",
16a53ecc
N
1730 (unsigned long long)sh->sector, method);
1731
1732 switch(method) {
1733 case READ_MODIFY_WRITE:
1734 BUG(); /* READ_MODIFY_WRITE N/A for RAID-6 */
1735 case RECONSTRUCT_WRITE:
1736 for (i= disks; i-- ;)
1737 if ( i != pd_idx && i != qd_idx && sh->dev[i].towrite ) {
1738 chosen = sh->dev[i].towrite;
1739 sh->dev[i].towrite = NULL;
1740
1741 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1742 wake_up(&conf->wait_for_overlap);
1743
52e5f9d1 1744 BUG_ON(sh->dev[i].written);
16a53ecc
N
1745 sh->dev[i].written = chosen;
1746 }
1747 break;
1748 case CHECK_PARITY:
1749 BUG(); /* Not implemented yet */
1750 }
1751
1752 for (i = disks; i--;)
1753 if (sh->dev[i].written) {
1754 sector_t sector = sh->dev[i].sector;
1755 struct bio *wbi = sh->dev[i].written;
1756 while (wbi && wbi->bi_sector < sector + STRIPE_SECTORS) {
1757 copy_data(1, wbi, sh->dev[i].page, sector);
1758 wbi = r5_next_bio(wbi, sector);
1759 }
1760
1761 set_bit(R5_LOCKED, &sh->dev[i].flags);
1762 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1763 }
1764
d0dabf7e 1765 /* Note that unlike RAID-5, the ordering of the disks matters greatly.*/
67cc2b81
N
1766
1767 for (i = 0; i < disks; i++)
1768 ptrs[i] = (void *)raid6_empty_zero_page;
1769
d0dabf7e
N
1770 count = 0;
1771 i = d0_idx;
1772 do {
67cc2b81
N
1773 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1774
d0dabf7e 1775 ptrs[slot] = page_address(sh->dev[i].page);
67cc2b81 1776 if (slot < syndrome_disks &&
d0dabf7e
N
1777 !test_bit(R5_UPTODATE, &sh->dev[i].flags)) {
1778 printk(KERN_ERR "block %d/%d not uptodate "
1779 "on parity calc\n", i, count);
1780 BUG();
1781 }
67cc2b81 1782
d0dabf7e
N
1783 i = raid6_next_disk(i, disks);
1784 } while (i != d0_idx);
67cc2b81 1785 BUG_ON(count != syndrome_disks);
16a53ecc 1786
67cc2b81 1787 raid6_call.gen_syndrome(syndrome_disks+2, STRIPE_SIZE, ptrs);
16a53ecc
N
1788
1789 switch(method) {
1790 case RECONSTRUCT_WRITE:
1791 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1792 set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
1793 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
1794 set_bit(R5_LOCKED, &sh->dev[qd_idx].flags);
1795 break;
1796 case UPDATE_PARITY:
1797 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1798 set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
1799 break;
1800 }
1801}
1802
1803
1804/* Compute one missing block */
1805static void compute_block_1(struct stripe_head *sh, int dd_idx, int nozero)
1806{
f416885e 1807 int i, count, disks = sh->disks;
9bc89cd8 1808 void *ptr[MAX_XOR_BLOCKS], *dest, *p;
d0dabf7e 1809 int qd_idx = sh->qd_idx;
16a53ecc 1810
45b4233c 1811 pr_debug("compute_block_1, stripe %llu, idx %d\n",
16a53ecc
N
1812 (unsigned long long)sh->sector, dd_idx);
1813
1814 if ( dd_idx == qd_idx ) {
1815 /* We're actually computing the Q drive */
1816 compute_parity6(sh, UPDATE_PARITY);
1817 } else {
9bc89cd8
DW
1818 dest = page_address(sh->dev[dd_idx].page);
1819 if (!nozero) memset(dest, 0, STRIPE_SIZE);
1820 count = 0;
16a53ecc
N
1821 for (i = disks ; i--; ) {
1822 if (i == dd_idx || i == qd_idx)
1823 continue;
1824 p = page_address(sh->dev[i].page);
1825 if (test_bit(R5_UPTODATE, &sh->dev[i].flags))
1826 ptr[count++] = p;
1827 else
1828 printk("compute_block() %d, stripe %llu, %d"
1829 " not present\n", dd_idx,
1830 (unsigned long long)sh->sector, i);
1831
1832 check_xor();
1833 }
9bc89cd8
DW
1834 if (count)
1835 xor_blocks(count, STRIPE_SIZE, dest, ptr);
16a53ecc
N
1836 if (!nozero) set_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1837 else clear_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1838 }
1839}
1840
1841/* Compute two missing blocks */
1842static void compute_block_2(struct stripe_head *sh, int dd_idx1, int dd_idx2)
1843{
f416885e 1844 int i, count, disks = sh->disks;
67cc2b81 1845 int syndrome_disks = sh->ddf_layout ? disks : disks-2;
d0dabf7e
N
1846 int d0_idx = raid6_d0(sh);
1847 int faila = -1, failb = -1;
1848 /**** FIX THIS: This could be very bad if disks is close to 256 ****/
67cc2b81 1849 void *ptrs[syndrome_disks+2];
16a53ecc 1850
67cc2b81
N
1851 for (i = 0; i < disks ; i++)
1852 ptrs[i] = (void *)raid6_empty_zero_page;
d0dabf7e
N
1853 count = 0;
1854 i = d0_idx;
1855 do {
67cc2b81
N
1856 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1857
d0dabf7e 1858 ptrs[slot] = page_address(sh->dev[i].page);
67cc2b81 1859
d0dabf7e
N
1860 if (i == dd_idx1)
1861 faila = slot;
1862 if (i == dd_idx2)
1863 failb = slot;
1864 i = raid6_next_disk(i, disks);
1865 } while (i != d0_idx);
67cc2b81 1866 BUG_ON(count != syndrome_disks);
16a53ecc
N
1867
1868 BUG_ON(faila == failb);
1869 if ( failb < faila ) { int tmp = faila; faila = failb; failb = tmp; }
1870
45b4233c 1871 pr_debug("compute_block_2, stripe %llu, idx %d,%d (%d,%d)\n",
d0dabf7e
N
1872 (unsigned long long)sh->sector, dd_idx1, dd_idx2,
1873 faila, failb);
16a53ecc 1874
67cc2b81 1875 if (failb == syndrome_disks+1) {
16a53ecc 1876 /* Q disk is one of the missing disks */
67cc2b81 1877 if (faila == syndrome_disks) {
16a53ecc
N
1878 /* Missing P+Q, just recompute */
1879 compute_parity6(sh, UPDATE_PARITY);
1880 return;
1881 } else {
1882 /* We're missing D+Q; recompute D from P */
d0dabf7e
N
1883 compute_block_1(sh, ((dd_idx1 == sh->qd_idx) ?
1884 dd_idx2 : dd_idx1),
1885 0);
16a53ecc
N
1886 compute_parity6(sh, UPDATE_PARITY); /* Is this necessary? */
1887 return;
1888 }
1889 }
1890
d0dabf7e 1891 /* We're missing D+P or D+D; */
67cc2b81 1892 if (failb == syndrome_disks) {
d0dabf7e 1893 /* We're missing D+P. */
67cc2b81 1894 raid6_datap_recov(syndrome_disks+2, STRIPE_SIZE, faila, ptrs);
d0dabf7e
N
1895 } else {
1896 /* We're missing D+D. */
67cc2b81
N
1897 raid6_2data_recov(syndrome_disks+2, STRIPE_SIZE, faila, failb,
1898 ptrs);
16a53ecc 1899 }
d0dabf7e
N
1900
1901 /* Both the above update both missing blocks */
1902 set_bit(R5_UPTODATE, &sh->dev[dd_idx1].flags);
1903 set_bit(R5_UPTODATE, &sh->dev[dd_idx2].flags);
16a53ecc
N
1904}
1905
600aa109 1906static void
1fe797e6 1907schedule_reconstruction5(struct stripe_head *sh, struct stripe_head_state *s,
600aa109 1908 int rcw, int expand)
e33129d8
DW
1909{
1910 int i, pd_idx = sh->pd_idx, disks = sh->disks;
e33129d8
DW
1911
1912 if (rcw) {
1913 /* if we are not expanding this is a proper write request, and
1914 * there will be bios with new data to be drained into the
1915 * stripe cache
1916 */
1917 if (!expand) {
600aa109
DW
1918 sh->reconstruct_state = reconstruct_state_drain_run;
1919 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
1920 } else
1921 sh->reconstruct_state = reconstruct_state_run;
16a53ecc 1922
600aa109 1923 set_bit(STRIPE_OP_POSTXOR, &s->ops_request);
e33129d8
DW
1924
1925 for (i = disks; i--; ) {
1926 struct r5dev *dev = &sh->dev[i];
1927
1928 if (dev->towrite) {
1929 set_bit(R5_LOCKED, &dev->flags);
d8ee0728 1930 set_bit(R5_Wantdrain, &dev->flags);
e33129d8
DW
1931 if (!expand)
1932 clear_bit(R5_UPTODATE, &dev->flags);
600aa109 1933 s->locked++;
e33129d8
DW
1934 }
1935 }
600aa109 1936 if (s->locked + 1 == disks)
8b3e6cdc
DW
1937 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
1938 atomic_inc(&sh->raid_conf->pending_full_writes);
e33129d8
DW
1939 } else {
1940 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
1941 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
1942
d8ee0728 1943 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
600aa109
DW
1944 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
1945 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
1946 set_bit(STRIPE_OP_POSTXOR, &s->ops_request);
e33129d8
DW
1947
1948 for (i = disks; i--; ) {
1949 struct r5dev *dev = &sh->dev[i];
1950 if (i == pd_idx)
1951 continue;
1952
e33129d8
DW
1953 if (dev->towrite &&
1954 (test_bit(R5_UPTODATE, &dev->flags) ||
d8ee0728
DW
1955 test_bit(R5_Wantcompute, &dev->flags))) {
1956 set_bit(R5_Wantdrain, &dev->flags);
e33129d8
DW
1957 set_bit(R5_LOCKED, &dev->flags);
1958 clear_bit(R5_UPTODATE, &dev->flags);
600aa109 1959 s->locked++;
e33129d8
DW
1960 }
1961 }
1962 }
1963
1964 /* keep the parity disk locked while asynchronous operations
1965 * are in flight
1966 */
1967 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
1968 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
600aa109 1969 s->locked++;
e33129d8 1970
600aa109 1971 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
e46b272b 1972 __func__, (unsigned long long)sh->sector,
600aa109 1973 s->locked, s->ops_request);
e33129d8 1974}
16a53ecc 1975
1da177e4
LT
1976/*
1977 * Each stripe/dev can have one or more bion attached.
16a53ecc 1978 * toread/towrite point to the first in a chain.
1da177e4
LT
1979 * The bi_next chain must be in order.
1980 */
1981static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
1982{
1983 struct bio **bip;
1984 raid5_conf_t *conf = sh->raid_conf;
72626685 1985 int firstwrite=0;
1da177e4 1986
45b4233c 1987 pr_debug("adding bh b#%llu to stripe s#%llu\n",
1da177e4
LT
1988 (unsigned long long)bi->bi_sector,
1989 (unsigned long long)sh->sector);
1990
1991
1992 spin_lock(&sh->lock);
1993 spin_lock_irq(&conf->device_lock);
72626685 1994 if (forwrite) {
1da177e4 1995 bip = &sh->dev[dd_idx].towrite;
72626685
N
1996 if (*bip == NULL && sh->dev[dd_idx].written == NULL)
1997 firstwrite = 1;
1998 } else
1da177e4
LT
1999 bip = &sh->dev[dd_idx].toread;
2000 while (*bip && (*bip)->bi_sector < bi->bi_sector) {
2001 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
2002 goto overlap;
2003 bip = & (*bip)->bi_next;
2004 }
2005 if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
2006 goto overlap;
2007
78bafebd 2008 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
1da177e4
LT
2009 if (*bip)
2010 bi->bi_next = *bip;
2011 *bip = bi;
960e739d 2012 bi->bi_phys_segments++;
1da177e4
LT
2013 spin_unlock_irq(&conf->device_lock);
2014 spin_unlock(&sh->lock);
2015
45b4233c 2016 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
1da177e4
LT
2017 (unsigned long long)bi->bi_sector,
2018 (unsigned long long)sh->sector, dd_idx);
2019
72626685 2020 if (conf->mddev->bitmap && firstwrite) {
72626685
N
2021 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2022 STRIPE_SECTORS, 0);
ae3c20cc 2023 sh->bm_seq = conf->seq_flush+1;
72626685
N
2024 set_bit(STRIPE_BIT_DELAY, &sh->state);
2025 }
2026
1da177e4
LT
2027 if (forwrite) {
2028 /* check if page is covered */
2029 sector_t sector = sh->dev[dd_idx].sector;
2030 for (bi=sh->dev[dd_idx].towrite;
2031 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2032 bi && bi->bi_sector <= sector;
2033 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2034 if (bi->bi_sector + (bi->bi_size>>9) >= sector)
2035 sector = bi->bi_sector + (bi->bi_size>>9);
2036 }
2037 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2038 set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2039 }
2040 return 1;
2041
2042 overlap:
2043 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2044 spin_unlock_irq(&conf->device_lock);
2045 spin_unlock(&sh->lock);
2046 return 0;
2047}
2048
29269553
N
2049static void end_reshape(raid5_conf_t *conf);
2050
16a53ecc
N
2051static int page_is_zero(struct page *p)
2052{
2053 char *a = page_address(p);
2054 return ((*(u32*)a) == 0 &&
2055 memcmp(a, a+4, STRIPE_SIZE-4)==0);
2056}
2057
911d4ee8
N
2058static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
2059 struct stripe_head *sh)
ccfcc3c1 2060{
784052ec
N
2061 int sectors_per_chunk =
2062 previous ? (conf->prev_chunk >> 9)
2063 : (conf->chunk_size >> 9);
911d4ee8 2064 int dd_idx;
2d2063ce 2065 int chunk_offset = sector_div(stripe, sectors_per_chunk);
112bf897 2066 int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2d2063ce 2067
112bf897
N
2068 raid5_compute_sector(conf,
2069 stripe * (disks - conf->max_degraded)
b875e531 2070 *sectors_per_chunk + chunk_offset,
112bf897 2071 previous,
911d4ee8 2072 &dd_idx, sh);
ccfcc3c1
N
2073}
2074
a4456856 2075static void
1fe797e6 2076handle_failed_stripe(raid5_conf_t *conf, struct stripe_head *sh,
a4456856
DW
2077 struct stripe_head_state *s, int disks,
2078 struct bio **return_bi)
2079{
2080 int i;
2081 for (i = disks; i--; ) {
2082 struct bio *bi;
2083 int bitmap_end = 0;
2084
2085 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2086 mdk_rdev_t *rdev;
2087 rcu_read_lock();
2088 rdev = rcu_dereference(conf->disks[i].rdev);
2089 if (rdev && test_bit(In_sync, &rdev->flags))
2090 /* multiple read failures in one stripe */
2091 md_error(conf->mddev, rdev);
2092 rcu_read_unlock();
2093 }
2094 spin_lock_irq(&conf->device_lock);
2095 /* fail all writes first */
2096 bi = sh->dev[i].towrite;
2097 sh->dev[i].towrite = NULL;
2098 if (bi) {
2099 s->to_write--;
2100 bitmap_end = 1;
2101 }
2102
2103 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2104 wake_up(&conf->wait_for_overlap);
2105
2106 while (bi && bi->bi_sector <
2107 sh->dev[i].sector + STRIPE_SECTORS) {
2108 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2109 clear_bit(BIO_UPTODATE, &bi->bi_flags);
960e739d 2110 if (!raid5_dec_bi_phys_segments(bi)) {
a4456856
DW
2111 md_write_end(conf->mddev);
2112 bi->bi_next = *return_bi;
2113 *return_bi = bi;
2114 }
2115 bi = nextbi;
2116 }
2117 /* and fail all 'written' */
2118 bi = sh->dev[i].written;
2119 sh->dev[i].written = NULL;
2120 if (bi) bitmap_end = 1;
2121 while (bi && bi->bi_sector <
2122 sh->dev[i].sector + STRIPE_SECTORS) {
2123 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2124 clear_bit(BIO_UPTODATE, &bi->bi_flags);
960e739d 2125 if (!raid5_dec_bi_phys_segments(bi)) {
a4456856
DW
2126 md_write_end(conf->mddev);
2127 bi->bi_next = *return_bi;
2128 *return_bi = bi;
2129 }
2130 bi = bi2;
2131 }
2132
b5e98d65
DW
2133 /* fail any reads if this device is non-operational and
2134 * the data has not reached the cache yet.
2135 */
2136 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2137 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2138 test_bit(R5_ReadError, &sh->dev[i].flags))) {
a4456856
DW
2139 bi = sh->dev[i].toread;
2140 sh->dev[i].toread = NULL;
2141 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2142 wake_up(&conf->wait_for_overlap);
2143 if (bi) s->to_read--;
2144 while (bi && bi->bi_sector <
2145 sh->dev[i].sector + STRIPE_SECTORS) {
2146 struct bio *nextbi =
2147 r5_next_bio(bi, sh->dev[i].sector);
2148 clear_bit(BIO_UPTODATE, &bi->bi_flags);
960e739d 2149 if (!raid5_dec_bi_phys_segments(bi)) {
a4456856
DW
2150 bi->bi_next = *return_bi;
2151 *return_bi = bi;
2152 }
2153 bi = nextbi;
2154 }
2155 }
2156 spin_unlock_irq(&conf->device_lock);
2157 if (bitmap_end)
2158 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2159 STRIPE_SECTORS, 0, 0);
2160 }
2161
8b3e6cdc
DW
2162 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2163 if (atomic_dec_and_test(&conf->pending_full_writes))
2164 md_wakeup_thread(conf->mddev->thread);
a4456856
DW
2165}
2166
1fe797e6
DW
2167/* fetch_block5 - checks the given member device to see if its data needs
2168 * to be read or computed to satisfy a request.
2169 *
2170 * Returns 1 when no more member devices need to be checked, otherwise returns
2171 * 0 to tell the loop in handle_stripe_fill5 to continue
f38e1219 2172 */
1fe797e6
DW
2173static int fetch_block5(struct stripe_head *sh, struct stripe_head_state *s,
2174 int disk_idx, int disks)
f38e1219
DW
2175{
2176 struct r5dev *dev = &sh->dev[disk_idx];
2177 struct r5dev *failed_dev = &sh->dev[s->failed_num];
2178
f38e1219
DW
2179 /* is the data in this block needed, and can we get it? */
2180 if (!test_bit(R5_LOCKED, &dev->flags) &&
1fe797e6
DW
2181 !test_bit(R5_UPTODATE, &dev->flags) &&
2182 (dev->toread ||
2183 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2184 s->syncing || s->expanding ||
2185 (s->failed &&
2186 (failed_dev->toread ||
2187 (failed_dev->towrite &&
2188 !test_bit(R5_OVERWRITE, &failed_dev->flags)))))) {
976ea8d4
DW
2189 /* We would like to get this block, possibly by computing it,
2190 * otherwise read it if the backing disk is insync
f38e1219
DW
2191 */
2192 if ((s->uptodate == disks - 1) &&
ecc65c9b 2193 (s->failed && disk_idx == s->failed_num)) {
976ea8d4
DW
2194 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2195 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
f38e1219
DW
2196 set_bit(R5_Wantcompute, &dev->flags);
2197 sh->ops.target = disk_idx;
2198 s->req_compute = 1;
f38e1219
DW
2199 /* Careful: from this point on 'uptodate' is in the eye
2200 * of raid5_run_ops which services 'compute' operations
2201 * before writes. R5_Wantcompute flags a block that will
2202 * be R5_UPTODATE by the time it is needed for a
2203 * subsequent operation.
2204 */
2205 s->uptodate++;
1fe797e6 2206 return 1; /* uptodate + compute == disks */
7a1fc53c 2207 } else if (test_bit(R5_Insync, &dev->flags)) {
f38e1219
DW
2208 set_bit(R5_LOCKED, &dev->flags);
2209 set_bit(R5_Wantread, &dev->flags);
f38e1219
DW
2210 s->locked++;
2211 pr_debug("Reading block %d (sync=%d)\n", disk_idx,
2212 s->syncing);
2213 }
2214 }
2215
1fe797e6 2216 return 0;
f38e1219
DW
2217}
2218
1fe797e6
DW
2219/**
2220 * handle_stripe_fill5 - read or compute data to satisfy pending requests.
2221 */
2222static void handle_stripe_fill5(struct stripe_head *sh,
a4456856
DW
2223 struct stripe_head_state *s, int disks)
2224{
2225 int i;
f38e1219 2226
f38e1219
DW
2227 /* look for blocks to read/compute, skip this if a compute
2228 * is already in flight, or if the stripe contents are in the
2229 * midst of changing due to a write
2230 */
976ea8d4 2231 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
1fe797e6 2232 !sh->reconstruct_state)
f38e1219 2233 for (i = disks; i--; )
1fe797e6 2234 if (fetch_block5(sh, s, i, disks))
f38e1219 2235 break;
a4456856
DW
2236 set_bit(STRIPE_HANDLE, &sh->state);
2237}
2238
1fe797e6 2239static void handle_stripe_fill6(struct stripe_head *sh,
a4456856
DW
2240 struct stripe_head_state *s, struct r6_state *r6s,
2241 int disks)
2242{
2243 int i;
2244 for (i = disks; i--; ) {
2245 struct r5dev *dev = &sh->dev[i];
2246 if (!test_bit(R5_LOCKED, &dev->flags) &&
2247 !test_bit(R5_UPTODATE, &dev->flags) &&
2248 (dev->toread || (dev->towrite &&
2249 !test_bit(R5_OVERWRITE, &dev->flags)) ||
2250 s->syncing || s->expanding ||
2251 (s->failed >= 1 &&
2252 (sh->dev[r6s->failed_num[0]].toread ||
2253 s->to_write)) ||
2254 (s->failed >= 2 &&
2255 (sh->dev[r6s->failed_num[1]].toread ||
2256 s->to_write)))) {
2257 /* we would like to get this block, possibly
2258 * by computing it, but we might not be able to
2259 */
c337869d
DW
2260 if ((s->uptodate == disks - 1) &&
2261 (s->failed && (i == r6s->failed_num[0] ||
2262 i == r6s->failed_num[1]))) {
45b4233c 2263 pr_debug("Computing stripe %llu block %d\n",
a4456856
DW
2264 (unsigned long long)sh->sector, i);
2265 compute_block_1(sh, i, 0);
2266 s->uptodate++;
2267 } else if ( s->uptodate == disks-2 && s->failed >= 2 ) {
2268 /* Computing 2-failure is *very* expensive; only
2269 * do it if failed >= 2
2270 */
2271 int other;
2272 for (other = disks; other--; ) {
2273 if (other == i)
2274 continue;
2275 if (!test_bit(R5_UPTODATE,
2276 &sh->dev[other].flags))
2277 break;
2278 }
2279 BUG_ON(other < 0);
45b4233c 2280 pr_debug("Computing stripe %llu blocks %d,%d\n",
a4456856
DW
2281 (unsigned long long)sh->sector,
2282 i, other);
2283 compute_block_2(sh, i, other);
2284 s->uptodate += 2;
2285 } else if (test_bit(R5_Insync, &dev->flags)) {
2286 set_bit(R5_LOCKED, &dev->flags);
2287 set_bit(R5_Wantread, &dev->flags);
2288 s->locked++;
45b4233c 2289 pr_debug("Reading block %d (sync=%d)\n",
a4456856
DW
2290 i, s->syncing);
2291 }
2292 }
2293 }
2294 set_bit(STRIPE_HANDLE, &sh->state);
2295}
2296
2297
1fe797e6 2298/* handle_stripe_clean_event
a4456856
DW
2299 * any written block on an uptodate or failed drive can be returned.
2300 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2301 * never LOCKED, so we don't need to test 'failed' directly.
2302 */
1fe797e6 2303static void handle_stripe_clean_event(raid5_conf_t *conf,
a4456856
DW
2304 struct stripe_head *sh, int disks, struct bio **return_bi)
2305{
2306 int i;
2307 struct r5dev *dev;
2308
2309 for (i = disks; i--; )
2310 if (sh->dev[i].written) {
2311 dev = &sh->dev[i];
2312 if (!test_bit(R5_LOCKED, &dev->flags) &&
2313 test_bit(R5_UPTODATE, &dev->flags)) {
2314 /* We can return any write requests */
2315 struct bio *wbi, *wbi2;
2316 int bitmap_end = 0;
45b4233c 2317 pr_debug("Return write for disc %d\n", i);
a4456856
DW
2318 spin_lock_irq(&conf->device_lock);
2319 wbi = dev->written;
2320 dev->written = NULL;
2321 while (wbi && wbi->bi_sector <
2322 dev->sector + STRIPE_SECTORS) {
2323 wbi2 = r5_next_bio(wbi, dev->sector);
960e739d 2324 if (!raid5_dec_bi_phys_segments(wbi)) {
a4456856
DW
2325 md_write_end(conf->mddev);
2326 wbi->bi_next = *return_bi;
2327 *return_bi = wbi;
2328 }
2329 wbi = wbi2;
2330 }
2331 if (dev->towrite == NULL)
2332 bitmap_end = 1;
2333 spin_unlock_irq(&conf->device_lock);
2334 if (bitmap_end)
2335 bitmap_endwrite(conf->mddev->bitmap,
2336 sh->sector,
2337 STRIPE_SECTORS,
2338 !test_bit(STRIPE_DEGRADED, &sh->state),
2339 0);
2340 }
2341 }
8b3e6cdc
DW
2342
2343 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2344 if (atomic_dec_and_test(&conf->pending_full_writes))
2345 md_wakeup_thread(conf->mddev->thread);
a4456856
DW
2346}
2347
1fe797e6 2348static void handle_stripe_dirtying5(raid5_conf_t *conf,
a4456856
DW
2349 struct stripe_head *sh, struct stripe_head_state *s, int disks)
2350{
2351 int rmw = 0, rcw = 0, i;
2352 for (i = disks; i--; ) {
2353 /* would I have to read this buffer for read_modify_write */
2354 struct r5dev *dev = &sh->dev[i];
2355 if ((dev->towrite || i == sh->pd_idx) &&
2356 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
2357 !(test_bit(R5_UPTODATE, &dev->flags) ||
2358 test_bit(R5_Wantcompute, &dev->flags))) {
a4456856
DW
2359 if (test_bit(R5_Insync, &dev->flags))
2360 rmw++;
2361 else
2362 rmw += 2*disks; /* cannot read it */
2363 }
2364 /* Would I have to read this buffer for reconstruct_write */
2365 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2366 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
2367 !(test_bit(R5_UPTODATE, &dev->flags) ||
2368 test_bit(R5_Wantcompute, &dev->flags))) {
2369 if (test_bit(R5_Insync, &dev->flags)) rcw++;
a4456856
DW
2370 else
2371 rcw += 2*disks;
2372 }
2373 }
45b4233c 2374 pr_debug("for sector %llu, rmw=%d rcw=%d\n",
a4456856
DW
2375 (unsigned long long)sh->sector, rmw, rcw);
2376 set_bit(STRIPE_HANDLE, &sh->state);
2377 if (rmw < rcw && rmw > 0)
2378 /* prefer read-modify-write, but need to get some data */
2379 for (i = disks; i--; ) {
2380 struct r5dev *dev = &sh->dev[i];
2381 if ((dev->towrite || i == sh->pd_idx) &&
2382 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
2383 !(test_bit(R5_UPTODATE, &dev->flags) ||
2384 test_bit(R5_Wantcompute, &dev->flags)) &&
a4456856
DW
2385 test_bit(R5_Insync, &dev->flags)) {
2386 if (
2387 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
45b4233c 2388 pr_debug("Read_old block "
a4456856
DW
2389 "%d for r-m-w\n", i);
2390 set_bit(R5_LOCKED, &dev->flags);
2391 set_bit(R5_Wantread, &dev->flags);
2392 s->locked++;
2393 } else {
2394 set_bit(STRIPE_DELAYED, &sh->state);
2395 set_bit(STRIPE_HANDLE, &sh->state);
2396 }
2397 }
2398 }
2399 if (rcw <= rmw && rcw > 0)
2400 /* want reconstruct write, but need to get some data */
2401 for (i = disks; i--; ) {
2402 struct r5dev *dev = &sh->dev[i];
2403 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2404 i != sh->pd_idx &&
2405 !test_bit(R5_LOCKED, &dev->flags) &&
f38e1219
DW
2406 !(test_bit(R5_UPTODATE, &dev->flags) ||
2407 test_bit(R5_Wantcompute, &dev->flags)) &&
a4456856
DW
2408 test_bit(R5_Insync, &dev->flags)) {
2409 if (
2410 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
45b4233c 2411 pr_debug("Read_old block "
a4456856
DW
2412 "%d for Reconstruct\n", i);
2413 set_bit(R5_LOCKED, &dev->flags);
2414 set_bit(R5_Wantread, &dev->flags);
2415 s->locked++;
2416 } else {
2417 set_bit(STRIPE_DELAYED, &sh->state);
2418 set_bit(STRIPE_HANDLE, &sh->state);
2419 }
2420 }
2421 }
2422 /* now if nothing is locked, and if we have enough data,
2423 * we can start a write request
2424 */
f38e1219
DW
2425 /* since handle_stripe can be called at any time we need to handle the
2426 * case where a compute block operation has been submitted and then a
2427 * subsequent call wants to start a write request. raid5_run_ops only
2428 * handles the case where compute block and postxor are requested
2429 * simultaneously. If this is not the case then new writes need to be
2430 * held off until the compute completes.
2431 */
976ea8d4
DW
2432 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2433 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2434 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
1fe797e6 2435 schedule_reconstruction5(sh, s, rcw == 0, 0);
a4456856
DW
2436}
2437
1fe797e6 2438static void handle_stripe_dirtying6(raid5_conf_t *conf,
a4456856
DW
2439 struct stripe_head *sh, struct stripe_head_state *s,
2440 struct r6_state *r6s, int disks)
2441{
2442 int rcw = 0, must_compute = 0, pd_idx = sh->pd_idx, i;
34e04e87 2443 int qd_idx = sh->qd_idx;
a4456856
DW
2444 for (i = disks; i--; ) {
2445 struct r5dev *dev = &sh->dev[i];
2446 /* Would I have to read this buffer for reconstruct_write */
2447 if (!test_bit(R5_OVERWRITE, &dev->flags)
2448 && i != pd_idx && i != qd_idx
2449 && (!test_bit(R5_LOCKED, &dev->flags)
2450 ) &&
2451 !test_bit(R5_UPTODATE, &dev->flags)) {
2452 if (test_bit(R5_Insync, &dev->flags)) rcw++;
2453 else {
45b4233c 2454 pr_debug("raid6: must_compute: "
a4456856
DW
2455 "disk %d flags=%#lx\n", i, dev->flags);
2456 must_compute++;
2457 }
2458 }
2459 }
45b4233c 2460 pr_debug("for sector %llu, rcw=%d, must_compute=%d\n",
a4456856
DW
2461 (unsigned long long)sh->sector, rcw, must_compute);
2462 set_bit(STRIPE_HANDLE, &sh->state);
2463
2464 if (rcw > 0)
2465 /* want reconstruct write, but need to get some data */
2466 for (i = disks; i--; ) {
2467 struct r5dev *dev = &sh->dev[i];
2468 if (!test_bit(R5_OVERWRITE, &dev->flags)
2469 && !(s->failed == 0 && (i == pd_idx || i == qd_idx))
2470 && !test_bit(R5_LOCKED, &dev->flags) &&
2471 !test_bit(R5_UPTODATE, &dev->flags) &&
2472 test_bit(R5_Insync, &dev->flags)) {
2473 if (
2474 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
45b4233c 2475 pr_debug("Read_old stripe %llu "
a4456856
DW
2476 "block %d for Reconstruct\n",
2477 (unsigned long long)sh->sector, i);
2478 set_bit(R5_LOCKED, &dev->flags);
2479 set_bit(R5_Wantread, &dev->flags);
2480 s->locked++;
2481 } else {
45b4233c 2482 pr_debug("Request delayed stripe %llu "
a4456856
DW
2483 "block %d for Reconstruct\n",
2484 (unsigned long long)sh->sector, i);
2485 set_bit(STRIPE_DELAYED, &sh->state);
2486 set_bit(STRIPE_HANDLE, &sh->state);
2487 }
2488 }
2489 }
2490 /* now if nothing is locked, and if we have enough data, we can start a
2491 * write request
2492 */
2493 if (s->locked == 0 && rcw == 0 &&
2494 !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
2495 if (must_compute > 0) {
2496 /* We have failed blocks and need to compute them */
2497 switch (s->failed) {
2498 case 0:
2499 BUG();
2500 case 1:
2501 compute_block_1(sh, r6s->failed_num[0], 0);
2502 break;
2503 case 2:
2504 compute_block_2(sh, r6s->failed_num[0],
2505 r6s->failed_num[1]);
2506 break;
2507 default: /* This request should have been failed? */
2508 BUG();
2509 }
2510 }
2511
45b4233c 2512 pr_debug("Computing parity for stripe %llu\n",
a4456856
DW
2513 (unsigned long long)sh->sector);
2514 compute_parity6(sh, RECONSTRUCT_WRITE);
2515 /* now every locked buffer is ready to be written */
2516 for (i = disks; i--; )
2517 if (test_bit(R5_LOCKED, &sh->dev[i].flags)) {
45b4233c 2518 pr_debug("Writing stripe %llu block %d\n",
a4456856
DW
2519 (unsigned long long)sh->sector, i);
2520 s->locked++;
2521 set_bit(R5_Wantwrite, &sh->dev[i].flags);
2522 }
8b3e6cdc
DW
2523 if (s->locked == disks)
2524 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2525 atomic_inc(&conf->pending_full_writes);
a4456856
DW
2526 /* after a RECONSTRUCT_WRITE, the stripe MUST be in-sync */
2527 set_bit(STRIPE_INSYNC, &sh->state);
2528
2529 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2530 atomic_dec(&conf->preread_active_stripes);
2531 if (atomic_read(&conf->preread_active_stripes) <
2532 IO_THRESHOLD)
2533 md_wakeup_thread(conf->mddev->thread);
2534 }
2535 }
2536}
2537
2538static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
2539 struct stripe_head_state *s, int disks)
2540{
ecc65c9b 2541 struct r5dev *dev = NULL;
bd2ab670 2542
a4456856 2543 set_bit(STRIPE_HANDLE, &sh->state);
e89f8962 2544
ecc65c9b
DW
2545 switch (sh->check_state) {
2546 case check_state_idle:
2547 /* start a new check operation if there are no failures */
bd2ab670 2548 if (s->failed == 0) {
bd2ab670 2549 BUG_ON(s->uptodate != disks);
ecc65c9b
DW
2550 sh->check_state = check_state_run;
2551 set_bit(STRIPE_OP_CHECK, &s->ops_request);
bd2ab670 2552 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
bd2ab670 2553 s->uptodate--;
ecc65c9b 2554 break;
bd2ab670 2555 }
ecc65c9b
DW
2556 dev = &sh->dev[s->failed_num];
2557 /* fall through */
2558 case check_state_compute_result:
2559 sh->check_state = check_state_idle;
2560 if (!dev)
2561 dev = &sh->dev[sh->pd_idx];
2562
2563 /* check that a write has not made the stripe insync */
2564 if (test_bit(STRIPE_INSYNC, &sh->state))
2565 break;
c8894419 2566
a4456856 2567 /* either failed parity check, or recovery is happening */
a4456856
DW
2568 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2569 BUG_ON(s->uptodate != disks);
2570
2571 set_bit(R5_LOCKED, &dev->flags);
ecc65c9b 2572 s->locked++;
a4456856 2573 set_bit(R5_Wantwrite, &dev->flags);
830ea016 2574
a4456856 2575 clear_bit(STRIPE_DEGRADED, &sh->state);
a4456856 2576 set_bit(STRIPE_INSYNC, &sh->state);
ecc65c9b
DW
2577 break;
2578 case check_state_run:
2579 break; /* we will be called again upon completion */
2580 case check_state_check_result:
2581 sh->check_state = check_state_idle;
2582
2583 /* if a failure occurred during the check operation, leave
2584 * STRIPE_INSYNC not set and let the stripe be handled again
2585 */
2586 if (s->failed)
2587 break;
2588
2589 /* handle a successful check operation, if parity is correct
2590 * we are done. Otherwise update the mismatch count and repair
2591 * parity if !MD_RECOVERY_CHECK
2592 */
ad283ea4 2593 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
ecc65c9b
DW
2594 /* parity is correct (on disc,
2595 * not in buffer any more)
2596 */
2597 set_bit(STRIPE_INSYNC, &sh->state);
2598 else {
2599 conf->mddev->resync_mismatches += STRIPE_SECTORS;
2600 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2601 /* don't try to repair!! */
2602 set_bit(STRIPE_INSYNC, &sh->state);
2603 else {
2604 sh->check_state = check_state_compute_run;
976ea8d4 2605 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
ecc65c9b
DW
2606 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2607 set_bit(R5_Wantcompute,
2608 &sh->dev[sh->pd_idx].flags);
2609 sh->ops.target = sh->pd_idx;
2610 s->uptodate++;
2611 }
2612 }
2613 break;
2614 case check_state_compute_run:
2615 break;
2616 default:
2617 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2618 __func__, sh->check_state,
2619 (unsigned long long) sh->sector);
2620 BUG();
a4456856
DW
2621 }
2622}
2623
2624
2625static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
36d1c647
DW
2626 struct stripe_head_state *s,
2627 struct r6_state *r6s, int disks)
a4456856
DW
2628{
2629 int update_p = 0, update_q = 0;
2630 struct r5dev *dev;
2631 int pd_idx = sh->pd_idx;
34e04e87 2632 int qd_idx = sh->qd_idx;
36d1c647
DW
2633 unsigned long cpu;
2634 struct page *tmp_page;
a4456856
DW
2635
2636 set_bit(STRIPE_HANDLE, &sh->state);
2637
2638 BUG_ON(s->failed > 2);
2639 BUG_ON(s->uptodate < disks);
2640 /* Want to check and possibly repair P and Q.
2641 * However there could be one 'failed' device, in which
2642 * case we can only check one of them, possibly using the
2643 * other to generate missing data
2644 */
36d1c647
DW
2645 cpu = get_cpu();
2646 tmp_page = per_cpu_ptr(conf->percpu, cpu)->spare_page;
2647 if (s->failed == r6s->q_failed) {
2648 /* The only possible failed device holds 'Q', so it
2649 * makes sense to check P (If anything else were failed,
2650 * we would have used P to recreate it).
2651 */
2652 compute_block_1(sh, pd_idx, 1);
2653 if (!page_is_zero(sh->dev[pd_idx].page)) {
2654 compute_block_1(sh, pd_idx, 0);
2655 update_p = 1;
a4456856 2656 }
36d1c647
DW
2657 }
2658 if (!r6s->q_failed && s->failed < 2) {
2659 /* q is not failed, and we didn't use it to generate
2660 * anything, so it makes sense to check it
2661 */
2662 memcpy(page_address(tmp_page),
2663 page_address(sh->dev[qd_idx].page),
2664 STRIPE_SIZE);
2665 compute_parity6(sh, UPDATE_PARITY);
2666 if (memcmp(page_address(tmp_page),
2667 page_address(sh->dev[qd_idx].page),
2668 STRIPE_SIZE) != 0) {
2669 clear_bit(STRIPE_INSYNC, &sh->state);
2670 update_q = 1;
a4456856 2671 }
36d1c647
DW
2672 }
2673 put_cpu();
a4456856 2674
36d1c647
DW
2675 if (update_p || update_q) {
2676 conf->mddev->resync_mismatches += STRIPE_SECTORS;
2677 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2678 /* don't try to repair!! */
2679 update_p = update_q = 0;
2680 }
a4456856 2681
36d1c647
DW
2682 /* now write out any block on a failed drive,
2683 * or P or Q if they need it
2684 */
a4456856 2685
36d1c647
DW
2686 if (s->failed == 2) {
2687 dev = &sh->dev[r6s->failed_num[1]];
2688 s->locked++;
2689 set_bit(R5_LOCKED, &dev->flags);
2690 set_bit(R5_Wantwrite, &dev->flags);
2691 }
2692 if (s->failed >= 1) {
2693 dev = &sh->dev[r6s->failed_num[0]];
2694 s->locked++;
2695 set_bit(R5_LOCKED, &dev->flags);
2696 set_bit(R5_Wantwrite, &dev->flags);
2697 }
a4456856 2698
36d1c647
DW
2699 if (update_p) {
2700 dev = &sh->dev[pd_idx];
2701 s->locked++;
2702 set_bit(R5_LOCKED, &dev->flags);
2703 set_bit(R5_Wantwrite, &dev->flags);
2704 }
2705 if (update_q) {
2706 dev = &sh->dev[qd_idx];
2707 s->locked++;
2708 set_bit(R5_LOCKED, &dev->flags);
2709 set_bit(R5_Wantwrite, &dev->flags);
a4456856 2710 }
36d1c647
DW
2711 clear_bit(STRIPE_DEGRADED, &sh->state);
2712
2713 set_bit(STRIPE_INSYNC, &sh->state);
a4456856
DW
2714}
2715
2716static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh,
2717 struct r6_state *r6s)
2718{
2719 int i;
2720
2721 /* We have read all the blocks in this stripe and now we need to
2722 * copy some of them into a target stripe for expand.
2723 */
f0a50d37 2724 struct dma_async_tx_descriptor *tx = NULL;
a4456856
DW
2725 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2726 for (i = 0; i < sh->disks; i++)
34e04e87 2727 if (i != sh->pd_idx && i != sh->qd_idx) {
911d4ee8 2728 int dd_idx, j;
a4456856 2729 struct stripe_head *sh2;
a08abd8c 2730 struct async_submit_ctl submit;
a4456856 2731
784052ec 2732 sector_t bn = compute_blocknr(sh, i, 1);
911d4ee8
N
2733 sector_t s = raid5_compute_sector(conf, bn, 0,
2734 &dd_idx, NULL);
b5663ba4 2735 sh2 = get_active_stripe(conf, s, 0, 1);
a4456856
DW
2736 if (sh2 == NULL)
2737 /* so far only the early blocks of this stripe
2738 * have been requested. When later blocks
2739 * get requested, we will try again
2740 */
2741 continue;
2742 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
2743 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
2744 /* must have already done this block */
2745 release_stripe(sh2);
2746 continue;
2747 }
f0a50d37
DW
2748
2749 /* place all the copies on one channel */
a08abd8c 2750 init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
f0a50d37 2751 tx = async_memcpy(sh2->dev[dd_idx].page,
88ba2aa5 2752 sh->dev[i].page, 0, 0, STRIPE_SIZE,
a08abd8c 2753 &submit);
f0a50d37 2754
a4456856
DW
2755 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
2756 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
2757 for (j = 0; j < conf->raid_disks; j++)
2758 if (j != sh2->pd_idx &&
d0dabf7e 2759 (!r6s || j != sh2->qd_idx) &&
a4456856
DW
2760 !test_bit(R5_Expanded, &sh2->dev[j].flags))
2761 break;
2762 if (j == conf->raid_disks) {
2763 set_bit(STRIPE_EXPAND_READY, &sh2->state);
2764 set_bit(STRIPE_HANDLE, &sh2->state);
2765 }
2766 release_stripe(sh2);
f0a50d37 2767
a4456856 2768 }
a2e08551
N
2769 /* done submitting copies, wait for them to complete */
2770 if (tx) {
2771 async_tx_ack(tx);
2772 dma_wait_for_async_tx(tx);
2773 }
a4456856 2774}
1da177e4 2775
6bfe0b49 2776
1da177e4
LT
2777/*
2778 * handle_stripe - do things to a stripe.
2779 *
2780 * We lock the stripe and then examine the state of various bits
2781 * to see what needs to be done.
2782 * Possible results:
2783 * return some read request which now have data
2784 * return some write requests which are safely on disc
2785 * schedule a read on some buffers
2786 * schedule a write of some buffers
2787 * return confirmation of parity correctness
2788 *
1da177e4
LT
2789 * buffers are taken off read_list or write_list, and bh_cache buffers
2790 * get BH_Lock set before the stripe lock is released.
2791 *
2792 */
a4456856 2793
df10cfbc 2794static bool handle_stripe5(struct stripe_head *sh)
1da177e4
LT
2795{
2796 raid5_conf_t *conf = sh->raid_conf;
a4456856
DW
2797 int disks = sh->disks, i;
2798 struct bio *return_bi = NULL;
2799 struct stripe_head_state s;
1da177e4 2800 struct r5dev *dev;
6bfe0b49 2801 mdk_rdev_t *blocked_rdev = NULL;
e0a115e5 2802 int prexor;
1da177e4 2803
a4456856 2804 memset(&s, 0, sizeof(s));
600aa109
DW
2805 pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d check:%d "
2806 "reconstruct:%d\n", (unsigned long long)sh->sector, sh->state,
2807 atomic_read(&sh->count), sh->pd_idx, sh->check_state,
2808 sh->reconstruct_state);
1da177e4
LT
2809
2810 spin_lock(&sh->lock);
2811 clear_bit(STRIPE_HANDLE, &sh->state);
2812 clear_bit(STRIPE_DELAYED, &sh->state);
2813
a4456856
DW
2814 s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
2815 s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2816 s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
def6ae26 2817
83de75cc 2818 /* Now to look around and see what can be done */
9910f16a 2819 rcu_read_lock();
1da177e4
LT
2820 for (i=disks; i--; ) {
2821 mdk_rdev_t *rdev;
a4456856 2822 struct r5dev *dev = &sh->dev[i];
1da177e4 2823 clear_bit(R5_Insync, &dev->flags);
1da177e4 2824
b5e98d65
DW
2825 pr_debug("check %d: state 0x%lx toread %p read %p write %p "
2826 "written %p\n", i, dev->flags, dev->toread, dev->read,
2827 dev->towrite, dev->written);
2828
2829 /* maybe we can request a biofill operation
2830 *
2831 * new wantfill requests are only permitted while
83de75cc 2832 * ops_complete_biofill is guaranteed to be inactive
b5e98d65
DW
2833 */
2834 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
83de75cc 2835 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
b5e98d65 2836 set_bit(R5_Wantfill, &dev->flags);
1da177e4
LT
2837
2838 /* now count some things */
a4456856
DW
2839 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
2840 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
f38e1219 2841 if (test_bit(R5_Wantcompute, &dev->flags)) s.compute++;
1da177e4 2842
b5e98d65
DW
2843 if (test_bit(R5_Wantfill, &dev->flags))
2844 s.to_fill++;
2845 else if (dev->toread)
a4456856 2846 s.to_read++;
1da177e4 2847 if (dev->towrite) {
a4456856 2848 s.to_write++;
1da177e4 2849 if (!test_bit(R5_OVERWRITE, &dev->flags))
a4456856 2850 s.non_overwrite++;
1da177e4 2851 }
a4456856
DW
2852 if (dev->written)
2853 s.written++;
9910f16a 2854 rdev = rcu_dereference(conf->disks[i].rdev);
ac4090d2
N
2855 if (blocked_rdev == NULL &&
2856 rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
6bfe0b49
DW
2857 blocked_rdev = rdev;
2858 atomic_inc(&rdev->nr_pending);
6bfe0b49 2859 }
b2d444d7 2860 if (!rdev || !test_bit(In_sync, &rdev->flags)) {
14f8d26b 2861 /* The ReadError flag will just be confusing now */
4e5314b5
N
2862 clear_bit(R5_ReadError, &dev->flags);
2863 clear_bit(R5_ReWrite, &dev->flags);
2864 }
b2d444d7 2865 if (!rdev || !test_bit(In_sync, &rdev->flags)
4e5314b5 2866 || test_bit(R5_ReadError, &dev->flags)) {
a4456856
DW
2867 s.failed++;
2868 s.failed_num = i;
1da177e4
LT
2869 } else
2870 set_bit(R5_Insync, &dev->flags);
2871 }
9910f16a 2872 rcu_read_unlock();
b5e98d65 2873
6bfe0b49 2874 if (unlikely(blocked_rdev)) {
ac4090d2
N
2875 if (s.syncing || s.expanding || s.expanded ||
2876 s.to_write || s.written) {
2877 set_bit(STRIPE_HANDLE, &sh->state);
2878 goto unlock;
2879 }
2880 /* There is nothing for the blocked_rdev to block */
2881 rdev_dec_pending(blocked_rdev, conf->mddev);
2882 blocked_rdev = NULL;
6bfe0b49
DW
2883 }
2884
83de75cc
DW
2885 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
2886 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
2887 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
2888 }
b5e98d65 2889
45b4233c 2890 pr_debug("locked=%d uptodate=%d to_read=%d"
1da177e4 2891 " to_write=%d failed=%d failed_num=%d\n",
a4456856
DW
2892 s.locked, s.uptodate, s.to_read, s.to_write,
2893 s.failed, s.failed_num);
1da177e4
LT
2894 /* check if the array has lost two devices and, if so, some requests might
2895 * need to be failed
2896 */
a4456856 2897 if (s.failed > 1 && s.to_read+s.to_write+s.written)
1fe797e6 2898 handle_failed_stripe(conf, sh, &s, disks, &return_bi);
a4456856 2899 if (s.failed > 1 && s.syncing) {
1da177e4
LT
2900 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
2901 clear_bit(STRIPE_SYNCING, &sh->state);
a4456856 2902 s.syncing = 0;
1da177e4
LT
2903 }
2904
2905 /* might be able to return some write requests if the parity block
2906 * is safe, or on a failed drive
2907 */
2908 dev = &sh->dev[sh->pd_idx];
a4456856
DW
2909 if ( s.written &&
2910 ((test_bit(R5_Insync, &dev->flags) &&
2911 !test_bit(R5_LOCKED, &dev->flags) &&
2912 test_bit(R5_UPTODATE, &dev->flags)) ||
2913 (s.failed == 1 && s.failed_num == sh->pd_idx)))
1fe797e6 2914 handle_stripe_clean_event(conf, sh, disks, &return_bi);
1da177e4
LT
2915
2916 /* Now we might consider reading some blocks, either to check/generate
2917 * parity, or to satisfy requests
2918 * or to load a block that is being partially written.
2919 */
a4456856 2920 if (s.to_read || s.non_overwrite ||
976ea8d4 2921 (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
1fe797e6 2922 handle_stripe_fill5(sh, &s, disks);
1da177e4 2923
e33129d8
DW
2924 /* Now we check to see if any write operations have recently
2925 * completed
2926 */
e0a115e5 2927 prexor = 0;
d8ee0728 2928 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
e0a115e5 2929 prexor = 1;
d8ee0728
DW
2930 if (sh->reconstruct_state == reconstruct_state_drain_result ||
2931 sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
600aa109 2932 sh->reconstruct_state = reconstruct_state_idle;
e33129d8
DW
2933
2934 /* All the 'written' buffers and the parity block are ready to
2935 * be written back to disk
2936 */
2937 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
2938 for (i = disks; i--; ) {
2939 dev = &sh->dev[i];
2940 if (test_bit(R5_LOCKED, &dev->flags) &&
2941 (i == sh->pd_idx || dev->written)) {
2942 pr_debug("Writing block %d\n", i);
2943 set_bit(R5_Wantwrite, &dev->flags);
e0a115e5
DW
2944 if (prexor)
2945 continue;
e33129d8
DW
2946 if (!test_bit(R5_Insync, &dev->flags) ||
2947 (i == sh->pd_idx && s.failed == 0))
2948 set_bit(STRIPE_INSYNC, &sh->state);
2949 }
2950 }
2951 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2952 atomic_dec(&conf->preread_active_stripes);
2953 if (atomic_read(&conf->preread_active_stripes) <
2954 IO_THRESHOLD)
2955 md_wakeup_thread(conf->mddev->thread);
2956 }
2957 }
2958
2959 /* Now to consider new write requests and what else, if anything
2960 * should be read. We do not handle new writes when:
2961 * 1/ A 'write' operation (copy+xor) is already in flight.
2962 * 2/ A 'check' operation is in flight, as it may clobber the parity
2963 * block.
2964 */
600aa109 2965 if (s.to_write && !sh->reconstruct_state && !sh->check_state)
1fe797e6 2966 handle_stripe_dirtying5(conf, sh, &s, disks);
1da177e4
LT
2967
2968 /* maybe we need to check and possibly fix the parity for this stripe
e89f8962
DW
2969 * Any reads will already have been scheduled, so we just see if enough
2970 * data is available. The parity check is held off while parity
2971 * dependent operations are in flight.
1da177e4 2972 */
ecc65c9b
DW
2973 if (sh->check_state ||
2974 (s.syncing && s.locked == 0 &&
976ea8d4 2975 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
ecc65c9b 2976 !test_bit(STRIPE_INSYNC, &sh->state)))
a4456856 2977 handle_parity_checks5(conf, sh, &s, disks);
e89f8962 2978
a4456856 2979 if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
1da177e4
LT
2980 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
2981 clear_bit(STRIPE_SYNCING, &sh->state);
2982 }
4e5314b5
N
2983
2984 /* If the failed drive is just a ReadError, then we might need to progress
2985 * the repair/check process
2986 */
a4456856
DW
2987 if (s.failed == 1 && !conf->mddev->ro &&
2988 test_bit(R5_ReadError, &sh->dev[s.failed_num].flags)
2989 && !test_bit(R5_LOCKED, &sh->dev[s.failed_num].flags)
2990 && test_bit(R5_UPTODATE, &sh->dev[s.failed_num].flags)
4e5314b5 2991 ) {
a4456856 2992 dev = &sh->dev[s.failed_num];
4e5314b5
N
2993 if (!test_bit(R5_ReWrite, &dev->flags)) {
2994 set_bit(R5_Wantwrite, &dev->flags);
2995 set_bit(R5_ReWrite, &dev->flags);
2996 set_bit(R5_LOCKED, &dev->flags);
a4456856 2997 s.locked++;
4e5314b5
N
2998 } else {
2999 /* let's read it back */
3000 set_bit(R5_Wantread, &dev->flags);
3001 set_bit(R5_LOCKED, &dev->flags);
a4456856 3002 s.locked++;
4e5314b5
N
3003 }
3004 }
3005
600aa109
DW
3006 /* Finish reconstruct operations initiated by the expansion process */
3007 if (sh->reconstruct_state == reconstruct_state_result) {
ab69ae12
N
3008 struct stripe_head *sh2
3009 = get_active_stripe(conf, sh->sector, 1, 1);
3010 if (sh2 && test_bit(STRIPE_EXPAND_SOURCE, &sh2->state)) {
3011 /* sh cannot be written until sh2 has been read.
3012 * so arrange for sh to be delayed a little
3013 */
3014 set_bit(STRIPE_DELAYED, &sh->state);
3015 set_bit(STRIPE_HANDLE, &sh->state);
3016 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3017 &sh2->state))
3018 atomic_inc(&conf->preread_active_stripes);
3019 release_stripe(sh2);
3020 goto unlock;
3021 }
3022 if (sh2)
3023 release_stripe(sh2);
3024
600aa109 3025 sh->reconstruct_state = reconstruct_state_idle;
f0a50d37 3026 clear_bit(STRIPE_EXPANDING, &sh->state);
23397883 3027 for (i = conf->raid_disks; i--; ) {
ccfcc3c1 3028 set_bit(R5_Wantwrite, &sh->dev[i].flags);
23397883 3029 set_bit(R5_LOCKED, &sh->dev[i].flags);
efe31143 3030 s.locked++;
23397883 3031 }
f0a50d37
DW
3032 }
3033
3034 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
600aa109 3035 !sh->reconstruct_state) {
f0a50d37
DW
3036 /* Need to write out all blocks after computing parity */
3037 sh->disks = conf->raid_disks;
911d4ee8 3038 stripe_set_idx(sh->sector, conf, 0, sh);
1fe797e6 3039 schedule_reconstruction5(sh, &s, 1, 1);
600aa109 3040 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
ccfcc3c1 3041 clear_bit(STRIPE_EXPAND_READY, &sh->state);
f6705578 3042 atomic_dec(&conf->reshape_stripes);
ccfcc3c1
N
3043 wake_up(&conf->wait_for_overlap);
3044 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3045 }
3046
0f94e87c 3047 if (s.expanding && s.locked == 0 &&
976ea8d4 3048 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
a4456856 3049 handle_stripe_expansion(conf, sh, NULL);
ccfcc3c1 3050
6bfe0b49 3051 unlock:
1da177e4
LT
3052 spin_unlock(&sh->lock);
3053
6bfe0b49
DW
3054 /* wait for this device to become unblocked */
3055 if (unlikely(blocked_rdev))
3056 md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
3057
600aa109
DW
3058 if (s.ops_request)
3059 raid5_run_ops(sh, s.ops_request);
d84e0f10 3060
c4e5ac0a 3061 ops_run_io(sh, &s);
1da177e4 3062
a4456856 3063 return_io(return_bi);
df10cfbc
DW
3064
3065 return blocked_rdev == NULL;
1da177e4
LT
3066}
3067
36d1c647 3068static bool handle_stripe6(struct stripe_head *sh)
1da177e4 3069{
bff61975 3070 raid5_conf_t *conf = sh->raid_conf;
f416885e 3071 int disks = sh->disks;
a4456856 3072 struct bio *return_bi = NULL;
34e04e87 3073 int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx;
a4456856
DW
3074 struct stripe_head_state s;
3075 struct r6_state r6s;
16a53ecc 3076 struct r5dev *dev, *pdev, *qdev;
6bfe0b49 3077 mdk_rdev_t *blocked_rdev = NULL;
1da177e4 3078
45b4233c 3079 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
a4456856
DW
3080 "pd_idx=%d, qd_idx=%d\n",
3081 (unsigned long long)sh->sector, sh->state,
34e04e87 3082 atomic_read(&sh->count), pd_idx, qd_idx);
a4456856 3083 memset(&s, 0, sizeof(s));
72626685 3084
16a53ecc
N
3085 spin_lock(&sh->lock);
3086 clear_bit(STRIPE_HANDLE, &sh->state);
3087 clear_bit(STRIPE_DELAYED, &sh->state);
3088
a4456856
DW
3089 s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
3090 s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3091 s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
16a53ecc 3092 /* Now to look around and see what can be done */
1da177e4
LT
3093
3094 rcu_read_lock();
16a53ecc
N
3095 for (i=disks; i--; ) {
3096 mdk_rdev_t *rdev;
3097 dev = &sh->dev[i];
3098 clear_bit(R5_Insync, &dev->flags);
1da177e4 3099
45b4233c 3100 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
16a53ecc
N
3101 i, dev->flags, dev->toread, dev->towrite, dev->written);
3102 /* maybe we can reply to a read */
3103 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread) {
3104 struct bio *rbi, *rbi2;
45b4233c 3105 pr_debug("Return read for disc %d\n", i);
16a53ecc
N
3106 spin_lock_irq(&conf->device_lock);
3107 rbi = dev->toread;
3108 dev->toread = NULL;
3109 if (test_and_clear_bit(R5_Overlap, &dev->flags))
3110 wake_up(&conf->wait_for_overlap);
3111 spin_unlock_irq(&conf->device_lock);
3112 while (rbi && rbi->bi_sector < dev->sector + STRIPE_SECTORS) {
3113 copy_data(0, rbi, dev->page, dev->sector);
3114 rbi2 = r5_next_bio(rbi, dev->sector);
3115 spin_lock_irq(&conf->device_lock);
960e739d 3116 if (!raid5_dec_bi_phys_segments(rbi)) {
16a53ecc
N
3117 rbi->bi_next = return_bi;
3118 return_bi = rbi;
3119 }
3120 spin_unlock_irq(&conf->device_lock);
3121 rbi = rbi2;
3122 }
3123 }
1da177e4 3124
16a53ecc 3125 /* now count some things */
a4456856
DW
3126 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
3127 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
1da177e4 3128
16a53ecc 3129
a4456856
DW
3130 if (dev->toread)
3131 s.to_read++;
16a53ecc 3132 if (dev->towrite) {
a4456856 3133 s.to_write++;
16a53ecc 3134 if (!test_bit(R5_OVERWRITE, &dev->flags))
a4456856 3135 s.non_overwrite++;
16a53ecc 3136 }
a4456856
DW
3137 if (dev->written)
3138 s.written++;
16a53ecc 3139 rdev = rcu_dereference(conf->disks[i].rdev);
ac4090d2
N
3140 if (blocked_rdev == NULL &&
3141 rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
6bfe0b49
DW
3142 blocked_rdev = rdev;
3143 atomic_inc(&rdev->nr_pending);
6bfe0b49 3144 }
16a53ecc
N
3145 if (!rdev || !test_bit(In_sync, &rdev->flags)) {
3146 /* The ReadError flag will just be confusing now */
3147 clear_bit(R5_ReadError, &dev->flags);
3148 clear_bit(R5_ReWrite, &dev->flags);
1da177e4 3149 }
16a53ecc
N
3150 if (!rdev || !test_bit(In_sync, &rdev->flags)
3151 || test_bit(R5_ReadError, &dev->flags)) {
a4456856
DW
3152 if (s.failed < 2)
3153 r6s.failed_num[s.failed] = i;
3154 s.failed++;
16a53ecc
N
3155 } else
3156 set_bit(R5_Insync, &dev->flags);
1da177e4
LT
3157 }
3158 rcu_read_unlock();
6bfe0b49
DW
3159
3160 if (unlikely(blocked_rdev)) {
ac4090d2
N
3161 if (s.syncing || s.expanding || s.expanded ||
3162 s.to_write || s.written) {
3163 set_bit(STRIPE_HANDLE, &sh->state);
3164 goto unlock;
3165 }
3166 /* There is nothing for the blocked_rdev to block */
3167 rdev_dec_pending(blocked_rdev, conf->mddev);
3168 blocked_rdev = NULL;
6bfe0b49 3169 }
ac4090d2 3170
45b4233c 3171 pr_debug("locked=%d uptodate=%d to_read=%d"
16a53ecc 3172 " to_write=%d failed=%d failed_num=%d,%d\n",
a4456856
DW
3173 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3174 r6s.failed_num[0], r6s.failed_num[1]);
3175 /* check if the array has lost >2 devices and, if so, some requests
3176 * might need to be failed
16a53ecc 3177 */
a4456856 3178 if (s.failed > 2 && s.to_read+s.to_write+s.written)
1fe797e6 3179 handle_failed_stripe(conf, sh, &s, disks, &return_bi);
a4456856 3180 if (s.failed > 2 && s.syncing) {
16a53ecc
N
3181 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
3182 clear_bit(STRIPE_SYNCING, &sh->state);
a4456856 3183 s.syncing = 0;
16a53ecc
N
3184 }
3185
3186 /*
3187 * might be able to return some write requests if the parity blocks
3188 * are safe, or on a failed drive
3189 */
3190 pdev = &sh->dev[pd_idx];
a4456856
DW
3191 r6s.p_failed = (s.failed >= 1 && r6s.failed_num[0] == pd_idx)
3192 || (s.failed >= 2 && r6s.failed_num[1] == pd_idx);
34e04e87
N
3193 qdev = &sh->dev[qd_idx];
3194 r6s.q_failed = (s.failed >= 1 && r6s.failed_num[0] == qd_idx)
3195 || (s.failed >= 2 && r6s.failed_num[1] == qd_idx);
a4456856
DW
3196
3197 if ( s.written &&
3198 ( r6s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
16a53ecc 3199 && !test_bit(R5_LOCKED, &pdev->flags)
a4456856
DW
3200 && test_bit(R5_UPTODATE, &pdev->flags)))) &&
3201 ( r6s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
16a53ecc 3202 && !test_bit(R5_LOCKED, &qdev->flags)
a4456856 3203 && test_bit(R5_UPTODATE, &qdev->flags)))))
1fe797e6 3204 handle_stripe_clean_event(conf, sh, disks, &return_bi);
16a53ecc
N
3205
3206 /* Now we might consider reading some blocks, either to check/generate
3207 * parity, or to satisfy requests
3208 * or to load a block that is being partially written.
3209 */
a4456856
DW
3210 if (s.to_read || s.non_overwrite || (s.to_write && s.failed) ||
3211 (s.syncing && (s.uptodate < disks)) || s.expanding)
1fe797e6 3212 handle_stripe_fill6(sh, &s, &r6s, disks);
16a53ecc
N
3213
3214 /* now to consider writing and what else, if anything should be read */
a4456856 3215 if (s.to_write)
1fe797e6 3216 handle_stripe_dirtying6(conf, sh, &s, &r6s, disks);
16a53ecc
N
3217
3218 /* maybe we need to check and possibly fix the parity for this stripe
a4456856
DW
3219 * Any reads will already have been scheduled, so we just see if enough
3220 * data is available
16a53ecc 3221 */
a4456856 3222 if (s.syncing && s.locked == 0 && !test_bit(STRIPE_INSYNC, &sh->state))
36d1c647 3223 handle_parity_checks6(conf, sh, &s, &r6s, disks);
16a53ecc 3224
a4456856 3225 if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
16a53ecc
N
3226 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
3227 clear_bit(STRIPE_SYNCING, &sh->state);
3228 }
3229
3230 /* If the failed drives are just a ReadError, then we might need
3231 * to progress the repair/check process
3232 */
a4456856
DW
3233 if (s.failed <= 2 && !conf->mddev->ro)
3234 for (i = 0; i < s.failed; i++) {
3235 dev = &sh->dev[r6s.failed_num[i]];
16a53ecc
N
3236 if (test_bit(R5_ReadError, &dev->flags)
3237 && !test_bit(R5_LOCKED, &dev->flags)
3238 && test_bit(R5_UPTODATE, &dev->flags)
3239 ) {
3240 if (!test_bit(R5_ReWrite, &dev->flags)) {
3241 set_bit(R5_Wantwrite, &dev->flags);
3242 set_bit(R5_ReWrite, &dev->flags);
3243 set_bit(R5_LOCKED, &dev->flags);
3244 } else {
3245 /* let's read it back */
3246 set_bit(R5_Wantread, &dev->flags);
3247 set_bit(R5_LOCKED, &dev->flags);
3248 }
3249 }
3250 }
f416885e 3251
a4456856 3252 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state)) {
ab69ae12
N
3253 struct stripe_head *sh2
3254 = get_active_stripe(conf, sh->sector, 1, 1);
3255 if (sh2 && test_bit(STRIPE_EXPAND_SOURCE, &sh2->state)) {
3256 /* sh cannot be written until sh2 has been read.
3257 * so arrange for sh to be delayed a little
3258 */
3259 set_bit(STRIPE_DELAYED, &sh->state);
3260 set_bit(STRIPE_HANDLE, &sh->state);
3261 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3262 &sh2->state))
3263 atomic_inc(&conf->preread_active_stripes);
3264 release_stripe(sh2);
3265 goto unlock;
3266 }
3267 if (sh2)
3268 release_stripe(sh2);
3269
f416885e
N
3270 /* Need to write out all blocks after computing P&Q */
3271 sh->disks = conf->raid_disks;
911d4ee8 3272 stripe_set_idx(sh->sector, conf, 0, sh);
f416885e
N
3273 compute_parity6(sh, RECONSTRUCT_WRITE);
3274 for (i = conf->raid_disks ; i-- ; ) {
3275 set_bit(R5_LOCKED, &sh->dev[i].flags);
a4456856 3276 s.locked++;
f416885e
N
3277 set_bit(R5_Wantwrite, &sh->dev[i].flags);
3278 }
3279 clear_bit(STRIPE_EXPANDING, &sh->state);
a4456856 3280 } else if (s.expanded) {
f416885e
N
3281 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3282 atomic_dec(&conf->reshape_stripes);
3283 wake_up(&conf->wait_for_overlap);
3284 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3285 }
3286
0f94e87c 3287 if (s.expanding && s.locked == 0 &&
976ea8d4 3288 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
a4456856 3289 handle_stripe_expansion(conf, sh, &r6s);
f416885e 3290
6bfe0b49 3291 unlock:
16a53ecc
N
3292 spin_unlock(&sh->lock);
3293
6bfe0b49
DW
3294 /* wait for this device to become unblocked */
3295 if (unlikely(blocked_rdev))
3296 md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
3297
f0e43bcd 3298 ops_run_io(sh, &s);
16a53ecc 3299
f0e43bcd 3300 return_io(return_bi);
df10cfbc
DW
3301
3302 return blocked_rdev == NULL;
16a53ecc
N
3303}
3304
df10cfbc 3305/* returns true if the stripe was handled */
36d1c647 3306static bool handle_stripe(struct stripe_head *sh)
16a53ecc
N
3307{
3308 if (sh->raid_conf->level == 6)
36d1c647 3309 return handle_stripe6(sh);
16a53ecc 3310 else
df10cfbc 3311 return handle_stripe5(sh);
16a53ecc
N
3312}
3313
16a53ecc
N
3314static void raid5_activate_delayed(raid5_conf_t *conf)
3315{
3316 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3317 while (!list_empty(&conf->delayed_list)) {
3318 struct list_head *l = conf->delayed_list.next;
3319 struct stripe_head *sh;
3320 sh = list_entry(l, struct stripe_head, lru);
3321 list_del_init(l);
3322 clear_bit(STRIPE_DELAYED, &sh->state);
3323 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3324 atomic_inc(&conf->preread_active_stripes);
8b3e6cdc 3325 list_add_tail(&sh->lru, &conf->hold_list);
16a53ecc 3326 }
6ed3003c
N
3327 } else
3328 blk_plug_device(conf->mddev->queue);
16a53ecc
N
3329}
3330
3331static void activate_bit_delay(raid5_conf_t *conf)
3332{
3333 /* device_lock is held */
3334 struct list_head head;
3335 list_add(&head, &conf->bitmap_list);
3336 list_del_init(&conf->bitmap_list);
3337 while (!list_empty(&head)) {
3338 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3339 list_del_init(&sh->lru);
3340 atomic_inc(&sh->count);
3341 __release_stripe(conf, sh);
3342 }
3343}
3344
3345static void unplug_slaves(mddev_t *mddev)
3346{
3347 raid5_conf_t *conf = mddev_to_conf(mddev);
3348 int i;
3349
3350 rcu_read_lock();
3351 for (i=0; i<mddev->raid_disks; i++) {
3352 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
3353 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
165125e1 3354 struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
16a53ecc
N
3355
3356 atomic_inc(&rdev->nr_pending);
3357 rcu_read_unlock();
3358
2ad8b1ef 3359 blk_unplug(r_queue);
16a53ecc
N
3360
3361 rdev_dec_pending(rdev, mddev);
3362 rcu_read_lock();
3363 }
3364 }
3365 rcu_read_unlock();
3366}
3367
165125e1 3368static void raid5_unplug_device(struct request_queue *q)
16a53ecc
N
3369{
3370 mddev_t *mddev = q->queuedata;
3371 raid5_conf_t *conf = mddev_to_conf(mddev);
3372 unsigned long flags;
3373
3374 spin_lock_irqsave(&conf->device_lock, flags);
3375
3376 if (blk_remove_plug(q)) {
3377 conf->seq_flush++;
3378 raid5_activate_delayed(conf);
72626685 3379 }
1da177e4
LT
3380 md_wakeup_thread(mddev->thread);
3381
3382 spin_unlock_irqrestore(&conf->device_lock, flags);
3383
3384 unplug_slaves(mddev);
3385}
3386
f022b2fd
N
3387static int raid5_congested(void *data, int bits)
3388{
3389 mddev_t *mddev = data;
3390 raid5_conf_t *conf = mddev_to_conf(mddev);
3391
3392 /* No difference between reads and writes. Just check
3393 * how busy the stripe_cache is
3394 */
3395 if (conf->inactive_blocked)
3396 return 1;
3397 if (conf->quiesce)
3398 return 1;
3399 if (list_empty_careful(&conf->inactive_list))
3400 return 1;
3401
3402 return 0;
3403}
3404
23032a0e
RBJ
3405/* We want read requests to align with chunks where possible,
3406 * but write requests don't need to.
3407 */
cc371e66
AK
3408static int raid5_mergeable_bvec(struct request_queue *q,
3409 struct bvec_merge_data *bvm,
3410 struct bio_vec *biovec)
23032a0e
RBJ
3411{
3412 mddev_t *mddev = q->queuedata;
cc371e66 3413 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
23032a0e
RBJ
3414 int max;
3415 unsigned int chunk_sectors = mddev->chunk_size >> 9;
cc371e66 3416 unsigned int bio_sectors = bvm->bi_size >> 9;
23032a0e 3417
cc371e66 3418 if ((bvm->bi_rw & 1) == WRITE)
23032a0e
RBJ
3419 return biovec->bv_len; /* always allow writes to be mergeable */
3420
784052ec
N
3421 if (mddev->new_chunk < mddev->chunk_size)
3422 chunk_sectors = mddev->new_chunk >> 9;
23032a0e
RBJ
3423 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3424 if (max < 0) max = 0;
3425 if (max <= biovec->bv_len && bio_sectors == 0)
3426 return biovec->bv_len;
3427 else
3428 return max;
3429}
3430
f679623f
RBJ
3431
3432static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
3433{
3434 sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3435 unsigned int chunk_sectors = mddev->chunk_size >> 9;
3436 unsigned int bio_sectors = bio->bi_size >> 9;
3437
784052ec
N
3438 if (mddev->new_chunk < mddev->chunk_size)
3439 chunk_sectors = mddev->new_chunk >> 9;
f679623f
RBJ
3440 return chunk_sectors >=
3441 ((sector & (chunk_sectors - 1)) + bio_sectors);
3442}
3443
46031f9a
RBJ
3444/*
3445 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
3446 * later sampled by raid5d.
3447 */
3448static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
3449{
3450 unsigned long flags;
3451
3452 spin_lock_irqsave(&conf->device_lock, flags);
3453
3454 bi->bi_next = conf->retry_read_aligned_list;
3455 conf->retry_read_aligned_list = bi;
3456
3457 spin_unlock_irqrestore(&conf->device_lock, flags);
3458 md_wakeup_thread(conf->mddev->thread);
3459}
3460
3461
3462static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
3463{
3464 struct bio *bi;
3465
3466 bi = conf->retry_read_aligned;
3467 if (bi) {
3468 conf->retry_read_aligned = NULL;
3469 return bi;
3470 }
3471 bi = conf->retry_read_aligned_list;
3472 if(bi) {
387bb173 3473 conf->retry_read_aligned_list = bi->bi_next;
46031f9a 3474 bi->bi_next = NULL;
960e739d
JA
3475 /*
3476 * this sets the active strip count to 1 and the processed
3477 * strip count to zero (upper 8 bits)
3478 */
46031f9a 3479 bi->bi_phys_segments = 1; /* biased count of active stripes */
46031f9a
RBJ
3480 }
3481
3482 return bi;
3483}
3484
3485
f679623f
RBJ
3486/*
3487 * The "raid5_align_endio" should check if the read succeeded and if it
3488 * did, call bio_endio on the original bio (having bio_put the new bio
3489 * first).
3490 * If the read failed..
3491 */
6712ecf8 3492static void raid5_align_endio(struct bio *bi, int error)
f679623f
RBJ
3493{
3494 struct bio* raid_bi = bi->bi_private;
46031f9a
RBJ
3495 mddev_t *mddev;
3496 raid5_conf_t *conf;
3497 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3498 mdk_rdev_t *rdev;
3499
f679623f 3500 bio_put(bi);
46031f9a
RBJ
3501
3502 mddev = raid_bi->bi_bdev->bd_disk->queue->queuedata;
3503 conf = mddev_to_conf(mddev);
3504 rdev = (void*)raid_bi->bi_next;
3505 raid_bi->bi_next = NULL;
3506
3507 rdev_dec_pending(rdev, conf->mddev);
3508
3509 if (!error && uptodate) {
6712ecf8 3510 bio_endio(raid_bi, 0);
46031f9a
RBJ
3511 if (atomic_dec_and_test(&conf->active_aligned_reads))
3512 wake_up(&conf->wait_for_stripe);
6712ecf8 3513 return;
46031f9a
RBJ
3514 }
3515
3516
45b4233c 3517 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
46031f9a
RBJ
3518
3519 add_bio_to_retry(raid_bi, conf);
f679623f
RBJ
3520}
3521
387bb173
NB
3522static int bio_fits_rdev(struct bio *bi)
3523{
165125e1 3524 struct request_queue *q = bdev_get_queue(bi->bi_bdev);
387bb173
NB
3525
3526 if ((bi->bi_size>>9) > q->max_sectors)
3527 return 0;
3528 blk_recount_segments(q, bi);
960e739d 3529 if (bi->bi_phys_segments > q->max_phys_segments)
387bb173
NB
3530 return 0;
3531
3532 if (q->merge_bvec_fn)
3533 /* it's too hard to apply the merge_bvec_fn at this stage,
3534 * just just give up
3535 */
3536 return 0;
3537
3538 return 1;
3539}
3540
3541
165125e1 3542static int chunk_aligned_read(struct request_queue *q, struct bio * raid_bio)
f679623f
RBJ
3543{
3544 mddev_t *mddev = q->queuedata;
3545 raid5_conf_t *conf = mddev_to_conf(mddev);
911d4ee8 3546 unsigned int dd_idx;
f679623f
RBJ
3547 struct bio* align_bi;
3548 mdk_rdev_t *rdev;
3549
3550 if (!in_chunk_boundary(mddev, raid_bio)) {
45b4233c 3551 pr_debug("chunk_aligned_read : non aligned\n");
f679623f
RBJ
3552 return 0;
3553 }
3554 /*
99c0fb5f 3555 * use bio_clone to make a copy of the bio
f679623f
RBJ
3556 */
3557 align_bi = bio_clone(raid_bio, GFP_NOIO);
3558 if (!align_bi)
3559 return 0;
3560 /*
3561 * set bi_end_io to a new function, and set bi_private to the
3562 * original bio.
3563 */
3564 align_bi->bi_end_io = raid5_align_endio;
3565 align_bi->bi_private = raid_bio;
3566 /*
3567 * compute position
3568 */
112bf897
N
3569 align_bi->bi_sector = raid5_compute_sector(conf, raid_bio->bi_sector,
3570 0,
911d4ee8 3571 &dd_idx, NULL);
f679623f
RBJ
3572
3573 rcu_read_lock();
3574 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3575 if (rdev && test_bit(In_sync, &rdev->flags)) {
f679623f
RBJ
3576 atomic_inc(&rdev->nr_pending);
3577 rcu_read_unlock();
46031f9a
RBJ
3578 raid_bio->bi_next = (void*)rdev;
3579 align_bi->bi_bdev = rdev->bdev;
3580 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3581 align_bi->bi_sector += rdev->data_offset;
3582
387bb173
NB
3583 if (!bio_fits_rdev(align_bi)) {
3584 /* too big in some way */
3585 bio_put(align_bi);
3586 rdev_dec_pending(rdev, mddev);
3587 return 0;
3588 }
3589
46031f9a
RBJ
3590 spin_lock_irq(&conf->device_lock);
3591 wait_event_lock_irq(conf->wait_for_stripe,
3592 conf->quiesce == 0,
3593 conf->device_lock, /* nothing */);
3594 atomic_inc(&conf->active_aligned_reads);
3595 spin_unlock_irq(&conf->device_lock);
3596
f679623f
RBJ
3597 generic_make_request(align_bi);
3598 return 1;
3599 } else {
3600 rcu_read_unlock();
46031f9a 3601 bio_put(align_bi);
f679623f
RBJ
3602 return 0;
3603 }
3604}
3605
8b3e6cdc
DW
3606/* __get_priority_stripe - get the next stripe to process
3607 *
3608 * Full stripe writes are allowed to pass preread active stripes up until
3609 * the bypass_threshold is exceeded. In general the bypass_count
3610 * increments when the handle_list is handled before the hold_list; however, it
3611 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3612 * stripe with in flight i/o. The bypass_count will be reset when the
3613 * head of the hold_list has changed, i.e. the head was promoted to the
3614 * handle_list.
3615 */
3616static struct stripe_head *__get_priority_stripe(raid5_conf_t *conf)
3617{
3618 struct stripe_head *sh;
3619
3620 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3621 __func__,
3622 list_empty(&conf->handle_list) ? "empty" : "busy",
3623 list_empty(&conf->hold_list) ? "empty" : "busy",
3624 atomic_read(&conf->pending_full_writes), conf->bypass_count);
3625
3626 if (!list_empty(&conf->handle_list)) {
3627 sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
3628
3629 if (list_empty(&conf->hold_list))
3630 conf->bypass_count = 0;
3631 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
3632 if (conf->hold_list.next == conf->last_hold)
3633 conf->bypass_count++;
3634 else {
3635 conf->last_hold = conf->hold_list.next;
3636 conf->bypass_count -= conf->bypass_threshold;
3637 if (conf->bypass_count < 0)
3638 conf->bypass_count = 0;
3639 }
3640 }
3641 } else if (!list_empty(&conf->hold_list) &&
3642 ((conf->bypass_threshold &&
3643 conf->bypass_count > conf->bypass_threshold) ||
3644 atomic_read(&conf->pending_full_writes) == 0)) {
3645 sh = list_entry(conf->hold_list.next,
3646 typeof(*sh), lru);
3647 conf->bypass_count -= conf->bypass_threshold;
3648 if (conf->bypass_count < 0)
3649 conf->bypass_count = 0;
3650 } else
3651 return NULL;
3652
3653 list_del_init(&sh->lru);
3654 atomic_inc(&sh->count);
3655 BUG_ON(atomic_read(&sh->count) != 1);
3656 return sh;
3657}
f679623f 3658
165125e1 3659static int make_request(struct request_queue *q, struct bio * bi)
1da177e4
LT
3660{
3661 mddev_t *mddev = q->queuedata;
3662 raid5_conf_t *conf = mddev_to_conf(mddev);
911d4ee8 3663 int dd_idx;
1da177e4
LT
3664 sector_t new_sector;
3665 sector_t logical_sector, last_sector;
3666 struct stripe_head *sh;
a362357b 3667 const int rw = bio_data_dir(bi);
c9959059 3668 int cpu, remaining;
1da177e4 3669
e5dcdd80 3670 if (unlikely(bio_barrier(bi))) {
6712ecf8 3671 bio_endio(bi, -EOPNOTSUPP);
e5dcdd80
N
3672 return 0;
3673 }
3674
3d310eb7 3675 md_write_start(mddev, bi);
06d91a5f 3676
074a7aca
TH
3677 cpu = part_stat_lock();
3678 part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
3679 part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw],
3680 bio_sectors(bi));
3681 part_stat_unlock();
1da177e4 3682
802ba064 3683 if (rw == READ &&
52488615
RBJ
3684 mddev->reshape_position == MaxSector &&
3685 chunk_aligned_read(q,bi))
99c0fb5f 3686 return 0;
52488615 3687
1da177e4
LT
3688 logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3689 last_sector = bi->bi_sector + (bi->bi_size>>9);
3690 bi->bi_next = NULL;
3691 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
06d91a5f 3692
1da177e4
LT
3693 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
3694 DEFINE_WAIT(w);
16a53ecc 3695 int disks, data_disks;
b5663ba4 3696 int previous;
b578d55f 3697
7ecaa1e6 3698 retry:
b5663ba4 3699 previous = 0;
b0f9ec04 3700 disks = conf->raid_disks;
b578d55f 3701 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
b0f9ec04 3702 if (unlikely(conf->reshape_progress != MaxSector)) {
fef9c61f 3703 /* spinlock is needed as reshape_progress may be
df8e7f76
N
3704 * 64bit on a 32bit platform, and so it might be
3705 * possible to see a half-updated value
fef9c61f 3706 * Ofcourse reshape_progress could change after
df8e7f76
N
3707 * the lock is dropped, so once we get a reference
3708 * to the stripe that we think it is, we will have
3709 * to check again.
3710 */
7ecaa1e6 3711 spin_lock_irq(&conf->device_lock);
fef9c61f
N
3712 if (mddev->delta_disks < 0
3713 ? logical_sector < conf->reshape_progress
3714 : logical_sector >= conf->reshape_progress) {
7ecaa1e6 3715 disks = conf->previous_raid_disks;
b5663ba4
N
3716 previous = 1;
3717 } else {
fef9c61f
N
3718 if (mddev->delta_disks < 0
3719 ? logical_sector < conf->reshape_safe
3720 : logical_sector >= conf->reshape_safe) {
b578d55f
N
3721 spin_unlock_irq(&conf->device_lock);
3722 schedule();
3723 goto retry;
3724 }
3725 }
7ecaa1e6
N
3726 spin_unlock_irq(&conf->device_lock);
3727 }
16a53ecc
N
3728 data_disks = disks - conf->max_degraded;
3729
112bf897
N
3730 new_sector = raid5_compute_sector(conf, logical_sector,
3731 previous,
911d4ee8 3732 &dd_idx, NULL);
45b4233c 3733 pr_debug("raid5: make_request, sector %llu logical %llu\n",
1da177e4
LT
3734 (unsigned long long)new_sector,
3735 (unsigned long long)logical_sector);
3736
b5663ba4
N
3737 sh = get_active_stripe(conf, new_sector, previous,
3738 (bi->bi_rw&RWA_MASK));
1da177e4 3739 if (sh) {
b0f9ec04 3740 if (unlikely(previous)) {
7ecaa1e6 3741 /* expansion might have moved on while waiting for a
df8e7f76
N
3742 * stripe, so we must do the range check again.
3743 * Expansion could still move past after this
3744 * test, but as we are holding a reference to
3745 * 'sh', we know that if that happens,
3746 * STRIPE_EXPANDING will get set and the expansion
3747 * won't proceed until we finish with the stripe.
7ecaa1e6
N
3748 */
3749 int must_retry = 0;
3750 spin_lock_irq(&conf->device_lock);
b0f9ec04
N
3751 if (mddev->delta_disks < 0
3752 ? logical_sector >= conf->reshape_progress
3753 : logical_sector < conf->reshape_progress)
7ecaa1e6
N
3754 /* mismatch, need to try again */
3755 must_retry = 1;
3756 spin_unlock_irq(&conf->device_lock);
3757 if (must_retry) {
3758 release_stripe(sh);
3759 goto retry;
3760 }
3761 }
e464eafd
N
3762 /* FIXME what if we get a false positive because these
3763 * are being updated.
3764 */
3765 if (logical_sector >= mddev->suspend_lo &&
3766 logical_sector < mddev->suspend_hi) {
3767 release_stripe(sh);
3768 schedule();
3769 goto retry;
3770 }
7ecaa1e6
N
3771
3772 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
3773 !add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) {
3774 /* Stripe is busy expanding or
3775 * add failed due to overlap. Flush everything
1da177e4
LT
3776 * and wait a while
3777 */
3778 raid5_unplug_device(mddev->queue);
3779 release_stripe(sh);
3780 schedule();
3781 goto retry;
3782 }
3783 finish_wait(&conf->wait_for_overlap, &w);
6ed3003c
N
3784 set_bit(STRIPE_HANDLE, &sh->state);
3785 clear_bit(STRIPE_DELAYED, &sh->state);
1da177e4 3786 release_stripe(sh);
1da177e4
LT
3787 } else {
3788 /* cannot get stripe for read-ahead, just give-up */
3789 clear_bit(BIO_UPTODATE, &bi->bi_flags);
3790 finish_wait(&conf->wait_for_overlap, &w);
3791 break;
3792 }
3793
3794 }
3795 spin_lock_irq(&conf->device_lock);
960e739d 3796 remaining = raid5_dec_bi_phys_segments(bi);
f6344757
N
3797 spin_unlock_irq(&conf->device_lock);
3798 if (remaining == 0) {
1da177e4 3799
16a53ecc 3800 if ( rw == WRITE )
1da177e4 3801 md_write_end(mddev);
6712ecf8 3802
0e13fe23 3803 bio_endio(bi, 0);
1da177e4 3804 }
1da177e4
LT
3805 return 0;
3806}
3807
b522adcd
DW
3808static sector_t raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks);
3809
52c03291 3810static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
1da177e4 3811{
52c03291
N
3812 /* reshaping is quite different to recovery/resync so it is
3813 * handled quite separately ... here.
3814 *
3815 * On each call to sync_request, we gather one chunk worth of
3816 * destination stripes and flag them as expanding.
3817 * Then we find all the source stripes and request reads.
3818 * As the reads complete, handle_stripe will copy the data
3819 * into the destination stripe and release that stripe.
3820 */
1da177e4
LT
3821 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3822 struct stripe_head *sh;
ccfcc3c1 3823 sector_t first_sector, last_sector;
f416885e
N
3824 int raid_disks = conf->previous_raid_disks;
3825 int data_disks = raid_disks - conf->max_degraded;
3826 int new_data_disks = conf->raid_disks - conf->max_degraded;
52c03291
N
3827 int i;
3828 int dd_idx;
c8f517c4 3829 sector_t writepos, readpos, safepos;
ec32a2bd 3830 sector_t stripe_addr;
7a661381 3831 int reshape_sectors;
ab69ae12 3832 struct list_head stripes;
52c03291 3833
fef9c61f
N
3834 if (sector_nr == 0) {
3835 /* If restarting in the middle, skip the initial sectors */
3836 if (mddev->delta_disks < 0 &&
3837 conf->reshape_progress < raid5_size(mddev, 0, 0)) {
3838 sector_nr = raid5_size(mddev, 0, 0)
3839 - conf->reshape_progress;
3840 } else if (mddev->delta_disks > 0 &&
3841 conf->reshape_progress > 0)
3842 sector_nr = conf->reshape_progress;
f416885e 3843 sector_div(sector_nr, new_data_disks);
fef9c61f
N
3844 if (sector_nr) {
3845 *skipped = 1;
3846 return sector_nr;
3847 }
52c03291
N
3848 }
3849
7a661381
N
3850 /* We need to process a full chunk at a time.
3851 * If old and new chunk sizes differ, we need to process the
3852 * largest of these
3853 */
3854 if (mddev->new_chunk > mddev->chunk_size)
3855 reshape_sectors = mddev->new_chunk / 512;
3856 else
3857 reshape_sectors = mddev->chunk_size / 512;
3858
52c03291
N
3859 /* we update the metadata when there is more than 3Meg
3860 * in the block range (that is rather arbitrary, should
3861 * probably be time based) or when the data about to be
3862 * copied would over-write the source of the data at
3863 * the front of the range.
fef9c61f
N
3864 * i.e. one new_stripe along from reshape_progress new_maps
3865 * to after where reshape_safe old_maps to
52c03291 3866 */
fef9c61f 3867 writepos = conf->reshape_progress;
f416885e 3868 sector_div(writepos, new_data_disks);
c8f517c4
N
3869 readpos = conf->reshape_progress;
3870 sector_div(readpos, data_disks);
fef9c61f 3871 safepos = conf->reshape_safe;
f416885e 3872 sector_div(safepos, data_disks);
fef9c61f 3873 if (mddev->delta_disks < 0) {
7a661381 3874 writepos -= reshape_sectors;
c8f517c4 3875 readpos += reshape_sectors;
7a661381 3876 safepos += reshape_sectors;
fef9c61f 3877 } else {
7a661381 3878 writepos += reshape_sectors;
c8f517c4 3879 readpos -= reshape_sectors;
7a661381 3880 safepos -= reshape_sectors;
fef9c61f 3881 }
52c03291 3882
c8f517c4
N
3883 /* 'writepos' is the most advanced device address we might write.
3884 * 'readpos' is the least advanced device address we might read.
3885 * 'safepos' is the least address recorded in the metadata as having
3886 * been reshaped.
3887 * If 'readpos' is behind 'writepos', then there is no way that we can
3888 * ensure safety in the face of a crash - that must be done by userspace
3889 * making a backup of the data. So in that case there is no particular
3890 * rush to update metadata.
3891 * Otherwise if 'safepos' is behind 'writepos', then we really need to
3892 * update the metadata to advance 'safepos' to match 'readpos' so that
3893 * we can be safe in the event of a crash.
3894 * So we insist on updating metadata if safepos is behind writepos and
3895 * readpos is beyond writepos.
3896 * In any case, update the metadata every 10 seconds.
3897 * Maybe that number should be configurable, but I'm not sure it is
3898 * worth it.... maybe it could be a multiple of safemode_delay???
3899 */
fef9c61f 3900 if ((mddev->delta_disks < 0
c8f517c4
N
3901 ? (safepos > writepos && readpos < writepos)
3902 : (safepos < writepos && readpos > writepos)) ||
3903 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
52c03291
N
3904 /* Cannot proceed until we've updated the superblock... */
3905 wait_event(conf->wait_for_overlap,
3906 atomic_read(&conf->reshape_stripes)==0);
fef9c61f 3907 mddev->reshape_position = conf->reshape_progress;
c8f517c4 3908 conf->reshape_checkpoint = jiffies;
850b2b42 3909 set_bit(MD_CHANGE_DEVS, &mddev->flags);
52c03291 3910 md_wakeup_thread(mddev->thread);
850b2b42 3911 wait_event(mddev->sb_wait, mddev->flags == 0 ||
52c03291
N
3912 kthread_should_stop());
3913 spin_lock_irq(&conf->device_lock);
fef9c61f 3914 conf->reshape_safe = mddev->reshape_position;
52c03291
N
3915 spin_unlock_irq(&conf->device_lock);
3916 wake_up(&conf->wait_for_overlap);
3917 }
3918
ec32a2bd
N
3919 if (mddev->delta_disks < 0) {
3920 BUG_ON(conf->reshape_progress == 0);
3921 stripe_addr = writepos;
3922 BUG_ON((mddev->dev_sectors &
7a661381
N
3923 ~((sector_t)reshape_sectors - 1))
3924 - reshape_sectors - stripe_addr
ec32a2bd
N
3925 != sector_nr);
3926 } else {
7a661381 3927 BUG_ON(writepos != sector_nr + reshape_sectors);
ec32a2bd
N
3928 stripe_addr = sector_nr;
3929 }
ab69ae12 3930 INIT_LIST_HEAD(&stripes);
7a661381 3931 for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
52c03291
N
3932 int j;
3933 int skipped = 0;
ec32a2bd 3934 sh = get_active_stripe(conf, stripe_addr+i, 0, 0);
52c03291
N
3935 set_bit(STRIPE_EXPANDING, &sh->state);
3936 atomic_inc(&conf->reshape_stripes);
3937 /* If any of this stripe is beyond the end of the old
3938 * array, then we need to zero those blocks
3939 */
3940 for (j=sh->disks; j--;) {
3941 sector_t s;
3942 if (j == sh->pd_idx)
3943 continue;
f416885e 3944 if (conf->level == 6 &&
d0dabf7e 3945 j == sh->qd_idx)
f416885e 3946 continue;
784052ec 3947 s = compute_blocknr(sh, j, 0);
b522adcd 3948 if (s < raid5_size(mddev, 0, 0)) {
52c03291
N
3949 skipped = 1;
3950 continue;
3951 }
3952 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
3953 set_bit(R5_Expanded, &sh->dev[j].flags);
3954 set_bit(R5_UPTODATE, &sh->dev[j].flags);
3955 }
3956 if (!skipped) {
3957 set_bit(STRIPE_EXPAND_READY, &sh->state);
3958 set_bit(STRIPE_HANDLE, &sh->state);
3959 }
ab69ae12 3960 list_add(&sh->lru, &stripes);
52c03291
N
3961 }
3962 spin_lock_irq(&conf->device_lock);
fef9c61f 3963 if (mddev->delta_disks < 0)
7a661381 3964 conf->reshape_progress -= reshape_sectors * new_data_disks;
fef9c61f 3965 else
7a661381 3966 conf->reshape_progress += reshape_sectors * new_data_disks;
52c03291
N
3967 spin_unlock_irq(&conf->device_lock);
3968 /* Ok, those stripe are ready. We can start scheduling
3969 * reads on the source stripes.
3970 * The source stripes are determined by mapping the first and last
3971 * block on the destination stripes.
3972 */
52c03291 3973 first_sector =
ec32a2bd 3974 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
911d4ee8 3975 1, &dd_idx, NULL);
52c03291 3976 last_sector =
ec32a2bd 3977 raid5_compute_sector(conf, ((stripe_addr+conf->chunk_size/512)
112bf897 3978 *(new_data_disks) - 1),
911d4ee8 3979 1, &dd_idx, NULL);
58c0fed4
AN
3980 if (last_sector >= mddev->dev_sectors)
3981 last_sector = mddev->dev_sectors - 1;
52c03291 3982 while (first_sector <= last_sector) {
b5663ba4 3983 sh = get_active_stripe(conf, first_sector, 1, 0);
52c03291
N
3984 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3985 set_bit(STRIPE_HANDLE, &sh->state);
3986 release_stripe(sh);
3987 first_sector += STRIPE_SECTORS;
3988 }
ab69ae12
N
3989 /* Now that the sources are clearly marked, we can release
3990 * the destination stripes
3991 */
3992 while (!list_empty(&stripes)) {
3993 sh = list_entry(stripes.next, struct stripe_head, lru);
3994 list_del_init(&sh->lru);
3995 release_stripe(sh);
3996 }
c6207277
N
3997 /* If this takes us to the resync_max point where we have to pause,
3998 * then we need to write out the superblock.
3999 */
7a661381 4000 sector_nr += reshape_sectors;
c6207277
N
4001 if (sector_nr >= mddev->resync_max) {
4002 /* Cannot proceed until we've updated the superblock... */
4003 wait_event(conf->wait_for_overlap,
4004 atomic_read(&conf->reshape_stripes) == 0);
fef9c61f 4005 mddev->reshape_position = conf->reshape_progress;
c8f517c4 4006 conf->reshape_checkpoint = jiffies;
c6207277
N
4007 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4008 md_wakeup_thread(mddev->thread);
4009 wait_event(mddev->sb_wait,
4010 !test_bit(MD_CHANGE_DEVS, &mddev->flags)
4011 || kthread_should_stop());
4012 spin_lock_irq(&conf->device_lock);
fef9c61f 4013 conf->reshape_safe = mddev->reshape_position;
c6207277
N
4014 spin_unlock_irq(&conf->device_lock);
4015 wake_up(&conf->wait_for_overlap);
4016 }
7a661381 4017 return reshape_sectors;
52c03291
N
4018}
4019
4020/* FIXME go_faster isn't used */
4021static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
4022{
4023 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4024 struct stripe_head *sh;
58c0fed4 4025 sector_t max_sector = mddev->dev_sectors;
72626685 4026 int sync_blocks;
16a53ecc
N
4027 int still_degraded = 0;
4028 int i;
1da177e4 4029
72626685 4030 if (sector_nr >= max_sector) {
1da177e4
LT
4031 /* just being told to finish up .. nothing much to do */
4032 unplug_slaves(mddev);
cea9c228 4033
29269553
N
4034 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
4035 end_reshape(conf);
4036 return 0;
4037 }
72626685
N
4038
4039 if (mddev->curr_resync < max_sector) /* aborted */
4040 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
4041 &sync_blocks, 1);
16a53ecc 4042 else /* completed sync */
72626685
N
4043 conf->fullsync = 0;
4044 bitmap_close_sync(mddev->bitmap);
4045
1da177e4
LT
4046 return 0;
4047 }
ccfcc3c1 4048
52c03291
N
4049 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4050 return reshape_request(mddev, sector_nr, skipped);
f6705578 4051
c6207277
N
4052 /* No need to check resync_max as we never do more than one
4053 * stripe, and as resync_max will always be on a chunk boundary,
4054 * if the check in md_do_sync didn't fire, there is no chance
4055 * of overstepping resync_max here
4056 */
4057
16a53ecc 4058 /* if there is too many failed drives and we are trying
1da177e4
LT
4059 * to resync, then assert that we are finished, because there is
4060 * nothing we can do.
4061 */
3285edf1 4062 if (mddev->degraded >= conf->max_degraded &&
16a53ecc 4063 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
58c0fed4 4064 sector_t rv = mddev->dev_sectors - sector_nr;
57afd89f 4065 *skipped = 1;
1da177e4
LT
4066 return rv;
4067 }
72626685 4068 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
3855ad9f 4069 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
72626685
N
4070 !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
4071 /* we can skip this block, and probably more */
4072 sync_blocks /= STRIPE_SECTORS;
4073 *skipped = 1;
4074 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
4075 }
1da177e4 4076
b47490c9
N
4077
4078 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
4079
b5663ba4 4080 sh = get_active_stripe(conf, sector_nr, 0, 1);
1da177e4 4081 if (sh == NULL) {
b5663ba4 4082 sh = get_active_stripe(conf, sector_nr, 0, 0);
1da177e4 4083 /* make sure we don't swamp the stripe cache if someone else
16a53ecc 4084 * is trying to get access
1da177e4 4085 */
66c006a5 4086 schedule_timeout_uninterruptible(1);
1da177e4 4087 }
16a53ecc
N
4088 /* Need to check if array will still be degraded after recovery/resync
4089 * We don't need to check the 'failed' flag as when that gets set,
4090 * recovery aborts.
4091 */
4092 for (i=0; i<mddev->raid_disks; i++)
4093 if (conf->disks[i].rdev == NULL)
4094 still_degraded = 1;
4095
4096 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
4097
4098 spin_lock(&sh->lock);
1da177e4
LT
4099 set_bit(STRIPE_SYNCING, &sh->state);
4100 clear_bit(STRIPE_INSYNC, &sh->state);
4101 spin_unlock(&sh->lock);
4102
df10cfbc 4103 /* wait for any blocked device to be handled */
36d1c647 4104 while (unlikely(!handle_stripe(sh)))
df10cfbc 4105 ;
1da177e4
LT
4106 release_stripe(sh);
4107
4108 return STRIPE_SECTORS;
4109}
4110
46031f9a
RBJ
4111static int retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
4112{
4113 /* We may not be able to submit a whole bio at once as there
4114 * may not be enough stripe_heads available.
4115 * We cannot pre-allocate enough stripe_heads as we may need
4116 * more than exist in the cache (if we allow ever large chunks).
4117 * So we do one stripe head at a time and record in
4118 * ->bi_hw_segments how many have been done.
4119 *
4120 * We *know* that this entire raid_bio is in one chunk, so
4121 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
4122 */
4123 struct stripe_head *sh;
911d4ee8 4124 int dd_idx;
46031f9a
RBJ
4125 sector_t sector, logical_sector, last_sector;
4126 int scnt = 0;
4127 int remaining;
4128 int handled = 0;
4129
4130 logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
112bf897 4131 sector = raid5_compute_sector(conf, logical_sector,
911d4ee8 4132 0, &dd_idx, NULL);
46031f9a
RBJ
4133 last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
4134
4135 for (; logical_sector < last_sector;
387bb173
NB
4136 logical_sector += STRIPE_SECTORS,
4137 sector += STRIPE_SECTORS,
4138 scnt++) {
46031f9a 4139
960e739d 4140 if (scnt < raid5_bi_hw_segments(raid_bio))
46031f9a
RBJ
4141 /* already done this stripe */
4142 continue;
4143
b5663ba4 4144 sh = get_active_stripe(conf, sector, 0, 1);
46031f9a
RBJ
4145
4146 if (!sh) {
4147 /* failed to get a stripe - must wait */
960e739d 4148 raid5_set_bi_hw_segments(raid_bio, scnt);
46031f9a
RBJ
4149 conf->retry_read_aligned = raid_bio;
4150 return handled;
4151 }
4152
4153 set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
387bb173
NB
4154 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
4155 release_stripe(sh);
960e739d 4156 raid5_set_bi_hw_segments(raid_bio, scnt);
387bb173
NB
4157 conf->retry_read_aligned = raid_bio;
4158 return handled;
4159 }
4160
36d1c647 4161 handle_stripe(sh);
46031f9a
RBJ
4162 release_stripe(sh);
4163 handled++;
4164 }
4165 spin_lock_irq(&conf->device_lock);
960e739d 4166 remaining = raid5_dec_bi_phys_segments(raid_bio);
46031f9a 4167 spin_unlock_irq(&conf->device_lock);
0e13fe23
NB
4168 if (remaining == 0)
4169 bio_endio(raid_bio, 0);
46031f9a
RBJ
4170 if (atomic_dec_and_test(&conf->active_aligned_reads))
4171 wake_up(&conf->wait_for_stripe);
4172 return handled;
4173}
4174
4175
4176
1da177e4
LT
4177/*
4178 * This is our raid5 kernel thread.
4179 *
4180 * We scan the hash table for stripes which can be handled now.
4181 * During the scan, completed stripes are saved for us by the interrupt
4182 * handler, so that they will not have to wait for our next wakeup.
4183 */
6ed3003c 4184static void raid5d(mddev_t *mddev)
1da177e4
LT
4185{
4186 struct stripe_head *sh;
4187 raid5_conf_t *conf = mddev_to_conf(mddev);
4188 int handled;
4189
45b4233c 4190 pr_debug("+++ raid5d active\n");
1da177e4
LT
4191
4192 md_check_recovery(mddev);
1da177e4
LT
4193
4194 handled = 0;
4195 spin_lock_irq(&conf->device_lock);
4196 while (1) {
46031f9a 4197 struct bio *bio;
1da177e4 4198
ae3c20cc 4199 if (conf->seq_flush != conf->seq_write) {
72626685 4200 int seq = conf->seq_flush;
700e432d 4201 spin_unlock_irq(&conf->device_lock);
72626685 4202 bitmap_unplug(mddev->bitmap);
700e432d 4203 spin_lock_irq(&conf->device_lock);
72626685
N
4204 conf->seq_write = seq;
4205 activate_bit_delay(conf);
4206 }
4207
46031f9a
RBJ
4208 while ((bio = remove_bio_from_retry(conf))) {
4209 int ok;
4210 spin_unlock_irq(&conf->device_lock);
4211 ok = retry_aligned_read(conf, bio);
4212 spin_lock_irq(&conf->device_lock);
4213 if (!ok)
4214 break;
4215 handled++;
4216 }
4217
8b3e6cdc
DW
4218 sh = __get_priority_stripe(conf);
4219
c9f21aaf 4220 if (!sh)
1da177e4 4221 break;
1da177e4
LT
4222 spin_unlock_irq(&conf->device_lock);
4223
4224 handled++;
36d1c647 4225 handle_stripe(sh);
1da177e4
LT
4226 release_stripe(sh);
4227
4228 spin_lock_irq(&conf->device_lock);
4229 }
45b4233c 4230 pr_debug("%d stripes handled\n", handled);
1da177e4
LT
4231
4232 spin_unlock_irq(&conf->device_lock);
4233
c9f21aaf 4234 async_tx_issue_pending_all();
1da177e4
LT
4235 unplug_slaves(mddev);
4236
45b4233c 4237 pr_debug("--- raid5d inactive\n");
1da177e4
LT
4238}
4239
3f294f4f 4240static ssize_t
007583c9 4241raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
3f294f4f 4242{
007583c9 4243 raid5_conf_t *conf = mddev_to_conf(mddev);
96de1e66
N
4244 if (conf)
4245 return sprintf(page, "%d\n", conf->max_nr_stripes);
4246 else
4247 return 0;
3f294f4f
N
4248}
4249
4250static ssize_t
007583c9 4251raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
3f294f4f 4252{
007583c9 4253 raid5_conf_t *conf = mddev_to_conf(mddev);
4ef197d8 4254 unsigned long new;
b5470dc5
DW
4255 int err;
4256
3f294f4f
N
4257 if (len >= PAGE_SIZE)
4258 return -EINVAL;
96de1e66
N
4259 if (!conf)
4260 return -ENODEV;
3f294f4f 4261
4ef197d8 4262 if (strict_strtoul(page, 10, &new))
3f294f4f
N
4263 return -EINVAL;
4264 if (new <= 16 || new > 32768)
4265 return -EINVAL;
4266 while (new < conf->max_nr_stripes) {
4267 if (drop_one_stripe(conf))
4268 conf->max_nr_stripes--;
4269 else
4270 break;
4271 }
b5470dc5
DW
4272 err = md_allow_write(mddev);
4273 if (err)
4274 return err;
3f294f4f
N
4275 while (new > conf->max_nr_stripes) {
4276 if (grow_one_stripe(conf))
4277 conf->max_nr_stripes++;
4278 else break;
4279 }
4280 return len;
4281}
007583c9 4282
96de1e66
N
4283static struct md_sysfs_entry
4284raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4285 raid5_show_stripe_cache_size,
4286 raid5_store_stripe_cache_size);
3f294f4f 4287
8b3e6cdc
DW
4288static ssize_t
4289raid5_show_preread_threshold(mddev_t *mddev, char *page)
4290{
4291 raid5_conf_t *conf = mddev_to_conf(mddev);
4292 if (conf)
4293 return sprintf(page, "%d\n", conf->bypass_threshold);
4294 else
4295 return 0;
4296}
4297
4298static ssize_t
4299raid5_store_preread_threshold(mddev_t *mddev, const char *page, size_t len)
4300{
4301 raid5_conf_t *conf = mddev_to_conf(mddev);
4ef197d8 4302 unsigned long new;
8b3e6cdc
DW
4303 if (len >= PAGE_SIZE)
4304 return -EINVAL;
4305 if (!conf)
4306 return -ENODEV;
4307
4ef197d8 4308 if (strict_strtoul(page, 10, &new))
8b3e6cdc 4309 return -EINVAL;
4ef197d8 4310 if (new > conf->max_nr_stripes)
8b3e6cdc
DW
4311 return -EINVAL;
4312 conf->bypass_threshold = new;
4313 return len;
4314}
4315
4316static struct md_sysfs_entry
4317raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4318 S_IRUGO | S_IWUSR,
4319 raid5_show_preread_threshold,
4320 raid5_store_preread_threshold);
4321
3f294f4f 4322static ssize_t
96de1e66 4323stripe_cache_active_show(mddev_t *mddev, char *page)
3f294f4f 4324{
007583c9 4325 raid5_conf_t *conf = mddev_to_conf(mddev);
96de1e66
N
4326 if (conf)
4327 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4328 else
4329 return 0;
3f294f4f
N
4330}
4331
96de1e66
N
4332static struct md_sysfs_entry
4333raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
3f294f4f 4334
007583c9 4335static struct attribute *raid5_attrs[] = {
3f294f4f
N
4336 &raid5_stripecache_size.attr,
4337 &raid5_stripecache_active.attr,
8b3e6cdc 4338 &raid5_preread_bypass_threshold.attr,
3f294f4f
N
4339 NULL,
4340};
007583c9
N
4341static struct attribute_group raid5_attrs_group = {
4342 .name = NULL,
4343 .attrs = raid5_attrs,
3f294f4f
N
4344};
4345
80c3a6ce
DW
4346static sector_t
4347raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks)
4348{
4349 raid5_conf_t *conf = mddev_to_conf(mddev);
4350
4351 if (!sectors)
4352 sectors = mddev->dev_sectors;
7ec05478
N
4353 if (!raid_disks) {
4354 /* size is defined by the smallest of previous and new size */
4355 if (conf->raid_disks < conf->previous_raid_disks)
4356 raid_disks = conf->raid_disks;
4357 else
4358 raid_disks = conf->previous_raid_disks;
4359 }
80c3a6ce
DW
4360
4361 sectors &= ~((sector_t)mddev->chunk_size/512 - 1);
784052ec 4362 sectors &= ~((sector_t)mddev->new_chunk/512 - 1);
80c3a6ce
DW
4363 return sectors * (raid_disks - conf->max_degraded);
4364}
4365
36d1c647
DW
4366static void raid5_free_percpu(raid5_conf_t *conf)
4367{
4368 struct raid5_percpu *percpu;
4369 unsigned long cpu;
4370
4371 if (!conf->percpu)
4372 return;
4373
4374 get_online_cpus();
4375 for_each_possible_cpu(cpu) {
4376 percpu = per_cpu_ptr(conf->percpu, cpu);
4377 safe_put_page(percpu->spare_page);
d6f38f31 4378 kfree(percpu->scribble);
36d1c647
DW
4379 }
4380#ifdef CONFIG_HOTPLUG_CPU
4381 unregister_cpu_notifier(&conf->cpu_notify);
4382#endif
4383 put_online_cpus();
4384
4385 free_percpu(conf->percpu);
4386}
4387
a11034b4
DW
4388static void free_conf(raid5_conf_t *conf)
4389{
4390 shrink_stripes(conf);
36d1c647 4391 raid5_free_percpu(conf);
a11034b4
DW
4392 kfree(conf->disks);
4393 kfree(conf->stripe_hashtbl);
4394 kfree(conf);
4395}
4396
36d1c647
DW
4397#ifdef CONFIG_HOTPLUG_CPU
4398static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
4399 void *hcpu)
4400{
4401 raid5_conf_t *conf = container_of(nfb, raid5_conf_t, cpu_notify);
4402 long cpu = (long)hcpu;
4403 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
4404
4405 switch (action) {
4406 case CPU_UP_PREPARE:
4407 case CPU_UP_PREPARE_FROZEN:
d6f38f31 4408 if (conf->level == 6 && !percpu->spare_page)
36d1c647 4409 percpu->spare_page = alloc_page(GFP_KERNEL);
d6f38f31
DW
4410 if (!percpu->scribble)
4411 percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4412
4413 if (!percpu->scribble ||
4414 (conf->level == 6 && !percpu->spare_page)) {
4415 safe_put_page(percpu->spare_page);
4416 kfree(percpu->scribble);
36d1c647
DW
4417 pr_err("%s: failed memory allocation for cpu%ld\n",
4418 __func__, cpu);
4419 return NOTIFY_BAD;
4420 }
4421 break;
4422 case CPU_DEAD:
4423 case CPU_DEAD_FROZEN:
4424 safe_put_page(percpu->spare_page);
d6f38f31 4425 kfree(percpu->scribble);
36d1c647 4426 percpu->spare_page = NULL;
d6f38f31 4427 percpu->scribble = NULL;
36d1c647
DW
4428 break;
4429 default:
4430 break;
4431 }
4432 return NOTIFY_OK;
4433}
4434#endif
4435
4436static int raid5_alloc_percpu(raid5_conf_t *conf)
4437{
4438 unsigned long cpu;
4439 struct page *spare_page;
4440 struct raid5_percpu *allcpus;
d6f38f31 4441 void *scribble;
36d1c647
DW
4442 int err;
4443
36d1c647
DW
4444 allcpus = alloc_percpu(struct raid5_percpu);
4445 if (!allcpus)
4446 return -ENOMEM;
4447 conf->percpu = allcpus;
4448
4449 get_online_cpus();
4450 err = 0;
4451 for_each_present_cpu(cpu) {
d6f38f31
DW
4452 if (conf->level == 6) {
4453 spare_page = alloc_page(GFP_KERNEL);
4454 if (!spare_page) {
4455 err = -ENOMEM;
4456 break;
4457 }
4458 per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
4459 }
4460 scribble = kmalloc(scribble_len(conf->raid_disks), GFP_KERNEL);
4461 if (!scribble) {
36d1c647
DW
4462 err = -ENOMEM;
4463 break;
4464 }
d6f38f31 4465 per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
36d1c647
DW
4466 }
4467#ifdef CONFIG_HOTPLUG_CPU
4468 conf->cpu_notify.notifier_call = raid456_cpu_notify;
4469 conf->cpu_notify.priority = 0;
4470 if (err == 0)
4471 err = register_cpu_notifier(&conf->cpu_notify);
4472#endif
4473 put_online_cpus();
4474
4475 return err;
4476}
4477
91adb564 4478static raid5_conf_t *setup_conf(mddev_t *mddev)
1da177e4
LT
4479{
4480 raid5_conf_t *conf;
4481 int raid_disk, memory;
4482 mdk_rdev_t *rdev;
4483 struct disk_info *disk;
1da177e4 4484
91adb564
N
4485 if (mddev->new_level != 5
4486 && mddev->new_level != 4
4487 && mddev->new_level != 6) {
16a53ecc 4488 printk(KERN_ERR "raid5: %s: raid level not set to 4/5/6 (%d)\n",
91adb564
N
4489 mdname(mddev), mddev->new_level);
4490 return ERR_PTR(-EIO);
1da177e4 4491 }
91adb564
N
4492 if ((mddev->new_level == 5
4493 && !algorithm_valid_raid5(mddev->new_layout)) ||
4494 (mddev->new_level == 6
4495 && !algorithm_valid_raid6(mddev->new_layout))) {
99c0fb5f 4496 printk(KERN_ERR "raid5: %s: layout %d not supported\n",
91adb564
N
4497 mdname(mddev), mddev->new_layout);
4498 return ERR_PTR(-EIO);
99c0fb5f 4499 }
91adb564
N
4500 if (mddev->new_level == 6 && mddev->raid_disks < 4) {
4501 printk(KERN_ERR "raid6: not enough configured devices for %s (%d, minimum 4)\n",
4502 mdname(mddev), mddev->raid_disks);
4503 return ERR_PTR(-EINVAL);
4bbf3771
N
4504 }
4505
91adb564
N
4506 if (!mddev->new_chunk || mddev->new_chunk % PAGE_SIZE) {
4507 printk(KERN_ERR "raid5: invalid chunk size %d for %s\n",
4508 mddev->new_chunk, mdname(mddev));
4509 return ERR_PTR(-EINVAL);
f6705578
N
4510 }
4511
91adb564
N
4512 conf = kzalloc(sizeof(raid5_conf_t), GFP_KERNEL);
4513 if (conf == NULL)
1da177e4 4514 goto abort;
91adb564
N
4515
4516 conf->raid_disks = mddev->raid_disks;
d6f38f31 4517 conf->scribble_len = scribble_len(conf->raid_disks);
91adb564
N
4518 if (mddev->reshape_position == MaxSector)
4519 conf->previous_raid_disks = mddev->raid_disks;
4520 else
f6705578 4521 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
f6705578
N
4522
4523 conf->disks = kzalloc(conf->raid_disks * sizeof(struct disk_info),
b55e6bfc
N
4524 GFP_KERNEL);
4525 if (!conf->disks)
4526 goto abort;
9ffae0cf 4527
1da177e4
LT
4528 conf->mddev = mddev;
4529
fccddba0 4530 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
1da177e4 4531 goto abort;
1da177e4 4532
36d1c647
DW
4533 conf->level = mddev->new_level;
4534 if (raid5_alloc_percpu(conf) != 0)
4535 goto abort;
4536
1da177e4
LT
4537 spin_lock_init(&conf->device_lock);
4538 init_waitqueue_head(&conf->wait_for_stripe);
4539 init_waitqueue_head(&conf->wait_for_overlap);
4540 INIT_LIST_HEAD(&conf->handle_list);
8b3e6cdc 4541 INIT_LIST_HEAD(&conf->hold_list);
1da177e4 4542 INIT_LIST_HEAD(&conf->delayed_list);
72626685 4543 INIT_LIST_HEAD(&conf->bitmap_list);
1da177e4
LT
4544 INIT_LIST_HEAD(&conf->inactive_list);
4545 atomic_set(&conf->active_stripes, 0);
4546 atomic_set(&conf->preread_active_stripes, 0);
46031f9a 4547 atomic_set(&conf->active_aligned_reads, 0);
8b3e6cdc 4548 conf->bypass_threshold = BYPASS_THRESHOLD;
1da177e4 4549
45b4233c 4550 pr_debug("raid5: run(%s) called.\n", mdname(mddev));
1da177e4 4551
159ec1fc 4552 list_for_each_entry(rdev, &mddev->disks, same_set) {
1da177e4 4553 raid_disk = rdev->raid_disk;
f6705578 4554 if (raid_disk >= conf->raid_disks
1da177e4
LT
4555 || raid_disk < 0)
4556 continue;
4557 disk = conf->disks + raid_disk;
4558
4559 disk->rdev = rdev;
4560
b2d444d7 4561 if (test_bit(In_sync, &rdev->flags)) {
1da177e4
LT
4562 char b[BDEVNAME_SIZE];
4563 printk(KERN_INFO "raid5: device %s operational as raid"
4564 " disk %d\n", bdevname(rdev->bdev,b),
4565 raid_disk);
8c2e870a
NB
4566 } else
4567 /* Cannot rely on bitmap to complete recovery */
4568 conf->fullsync = 1;
1da177e4
LT
4569 }
4570
91adb564 4571 conf->chunk_size = mddev->new_chunk;
16a53ecc
N
4572 if (conf->level == 6)
4573 conf->max_degraded = 2;
4574 else
4575 conf->max_degraded = 1;
91adb564 4576 conf->algorithm = mddev->new_layout;
1da177e4 4577 conf->max_nr_stripes = NR_STRIPES;
fef9c61f 4578 conf->reshape_progress = mddev->reshape_position;
e183eaed 4579 if (conf->reshape_progress != MaxSector) {
784052ec 4580 conf->prev_chunk = mddev->chunk_size;
e183eaed
N
4581 conf->prev_algo = mddev->layout;
4582 }
1da177e4 4583
91adb564
N
4584 memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4585 conf->raid_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4586 if (grow_stripes(conf, conf->max_nr_stripes)) {
4587 printk(KERN_ERR
4588 "raid5: couldn't allocate %dkB for buffers\n", memory);
4589 goto abort;
4590 } else
4591 printk(KERN_INFO "raid5: allocated %dkB for %s\n",
4592 memory, mdname(mddev));
1da177e4 4593
91adb564
N
4594 conf->thread = md_register_thread(raid5d, mddev, "%s_raid5");
4595 if (!conf->thread) {
4596 printk(KERN_ERR
4597 "raid5: couldn't allocate thread for %s\n",
4598 mdname(mddev));
16a53ecc
N
4599 goto abort;
4600 }
91adb564
N
4601
4602 return conf;
4603
4604 abort:
4605 if (conf) {
a11034b4 4606 free_conf(conf);
91adb564
N
4607 return ERR_PTR(-EIO);
4608 } else
4609 return ERR_PTR(-ENOMEM);
4610}
4611
4612static int run(mddev_t *mddev)
4613{
4614 raid5_conf_t *conf;
4615 int working_disks = 0;
4616 mdk_rdev_t *rdev;
4617
4618 if (mddev->reshape_position != MaxSector) {
4619 /* Check that we can continue the reshape.
4620 * Currently only disks can change, it must
4621 * increase, and we must be past the point where
4622 * a stripe over-writes itself
4623 */
4624 sector_t here_new, here_old;
4625 int old_disks;
18b00334 4626 int max_degraded = (mddev->level == 6 ? 2 : 1);
91adb564 4627
88ce4930 4628 if (mddev->new_level != mddev->level) {
91adb564
N
4629 printk(KERN_ERR "raid5: %s: unsupported reshape "
4630 "required - aborting.\n",
4631 mdname(mddev));
4632 return -EINVAL;
4633 }
91adb564
N
4634 old_disks = mddev->raid_disks - mddev->delta_disks;
4635 /* reshape_position must be on a new-stripe boundary, and one
4636 * further up in new geometry must map after here in old
4637 * geometry.
4638 */
4639 here_new = mddev->reshape_position;
784052ec 4640 if (sector_div(here_new, (mddev->new_chunk>>9)*
91adb564
N
4641 (mddev->raid_disks - max_degraded))) {
4642 printk(KERN_ERR "raid5: reshape_position not "
4643 "on a stripe boundary\n");
4644 return -EINVAL;
4645 }
4646 /* here_new is the stripe we will write to */
4647 here_old = mddev->reshape_position;
4648 sector_div(here_old, (mddev->chunk_size>>9)*
4649 (old_disks-max_degraded));
4650 /* here_old is the first stripe that we might need to read
4651 * from */
4652 if (here_new >= here_old) {
4653 /* Reading from the same stripe as writing to - bad */
4654 printk(KERN_ERR "raid5: reshape_position too early for "
4655 "auto-recovery - aborting.\n");
4656 return -EINVAL;
4657 }
4658 printk(KERN_INFO "raid5: reshape will continue\n");
4659 /* OK, we should be able to continue; */
4660 } else {
4661 BUG_ON(mddev->level != mddev->new_level);
4662 BUG_ON(mddev->layout != mddev->new_layout);
4663 BUG_ON(mddev->chunk_size != mddev->new_chunk);
4664 BUG_ON(mddev->delta_disks != 0);
1da177e4 4665 }
91adb564 4666
245f46c2
N
4667 if (mddev->private == NULL)
4668 conf = setup_conf(mddev);
4669 else
4670 conf = mddev->private;
4671
91adb564
N
4672 if (IS_ERR(conf))
4673 return PTR_ERR(conf);
4674
4675 mddev->thread = conf->thread;
4676 conf->thread = NULL;
4677 mddev->private = conf;
4678
4679 /*
4680 * 0 for a fully functional array, 1 or 2 for a degraded array.
4681 */
4682 list_for_each_entry(rdev, &mddev->disks, same_set)
4683 if (rdev->raid_disk >= 0 &&
4684 test_bit(In_sync, &rdev->flags))
4685 working_disks++;
4686
4687 mddev->degraded = conf->raid_disks - working_disks;
4688
16a53ecc 4689 if (mddev->degraded > conf->max_degraded) {
1da177e4
LT
4690 printk(KERN_ERR "raid5: not enough operational devices for %s"
4691 " (%d/%d failed)\n",
02c2de8c 4692 mdname(mddev), mddev->degraded, conf->raid_disks);
1da177e4
LT
4693 goto abort;
4694 }
4695
91adb564
N
4696 /* device size must be a multiple of chunk size */
4697 mddev->dev_sectors &= ~(mddev->chunk_size / 512 - 1);
4698 mddev->resync_max_sectors = mddev->dev_sectors;
4699
16a53ecc 4700 if (mddev->degraded > 0 &&
1da177e4 4701 mddev->recovery_cp != MaxSector) {
6ff8d8ec
N
4702 if (mddev->ok_start_degraded)
4703 printk(KERN_WARNING
4704 "raid5: starting dirty degraded array: %s"
4705 "- data corruption possible.\n",
4706 mdname(mddev));
4707 else {
4708 printk(KERN_ERR
4709 "raid5: cannot start dirty degraded array for %s\n",
4710 mdname(mddev));
4711 goto abort;
4712 }
1da177e4
LT
4713 }
4714
1da177e4
LT
4715 if (mddev->degraded == 0)
4716 printk("raid5: raid level %d set %s active with %d out of %d"
e183eaed
N
4717 " devices, algorithm %d\n", conf->level, mdname(mddev),
4718 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
4719 mddev->new_layout);
1da177e4
LT
4720 else
4721 printk(KERN_ALERT "raid5: raid level %d set %s active with %d"
4722 " out of %d devices, algorithm %d\n", conf->level,
4723 mdname(mddev), mddev->raid_disks - mddev->degraded,
e183eaed 4724 mddev->raid_disks, mddev->new_layout);
1da177e4
LT
4725
4726 print_raid5_conf(conf);
4727
fef9c61f 4728 if (conf->reshape_progress != MaxSector) {
f6705578 4729 printk("...ok start reshape thread\n");
fef9c61f 4730 conf->reshape_safe = conf->reshape_progress;
f6705578
N
4731 atomic_set(&conf->reshape_stripes, 0);
4732 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4733 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4734 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4735 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4736 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4737 "%s_reshape");
f6705578
N
4738 }
4739
1da177e4 4740 /* read-ahead size must cover two whole stripes, which is
16a53ecc 4741 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
1da177e4
LT
4742 */
4743 {
16a53ecc
N
4744 int data_disks = conf->previous_raid_disks - conf->max_degraded;
4745 int stripe = data_disks *
8932c2e0 4746 (mddev->chunk_size / PAGE_SIZE);
1da177e4
LT
4747 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4748 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4749 }
4750
4751 /* Ok, everything is just fine now */
5e55e2f5
N
4752 if (sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
4753 printk(KERN_WARNING
4754 "raid5: failed to create sysfs attributes for %s\n",
4755 mdname(mddev));
7a5febe9 4756
91adb564
N
4757 mddev->queue->queue_lock = &conf->device_lock;
4758
7a5febe9 4759 mddev->queue->unplug_fn = raid5_unplug_device;
f022b2fd 4760 mddev->queue->backing_dev_info.congested_data = mddev;
041ae52e 4761 mddev->queue->backing_dev_info.congested_fn = raid5_congested;
f022b2fd 4762
1f403624 4763 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7a5febe9 4764
23032a0e
RBJ
4765 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
4766
1da177e4
LT
4767 return 0;
4768abort:
e0cf8f04 4769 md_unregister_thread(mddev->thread);
91adb564 4770 mddev->thread = NULL;
1da177e4
LT
4771 if (conf) {
4772 print_raid5_conf(conf);
a11034b4 4773 free_conf(conf);
1da177e4
LT
4774 }
4775 mddev->private = NULL;
4776 printk(KERN_ALERT "raid5: failed to run raid set %s\n", mdname(mddev));
4777 return -EIO;
4778}
4779
4780
4781
3f294f4f 4782static int stop(mddev_t *mddev)
1da177e4
LT
4783{
4784 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4785
4786 md_unregister_thread(mddev->thread);
4787 mddev->thread = NULL;
041ae52e 4788 mddev->queue->backing_dev_info.congested_fn = NULL;
1da177e4 4789 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
007583c9 4790 sysfs_remove_group(&mddev->kobj, &raid5_attrs_group);
a11034b4 4791 free_conf(conf);
1da177e4
LT
4792 mddev->private = NULL;
4793 return 0;
4794}
4795
45b4233c 4796#ifdef DEBUG
d710e138 4797static void print_sh(struct seq_file *seq, struct stripe_head *sh)
1da177e4
LT
4798{
4799 int i;
4800
16a53ecc
N
4801 seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
4802 (unsigned long long)sh->sector, sh->pd_idx, sh->state);
4803 seq_printf(seq, "sh %llu, count %d.\n",
4804 (unsigned long long)sh->sector, atomic_read(&sh->count));
4805 seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
7ecaa1e6 4806 for (i = 0; i < sh->disks; i++) {
16a53ecc
N
4807 seq_printf(seq, "(cache%d: %p %ld) ",
4808 i, sh->dev[i].page, sh->dev[i].flags);
1da177e4 4809 }
16a53ecc 4810 seq_printf(seq, "\n");
1da177e4
LT
4811}
4812
d710e138 4813static void printall(struct seq_file *seq, raid5_conf_t *conf)
1da177e4
LT
4814{
4815 struct stripe_head *sh;
fccddba0 4816 struct hlist_node *hn;
1da177e4
LT
4817 int i;
4818
4819 spin_lock_irq(&conf->device_lock);
4820 for (i = 0; i < NR_HASH; i++) {
fccddba0 4821 hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
1da177e4
LT
4822 if (sh->raid_conf != conf)
4823 continue;
16a53ecc 4824 print_sh(seq, sh);
1da177e4
LT
4825 }
4826 }
4827 spin_unlock_irq(&conf->device_lock);
4828}
4829#endif
4830
d710e138 4831static void status(struct seq_file *seq, mddev_t *mddev)
1da177e4
LT
4832{
4833 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4834 int i;
4835
4836 seq_printf (seq, " level %d, %dk chunk, algorithm %d", mddev->level, mddev->chunk_size >> 10, mddev->layout);
02c2de8c 4837 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
1da177e4
LT
4838 for (i = 0; i < conf->raid_disks; i++)
4839 seq_printf (seq, "%s",
4840 conf->disks[i].rdev &&
b2d444d7 4841 test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
1da177e4 4842 seq_printf (seq, "]");
45b4233c 4843#ifdef DEBUG
16a53ecc
N
4844 seq_printf (seq, "\n");
4845 printall(seq, conf);
1da177e4
LT
4846#endif
4847}
4848
4849static void print_raid5_conf (raid5_conf_t *conf)
4850{
4851 int i;
4852 struct disk_info *tmp;
4853
4854 printk("RAID5 conf printout:\n");
4855 if (!conf) {
4856 printk("(conf==NULL)\n");
4857 return;
4858 }
02c2de8c
N
4859 printk(" --- rd:%d wd:%d\n", conf->raid_disks,
4860 conf->raid_disks - conf->mddev->degraded);
1da177e4
LT
4861
4862 for (i = 0; i < conf->raid_disks; i++) {
4863 char b[BDEVNAME_SIZE];
4864 tmp = conf->disks + i;
4865 if (tmp->rdev)
4866 printk(" disk %d, o:%d, dev:%s\n",
b2d444d7 4867 i, !test_bit(Faulty, &tmp->rdev->flags),
1da177e4
LT
4868 bdevname(tmp->rdev->bdev,b));
4869 }
4870}
4871
4872static int raid5_spare_active(mddev_t *mddev)
4873{
4874 int i;
4875 raid5_conf_t *conf = mddev->private;
4876 struct disk_info *tmp;
4877
4878 for (i = 0; i < conf->raid_disks; i++) {
4879 tmp = conf->disks + i;
4880 if (tmp->rdev
b2d444d7 4881 && !test_bit(Faulty, &tmp->rdev->flags)
c04be0aa
N
4882 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
4883 unsigned long flags;
4884 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 4885 mddev->degraded--;
c04be0aa 4886 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
4887 }
4888 }
4889 print_raid5_conf(conf);
4890 return 0;
4891}
4892
4893static int raid5_remove_disk(mddev_t *mddev, int number)
4894{
4895 raid5_conf_t *conf = mddev->private;
4896 int err = 0;
4897 mdk_rdev_t *rdev;
4898 struct disk_info *p = conf->disks + number;
4899
4900 print_raid5_conf(conf);
4901 rdev = p->rdev;
4902 if (rdev) {
ec32a2bd
N
4903 if (number >= conf->raid_disks &&
4904 conf->reshape_progress == MaxSector)
4905 clear_bit(In_sync, &rdev->flags);
4906
b2d444d7 4907 if (test_bit(In_sync, &rdev->flags) ||
1da177e4
LT
4908 atomic_read(&rdev->nr_pending)) {
4909 err = -EBUSY;
4910 goto abort;
4911 }
dfc70645
N
4912 /* Only remove non-faulty devices if recovery
4913 * isn't possible.
4914 */
4915 if (!test_bit(Faulty, &rdev->flags) &&
ec32a2bd
N
4916 mddev->degraded <= conf->max_degraded &&
4917 number < conf->raid_disks) {
dfc70645
N
4918 err = -EBUSY;
4919 goto abort;
4920 }
1da177e4 4921 p->rdev = NULL;
fbd568a3 4922 synchronize_rcu();
1da177e4
LT
4923 if (atomic_read(&rdev->nr_pending)) {
4924 /* lost the race, try later */
4925 err = -EBUSY;
4926 p->rdev = rdev;
4927 }
4928 }
4929abort:
4930
4931 print_raid5_conf(conf);
4932 return err;
4933}
4934
4935static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
4936{
4937 raid5_conf_t *conf = mddev->private;
199050ea 4938 int err = -EEXIST;
1da177e4
LT
4939 int disk;
4940 struct disk_info *p;
6c2fce2e
NB
4941 int first = 0;
4942 int last = conf->raid_disks - 1;
1da177e4 4943
16a53ecc 4944 if (mddev->degraded > conf->max_degraded)
1da177e4 4945 /* no point adding a device */
199050ea 4946 return -EINVAL;
1da177e4 4947
6c2fce2e
NB
4948 if (rdev->raid_disk >= 0)
4949 first = last = rdev->raid_disk;
1da177e4
LT
4950
4951 /*
16a53ecc
N
4952 * find the disk ... but prefer rdev->saved_raid_disk
4953 * if possible.
1da177e4 4954 */
16a53ecc 4955 if (rdev->saved_raid_disk >= 0 &&
6c2fce2e 4956 rdev->saved_raid_disk >= first &&
16a53ecc
N
4957 conf->disks[rdev->saved_raid_disk].rdev == NULL)
4958 disk = rdev->saved_raid_disk;
4959 else
6c2fce2e
NB
4960 disk = first;
4961 for ( ; disk <= last ; disk++)
1da177e4 4962 if ((p=conf->disks + disk)->rdev == NULL) {
b2d444d7 4963 clear_bit(In_sync, &rdev->flags);
1da177e4 4964 rdev->raid_disk = disk;
199050ea 4965 err = 0;
72626685
N
4966 if (rdev->saved_raid_disk != disk)
4967 conf->fullsync = 1;
d6065f7b 4968 rcu_assign_pointer(p->rdev, rdev);
1da177e4
LT
4969 break;
4970 }
4971 print_raid5_conf(conf);
199050ea 4972 return err;
1da177e4
LT
4973}
4974
4975static int raid5_resize(mddev_t *mddev, sector_t sectors)
4976{
4977 /* no resync is happening, and there is enough space
4978 * on all devices, so we can resize.
4979 * We need to make sure resync covers any new space.
4980 * If the array is shrinking we should possibly wait until
4981 * any io in the removed space completes, but it hardly seems
4982 * worth it.
4983 */
4984 sectors &= ~((sector_t)mddev->chunk_size/512 - 1);
1f403624
DW
4985 md_set_array_sectors(mddev, raid5_size(mddev, sectors,
4986 mddev->raid_disks));
b522adcd
DW
4987 if (mddev->array_sectors >
4988 raid5_size(mddev, sectors, mddev->raid_disks))
4989 return -EINVAL;
f233ea5c 4990 set_capacity(mddev->gendisk, mddev->array_sectors);
44ce6294 4991 mddev->changed = 1;
58c0fed4
AN
4992 if (sectors > mddev->dev_sectors && mddev->recovery_cp == MaxSector) {
4993 mddev->recovery_cp = mddev->dev_sectors;
1da177e4
LT
4994 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4995 }
58c0fed4 4996 mddev->dev_sectors = sectors;
4b5c7ae8 4997 mddev->resync_max_sectors = sectors;
1da177e4
LT
4998 return 0;
4999}
5000
63c70c4f 5001static int raid5_check_reshape(mddev_t *mddev)
29269553
N
5002{
5003 raid5_conf_t *conf = mddev_to_conf(mddev);
29269553 5004
88ce4930
N
5005 if (mddev->delta_disks == 0 &&
5006 mddev->new_layout == mddev->layout &&
5007 mddev->new_chunk == mddev->chunk_size)
5008 return -EINVAL; /* nothing to do */
dba034ee
N
5009 if (mddev->bitmap)
5010 /* Cannot grow a bitmap yet */
5011 return -EBUSY;
ec32a2bd
N
5012 if (mddev->degraded > conf->max_degraded)
5013 return -EINVAL;
5014 if (mddev->delta_disks < 0) {
5015 /* We might be able to shrink, but the devices must
5016 * be made bigger first.
5017 * For raid6, 4 is the minimum size.
5018 * Otherwise 2 is the minimum
5019 */
5020 int min = 2;
5021 if (mddev->level == 6)
5022 min = 4;
5023 if (mddev->raid_disks + mddev->delta_disks < min)
5024 return -EINVAL;
5025 }
29269553
N
5026
5027 /* Can only proceed if there are plenty of stripe_heads.
5028 * We need a minimum of one full stripe,, and for sensible progress
5029 * it is best to have about 4 times that.
5030 * If we require 4 times, then the default 256 4K stripe_heads will
5031 * allow for chunk sizes up to 256K, which is probably OK.
5032 * If the chunk size is greater, user-space should request more
5033 * stripe_heads first.
5034 */
63c70c4f
N
5035 if ((mddev->chunk_size / STRIPE_SIZE) * 4 > conf->max_nr_stripes ||
5036 (mddev->new_chunk / STRIPE_SIZE) * 4 > conf->max_nr_stripes) {
29269553 5037 printk(KERN_WARNING "raid5: reshape: not enough stripes. Needed %lu\n",
784052ec
N
5038 (max(mddev->chunk_size, mddev->new_chunk)
5039 / STRIPE_SIZE)*4);
29269553
N
5040 return -ENOSPC;
5041 }
5042
ec32a2bd 5043 return resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
63c70c4f
N
5044}
5045
5046static int raid5_start_reshape(mddev_t *mddev)
5047{
5048 raid5_conf_t *conf = mddev_to_conf(mddev);
5049 mdk_rdev_t *rdev;
63c70c4f
N
5050 int spares = 0;
5051 int added_devices = 0;
c04be0aa 5052 unsigned long flags;
63c70c4f 5053
f416885e 5054 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
63c70c4f
N
5055 return -EBUSY;
5056
159ec1fc 5057 list_for_each_entry(rdev, &mddev->disks, same_set)
29269553
N
5058 if (rdev->raid_disk < 0 &&
5059 !test_bit(Faulty, &rdev->flags))
5060 spares++;
63c70c4f 5061
f416885e 5062 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
29269553
N
5063 /* Not enough devices even to make a degraded array
5064 * of that size
5065 */
5066 return -EINVAL;
5067
ec32a2bd
N
5068 /* Refuse to reduce size of the array. Any reductions in
5069 * array size must be through explicit setting of array_size
5070 * attribute.
5071 */
5072 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
5073 < mddev->array_sectors) {
5074 printk(KERN_ERR "md: %s: array size must be reduced "
5075 "before number of disks\n", mdname(mddev));
5076 return -EINVAL;
5077 }
5078
f6705578 5079 atomic_set(&conf->reshape_stripes, 0);
29269553
N
5080 spin_lock_irq(&conf->device_lock);
5081 conf->previous_raid_disks = conf->raid_disks;
63c70c4f 5082 conf->raid_disks += mddev->delta_disks;
88ce4930
N
5083 conf->prev_chunk = conf->chunk_size;
5084 conf->chunk_size = mddev->new_chunk;
5085 conf->prev_algo = conf->algorithm;
5086 conf->algorithm = mddev->new_layout;
fef9c61f
N
5087 if (mddev->delta_disks < 0)
5088 conf->reshape_progress = raid5_size(mddev, 0, 0);
5089 else
5090 conf->reshape_progress = 0;
5091 conf->reshape_safe = conf->reshape_progress;
86b42c71 5092 conf->generation++;
29269553
N
5093 spin_unlock_irq(&conf->device_lock);
5094
5095 /* Add some new drives, as many as will fit.
5096 * We know there are enough to make the newly sized array work.
5097 */
159ec1fc 5098 list_for_each_entry(rdev, &mddev->disks, same_set)
29269553
N
5099 if (rdev->raid_disk < 0 &&
5100 !test_bit(Faulty, &rdev->flags)) {
199050ea 5101 if (raid5_add_disk(mddev, rdev) == 0) {
29269553
N
5102 char nm[20];
5103 set_bit(In_sync, &rdev->flags);
29269553 5104 added_devices++;
5fd6c1dc 5105 rdev->recovery_offset = 0;
29269553 5106 sprintf(nm, "rd%d", rdev->raid_disk);
5e55e2f5
N
5107 if (sysfs_create_link(&mddev->kobj,
5108 &rdev->kobj, nm))
5109 printk(KERN_WARNING
5110 "raid5: failed to create "
5111 " link %s for %s\n",
5112 nm, mdname(mddev));
29269553
N
5113 } else
5114 break;
5115 }
5116
ec32a2bd
N
5117 if (mddev->delta_disks > 0) {
5118 spin_lock_irqsave(&conf->device_lock, flags);
5119 mddev->degraded = (conf->raid_disks - conf->previous_raid_disks)
5120 - added_devices;
5121 spin_unlock_irqrestore(&conf->device_lock, flags);
5122 }
63c70c4f 5123 mddev->raid_disks = conf->raid_disks;
f6705578 5124 mddev->reshape_position = 0;
850b2b42 5125 set_bit(MD_CHANGE_DEVS, &mddev->flags);
f6705578 5126
29269553
N
5127 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5128 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5129 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5130 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5131 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5132 "%s_reshape");
5133 if (!mddev->sync_thread) {
5134 mddev->recovery = 0;
5135 spin_lock_irq(&conf->device_lock);
5136 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
fef9c61f 5137 conf->reshape_progress = MaxSector;
29269553
N
5138 spin_unlock_irq(&conf->device_lock);
5139 return -EAGAIN;
5140 }
c8f517c4 5141 conf->reshape_checkpoint = jiffies;
29269553
N
5142 md_wakeup_thread(mddev->sync_thread);
5143 md_new_event(mddev);
5144 return 0;
5145}
29269553 5146
ec32a2bd
N
5147/* This is called from the reshape thread and should make any
5148 * changes needed in 'conf'
5149 */
29269553
N
5150static void end_reshape(raid5_conf_t *conf)
5151{
29269553 5152
f6705578 5153 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
f6705578 5154
f6705578 5155 spin_lock_irq(&conf->device_lock);
cea9c228 5156 conf->previous_raid_disks = conf->raid_disks;
fef9c61f 5157 conf->reshape_progress = MaxSector;
f6705578 5158 spin_unlock_irq(&conf->device_lock);
b0f9ec04 5159 wake_up(&conf->wait_for_overlap);
16a53ecc
N
5160
5161 /* read-ahead size must cover two whole stripes, which is
5162 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
5163 */
5164 {
cea9c228
N
5165 int data_disks = conf->raid_disks - conf->max_degraded;
5166 int stripe = data_disks * (conf->chunk_size
5167 / PAGE_SIZE);
16a53ecc
N
5168 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5169 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5170 }
29269553 5171 }
29269553
N
5172}
5173
ec32a2bd
N
5174/* This is called from the raid5d thread with mddev_lock held.
5175 * It makes config changes to the device.
5176 */
cea9c228
N
5177static void raid5_finish_reshape(mddev_t *mddev)
5178{
5179 struct block_device *bdev;
88ce4930 5180 raid5_conf_t *conf = mddev_to_conf(mddev);
cea9c228
N
5181
5182 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5183
ec32a2bd
N
5184 if (mddev->delta_disks > 0) {
5185 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5186 set_capacity(mddev->gendisk, mddev->array_sectors);
5187 mddev->changed = 1;
5188
5189 bdev = bdget_disk(mddev->gendisk, 0);
5190 if (bdev) {
5191 mutex_lock(&bdev->bd_inode->i_mutex);
5192 i_size_write(bdev->bd_inode,
5193 (loff_t)mddev->array_sectors << 9);
5194 mutex_unlock(&bdev->bd_inode->i_mutex);
5195 bdput(bdev);
5196 }
5197 } else {
5198 int d;
ec32a2bd
N
5199 mddev->degraded = conf->raid_disks;
5200 for (d = 0; d < conf->raid_disks ; d++)
5201 if (conf->disks[d].rdev &&
5202 test_bit(In_sync,
5203 &conf->disks[d].rdev->flags))
5204 mddev->degraded--;
5205 for (d = conf->raid_disks ;
5206 d < conf->raid_disks - mddev->delta_disks;
5207 d++)
5208 raid5_remove_disk(mddev, d);
cea9c228 5209 }
88ce4930
N
5210 mddev->layout = conf->algorithm;
5211 mddev->chunk_size = conf->chunk_size;
ec32a2bd
N
5212 mddev->reshape_position = MaxSector;
5213 mddev->delta_disks = 0;
cea9c228
N
5214 }
5215}
5216
72626685
N
5217static void raid5_quiesce(mddev_t *mddev, int state)
5218{
5219 raid5_conf_t *conf = mddev_to_conf(mddev);
5220
5221 switch(state) {
e464eafd
N
5222 case 2: /* resume for a suspend */
5223 wake_up(&conf->wait_for_overlap);
5224 break;
5225
72626685
N
5226 case 1: /* stop all writes */
5227 spin_lock_irq(&conf->device_lock);
5228 conf->quiesce = 1;
5229 wait_event_lock_irq(conf->wait_for_stripe,
46031f9a
RBJ
5230 atomic_read(&conf->active_stripes) == 0 &&
5231 atomic_read(&conf->active_aligned_reads) == 0,
72626685
N
5232 conf->device_lock, /* nothing */);
5233 spin_unlock_irq(&conf->device_lock);
5234 break;
5235
5236 case 0: /* re-enable writes */
5237 spin_lock_irq(&conf->device_lock);
5238 conf->quiesce = 0;
5239 wake_up(&conf->wait_for_stripe);
e464eafd 5240 wake_up(&conf->wait_for_overlap);
72626685
N
5241 spin_unlock_irq(&conf->device_lock);
5242 break;
5243 }
72626685 5244}
b15c2e57 5245
d562b0c4
N
5246
5247static void *raid5_takeover_raid1(mddev_t *mddev)
5248{
5249 int chunksect;
5250
5251 if (mddev->raid_disks != 2 ||
5252 mddev->degraded > 1)
5253 return ERR_PTR(-EINVAL);
5254
5255 /* Should check if there are write-behind devices? */
5256
5257 chunksect = 64*2; /* 64K by default */
5258
5259 /* The array must be an exact multiple of chunksize */
5260 while (chunksect && (mddev->array_sectors & (chunksect-1)))
5261 chunksect >>= 1;
5262
5263 if ((chunksect<<9) < STRIPE_SIZE)
5264 /* array size does not allow a suitable chunk size */
5265 return ERR_PTR(-EINVAL);
5266
5267 mddev->new_level = 5;
5268 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
5269 mddev->new_chunk = chunksect << 9;
5270
5271 return setup_conf(mddev);
5272}
5273
fc9739c6
N
5274static void *raid5_takeover_raid6(mddev_t *mddev)
5275{
5276 int new_layout;
5277
5278 switch (mddev->layout) {
5279 case ALGORITHM_LEFT_ASYMMETRIC_6:
5280 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
5281 break;
5282 case ALGORITHM_RIGHT_ASYMMETRIC_6:
5283 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
5284 break;
5285 case ALGORITHM_LEFT_SYMMETRIC_6:
5286 new_layout = ALGORITHM_LEFT_SYMMETRIC;
5287 break;
5288 case ALGORITHM_RIGHT_SYMMETRIC_6:
5289 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
5290 break;
5291 case ALGORITHM_PARITY_0_6:
5292 new_layout = ALGORITHM_PARITY_0;
5293 break;
5294 case ALGORITHM_PARITY_N:
5295 new_layout = ALGORITHM_PARITY_N;
5296 break;
5297 default:
5298 return ERR_PTR(-EINVAL);
5299 }
5300 mddev->new_level = 5;
5301 mddev->new_layout = new_layout;
5302 mddev->delta_disks = -1;
5303 mddev->raid_disks -= 1;
5304 return setup_conf(mddev);
5305}
5306
d562b0c4 5307
b3546035
N
5308static int raid5_reconfig(mddev_t *mddev, int new_layout, int new_chunk)
5309{
88ce4930
N
5310 /* For a 2-drive array, the layout and chunk size can be changed
5311 * immediately as not restriping is needed.
5312 * For larger arrays we record the new value - after validation
5313 * to be used by a reshape pass.
b3546035
N
5314 */
5315 raid5_conf_t *conf = mddev_to_conf(mddev);
5316
5317 if (new_layout >= 0 && !algorithm_valid_raid5(new_layout))
5318 return -EINVAL;
5319 if (new_chunk > 0) {
5320 if (new_chunk & (new_chunk-1))
5321 /* not a power of 2 */
5322 return -EINVAL;
5323 if (new_chunk < PAGE_SIZE)
5324 return -EINVAL;
5325 if (mddev->array_sectors & ((new_chunk>>9)-1))
5326 /* not factor of array size */
5327 return -EINVAL;
5328 }
5329
5330 /* They look valid */
5331
88ce4930 5332 if (mddev->raid_disks == 2) {
b3546035 5333
88ce4930
N
5334 if (new_layout >= 0) {
5335 conf->algorithm = new_layout;
5336 mddev->layout = mddev->new_layout = new_layout;
5337 }
5338 if (new_chunk > 0) {
5339 conf->chunk_size = new_chunk;
5340 mddev->chunk_size = mddev->new_chunk = new_chunk;
5341 }
5342 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5343 md_wakeup_thread(mddev->thread);
5344 } else {
5345 if (new_layout >= 0)
5346 mddev->new_layout = new_layout;
5347 if (new_chunk > 0)
5348 mddev->new_chunk = new_chunk;
b3546035 5349 }
88ce4930
N
5350 return 0;
5351}
5352
5353static int raid6_reconfig(mddev_t *mddev, int new_layout, int new_chunk)
5354{
5355 if (new_layout >= 0 && !algorithm_valid_raid6(new_layout))
5356 return -EINVAL;
b3546035 5357 if (new_chunk > 0) {
88ce4930
N
5358 if (new_chunk & (new_chunk-1))
5359 /* not a power of 2 */
5360 return -EINVAL;
5361 if (new_chunk < PAGE_SIZE)
5362 return -EINVAL;
5363 if (mddev->array_sectors & ((new_chunk>>9)-1))
5364 /* not factor of array size */
5365 return -EINVAL;
b3546035 5366 }
88ce4930
N
5367
5368 /* They look valid */
5369
5370 if (new_layout >= 0)
5371 mddev->new_layout = new_layout;
5372 if (new_chunk > 0)
5373 mddev->new_chunk = new_chunk;
5374
b3546035
N
5375 return 0;
5376}
5377
d562b0c4
N
5378static void *raid5_takeover(mddev_t *mddev)
5379{
5380 /* raid5 can take over:
5381 * raid0 - if all devices are the same - make it a raid4 layout
5382 * raid1 - if there are two drives. We need to know the chunk size
5383 * raid4 - trivial - just use a raid4 layout.
5384 * raid6 - Providing it is a *_6 layout
5385 *
5386 * For now, just do raid1
5387 */
5388
5389 if (mddev->level == 1)
5390 return raid5_takeover_raid1(mddev);
e9d4758f
N
5391 if (mddev->level == 4) {
5392 mddev->new_layout = ALGORITHM_PARITY_N;
5393 mddev->new_level = 5;
5394 return setup_conf(mddev);
5395 }
fc9739c6
N
5396 if (mddev->level == 6)
5397 return raid5_takeover_raid6(mddev);
d562b0c4
N
5398
5399 return ERR_PTR(-EINVAL);
5400}
5401
5402
245f46c2
N
5403static struct mdk_personality raid5_personality;
5404
5405static void *raid6_takeover(mddev_t *mddev)
5406{
5407 /* Currently can only take over a raid5. We map the
5408 * personality to an equivalent raid6 personality
5409 * with the Q block at the end.
5410 */
5411 int new_layout;
5412
5413 if (mddev->pers != &raid5_personality)
5414 return ERR_PTR(-EINVAL);
5415 if (mddev->degraded > 1)
5416 return ERR_PTR(-EINVAL);
5417 if (mddev->raid_disks > 253)
5418 return ERR_PTR(-EINVAL);
5419 if (mddev->raid_disks < 3)
5420 return ERR_PTR(-EINVAL);
5421
5422 switch (mddev->layout) {
5423 case ALGORITHM_LEFT_ASYMMETRIC:
5424 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
5425 break;
5426 case ALGORITHM_RIGHT_ASYMMETRIC:
5427 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
5428 break;
5429 case ALGORITHM_LEFT_SYMMETRIC:
5430 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
5431 break;
5432 case ALGORITHM_RIGHT_SYMMETRIC:
5433 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
5434 break;
5435 case ALGORITHM_PARITY_0:
5436 new_layout = ALGORITHM_PARITY_0_6;
5437 break;
5438 case ALGORITHM_PARITY_N:
5439 new_layout = ALGORITHM_PARITY_N;
5440 break;
5441 default:
5442 return ERR_PTR(-EINVAL);
5443 }
5444 mddev->new_level = 6;
5445 mddev->new_layout = new_layout;
5446 mddev->delta_disks = 1;
5447 mddev->raid_disks += 1;
5448 return setup_conf(mddev);
5449}
5450
5451
16a53ecc
N
5452static struct mdk_personality raid6_personality =
5453{
5454 .name = "raid6",
5455 .level = 6,
5456 .owner = THIS_MODULE,
5457 .make_request = make_request,
5458 .run = run,
5459 .stop = stop,
5460 .status = status,
5461 .error_handler = error,
5462 .hot_add_disk = raid5_add_disk,
5463 .hot_remove_disk= raid5_remove_disk,
5464 .spare_active = raid5_spare_active,
5465 .sync_request = sync_request,
5466 .resize = raid5_resize,
80c3a6ce 5467 .size = raid5_size,
f416885e
N
5468 .check_reshape = raid5_check_reshape,
5469 .start_reshape = raid5_start_reshape,
cea9c228 5470 .finish_reshape = raid5_finish_reshape,
16a53ecc 5471 .quiesce = raid5_quiesce,
245f46c2 5472 .takeover = raid6_takeover,
88ce4930 5473 .reconfig = raid6_reconfig,
16a53ecc 5474};
2604b703 5475static struct mdk_personality raid5_personality =
1da177e4
LT
5476{
5477 .name = "raid5",
2604b703 5478 .level = 5,
1da177e4
LT
5479 .owner = THIS_MODULE,
5480 .make_request = make_request,
5481 .run = run,
5482 .stop = stop,
5483 .status = status,
5484 .error_handler = error,
5485 .hot_add_disk = raid5_add_disk,
5486 .hot_remove_disk= raid5_remove_disk,
5487 .spare_active = raid5_spare_active,
5488 .sync_request = sync_request,
5489 .resize = raid5_resize,
80c3a6ce 5490 .size = raid5_size,
63c70c4f
N
5491 .check_reshape = raid5_check_reshape,
5492 .start_reshape = raid5_start_reshape,
cea9c228 5493 .finish_reshape = raid5_finish_reshape,
72626685 5494 .quiesce = raid5_quiesce,
d562b0c4 5495 .takeover = raid5_takeover,
b3546035 5496 .reconfig = raid5_reconfig,
1da177e4
LT
5497};
5498
2604b703 5499static struct mdk_personality raid4_personality =
1da177e4 5500{
2604b703
N
5501 .name = "raid4",
5502 .level = 4,
5503 .owner = THIS_MODULE,
5504 .make_request = make_request,
5505 .run = run,
5506 .stop = stop,
5507 .status = status,
5508 .error_handler = error,
5509 .hot_add_disk = raid5_add_disk,
5510 .hot_remove_disk= raid5_remove_disk,
5511 .spare_active = raid5_spare_active,
5512 .sync_request = sync_request,
5513 .resize = raid5_resize,
80c3a6ce 5514 .size = raid5_size,
3d37890b
N
5515 .check_reshape = raid5_check_reshape,
5516 .start_reshape = raid5_start_reshape,
cea9c228 5517 .finish_reshape = raid5_finish_reshape,
2604b703
N
5518 .quiesce = raid5_quiesce,
5519};
5520
5521static int __init raid5_init(void)
5522{
16a53ecc 5523 register_md_personality(&raid6_personality);
2604b703
N
5524 register_md_personality(&raid5_personality);
5525 register_md_personality(&raid4_personality);
5526 return 0;
1da177e4
LT
5527}
5528
2604b703 5529static void raid5_exit(void)
1da177e4 5530{
16a53ecc 5531 unregister_md_personality(&raid6_personality);
2604b703
N
5532 unregister_md_personality(&raid5_personality);
5533 unregister_md_personality(&raid4_personality);
1da177e4
LT
5534}
5535
5536module_init(raid5_init);
5537module_exit(raid5_exit);
5538MODULE_LICENSE("GPL");
5539MODULE_ALIAS("md-personality-4"); /* RAID5 */
d9d166c2
N
5540MODULE_ALIAS("md-raid5");
5541MODULE_ALIAS("md-raid4");
2604b703
N
5542MODULE_ALIAS("md-level-5");
5543MODULE_ALIAS("md-level-4");
16a53ecc
N
5544MODULE_ALIAS("md-personality-8"); /* RAID6 */
5545MODULE_ALIAS("md-raid6");
5546MODULE_ALIAS("md-level-6");
5547
5548/* This used to be two separate modules, they were: */
5549MODULE_ALIAS("raid5");
5550MODULE_ALIAS("raid6");