remove libdss from Makefile
[GitHub/moto-9609/android_kernel_motorola_exynos9610.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b8c73fc2 27#include <linux/kasan.h>
1da177e4
LT
28#include <linux/module.h>
29#include <linux/suspend.h>
30#include <linux/pagevec.h>
31#include <linux/blkdev.h>
32#include <linux/slab.h>
a238ab5b 33#include <linux/ratelimit.h>
5a3135c2 34#include <linux/oom.h>
1da177e4
LT
35#include <linux/notifier.h>
36#include <linux/topology.h>
37#include <linux/sysctl.h>
38#include <linux/cpu.h>
39#include <linux/cpuset.h>
bdc8cb98 40#include <linux/memory_hotplug.h>
1da177e4
LT
41#include <linux/nodemask.h>
42#include <linux/vmalloc.h>
a6cccdc3 43#include <linux/vmstat.h>
4be38e35 44#include <linux/mempolicy.h>
4b94ffdc 45#include <linux/memremap.h>
6811378e 46#include <linux/stop_machine.h>
c713216d
MG
47#include <linux/sort.h>
48#include <linux/pfn.h>
3fcfab16 49#include <linux/backing-dev.h>
933e312e 50#include <linux/fault-inject.h>
a5d76b54 51#include <linux/page-isolation.h>
eefa864b 52#include <linux/page_ext.h>
3ac7fe5a 53#include <linux/debugobjects.h>
dbb1f81c 54#include <linux/kmemleak.h>
56de7263 55#include <linux/compaction.h>
0d3d062a 56#include <trace/events/kmem.h>
d379f01d 57#include <trace/events/oom.h>
268bb0ce 58#include <linux/prefetch.h>
6e543d57 59#include <linux/mm_inline.h>
041d3a8c 60#include <linux/migrate.h>
949f7ec5 61#include <linux/hugetlb.h>
8bd75c77 62#include <linux/sched/rt.h>
5b3cc15a 63#include <linux/sched/mm.h>
48c96a36 64#include <linux/page_owner.h>
0e1cc95b 65#include <linux/kthread.h>
4949148a 66#include <linux/memcontrol.h>
42c269c8 67#include <linux/ftrace.h>
d92a8cfc 68#include <linux/lockdep.h>
556b969a 69#include <linux/nmi.h>
7cafcfd8 70#include <linux/psi.h>
1da177e4 71
7ee3d4e8 72#include <asm/sections.h>
1da177e4 73#include <asm/tlbflush.h>
ac924c60 74#include <asm/div64.h>
1da177e4
LT
75#include "internal.h"
76
c8e251fa
CS
77/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
78static DEFINE_MUTEX(pcp_batch_high_lock);
7cd2b0a3 79#define MIN_PERCPU_PAGELIST_FRACTION (8)
c8e251fa 80
72812019
LS
81#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
82DEFINE_PER_CPU(int, numa_node);
83EXPORT_PER_CPU_SYMBOL(numa_node);
84#endif
85
7aac7898
LS
86#ifdef CONFIG_HAVE_MEMORYLESS_NODES
87/*
88 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
89 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
90 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
91 * defined in <linux/topology.h>.
92 */
93DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
94EXPORT_PER_CPU_SYMBOL(_numa_mem_);
ad2c8144 95int _node_numa_mem_[MAX_NUMNODES];
7aac7898
LS
96#endif
97
bd233f53
MG
98/* work_structs for global per-cpu drains */
99DEFINE_MUTEX(pcpu_drain_mutex);
100DEFINE_PER_CPU(struct work_struct, pcpu_drain);
101
38addce8 102#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
58bea414 103volatile unsigned long latent_entropy __latent_entropy;
38addce8
ER
104EXPORT_SYMBOL(latent_entropy);
105#endif
106
1da177e4 107/*
13808910 108 * Array of node states.
1da177e4 109 */
13808910
CL
110nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
111 [N_POSSIBLE] = NODE_MASK_ALL,
112 [N_ONLINE] = { { [0] = 1UL } },
113#ifndef CONFIG_NUMA
114 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
115#ifdef CONFIG_HIGHMEM
116 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b 117#endif
20b2f52b 118 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
119 [N_CPU] = { { [0] = 1UL } },
120#endif /* NUMA */
121};
122EXPORT_SYMBOL(node_states);
123
c3d5f5f0
JL
124/* Protect totalram_pages and zone->managed_pages */
125static DEFINE_SPINLOCK(managed_page_count_lock);
126
6c231b7b 127unsigned long totalram_pages __read_mostly;
cb45b0e9 128unsigned long totalreserve_pages __read_mostly;
e48322ab 129unsigned long totalcma_pages __read_mostly;
ab8fabd4 130
1b76b02f 131int percpu_pagelist_fraction;
dcce284a 132gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 133
452aa699
RW
134#ifdef CONFIG_PM_SLEEP
135/*
136 * The following functions are used by the suspend/hibernate code to temporarily
137 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
138 * while devices are suspended. To avoid races with the suspend/hibernate code,
139 * they should always be called with pm_mutex held (gfp_allowed_mask also should
140 * only be modified with pm_mutex held, unless the suspend/hibernate code is
141 * guaranteed not to run in parallel with that modification).
142 */
c9e664f1
RW
143
144static gfp_t saved_gfp_mask;
145
146void pm_restore_gfp_mask(void)
452aa699
RW
147{
148 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
149 if (saved_gfp_mask) {
150 gfp_allowed_mask = saved_gfp_mask;
151 saved_gfp_mask = 0;
152 }
452aa699
RW
153}
154
c9e664f1 155void pm_restrict_gfp_mask(void)
452aa699 156{
452aa699 157 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
158 WARN_ON(saved_gfp_mask);
159 saved_gfp_mask = gfp_allowed_mask;
d0164adc 160 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
452aa699 161}
f90ac398
MG
162
163bool pm_suspended_storage(void)
164{
d0164adc 165 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
f90ac398
MG
166 return false;
167 return true;
168}
452aa699
RW
169#endif /* CONFIG_PM_SLEEP */
170
d9c23400 171#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
d00181b9 172unsigned int pageblock_order __read_mostly;
d9c23400
MG
173#endif
174
d98c7a09 175static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 176
1da177e4
LT
177/*
178 * results with 256, 32 in the lowmem_reserve sysctl:
179 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
180 * 1G machine -> (16M dma, 784M normal, 224M high)
181 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
182 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84109e15 183 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
184 *
185 * TBD: should special case ZONE_DMA32 machines here - in those we normally
186 * don't need any ZONE_NORMAL reservation
1da177e4 187 */
2f1b6248 188int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 189#ifdef CONFIG_ZONE_DMA
2f1b6248 190 256,
4b51d669 191#endif
fb0e7942 192#ifdef CONFIG_ZONE_DMA32
2f1b6248 193 256,
fb0e7942 194#endif
e53ef38d 195#ifdef CONFIG_HIGHMEM
2a1e274a 196 32,
e53ef38d 197#endif
2a1e274a 198 32,
2f1b6248 199};
1da177e4
LT
200
201EXPORT_SYMBOL(totalram_pages);
1da177e4 202
15ad7cdc 203static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 204#ifdef CONFIG_ZONE_DMA
2f1b6248 205 "DMA",
4b51d669 206#endif
fb0e7942 207#ifdef CONFIG_ZONE_DMA32
2f1b6248 208 "DMA32",
fb0e7942 209#endif
2f1b6248 210 "Normal",
e53ef38d 211#ifdef CONFIG_HIGHMEM
2a1e274a 212 "HighMem",
e53ef38d 213#endif
2a1e274a 214 "Movable",
033fbae9
DW
215#ifdef CONFIG_ZONE_DEVICE
216 "Device",
217#endif
2f1b6248
CL
218};
219
60f30350
VB
220char * const migratetype_names[MIGRATE_TYPES] = {
221 "Unmovable",
222 "Movable",
223 "Reclaimable",
224 "HighAtomic",
225#ifdef CONFIG_CMA
226 "CMA",
227#endif
228#ifdef CONFIG_MEMORY_ISOLATION
229 "Isolate",
230#endif
231};
232
f1e61557
KS
233compound_page_dtor * const compound_page_dtors[] = {
234 NULL,
235 free_compound_page,
236#ifdef CONFIG_HUGETLB_PAGE
237 free_huge_page,
238#endif
9a982250
KS
239#ifdef CONFIG_TRANSPARENT_HUGEPAGE
240 free_transhuge_page,
241#endif
f1e61557
KS
242};
243
019b711f
RR
244/*
245 * Try to keep at least this much lowmem free. Do not allow normal
246 * allocations below this point, only high priority ones. Automatically
247 * tuned according to the amount of memory in the system.
248 */
1da177e4 249int min_free_kbytes = 1024;
42aa83cb 250int user_min_free_kbytes = -1;
795ae7a0 251int watermark_scale_factor = 10;
1da177e4 252
019b711f
RR
253/*
254 * Extra memory for the system to try freeing. Used to temporarily
255 * free memory, to make space for new workloads. Anyone can allocate
256 * down to the min watermarks controlled by min_free_kbytes above.
257 */
258int extra_free_kbytes = 0;
259
2c85f51d
JB
260static unsigned long __meminitdata nr_kernel_pages;
261static unsigned long __meminitdata nr_all_pages;
a3142c8e 262static unsigned long __meminitdata dma_reserve;
1da177e4 263
0ee332c1
TH
264#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
265static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
266static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
267static unsigned long __initdata required_kernelcore;
268static unsigned long __initdata required_movablecore;
269static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
342332e6 270static bool mirrored_kernelcore;
0ee332c1
TH
271
272/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
273int movable_zone;
274EXPORT_SYMBOL(movable_zone);
275#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 276
418508c1
MS
277#if MAX_NUMNODES > 1
278int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 279int nr_online_nodes __read_mostly = 1;
418508c1 280EXPORT_SYMBOL(nr_node_ids);
62bc62a8 281EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
282#endif
283
9ef9acb0
MG
284int page_group_by_mobility_disabled __read_mostly;
285
3a80a7fa 286#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
5a77c92f
PT
287
288/*
289 * Determine how many pages need to be initialized durig early boot
290 * (non-deferred initialization).
291 * The value of first_deferred_pfn will be set later, once non-deferred pages
292 * are initialized, but for now set it ULONG_MAX.
293 */
3a80a7fa
MG
294static inline void reset_deferred_meminit(pg_data_t *pgdat)
295{
5a77c92f
PT
296 phys_addr_t start_addr, end_addr;
297 unsigned long max_pgcnt;
298 unsigned long reserved;
864b9a39
MH
299
300 /*
301 * Initialise at least 2G of a node but also take into account that
302 * two large system hashes that can take up 1GB for 0.25TB/node.
303 */
5a77c92f
PT
304 max_pgcnt = max(2UL << (30 - PAGE_SHIFT),
305 (pgdat->node_spanned_pages >> 8));
864b9a39
MH
306
307 /*
308 * Compensate the all the memblock reservations (e.g. crash kernel)
309 * from the initial estimation to make sure we will initialize enough
310 * memory to boot.
311 */
5a77c92f
PT
312 start_addr = PFN_PHYS(pgdat->node_start_pfn);
313 end_addr = PFN_PHYS(pgdat->node_start_pfn + max_pgcnt);
314 reserved = memblock_reserved_memory_within(start_addr, end_addr);
315 max_pgcnt += PHYS_PFN(reserved);
864b9a39 316
5a77c92f 317 pgdat->static_init_pgcnt = min(max_pgcnt, pgdat->node_spanned_pages);
3a80a7fa
MG
318 pgdat->first_deferred_pfn = ULONG_MAX;
319}
320
321/* Returns true if the struct page for the pfn is uninitialised */
0e1cc95b 322static inline bool __meminit early_page_uninitialised(unsigned long pfn)
3a80a7fa 323{
ef70b6f4
MG
324 int nid = early_pfn_to_nid(pfn);
325
326 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
3a80a7fa
MG
327 return true;
328
329 return false;
330}
331
332/*
333 * Returns false when the remaining initialisation should be deferred until
334 * later in the boot cycle when it can be parallelised.
335 */
336static inline bool update_defer_init(pg_data_t *pgdat,
337 unsigned long pfn, unsigned long zone_end,
338 unsigned long *nr_initialised)
339{
340 /* Always populate low zones for address-contrained allocations */
341 if (zone_end < pgdat_end_pfn(pgdat))
342 return true;
3a80a7fa 343 (*nr_initialised)++;
5a77c92f 344 if ((*nr_initialised > pgdat->static_init_pgcnt) &&
3a80a7fa
MG
345 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
346 pgdat->first_deferred_pfn = pfn;
347 return false;
348 }
349
350 return true;
351}
352#else
353static inline void reset_deferred_meminit(pg_data_t *pgdat)
354{
355}
356
357static inline bool early_page_uninitialised(unsigned long pfn)
358{
359 return false;
360}
361
362static inline bool update_defer_init(pg_data_t *pgdat,
363 unsigned long pfn, unsigned long zone_end,
364 unsigned long *nr_initialised)
365{
366 return true;
367}
368#endif
369
0b423ca2
MG
370/* Return a pointer to the bitmap storing bits affecting a block of pages */
371static inline unsigned long *get_pageblock_bitmap(struct page *page,
372 unsigned long pfn)
373{
374#ifdef CONFIG_SPARSEMEM
375 return __pfn_to_section(pfn)->pageblock_flags;
376#else
377 return page_zone(page)->pageblock_flags;
378#endif /* CONFIG_SPARSEMEM */
379}
380
381static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
382{
383#ifdef CONFIG_SPARSEMEM
384 pfn &= (PAGES_PER_SECTION-1);
385 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
386#else
387 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
388 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
389#endif /* CONFIG_SPARSEMEM */
390}
391
392/**
393 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
394 * @page: The page within the block of interest
395 * @pfn: The target page frame number
396 * @end_bitidx: The last bit of interest to retrieve
397 * @mask: mask of bits that the caller is interested in
398 *
399 * Return: pageblock_bits flags
400 */
401static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
402 unsigned long pfn,
403 unsigned long end_bitidx,
404 unsigned long mask)
405{
406 unsigned long *bitmap;
407 unsigned long bitidx, word_bitidx;
408 unsigned long word;
409
410 bitmap = get_pageblock_bitmap(page, pfn);
411 bitidx = pfn_to_bitidx(page, pfn);
412 word_bitidx = bitidx / BITS_PER_LONG;
413 bitidx &= (BITS_PER_LONG-1);
414
415 word = bitmap[word_bitidx];
416 bitidx += end_bitidx;
417 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
418}
419
420unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
421 unsigned long end_bitidx,
422 unsigned long mask)
423{
424 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
425}
426
427static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
428{
429 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
430}
431
432/**
433 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
434 * @page: The page within the block of interest
435 * @flags: The flags to set
436 * @pfn: The target page frame number
437 * @end_bitidx: The last bit of interest
438 * @mask: mask of bits that the caller is interested in
439 */
440void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
441 unsigned long pfn,
442 unsigned long end_bitidx,
443 unsigned long mask)
444{
445 unsigned long *bitmap;
446 unsigned long bitidx, word_bitidx;
447 unsigned long old_word, word;
448
449 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
450
451 bitmap = get_pageblock_bitmap(page, pfn);
452 bitidx = pfn_to_bitidx(page, pfn);
453 word_bitidx = bitidx / BITS_PER_LONG;
454 bitidx &= (BITS_PER_LONG-1);
455
456 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
457
458 bitidx += end_bitidx;
459 mask <<= (BITS_PER_LONG - bitidx - 1);
460 flags <<= (BITS_PER_LONG - bitidx - 1);
461
462 word = READ_ONCE(bitmap[word_bitidx]);
463 for (;;) {
464 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
465 if (word == old_word)
466 break;
467 word = old_word;
468 }
469}
3a80a7fa 470
ee6f509c 471void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 472{
5d0f3f72
KM
473 if (unlikely(page_group_by_mobility_disabled &&
474 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
475 migratetype = MIGRATE_UNMOVABLE;
476
b2a0ac88
MG
477 set_pageblock_flags_group(page, (unsigned long)migratetype,
478 PB_migrate, PB_migrate_end);
479}
480
13e7444b 481#ifdef CONFIG_DEBUG_VM
c6a57e19 482static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 483{
bdc8cb98
DH
484 int ret = 0;
485 unsigned seq;
486 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 487 unsigned long sp, start_pfn;
c6a57e19 488
bdc8cb98
DH
489 do {
490 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
491 start_pfn = zone->zone_start_pfn;
492 sp = zone->spanned_pages;
108bcc96 493 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
494 ret = 1;
495 } while (zone_span_seqretry(zone, seq));
496
b5e6a5a2 497 if (ret)
613813e8
DH
498 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
499 pfn, zone_to_nid(zone), zone->name,
500 start_pfn, start_pfn + sp);
b5e6a5a2 501
bdc8cb98 502 return ret;
c6a57e19
DH
503}
504
505static int page_is_consistent(struct zone *zone, struct page *page)
506{
14e07298 507 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 508 return 0;
1da177e4 509 if (zone != page_zone(page))
c6a57e19
DH
510 return 0;
511
512 return 1;
513}
514/*
515 * Temporary debugging check for pages not lying within a given zone.
516 */
d73d3c9f 517static int __maybe_unused bad_range(struct zone *zone, struct page *page)
c6a57e19
DH
518{
519 if (page_outside_zone_boundaries(zone, page))
1da177e4 520 return 1;
c6a57e19
DH
521 if (!page_is_consistent(zone, page))
522 return 1;
523
1da177e4
LT
524 return 0;
525}
13e7444b 526#else
d73d3c9f 527static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
13e7444b
NP
528{
529 return 0;
530}
531#endif
532
d230dec1
KS
533static void bad_page(struct page *page, const char *reason,
534 unsigned long bad_flags)
1da177e4 535{
d936cf9b
HD
536 static unsigned long resume;
537 static unsigned long nr_shown;
538 static unsigned long nr_unshown;
539
540 /*
541 * Allow a burst of 60 reports, then keep quiet for that minute;
542 * or allow a steady drip of one report per second.
543 */
544 if (nr_shown == 60) {
545 if (time_before(jiffies, resume)) {
546 nr_unshown++;
547 goto out;
548 }
549 if (nr_unshown) {
ff8e8116 550 pr_alert(
1e9e6365 551 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
552 nr_unshown);
553 nr_unshown = 0;
554 }
555 nr_shown = 0;
556 }
557 if (nr_shown++ == 0)
558 resume = jiffies + 60 * HZ;
559
ff8e8116 560 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 561 current->comm, page_to_pfn(page));
ff8e8116
VB
562 __dump_page(page, reason);
563 bad_flags &= page->flags;
564 if (bad_flags)
565 pr_alert("bad because of flags: %#lx(%pGp)\n",
566 bad_flags, &bad_flags);
4e462112 567 dump_page_owner(page);
3dc14741 568
4f31888c 569 print_modules();
1da177e4 570 dump_stack();
d936cf9b 571out:
8cc3b392 572 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 573 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 574 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
575}
576
1da177e4
LT
577/*
578 * Higher-order pages are called "compound pages". They are structured thusly:
579 *
1d798ca3 580 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
1da177e4 581 *
1d798ca3
KS
582 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
583 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
1da177e4 584 *
1d798ca3
KS
585 * The first tail page's ->compound_dtor holds the offset in array of compound
586 * page destructors. See compound_page_dtors.
1da177e4 587 *
1d798ca3 588 * The first tail page's ->compound_order holds the order of allocation.
41d78ba5 589 * This usage means that zero-order pages may not be compound.
1da177e4 590 */
d98c7a09 591
9a982250 592void free_compound_page(struct page *page)
d98c7a09 593{
d85f3385 594 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
595}
596
d00181b9 597void prep_compound_page(struct page *page, unsigned int order)
18229df5
AW
598{
599 int i;
600 int nr_pages = 1 << order;
601
f1e61557 602 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
18229df5
AW
603 set_compound_order(page, order);
604 __SetPageHead(page);
605 for (i = 1; i < nr_pages; i++) {
606 struct page *p = page + i;
58a84aa9 607 set_page_count(p, 0);
1c290f64 608 p->mapping = TAIL_MAPPING;
1d798ca3 609 set_compound_head(p, page);
18229df5 610 }
53f9263b 611 atomic_set(compound_mapcount_ptr(page), -1);
18229df5
AW
612}
613
c0a32fc5
SG
614#ifdef CONFIG_DEBUG_PAGEALLOC
615unsigned int _debug_guardpage_minorder;
ea6eabb0
CB
616bool _debug_pagealloc_enabled __read_mostly
617 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
505f6d22 618EXPORT_SYMBOL(_debug_pagealloc_enabled);
e30825f1
JK
619bool _debug_guardpage_enabled __read_mostly;
620
031bc574
JK
621static int __init early_debug_pagealloc(char *buf)
622{
623 if (!buf)
624 return -EINVAL;
2a138dc7 625 return kstrtobool(buf, &_debug_pagealloc_enabled);
031bc574
JK
626}
627early_param("debug_pagealloc", early_debug_pagealloc);
628
e30825f1
JK
629static bool need_debug_guardpage(void)
630{
031bc574
JK
631 /* If we don't use debug_pagealloc, we don't need guard page */
632 if (!debug_pagealloc_enabled())
633 return false;
634
f1c1e9f7
JK
635 if (!debug_guardpage_minorder())
636 return false;
637
e30825f1
JK
638 return true;
639}
640
641static void init_debug_guardpage(void)
642{
031bc574
JK
643 if (!debug_pagealloc_enabled())
644 return;
645
f1c1e9f7
JK
646 if (!debug_guardpage_minorder())
647 return;
648
e30825f1
JK
649 _debug_guardpage_enabled = true;
650}
651
652struct page_ext_operations debug_guardpage_ops = {
653 .need = need_debug_guardpage,
654 .init = init_debug_guardpage,
655};
c0a32fc5
SG
656
657static int __init debug_guardpage_minorder_setup(char *buf)
658{
659 unsigned long res;
660
661 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
1170532b 662 pr_err("Bad debug_guardpage_minorder value\n");
c0a32fc5
SG
663 return 0;
664 }
665 _debug_guardpage_minorder = res;
1170532b 666 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
c0a32fc5
SG
667 return 0;
668}
f1c1e9f7 669early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
c0a32fc5 670
acbc15a4 671static inline bool set_page_guard(struct zone *zone, struct page *page,
2847cf95 672 unsigned int order, int migratetype)
c0a32fc5 673{
e30825f1
JK
674 struct page_ext *page_ext;
675
676 if (!debug_guardpage_enabled())
acbc15a4
JK
677 return false;
678
679 if (order >= debug_guardpage_minorder())
680 return false;
e30825f1
JK
681
682 page_ext = lookup_page_ext(page);
f86e4271 683 if (unlikely(!page_ext))
acbc15a4 684 return false;
f86e4271 685
e30825f1
JK
686 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
687
2847cf95
JK
688 INIT_LIST_HEAD(&page->lru);
689 set_page_private(page, order);
690 /* Guard pages are not available for any usage */
691 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
acbc15a4
JK
692
693 return true;
c0a32fc5
SG
694}
695
2847cf95
JK
696static inline void clear_page_guard(struct zone *zone, struct page *page,
697 unsigned int order, int migratetype)
c0a32fc5 698{
e30825f1
JK
699 struct page_ext *page_ext;
700
701 if (!debug_guardpage_enabled())
702 return;
703
704 page_ext = lookup_page_ext(page);
f86e4271
YS
705 if (unlikely(!page_ext))
706 return;
707
e30825f1
JK
708 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
709
2847cf95
JK
710 set_page_private(page, 0);
711 if (!is_migrate_isolate(migratetype))
712 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
713}
714#else
980ac167 715struct page_ext_operations debug_guardpage_ops;
acbc15a4
JK
716static inline bool set_page_guard(struct zone *zone, struct page *page,
717 unsigned int order, int migratetype) { return false; }
2847cf95
JK
718static inline void clear_page_guard(struct zone *zone, struct page *page,
719 unsigned int order, int migratetype) {}
c0a32fc5
SG
720#endif
721
7aeb09f9 722static inline void set_page_order(struct page *page, unsigned int order)
6aa3001b 723{
4c21e2f2 724 set_page_private(page, order);
676165a8 725 __SetPageBuddy(page);
1da177e4
LT
726}
727
728static inline void rmv_page_order(struct page *page)
729{
676165a8 730 __ClearPageBuddy(page);
4c21e2f2 731 set_page_private(page, 0);
1da177e4
LT
732}
733
1da177e4
LT
734/*
735 * This function checks whether a page is free && is the buddy
736 * we can do coalesce a page and its buddy if
13ad59df 737 * (a) the buddy is not in a hole (check before calling!) &&
676165a8 738 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
739 * (c) a page and its buddy have the same order &&
740 * (d) a page and its buddy are in the same zone.
676165a8 741 *
cf6fe945
WSH
742 * For recording whether a page is in the buddy system, we set ->_mapcount
743 * PAGE_BUDDY_MAPCOUNT_VALUE.
744 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
745 * serialized by zone->lock.
1da177e4 746 *
676165a8 747 * For recording page's order, we use page_private(page).
1da177e4 748 */
cb2b95e1 749static inline int page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 750 unsigned int order)
1da177e4 751{
c0a32fc5 752 if (page_is_guard(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
753 if (page_zone_id(page) != page_zone_id(buddy))
754 return 0;
755
4c5018ce
WY
756 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
757
c0a32fc5
SG
758 return 1;
759 }
760
cb2b95e1 761 if (PageBuddy(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
762 /*
763 * zone check is done late to avoid uselessly
764 * calculating zone/node ids for pages that could
765 * never merge.
766 */
767 if (page_zone_id(page) != page_zone_id(buddy))
768 return 0;
769
4c5018ce
WY
770 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
771
6aa3001b 772 return 1;
676165a8 773 }
6aa3001b 774 return 0;
1da177e4
LT
775}
776
777/*
778 * Freeing function for a buddy system allocator.
779 *
780 * The concept of a buddy system is to maintain direct-mapped table
781 * (containing bit values) for memory blocks of various "orders".
782 * The bottom level table contains the map for the smallest allocatable
783 * units of memory (here, pages), and each level above it describes
784 * pairs of units from the levels below, hence, "buddies".
785 * At a high level, all that happens here is marking the table entry
786 * at the bottom level available, and propagating the changes upward
787 * as necessary, plus some accounting needed to play nicely with other
788 * parts of the VM system.
789 * At each level, we keep a list of pages, which are heads of continuous
cf6fe945
WSH
790 * free pages of length of (1 << order) and marked with _mapcount
791 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
792 * field.
1da177e4 793 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
794 * other. That is, if we allocate a small block, and both were
795 * free, the remainder of the region must be split into blocks.
1da177e4 796 * If a block is freed, and its buddy is also free, then this
5f63b720 797 * triggers coalescing into a block of larger size.
1da177e4 798 *
6d49e352 799 * -- nyc
1da177e4
LT
800 */
801
48db57f8 802static inline void __free_one_page(struct page *page,
dc4b0caf 803 unsigned long pfn,
ed0ae21d
MG
804 struct zone *zone, unsigned int order,
805 int migratetype)
1da177e4 806{
76741e77
VB
807 unsigned long combined_pfn;
808 unsigned long uninitialized_var(buddy_pfn);
6dda9d55 809 struct page *buddy;
d9dddbf5
VB
810 unsigned int max_order;
811
812 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
1da177e4 813
d29bb978 814 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 815 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 816
ed0ae21d 817 VM_BUG_ON(migratetype == -1);
d9dddbf5 818 if (likely(!is_migrate_isolate(migratetype)))
8f82b55d 819 __mod_zone_freepage_state(zone, 1 << order, migratetype);
ed0ae21d 820
76741e77 821 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
309381fe 822 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 823
d9dddbf5 824continue_merging:
3c605096 825 while (order < max_order - 1) {
76741e77
VB
826 buddy_pfn = __find_buddy_pfn(pfn, order);
827 buddy = page + (buddy_pfn - pfn);
13ad59df
VB
828
829 if (!pfn_valid_within(buddy_pfn))
830 goto done_merging;
cb2b95e1 831 if (!page_is_buddy(page, buddy, order))
d9dddbf5 832 goto done_merging;
c0a32fc5
SG
833 /*
834 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
835 * merge with it and move up one order.
836 */
837 if (page_is_guard(buddy)) {
2847cf95 838 clear_page_guard(zone, buddy, order, migratetype);
c0a32fc5
SG
839 } else {
840 list_del(&buddy->lru);
841 zone->free_area[order].nr_free--;
842 rmv_page_order(buddy);
843 }
76741e77
VB
844 combined_pfn = buddy_pfn & pfn;
845 page = page + (combined_pfn - pfn);
846 pfn = combined_pfn;
1da177e4
LT
847 order++;
848 }
d9dddbf5
VB
849 if (max_order < MAX_ORDER) {
850 /* If we are here, it means order is >= pageblock_order.
851 * We want to prevent merge between freepages on isolate
852 * pageblock and normal pageblock. Without this, pageblock
853 * isolation could cause incorrect freepage or CMA accounting.
854 *
855 * We don't want to hit this code for the more frequent
856 * low-order merging.
857 */
858 if (unlikely(has_isolate_pageblock(zone))) {
859 int buddy_mt;
860
76741e77
VB
861 buddy_pfn = __find_buddy_pfn(pfn, order);
862 buddy = page + (buddy_pfn - pfn);
d9dddbf5
VB
863 buddy_mt = get_pageblock_migratetype(buddy);
864
865 if (migratetype != buddy_mt
866 && (is_migrate_isolate(migratetype) ||
867 is_migrate_isolate(buddy_mt)))
868 goto done_merging;
869 }
870 max_order++;
871 goto continue_merging;
872 }
873
874done_merging:
1da177e4 875 set_page_order(page, order);
6dda9d55
CZ
876
877 /*
878 * If this is not the largest possible page, check if the buddy
879 * of the next-highest order is free. If it is, it's possible
880 * that pages are being freed that will coalesce soon. In case,
881 * that is happening, add the free page to the tail of the list
882 * so it's less likely to be used soon and more likely to be merged
883 * as a higher order page
884 */
13ad59df 885 if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
6dda9d55 886 struct page *higher_page, *higher_buddy;
76741e77
VB
887 combined_pfn = buddy_pfn & pfn;
888 higher_page = page + (combined_pfn - pfn);
889 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
890 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
b4fb8f66
TL
891 if (pfn_valid_within(buddy_pfn) &&
892 page_is_buddy(higher_page, higher_buddy, order + 1)) {
6dda9d55
CZ
893 list_add_tail(&page->lru,
894 &zone->free_area[order].free_list[migratetype]);
895 goto out;
896 }
897 }
898
899 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
900out:
1da177e4
LT
901 zone->free_area[order].nr_free++;
902}
903
7bfec6f4
MG
904/*
905 * A bad page could be due to a number of fields. Instead of multiple branches,
906 * try and check multiple fields with one check. The caller must do a detailed
907 * check if necessary.
908 */
909static inline bool page_expected_state(struct page *page,
910 unsigned long check_flags)
911{
912 if (unlikely(atomic_read(&page->_mapcount) != -1))
913 return false;
914
915 if (unlikely((unsigned long)page->mapping |
916 page_ref_count(page) |
917#ifdef CONFIG_MEMCG
918 (unsigned long)page->mem_cgroup |
919#endif
920 (page->flags & check_flags)))
921 return false;
922
923 return true;
924}
925
bb552ac6 926static void free_pages_check_bad(struct page *page)
1da177e4 927{
7bfec6f4
MG
928 const char *bad_reason;
929 unsigned long bad_flags;
930
7bfec6f4
MG
931 bad_reason = NULL;
932 bad_flags = 0;
f0b791a3 933
53f9263b 934 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
935 bad_reason = "nonzero mapcount";
936 if (unlikely(page->mapping != NULL))
937 bad_reason = "non-NULL mapping";
fe896d18 938 if (unlikely(page_ref_count(page) != 0))
0139aa7b 939 bad_reason = "nonzero _refcount";
f0b791a3
DH
940 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
941 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
942 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
943 }
9edad6ea
JW
944#ifdef CONFIG_MEMCG
945 if (unlikely(page->mem_cgroup))
946 bad_reason = "page still charged to cgroup";
947#endif
7bfec6f4 948 bad_page(page, bad_reason, bad_flags);
bb552ac6
MG
949}
950
951static inline int free_pages_check(struct page *page)
952{
da838d4f 953 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
bb552ac6 954 return 0;
bb552ac6
MG
955
956 /* Something has gone sideways, find it */
957 free_pages_check_bad(page);
7bfec6f4 958 return 1;
1da177e4
LT
959}
960
4db7548c
MG
961static int free_tail_pages_check(struct page *head_page, struct page *page)
962{
963 int ret = 1;
964
965 /*
966 * We rely page->lru.next never has bit 0 set, unless the page
967 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
968 */
969 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
970
971 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
972 ret = 0;
973 goto out;
974 }
975 switch (page - head_page) {
976 case 1:
977 /* the first tail page: ->mapping is compound_mapcount() */
978 if (unlikely(compound_mapcount(page))) {
979 bad_page(page, "nonzero compound_mapcount", 0);
980 goto out;
981 }
982 break;
983 case 2:
984 /*
985 * the second tail page: ->mapping is
986 * page_deferred_list().next -- ignore value.
987 */
988 break;
989 default:
990 if (page->mapping != TAIL_MAPPING) {
991 bad_page(page, "corrupted mapping in tail page", 0);
992 goto out;
993 }
994 break;
995 }
996 if (unlikely(!PageTail(page))) {
997 bad_page(page, "PageTail not set", 0);
998 goto out;
999 }
1000 if (unlikely(compound_head(page) != head_page)) {
1001 bad_page(page, "compound_head not consistent", 0);
1002 goto out;
1003 }
1004 ret = 0;
1005out:
1006 page->mapping = NULL;
1007 clear_compound_head(page);
1008 return ret;
1009}
1010
e2769dbd
MG
1011static __always_inline bool free_pages_prepare(struct page *page,
1012 unsigned int order, bool check_free)
4db7548c 1013{
e2769dbd 1014 int bad = 0;
4db7548c 1015
4db7548c
MG
1016 VM_BUG_ON_PAGE(PageTail(page), page);
1017
e2769dbd 1018 trace_mm_page_free(page, order);
e2769dbd
MG
1019
1020 /*
1021 * Check tail pages before head page information is cleared to
1022 * avoid checking PageCompound for order-0 pages.
1023 */
1024 if (unlikely(order)) {
1025 bool compound = PageCompound(page);
1026 int i;
1027
1028 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
4db7548c 1029
9a73f61b
KS
1030 if (compound)
1031 ClearPageDoubleMap(page);
e2769dbd
MG
1032 for (i = 1; i < (1 << order); i++) {
1033 if (compound)
1034 bad += free_tail_pages_check(page, page + i);
1035 if (unlikely(free_pages_check(page + i))) {
1036 bad++;
1037 continue;
1038 }
1039 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1040 }
1041 }
bda807d4 1042 if (PageMappingFlags(page))
4db7548c 1043 page->mapping = NULL;
c4159a75 1044 if (memcg_kmem_enabled() && PageKmemcg(page))
4949148a 1045 memcg_kmem_uncharge(page, order);
e2769dbd
MG
1046 if (check_free)
1047 bad += free_pages_check(page);
1048 if (bad)
1049 return false;
4db7548c 1050
e2769dbd
MG
1051 page_cpupid_reset_last(page);
1052 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1053 reset_page_owner(page, order);
4db7548c
MG
1054
1055 if (!PageHighMem(page)) {
1056 debug_check_no_locks_freed(page_address(page),
e2769dbd 1057 PAGE_SIZE << order);
4db7548c 1058 debug_check_no_obj_freed(page_address(page),
e2769dbd 1059 PAGE_SIZE << order);
4db7548c 1060 }
e2769dbd
MG
1061 arch_free_page(page, order);
1062 kernel_poison_pages(page, 1 << order, 0);
1063 kernel_map_pages(page, 1 << order, 0);
29b52de1 1064 kasan_free_pages(page, order);
4db7548c 1065
4db7548c
MG
1066 return true;
1067}
1068
e2769dbd
MG
1069#ifdef CONFIG_DEBUG_VM
1070static inline bool free_pcp_prepare(struct page *page)
1071{
1072 return free_pages_prepare(page, 0, true);
1073}
1074
1075static inline bool bulkfree_pcp_prepare(struct page *page)
1076{
1077 return false;
1078}
1079#else
1080static bool free_pcp_prepare(struct page *page)
1081{
1082 return free_pages_prepare(page, 0, false);
1083}
1084
4db7548c
MG
1085static bool bulkfree_pcp_prepare(struct page *page)
1086{
1087 return free_pages_check(page);
1088}
1089#endif /* CONFIG_DEBUG_VM */
1090
1da177e4 1091/*
5f8dcc21 1092 * Frees a number of pages from the PCP lists
1da177e4 1093 * Assumes all pages on list are in same zone, and of same order.
207f36ee 1094 * count is the number of pages to free.
1da177e4
LT
1095 *
1096 * If the zone was previously in an "all pages pinned" state then look to
1097 * see if this freeing clears that state.
1098 *
1099 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1100 * pinned" detection logic.
1101 */
5f8dcc21
MG
1102static void free_pcppages_bulk(struct zone *zone, int count,
1103 struct per_cpu_pages *pcp)
1da177e4 1104{
5f8dcc21 1105 int migratetype = 0;
a6f9edd6 1106 int batch_free = 0;
3777999d 1107 bool isolated_pageblocks;
5f8dcc21 1108
d34b0733 1109 spin_lock(&zone->lock);
3777999d 1110 isolated_pageblocks = has_isolate_pageblock(zone);
f2260e6b 1111
e5b31ac2 1112 while (count) {
48db57f8 1113 struct page *page;
5f8dcc21
MG
1114 struct list_head *list;
1115
1116 /*
a6f9edd6
MG
1117 * Remove pages from lists in a round-robin fashion. A
1118 * batch_free count is maintained that is incremented when an
1119 * empty list is encountered. This is so more pages are freed
1120 * off fuller lists instead of spinning excessively around empty
1121 * lists
5f8dcc21
MG
1122 */
1123 do {
a6f9edd6 1124 batch_free++;
5f8dcc21
MG
1125 if (++migratetype == MIGRATE_PCPTYPES)
1126 migratetype = 0;
1127 list = &pcp->lists[migratetype];
1128 } while (list_empty(list));
48db57f8 1129
1d16871d
NK
1130 /* This is the only non-empty list. Free them all. */
1131 if (batch_free == MIGRATE_PCPTYPES)
e5b31ac2 1132 batch_free = count;
1d16871d 1133
a6f9edd6 1134 do {
770c8aaa
BZ
1135 int mt; /* migratetype of the to-be-freed page */
1136
a16601c5 1137 page = list_last_entry(list, struct page, lru);
a6f9edd6
MG
1138 /* must delete as __free_one_page list manipulates */
1139 list_del(&page->lru);
aa016d14 1140
bb14c2c7 1141 mt = get_pcppage_migratetype(page);
aa016d14
VB
1142 /* MIGRATE_ISOLATE page should not go to pcplists */
1143 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1144 /* Pageblock could have been isolated meanwhile */
3777999d 1145 if (unlikely(isolated_pageblocks))
51bb1a40 1146 mt = get_pageblock_migratetype(page);
51bb1a40 1147
4db7548c
MG
1148 if (bulkfree_pcp_prepare(page))
1149 continue;
1150
dc4b0caf 1151 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
770c8aaa 1152 trace_mm_page_pcpu_drain(page, 0, mt);
e5b31ac2 1153 } while (--count && --batch_free && !list_empty(list));
1da177e4 1154 }
d34b0733 1155 spin_unlock(&zone->lock);
1da177e4
LT
1156}
1157
dc4b0caf
MG
1158static void free_one_page(struct zone *zone,
1159 struct page *page, unsigned long pfn,
7aeb09f9 1160 unsigned int order,
ed0ae21d 1161 int migratetype)
1da177e4 1162{
d34b0733 1163 spin_lock(&zone->lock);
ad53f92e
JK
1164 if (unlikely(has_isolate_pageblock(zone) ||
1165 is_migrate_isolate(migratetype))) {
1166 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 1167 }
dc4b0caf 1168 __free_one_page(page, pfn, zone, order, migratetype);
d34b0733 1169 spin_unlock(&zone->lock);
48db57f8
NP
1170}
1171
1e8ce83c
RH
1172static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1173 unsigned long zone, int nid)
1174{
1e8ce83c 1175 set_page_links(page, zone, nid, pfn);
1e8ce83c
RH
1176 init_page_count(page);
1177 page_mapcount_reset(page);
1178 page_cpupid_reset_last(page);
1e8ce83c 1179
1e8ce83c
RH
1180 INIT_LIST_HEAD(&page->lru);
1181#ifdef WANT_PAGE_VIRTUAL
1182 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1183 if (!is_highmem_idx(zone))
1184 set_page_address(page, __va(pfn << PAGE_SHIFT));
1185#endif
1186}
1187
1188static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
1189 int nid)
1190{
1191 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
1192}
1193
7e18adb4 1194#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
57148a64 1195static void __meminit init_reserved_page(unsigned long pfn)
7e18adb4
MG
1196{
1197 pg_data_t *pgdat;
1198 int nid, zid;
1199
1200 if (!early_page_uninitialised(pfn))
1201 return;
1202
1203 nid = early_pfn_to_nid(pfn);
1204 pgdat = NODE_DATA(nid);
1205
1206 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1207 struct zone *zone = &pgdat->node_zones[zid];
1208
1209 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1210 break;
1211 }
1212 __init_single_pfn(pfn, zid, nid);
1213}
1214#else
1215static inline void init_reserved_page(unsigned long pfn)
1216{
1217}
1218#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1219
92923ca3
NZ
1220/*
1221 * Initialised pages do not have PageReserved set. This function is
1222 * called for each range allocated by the bootmem allocator and
1223 * marks the pages PageReserved. The remaining valid pages are later
1224 * sent to the buddy page allocator.
1225 */
4b50bcc7 1226void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
92923ca3
NZ
1227{
1228 unsigned long start_pfn = PFN_DOWN(start);
1229 unsigned long end_pfn = PFN_UP(end);
1230
7e18adb4
MG
1231 for (; start_pfn < end_pfn; start_pfn++) {
1232 if (pfn_valid(start_pfn)) {
1233 struct page *page = pfn_to_page(start_pfn);
1234
1235 init_reserved_page(start_pfn);
1d798ca3
KS
1236
1237 /* Avoid false-positive PageTail() */
1238 INIT_LIST_HEAD(&page->lru);
1239
7e18adb4
MG
1240 SetPageReserved(page);
1241 }
1242 }
92923ca3
NZ
1243}
1244
ec95f53a
KM
1245static void __free_pages_ok(struct page *page, unsigned int order)
1246{
d34b0733 1247 unsigned long flags;
95e34412 1248 int migratetype;
dc4b0caf 1249 unsigned long pfn = page_to_pfn(page);
ec95f53a 1250
e2769dbd 1251 if (!free_pages_prepare(page, order, true))
ec95f53a
KM
1252 return;
1253
cfc47a28 1254 migratetype = get_pfnblock_migratetype(page, pfn);
d34b0733
MG
1255 local_irq_save(flags);
1256 __count_vm_events(PGFREE, 1 << order);
dc4b0caf 1257 free_one_page(page_zone(page), page, pfn, order, migratetype);
d34b0733 1258 local_irq_restore(flags);
1da177e4
LT
1259}
1260
949698a3 1261static void __init __free_pages_boot_core(struct page *page, unsigned int order)
a226f6c8 1262{
c3993076 1263 unsigned int nr_pages = 1 << order;
e2d0bd2b 1264 struct page *p = page;
c3993076 1265 unsigned int loop;
a226f6c8 1266
e2d0bd2b
YL
1267 prefetchw(p);
1268 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1269 prefetchw(p + 1);
c3993076
JW
1270 __ClearPageReserved(p);
1271 set_page_count(p, 0);
a226f6c8 1272 }
e2d0bd2b
YL
1273 __ClearPageReserved(p);
1274 set_page_count(p, 0);
c3993076 1275
e2d0bd2b 1276 page_zone(page)->managed_pages += nr_pages;
c3993076
JW
1277 set_page_refcounted(page);
1278 __free_pages(page, order);
a226f6c8
DH
1279}
1280
75a592a4
MG
1281#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1282 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
7ace9917 1283
75a592a4
MG
1284static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1285
1286int __meminit early_pfn_to_nid(unsigned long pfn)
1287{
7ace9917 1288 static DEFINE_SPINLOCK(early_pfn_lock);
75a592a4
MG
1289 int nid;
1290
7ace9917 1291 spin_lock(&early_pfn_lock);
75a592a4 1292 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
7ace9917 1293 if (nid < 0)
e4568d38 1294 nid = first_online_node;
7ace9917
MG
1295 spin_unlock(&early_pfn_lock);
1296
1297 return nid;
75a592a4
MG
1298}
1299#endif
1300
1301#ifdef CONFIG_NODES_SPAN_OTHER_NODES
d73d3c9f
MK
1302static inline bool __meminit __maybe_unused
1303meminit_pfn_in_nid(unsigned long pfn, int node,
1304 struct mminit_pfnnid_cache *state)
75a592a4
MG
1305{
1306 int nid;
1307
1308 nid = __early_pfn_to_nid(pfn, state);
1309 if (nid >= 0 && nid != node)
1310 return false;
1311 return true;
1312}
1313
1314/* Only safe to use early in boot when initialisation is single-threaded */
1315static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1316{
1317 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1318}
1319
1320#else
1321
1322static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1323{
1324 return true;
1325}
d73d3c9f
MK
1326static inline bool __meminit __maybe_unused
1327meminit_pfn_in_nid(unsigned long pfn, int node,
1328 struct mminit_pfnnid_cache *state)
75a592a4
MG
1329{
1330 return true;
1331}
1332#endif
1333
1334
0e1cc95b 1335void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
3a80a7fa
MG
1336 unsigned int order)
1337{
1338 if (early_page_uninitialised(pfn))
1339 return;
949698a3 1340 return __free_pages_boot_core(page, order);
3a80a7fa
MG
1341}
1342
7cf91a98
JK
1343/*
1344 * Check that the whole (or subset of) a pageblock given by the interval of
1345 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1346 * with the migration of free compaction scanner. The scanners then need to
1347 * use only pfn_valid_within() check for arches that allow holes within
1348 * pageblocks.
1349 *
1350 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1351 *
1352 * It's possible on some configurations to have a setup like node0 node1 node0
1353 * i.e. it's possible that all pages within a zones range of pages do not
1354 * belong to a single zone. We assume that a border between node0 and node1
1355 * can occur within a single pageblock, but not a node0 node1 node0
1356 * interleaving within a single pageblock. It is therefore sufficient to check
1357 * the first and last page of a pageblock and avoid checking each individual
1358 * page in a pageblock.
1359 */
1360struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1361 unsigned long end_pfn, struct zone *zone)
1362{
1363 struct page *start_page;
1364 struct page *end_page;
1365
1366 /* end_pfn is one past the range we are checking */
1367 end_pfn--;
1368
1369 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1370 return NULL;
1371
2d070eab
MH
1372 start_page = pfn_to_online_page(start_pfn);
1373 if (!start_page)
1374 return NULL;
7cf91a98
JK
1375
1376 if (page_zone(start_page) != zone)
1377 return NULL;
1378
1379 end_page = pfn_to_page(end_pfn);
1380
1381 /* This gives a shorter code than deriving page_zone(end_page) */
1382 if (page_zone_id(start_page) != page_zone_id(end_page))
1383 return NULL;
1384
1385 return start_page;
1386}
1387
1388void set_zone_contiguous(struct zone *zone)
1389{
1390 unsigned long block_start_pfn = zone->zone_start_pfn;
1391 unsigned long block_end_pfn;
1392
1393 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1394 for (; block_start_pfn < zone_end_pfn(zone);
1395 block_start_pfn = block_end_pfn,
1396 block_end_pfn += pageblock_nr_pages) {
1397
1398 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1399
1400 if (!__pageblock_pfn_to_page(block_start_pfn,
1401 block_end_pfn, zone))
1402 return;
1403 }
1404
1405 /* We confirm that there is no hole */
1406 zone->contiguous = true;
1407}
1408
1409void clear_zone_contiguous(struct zone *zone)
1410{
1411 zone->contiguous = false;
1412}
1413
7e18adb4 1414#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b 1415static void __init deferred_free_range(struct page *page,
a4de83dd
MG
1416 unsigned long pfn, int nr_pages)
1417{
1418 int i;
1419
1420 if (!page)
1421 return;
1422
1423 /* Free a large naturally-aligned chunk if possible */
e780149b
XQ
1424 if (nr_pages == pageblock_nr_pages &&
1425 (pfn & (pageblock_nr_pages - 1)) == 0) {
ac5d2539 1426 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
e780149b 1427 __free_pages_boot_core(page, pageblock_order);
a4de83dd
MG
1428 return;
1429 }
1430
e780149b
XQ
1431 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1432 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1433 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
949698a3 1434 __free_pages_boot_core(page, 0);
e780149b 1435 }
a4de83dd
MG
1436}
1437
d3cd131d
NS
1438/* Completion tracking for deferred_init_memmap() threads */
1439static atomic_t pgdat_init_n_undone __initdata;
1440static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1441
1442static inline void __init pgdat_init_report_one_done(void)
1443{
1444 if (atomic_dec_and_test(&pgdat_init_n_undone))
1445 complete(&pgdat_init_all_done_comp);
1446}
0e1cc95b 1447
7e18adb4 1448/* Initialise remaining memory on a node */
0e1cc95b 1449static int __init deferred_init_memmap(void *data)
7e18adb4 1450{
0e1cc95b
MG
1451 pg_data_t *pgdat = data;
1452 int nid = pgdat->node_id;
7e18adb4
MG
1453 struct mminit_pfnnid_cache nid_init_state = { };
1454 unsigned long start = jiffies;
1455 unsigned long nr_pages = 0;
1456 unsigned long walk_start, walk_end;
1457 int i, zid;
1458 struct zone *zone;
7e18adb4 1459 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
0e1cc95b 1460 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
7e18adb4 1461
0e1cc95b 1462 if (first_init_pfn == ULONG_MAX) {
d3cd131d 1463 pgdat_init_report_one_done();
0e1cc95b
MG
1464 return 0;
1465 }
1466
1467 /* Bind memory initialisation thread to a local node if possible */
1468 if (!cpumask_empty(cpumask))
1469 set_cpus_allowed_ptr(current, cpumask);
7e18adb4
MG
1470
1471 /* Sanity check boundaries */
1472 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1473 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1474 pgdat->first_deferred_pfn = ULONG_MAX;
1475
1476 /* Only the highest zone is deferred so find it */
1477 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1478 zone = pgdat->node_zones + zid;
1479 if (first_init_pfn < zone_end_pfn(zone))
1480 break;
1481 }
1482
1483 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1484 unsigned long pfn, end_pfn;
54608c3f 1485 struct page *page = NULL;
a4de83dd
MG
1486 struct page *free_base_page = NULL;
1487 unsigned long free_base_pfn = 0;
1488 int nr_to_free = 0;
7e18adb4
MG
1489
1490 end_pfn = min(walk_end, zone_end_pfn(zone));
1491 pfn = first_init_pfn;
1492 if (pfn < walk_start)
1493 pfn = walk_start;
1494 if (pfn < zone->zone_start_pfn)
1495 pfn = zone->zone_start_pfn;
1496
1497 for (; pfn < end_pfn; pfn++) {
54608c3f 1498 if (!pfn_valid_within(pfn))
a4de83dd 1499 goto free_range;
7e18adb4 1500
54608c3f
MG
1501 /*
1502 * Ensure pfn_valid is checked every
e780149b 1503 * pageblock_nr_pages for memory holes
54608c3f 1504 */
e780149b 1505 if ((pfn & (pageblock_nr_pages - 1)) == 0) {
54608c3f
MG
1506 if (!pfn_valid(pfn)) {
1507 page = NULL;
a4de83dd 1508 goto free_range;
54608c3f
MG
1509 }
1510 }
1511
1512 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1513 page = NULL;
a4de83dd 1514 goto free_range;
54608c3f
MG
1515 }
1516
1517 /* Minimise pfn page lookups and scheduler checks */
e780149b 1518 if (page && (pfn & (pageblock_nr_pages - 1)) != 0) {
54608c3f
MG
1519 page++;
1520 } else {
a4de83dd
MG
1521 nr_pages += nr_to_free;
1522 deferred_free_range(free_base_page,
1523 free_base_pfn, nr_to_free);
1524 free_base_page = NULL;
1525 free_base_pfn = nr_to_free = 0;
1526
54608c3f
MG
1527 page = pfn_to_page(pfn);
1528 cond_resched();
1529 }
7e18adb4
MG
1530
1531 if (page->flags) {
1532 VM_BUG_ON(page_zone(page) != zone);
a4de83dd 1533 goto free_range;
7e18adb4
MG
1534 }
1535
1536 __init_single_page(page, pfn, zid, nid);
a4de83dd
MG
1537 if (!free_base_page) {
1538 free_base_page = page;
1539 free_base_pfn = pfn;
1540 nr_to_free = 0;
1541 }
1542 nr_to_free++;
1543
1544 /* Where possible, batch up pages for a single free */
1545 continue;
1546free_range:
1547 /* Free the current block of pages to allocator */
1548 nr_pages += nr_to_free;
1549 deferred_free_range(free_base_page, free_base_pfn,
1550 nr_to_free);
1551 free_base_page = NULL;
1552 free_base_pfn = nr_to_free = 0;
7e18adb4 1553 }
e780149b
XQ
1554 /* Free the last block of pages to allocator */
1555 nr_pages += nr_to_free;
1556 deferred_free_range(free_base_page, free_base_pfn, nr_to_free);
a4de83dd 1557
7e18adb4
MG
1558 first_init_pfn = max(end_pfn, first_init_pfn);
1559 }
1560
1561 /* Sanity check that the next zone really is unpopulated */
1562 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1563
0e1cc95b 1564 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
7e18adb4 1565 jiffies_to_msecs(jiffies - start));
d3cd131d
NS
1566
1567 pgdat_init_report_one_done();
0e1cc95b
MG
1568 return 0;
1569}
7cf91a98 1570#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
0e1cc95b
MG
1571
1572void __init page_alloc_init_late(void)
1573{
7cf91a98
JK
1574 struct zone *zone;
1575
1576#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b
MG
1577 int nid;
1578
d3cd131d
NS
1579 /* There will be num_node_state(N_MEMORY) threads */
1580 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
0e1cc95b 1581 for_each_node_state(nid, N_MEMORY) {
0e1cc95b
MG
1582 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1583 }
1584
1585 /* Block until all are initialised */
d3cd131d 1586 wait_for_completion(&pgdat_init_all_done_comp);
4248b0da
MG
1587
1588 /* Reinit limits that are based on free pages after the kernel is up */
1589 files_maxfiles_init();
7cf91a98 1590#endif
3010f876
PT
1591#ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
1592 /* Discard memblock private memory */
1593 memblock_discard();
1594#endif
7cf91a98
JK
1595
1596 for_each_populated_zone(zone)
1597 set_zone_contiguous(zone);
7e18adb4 1598}
7e18adb4 1599
47118af0 1600#ifdef CONFIG_CMA
9cf510a5 1601/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
1602void __init init_cma_reserved_pageblock(struct page *page)
1603{
1604 unsigned i = pageblock_nr_pages;
1605 struct page *p = page;
1606
1607 do {
1608 __ClearPageReserved(p);
1609 set_page_count(p, 0);
1610 } while (++p, --i);
1611
47118af0 1612 set_pageblock_migratetype(page, MIGRATE_CMA);
dc78327c
MN
1613
1614 if (pageblock_order >= MAX_ORDER) {
1615 i = pageblock_nr_pages;
1616 p = page;
1617 do {
1618 set_page_refcounted(p);
1619 __free_pages(p, MAX_ORDER - 1);
1620 p += MAX_ORDER_NR_PAGES;
1621 } while (i -= MAX_ORDER_NR_PAGES);
1622 } else {
1623 set_page_refcounted(page);
1624 __free_pages(page, pageblock_order);
1625 }
1626
3dcc0571 1627 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
1628}
1629#endif
1da177e4
LT
1630
1631/*
1632 * The order of subdivision here is critical for the IO subsystem.
1633 * Please do not alter this order without good reasons and regression
1634 * testing. Specifically, as large blocks of memory are subdivided,
1635 * the order in which smaller blocks are delivered depends on the order
1636 * they're subdivided in this function. This is the primary factor
1637 * influencing the order in which pages are delivered to the IO
1638 * subsystem according to empirical testing, and this is also justified
1639 * by considering the behavior of a buddy system containing a single
1640 * large block of memory acted on by a series of small allocations.
1641 * This behavior is a critical factor in sglist merging's success.
1642 *
6d49e352 1643 * -- nyc
1da177e4 1644 */
085cc7d5 1645static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
1646 int low, int high, struct free_area *area,
1647 int migratetype)
1da177e4
LT
1648{
1649 unsigned long size = 1 << high;
1650
1651 while (high > low) {
1652 area--;
1653 high--;
1654 size >>= 1;
309381fe 1655 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 1656
acbc15a4
JK
1657 /*
1658 * Mark as guard pages (or page), that will allow to
1659 * merge back to allocator when buddy will be freed.
1660 * Corresponding page table entries will not be touched,
1661 * pages will stay not present in virtual address space
1662 */
1663 if (set_page_guard(zone, &page[size], high, migratetype))
c0a32fc5 1664 continue;
acbc15a4 1665
b2a0ac88 1666 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
1667 area->nr_free++;
1668 set_page_order(&page[size], high);
1669 }
1da177e4
LT
1670}
1671
4e611801 1672static void check_new_page_bad(struct page *page)
1da177e4 1673{
4e611801
VB
1674 const char *bad_reason = NULL;
1675 unsigned long bad_flags = 0;
7bfec6f4 1676
53f9263b 1677 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
1678 bad_reason = "nonzero mapcount";
1679 if (unlikely(page->mapping != NULL))
1680 bad_reason = "non-NULL mapping";
fe896d18 1681 if (unlikely(page_ref_count(page) != 0))
f0b791a3 1682 bad_reason = "nonzero _count";
f4c18e6f
NH
1683 if (unlikely(page->flags & __PG_HWPOISON)) {
1684 bad_reason = "HWPoisoned (hardware-corrupted)";
1685 bad_flags = __PG_HWPOISON;
e570f56c
NH
1686 /* Don't complain about hwpoisoned pages */
1687 page_mapcount_reset(page); /* remove PageBuddy */
1688 return;
f4c18e6f 1689 }
f0b791a3
DH
1690 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1691 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1692 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1693 }
9edad6ea
JW
1694#ifdef CONFIG_MEMCG
1695 if (unlikely(page->mem_cgroup))
1696 bad_reason = "page still charged to cgroup";
1697#endif
4e611801
VB
1698 bad_page(page, bad_reason, bad_flags);
1699}
1700
1701/*
1702 * This page is about to be returned from the page allocator
1703 */
1704static inline int check_new_page(struct page *page)
1705{
1706 if (likely(page_expected_state(page,
1707 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1708 return 0;
1709
1710 check_new_page_bad(page);
1711 return 1;
2a7684a2
WF
1712}
1713
bd33ef36 1714static inline bool free_pages_prezeroed(void)
1414c7f4
LA
1715{
1716 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
bd33ef36 1717 page_poisoning_enabled();
1414c7f4
LA
1718}
1719
479f854a
MG
1720#ifdef CONFIG_DEBUG_VM
1721static bool check_pcp_refill(struct page *page)
1722{
1723 return false;
1724}
1725
1726static bool check_new_pcp(struct page *page)
1727{
1728 return check_new_page(page);
1729}
1730#else
1731static bool check_pcp_refill(struct page *page)
1732{
1733 return check_new_page(page);
1734}
1735static bool check_new_pcp(struct page *page)
1736{
1737 return false;
1738}
1739#endif /* CONFIG_DEBUG_VM */
1740
1741static bool check_new_pages(struct page *page, unsigned int order)
1742{
1743 int i;
1744 for (i = 0; i < (1 << order); i++) {
1745 struct page *p = page + i;
1746
1747 if (unlikely(check_new_page(p)))
1748 return true;
1749 }
1750
1751 return false;
1752}
1753
46f24fd8
JK
1754inline void post_alloc_hook(struct page *page, unsigned int order,
1755 gfp_t gfp_flags)
1756{
1757 set_page_private(page, 0);
1758 set_page_refcounted(page);
1759
1760 arch_alloc_page(page, order);
1761 kernel_map_pages(page, 1 << order, 1);
46f24fd8 1762 kasan_alloc_pages(page, order);
d49efeb1 1763 kernel_poison_pages(page, 1 << order, 1);
46f24fd8
JK
1764 set_page_owner(page, order, gfp_flags);
1765}
1766
479f854a 1767static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
c603844b 1768 unsigned int alloc_flags)
2a7684a2
WF
1769{
1770 int i;
689bcebf 1771
46f24fd8 1772 post_alloc_hook(page, order, gfp_flags);
17cf4406 1773
bd33ef36 1774 if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO))
f4d2897b
AA
1775 for (i = 0; i < (1 << order); i++)
1776 clear_highpage(page + i);
17cf4406
NP
1777
1778 if (order && (gfp_flags & __GFP_COMP))
1779 prep_compound_page(page, order);
1780
75379191 1781 /*
2f064f34 1782 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
75379191
VB
1783 * allocate the page. The expectation is that the caller is taking
1784 * steps that will free more memory. The caller should avoid the page
1785 * being used for !PFMEMALLOC purposes.
1786 */
2f064f34
MH
1787 if (alloc_flags & ALLOC_NO_WATERMARKS)
1788 set_page_pfmemalloc(page);
1789 else
1790 clear_page_pfmemalloc(page);
1da177e4
LT
1791}
1792
56fd56b8
MG
1793/*
1794 * Go through the free lists for the given migratetype and remove
1795 * the smallest available page from the freelists
1796 */
728ec980
MG
1797static inline
1798struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
1799 int migratetype)
1800{
1801 unsigned int current_order;
b8af2941 1802 struct free_area *area;
56fd56b8
MG
1803 struct page *page;
1804
1805 /* Find a page of the appropriate size in the preferred list */
1806 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1807 area = &(zone->free_area[current_order]);
a16601c5 1808 page = list_first_entry_or_null(&area->free_list[migratetype],
56fd56b8 1809 struct page, lru);
a16601c5
GT
1810 if (!page)
1811 continue;
56fd56b8
MG
1812 list_del(&page->lru);
1813 rmv_page_order(page);
1814 area->nr_free--;
56fd56b8 1815 expand(zone, page, order, current_order, area, migratetype);
bb14c2c7 1816 set_pcppage_migratetype(page, migratetype);
56fd56b8
MG
1817 return page;
1818 }
1819
1820 return NULL;
1821}
1822
1823
b2a0ac88
MG
1824/*
1825 * This array describes the order lists are fallen back to when
1826 * the free lists for the desirable migrate type are depleted
1827 */
47118af0 1828static int fallbacks[MIGRATE_TYPES][4] = {
974a786e
MG
1829 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1830 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1831 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
47118af0 1832#ifdef CONFIG_CMA
974a786e 1833 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
47118af0 1834#endif
194159fb 1835#ifdef CONFIG_MEMORY_ISOLATION
974a786e 1836 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
194159fb 1837#endif
b2a0ac88
MG
1838};
1839
dc67647b
JK
1840#ifdef CONFIG_CMA
1841static struct page *__rmqueue_cma_fallback(struct zone *zone,
1842 unsigned int order)
1843{
1844 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1845}
1846#else
1847static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1848 unsigned int order) { return NULL; }
1849#endif
1850
c361be55
MG
1851/*
1852 * Move the free pages in a range to the free lists of the requested type.
d9c23400 1853 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
1854 * boundary. If alignment is required, use move_freepages_block()
1855 */
02aa0cdd 1856static int move_freepages(struct zone *zone,
b69a7288 1857 struct page *start_page, struct page *end_page,
02aa0cdd 1858 int migratetype, int *num_movable)
c361be55
MG
1859{
1860 struct page *page;
d00181b9 1861 unsigned int order;
d100313f 1862 int pages_moved = 0;
c361be55
MG
1863
1864#ifndef CONFIG_HOLES_IN_ZONE
1865 /*
1866 * page_zone is not safe to call in this context when
1867 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1868 * anyway as we check zone boundaries in move_freepages_block().
1869 * Remove at a later date when no bug reports exist related to
ac0e5b7a 1870 * grouping pages by mobility
c361be55 1871 */
97ee4ba7 1872 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
c361be55
MG
1873#endif
1874
02aa0cdd
VB
1875 if (num_movable)
1876 *num_movable = 0;
1877
c361be55
MG
1878 for (page = start_page; page <= end_page;) {
1879 if (!pfn_valid_within(page_to_pfn(page))) {
1880 page++;
1881 continue;
1882 }
1883
f073bdc5
AB
1884 /* Make sure we are not inadvertently changing nodes */
1885 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1886
c361be55 1887 if (!PageBuddy(page)) {
02aa0cdd
VB
1888 /*
1889 * We assume that pages that could be isolated for
1890 * migration are movable. But we don't actually try
1891 * isolating, as that would be expensive.
1892 */
1893 if (num_movable &&
1894 (PageLRU(page) || __PageMovable(page)))
1895 (*num_movable)++;
1896
c361be55
MG
1897 page++;
1898 continue;
1899 }
1900
1901 order = page_order(page);
84be48d8
KS
1902 list_move(&page->lru,
1903 &zone->free_area[order].free_list[migratetype]);
c361be55 1904 page += 1 << order;
d100313f 1905 pages_moved += 1 << order;
c361be55
MG
1906 }
1907
d100313f 1908 return pages_moved;
c361be55
MG
1909}
1910
ee6f509c 1911int move_freepages_block(struct zone *zone, struct page *page,
02aa0cdd 1912 int migratetype, int *num_movable)
c361be55
MG
1913{
1914 unsigned long start_pfn, end_pfn;
1915 struct page *start_page, *end_page;
1916
1917 start_pfn = page_to_pfn(page);
d9c23400 1918 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 1919 start_page = pfn_to_page(start_pfn);
d9c23400
MG
1920 end_page = start_page + pageblock_nr_pages - 1;
1921 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
1922
1923 /* Do not cross zone boundaries */
108bcc96 1924 if (!zone_spans_pfn(zone, start_pfn))
c361be55 1925 start_page = page;
108bcc96 1926 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
1927 return 0;
1928
02aa0cdd
VB
1929 return move_freepages(zone, start_page, end_page, migratetype,
1930 num_movable);
c361be55
MG
1931}
1932
2f66a68f
MG
1933static void change_pageblock_range(struct page *pageblock_page,
1934 int start_order, int migratetype)
1935{
1936 int nr_pageblocks = 1 << (start_order - pageblock_order);
1937
1938 while (nr_pageblocks--) {
1939 set_pageblock_migratetype(pageblock_page, migratetype);
1940 pageblock_page += pageblock_nr_pages;
1941 }
1942}
1943
fef903ef 1944/*
9c0415eb
VB
1945 * When we are falling back to another migratetype during allocation, try to
1946 * steal extra free pages from the same pageblocks to satisfy further
1947 * allocations, instead of polluting multiple pageblocks.
1948 *
1949 * If we are stealing a relatively large buddy page, it is likely there will
1950 * be more free pages in the pageblock, so try to steal them all. For
1951 * reclaimable and unmovable allocations, we steal regardless of page size,
1952 * as fragmentation caused by those allocations polluting movable pageblocks
1953 * is worse than movable allocations stealing from unmovable and reclaimable
1954 * pageblocks.
fef903ef 1955 */
4eb7dce6
JK
1956static bool can_steal_fallback(unsigned int order, int start_mt)
1957{
1958 /*
1959 * Leaving this order check is intended, although there is
1960 * relaxed order check in next check. The reason is that
1961 * we can actually steal whole pageblock if this condition met,
1962 * but, below check doesn't guarantee it and that is just heuristic
1963 * so could be changed anytime.
1964 */
1965 if (order >= pageblock_order)
1966 return true;
1967
1968 if (order >= pageblock_order / 2 ||
1969 start_mt == MIGRATE_RECLAIMABLE ||
1970 start_mt == MIGRATE_UNMOVABLE ||
1971 page_group_by_mobility_disabled)
1972 return true;
1973
1974 return false;
1975}
1976
1977/*
1978 * This function implements actual steal behaviour. If order is large enough,
1979 * we can steal whole pageblock. If not, we first move freepages in this
02aa0cdd
VB
1980 * pageblock to our migratetype and determine how many already-allocated pages
1981 * are there in the pageblock with a compatible migratetype. If at least half
1982 * of pages are free or compatible, we can change migratetype of the pageblock
1983 * itself, so pages freed in the future will be put on the correct free list.
4eb7dce6
JK
1984 */
1985static void steal_suitable_fallback(struct zone *zone, struct page *page,
3bc48f96 1986 int start_type, bool whole_block)
fef903ef 1987{
d00181b9 1988 unsigned int current_order = page_order(page);
3bc48f96 1989 struct free_area *area;
02aa0cdd
VB
1990 int free_pages, movable_pages, alike_pages;
1991 int old_block_type;
1992
1993 old_block_type = get_pageblock_migratetype(page);
fef903ef 1994
3bc48f96
VB
1995 /*
1996 * This can happen due to races and we want to prevent broken
1997 * highatomic accounting.
1998 */
02aa0cdd 1999 if (is_migrate_highatomic(old_block_type))
3bc48f96
VB
2000 goto single_page;
2001
fef903ef
SB
2002 /* Take ownership for orders >= pageblock_order */
2003 if (current_order >= pageblock_order) {
2004 change_pageblock_range(page, current_order, start_type);
3bc48f96 2005 goto single_page;
fef903ef
SB
2006 }
2007
3bc48f96
VB
2008 /* We are not allowed to try stealing from the whole block */
2009 if (!whole_block)
2010 goto single_page;
2011
02aa0cdd
VB
2012 free_pages = move_freepages_block(zone, page, start_type,
2013 &movable_pages);
2014 /*
2015 * Determine how many pages are compatible with our allocation.
2016 * For movable allocation, it's the number of movable pages which
2017 * we just obtained. For other types it's a bit more tricky.
2018 */
2019 if (start_type == MIGRATE_MOVABLE) {
2020 alike_pages = movable_pages;
2021 } else {
2022 /*
2023 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2024 * to MOVABLE pageblock, consider all non-movable pages as
2025 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2026 * vice versa, be conservative since we can't distinguish the
2027 * exact migratetype of non-movable pages.
2028 */
2029 if (old_block_type == MIGRATE_MOVABLE)
2030 alike_pages = pageblock_nr_pages
2031 - (free_pages + movable_pages);
2032 else
2033 alike_pages = 0;
2034 }
2035
3bc48f96 2036 /* moving whole block can fail due to zone boundary conditions */
02aa0cdd 2037 if (!free_pages)
3bc48f96 2038 goto single_page;
fef903ef 2039
02aa0cdd
VB
2040 /*
2041 * If a sufficient number of pages in the block are either free or of
2042 * comparable migratability as our allocation, claim the whole block.
2043 */
2044 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
4eb7dce6
JK
2045 page_group_by_mobility_disabled)
2046 set_pageblock_migratetype(page, start_type);
3bc48f96
VB
2047
2048 return;
2049
2050single_page:
2051 area = &zone->free_area[current_order];
2052 list_move(&page->lru, &area->free_list[start_type]);
4eb7dce6
JK
2053}
2054
2149cdae
JK
2055/*
2056 * Check whether there is a suitable fallback freepage with requested order.
2057 * If only_stealable is true, this function returns fallback_mt only if
2058 * we can steal other freepages all together. This would help to reduce
2059 * fragmentation due to mixed migratetype pages in one pageblock.
2060 */
2061int find_suitable_fallback(struct free_area *area, unsigned int order,
2062 int migratetype, bool only_stealable, bool *can_steal)
4eb7dce6
JK
2063{
2064 int i;
2065 int fallback_mt;
2066
2067 if (area->nr_free == 0)
2068 return -1;
2069
2070 *can_steal = false;
2071 for (i = 0;; i++) {
2072 fallback_mt = fallbacks[migratetype][i];
974a786e 2073 if (fallback_mt == MIGRATE_TYPES)
4eb7dce6
JK
2074 break;
2075
2076 if (list_empty(&area->free_list[fallback_mt]))
2077 continue;
fef903ef 2078
4eb7dce6
JK
2079 if (can_steal_fallback(order, migratetype))
2080 *can_steal = true;
2081
2149cdae
JK
2082 if (!only_stealable)
2083 return fallback_mt;
2084
2085 if (*can_steal)
2086 return fallback_mt;
fef903ef 2087 }
4eb7dce6
JK
2088
2089 return -1;
fef903ef
SB
2090}
2091
0aaa29a5
MG
2092/*
2093 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2094 * there are no empty page blocks that contain a page with a suitable order
2095 */
2096static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2097 unsigned int alloc_order)
2098{
2099 int mt;
2100 unsigned long max_managed, flags;
2101
2102 /*
2103 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2104 * Check is race-prone but harmless.
2105 */
2106 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2107 if (zone->nr_reserved_highatomic >= max_managed)
2108 return;
2109
2110 spin_lock_irqsave(&zone->lock, flags);
2111
2112 /* Recheck the nr_reserved_highatomic limit under the lock */
2113 if (zone->nr_reserved_highatomic >= max_managed)
2114 goto out_unlock;
2115
2116 /* Yoink! */
2117 mt = get_pageblock_migratetype(page);
a6ffdc07
XQ
2118 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2119 && !is_migrate_cma(mt)) {
0aaa29a5
MG
2120 zone->nr_reserved_highatomic += pageblock_nr_pages;
2121 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
02aa0cdd 2122 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
0aaa29a5
MG
2123 }
2124
2125out_unlock:
2126 spin_unlock_irqrestore(&zone->lock, flags);
2127}
2128
2129/*
2130 * Used when an allocation is about to fail under memory pressure. This
2131 * potentially hurts the reliability of high-order allocations when under
2132 * intense memory pressure but failed atomic allocations should be easier
2133 * to recover from than an OOM.
29fac03b
MK
2134 *
2135 * If @force is true, try to unreserve a pageblock even though highatomic
2136 * pageblock is exhausted.
0aaa29a5 2137 */
29fac03b
MK
2138static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2139 bool force)
0aaa29a5
MG
2140{
2141 struct zonelist *zonelist = ac->zonelist;
2142 unsigned long flags;
2143 struct zoneref *z;
2144 struct zone *zone;
2145 struct page *page;
2146 int order;
04c8716f 2147 bool ret;
0aaa29a5
MG
2148
2149 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2150 ac->nodemask) {
29fac03b
MK
2151 /*
2152 * Preserve at least one pageblock unless memory pressure
2153 * is really high.
2154 */
2155 if (!force && zone->nr_reserved_highatomic <=
2156 pageblock_nr_pages)
0aaa29a5
MG
2157 continue;
2158
2159 spin_lock_irqsave(&zone->lock, flags);
2160 for (order = 0; order < MAX_ORDER; order++) {
2161 struct free_area *area = &(zone->free_area[order]);
2162
a16601c5
GT
2163 page = list_first_entry_or_null(
2164 &area->free_list[MIGRATE_HIGHATOMIC],
2165 struct page, lru);
2166 if (!page)
0aaa29a5
MG
2167 continue;
2168
0aaa29a5 2169 /*
4855e4a7
MK
2170 * In page freeing path, migratetype change is racy so
2171 * we can counter several free pages in a pageblock
2172 * in this loop althoug we changed the pageblock type
2173 * from highatomic to ac->migratetype. So we should
2174 * adjust the count once.
0aaa29a5 2175 */
a6ffdc07 2176 if (is_migrate_highatomic_page(page)) {
4855e4a7
MK
2177 /*
2178 * It should never happen but changes to
2179 * locking could inadvertently allow a per-cpu
2180 * drain to add pages to MIGRATE_HIGHATOMIC
2181 * while unreserving so be safe and watch for
2182 * underflows.
2183 */
2184 zone->nr_reserved_highatomic -= min(
2185 pageblock_nr_pages,
2186 zone->nr_reserved_highatomic);
2187 }
0aaa29a5
MG
2188
2189 /*
2190 * Convert to ac->migratetype and avoid the normal
2191 * pageblock stealing heuristics. Minimally, the caller
2192 * is doing the work and needs the pages. More
2193 * importantly, if the block was always converted to
2194 * MIGRATE_UNMOVABLE or another type then the number
2195 * of pageblocks that cannot be completely freed
2196 * may increase.
2197 */
2198 set_pageblock_migratetype(page, ac->migratetype);
02aa0cdd
VB
2199 ret = move_freepages_block(zone, page, ac->migratetype,
2200 NULL);
29fac03b
MK
2201 if (ret) {
2202 spin_unlock_irqrestore(&zone->lock, flags);
2203 return ret;
2204 }
0aaa29a5
MG
2205 }
2206 spin_unlock_irqrestore(&zone->lock, flags);
2207 }
04c8716f
MK
2208
2209 return false;
0aaa29a5
MG
2210}
2211
3bc48f96
VB
2212/*
2213 * Try finding a free buddy page on the fallback list and put it on the free
2214 * list of requested migratetype, possibly along with other pages from the same
2215 * block, depending on fragmentation avoidance heuristics. Returns true if
2216 * fallback was found so that __rmqueue_smallest() can grab it.
b002529d
RV
2217 *
2218 * The use of signed ints for order and current_order is a deliberate
2219 * deviation from the rest of this file, to make the for loop
2220 * condition simpler.
3bc48f96
VB
2221 */
2222static inline bool
b002529d 2223__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
b2a0ac88 2224{
b8af2941 2225 struct free_area *area;
b002529d 2226 int current_order;
b2a0ac88 2227 struct page *page;
4eb7dce6
JK
2228 int fallback_mt;
2229 bool can_steal;
b2a0ac88 2230
7a8f58f3
VB
2231 /*
2232 * Find the largest available free page in the other list. This roughly
2233 * approximates finding the pageblock with the most free pages, which
2234 * would be too costly to do exactly.
2235 */
b002529d 2236 for (current_order = MAX_ORDER - 1; current_order >= order;
7aeb09f9 2237 --current_order) {
4eb7dce6
JK
2238 area = &(zone->free_area[current_order]);
2239 fallback_mt = find_suitable_fallback(area, current_order,
2149cdae 2240 start_migratetype, false, &can_steal);
4eb7dce6
JK
2241 if (fallback_mt == -1)
2242 continue;
b2a0ac88 2243
7a8f58f3
VB
2244 /*
2245 * We cannot steal all free pages from the pageblock and the
2246 * requested migratetype is movable. In that case it's better to
2247 * steal and split the smallest available page instead of the
2248 * largest available page, because even if the next movable
2249 * allocation falls back into a different pageblock than this
2250 * one, it won't cause permanent fragmentation.
2251 */
2252 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2253 && current_order > order)
2254 goto find_smallest;
b2a0ac88 2255
7a8f58f3
VB
2256 goto do_steal;
2257 }
e0fff1bd 2258
7a8f58f3 2259 return false;
e0fff1bd 2260
7a8f58f3
VB
2261find_smallest:
2262 for (current_order = order; current_order < MAX_ORDER;
2263 current_order++) {
2264 area = &(zone->free_area[current_order]);
2265 fallback_mt = find_suitable_fallback(area, current_order,
2266 start_migratetype, false, &can_steal);
2267 if (fallback_mt != -1)
2268 break;
b2a0ac88
MG
2269 }
2270
7a8f58f3
VB
2271 /*
2272 * This should not happen - we already found a suitable fallback
2273 * when looking for the largest page.
2274 */
2275 VM_BUG_ON(current_order == MAX_ORDER);
2276
2277do_steal:
2278 page = list_first_entry(&area->free_list[fallback_mt],
2279 struct page, lru);
2280
2281 steal_suitable_fallback(zone, page, start_migratetype, can_steal);
2282
2283 trace_mm_page_alloc_extfrag(page, order, current_order,
2284 start_migratetype, fallback_mt);
2285
2286 return true;
2287
b2a0ac88
MG
2288}
2289
56fd56b8 2290/*
1da177e4
LT
2291 * Do the hard work of removing an element from the buddy allocator.
2292 * Call me with the zone->lock already held.
d13ab917
CK
2293 * If gfp mask of the page allocation has GFP_HIGHUSER_MOVABLE, @migratetype
2294 * is changed from MIGRATE_MOVABLE to MIGRATE_CMA in rmqueue() to select the
2295 * free list of MIGRATE_CMA. It helps depleting CMA free pages so that
2296 * evaluation of watermark for unmovable page allocations is not too different
2297 * from movable page allocations.
2298 * If @migratetype is MIGRATE_CMA, it should be corrected to MIGRATE_MOVABLE
2299 * after the free list of MIGRATE_CMA is searched to have a chance to search the
2300 * free list of MIGRATE_MOVABLE. It also records correct migrate type in the
2301 * trace as intended by the page allocation.
1da177e4 2302 */
b2a0ac88 2303static struct page *__rmqueue(struct zone *zone, unsigned int order,
6ac0206b 2304 int migratetype)
1da177e4 2305{
d13ab917 2306 struct page *page = NULL;
1da177e4 2307
d13ab917
CK
2308#ifdef CONFIG_CMA
2309 if (migratetype == MIGRATE_CMA) {
2310#else
2311 if (migratetype == MIGRATE_MOVABLE) {
2312#endif
2313 page = __rmqueue_cma_fallback(zone, order);
2314 migratetype = MIGRATE_MOVABLE;
2315 }
dc67647b 2316
d13ab917
CK
2317 while (!page) {
2318 page = __rmqueue_smallest(zone, order, migratetype);
2319 if (unlikely(!page) &&
2320 !__rmqueue_fallback(zone, order, migratetype))
2321 break;
728ec980
MG
2322 }
2323
0d3d062a 2324 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 2325 return page;
1da177e4
LT
2326}
2327
5f63b720 2328/*
1da177e4
LT
2329 * Obtain a specified number of elements from the buddy allocator, all under
2330 * a single hold of the lock, for efficiency. Add them to the supplied list.
2331 * Returns the number of new pages which were placed at *list.
2332 */
5f63b720 2333static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 2334 unsigned long count, struct list_head *list,
b745bc85 2335 int migratetype, bool cold)
1da177e4 2336{
a6de734b 2337 int i, alloced = 0;
5f63b720 2338
d34b0733 2339 spin_lock(&zone->lock);
1da177e4 2340 for (i = 0; i < count; ++i) {
6ac0206b 2341 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 2342 if (unlikely(page == NULL))
1da177e4 2343 break;
81eabcbe 2344
479f854a
MG
2345 if (unlikely(check_pcp_refill(page)))
2346 continue;
2347
81eabcbe
MG
2348 /*
2349 * Split buddy pages returned by expand() are received here
2350 * in physical page order. The page is added to the callers and
2351 * list and the list head then moves forward. From the callers
2352 * perspective, the linked list is ordered by page number in
2353 * some conditions. This is useful for IO devices that can
2354 * merge IO requests if the physical pages are ordered
2355 * properly.
2356 */
b745bc85 2357 if (likely(!cold))
e084b2d9
MG
2358 list_add(&page->lru, list);
2359 else
2360 list_add_tail(&page->lru, list);
81eabcbe 2361 list = &page->lru;
a6de734b 2362 alloced++;
bb14c2c7 2363 if (is_migrate_cma(get_pcppage_migratetype(page)))
d1ce749a
BZ
2364 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2365 -(1 << order));
1da177e4 2366 }
a6de734b
MG
2367
2368 /*
2369 * i pages were removed from the buddy list even if some leak due
2370 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2371 * on i. Do not confuse with 'alloced' which is the number of
2372 * pages added to the pcp list.
2373 */
f2260e6b 2374 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
d34b0733 2375 spin_unlock(&zone->lock);
a6de734b 2376 return alloced;
1da177e4
LT
2377}
2378
4ae7c039 2379#ifdef CONFIG_NUMA
8fce4d8e 2380/*
4037d452
CL
2381 * Called from the vmstat counter updater to drain pagesets of this
2382 * currently executing processor on remote nodes after they have
2383 * expired.
2384 *
879336c3
CL
2385 * Note that this function must be called with the thread pinned to
2386 * a single processor.
8fce4d8e 2387 */
4037d452 2388void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 2389{
4ae7c039 2390 unsigned long flags;
7be12fc9 2391 int to_drain, batch;
4ae7c039 2392
4037d452 2393 local_irq_save(flags);
4db0c3c2 2394 batch = READ_ONCE(pcp->batch);
7be12fc9 2395 to_drain = min(pcp->count, batch);
2a13515c
KM
2396 if (to_drain > 0) {
2397 free_pcppages_bulk(zone, to_drain, pcp);
2398 pcp->count -= to_drain;
2399 }
4037d452 2400 local_irq_restore(flags);
4ae7c039
CL
2401}
2402#endif
2403
9f8f2172 2404/*
93481ff0 2405 * Drain pcplists of the indicated processor and zone.
9f8f2172
CL
2406 *
2407 * The processor must either be the current processor and the
2408 * thread pinned to the current processor or a processor that
2409 * is not online.
2410 */
93481ff0 2411static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 2412{
c54ad30c 2413 unsigned long flags;
93481ff0
VB
2414 struct per_cpu_pageset *pset;
2415 struct per_cpu_pages *pcp;
1da177e4 2416
93481ff0
VB
2417 local_irq_save(flags);
2418 pset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2419
93481ff0
VB
2420 pcp = &pset->pcp;
2421 if (pcp->count) {
2422 free_pcppages_bulk(zone, pcp->count, pcp);
2423 pcp->count = 0;
2424 }
2425 local_irq_restore(flags);
2426}
3dfa5721 2427
93481ff0
VB
2428/*
2429 * Drain pcplists of all zones on the indicated processor.
2430 *
2431 * The processor must either be the current processor and the
2432 * thread pinned to the current processor or a processor that
2433 * is not online.
2434 */
2435static void drain_pages(unsigned int cpu)
2436{
2437 struct zone *zone;
2438
2439 for_each_populated_zone(zone) {
2440 drain_pages_zone(cpu, zone);
1da177e4
LT
2441 }
2442}
1da177e4 2443
9f8f2172
CL
2444/*
2445 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
93481ff0
VB
2446 *
2447 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2448 * the single zone's pages.
9f8f2172 2449 */
93481ff0 2450void drain_local_pages(struct zone *zone)
9f8f2172 2451{
93481ff0
VB
2452 int cpu = smp_processor_id();
2453
2454 if (zone)
2455 drain_pages_zone(cpu, zone);
2456 else
2457 drain_pages(cpu);
9f8f2172
CL
2458}
2459
0ccce3b9
MG
2460static void drain_local_pages_wq(struct work_struct *work)
2461{
a459eeb7
MH
2462 /*
2463 * drain_all_pages doesn't use proper cpu hotplug protection so
2464 * we can race with cpu offline when the WQ can move this from
2465 * a cpu pinned worker to an unbound one. We can operate on a different
2466 * cpu which is allright but we also have to make sure to not move to
2467 * a different one.
2468 */
2469 preempt_disable();
0ccce3b9 2470 drain_local_pages(NULL);
a459eeb7 2471 preempt_enable();
0ccce3b9
MG
2472}
2473
9f8f2172 2474/*
74046494
GBY
2475 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2476 *
93481ff0
VB
2477 * When zone parameter is non-NULL, spill just the single zone's pages.
2478 *
0ccce3b9 2479 * Note that this can be extremely slow as the draining happens in a workqueue.
9f8f2172 2480 */
93481ff0 2481void drain_all_pages(struct zone *zone)
9f8f2172 2482{
74046494 2483 int cpu;
74046494
GBY
2484
2485 /*
2486 * Allocate in the BSS so we wont require allocation in
2487 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2488 */
2489 static cpumask_t cpus_with_pcps;
2490
ce612879
MH
2491 /*
2492 * Make sure nobody triggers this path before mm_percpu_wq is fully
2493 * initialized.
2494 */
2495 if (WARN_ON_ONCE(!mm_percpu_wq))
2496 return;
2497
bd233f53
MG
2498 /*
2499 * Do not drain if one is already in progress unless it's specific to
2500 * a zone. Such callers are primarily CMA and memory hotplug and need
2501 * the drain to be complete when the call returns.
2502 */
2503 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2504 if (!zone)
2505 return;
2506 mutex_lock(&pcpu_drain_mutex);
2507 }
0ccce3b9 2508
74046494
GBY
2509 /*
2510 * We don't care about racing with CPU hotplug event
2511 * as offline notification will cause the notified
2512 * cpu to drain that CPU pcps and on_each_cpu_mask
2513 * disables preemption as part of its processing
2514 */
2515 for_each_online_cpu(cpu) {
93481ff0
VB
2516 struct per_cpu_pageset *pcp;
2517 struct zone *z;
74046494 2518 bool has_pcps = false;
93481ff0
VB
2519
2520 if (zone) {
74046494 2521 pcp = per_cpu_ptr(zone->pageset, cpu);
93481ff0 2522 if (pcp->pcp.count)
74046494 2523 has_pcps = true;
93481ff0
VB
2524 } else {
2525 for_each_populated_zone(z) {
2526 pcp = per_cpu_ptr(z->pageset, cpu);
2527 if (pcp->pcp.count) {
2528 has_pcps = true;
2529 break;
2530 }
74046494
GBY
2531 }
2532 }
93481ff0 2533
74046494
GBY
2534 if (has_pcps)
2535 cpumask_set_cpu(cpu, &cpus_with_pcps);
2536 else
2537 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2538 }
0ccce3b9 2539
bd233f53
MG
2540 for_each_cpu(cpu, &cpus_with_pcps) {
2541 struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu);
2542 INIT_WORK(work, drain_local_pages_wq);
ce612879 2543 queue_work_on(cpu, mm_percpu_wq, work);
0ccce3b9 2544 }
bd233f53
MG
2545 for_each_cpu(cpu, &cpus_with_pcps)
2546 flush_work(per_cpu_ptr(&pcpu_drain, cpu));
2547
2548 mutex_unlock(&pcpu_drain_mutex);
9f8f2172
CL
2549}
2550
296699de 2551#ifdef CONFIG_HIBERNATION
1da177e4 2552
556b969a
CY
2553/*
2554 * Touch the watchdog for every WD_PAGE_COUNT pages.
2555 */
2556#define WD_PAGE_COUNT (128*1024)
2557
1da177e4
LT
2558void mark_free_pages(struct zone *zone)
2559{
556b969a 2560 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
f623f0db 2561 unsigned long flags;
7aeb09f9 2562 unsigned int order, t;
86760a2c 2563 struct page *page;
1da177e4 2564
8080fc03 2565 if (zone_is_empty(zone))
1da177e4
LT
2566 return;
2567
2568 spin_lock_irqsave(&zone->lock, flags);
f623f0db 2569
108bcc96 2570 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
2571 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2572 if (pfn_valid(pfn)) {
86760a2c 2573 page = pfn_to_page(pfn);
ba6b0979 2574
556b969a
CY
2575 if (!--page_count) {
2576 touch_nmi_watchdog();
2577 page_count = WD_PAGE_COUNT;
2578 }
2579
ba6b0979
JK
2580 if (page_zone(page) != zone)
2581 continue;
2582
7be98234
RW
2583 if (!swsusp_page_is_forbidden(page))
2584 swsusp_unset_page_free(page);
f623f0db 2585 }
1da177e4 2586
b2a0ac88 2587 for_each_migratetype_order(order, t) {
86760a2c
GT
2588 list_for_each_entry(page,
2589 &zone->free_area[order].free_list[t], lru) {
f623f0db 2590 unsigned long i;
1da177e4 2591
86760a2c 2592 pfn = page_to_pfn(page);
556b969a
CY
2593 for (i = 0; i < (1UL << order); i++) {
2594 if (!--page_count) {
2595 touch_nmi_watchdog();
2596 page_count = WD_PAGE_COUNT;
2597 }
7be98234 2598 swsusp_set_page_free(pfn_to_page(pfn + i));
556b969a 2599 }
f623f0db 2600 }
b2a0ac88 2601 }
1da177e4
LT
2602 spin_unlock_irqrestore(&zone->lock, flags);
2603}
e2c55dc8 2604#endif /* CONFIG_PM */
1da177e4 2605
1da177e4
LT
2606/*
2607 * Free a 0-order page
b745bc85 2608 * cold == true ? free a cold page : free a hot page
1da177e4 2609 */
b745bc85 2610void free_hot_cold_page(struct page *page, bool cold)
1da177e4
LT
2611{
2612 struct zone *zone = page_zone(page);
2613 struct per_cpu_pages *pcp;
d34b0733 2614 unsigned long flags;
dc4b0caf 2615 unsigned long pfn = page_to_pfn(page);
5f8dcc21 2616 int migratetype;
1da177e4 2617
4db7548c 2618 if (!free_pcp_prepare(page))
689bcebf
HD
2619 return;
2620
dc4b0caf 2621 migratetype = get_pfnblock_migratetype(page, pfn);
bb14c2c7 2622 set_pcppage_migratetype(page, migratetype);
d34b0733
MG
2623 local_irq_save(flags);
2624 __count_vm_event(PGFREE);
da456f14 2625
5f8dcc21
MG
2626 /*
2627 * We only track unmovable, reclaimable and movable on pcp lists.
2628 * Free ISOLATE pages back to the allocator because they are being
a6ffdc07 2629 * offlined but treat HIGHATOMIC as movable pages so we can get those
5f8dcc21
MG
2630 * areas back if necessary. Otherwise, we may have to free
2631 * excessively into the page allocator
2632 */
2633 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 2634 if (unlikely(is_migrate_isolate(migratetype))) {
dc4b0caf 2635 free_one_page(zone, page, pfn, 0, migratetype);
5f8dcc21
MG
2636 goto out;
2637 }
2638 migratetype = MIGRATE_MOVABLE;
2639 }
2640
99dcc3e5 2641 pcp = &this_cpu_ptr(zone->pageset)->pcp;
b745bc85 2642 if (!cold)
5f8dcc21 2643 list_add(&page->lru, &pcp->lists[migratetype]);
b745bc85
MG
2644 else
2645 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1da177e4 2646 pcp->count++;
48db57f8 2647 if (pcp->count >= pcp->high) {
4db0c3c2 2648 unsigned long batch = READ_ONCE(pcp->batch);
998d39cb
CS
2649 free_pcppages_bulk(zone, batch, pcp);
2650 pcp->count -= batch;
48db57f8 2651 }
5f8dcc21
MG
2652
2653out:
d34b0733 2654 local_irq_restore(flags);
1da177e4
LT
2655}
2656
cc59850e
KK
2657/*
2658 * Free a list of 0-order pages
2659 */
b745bc85 2660void free_hot_cold_page_list(struct list_head *list, bool cold)
cc59850e
KK
2661{
2662 struct page *page, *next;
2663
2664 list_for_each_entry_safe(page, next, list, lru) {
b413d48a 2665 trace_mm_page_free_batched(page, cold);
cc59850e
KK
2666 free_hot_cold_page(page, cold);
2667 }
2668}
2669
8dfcc9ba
NP
2670/*
2671 * split_page takes a non-compound higher-order page, and splits it into
2672 * n (1<<order) sub-pages: page[0..n]
2673 * Each sub-page must be freed individually.
2674 *
2675 * Note: this is probably too low level an operation for use in drivers.
2676 * Please consult with lkml before using this in your driver.
2677 */
2678void split_page(struct page *page, unsigned int order)
2679{
2680 int i;
2681
309381fe
SL
2682 VM_BUG_ON_PAGE(PageCompound(page), page);
2683 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67 2684
a9627bc5 2685 for (i = 1; i < (1 << order); i++)
7835e98b 2686 set_page_refcounted(page + i);
a9627bc5 2687 split_page_owner(page, order);
8dfcc9ba 2688}
5853ff23 2689EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 2690
3c605096 2691int __isolate_free_page(struct page *page, unsigned int order)
748446bb 2692{
748446bb
MG
2693 unsigned long watermark;
2694 struct zone *zone;
2139cbe6 2695 int mt;
748446bb
MG
2696
2697 BUG_ON(!PageBuddy(page));
2698
2699 zone = page_zone(page);
2e30abd1 2700 mt = get_pageblock_migratetype(page);
748446bb 2701
194159fb 2702 if (!is_migrate_isolate(mt)) {
8348faf9
VB
2703 /*
2704 * Obey watermarks as if the page was being allocated. We can
2705 * emulate a high-order watermark check with a raised order-0
2706 * watermark, because we already know our high-order page
2707 * exists.
2708 */
2709 watermark = min_wmark_pages(zone) + (1UL << order);
47c9acf2 2710 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
2e30abd1
MS
2711 return 0;
2712
8fb74b9f 2713 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 2714 }
748446bb
MG
2715
2716 /* Remove page from free list */
2717 list_del(&page->lru);
2718 zone->free_area[order].nr_free--;
2719 rmv_page_order(page);
2139cbe6 2720
400bc7fd 2721 /*
2722 * Set the pageblock if the isolated page is at least half of a
2723 * pageblock
2724 */
748446bb
MG
2725 if (order >= pageblock_order - 1) {
2726 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
2727 for (; page < endpage; page += pageblock_nr_pages) {
2728 int mt = get_pageblock_migratetype(page);
88ed365e 2729 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
a6ffdc07 2730 && !is_migrate_highatomic(mt))
47118af0
MN
2731 set_pageblock_migratetype(page,
2732 MIGRATE_MOVABLE);
2733 }
748446bb
MG
2734 }
2735
f3a14ced 2736
8fb74b9f 2737 return 1UL << order;
1fb3f8ca
MG
2738}
2739
060e7417
MG
2740/*
2741 * Update NUMA hit/miss statistics
2742 *
2743 * Must be called with interrupts disabled.
060e7417 2744 */
41b6167e 2745static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
060e7417
MG
2746{
2747#ifdef CONFIG_NUMA
3a321d2a 2748 enum numa_stat_item local_stat = NUMA_LOCAL;
060e7417 2749
2df26639 2750 if (z->node != numa_node_id())
060e7417 2751 local_stat = NUMA_OTHER;
060e7417 2752
2df26639 2753 if (z->node == preferred_zone->node)
3a321d2a 2754 __inc_numa_state(z, NUMA_HIT);
2df26639 2755 else {
3a321d2a
KW
2756 __inc_numa_state(z, NUMA_MISS);
2757 __inc_numa_state(preferred_zone, NUMA_FOREIGN);
060e7417 2758 }
3a321d2a 2759 __inc_numa_state(z, local_stat);
060e7417
MG
2760#endif
2761}
2762
066b2393
MG
2763/* Remove page from the per-cpu list, caller must protect the list */
2764static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
2765 bool cold, struct per_cpu_pages *pcp,
2766 struct list_head *list)
2767{
2768 struct page *page;
2769
2770 do {
2771 if (list_empty(list)) {
2772 pcp->count += rmqueue_bulk(zone, 0,
2773 pcp->batch, list,
2774 migratetype, cold);
2775 if (unlikely(list_empty(list)))
2776 return NULL;
2777 }
2778
2779 if (cold)
2780 page = list_last_entry(list, struct page, lru);
2781 else
2782 page = list_first_entry(list, struct page, lru);
2783
4b5cd906
CK
2784 /*
2785 * If the head or the tail page in the pcp list is CMA page and
2786 * the gfp flags is not GFP_HIGHUSER_MOVABLE, do not allocate a
2787 * page from the pcp list. The free list of MIGRATE_CMA is a
2788 * special case of the free list of MIGRATE_MOVABLE and the
2789 * pages from the free list of MIGRATE_CMA are pushed to the pcp
2790 * list of MIGRATE_MOVABLE. Since the pcp list of
2791 * MIGRATE_MOVABLE is selected if the gfp flags has GFP_MOVABLE,
2792 * we should avoid the case that a cma page in the pcp list of
2793 * MIGRATE_MOVABLE is allocated to a movable allocation without
2794 * GFP_HIGHUSER_MOVABLE.
2795 * If this is the case, allocate a movable page from the free
2796 * list of MIGRATE_MOVABLE instead of pcp list of
2797 * MIGRATE_MOVABLE.
2798 */
2799#ifdef CONFIG_CMA
2800 if (is_migrate_cma_page(page) && (migratetype != MIGRATE_CMA))
2801 return NULL;
2802#endif
066b2393
MG
2803 list_del(&page->lru);
2804 pcp->count--;
2805 } while (check_new_pcp(page));
2806
2807 return page;
2808}
2809
2810/* Lock and remove page from the per-cpu list */
2811static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2812 struct zone *zone, unsigned int order,
4b5cd906
CK
2813 gfp_t gfp_flags, int migratetype,
2814 int migratetype_rmqueue)
066b2393
MG
2815{
2816 struct per_cpu_pages *pcp;
2817 struct list_head *list;
2818 bool cold = ((gfp_flags & __GFP_COLD) != 0);
2819 struct page *page;
d34b0733 2820 unsigned long flags;
066b2393 2821
d34b0733 2822 local_irq_save(flags);
066b2393
MG
2823 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2824 list = &pcp->lists[migratetype];
4b5cd906 2825 page = __rmqueue_pcplist(zone, migratetype_rmqueue, cold, pcp, list);
066b2393
MG
2826 if (page) {
2827 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2828 zone_statistics(preferred_zone, zone);
2829 }
d34b0733 2830 local_irq_restore(flags);
066b2393
MG
2831 return page;
2832}
2833
1da177e4 2834/*
75379191 2835 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1da177e4 2836 */
0a15c3e9 2837static inline
066b2393 2838struct page *rmqueue(struct zone *preferred_zone,
7aeb09f9 2839 struct zone *zone, unsigned int order,
c603844b
MG
2840 gfp_t gfp_flags, unsigned int alloc_flags,
2841 int migratetype)
1da177e4
LT
2842{
2843 unsigned long flags;
689bcebf 2844 struct page *page;
d13ab917
CK
2845 int migratetype_rmqueue = migratetype;
2846
2847#ifdef CONFIG_CMA
2848 if ((migratetype_rmqueue == MIGRATE_MOVABLE) &&
2849 ((gfp_flags & GFP_HIGHUSER_MOVABLE) == GFP_HIGHUSER_MOVABLE))
2850 migratetype_rmqueue = MIGRATE_CMA;
2851#endif
d34b0733 2852 if (likely(order == 0)) {
066b2393 2853 page = rmqueue_pcplist(preferred_zone, zone, order,
4b5cd906
CK
2854 gfp_flags, migratetype, migratetype_rmqueue);
2855 /*
2856 * Allocation with GFP_MOVABLE and !GFP_HIGHMEM will have
2857 * another chance of page allocation from the free list.
2858 * See the comment in __rmqueue_pcplist().
2859 */
2860#ifdef CONFIG_CMA
2861 if (likely(page) || (migratetype_rmqueue != MIGRATE_MOVABLE))
2862#endif
2863 goto out;
066b2393 2864 }
83b9355b 2865
066b2393
MG
2866 /*
2867 * We most definitely don't want callers attempting to
2868 * allocate greater than order-1 page units with __GFP_NOFAIL.
2869 */
2870 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2871 spin_lock_irqsave(&zone->lock, flags);
0aaa29a5 2872
066b2393
MG
2873 do {
2874 page = NULL;
2875 if (alloc_flags & ALLOC_HARDER) {
2876 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2877 if (page)
2878 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2879 }
a74609fa 2880 if (!page)
d13ab917 2881 page = __rmqueue(zone, order, migratetype_rmqueue);
066b2393
MG
2882 } while (page && check_new_pages(page, order));
2883 spin_unlock(&zone->lock);
2884 if (!page)
2885 goto failed;
2886 __mod_zone_freepage_state(zone, -(1 << order),
2887 get_pcppage_migratetype(page));
1da177e4 2888
16709d1d 2889 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
41b6167e 2890 zone_statistics(preferred_zone, zone);
a74609fa 2891 local_irq_restore(flags);
1da177e4 2892
066b2393
MG
2893out:
2894 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
1da177e4 2895 return page;
a74609fa
NP
2896
2897failed:
2898 local_irq_restore(flags);
a74609fa 2899 return NULL;
1da177e4
LT
2900}
2901
933e312e
AM
2902#ifdef CONFIG_FAIL_PAGE_ALLOC
2903
b2588c4b 2904static struct {
933e312e
AM
2905 struct fault_attr attr;
2906
621a5f7a 2907 bool ignore_gfp_highmem;
71baba4b 2908 bool ignore_gfp_reclaim;
54114994 2909 u32 min_order;
933e312e
AM
2910} fail_page_alloc = {
2911 .attr = FAULT_ATTR_INITIALIZER,
71baba4b 2912 .ignore_gfp_reclaim = true,
621a5f7a 2913 .ignore_gfp_highmem = true,
54114994 2914 .min_order = 1,
933e312e
AM
2915};
2916
2917static int __init setup_fail_page_alloc(char *str)
2918{
2919 return setup_fault_attr(&fail_page_alloc.attr, str);
2920}
2921__setup("fail_page_alloc=", setup_fail_page_alloc);
2922
deaf386e 2923static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2924{
54114994 2925 if (order < fail_page_alloc.min_order)
deaf386e 2926 return false;
933e312e 2927 if (gfp_mask & __GFP_NOFAIL)
deaf386e 2928 return false;
933e312e 2929 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 2930 return false;
71baba4b
MG
2931 if (fail_page_alloc.ignore_gfp_reclaim &&
2932 (gfp_mask & __GFP_DIRECT_RECLAIM))
deaf386e 2933 return false;
933e312e
AM
2934
2935 return should_fail(&fail_page_alloc.attr, 1 << order);
2936}
2937
2938#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2939
2940static int __init fail_page_alloc_debugfs(void)
2941{
f4ae40a6 2942 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
933e312e 2943 struct dentry *dir;
933e312e 2944
dd48c085
AM
2945 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2946 &fail_page_alloc.attr);
2947 if (IS_ERR(dir))
2948 return PTR_ERR(dir);
933e312e 2949
b2588c4b 2950 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
71baba4b 2951 &fail_page_alloc.ignore_gfp_reclaim))
b2588c4b
AM
2952 goto fail;
2953 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2954 &fail_page_alloc.ignore_gfp_highmem))
2955 goto fail;
2956 if (!debugfs_create_u32("min-order", mode, dir,
2957 &fail_page_alloc.min_order))
2958 goto fail;
2959
2960 return 0;
2961fail:
dd48c085 2962 debugfs_remove_recursive(dir);
933e312e 2963
b2588c4b 2964 return -ENOMEM;
933e312e
AM
2965}
2966
2967late_initcall(fail_page_alloc_debugfs);
2968
2969#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2970
2971#else /* CONFIG_FAIL_PAGE_ALLOC */
2972
deaf386e 2973static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2974{
deaf386e 2975 return false;
933e312e
AM
2976}
2977
2978#endif /* CONFIG_FAIL_PAGE_ALLOC */
2979
1da177e4 2980/*
97a16fc8
MG
2981 * Return true if free base pages are above 'mark'. For high-order checks it
2982 * will return true of the order-0 watermark is reached and there is at least
2983 * one free page of a suitable size. Checking now avoids taking the zone lock
2984 * to check in the allocation paths if no pages are free.
1da177e4 2985 */
86a294a8
MH
2986bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2987 int classzone_idx, unsigned int alloc_flags,
2988 long free_pages)
1da177e4 2989{
d23ad423 2990 long min = mark;
1da177e4 2991 int o;
cd04ae1e 2992 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
1da177e4 2993
0aaa29a5 2994 /* free_pages may go negative - that's OK */
df0a6daa 2995 free_pages -= (1 << order) - 1;
0aaa29a5 2996
7fb1d9fc 2997 if (alloc_flags & ALLOC_HIGH)
1da177e4 2998 min -= min / 2;
0aaa29a5
MG
2999
3000 /*
3001 * If the caller does not have rights to ALLOC_HARDER then subtract
3002 * the high-atomic reserves. This will over-estimate the size of the
3003 * atomic reserve but it avoids a search.
3004 */
cd04ae1e 3005 if (likely(!alloc_harder)) {
0aaa29a5 3006 free_pages -= z->nr_reserved_highatomic;
cd04ae1e
MH
3007 } else {
3008 /*
3009 * OOM victims can try even harder than normal ALLOC_HARDER
3010 * users on the grounds that it's definitely going to be in
3011 * the exit path shortly and free memory. Any allocation it
3012 * makes during the free path will be small and short-lived.
3013 */
3014 if (alloc_flags & ALLOC_OOM)
3015 min -= min / 2;
3016 else
3017 min -= min / 4;
3018 }
3019
e2b19197 3020
d95ea5d1
BZ
3021#ifdef CONFIG_CMA
3022 /* If allocation can't use CMA areas don't use free CMA pages */
3023 if (!(alloc_flags & ALLOC_CMA))
97a16fc8 3024 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
d95ea5d1 3025#endif
026b0814 3026
97a16fc8
MG
3027 /*
3028 * Check watermarks for an order-0 allocation request. If these
3029 * are not met, then a high-order request also cannot go ahead
3030 * even if a suitable page happened to be free.
3031 */
3032 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
88f5acf8 3033 return false;
1da177e4 3034
97a16fc8
MG
3035 /* If this is an order-0 request then the watermark is fine */
3036 if (!order)
3037 return true;
3038
3039 /* For a high-order request, check at least one suitable page is free */
3040 for (o = order; o < MAX_ORDER; o++) {
3041 struct free_area *area = &z->free_area[o];
3042 int mt;
3043
3044 if (!area->nr_free)
3045 continue;
3046
97a16fc8
MG
3047 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3048 if (!list_empty(&area->free_list[mt]))
3049 return true;
3050 }
3051
3052#ifdef CONFIG_CMA
3053 if ((alloc_flags & ALLOC_CMA) &&
3054 !list_empty(&area->free_list[MIGRATE_CMA])) {
3055 return true;
3056 }
3057#endif
bd9fa782
VB
3058 if (alloc_harder &&
3059 !list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
3060 return true;
1da177e4 3061 }
97a16fc8 3062 return false;
88f5acf8
MG
3063}
3064
7aeb09f9 3065bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
c603844b 3066 int classzone_idx, unsigned int alloc_flags)
88f5acf8
MG
3067{
3068 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3069 zone_page_state(z, NR_FREE_PAGES));
3070}
3071
48ee5f36
MG
3072static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3073 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
3074{
3075 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3076 long cma_pages = 0;
3077
3078#ifdef CONFIG_CMA
3079 /* If allocation can't use CMA areas don't use free CMA pages */
3080 if (!(alloc_flags & ALLOC_CMA))
3081 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
3082#endif
3083
3084 /*
3085 * Fast check for order-0 only. If this fails then the reserves
3086 * need to be calculated. There is a corner case where the check
3087 * passes but only the high-order atomic reserve are free. If
3088 * the caller is !atomic then it'll uselessly search the free
3089 * list. That corner case is then slower but it is harmless.
3090 */
3091 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
3092 return true;
3093
3094 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3095 free_pages);
3096}
3097
7aeb09f9 3098bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
e2b19197 3099 unsigned long mark, int classzone_idx)
88f5acf8
MG
3100{
3101 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3102
3103 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3104 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3105
e2b19197 3106 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
88f5acf8 3107 free_pages);
1da177e4
LT
3108}
3109
9276b1bc 3110#ifdef CONFIG_NUMA
957f822a
DR
3111static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3112{
e02dc017 3113 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
5f7a75ac 3114 RECLAIM_DISTANCE;
957f822a 3115}
9276b1bc 3116#else /* CONFIG_NUMA */
957f822a
DR
3117static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3118{
3119 return true;
3120}
9276b1bc
PJ
3121#endif /* CONFIG_NUMA */
3122
7fb1d9fc 3123/*
0798e519 3124 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
3125 * a page.
3126 */
3127static struct page *
a9263751
VB
3128get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3129 const struct alloc_context *ac)
753ee728 3130{
c33d6c06 3131 struct zoneref *z = ac->preferred_zoneref;
5117f45d 3132 struct zone *zone;
3b8c0be4
MG
3133 struct pglist_data *last_pgdat_dirty_limit = NULL;
3134
7fb1d9fc 3135 /*
9276b1bc 3136 * Scan zonelist, looking for a zone with enough free.
344736f2 3137 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
7fb1d9fc 3138 */
c33d6c06 3139 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
a9263751 3140 ac->nodemask) {
be06af00 3141 struct page *page;
e085dbc5
JW
3142 unsigned long mark;
3143
664eedde
MG
3144 if (cpusets_enabled() &&
3145 (alloc_flags & ALLOC_CPUSET) &&
002f2906 3146 !__cpuset_zone_allowed(zone, gfp_mask))
cd38b115 3147 continue;
a756cf59
JW
3148 /*
3149 * When allocating a page cache page for writing, we
281e3726
MG
3150 * want to get it from a node that is within its dirty
3151 * limit, such that no single node holds more than its
a756cf59 3152 * proportional share of globally allowed dirty pages.
281e3726 3153 * The dirty limits take into account the node's
a756cf59
JW
3154 * lowmem reserves and high watermark so that kswapd
3155 * should be able to balance it without having to
3156 * write pages from its LRU list.
3157 *
a756cf59 3158 * XXX: For now, allow allocations to potentially
281e3726 3159 * exceed the per-node dirty limit in the slowpath
c9ab0c4f 3160 * (spread_dirty_pages unset) before going into reclaim,
a756cf59 3161 * which is important when on a NUMA setup the allowed
281e3726 3162 * nodes are together not big enough to reach the
a756cf59 3163 * global limit. The proper fix for these situations
281e3726 3164 * will require awareness of nodes in the
a756cf59
JW
3165 * dirty-throttling and the flusher threads.
3166 */
3b8c0be4
MG
3167 if (ac->spread_dirty_pages) {
3168 if (last_pgdat_dirty_limit == zone->zone_pgdat)
3169 continue;
3170
3171 if (!node_dirty_ok(zone->zone_pgdat)) {
3172 last_pgdat_dirty_limit = zone->zone_pgdat;
3173 continue;
3174 }
3175 }
7fb1d9fc 3176
e085dbc5 3177 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
48ee5f36 3178 if (!zone_watermark_fast(zone, order, mark,
93ea9964 3179 ac_classzone_idx(ac), alloc_flags)) {
fa5e084e
MG
3180 int ret;
3181
5dab2911
MG
3182 /* Checked here to keep the fast path fast */
3183 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3184 if (alloc_flags & ALLOC_NO_WATERMARKS)
3185 goto try_this_zone;
3186
a5f5f91d 3187 if (node_reclaim_mode == 0 ||
c33d6c06 3188 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
cd38b115
MG
3189 continue;
3190
a5f5f91d 3191 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
fa5e084e 3192 switch (ret) {
a5f5f91d 3193 case NODE_RECLAIM_NOSCAN:
fa5e084e 3194 /* did not scan */
cd38b115 3195 continue;
a5f5f91d 3196 case NODE_RECLAIM_FULL:
fa5e084e 3197 /* scanned but unreclaimable */
cd38b115 3198 continue;
fa5e084e
MG
3199 default:
3200 /* did we reclaim enough */
fed2719e 3201 if (zone_watermark_ok(zone, order, mark,
93ea9964 3202 ac_classzone_idx(ac), alloc_flags))
fed2719e
MG
3203 goto try_this_zone;
3204
fed2719e 3205 continue;
0798e519 3206 }
7fb1d9fc
RS
3207 }
3208
fa5e084e 3209try_this_zone:
066b2393 3210 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
0aaa29a5 3211 gfp_mask, alloc_flags, ac->migratetype);
75379191 3212 if (page) {
479f854a 3213 prep_new_page(page, order, gfp_mask, alloc_flags);
0aaa29a5
MG
3214
3215 /*
3216 * If this is a high-order atomic allocation then check
3217 * if the pageblock should be reserved for the future
3218 */
3219 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3220 reserve_highatomic_pageblock(page, zone, order);
3221
75379191
VB
3222 return page;
3223 }
54a6eb5c 3224 }
9276b1bc 3225
4ffeaf35 3226 return NULL;
753ee728
MH
3227}
3228
29423e77
DR
3229/*
3230 * Large machines with many possible nodes should not always dump per-node
3231 * meminfo in irq context.
3232 */
3233static inline bool should_suppress_show_mem(void)
3234{
3235 bool ret = false;
3236
3237#if NODES_SHIFT > 8
3238 ret = in_interrupt();
3239#endif
3240 return ret;
3241}
3242
9af744d7 3243static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
a238ab5b 3244{
a238ab5b 3245 unsigned int filter = SHOW_MEM_FILTER_NODES;
aa187507 3246 static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
a238ab5b 3247
aa187507 3248 if (should_suppress_show_mem() || !__ratelimit(&show_mem_rs))
a238ab5b
DH
3249 return;
3250
3251 /*
3252 * This documents exceptions given to allocations in certain
3253 * contexts that are allowed to allocate outside current's set
3254 * of allowed nodes.
3255 */
3256 if (!(gfp_mask & __GFP_NOMEMALLOC))
cd04ae1e 3257 if (tsk_is_oom_victim(current) ||
a238ab5b
DH
3258 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3259 filter &= ~SHOW_MEM_FILTER_NODES;
d0164adc 3260 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
a238ab5b
DH
3261 filter &= ~SHOW_MEM_FILTER_NODES;
3262
9af744d7 3263 show_mem(filter, nodemask);
aa187507
MH
3264}
3265
a8e99259 3266void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
aa187507
MH
3267{
3268 struct va_format vaf;
3269 va_list args;
3270 static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
3271 DEFAULT_RATELIMIT_BURST);
3272
0f7896f1 3273 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
aa187507
MH
3274 return;
3275
7877cdcc 3276 pr_warn("%s: ", current->comm);
3ee9a4f0 3277
7877cdcc
MH
3278 va_start(args, fmt);
3279 vaf.fmt = fmt;
3280 vaf.va = &args;
3281 pr_cont("%pV", &vaf);
3282 va_end(args);
3ee9a4f0 3283
685dbf6f
DR
3284 pr_cont(", mode:%#x(%pGg), nodemask=", gfp_mask, &gfp_mask);
3285 if (nodemask)
3286 pr_cont("%*pbl\n", nodemask_pr_args(nodemask));
3287 else
3288 pr_cont("(null)\n");
3289
a8e99259 3290 cpuset_print_current_mems_allowed();
3ee9a4f0 3291
a238ab5b 3292 dump_stack();
685dbf6f 3293 warn_alloc_show_mem(gfp_mask, nodemask);
a238ab5b
DH
3294}
3295
6c18ba7a
MH
3296static inline struct page *
3297__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3298 unsigned int alloc_flags,
3299 const struct alloc_context *ac)
3300{
3301 struct page *page;
3302
3303 page = get_page_from_freelist(gfp_mask, order,
3304 alloc_flags|ALLOC_CPUSET, ac);
3305 /*
3306 * fallback to ignore cpuset restriction if our nodes
3307 * are depleted
3308 */
3309 if (!page)
3310 page = get_page_from_freelist(gfp_mask, order,
3311 alloc_flags, ac);
3312
3313 return page;
3314}
3315
11e33f6a
MG
3316static inline struct page *
3317__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 3318 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a 3319{
6e0fc46d
DR
3320 struct oom_control oc = {
3321 .zonelist = ac->zonelist,
3322 .nodemask = ac->nodemask,
2a966b77 3323 .memcg = NULL,
6e0fc46d
DR
3324 .gfp_mask = gfp_mask,
3325 .order = order,
6e0fc46d 3326 };
11e33f6a
MG
3327 struct page *page;
3328
9879de73
JW
3329 *did_some_progress = 0;
3330
9879de73 3331 /*
dc56401f
JW
3332 * Acquire the oom lock. If that fails, somebody else is
3333 * making progress for us.
9879de73 3334 */
dc56401f 3335 if (!mutex_trylock(&oom_lock)) {
9879de73 3336 *did_some_progress = 1;
11e33f6a 3337 schedule_timeout_uninterruptible(1);
1da177e4
LT
3338 return NULL;
3339 }
6b1de916 3340
11e33f6a
MG
3341 /*
3342 * Go through the zonelist yet one more time, keep very high watermark
3343 * here, this is only to catch a parallel oom killing, we must fail if
e746bf73
TH
3344 * we're still under heavy pressure. But make sure that this reclaim
3345 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3346 * allocation which will never fail due to oom_lock already held.
11e33f6a 3347 */
e746bf73
TH
3348 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3349 ~__GFP_DIRECT_RECLAIM, order,
3350 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 3351 if (page)
11e33f6a
MG
3352 goto out;
3353
06ad276a
MH
3354 /* Coredumps can quickly deplete all memory reserves */
3355 if (current->flags & PF_DUMPCORE)
3356 goto out;
3357 /* The OOM killer will not help higher order allocs */
3358 if (order > PAGE_ALLOC_COSTLY_ORDER)
3359 goto out;
dcda9b04
MH
3360 /*
3361 * We have already exhausted all our reclaim opportunities without any
3362 * success so it is time to admit defeat. We will skip the OOM killer
3363 * because it is very likely that the caller has a more reasonable
3364 * fallback than shooting a random task.
3365 */
3366 if (gfp_mask & __GFP_RETRY_MAYFAIL)
3367 goto out;
06ad276a
MH
3368 /* The OOM killer does not needlessly kill tasks for lowmem */
3369 if (ac->high_zoneidx < ZONE_NORMAL)
3370 goto out;
3371 if (pm_suspended_storage())
3372 goto out;
3373 /*
3374 * XXX: GFP_NOFS allocations should rather fail than rely on
3375 * other request to make a forward progress.
3376 * We are in an unfortunate situation where out_of_memory cannot
3377 * do much for this context but let's try it to at least get
3378 * access to memory reserved if the current task is killed (see
3379 * out_of_memory). Once filesystems are ready to handle allocation
3380 * failures more gracefully we should just bail out here.
3381 */
3382
3383 /* The OOM killer may not free memory on a specific node */
3384 if (gfp_mask & __GFP_THISNODE)
3385 goto out;
3da88fb3 3386
11e33f6a 3387 /* Exhausted what can be done so it's blamo time */
5020e285 3388 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
c32b3cbe 3389 *did_some_progress = 1;
5020e285 3390
6c18ba7a
MH
3391 /*
3392 * Help non-failing allocations by giving them access to memory
3393 * reserves
3394 */
3395 if (gfp_mask & __GFP_NOFAIL)
3396 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
5020e285 3397 ALLOC_NO_WATERMARKS, ac);
5020e285 3398 }
11e33f6a 3399out:
dc56401f 3400 mutex_unlock(&oom_lock);
11e33f6a
MG
3401 return page;
3402}
3403
33c2d214
MH
3404/*
3405 * Maximum number of compaction retries wit a progress before OOM
3406 * killer is consider as the only way to move forward.
3407 */
3408#define MAX_COMPACT_RETRIES 16
3409
56de7263
MG
3410#ifdef CONFIG_COMPACTION
3411/* Try memory compaction for high-order allocations before reclaim */
3412static struct page *
3413__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3414 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 3415 enum compact_priority prio, enum compact_result *compact_result)
56de7263 3416{
98dd3b48 3417 struct page *page;
7cafcfd8 3418 unsigned long pflags;
499118e9 3419 unsigned int noreclaim_flag;
53853e2d
VB
3420
3421 if (!order)
66199712 3422 return NULL;
66199712 3423
7cafcfd8 3424 psi_memstall_enter(&pflags);
499118e9 3425 noreclaim_flag = memalloc_noreclaim_save();
7cafcfd8 3426
c5d01d0d 3427 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
c3486f53 3428 prio);
7cafcfd8 3429
499118e9 3430 memalloc_noreclaim_restore(noreclaim_flag);
7cafcfd8 3431 psi_memstall_leave(&pflags);
56de7263 3432
c5d01d0d 3433 if (*compact_result <= COMPACT_INACTIVE)
98dd3b48 3434 return NULL;
53853e2d 3435
98dd3b48
VB
3436 /*
3437 * At least in one zone compaction wasn't deferred or skipped, so let's
3438 * count a compaction stall
3439 */
3440 count_vm_event(COMPACTSTALL);
8fb74b9f 3441
31a6c190 3442 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
53853e2d 3443
98dd3b48
VB
3444 if (page) {
3445 struct zone *zone = page_zone(page);
53853e2d 3446
98dd3b48
VB
3447 zone->compact_blockskip_flush = false;
3448 compaction_defer_reset(zone, order, true);
3449 count_vm_event(COMPACTSUCCESS);
3450 return page;
3451 }
56de7263 3452
98dd3b48
VB
3453 /*
3454 * It's bad if compaction run occurs and fails. The most likely reason
3455 * is that pages exist, but not enough to satisfy watermarks.
3456 */
3457 count_vm_event(COMPACTFAIL);
66199712 3458
98dd3b48 3459 cond_resched();
56de7263
MG
3460
3461 return NULL;
3462}
33c2d214 3463
3250845d
VB
3464static inline bool
3465should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3466 enum compact_result compact_result,
3467 enum compact_priority *compact_priority,
d9436498 3468 int *compaction_retries)
3250845d
VB
3469{
3470 int max_retries = MAX_COMPACT_RETRIES;
c2033b00 3471 int min_priority;
65190cff
MH
3472 bool ret = false;
3473 int retries = *compaction_retries;
3474 enum compact_priority priority = *compact_priority;
3250845d
VB
3475
3476 if (!order)
3477 return false;
3478
d9436498
VB
3479 if (compaction_made_progress(compact_result))
3480 (*compaction_retries)++;
3481
3250845d
VB
3482 /*
3483 * compaction considers all the zone as desperately out of memory
3484 * so it doesn't really make much sense to retry except when the
3485 * failure could be caused by insufficient priority
3486 */
d9436498
VB
3487 if (compaction_failed(compact_result))
3488 goto check_priority;
3250845d
VB
3489
3490 /*
3491 * make sure the compaction wasn't deferred or didn't bail out early
3492 * due to locks contention before we declare that we should give up.
3493 * But do not retry if the given zonelist is not suitable for
3494 * compaction.
3495 */
65190cff
MH
3496 if (compaction_withdrawn(compact_result)) {
3497 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3498 goto out;
3499 }
3250845d
VB
3500
3501 /*
dcda9b04 3502 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3250845d
VB
3503 * costly ones because they are de facto nofail and invoke OOM
3504 * killer to move on while costly can fail and users are ready
3505 * to cope with that. 1/4 retries is rather arbitrary but we
3506 * would need much more detailed feedback from compaction to
3507 * make a better decision.
3508 */
3509 if (order > PAGE_ALLOC_COSTLY_ORDER)
3510 max_retries /= 4;
65190cff
MH
3511 if (*compaction_retries <= max_retries) {
3512 ret = true;
3513 goto out;
3514 }
3250845d 3515
d9436498
VB
3516 /*
3517 * Make sure there are attempts at the highest priority if we exhausted
3518 * all retries or failed at the lower priorities.
3519 */
3520check_priority:
c2033b00
VB
3521 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3522 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
65190cff 3523
c2033b00 3524 if (*compact_priority > min_priority) {
d9436498
VB
3525 (*compact_priority)--;
3526 *compaction_retries = 0;
65190cff 3527 ret = true;
d9436498 3528 }
65190cff
MH
3529out:
3530 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3531 return ret;
3250845d 3532}
56de7263
MG
3533#else
3534static inline struct page *
3535__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3536 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 3537 enum compact_priority prio, enum compact_result *compact_result)
56de7263 3538{
33c2d214 3539 *compact_result = COMPACT_SKIPPED;
56de7263
MG
3540 return NULL;
3541}
33c2d214
MH
3542
3543static inline bool
86a294a8
MH
3544should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3545 enum compact_result compact_result,
a5508cd8 3546 enum compact_priority *compact_priority,
d9436498 3547 int *compaction_retries)
33c2d214 3548{
31e49bfd
MH
3549 struct zone *zone;
3550 struct zoneref *z;
3551
3552 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3553 return false;
3554
3555 /*
3556 * There are setups with compaction disabled which would prefer to loop
3557 * inside the allocator rather than hit the oom killer prematurely.
3558 * Let's give them a good hope and keep retrying while the order-0
3559 * watermarks are OK.
3560 */
3561 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3562 ac->nodemask) {
3563 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3564 ac_classzone_idx(ac), alloc_flags))
3565 return true;
3566 }
33c2d214
MH
3567 return false;
3568}
3250845d 3569#endif /* CONFIG_COMPACTION */
56de7263 3570
d92a8cfc
PZ
3571#ifdef CONFIG_LOCKDEP
3572struct lockdep_map __fs_reclaim_map =
3573 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3574
3575static bool __need_fs_reclaim(gfp_t gfp_mask)
3576{
3577 gfp_mask = current_gfp_context(gfp_mask);
3578
3579 /* no reclaim without waiting on it */
3580 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3581 return false;
3582
3583 /* this guy won't enter reclaim */
ef006d43 3584 if (current->flags & PF_MEMALLOC)
d92a8cfc
PZ
3585 return false;
3586
3587 /* We're only interested __GFP_FS allocations for now */
3588 if (!(gfp_mask & __GFP_FS))
3589 return false;
3590
3591 if (gfp_mask & __GFP_NOLOCKDEP)
3592 return false;
3593
3594 return true;
3595}
3596
3597void fs_reclaim_acquire(gfp_t gfp_mask)
3598{
3599 if (__need_fs_reclaim(gfp_mask))
3600 lock_map_acquire(&__fs_reclaim_map);
3601}
3602EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
3603
3604void fs_reclaim_release(gfp_t gfp_mask)
3605{
3606 if (__need_fs_reclaim(gfp_mask))
3607 lock_map_release(&__fs_reclaim_map);
3608}
3609EXPORT_SYMBOL_GPL(fs_reclaim_release);
3610#endif
3611
bba90710
MS
3612/* Perform direct synchronous page reclaim */
3613static int
a9263751
VB
3614__perform_reclaim(gfp_t gfp_mask, unsigned int order,
3615 const struct alloc_context *ac)
11e33f6a 3616{
11e33f6a 3617 struct reclaim_state reclaim_state;
bba90710 3618 int progress;
499118e9 3619 unsigned int noreclaim_flag;
7cafcfd8 3620 unsigned long pflags;
11e33f6a
MG
3621
3622 cond_resched();
3623
3624 /* We now go into synchronous reclaim */
3625 cpuset_memory_pressure_bump();
7cafcfd8 3626 psi_memstall_enter(&pflags);
499118e9 3627 noreclaim_flag = memalloc_noreclaim_save();
d92a8cfc 3628 fs_reclaim_acquire(gfp_mask);
11e33f6a 3629 reclaim_state.reclaimed_slab = 0;
c06b1fca 3630 current->reclaim_state = &reclaim_state;
11e33f6a 3631
a9263751
VB
3632 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3633 ac->nodemask);
11e33f6a 3634
c06b1fca 3635 current->reclaim_state = NULL;
d92a8cfc 3636 fs_reclaim_release(gfp_mask);
499118e9 3637 memalloc_noreclaim_restore(noreclaim_flag);
7cafcfd8 3638 psi_memstall_leave(&pflags);
11e33f6a
MG
3639
3640 cond_resched();
3641
bba90710
MS
3642 return progress;
3643}
3644
3645/* The really slow allocator path where we enter direct reclaim */
3646static inline struct page *
3647__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
c603844b 3648 unsigned int alloc_flags, const struct alloc_context *ac,
a9263751 3649 unsigned long *did_some_progress)
bba90710
MS
3650{
3651 struct page *page = NULL;
3652 bool drained = false;
3653
a9263751 3654 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce
MG
3655 if (unlikely(!(*did_some_progress)))
3656 return NULL;
11e33f6a 3657
9ee493ce 3658retry:
31a6c190 3659 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
9ee493ce
MG
3660
3661 /*
3662 * If an allocation failed after direct reclaim, it could be because
0aaa29a5
MG
3663 * pages are pinned on the per-cpu lists or in high alloc reserves.
3664 * Shrink them them and try again
9ee493ce
MG
3665 */
3666 if (!page && !drained) {
29fac03b 3667 unreserve_highatomic_pageblock(ac, false);
93481ff0 3668 drain_all_pages(NULL);
9ee493ce
MG
3669 drained = true;
3670 goto retry;
3671 }
3672
11e33f6a
MG
3673 return page;
3674}
3675
a9263751 3676static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3a025760
JW
3677{
3678 struct zoneref *z;
3679 struct zone *zone;
e1a55637 3680 pg_data_t *last_pgdat = NULL;
3a025760 3681
a9263751 3682 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
e1a55637
MG
3683 ac->high_zoneidx, ac->nodemask) {
3684 if (last_pgdat != zone->zone_pgdat)
52e9f87a 3685 wakeup_kswapd(zone, order, ac->high_zoneidx);
e1a55637
MG
3686 last_pgdat = zone->zone_pgdat;
3687 }
3a025760
JW
3688}
3689
c603844b 3690static inline unsigned int
341ce06f
PZ
3691gfp_to_alloc_flags(gfp_t gfp_mask)
3692{
c603844b 3693 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1da177e4 3694
a56f57ff 3695 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 3696 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 3697
341ce06f
PZ
3698 /*
3699 * The caller may dip into page reserves a bit more if the caller
3700 * cannot run direct reclaim, or if the caller has realtime scheduling
3701 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
d0164adc 3702 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 3703 */
e6223a3b 3704 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 3705
d0164adc 3706 if (gfp_mask & __GFP_ATOMIC) {
5c3240d9 3707 /*
b104a35d
DR
3708 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3709 * if it can't schedule.
5c3240d9 3710 */
b104a35d 3711 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 3712 alloc_flags |= ALLOC_HARDER;
523b9458 3713 /*
b104a35d 3714 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
344736f2 3715 * comment for __cpuset_node_allowed().
523b9458 3716 */
341ce06f 3717 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 3718 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
3719 alloc_flags |= ALLOC_HARDER;
3720
d95ea5d1 3721#ifdef CONFIG_CMA
d13ab917
CK
3722 if ((gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE) ||
3723 ((gfp_mask & GFP_HIGHUSER_MOVABLE) == GFP_HIGHUSER_MOVABLE))
d95ea5d1
BZ
3724 alloc_flags |= ALLOC_CMA;
3725#endif
341ce06f
PZ
3726 return alloc_flags;
3727}
3728
cd04ae1e 3729static bool oom_reserves_allowed(struct task_struct *tsk)
072bb0aa 3730{
cd04ae1e
MH
3731 if (!tsk_is_oom_victim(tsk))
3732 return false;
3733
3734 /*
3735 * !MMU doesn't have oom reaper so give access to memory reserves
3736 * only to the thread with TIF_MEMDIE set
3737 */
3738 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
31a6c190
VB
3739 return false;
3740
cd04ae1e
MH
3741 return true;
3742}
3743
3744/*
3745 * Distinguish requests which really need access to full memory
3746 * reserves from oom victims which can live with a portion of it
3747 */
3748static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
3749{
3750 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3751 return 0;
31a6c190 3752 if (gfp_mask & __GFP_MEMALLOC)
cd04ae1e 3753 return ALLOC_NO_WATERMARKS;
31a6c190 3754 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
cd04ae1e
MH
3755 return ALLOC_NO_WATERMARKS;
3756 if (!in_interrupt()) {
3757 if (current->flags & PF_MEMALLOC)
3758 return ALLOC_NO_WATERMARKS;
3759 else if (oom_reserves_allowed(current))
3760 return ALLOC_OOM;
3761 }
31a6c190 3762
cd04ae1e
MH
3763 return 0;
3764}
3765
3766bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3767{
3768 return !!__gfp_pfmemalloc_flags(gfp_mask);
072bb0aa
MG
3769}
3770
0a0337e0
MH
3771/*
3772 * Checks whether it makes sense to retry the reclaim to make a forward progress
3773 * for the given allocation request.
491d79ae
JW
3774 *
3775 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
3776 * without success, or when we couldn't even meet the watermark if we
3777 * reclaimed all remaining pages on the LRU lists.
0a0337e0
MH
3778 *
3779 * Returns true if a retry is viable or false to enter the oom path.
3780 */
3781static inline bool
3782should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3783 struct alloc_context *ac, int alloc_flags,
423b452e 3784 bool did_some_progress, int *no_progress_loops)
0a0337e0
MH
3785{
3786 struct zone *zone;
3787 struct zoneref *z;
3788
423b452e
VB
3789 /*
3790 * Costly allocations might have made a progress but this doesn't mean
3791 * their order will become available due to high fragmentation so
3792 * always increment the no progress counter for them
3793 */
3794 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3795 *no_progress_loops = 0;
3796 else
3797 (*no_progress_loops)++;
3798
0a0337e0
MH
3799 /*
3800 * Make sure we converge to OOM if we cannot make any progress
3801 * several times in the row.
3802 */
04c8716f
MK
3803 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
3804 /* Before OOM, exhaust highatomic_reserve */
29fac03b 3805 return unreserve_highatomic_pageblock(ac, true);
04c8716f 3806 }
0a0337e0 3807
bca67592
MG
3808 /*
3809 * Keep reclaiming pages while there is a chance this will lead
3810 * somewhere. If none of the target zones can satisfy our allocation
3811 * request even if all reclaimable pages are considered then we are
3812 * screwed and have to go OOM.
0a0337e0
MH
3813 */
3814 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3815 ac->nodemask) {
3816 unsigned long available;
ede37713 3817 unsigned long reclaimable;
d379f01d
MH
3818 unsigned long min_wmark = min_wmark_pages(zone);
3819 bool wmark;
0a0337e0 3820
5a1c84b4 3821 available = reclaimable = zone_reclaimable_pages(zone);
5a1c84b4 3822 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
0a0337e0
MH
3823
3824 /*
491d79ae
JW
3825 * Would the allocation succeed if we reclaimed all
3826 * reclaimable pages?
0a0337e0 3827 */
d379f01d
MH
3828 wmark = __zone_watermark_ok(zone, order, min_wmark,
3829 ac_classzone_idx(ac), alloc_flags, available);
3830 trace_reclaim_retry_zone(z, order, reclaimable,
3831 available, min_wmark, *no_progress_loops, wmark);
3832 if (wmark) {
ede37713
MH
3833 /*
3834 * If we didn't make any progress and have a lot of
3835 * dirty + writeback pages then we should wait for
3836 * an IO to complete to slow down the reclaim and
3837 * prevent from pre mature OOM
3838 */
3839 if (!did_some_progress) {
11fb9989 3840 unsigned long write_pending;
ede37713 3841
5a1c84b4
MG
3842 write_pending = zone_page_state_snapshot(zone,
3843 NR_ZONE_WRITE_PENDING);
ede37713 3844
11fb9989 3845 if (2 * write_pending > reclaimable) {
ede37713
MH
3846 congestion_wait(BLK_RW_ASYNC, HZ/10);
3847 return true;
3848 }
3849 }
5a1c84b4 3850
ede37713
MH
3851 /*
3852 * Memory allocation/reclaim might be called from a WQ
3853 * context and the current implementation of the WQ
3854 * concurrency control doesn't recognize that
3855 * a particular WQ is congested if the worker thread is
3856 * looping without ever sleeping. Therefore we have to
3857 * do a short sleep here rather than calling
3858 * cond_resched().
3859 */
3860 if (current->flags & PF_WQ_WORKER)
3861 schedule_timeout_uninterruptible(1);
3862 else
3863 cond_resched();
3864
0a0337e0
MH
3865 return true;
3866 }
3867 }
3868
3869 return false;
3870}
3871
902b6281
VB
3872static inline bool
3873check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
3874{
3875 /*
3876 * It's possible that cpuset's mems_allowed and the nodemask from
3877 * mempolicy don't intersect. This should be normally dealt with by
3878 * policy_nodemask(), but it's possible to race with cpuset update in
3879 * such a way the check therein was true, and then it became false
3880 * before we got our cpuset_mems_cookie here.
3881 * This assumes that for all allocations, ac->nodemask can come only
3882 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
3883 * when it does not intersect with the cpuset restrictions) or the
3884 * caller can deal with a violated nodemask.
3885 */
3886 if (cpusets_enabled() && ac->nodemask &&
3887 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
3888 ac->nodemask = NULL;
3889 return true;
3890 }
3891
3892 /*
3893 * When updating a task's mems_allowed or mempolicy nodemask, it is
3894 * possible to race with parallel threads in such a way that our
3895 * allocation can fail while the mask is being updated. If we are about
3896 * to fail, check if the cpuset changed during allocation and if so,
3897 * retry.
3898 */
3899 if (read_mems_allowed_retry(cpuset_mems_cookie))
3900 return true;
3901
3902 return false;
3903}
3904
11e33f6a
MG
3905static inline struct page *
3906__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 3907 struct alloc_context *ac)
11e33f6a 3908{
d0164adc 3909 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
282722b0 3910 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
11e33f6a 3911 struct page *page = NULL;
c603844b 3912 unsigned int alloc_flags;
11e33f6a 3913 unsigned long did_some_progress;
5ce9bfef 3914 enum compact_priority compact_priority;
c5d01d0d 3915 enum compact_result compact_result;
5ce9bfef
VB
3916 int compaction_retries;
3917 int no_progress_loops;
5ce9bfef 3918 unsigned int cpuset_mems_cookie;
cd04ae1e 3919 int reserve_flags;
1da177e4 3920
d0164adc
MG
3921 /*
3922 * We also sanity check to catch abuse of atomic reserves being used by
3923 * callers that are not in atomic context.
3924 */
3925 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3926 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3927 gfp_mask &= ~__GFP_ATOMIC;
3928
5ce9bfef
VB
3929retry_cpuset:
3930 compaction_retries = 0;
3931 no_progress_loops = 0;
3932 compact_priority = DEF_COMPACT_PRIORITY;
3933 cpuset_mems_cookie = read_mems_allowed_begin();
9a67f648
MH
3934
3935 /*
3936 * The fast path uses conservative alloc_flags to succeed only until
3937 * kswapd needs to be woken up, and to avoid the cost of setting up
3938 * alloc_flags precisely. So we do that now.
3939 */
3940 alloc_flags = gfp_to_alloc_flags(gfp_mask);
3941
e47483bc
VB
3942 /*
3943 * We need to recalculate the starting point for the zonelist iterator
3944 * because we might have used different nodemask in the fast path, or
3945 * there was a cpuset modification and we are retrying - otherwise we
3946 * could end up iterating over non-eligible zones endlessly.
3947 */
3948 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3949 ac->high_zoneidx, ac->nodemask);
3950 if (!ac->preferred_zoneref->zone)
3951 goto nopage;
3952
23771235
VB
3953 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3954 wake_all_kswapds(order, ac);
3955
3956 /*
3957 * The adjusted alloc_flags might result in immediate success, so try
3958 * that first
3959 */
3960 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3961 if (page)
3962 goto got_pg;
3963
a8161d1e
VB
3964 /*
3965 * For costly allocations, try direct compaction first, as it's likely
282722b0
VB
3966 * that we have enough base pages and don't need to reclaim. For non-
3967 * movable high-order allocations, do that as well, as compaction will
3968 * try prevent permanent fragmentation by migrating from blocks of the
3969 * same migratetype.
3970 * Don't try this for allocations that are allowed to ignore
3971 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
a8161d1e 3972 */
282722b0
VB
3973 if (can_direct_reclaim &&
3974 (costly_order ||
3975 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
3976 && !gfp_pfmemalloc_allowed(gfp_mask)) {
a8161d1e
VB
3977 page = __alloc_pages_direct_compact(gfp_mask, order,
3978 alloc_flags, ac,
a5508cd8 3979 INIT_COMPACT_PRIORITY,
a8161d1e
VB
3980 &compact_result);
3981 if (page)
3982 goto got_pg;
3983
3eb2771b
VB
3984 /*
3985 * Checks for costly allocations with __GFP_NORETRY, which
3986 * includes THP page fault allocations
3987 */
282722b0 3988 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
a8161d1e
VB
3989 /*
3990 * If compaction is deferred for high-order allocations,
3991 * it is because sync compaction recently failed. If
3992 * this is the case and the caller requested a THP
3993 * allocation, we do not want to heavily disrupt the
3994 * system, so we fail the allocation instead of entering
3995 * direct reclaim.
3996 */
3997 if (compact_result == COMPACT_DEFERRED)
3998 goto nopage;
3999
a8161d1e 4000 /*
3eb2771b
VB
4001 * Looks like reclaim/compaction is worth trying, but
4002 * sync compaction could be very expensive, so keep
25160354 4003 * using async compaction.
a8161d1e 4004 */
a5508cd8 4005 compact_priority = INIT_COMPACT_PRIORITY;
a8161d1e
VB
4006 }
4007 }
23771235 4008
31a6c190 4009retry:
23771235 4010 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
31a6c190
VB
4011 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
4012 wake_all_kswapds(order, ac);
4013
cd04ae1e
MH
4014 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4015 if (reserve_flags)
4016 alloc_flags = reserve_flags;
23771235 4017
e46e7b77
MG
4018 /*
4019 * Reset the zonelist iterators if memory policies can be ignored.
4020 * These allocations are high priority and system rather than user
4021 * orientated.
4022 */
cd04ae1e 4023 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
e46e7b77
MG
4024 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4025 ac->high_zoneidx, ac->nodemask);
4026 }
4027
23771235 4028 /* Attempt with potentially adjusted zonelist and alloc_flags */
31a6c190 4029 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
7fb1d9fc
RS
4030 if (page)
4031 goto got_pg;
1da177e4 4032
d0164adc 4033 /* Caller is not willing to reclaim, we can't balance anything */
9a67f648 4034 if (!can_direct_reclaim)
1da177e4
LT
4035 goto nopage;
4036
9a67f648
MH
4037 /* Avoid recursion of direct reclaim */
4038 if (current->flags & PF_MEMALLOC)
6583bb64
DR
4039 goto nopage;
4040
a8161d1e
VB
4041 /* Try direct reclaim and then allocating */
4042 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4043 &did_some_progress);
4044 if (page)
4045 goto got_pg;
4046
4047 /* Try direct compaction and then allocating */
a9263751 4048 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
a5508cd8 4049 compact_priority, &compact_result);
56de7263
MG
4050 if (page)
4051 goto got_pg;
75f30861 4052
9083905a
JW
4053 /* Do not loop if specifically requested */
4054 if (gfp_mask & __GFP_NORETRY)
a8161d1e 4055 goto nopage;
9083905a 4056
0a0337e0
MH
4057 /*
4058 * Do not retry costly high order allocations unless they are
dcda9b04 4059 * __GFP_RETRY_MAYFAIL
0a0337e0 4060 */
dcda9b04 4061 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
a8161d1e 4062 goto nopage;
0a0337e0 4063
0a0337e0 4064 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
423b452e 4065 did_some_progress > 0, &no_progress_loops))
0a0337e0
MH
4066 goto retry;
4067
33c2d214
MH
4068 /*
4069 * It doesn't make any sense to retry for the compaction if the order-0
4070 * reclaim is not able to make any progress because the current
4071 * implementation of the compaction depends on the sufficient amount
4072 * of free memory (see __compaction_suitable)
4073 */
4074 if (did_some_progress > 0 &&
86a294a8 4075 should_compact_retry(ac, order, alloc_flags,
a5508cd8 4076 compact_result, &compact_priority,
d9436498 4077 &compaction_retries))
33c2d214
MH
4078 goto retry;
4079
902b6281
VB
4080
4081 /* Deal with possible cpuset update races before we start OOM killing */
4082 if (check_retry_cpuset(cpuset_mems_cookie, ac))
e47483bc
VB
4083 goto retry_cpuset;
4084
9083905a
JW
4085 /* Reclaim has failed us, start killing things */
4086 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4087 if (page)
4088 goto got_pg;
4089
9a67f648 4090 /* Avoid allocations with no watermarks from looping endlessly */
cd04ae1e
MH
4091 if (tsk_is_oom_victim(current) &&
4092 (alloc_flags == ALLOC_OOM ||
c288983d 4093 (gfp_mask & __GFP_NOMEMALLOC)))
9a67f648
MH
4094 goto nopage;
4095
9083905a 4096 /* Retry as long as the OOM killer is making progress */
0a0337e0
MH
4097 if (did_some_progress) {
4098 no_progress_loops = 0;
9083905a 4099 goto retry;
0a0337e0 4100 }
9083905a 4101
1da177e4 4102nopage:
902b6281
VB
4103 /* Deal with possible cpuset update races before we fail */
4104 if (check_retry_cpuset(cpuset_mems_cookie, ac))
5ce9bfef
VB
4105 goto retry_cpuset;
4106
9a67f648
MH
4107 /*
4108 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4109 * we always retry
4110 */
4111 if (gfp_mask & __GFP_NOFAIL) {
4112 /*
4113 * All existing users of the __GFP_NOFAIL are blockable, so warn
4114 * of any new users that actually require GFP_NOWAIT
4115 */
4116 if (WARN_ON_ONCE(!can_direct_reclaim))
4117 goto fail;
4118
4119 /*
4120 * PF_MEMALLOC request from this context is rather bizarre
4121 * because we cannot reclaim anything and only can loop waiting
4122 * for somebody to do a work for us
4123 */
4124 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4125
4126 /*
4127 * non failing costly orders are a hard requirement which we
4128 * are not prepared for much so let's warn about these users
4129 * so that we can identify them and convert them to something
4130 * else.
4131 */
4132 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4133
6c18ba7a
MH
4134 /*
4135 * Help non-failing allocations by giving them access to memory
4136 * reserves but do not use ALLOC_NO_WATERMARKS because this
4137 * could deplete whole memory reserves which would just make
4138 * the situation worse
4139 */
4140 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4141 if (page)
4142 goto got_pg;
4143
9a67f648
MH
4144 cond_resched();
4145 goto retry;
4146 }
4147fail:
a8e99259 4148 warn_alloc(gfp_mask, ac->nodemask,
7877cdcc 4149 "page allocation failure: order:%u", order);
1da177e4 4150got_pg:
072bb0aa 4151 return page;
1da177e4 4152}
11e33f6a 4153
9cd75558 4154static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
04ec6264 4155 int preferred_nid, nodemask_t *nodemask,
9cd75558
MG
4156 struct alloc_context *ac, gfp_t *alloc_mask,
4157 unsigned int *alloc_flags)
11e33f6a 4158{
9cd75558 4159 ac->high_zoneidx = gfp_zone(gfp_mask);
04ec6264 4160 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
9cd75558
MG
4161 ac->nodemask = nodemask;
4162 ac->migratetype = gfpflags_to_migratetype(gfp_mask);
11e33f6a 4163
682a3385 4164 if (cpusets_enabled()) {
9cd75558 4165 *alloc_mask |= __GFP_HARDWALL;
9cd75558
MG
4166 if (!ac->nodemask)
4167 ac->nodemask = &cpuset_current_mems_allowed;
51047820
VB
4168 else
4169 *alloc_flags |= ALLOC_CPUSET;
682a3385
MG
4170 }
4171
d92a8cfc
PZ
4172 fs_reclaim_acquire(gfp_mask);
4173 fs_reclaim_release(gfp_mask);
11e33f6a 4174
d0164adc 4175 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
11e33f6a
MG
4176
4177 if (should_fail_alloc_page(gfp_mask, order))
9cd75558 4178 return false;
11e33f6a 4179
9cd75558
MG
4180 if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
4181 *alloc_flags |= ALLOC_CMA;
4182
4183 return true;
4184}
21bb9bd1 4185
9cd75558
MG
4186/* Determine whether to spread dirty pages and what the first usable zone */
4187static inline void finalise_ac(gfp_t gfp_mask,
4188 unsigned int order, struct alloc_context *ac)
4189{
c9ab0c4f 4190 /* Dirty zone balancing only done in the fast path */
9cd75558 4191 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
c9ab0c4f 4192
e46e7b77
MG
4193 /*
4194 * The preferred zone is used for statistics but crucially it is
4195 * also used as the starting point for the zonelist iterator. It
4196 * may get reset for allocations that ignore memory policies.
4197 */
9cd75558
MG
4198 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4199 ac->high_zoneidx, ac->nodemask);
4200}
4201
4202/*
4203 * This is the 'heart' of the zoned buddy allocator.
4204 */
4205struct page *
04ec6264
VB
4206__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4207 nodemask_t *nodemask)
9cd75558
MG
4208{
4209 struct page *page;
4210 unsigned int alloc_flags = ALLOC_WMARK_LOW;
f19360f0 4211 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
9cd75558
MG
4212 struct alloc_context ac = { };
4213
c6a4b3c3
MH
4214 /*
4215 * There are several places where we assume that the order value is sane
4216 * so bail out early if the request is out of bound.
4217 */
4218 if (unlikely(order >= MAX_ORDER)) {
4219 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
4220 return NULL;
4221 }
4222
9cd75558 4223 gfp_mask &= gfp_allowed_mask;
f19360f0 4224 alloc_mask = gfp_mask;
04ec6264 4225 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
9cd75558
MG
4226 return NULL;
4227
4228 finalise_ac(gfp_mask, order, &ac);
5bb1b169 4229
5117f45d 4230 /* First allocation attempt */
a9263751 4231 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4fcb0971
MG
4232 if (likely(page))
4233 goto out;
11e33f6a 4234
4fcb0971 4235 /*
7dea19f9
MH
4236 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4237 * resp. GFP_NOIO which has to be inherited for all allocation requests
4238 * from a particular context which has been marked by
4239 * memalloc_no{fs,io}_{save,restore}.
4fcb0971 4240 */
7dea19f9 4241 alloc_mask = current_gfp_context(gfp_mask);
4fcb0971 4242 ac.spread_dirty_pages = false;
23f086f9 4243
4741526b
MG
4244 /*
4245 * Restore the original nodemask if it was potentially replaced with
4246 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4247 */
e47483bc 4248 if (unlikely(ac.nodemask != nodemask))
4741526b 4249 ac.nodemask = nodemask;
16096c25 4250
4fcb0971 4251 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
cc9a6c87 4252
4fcb0971 4253out:
c4159a75
VD
4254 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
4255 unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
4256 __free_pages(page, order);
4257 page = NULL;
4949148a
VD
4258 }
4259
4fcb0971
MG
4260 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4261
11e33f6a 4262 return page;
1da177e4 4263}
d239171e 4264EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
4265
4266/*
4267 * Common helper functions.
4268 */
920c7a5d 4269unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 4270{
945a1113
AM
4271 struct page *page;
4272
4273 /*
4274 * __get_free_pages() returns a 32-bit address, which cannot represent
4275 * a highmem page
4276 */
4277 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
4278
1da177e4
LT
4279 page = alloc_pages(gfp_mask, order);
4280 if (!page)
4281 return 0;
4282 return (unsigned long) page_address(page);
4283}
1da177e4
LT
4284EXPORT_SYMBOL(__get_free_pages);
4285
920c7a5d 4286unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 4287{
945a1113 4288 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 4289}
1da177e4
LT
4290EXPORT_SYMBOL(get_zeroed_page);
4291
920c7a5d 4292void __free_pages(struct page *page, unsigned int order)
1da177e4 4293{
b5810039 4294 if (put_page_testzero(page)) {
1da177e4 4295 if (order == 0)
b745bc85 4296 free_hot_cold_page(page, false);
1da177e4
LT
4297 else
4298 __free_pages_ok(page, order);
4299 }
4300}
4301
4302EXPORT_SYMBOL(__free_pages);
4303
920c7a5d 4304void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
4305{
4306 if (addr != 0) {
725d704e 4307 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
4308 __free_pages(virt_to_page((void *)addr), order);
4309 }
4310}
4311
4312EXPORT_SYMBOL(free_pages);
4313
b63ae8ca
AD
4314/*
4315 * Page Fragment:
4316 * An arbitrary-length arbitrary-offset area of memory which resides
4317 * within a 0 or higher order page. Multiple fragments within that page
4318 * are individually refcounted, in the page's reference counter.
4319 *
4320 * The page_frag functions below provide a simple allocation framework for
4321 * page fragments. This is used by the network stack and network device
4322 * drivers to provide a backing region of memory for use as either an
4323 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4324 */
2976db80
AD
4325static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4326 gfp_t gfp_mask)
b63ae8ca
AD
4327{
4328 struct page *page = NULL;
4329 gfp_t gfp = gfp_mask;
4330
4331#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4332 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4333 __GFP_NOMEMALLOC;
4334 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4335 PAGE_FRAG_CACHE_MAX_ORDER);
4336 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4337#endif
4338 if (unlikely(!page))
4339 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4340
4341 nc->va = page ? page_address(page) : NULL;
4342
4343 return page;
4344}
4345
2976db80 4346void __page_frag_cache_drain(struct page *page, unsigned int count)
44fdffd7
AD
4347{
4348 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4349
4350 if (page_ref_sub_and_test(page, count)) {
2976db80
AD
4351 unsigned int order = compound_order(page);
4352
44fdffd7
AD
4353 if (order == 0)
4354 free_hot_cold_page(page, false);
4355 else
4356 __free_pages_ok(page, order);
4357 }
4358}
2976db80 4359EXPORT_SYMBOL(__page_frag_cache_drain);
44fdffd7 4360
8c2dd3e4
AD
4361void *page_frag_alloc(struct page_frag_cache *nc,
4362 unsigned int fragsz, gfp_t gfp_mask)
b63ae8ca
AD
4363{
4364 unsigned int size = PAGE_SIZE;
4365 struct page *page;
4366 int offset;
4367
4368 if (unlikely(!nc->va)) {
4369refill:
2976db80 4370 page = __page_frag_cache_refill(nc, gfp_mask);
b63ae8ca
AD
4371 if (!page)
4372 return NULL;
4373
4374#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4375 /* if size can vary use size else just use PAGE_SIZE */
4376 size = nc->size;
4377#endif
4378 /* Even if we own the page, we do not use atomic_set().
4379 * This would break get_page_unless_zero() users.
4380 */
a9772096 4381 page_ref_add(page, size);
b63ae8ca
AD
4382
4383 /* reset page count bias and offset to start of new frag */
2f064f34 4384 nc->pfmemalloc = page_is_pfmemalloc(page);
a9772096 4385 nc->pagecnt_bias = size + 1;
b63ae8ca
AD
4386 nc->offset = size;
4387 }
4388
4389 offset = nc->offset - fragsz;
4390 if (unlikely(offset < 0)) {
4391 page = virt_to_page(nc->va);
4392
fe896d18 4393 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
b63ae8ca
AD
4394 goto refill;
4395
4396#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4397 /* if size can vary use size else just use PAGE_SIZE */
4398 size = nc->size;
4399#endif
4400 /* OK, page count is 0, we can safely set it */
a9772096 4401 set_page_count(page, size + 1);
b63ae8ca
AD
4402
4403 /* reset page count bias and offset to start of new frag */
a9772096 4404 nc->pagecnt_bias = size + 1;
b63ae8ca
AD
4405 offset = size - fragsz;
4406 }
4407
4408 nc->pagecnt_bias--;
4409 nc->offset = offset;
4410
4411 return nc->va + offset;
4412}
8c2dd3e4 4413EXPORT_SYMBOL(page_frag_alloc);
b63ae8ca
AD
4414
4415/*
4416 * Frees a page fragment allocated out of either a compound or order 0 page.
4417 */
8c2dd3e4 4418void page_frag_free(void *addr)
b63ae8ca
AD
4419{
4420 struct page *page = virt_to_head_page(addr);
4421
4422 if (unlikely(put_page_testzero(page)))
4423 __free_pages_ok(page, compound_order(page));
4424}
8c2dd3e4 4425EXPORT_SYMBOL(page_frag_free);
b63ae8ca 4426
d00181b9
KS
4427static void *make_alloc_exact(unsigned long addr, unsigned int order,
4428 size_t size)
ee85c2e1
AK
4429{
4430 if (addr) {
4431 unsigned long alloc_end = addr + (PAGE_SIZE << order);
4432 unsigned long used = addr + PAGE_ALIGN(size);
4433
4434 split_page(virt_to_page((void *)addr), order);
4435 while (used < alloc_end) {
4436 free_page(used);
4437 used += PAGE_SIZE;
4438 }
4439 }
4440 return (void *)addr;
4441}
4442
2be0ffe2
TT
4443/**
4444 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4445 * @size: the number of bytes to allocate
4446 * @gfp_mask: GFP flags for the allocation
4447 *
4448 * This function is similar to alloc_pages(), except that it allocates the
4449 * minimum number of pages to satisfy the request. alloc_pages() can only
4450 * allocate memory in power-of-two pages.
4451 *
4452 * This function is also limited by MAX_ORDER.
4453 *
4454 * Memory allocated by this function must be released by free_pages_exact().
4455 */
4456void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4457{
4458 unsigned int order = get_order(size);
4459 unsigned long addr;
4460
4461 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 4462 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
4463}
4464EXPORT_SYMBOL(alloc_pages_exact);
4465
ee85c2e1
AK
4466/**
4467 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4468 * pages on a node.
b5e6ab58 4469 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
4470 * @size: the number of bytes to allocate
4471 * @gfp_mask: GFP flags for the allocation
4472 *
4473 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4474 * back.
ee85c2e1 4475 */
e1931811 4476void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1 4477{
d00181b9 4478 unsigned int order = get_order(size);
ee85c2e1
AK
4479 struct page *p = alloc_pages_node(nid, gfp_mask, order);
4480 if (!p)
4481 return NULL;
4482 return make_alloc_exact((unsigned long)page_address(p), order, size);
4483}
ee85c2e1 4484
2be0ffe2
TT
4485/**
4486 * free_pages_exact - release memory allocated via alloc_pages_exact()
4487 * @virt: the value returned by alloc_pages_exact.
4488 * @size: size of allocation, same value as passed to alloc_pages_exact().
4489 *
4490 * Release the memory allocated by a previous call to alloc_pages_exact.
4491 */
4492void free_pages_exact(void *virt, size_t size)
4493{
4494 unsigned long addr = (unsigned long)virt;
4495 unsigned long end = addr + PAGE_ALIGN(size);
4496
4497 while (addr < end) {
4498 free_page(addr);
4499 addr += PAGE_SIZE;
4500 }
4501}
4502EXPORT_SYMBOL(free_pages_exact);
4503
e0fb5815
ZY
4504/**
4505 * nr_free_zone_pages - count number of pages beyond high watermark
4506 * @offset: The zone index of the highest zone
4507 *
4508 * nr_free_zone_pages() counts the number of counts pages which are beyond the
4509 * high watermark within all zones at or below a given zone index. For each
4510 * zone, the number of pages is calculated as:
0e056eb5
MCC
4511 *
4512 * nr_free_zone_pages = managed_pages - high_pages
e0fb5815 4513 */
ebec3862 4514static unsigned long nr_free_zone_pages(int offset)
1da177e4 4515{
dd1a239f 4516 struct zoneref *z;
54a6eb5c
MG
4517 struct zone *zone;
4518
e310fd43 4519 /* Just pick one node, since fallback list is circular */
ebec3862 4520 unsigned long sum = 0;
1da177e4 4521
0e88460d 4522 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 4523
54a6eb5c 4524 for_each_zone_zonelist(zone, z, zonelist, offset) {
b40da049 4525 unsigned long size = zone->managed_pages;
41858966 4526 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
4527 if (size > high)
4528 sum += size - high;
1da177e4
LT
4529 }
4530
4531 return sum;
4532}
4533
e0fb5815
ZY
4534/**
4535 * nr_free_buffer_pages - count number of pages beyond high watermark
4536 *
4537 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4538 * watermark within ZONE_DMA and ZONE_NORMAL.
1da177e4 4539 */
ebec3862 4540unsigned long nr_free_buffer_pages(void)
1da177e4 4541{
af4ca457 4542 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 4543}
c2f1a551 4544EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 4545
e0fb5815
ZY
4546/**
4547 * nr_free_pagecache_pages - count number of pages beyond high watermark
4548 *
4549 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4550 * high watermark within all zones.
1da177e4 4551 */
ebec3862 4552unsigned long nr_free_pagecache_pages(void)
1da177e4 4553{
2a1e274a 4554 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 4555}
08e0f6a9
CL
4556
4557static inline void show_node(struct zone *zone)
1da177e4 4558{
e5adfffc 4559 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 4560 printk("Node %d ", zone_to_nid(zone));
1da177e4 4561}
1da177e4 4562
d02bd27b
IR
4563long si_mem_available(void)
4564{
4565 long available;
4566 unsigned long pagecache;
4567 unsigned long wmark_low = 0;
4568 unsigned long pages[NR_LRU_LISTS];
4569 struct zone *zone;
4570 int lru;
4571
4572 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
2f95ff90 4573 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
d02bd27b
IR
4574
4575 for_each_zone(zone)
4576 wmark_low += zone->watermark[WMARK_LOW];
4577
4578 /*
4579 * Estimate the amount of memory available for userspace allocations,
4580 * without causing swapping.
4581 */
c41f012a 4582 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
d02bd27b
IR
4583
4584 /*
4585 * Not all the page cache can be freed, otherwise the system will
4586 * start swapping. Assume at least half of the page cache, or the
4587 * low watermark worth of cache, needs to stay.
4588 */
4589 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4590 pagecache -= min(pagecache / 2, wmark_low);
4591 available += pagecache;
4592
4593 /*
4594 * Part of the reclaimable slab consists of items that are in use,
4595 * and cannot be freed. Cap this estimate at the low watermark.
4596 */
d507e2eb
JW
4597 available += global_node_page_state(NR_SLAB_RECLAIMABLE) -
4598 min(global_node_page_state(NR_SLAB_RECLAIMABLE) / 2,
4599 wmark_low);
d02bd27b 4600
dc09a5b6
RG
4601 /*
4602 * Part of the kernel memory, which can be released under memory
4603 * pressure.
4604 */
4605 available += global_node_page_state(NR_INDIRECTLY_RECLAIMABLE_BYTES) >>
4606 PAGE_SHIFT;
4607
d02bd27b
IR
4608 if (available < 0)
4609 available = 0;
4610 return available;
4611}
4612EXPORT_SYMBOL_GPL(si_mem_available);
4613
1da177e4
LT
4614void si_meminfo(struct sysinfo *val)
4615{
4616 val->totalram = totalram_pages;
11fb9989 4617 val->sharedram = global_node_page_state(NR_SHMEM);
c41f012a 4618 val->freeram = global_zone_page_state(NR_FREE_PAGES);
1da177e4 4619 val->bufferram = nr_blockdev_pages();
1da177e4
LT
4620 val->totalhigh = totalhigh_pages;
4621 val->freehigh = nr_free_highpages();
1da177e4
LT
4622 val->mem_unit = PAGE_SIZE;
4623}
4624
4625EXPORT_SYMBOL(si_meminfo);
4626
4627#ifdef CONFIG_NUMA
4628void si_meminfo_node(struct sysinfo *val, int nid)
4629{
cdd91a77
JL
4630 int zone_type; /* needs to be signed */
4631 unsigned long managed_pages = 0;
fc2bd799
JK
4632 unsigned long managed_highpages = 0;
4633 unsigned long free_highpages = 0;
1da177e4
LT
4634 pg_data_t *pgdat = NODE_DATA(nid);
4635
cdd91a77
JL
4636 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4637 managed_pages += pgdat->node_zones[zone_type].managed_pages;
4638 val->totalram = managed_pages;
11fb9989 4639 val->sharedram = node_page_state(pgdat, NR_SHMEM);
75ef7184 4640 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 4641#ifdef CONFIG_HIGHMEM
fc2bd799
JK
4642 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4643 struct zone *zone = &pgdat->node_zones[zone_type];
4644
4645 if (is_highmem(zone)) {
4646 managed_highpages += zone->managed_pages;
4647 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4648 }
4649 }
4650 val->totalhigh = managed_highpages;
4651 val->freehigh = free_highpages;
98d2b0eb 4652#else
fc2bd799
JK
4653 val->totalhigh = managed_highpages;
4654 val->freehigh = free_highpages;
98d2b0eb 4655#endif
1da177e4
LT
4656 val->mem_unit = PAGE_SIZE;
4657}
4658#endif
4659
ddd588b5 4660/*
7bf02ea2
DR
4661 * Determine whether the node should be displayed or not, depending on whether
4662 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 4663 */
9af744d7 4664static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
ddd588b5 4665{
ddd588b5 4666 if (!(flags & SHOW_MEM_FILTER_NODES))
9af744d7 4667 return false;
ddd588b5 4668
9af744d7
MH
4669 /*
4670 * no node mask - aka implicit memory numa policy. Do not bother with
4671 * the synchronization - read_mems_allowed_begin - because we do not
4672 * have to be precise here.
4673 */
4674 if (!nodemask)
4675 nodemask = &cpuset_current_mems_allowed;
4676
4677 return !node_isset(nid, *nodemask);
ddd588b5
DR
4678}
4679
1da177e4
LT
4680#define K(x) ((x) << (PAGE_SHIFT-10))
4681
377e4f16
RV
4682static void show_migration_types(unsigned char type)
4683{
4684 static const char types[MIGRATE_TYPES] = {
4685 [MIGRATE_UNMOVABLE] = 'U',
377e4f16 4686 [MIGRATE_MOVABLE] = 'M',
475a2f90
VB
4687 [MIGRATE_RECLAIMABLE] = 'E',
4688 [MIGRATE_HIGHATOMIC] = 'H',
377e4f16
RV
4689#ifdef CONFIG_CMA
4690 [MIGRATE_CMA] = 'C',
4691#endif
194159fb 4692#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 4693 [MIGRATE_ISOLATE] = 'I',
194159fb 4694#endif
377e4f16
RV
4695 };
4696 char tmp[MIGRATE_TYPES + 1];
4697 char *p = tmp;
4698 int i;
4699
4700 for (i = 0; i < MIGRATE_TYPES; i++) {
4701 if (type & (1 << i))
4702 *p++ = types[i];
4703 }
4704
4705 *p = '\0';
1f84a18f 4706 printk(KERN_CONT "(%s) ", tmp);
377e4f16
RV
4707}
4708
1da177e4
LT
4709/*
4710 * Show free area list (used inside shift_scroll-lock stuff)
4711 * We also calculate the percentage fragmentation. We do this by counting the
4712 * memory on each free list with the exception of the first item on the list.
d1bfcdb8
KK
4713 *
4714 * Bits in @filter:
4715 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4716 * cpuset.
1da177e4 4717 */
9af744d7 4718void show_free_areas(unsigned int filter, nodemask_t *nodemask)
1da177e4 4719{
d1bfcdb8 4720 unsigned long free_pcp = 0;
c7241913 4721 int cpu;
1da177e4 4722 struct zone *zone;
599d0c95 4723 pg_data_t *pgdat;
1da177e4 4724
ee99c71c 4725 for_each_populated_zone(zone) {
9af744d7 4726 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 4727 continue;
d1bfcdb8 4728
761b0677
KK
4729 for_each_online_cpu(cpu)
4730 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
1da177e4
LT
4731 }
4732
a731286d
KM
4733 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4734 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
d1bfcdb8
KK
4735 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4736 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a 4737 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
d1bfcdb8 4738 " free:%lu free_pcp:%lu free_cma:%lu\n",
599d0c95
MG
4739 global_node_page_state(NR_ACTIVE_ANON),
4740 global_node_page_state(NR_INACTIVE_ANON),
4741 global_node_page_state(NR_ISOLATED_ANON),
4742 global_node_page_state(NR_ACTIVE_FILE),
4743 global_node_page_state(NR_INACTIVE_FILE),
4744 global_node_page_state(NR_ISOLATED_FILE),
4745 global_node_page_state(NR_UNEVICTABLE),
11fb9989
MG
4746 global_node_page_state(NR_FILE_DIRTY),
4747 global_node_page_state(NR_WRITEBACK),
4748 global_node_page_state(NR_UNSTABLE_NFS),
d507e2eb
JW
4749 global_node_page_state(NR_SLAB_RECLAIMABLE),
4750 global_node_page_state(NR_SLAB_UNRECLAIMABLE),
50658e2e 4751 global_node_page_state(NR_FILE_MAPPED),
11fb9989 4752 global_node_page_state(NR_SHMEM),
c41f012a
MH
4753 global_zone_page_state(NR_PAGETABLE),
4754 global_zone_page_state(NR_BOUNCE),
4755 global_zone_page_state(NR_FREE_PAGES),
d1bfcdb8 4756 free_pcp,
c41f012a 4757 global_zone_page_state(NR_FREE_CMA_PAGES));
1da177e4 4758
599d0c95 4759 for_each_online_pgdat(pgdat) {
9af744d7 4760 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
c02e50bb
MH
4761 continue;
4762
599d0c95
MG
4763 printk("Node %d"
4764 " active_anon:%lukB"
4765 " inactive_anon:%lukB"
4766 " active_file:%lukB"
4767 " inactive_file:%lukB"
4768 " unevictable:%lukB"
4769 " isolated(anon):%lukB"
4770 " isolated(file):%lukB"
50658e2e 4771 " mapped:%lukB"
11fb9989
MG
4772 " dirty:%lukB"
4773 " writeback:%lukB"
4774 " shmem:%lukB"
4775#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4776 " shmem_thp: %lukB"
4777 " shmem_pmdmapped: %lukB"
4778 " anon_thp: %lukB"
4779#endif
4780 " writeback_tmp:%lukB"
4781 " unstable:%lukB"
599d0c95
MG
4782 " all_unreclaimable? %s"
4783 "\n",
4784 pgdat->node_id,
4785 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
4786 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
4787 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
4788 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
4789 K(node_page_state(pgdat, NR_UNEVICTABLE)),
4790 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
4791 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
50658e2e 4792 K(node_page_state(pgdat, NR_FILE_MAPPED)),
11fb9989
MG
4793 K(node_page_state(pgdat, NR_FILE_DIRTY)),
4794 K(node_page_state(pgdat, NR_WRITEBACK)),
1f06b81a 4795 K(node_page_state(pgdat, NR_SHMEM)),
11fb9989
MG
4796#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4797 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
4798 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
4799 * HPAGE_PMD_NR),
4800 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
4801#endif
11fb9989
MG
4802 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
4803 K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
c73322d0
JW
4804 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
4805 "yes" : "no");
599d0c95
MG
4806 }
4807
ee99c71c 4808 for_each_populated_zone(zone) {
1da177e4
LT
4809 int i;
4810
9af744d7 4811 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 4812 continue;
d1bfcdb8
KK
4813
4814 free_pcp = 0;
4815 for_each_online_cpu(cpu)
4816 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4817
1da177e4 4818 show_node(zone);
1f84a18f
JP
4819 printk(KERN_CONT
4820 "%s"
1da177e4
LT
4821 " free:%lukB"
4822 " min:%lukB"
4823 " low:%lukB"
4824 " high:%lukB"
71c799f4
MK
4825 " active_anon:%lukB"
4826 " inactive_anon:%lukB"
4827 " active_file:%lukB"
4828 " inactive_file:%lukB"
4829 " unevictable:%lukB"
5a1c84b4 4830 " writepending:%lukB"
1da177e4 4831 " present:%lukB"
9feedc9d 4832 " managed:%lukB"
4a0aa73f 4833 " mlocked:%lukB"
c6a7f572 4834 " kernel_stack:%lukB"
4a0aa73f 4835 " pagetables:%lukB"
4a0aa73f 4836 " bounce:%lukB"
d1bfcdb8
KK
4837 " free_pcp:%lukB"
4838 " local_pcp:%ukB"
d1ce749a 4839 " free_cma:%lukB"
1da177e4
LT
4840 "\n",
4841 zone->name,
88f5acf8 4842 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
4843 K(min_wmark_pages(zone)),
4844 K(low_wmark_pages(zone)),
4845 K(high_wmark_pages(zone)),
71c799f4
MK
4846 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
4847 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
4848 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
4849 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
4850 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5a1c84b4 4851 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
1da177e4 4852 K(zone->present_pages),
9feedc9d 4853 K(zone->managed_pages),
4a0aa73f 4854 K(zone_page_state(zone, NR_MLOCK)),
d30dd8be 4855 zone_page_state(zone, NR_KERNEL_STACK_KB),
4a0aa73f 4856 K(zone_page_state(zone, NR_PAGETABLE)),
4a0aa73f 4857 K(zone_page_state(zone, NR_BOUNCE)),
d1bfcdb8
KK
4858 K(free_pcp),
4859 K(this_cpu_read(zone->pageset->pcp.count)),
33e077bd 4860 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
1da177e4
LT
4861 printk("lowmem_reserve[]:");
4862 for (i = 0; i < MAX_NR_ZONES; i++)
1f84a18f
JP
4863 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
4864 printk(KERN_CONT "\n");
1da177e4
LT
4865 }
4866
ee99c71c 4867 for_each_populated_zone(zone) {
d00181b9
KS
4868 unsigned int order;
4869 unsigned long nr[MAX_ORDER], flags, total = 0;
377e4f16 4870 unsigned char types[MAX_ORDER];
1da177e4 4871
9af744d7 4872 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
ddd588b5 4873 continue;
1da177e4 4874 show_node(zone);
1f84a18f 4875 printk(KERN_CONT "%s: ", zone->name);
1da177e4
LT
4876
4877 spin_lock_irqsave(&zone->lock, flags);
4878 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
4879 struct free_area *area = &zone->free_area[order];
4880 int type;
4881
4882 nr[order] = area->nr_free;
8f9de51a 4883 total += nr[order] << order;
377e4f16
RV
4884
4885 types[order] = 0;
4886 for (type = 0; type < MIGRATE_TYPES; type++) {
4887 if (!list_empty(&area->free_list[type]))
4888 types[order] |= 1 << type;
4889 }
1da177e4
LT
4890 }
4891 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 4892 for (order = 0; order < MAX_ORDER; order++) {
1f84a18f
JP
4893 printk(KERN_CONT "%lu*%lukB ",
4894 nr[order], K(1UL) << order);
377e4f16
RV
4895 if (nr[order])
4896 show_migration_types(types[order]);
4897 }
1f84a18f 4898 printk(KERN_CONT "= %lukB\n", K(total));
1da177e4
LT
4899 }
4900
949f7ec5
DR
4901 hugetlb_show_meminfo();
4902
11fb9989 4903 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
e6f3602d 4904
1da177e4
LT
4905 show_swap_cache_info();
4906}
4907
19770b32
MG
4908static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4909{
4910 zoneref->zone = zone;
4911 zoneref->zone_idx = zone_idx(zone);
4912}
4913
1da177e4
LT
4914/*
4915 * Builds allocation fallback zone lists.
1a93205b
CL
4916 *
4917 * Add all populated zones of a node to the zonelist.
1da177e4 4918 */
9d3be21b 4919static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
1da177e4 4920{
1a93205b 4921 struct zone *zone;
bc732f1d 4922 enum zone_type zone_type = MAX_NR_ZONES;
9d3be21b 4923 int nr_zones = 0;
02a68a5e
CL
4924
4925 do {
2f6726e5 4926 zone_type--;
070f8032 4927 zone = pgdat->node_zones + zone_type;
6aa303de 4928 if (managed_zone(zone)) {
9d3be21b 4929 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
070f8032 4930 check_highest_zone(zone_type);
1da177e4 4931 }
2f6726e5 4932 } while (zone_type);
bc732f1d 4933
070f8032 4934 return nr_zones;
1da177e4
LT
4935}
4936
4937#ifdef CONFIG_NUMA
f0c0b2b8
KH
4938
4939static int __parse_numa_zonelist_order(char *s)
4940{
c9bff3ee
MH
4941 /*
4942 * We used to support different zonlists modes but they turned
4943 * out to be just not useful. Let's keep the warning in place
4944 * if somebody still use the cmd line parameter so that we do
4945 * not fail it silently
4946 */
4947 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
4948 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
f0c0b2b8
KH
4949 return -EINVAL;
4950 }
4951 return 0;
4952}
4953
4954static __init int setup_numa_zonelist_order(char *s)
4955{
ecb256f8
VL
4956 if (!s)
4957 return 0;
4958
c9bff3ee 4959 return __parse_numa_zonelist_order(s);
f0c0b2b8
KH
4960}
4961early_param("numa_zonelist_order", setup_numa_zonelist_order);
4962
c9bff3ee
MH
4963char numa_zonelist_order[] = "Node";
4964
f0c0b2b8
KH
4965/*
4966 * sysctl handler for numa_zonelist_order
4967 */
cccad5b9 4968int numa_zonelist_order_handler(struct ctl_table *table, int write,
8d65af78 4969 void __user *buffer, size_t *length,
f0c0b2b8
KH
4970 loff_t *ppos)
4971{
c9bff3ee 4972 char *str;
f0c0b2b8
KH
4973 int ret;
4974
c9bff3ee
MH
4975 if (!write)
4976 return proc_dostring(table, write, buffer, length, ppos);
4977 str = memdup_user_nul(buffer, 16);
4978 if (IS_ERR(str))
4979 return PTR_ERR(str);
dacbde09 4980
c9bff3ee
MH
4981 ret = __parse_numa_zonelist_order(str);
4982 kfree(str);
443c6f14 4983 return ret;
f0c0b2b8
KH
4984}
4985
4986
62bc62a8 4987#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
4988static int node_load[MAX_NUMNODES];
4989
1da177e4 4990/**
4dc3b16b 4991 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
4992 * @node: node whose fallback list we're appending
4993 * @used_node_mask: nodemask_t of already used nodes
4994 *
4995 * We use a number of factors to determine which is the next node that should
4996 * appear on a given node's fallback list. The node should not have appeared
4997 * already in @node's fallback list, and it should be the next closest node
4998 * according to the distance array (which contains arbitrary distance values
4999 * from each node to each node in the system), and should also prefer nodes
5000 * with no CPUs, since presumably they'll have very little allocation pressure
5001 * on them otherwise.
5002 * It returns -1 if no node is found.
5003 */
f0c0b2b8 5004static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 5005{
4cf808eb 5006 int n, val;
1da177e4 5007 int min_val = INT_MAX;
00ef2d2f 5008 int best_node = NUMA_NO_NODE;
a70f7302 5009 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 5010
4cf808eb
LT
5011 /* Use the local node if we haven't already */
5012 if (!node_isset(node, *used_node_mask)) {
5013 node_set(node, *used_node_mask);
5014 return node;
5015 }
1da177e4 5016
4b0ef1fe 5017 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
5018
5019 /* Don't want a node to appear more than once */
5020 if (node_isset(n, *used_node_mask))
5021 continue;
5022
1da177e4
LT
5023 /* Use the distance array to find the distance */
5024 val = node_distance(node, n);
5025
4cf808eb
LT
5026 /* Penalize nodes under us ("prefer the next node") */
5027 val += (n < node);
5028
1da177e4 5029 /* Give preference to headless and unused nodes */
a70f7302
RR
5030 tmp = cpumask_of_node(n);
5031 if (!cpumask_empty(tmp))
1da177e4
LT
5032 val += PENALTY_FOR_NODE_WITH_CPUS;
5033
5034 /* Slight preference for less loaded node */
5035 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5036 val += node_load[n];
5037
5038 if (val < min_val) {
5039 min_val = val;
5040 best_node = n;
5041 }
5042 }
5043
5044 if (best_node >= 0)
5045 node_set(best_node, *used_node_mask);
5046
5047 return best_node;
5048}
5049
f0c0b2b8
KH
5050
5051/*
5052 * Build zonelists ordered by node and zones within node.
5053 * This results in maximum locality--normal zone overflows into local
5054 * DMA zone, if any--but risks exhausting DMA zone.
5055 */
9d3be21b
MH
5056static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5057 unsigned nr_nodes)
1da177e4 5058{
9d3be21b
MH
5059 struct zoneref *zonerefs;
5060 int i;
5061
5062 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5063
5064 for (i = 0; i < nr_nodes; i++) {
5065 int nr_zones;
5066
5067 pg_data_t *node = NODE_DATA(node_order[i]);
f0c0b2b8 5068
9d3be21b
MH
5069 nr_zones = build_zonerefs_node(node, zonerefs);
5070 zonerefs += nr_zones;
5071 }
5072 zonerefs->zone = NULL;
5073 zonerefs->zone_idx = 0;
f0c0b2b8
KH
5074}
5075
523b9458
CL
5076/*
5077 * Build gfp_thisnode zonelists
5078 */
5079static void build_thisnode_zonelists(pg_data_t *pgdat)
5080{
9d3be21b
MH
5081 struct zoneref *zonerefs;
5082 int nr_zones;
523b9458 5083
9d3be21b
MH
5084 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5085 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5086 zonerefs += nr_zones;
5087 zonerefs->zone = NULL;
5088 zonerefs->zone_idx = 0;
523b9458
CL
5089}
5090
f0c0b2b8
KH
5091/*
5092 * Build zonelists ordered by zone and nodes within zones.
5093 * This results in conserving DMA zone[s] until all Normal memory is
5094 * exhausted, but results in overflowing to remote node while memory
5095 * may still exist in local DMA zone.
5096 */
f0c0b2b8 5097
f0c0b2b8
KH
5098static void build_zonelists(pg_data_t *pgdat)
5099{
9d3be21b
MH
5100 static int node_order[MAX_NUMNODES];
5101 int node, load, nr_nodes = 0;
1da177e4 5102 nodemask_t used_mask;
f0c0b2b8 5103 int local_node, prev_node;
1da177e4
LT
5104
5105 /* NUMA-aware ordering of nodes */
5106 local_node = pgdat->node_id;
62bc62a8 5107 load = nr_online_nodes;
1da177e4
LT
5108 prev_node = local_node;
5109 nodes_clear(used_mask);
f0c0b2b8 5110
f0c0b2b8 5111 memset(node_order, 0, sizeof(node_order));
1da177e4
LT
5112 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5113 /*
5114 * We don't want to pressure a particular node.
5115 * So adding penalty to the first node in same
5116 * distance group to make it round-robin.
5117 */
957f822a
DR
5118 if (node_distance(local_node, node) !=
5119 node_distance(local_node, prev_node))
f0c0b2b8
KH
5120 node_load[node] = load;
5121
9d3be21b 5122 node_order[nr_nodes++] = node;
1da177e4
LT
5123 prev_node = node;
5124 load--;
1da177e4 5125 }
523b9458 5126
9d3be21b 5127 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
523b9458 5128 build_thisnode_zonelists(pgdat);
1da177e4
LT
5129}
5130
7aac7898
LS
5131#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5132/*
5133 * Return node id of node used for "local" allocations.
5134 * I.e., first node id of first zone in arg node's generic zonelist.
5135 * Used for initializing percpu 'numa_mem', which is used primarily
5136 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5137 */
5138int local_memory_node(int node)
5139{
c33d6c06 5140 struct zoneref *z;
7aac7898 5141
c33d6c06 5142 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
7aac7898 5143 gfp_zone(GFP_KERNEL),
c33d6c06
MG
5144 NULL);
5145 return z->zone->node;
7aac7898
LS
5146}
5147#endif
f0c0b2b8 5148
6423aa81
JK
5149static void setup_min_unmapped_ratio(void);
5150static void setup_min_slab_ratio(void);
1da177e4
LT
5151#else /* CONFIG_NUMA */
5152
f0c0b2b8 5153static void build_zonelists(pg_data_t *pgdat)
1da177e4 5154{
19655d34 5155 int node, local_node;
9d3be21b
MH
5156 struct zoneref *zonerefs;
5157 int nr_zones;
1da177e4
LT
5158
5159 local_node = pgdat->node_id;
1da177e4 5160
9d3be21b
MH
5161 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5162 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5163 zonerefs += nr_zones;
1da177e4 5164
54a6eb5c
MG
5165 /*
5166 * Now we build the zonelist so that it contains the zones
5167 * of all the other nodes.
5168 * We don't want to pressure a particular node, so when
5169 * building the zones for node N, we make sure that the
5170 * zones coming right after the local ones are those from
5171 * node N+1 (modulo N)
5172 */
5173 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5174 if (!node_online(node))
5175 continue;
9d3be21b
MH
5176 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5177 zonerefs += nr_zones;
1da177e4 5178 }
54a6eb5c
MG
5179 for (node = 0; node < local_node; node++) {
5180 if (!node_online(node))
5181 continue;
9d3be21b
MH
5182 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5183 zonerefs += nr_zones;
54a6eb5c
MG
5184 }
5185
9d3be21b
MH
5186 zonerefs->zone = NULL;
5187 zonerefs->zone_idx = 0;
1da177e4
LT
5188}
5189
5190#endif /* CONFIG_NUMA */
5191
99dcc3e5
CL
5192/*
5193 * Boot pageset table. One per cpu which is going to be used for all
5194 * zones and all nodes. The parameters will be set in such a way
5195 * that an item put on a list will immediately be handed over to
5196 * the buddy list. This is safe since pageset manipulation is done
5197 * with interrupts disabled.
5198 *
5199 * The boot_pagesets must be kept even after bootup is complete for
5200 * unused processors and/or zones. They do play a role for bootstrapping
5201 * hotplugged processors.
5202 *
5203 * zoneinfo_show() and maybe other functions do
5204 * not check if the processor is online before following the pageset pointer.
5205 * Other parts of the kernel may not check if the zone is available.
5206 */
5207static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5208static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
385386cf 5209static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
99dcc3e5 5210
11cd8638 5211static void __build_all_zonelists(void *data)
1da177e4 5212{
6811378e 5213 int nid;
afb6ebb3 5214 int __maybe_unused cpu;
9adb62a5 5215 pg_data_t *self = data;
b93e0f32
MH
5216 static DEFINE_SPINLOCK(lock);
5217
5218 spin_lock(&lock);
9276b1bc 5219
7f9cfb31
BL
5220#ifdef CONFIG_NUMA
5221 memset(node_load, 0, sizeof(node_load));
5222#endif
9adb62a5 5223
c1152583
WY
5224 /*
5225 * This node is hotadded and no memory is yet present. So just
5226 * building zonelists is fine - no need to touch other nodes.
5227 */
9adb62a5
JL
5228 if (self && !node_online(self->node_id)) {
5229 build_zonelists(self);
c1152583
WY
5230 } else {
5231 for_each_online_node(nid) {
5232 pg_data_t *pgdat = NODE_DATA(nid);
7ea1530a 5233
c1152583
WY
5234 build_zonelists(pgdat);
5235 }
99dcc3e5 5236
7aac7898
LS
5237#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5238 /*
5239 * We now know the "local memory node" for each node--
5240 * i.e., the node of the first zone in the generic zonelist.
5241 * Set up numa_mem percpu variable for on-line cpus. During
5242 * boot, only the boot cpu should be on-line; we'll init the
5243 * secondary cpus' numa_mem as they come on-line. During
5244 * node/memory hotplug, we'll fixup all on-line cpus.
5245 */
d9c9a0b9 5246 for_each_online_cpu(cpu)
7aac7898 5247 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
afb6ebb3 5248#endif
d9c9a0b9 5249 }
b93e0f32
MH
5250
5251 spin_unlock(&lock);
6811378e
YG
5252}
5253
061f67bc
RV
5254static noinline void __init
5255build_all_zonelists_init(void)
5256{
afb6ebb3
MH
5257 int cpu;
5258
061f67bc 5259 __build_all_zonelists(NULL);
afb6ebb3
MH
5260
5261 /*
5262 * Initialize the boot_pagesets that are going to be used
5263 * for bootstrapping processors. The real pagesets for
5264 * each zone will be allocated later when the per cpu
5265 * allocator is available.
5266 *
5267 * boot_pagesets are used also for bootstrapping offline
5268 * cpus if the system is already booted because the pagesets
5269 * are needed to initialize allocators on a specific cpu too.
5270 * F.e. the percpu allocator needs the page allocator which
5271 * needs the percpu allocator in order to allocate its pagesets
5272 * (a chicken-egg dilemma).
5273 */
5274 for_each_possible_cpu(cpu)
5275 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5276
061f67bc
RV
5277 mminit_verify_zonelist();
5278 cpuset_init_current_mems_allowed();
5279}
5280
4eaf3f64 5281/*
4eaf3f64 5282 * unless system_state == SYSTEM_BOOTING.
061f67bc 5283 *
72675e13 5284 * __ref due to call of __init annotated helper build_all_zonelists_init
061f67bc 5285 * [protected by SYSTEM_BOOTING].
4eaf3f64 5286 */
72675e13 5287void __ref build_all_zonelists(pg_data_t *pgdat)
6811378e
YG
5288{
5289 if (system_state == SYSTEM_BOOTING) {
061f67bc 5290 build_all_zonelists_init();
6811378e 5291 } else {
11cd8638 5292 __build_all_zonelists(pgdat);
6811378e
YG
5293 /* cpuset refresh routine should be here */
5294 }
bd1e22b8 5295 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
5296 /*
5297 * Disable grouping by mobility if the number of pages in the
5298 * system is too low to allow the mechanism to work. It would be
5299 * more accurate, but expensive to check per-zone. This check is
5300 * made on memory-hotadd so a system can start with mobility
5301 * disabled and enable it later
5302 */
d9c23400 5303 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
5304 page_group_by_mobility_disabled = 1;
5305 else
5306 page_group_by_mobility_disabled = 0;
5307
c9bff3ee 5308 pr_info("Built %i zonelists, mobility grouping %s. Total pages: %ld\n",
756a025f 5309 nr_online_nodes,
756a025f
JP
5310 page_group_by_mobility_disabled ? "off" : "on",
5311 vm_total_pages);
f0c0b2b8 5312#ifdef CONFIG_NUMA
f88dfff5 5313 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 5314#endif
1da177e4
LT
5315}
5316
1da177e4
LT
5317/*
5318 * Initially all pages are reserved - free ones are freed
5319 * up by free_all_bootmem() once the early boot process is
5320 * done. Non-atomic initialization, single-pass.
5321 */
c09b4240 5322void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 5323 unsigned long start_pfn, enum memmap_context context)
1da177e4 5324{
4b94ffdc 5325 struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
29751f69 5326 unsigned long end_pfn = start_pfn + size;
4b94ffdc 5327 pg_data_t *pgdat = NODE_DATA(nid);
29751f69 5328 unsigned long pfn;
3a80a7fa 5329 unsigned long nr_initialised = 0;
342332e6
TI
5330#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5331 struct memblock_region *r = NULL, *tmp;
5332#endif
1da177e4 5333
22b31eec
HD
5334 if (highest_memmap_pfn < end_pfn - 1)
5335 highest_memmap_pfn = end_pfn - 1;
5336
4b94ffdc
DW
5337 /*
5338 * Honor reservation requested by the driver for this ZONE_DEVICE
5339 * memory
5340 */
5341 if (altmap && start_pfn == altmap->base_pfn)
5342 start_pfn += altmap->reserve;
5343
cbe8dd4a 5344 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02 5345 /*
b72d0ffb
AM
5346 * There can be holes in boot-time mem_map[]s handed to this
5347 * function. They do not exist on hotplugged memory.
a2f3aa02 5348 */
b72d0ffb
AM
5349 if (context != MEMMAP_EARLY)
5350 goto not_early;
5351
99b6ead4 5352 if (!early_pfn_valid(pfn))
b72d0ffb
AM
5353 continue;
5354 if (!early_pfn_in_nid(pfn, nid))
5355 continue;
5356 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
5357 break;
342332e6
TI
5358
5359#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
b72d0ffb
AM
5360 /*
5361 * Check given memblock attribute by firmware which can affect
5362 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
5363 * mirrored, it's an overlapped memmap init. skip it.
5364 */
5365 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5366 if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
5367 for_each_memblock(memory, tmp)
5368 if (pfn < memblock_region_memory_end_pfn(tmp))
5369 break;
5370 r = tmp;
5371 }
5372 if (pfn >= memblock_region_memory_base_pfn(r) &&
5373 memblock_is_mirror(r)) {
5374 /* already initialized as NORMAL */
5375 pfn = memblock_region_memory_end_pfn(r);
5376 continue;
342332e6 5377 }
a2f3aa02 5378 }
b72d0ffb 5379#endif
ac5d2539 5380
b72d0ffb 5381not_early:
ac5d2539
MG
5382 /*
5383 * Mark the block movable so that blocks are reserved for
5384 * movable at startup. This will force kernel allocations
5385 * to reserve their blocks rather than leaking throughout
5386 * the address space during boot when many long-lived
974a786e 5387 * kernel allocations are made.
ac5d2539
MG
5388 *
5389 * bitmap is created for zone's valid pfn range. but memmap
5390 * can be created for invalid pages (for alignment)
5391 * check here not to call set_pageblock_migratetype() against
5392 * pfn out of zone.
5393 */
5394 if (!(pfn & (pageblock_nr_pages - 1))) {
5395 struct page *page = pfn_to_page(pfn);
5396
5397 __init_single_page(page, pfn, zone, nid);
5398 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
9b6e63cb 5399 cond_resched();
ac5d2539
MG
5400 } else {
5401 __init_single_pfn(pfn, zone, nid);
5402 }
1da177e4
LT
5403 }
5404}
5405
1e548deb 5406static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 5407{
7aeb09f9 5408 unsigned int order, t;
b2a0ac88
MG
5409 for_each_migratetype_order(order, t) {
5410 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
5411 zone->free_area[order].nr_free = 0;
5412 }
5413}
5414
5415#ifndef __HAVE_ARCH_MEMMAP_INIT
5416#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 5417 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
5418#endif
5419
7cd2b0a3 5420static int zone_batchsize(struct zone *zone)
e7c8d5c9 5421{
3a6be87f 5422#ifdef CONFIG_MMU
e7c8d5c9
CL
5423 int batch;
5424
5425 /*
5426 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 5427 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
5428 *
5429 * OK, so we don't know how big the cache is. So guess.
5430 */
b40da049 5431 batch = zone->managed_pages / 1024;
ba56e91c
SR
5432 if (batch * PAGE_SIZE > 512 * 1024)
5433 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
5434 batch /= 4; /* We effectively *= 4 below */
5435 if (batch < 1)
5436 batch = 1;
5437
5438 /*
0ceaacc9
NP
5439 * Clamp the batch to a 2^n - 1 value. Having a power
5440 * of 2 value was found to be more likely to have
5441 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 5442 *
0ceaacc9
NP
5443 * For example if 2 tasks are alternately allocating
5444 * batches of pages, one task can end up with a lot
5445 * of pages of one half of the possible page colors
5446 * and the other with pages of the other colors.
e7c8d5c9 5447 */
9155203a 5448 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 5449
e7c8d5c9 5450 return batch;
3a6be87f
DH
5451
5452#else
5453 /* The deferral and batching of frees should be suppressed under NOMMU
5454 * conditions.
5455 *
5456 * The problem is that NOMMU needs to be able to allocate large chunks
5457 * of contiguous memory as there's no hardware page translation to
5458 * assemble apparent contiguous memory from discontiguous pages.
5459 *
5460 * Queueing large contiguous runs of pages for batching, however,
5461 * causes the pages to actually be freed in smaller chunks. As there
5462 * can be a significant delay between the individual batches being
5463 * recycled, this leads to the once large chunks of space being
5464 * fragmented and becoming unavailable for high-order allocations.
5465 */
5466 return 0;
5467#endif
e7c8d5c9
CL
5468}
5469
8d7a8fa9
CS
5470/*
5471 * pcp->high and pcp->batch values are related and dependent on one another:
5472 * ->batch must never be higher then ->high.
5473 * The following function updates them in a safe manner without read side
5474 * locking.
5475 *
5476 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5477 * those fields changing asynchronously (acording the the above rule).
5478 *
5479 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5480 * outside of boot time (or some other assurance that no concurrent updaters
5481 * exist).
5482 */
5483static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5484 unsigned long batch)
5485{
5486 /* start with a fail safe value for batch */
5487 pcp->batch = 1;
5488 smp_wmb();
5489
5490 /* Update high, then batch, in order */
5491 pcp->high = high;
5492 smp_wmb();
5493
5494 pcp->batch = batch;
5495}
5496
3664033c 5497/* a companion to pageset_set_high() */
4008bab7
CS
5498static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5499{
8d7a8fa9 5500 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
5501}
5502
88c90dbc 5503static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
5504{
5505 struct per_cpu_pages *pcp;
5f8dcc21 5506 int migratetype;
2caaad41 5507
1c6fe946
MD
5508 memset(p, 0, sizeof(*p));
5509
3dfa5721 5510 pcp = &p->pcp;
2caaad41 5511 pcp->count = 0;
5f8dcc21
MG
5512 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5513 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
5514}
5515
88c90dbc
CS
5516static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5517{
5518 pageset_init(p);
5519 pageset_set_batch(p, batch);
5520}
5521
8ad4b1fb 5522/*
3664033c 5523 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
8ad4b1fb
RS
5524 * to the value high for the pageset p.
5525 */
3664033c 5526static void pageset_set_high(struct per_cpu_pageset *p,
8ad4b1fb
RS
5527 unsigned long high)
5528{
8d7a8fa9
CS
5529 unsigned long batch = max(1UL, high / 4);
5530 if ((high / 4) > (PAGE_SHIFT * 8))
5531 batch = PAGE_SHIFT * 8;
8ad4b1fb 5532
8d7a8fa9 5533 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
5534}
5535
7cd2b0a3
DR
5536static void pageset_set_high_and_batch(struct zone *zone,
5537 struct per_cpu_pageset *pcp)
56cef2b8 5538{
56cef2b8 5539 if (percpu_pagelist_fraction)
3664033c 5540 pageset_set_high(pcp,
56cef2b8
CS
5541 (zone->managed_pages /
5542 percpu_pagelist_fraction));
5543 else
5544 pageset_set_batch(pcp, zone_batchsize(zone));
5545}
5546
169f6c19
CS
5547static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5548{
5549 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5550
5551 pageset_init(pcp);
5552 pageset_set_high_and_batch(zone, pcp);
5553}
5554
72675e13 5555void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
5556{
5557 int cpu;
319774e2 5558 zone->pageset = alloc_percpu(struct per_cpu_pageset);
56cef2b8
CS
5559 for_each_possible_cpu(cpu)
5560 zone_pageset_init(zone, cpu);
319774e2
WF
5561}
5562
2caaad41 5563/*
99dcc3e5
CL
5564 * Allocate per cpu pagesets and initialize them.
5565 * Before this call only boot pagesets were available.
e7c8d5c9 5566 */
99dcc3e5 5567void __init setup_per_cpu_pageset(void)
e7c8d5c9 5568{
b4911ea2 5569 struct pglist_data *pgdat;
99dcc3e5 5570 struct zone *zone;
e7c8d5c9 5571
319774e2
WF
5572 for_each_populated_zone(zone)
5573 setup_zone_pageset(zone);
b4911ea2
MG
5574
5575 for_each_online_pgdat(pgdat)
5576 pgdat->per_cpu_nodestats =
5577 alloc_percpu(struct per_cpu_nodestat);
e7c8d5c9
CL
5578}
5579
c09b4240 5580static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 5581{
99dcc3e5
CL
5582 /*
5583 * per cpu subsystem is not up at this point. The following code
5584 * relies on the ability of the linker to provide the
5585 * offset of a (static) per cpu variable into the per cpu area.
5586 */
5587 zone->pageset = &boot_pageset;
ed8ece2e 5588
b38a8725 5589 if (populated_zone(zone))
99dcc3e5
CL
5590 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
5591 zone->name, zone->present_pages,
5592 zone_batchsize(zone));
ed8ece2e
DH
5593}
5594
dc0bbf3b 5595void __meminit init_currently_empty_zone(struct zone *zone,
718127cc 5596 unsigned long zone_start_pfn,
b171e409 5597 unsigned long size)
ed8ece2e
DH
5598{
5599 struct pglist_data *pgdat = zone->zone_pgdat;
c7aafad0 5600 int zone_idx = zone_idx(zone) + 1;
9dcb8b68 5601
c7aafad0
WY
5602 if (zone_idx > pgdat->nr_zones)
5603 pgdat->nr_zones = zone_idx;
ed8ece2e 5604
ed8ece2e
DH
5605 zone->zone_start_pfn = zone_start_pfn;
5606
708614e6
MG
5607 mminit_dprintk(MMINIT_TRACE, "memmap_init",
5608 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5609 pgdat->node_id,
5610 (unsigned long)zone_idx(zone),
5611 zone_start_pfn, (zone_start_pfn + size));
5612
1e548deb 5613 zone_init_free_lists(zone);
9dcb8b68 5614 zone->initialized = 1;
ed8ece2e
DH
5615}
5616
0ee332c1 5617#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 5618#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
8a942fde 5619
c713216d
MG
5620/*
5621 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
c713216d 5622 */
8a942fde
MG
5623int __meminit __early_pfn_to_nid(unsigned long pfn,
5624 struct mminit_pfnnid_cache *state)
c713216d 5625{
c13291a5 5626 unsigned long start_pfn, end_pfn;
e76b63f8 5627 int nid;
7c243c71 5628
8a942fde
MG
5629 if (state->last_start <= pfn && pfn < state->last_end)
5630 return state->last_nid;
c713216d 5631
e76b63f8
YL
5632 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5633 if (nid != -1) {
8a942fde
MG
5634 state->last_start = start_pfn;
5635 state->last_end = end_pfn;
5636 state->last_nid = nid;
e76b63f8
YL
5637 }
5638
5639 return nid;
c713216d
MG
5640}
5641#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5642
c713216d 5643/**
6782832e 5644 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
88ca3b94 5645 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6782832e 5646 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
c713216d 5647 *
7d018176
ZZ
5648 * If an architecture guarantees that all ranges registered contain no holes
5649 * and may be freed, this this function may be used instead of calling
5650 * memblock_free_early_nid() manually.
c713216d 5651 */
c13291a5 5652void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 5653{
c13291a5
TH
5654 unsigned long start_pfn, end_pfn;
5655 int i, this_nid;
edbe7d23 5656
c13291a5
TH
5657 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5658 start_pfn = min(start_pfn, max_low_pfn);
5659 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 5660
c13291a5 5661 if (start_pfn < end_pfn)
6782832e
SS
5662 memblock_free_early_nid(PFN_PHYS(start_pfn),
5663 (end_pfn - start_pfn) << PAGE_SHIFT,
5664 this_nid);
edbe7d23 5665 }
edbe7d23 5666}
edbe7d23 5667
c713216d
MG
5668/**
5669 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 5670 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d 5671 *
7d018176
ZZ
5672 * If an architecture guarantees that all ranges registered contain no holes and may
5673 * be freed, this function may be used instead of calling memory_present() manually.
c713216d
MG
5674 */
5675void __init sparse_memory_present_with_active_regions(int nid)
5676{
c13291a5
TH
5677 unsigned long start_pfn, end_pfn;
5678 int i, this_nid;
c713216d 5679
c13291a5
TH
5680 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5681 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
5682}
5683
5684/**
5685 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
5686 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5687 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5688 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
5689 *
5690 * It returns the start and end page frame of a node based on information
7d018176 5691 * provided by memblock_set_node(). If called for a node
c713216d 5692 * with no available memory, a warning is printed and the start and end
88ca3b94 5693 * PFNs will be 0.
c713216d 5694 */
a3142c8e 5695void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
5696 unsigned long *start_pfn, unsigned long *end_pfn)
5697{
c13291a5 5698 unsigned long this_start_pfn, this_end_pfn;
c713216d 5699 int i;
c13291a5 5700
c713216d
MG
5701 *start_pfn = -1UL;
5702 *end_pfn = 0;
5703
c13291a5
TH
5704 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5705 *start_pfn = min(*start_pfn, this_start_pfn);
5706 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
5707 }
5708
633c0666 5709 if (*start_pfn == -1UL)
c713216d 5710 *start_pfn = 0;
c713216d
MG
5711}
5712
2a1e274a
MG
5713/*
5714 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5715 * assumption is made that zones within a node are ordered in monotonic
5716 * increasing memory addresses so that the "highest" populated zone is used
5717 */
b69a7288 5718static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
5719{
5720 int zone_index;
5721 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5722 if (zone_index == ZONE_MOVABLE)
5723 continue;
5724
5725 if (arch_zone_highest_possible_pfn[zone_index] >
5726 arch_zone_lowest_possible_pfn[zone_index])
5727 break;
5728 }
5729
5730 VM_BUG_ON(zone_index == -1);
5731 movable_zone = zone_index;
5732}
5733
5734/*
5735 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 5736 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
5737 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5738 * in each node depending on the size of each node and how evenly kernelcore
5739 * is distributed. This helper function adjusts the zone ranges
5740 * provided by the architecture for a given node by using the end of the
5741 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5742 * zones within a node are in order of monotonic increases memory addresses
5743 */
b69a7288 5744static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
5745 unsigned long zone_type,
5746 unsigned long node_start_pfn,
5747 unsigned long node_end_pfn,
5748 unsigned long *zone_start_pfn,
5749 unsigned long *zone_end_pfn)
5750{
5751 /* Only adjust if ZONE_MOVABLE is on this node */
5752 if (zone_movable_pfn[nid]) {
5753 /* Size ZONE_MOVABLE */
5754 if (zone_type == ZONE_MOVABLE) {
5755 *zone_start_pfn = zone_movable_pfn[nid];
5756 *zone_end_pfn = min(node_end_pfn,
5757 arch_zone_highest_possible_pfn[movable_zone]);
5758
e506b996
XQ
5759 /* Adjust for ZONE_MOVABLE starting within this range */
5760 } else if (!mirrored_kernelcore &&
5761 *zone_start_pfn < zone_movable_pfn[nid] &&
5762 *zone_end_pfn > zone_movable_pfn[nid]) {
5763 *zone_end_pfn = zone_movable_pfn[nid];
5764
2a1e274a
MG
5765 /* Check if this whole range is within ZONE_MOVABLE */
5766 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5767 *zone_start_pfn = *zone_end_pfn;
5768 }
5769}
5770
c713216d
MG
5771/*
5772 * Return the number of pages a zone spans in a node, including holes
5773 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5774 */
6ea6e688 5775static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5776 unsigned long zone_type,
7960aedd
ZY
5777 unsigned long node_start_pfn,
5778 unsigned long node_end_pfn,
d91749c1
TI
5779 unsigned long *zone_start_pfn,
5780 unsigned long *zone_end_pfn,
c713216d
MG
5781 unsigned long *ignored)
5782{
b5685e92 5783 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
5784 if (!node_start_pfn && !node_end_pfn)
5785 return 0;
5786
7960aedd 5787 /* Get the start and end of the zone */
d91749c1
TI
5788 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5789 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
5790 adjust_zone_range_for_zone_movable(nid, zone_type,
5791 node_start_pfn, node_end_pfn,
d91749c1 5792 zone_start_pfn, zone_end_pfn);
c713216d
MG
5793
5794 /* Check that this node has pages within the zone's required range */
d91749c1 5795 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
c713216d
MG
5796 return 0;
5797
5798 /* Move the zone boundaries inside the node if necessary */
d91749c1
TI
5799 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5800 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
c713216d
MG
5801
5802 /* Return the spanned pages */
d91749c1 5803 return *zone_end_pfn - *zone_start_pfn;
c713216d
MG
5804}
5805
5806/*
5807 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 5808 * then all holes in the requested range will be accounted for.
c713216d 5809 */
32996250 5810unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
5811 unsigned long range_start_pfn,
5812 unsigned long range_end_pfn)
5813{
96e907d1
TH
5814 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5815 unsigned long start_pfn, end_pfn;
5816 int i;
c713216d 5817
96e907d1
TH
5818 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5819 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5820 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5821 nr_absent -= end_pfn - start_pfn;
c713216d 5822 }
96e907d1 5823 return nr_absent;
c713216d
MG
5824}
5825
5826/**
5827 * absent_pages_in_range - Return number of page frames in holes within a range
5828 * @start_pfn: The start PFN to start searching for holes
5829 * @end_pfn: The end PFN to stop searching for holes
5830 *
88ca3b94 5831 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
5832 */
5833unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5834 unsigned long end_pfn)
5835{
5836 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5837}
5838
5839/* Return the number of page frames in holes in a zone on a node */
6ea6e688 5840static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5841 unsigned long zone_type,
7960aedd
ZY
5842 unsigned long node_start_pfn,
5843 unsigned long node_end_pfn,
c713216d
MG
5844 unsigned long *ignored)
5845{
96e907d1
TH
5846 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5847 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687 5848 unsigned long zone_start_pfn, zone_end_pfn;
342332e6 5849 unsigned long nr_absent;
9c7cd687 5850
b5685e92 5851 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
5852 if (!node_start_pfn && !node_end_pfn)
5853 return 0;
5854
96e907d1
TH
5855 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5856 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 5857
2a1e274a
MG
5858 adjust_zone_range_for_zone_movable(nid, zone_type,
5859 node_start_pfn, node_end_pfn,
5860 &zone_start_pfn, &zone_end_pfn);
342332e6
TI
5861 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5862
5863 /*
5864 * ZONE_MOVABLE handling.
5865 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5866 * and vice versa.
5867 */
e506b996
XQ
5868 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
5869 unsigned long start_pfn, end_pfn;
5870 struct memblock_region *r;
5871
5872 for_each_memblock(memory, r) {
5873 start_pfn = clamp(memblock_region_memory_base_pfn(r),
5874 zone_start_pfn, zone_end_pfn);
5875 end_pfn = clamp(memblock_region_memory_end_pfn(r),
5876 zone_start_pfn, zone_end_pfn);
5877
5878 if (zone_type == ZONE_MOVABLE &&
5879 memblock_is_mirror(r))
5880 nr_absent += end_pfn - start_pfn;
5881
5882 if (zone_type == ZONE_NORMAL &&
5883 !memblock_is_mirror(r))
5884 nr_absent += end_pfn - start_pfn;
342332e6
TI
5885 }
5886 }
5887
5888 return nr_absent;
c713216d 5889}
0e0b864e 5890
0ee332c1 5891#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 5892static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5893 unsigned long zone_type,
7960aedd
ZY
5894 unsigned long node_start_pfn,
5895 unsigned long node_end_pfn,
d91749c1
TI
5896 unsigned long *zone_start_pfn,
5897 unsigned long *zone_end_pfn,
c713216d
MG
5898 unsigned long *zones_size)
5899{
d91749c1
TI
5900 unsigned int zone;
5901
5902 *zone_start_pfn = node_start_pfn;
5903 for (zone = 0; zone < zone_type; zone++)
5904 *zone_start_pfn += zones_size[zone];
5905
5906 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5907
c713216d
MG
5908 return zones_size[zone_type];
5909}
5910
6ea6e688 5911static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5912 unsigned long zone_type,
7960aedd
ZY
5913 unsigned long node_start_pfn,
5914 unsigned long node_end_pfn,
c713216d
MG
5915 unsigned long *zholes_size)
5916{
5917 if (!zholes_size)
5918 return 0;
5919
5920 return zholes_size[zone_type];
5921}
20e6926d 5922
0ee332c1 5923#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5924
a3142c8e 5925static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd
ZY
5926 unsigned long node_start_pfn,
5927 unsigned long node_end_pfn,
5928 unsigned long *zones_size,
5929 unsigned long *zholes_size)
c713216d 5930{
febd5949 5931 unsigned long realtotalpages = 0, totalpages = 0;
c713216d
MG
5932 enum zone_type i;
5933
febd5949
GZ
5934 for (i = 0; i < MAX_NR_ZONES; i++) {
5935 struct zone *zone = pgdat->node_zones + i;
d91749c1 5936 unsigned long zone_start_pfn, zone_end_pfn;
febd5949 5937 unsigned long size, real_size;
c713216d 5938
febd5949
GZ
5939 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5940 node_start_pfn,
5941 node_end_pfn,
d91749c1
TI
5942 &zone_start_pfn,
5943 &zone_end_pfn,
febd5949
GZ
5944 zones_size);
5945 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
5946 node_start_pfn, node_end_pfn,
5947 zholes_size);
d91749c1
TI
5948 if (size)
5949 zone->zone_start_pfn = zone_start_pfn;
5950 else
5951 zone->zone_start_pfn = 0;
febd5949
GZ
5952 zone->spanned_pages = size;
5953 zone->present_pages = real_size;
5954
5955 totalpages += size;
5956 realtotalpages += real_size;
5957 }
5958
5959 pgdat->node_spanned_pages = totalpages;
c713216d
MG
5960 pgdat->node_present_pages = realtotalpages;
5961 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5962 realtotalpages);
5963}
5964
835c134e
MG
5965#ifndef CONFIG_SPARSEMEM
5966/*
5967 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
5968 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5969 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
5970 * round what is now in bits to nearest long in bits, then return it in
5971 * bytes.
5972 */
7c45512d 5973static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
5974{
5975 unsigned long usemapsize;
5976
7c45512d 5977 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
5978 usemapsize = roundup(zonesize, pageblock_nr_pages);
5979 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
5980 usemapsize *= NR_PAGEBLOCK_BITS;
5981 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5982
5983 return usemapsize / 8;
5984}
5985
5986static void __init setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
5987 struct zone *zone,
5988 unsigned long zone_start_pfn,
5989 unsigned long zonesize)
835c134e 5990{
7c45512d 5991 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 5992 zone->pageblock_flags = NULL;
58a01a45 5993 if (usemapsize)
6782832e
SS
5994 zone->pageblock_flags =
5995 memblock_virt_alloc_node_nopanic(usemapsize,
5996 pgdat->node_id);
835c134e
MG
5997}
5998#else
7c45512d
LT
5999static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
6000 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
6001#endif /* CONFIG_SPARSEMEM */
6002
d9c23400 6003#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 6004
d9c23400 6005/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
15ca220e 6006void __paginginit set_pageblock_order(void)
d9c23400 6007{
955c1cd7
AM
6008 unsigned int order;
6009
d9c23400
MG
6010 /* Check that pageblock_nr_pages has not already been setup */
6011 if (pageblock_order)
6012 return;
6013
955c1cd7
AM
6014 if (HPAGE_SHIFT > PAGE_SHIFT)
6015 order = HUGETLB_PAGE_ORDER;
6016 else
6017 order = MAX_ORDER - 1;
6018
d9c23400
MG
6019 /*
6020 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
6021 * This value may be variable depending on boot parameters on IA64 and
6022 * powerpc.
d9c23400
MG
6023 */
6024 pageblock_order = order;
6025}
6026#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6027
ba72cb8c
MG
6028/*
6029 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
6030 * is unused as pageblock_order is set at compile-time. See
6031 * include/linux/pageblock-flags.h for the values of pageblock_order based on
6032 * the kernel config
ba72cb8c 6033 */
15ca220e 6034void __paginginit set_pageblock_order(void)
ba72cb8c 6035{
ba72cb8c 6036}
d9c23400
MG
6037
6038#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6039
01cefaef
JL
6040static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
6041 unsigned long present_pages)
6042{
6043 unsigned long pages = spanned_pages;
6044
6045 /*
6046 * Provide a more accurate estimation if there are holes within
6047 * the zone and SPARSEMEM is in use. If there are holes within the
6048 * zone, each populated memory region may cost us one or two extra
6049 * memmap pages due to alignment because memmap pages for each
89d790ab 6050 * populated regions may not be naturally aligned on page boundary.
01cefaef
JL
6051 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6052 */
6053 if (spanned_pages > present_pages + (present_pages >> 4) &&
6054 IS_ENABLED(CONFIG_SPARSEMEM))
6055 pages = present_pages;
6056
6057 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6058}
6059
1da177e4
LT
6060/*
6061 * Set up the zone data structures:
6062 * - mark all pages reserved
6063 * - mark all memory queues empty
6064 * - clear the memory bitmaps
6527af5d
MK
6065 *
6066 * NOTE: pgdat should get zeroed by caller.
1da177e4 6067 */
7f3eb55b 6068static void __paginginit free_area_init_core(struct pglist_data *pgdat)
1da177e4 6069{
2f1b6248 6070 enum zone_type j;
ed8ece2e 6071 int nid = pgdat->node_id;
1da177e4 6072
208d54e5 6073 pgdat_resize_init(pgdat);
8177a420
AA
6074#ifdef CONFIG_NUMA_BALANCING
6075 spin_lock_init(&pgdat->numabalancing_migrate_lock);
6076 pgdat->numabalancing_migrate_nr_pages = 0;
6077 pgdat->numabalancing_migrate_next_window = jiffies;
a3d0a918
KS
6078#endif
6079#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6080 spin_lock_init(&pgdat->split_queue_lock);
6081 INIT_LIST_HEAD(&pgdat->split_queue);
6082 pgdat->split_queue_len = 0;
8177a420 6083#endif
1da177e4 6084 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 6085 init_waitqueue_head(&pgdat->pfmemalloc_wait);
698b1b30
VB
6086#ifdef CONFIG_COMPACTION
6087 init_waitqueue_head(&pgdat->kcompactd_wait);
6088#endif
eefa864b 6089 pgdat_page_ext_init(pgdat);
a52633d8 6090 spin_lock_init(&pgdat->lru_lock);
a9dd0a83 6091 lruvec_init(node_lruvec(pgdat));
5f63b720 6092
385386cf
JW
6093 pgdat->per_cpu_nodestats = &boot_nodestats;
6094
1da177e4
LT
6095 for (j = 0; j < MAX_NR_ZONES; j++) {
6096 struct zone *zone = pgdat->node_zones + j;
9feedc9d 6097 unsigned long size, realsize, freesize, memmap_pages;
d91749c1 6098 unsigned long zone_start_pfn = zone->zone_start_pfn;
1da177e4 6099
febd5949
GZ
6100 size = zone->spanned_pages;
6101 realsize = freesize = zone->present_pages;
1da177e4 6102
0e0b864e 6103 /*
9feedc9d 6104 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
6105 * is used by this zone for memmap. This affects the watermark
6106 * and per-cpu initialisations
6107 */
01cefaef 6108 memmap_pages = calc_memmap_size(size, realsize);
ba914f48
ZH
6109 if (!is_highmem_idx(j)) {
6110 if (freesize >= memmap_pages) {
6111 freesize -= memmap_pages;
6112 if (memmap_pages)
6113 printk(KERN_DEBUG
6114 " %s zone: %lu pages used for memmap\n",
6115 zone_names[j], memmap_pages);
6116 } else
1170532b 6117 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
ba914f48
ZH
6118 zone_names[j], memmap_pages, freesize);
6119 }
0e0b864e 6120
6267276f 6121 /* Account for reserved pages */
9feedc9d
JL
6122 if (j == 0 && freesize > dma_reserve) {
6123 freesize -= dma_reserve;
d903ef9f 6124 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 6125 zone_names[0], dma_reserve);
0e0b864e
MG
6126 }
6127
98d2b0eb 6128 if (!is_highmem_idx(j))
9feedc9d 6129 nr_kernel_pages += freesize;
01cefaef
JL
6130 /* Charge for highmem memmap if there are enough kernel pages */
6131 else if (nr_kernel_pages > memmap_pages * 2)
6132 nr_kernel_pages -= memmap_pages;
9feedc9d 6133 nr_all_pages += freesize;
1da177e4 6134
9feedc9d
JL
6135 /*
6136 * Set an approximate value for lowmem here, it will be adjusted
6137 * when the bootmem allocator frees pages into the buddy system.
6138 * And all highmem pages will be managed by the buddy system.
6139 */
6140 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
9614634f 6141#ifdef CONFIG_NUMA
d5f541ed 6142 zone->node = nid;
9614634f 6143#endif
1da177e4 6144 zone->name = zone_names[j];
a52633d8 6145 zone->zone_pgdat = pgdat;
1da177e4 6146 spin_lock_init(&zone->lock);
bdc8cb98 6147 zone_seqlock_init(zone);
ed8ece2e 6148 zone_pcp_init(zone);
81c0a2bb 6149
1da177e4
LT
6150 if (!size)
6151 continue;
6152
955c1cd7 6153 set_pageblock_order();
7c45512d 6154 setup_usemap(pgdat, zone, zone_start_pfn, size);
dc0bbf3b 6155 init_currently_empty_zone(zone, zone_start_pfn, size);
76cdd58e 6156 memmap_init(size, nid, j, zone_start_pfn);
1da177e4
LT
6157 }
6158}
6159
bd721ea7 6160static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 6161{
b0aeba74 6162 unsigned long __maybe_unused start = 0;
a1c34a3b
LA
6163 unsigned long __maybe_unused offset = 0;
6164
1da177e4
LT
6165 /* Skip empty nodes */
6166 if (!pgdat->node_spanned_pages)
6167 return;
6168
d41dee36 6169#ifdef CONFIG_FLAT_NODE_MEM_MAP
b0aeba74
TL
6170 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6171 offset = pgdat->node_start_pfn - start;
1da177e4
LT
6172 /* ia64 gets its own node_mem_map, before this, without bootmem */
6173 if (!pgdat->node_mem_map) {
b0aeba74 6174 unsigned long size, end;
d41dee36
AW
6175 struct page *map;
6176
e984bb43
BP
6177 /*
6178 * The zone's endpoints aren't required to be MAX_ORDER
6179 * aligned but the node_mem_map endpoints must be in order
6180 * for the buddy allocator to function correctly.
6181 */
108bcc96 6182 end = pgdat_end_pfn(pgdat);
e984bb43
BP
6183 end = ALIGN(end, MAX_ORDER_NR_PAGES);
6184 size = (end - start) * sizeof(struct page);
6f167ec7
DH
6185 map = alloc_remap(pgdat->node_id, size);
6186 if (!map)
6782832e
SS
6187 map = memblock_virt_alloc_node_nopanic(size,
6188 pgdat->node_id);
a1c34a3b 6189 pgdat->node_mem_map = map + offset;
1da177e4 6190 }
12d810c1 6191#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
6192 /*
6193 * With no DISCONTIG, the global mem_map is just set as node 0's
6194 */
c713216d 6195 if (pgdat == NODE_DATA(0)) {
1da177e4 6196 mem_map = NODE_DATA(0)->node_mem_map;
a1c34a3b 6197#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
c713216d 6198 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
a1c34a3b 6199 mem_map -= offset;
0ee332c1 6200#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 6201 }
1da177e4 6202#endif
d41dee36 6203#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
6204}
6205
9109fb7b
JW
6206void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
6207 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 6208{
9109fb7b 6209 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
6210 unsigned long start_pfn = 0;
6211 unsigned long end_pfn = 0;
9109fb7b 6212
88fdf75d 6213 /* pg_data_t should be reset to zero when it's allocated */
38087d9b 6214 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
88fdf75d 6215
1da177e4
LT
6216 pgdat->node_id = nid;
6217 pgdat->node_start_pfn = node_start_pfn;
75ef7184 6218 pgdat->per_cpu_nodestats = NULL;
7960aedd
ZY
6219#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6220 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8d29e18a 6221 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
4ada0c5a
ZL
6222 (u64)start_pfn << PAGE_SHIFT,
6223 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
d91749c1
TI
6224#else
6225 start_pfn = node_start_pfn;
7960aedd
ZY
6226#endif
6227 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6228 zones_size, zholes_size);
1da177e4
LT
6229
6230 alloc_node_mem_map(pgdat);
e8c27ac9
YL
6231#ifdef CONFIG_FLAT_NODE_MEM_MAP
6232 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
6233 nid, (unsigned long)pgdat,
6234 (unsigned long)pgdat->node_mem_map);
6235#endif
1da177e4 6236
864b9a39 6237 reset_deferred_meminit(pgdat);
7f3eb55b 6238 free_area_init_core(pgdat);
1da177e4
LT
6239}
6240
0ee332c1 6241#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
6242
6243#if MAX_NUMNODES > 1
6244/*
6245 * Figure out the number of possible node ids.
6246 */
f9872caf 6247void __init setup_nr_node_ids(void)
418508c1 6248{
904a9553 6249 unsigned int highest;
418508c1 6250
904a9553 6251 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
418508c1
MS
6252 nr_node_ids = highest + 1;
6253}
418508c1
MS
6254#endif
6255
1e01979c
TH
6256/**
6257 * node_map_pfn_alignment - determine the maximum internode alignment
6258 *
6259 * This function should be called after node map is populated and sorted.
6260 * It calculates the maximum power of two alignment which can distinguish
6261 * all the nodes.
6262 *
6263 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6264 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
6265 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
6266 * shifted, 1GiB is enough and this function will indicate so.
6267 *
6268 * This is used to test whether pfn -> nid mapping of the chosen memory
6269 * model has fine enough granularity to avoid incorrect mapping for the
6270 * populated node map.
6271 *
6272 * Returns the determined alignment in pfn's. 0 if there is no alignment
6273 * requirement (single node).
6274 */
6275unsigned long __init node_map_pfn_alignment(void)
6276{
6277 unsigned long accl_mask = 0, last_end = 0;
c13291a5 6278 unsigned long start, end, mask;
1e01979c 6279 int last_nid = -1;
c13291a5 6280 int i, nid;
1e01979c 6281
c13291a5 6282 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
6283 if (!start || last_nid < 0 || last_nid == nid) {
6284 last_nid = nid;
6285 last_end = end;
6286 continue;
6287 }
6288
6289 /*
6290 * Start with a mask granular enough to pin-point to the
6291 * start pfn and tick off bits one-by-one until it becomes
6292 * too coarse to separate the current node from the last.
6293 */
6294 mask = ~((1 << __ffs(start)) - 1);
6295 while (mask && last_end <= (start & (mask << 1)))
6296 mask <<= 1;
6297
6298 /* accumulate all internode masks */
6299 accl_mask |= mask;
6300 }
6301
6302 /* convert mask to number of pages */
6303 return ~accl_mask + 1;
6304}
6305
a6af2bc3 6306/* Find the lowest pfn for a node */
b69a7288 6307static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 6308{
a6af2bc3 6309 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
6310 unsigned long start_pfn;
6311 int i;
1abbfb41 6312
c13291a5
TH
6313 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6314 min_pfn = min(min_pfn, start_pfn);
c713216d 6315
a6af2bc3 6316 if (min_pfn == ULONG_MAX) {
1170532b 6317 pr_warn("Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
6318 return 0;
6319 }
6320
6321 return min_pfn;
c713216d
MG
6322}
6323
6324/**
6325 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6326 *
6327 * It returns the minimum PFN based on information provided via
7d018176 6328 * memblock_set_node().
c713216d
MG
6329 */
6330unsigned long __init find_min_pfn_with_active_regions(void)
6331{
6332 return find_min_pfn_for_node(MAX_NUMNODES);
6333}
6334
37b07e41
LS
6335/*
6336 * early_calculate_totalpages()
6337 * Sum pages in active regions for movable zone.
4b0ef1fe 6338 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 6339 */
484f51f8 6340static unsigned long __init early_calculate_totalpages(void)
7e63efef 6341{
7e63efef 6342 unsigned long totalpages = 0;
c13291a5
TH
6343 unsigned long start_pfn, end_pfn;
6344 int i, nid;
6345
6346 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6347 unsigned long pages = end_pfn - start_pfn;
7e63efef 6348
37b07e41
LS
6349 totalpages += pages;
6350 if (pages)
4b0ef1fe 6351 node_set_state(nid, N_MEMORY);
37b07e41 6352 }
b8af2941 6353 return totalpages;
7e63efef
MG
6354}
6355
2a1e274a
MG
6356/*
6357 * Find the PFN the Movable zone begins in each node. Kernel memory
6358 * is spread evenly between nodes as long as the nodes have enough
6359 * memory. When they don't, some nodes will have more kernelcore than
6360 * others
6361 */
b224ef85 6362static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
6363{
6364 int i, nid;
6365 unsigned long usable_startpfn;
6366 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 6367 /* save the state before borrow the nodemask */
4b0ef1fe 6368 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 6369 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 6370 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 6371 struct memblock_region *r;
b2f3eebe
TC
6372
6373 /* Need to find movable_zone earlier when movable_node is specified. */
6374 find_usable_zone_for_movable();
6375
6376 /*
6377 * If movable_node is specified, ignore kernelcore and movablecore
6378 * options.
6379 */
6380 if (movable_node_is_enabled()) {
136199f0
EM
6381 for_each_memblock(memory, r) {
6382 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
6383 continue;
6384
136199f0 6385 nid = r->nid;
b2f3eebe 6386
136199f0 6387 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
6388 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6389 min(usable_startpfn, zone_movable_pfn[nid]) :
6390 usable_startpfn;
6391 }
6392
6393 goto out2;
6394 }
2a1e274a 6395
342332e6
TI
6396 /*
6397 * If kernelcore=mirror is specified, ignore movablecore option
6398 */
6399 if (mirrored_kernelcore) {
6400 bool mem_below_4gb_not_mirrored = false;
6401
6402 for_each_memblock(memory, r) {
6403 if (memblock_is_mirror(r))
6404 continue;
6405
6406 nid = r->nid;
6407
6408 usable_startpfn = memblock_region_memory_base_pfn(r);
6409
6410 if (usable_startpfn < 0x100000) {
6411 mem_below_4gb_not_mirrored = true;
6412 continue;
6413 }
6414
6415 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6416 min(usable_startpfn, zone_movable_pfn[nid]) :
6417 usable_startpfn;
6418 }
6419
6420 if (mem_below_4gb_not_mirrored)
6421 pr_warn("This configuration results in unmirrored kernel memory.");
6422
6423 goto out2;
6424 }
6425
7e63efef 6426 /*
b2f3eebe 6427 * If movablecore=nn[KMG] was specified, calculate what size of
7e63efef
MG
6428 * kernelcore that corresponds so that memory usable for
6429 * any allocation type is evenly spread. If both kernelcore
6430 * and movablecore are specified, then the value of kernelcore
6431 * will be used for required_kernelcore if it's greater than
6432 * what movablecore would have allowed.
6433 */
6434 if (required_movablecore) {
7e63efef
MG
6435 unsigned long corepages;
6436
6437 /*
6438 * Round-up so that ZONE_MOVABLE is at least as large as what
6439 * was requested by the user
6440 */
6441 required_movablecore =
6442 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
9fd745d4 6443 required_movablecore = min(totalpages, required_movablecore);
7e63efef
MG
6444 corepages = totalpages - required_movablecore;
6445
6446 required_kernelcore = max(required_kernelcore, corepages);
6447 }
6448
bde304bd
XQ
6449 /*
6450 * If kernelcore was not specified or kernelcore size is larger
6451 * than totalpages, there is no ZONE_MOVABLE.
6452 */
6453 if (!required_kernelcore || required_kernelcore >= totalpages)
66918dcd 6454 goto out;
2a1e274a
MG
6455
6456 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
6457 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6458
6459restart:
6460 /* Spread kernelcore memory as evenly as possible throughout nodes */
6461 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 6462 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
6463 unsigned long start_pfn, end_pfn;
6464
2a1e274a
MG
6465 /*
6466 * Recalculate kernelcore_node if the division per node
6467 * now exceeds what is necessary to satisfy the requested
6468 * amount of memory for the kernel
6469 */
6470 if (required_kernelcore < kernelcore_node)
6471 kernelcore_node = required_kernelcore / usable_nodes;
6472
6473 /*
6474 * As the map is walked, we track how much memory is usable
6475 * by the kernel using kernelcore_remaining. When it is
6476 * 0, the rest of the node is usable by ZONE_MOVABLE
6477 */
6478 kernelcore_remaining = kernelcore_node;
6479
6480 /* Go through each range of PFNs within this node */
c13291a5 6481 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
6482 unsigned long size_pages;
6483
c13291a5 6484 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
6485 if (start_pfn >= end_pfn)
6486 continue;
6487
6488 /* Account for what is only usable for kernelcore */
6489 if (start_pfn < usable_startpfn) {
6490 unsigned long kernel_pages;
6491 kernel_pages = min(end_pfn, usable_startpfn)
6492 - start_pfn;
6493
6494 kernelcore_remaining -= min(kernel_pages,
6495 kernelcore_remaining);
6496 required_kernelcore -= min(kernel_pages,
6497 required_kernelcore);
6498
6499 /* Continue if range is now fully accounted */
6500 if (end_pfn <= usable_startpfn) {
6501
6502 /*
6503 * Push zone_movable_pfn to the end so
6504 * that if we have to rebalance
6505 * kernelcore across nodes, we will
6506 * not double account here
6507 */
6508 zone_movable_pfn[nid] = end_pfn;
6509 continue;
6510 }
6511 start_pfn = usable_startpfn;
6512 }
6513
6514 /*
6515 * The usable PFN range for ZONE_MOVABLE is from
6516 * start_pfn->end_pfn. Calculate size_pages as the
6517 * number of pages used as kernelcore
6518 */
6519 size_pages = end_pfn - start_pfn;
6520 if (size_pages > kernelcore_remaining)
6521 size_pages = kernelcore_remaining;
6522 zone_movable_pfn[nid] = start_pfn + size_pages;
6523
6524 /*
6525 * Some kernelcore has been met, update counts and
6526 * break if the kernelcore for this node has been
b8af2941 6527 * satisfied
2a1e274a
MG
6528 */
6529 required_kernelcore -= min(required_kernelcore,
6530 size_pages);
6531 kernelcore_remaining -= size_pages;
6532 if (!kernelcore_remaining)
6533 break;
6534 }
6535 }
6536
6537 /*
6538 * If there is still required_kernelcore, we do another pass with one
6539 * less node in the count. This will push zone_movable_pfn[nid] further
6540 * along on the nodes that still have memory until kernelcore is
b8af2941 6541 * satisfied
2a1e274a
MG
6542 */
6543 usable_nodes--;
6544 if (usable_nodes && required_kernelcore > usable_nodes)
6545 goto restart;
6546
b2f3eebe 6547out2:
2a1e274a
MG
6548 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6549 for (nid = 0; nid < MAX_NUMNODES; nid++)
6550 zone_movable_pfn[nid] =
6551 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 6552
20e6926d 6553out:
66918dcd 6554 /* restore the node_state */
4b0ef1fe 6555 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
6556}
6557
4b0ef1fe
LJ
6558/* Any regular or high memory on that node ? */
6559static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 6560{
37b07e41
LS
6561 enum zone_type zone_type;
6562
4b0ef1fe
LJ
6563 if (N_MEMORY == N_NORMAL_MEMORY)
6564 return;
6565
6566 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 6567 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 6568 if (populated_zone(zone)) {
4b0ef1fe
LJ
6569 node_set_state(nid, N_HIGH_MEMORY);
6570 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6571 zone_type <= ZONE_NORMAL)
6572 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
6573 break;
6574 }
37b07e41 6575 }
37b07e41
LS
6576}
6577
c713216d
MG
6578/**
6579 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 6580 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
6581 *
6582 * This will call free_area_init_node() for each active node in the system.
7d018176 6583 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
6584 * zone in each node and their holes is calculated. If the maximum PFN
6585 * between two adjacent zones match, it is assumed that the zone is empty.
6586 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6587 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6588 * starts where the previous one ended. For example, ZONE_DMA32 starts
6589 * at arch_max_dma_pfn.
6590 */
6591void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6592{
c13291a5
TH
6593 unsigned long start_pfn, end_pfn;
6594 int i, nid;
a6af2bc3 6595
c713216d
MG
6596 /* Record where the zone boundaries are */
6597 memset(arch_zone_lowest_possible_pfn, 0,
6598 sizeof(arch_zone_lowest_possible_pfn));
6599 memset(arch_zone_highest_possible_pfn, 0,
6600 sizeof(arch_zone_highest_possible_pfn));
90cae1fe
OH
6601
6602 start_pfn = find_min_pfn_with_active_regions();
6603
6604 for (i = 0; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
6605 if (i == ZONE_MOVABLE)
6606 continue;
90cae1fe
OH
6607
6608 end_pfn = max(max_zone_pfn[i], start_pfn);
6609 arch_zone_lowest_possible_pfn[i] = start_pfn;
6610 arch_zone_highest_possible_pfn[i] = end_pfn;
6611
6612 start_pfn = end_pfn;
c713216d 6613 }
2a1e274a
MG
6614
6615 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6616 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 6617 find_zone_movable_pfns_for_nodes();
c713216d 6618
c713216d 6619 /* Print out the zone ranges */
f88dfff5 6620 pr_info("Zone ranges:\n");
2a1e274a
MG
6621 for (i = 0; i < MAX_NR_ZONES; i++) {
6622 if (i == ZONE_MOVABLE)
6623 continue;
f88dfff5 6624 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
6625 if (arch_zone_lowest_possible_pfn[i] ==
6626 arch_zone_highest_possible_pfn[i])
f88dfff5 6627 pr_cont("empty\n");
72f0ba02 6628 else
8d29e18a
JG
6629 pr_cont("[mem %#018Lx-%#018Lx]\n",
6630 (u64)arch_zone_lowest_possible_pfn[i]
6631 << PAGE_SHIFT,
6632 ((u64)arch_zone_highest_possible_pfn[i]
a62e2f4f 6633 << PAGE_SHIFT) - 1);
2a1e274a
MG
6634 }
6635
6636 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 6637 pr_info("Movable zone start for each node\n");
2a1e274a
MG
6638 for (i = 0; i < MAX_NUMNODES; i++) {
6639 if (zone_movable_pfn[i])
8d29e18a
JG
6640 pr_info(" Node %d: %#018Lx\n", i,
6641 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 6642 }
c713216d 6643
f2d52fe5 6644 /* Print out the early node map */
f88dfff5 6645 pr_info("Early memory node ranges\n");
c13291a5 6646 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
8d29e18a
JG
6647 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6648 (u64)start_pfn << PAGE_SHIFT,
6649 ((u64)end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
6650
6651 /* Initialise every node */
708614e6 6652 mminit_verify_pageflags_layout();
8ef82866 6653 setup_nr_node_ids();
c713216d
MG
6654 for_each_online_node(nid) {
6655 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 6656 free_area_init_node(nid, NULL,
c713216d 6657 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
6658
6659 /* Any memory on that node */
6660 if (pgdat->node_present_pages)
4b0ef1fe
LJ
6661 node_set_state(nid, N_MEMORY);
6662 check_for_memory(pgdat, nid);
c713216d
MG
6663 }
6664}
2a1e274a 6665
7e63efef 6666static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
6667{
6668 unsigned long long coremem;
6669 if (!p)
6670 return -EINVAL;
6671
6672 coremem = memparse(p, &p);
7e63efef 6673 *core = coremem >> PAGE_SHIFT;
2a1e274a 6674
7e63efef 6675 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
6676 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6677
6678 return 0;
6679}
ed7ed365 6680
7e63efef
MG
6681/*
6682 * kernelcore=size sets the amount of memory for use for allocations that
6683 * cannot be reclaimed or migrated.
6684 */
6685static int __init cmdline_parse_kernelcore(char *p)
6686{
342332e6
TI
6687 /* parse kernelcore=mirror */
6688 if (parse_option_str(p, "mirror")) {
6689 mirrored_kernelcore = true;
6690 return 0;
6691 }
6692
7e63efef
MG
6693 return cmdline_parse_core(p, &required_kernelcore);
6694}
6695
6696/*
6697 * movablecore=size sets the amount of memory for use for allocations that
6698 * can be reclaimed or migrated.
6699 */
6700static int __init cmdline_parse_movablecore(char *p)
6701{
6702 return cmdline_parse_core(p, &required_movablecore);
6703}
6704
ed7ed365 6705early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 6706early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 6707
0ee332c1 6708#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 6709
c3d5f5f0
JL
6710void adjust_managed_page_count(struct page *page, long count)
6711{
6712 spin_lock(&managed_page_count_lock);
6713 page_zone(page)->managed_pages += count;
6714 totalram_pages += count;
3dcc0571
JL
6715#ifdef CONFIG_HIGHMEM
6716 if (PageHighMem(page))
6717 totalhigh_pages += count;
6718#endif
c3d5f5f0
JL
6719 spin_unlock(&managed_page_count_lock);
6720}
3dcc0571 6721EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 6722
11199692 6723unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
69afade7 6724{
11199692
JL
6725 void *pos;
6726 unsigned long pages = 0;
69afade7 6727
11199692
JL
6728 start = (void *)PAGE_ALIGN((unsigned long)start);
6729 end = (void *)((unsigned long)end & PAGE_MASK);
6730 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
dbe67df4 6731 if ((unsigned int)poison <= 0xFF)
11199692
JL
6732 memset(pos, poison, PAGE_SIZE);
6733 free_reserved_page(virt_to_page(pos));
69afade7
JL
6734 }
6735
6736 if (pages && s)
adb1fe9a
JP
6737 pr_info("Freeing %s memory: %ldK\n",
6738 s, pages << (PAGE_SHIFT - 10));
69afade7
JL
6739
6740 return pages;
6741}
11199692 6742EXPORT_SYMBOL(free_reserved_area);
69afade7 6743
cfa11e08
JL
6744#ifdef CONFIG_HIGHMEM
6745void free_highmem_page(struct page *page)
6746{
6747 __free_reserved_page(page);
6748 totalram_pages++;
7b4b2a0d 6749 page_zone(page)->managed_pages++;
cfa11e08
JL
6750 totalhigh_pages++;
6751}
6752#endif
6753
7ee3d4e8
JL
6754
6755void __init mem_init_print_info(const char *str)
6756{
6757 unsigned long physpages, codesize, datasize, rosize, bss_size;
6758 unsigned long init_code_size, init_data_size;
6759
6760 physpages = get_num_physpages();
6761 codesize = _etext - _stext;
6762 datasize = _edata - _sdata;
6763 rosize = __end_rodata - __start_rodata;
6764 bss_size = __bss_stop - __bss_start;
6765 init_data_size = __init_end - __init_begin;
6766 init_code_size = _einittext - _sinittext;
6767
6768 /*
6769 * Detect special cases and adjust section sizes accordingly:
6770 * 1) .init.* may be embedded into .data sections
6771 * 2) .init.text.* may be out of [__init_begin, __init_end],
6772 * please refer to arch/tile/kernel/vmlinux.lds.S.
6773 * 3) .rodata.* may be embedded into .text or .data sections.
6774 */
6775#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
6776 do { \
6777 if (start <= pos && pos < end && size > adj) \
6778 size -= adj; \
6779 } while (0)
7ee3d4e8
JL
6780
6781 adj_init_size(__init_begin, __init_end, init_data_size,
6782 _sinittext, init_code_size);
6783 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6784 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6785 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6786 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6787
6788#undef adj_init_size
6789
756a025f 6790 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7ee3d4e8 6791#ifdef CONFIG_HIGHMEM
756a025f 6792 ", %luK highmem"
7ee3d4e8 6793#endif
756a025f
JP
6794 "%s%s)\n",
6795 nr_free_pages() << (PAGE_SHIFT - 10),
6796 physpages << (PAGE_SHIFT - 10),
6797 codesize >> 10, datasize >> 10, rosize >> 10,
6798 (init_data_size + init_code_size) >> 10, bss_size >> 10,
6799 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6800 totalcma_pages << (PAGE_SHIFT - 10),
7ee3d4e8 6801#ifdef CONFIG_HIGHMEM
756a025f 6802 totalhigh_pages << (PAGE_SHIFT - 10),
7ee3d4e8 6803#endif
756a025f 6804 str ? ", " : "", str ? str : "");
7ee3d4e8
JL
6805}
6806
0e0b864e 6807/**
88ca3b94
RD
6808 * set_dma_reserve - set the specified number of pages reserved in the first zone
6809 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e 6810 *
013110a7 6811 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
0e0b864e
MG
6812 * In the DMA zone, a significant percentage may be consumed by kernel image
6813 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
6814 * function may optionally be used to account for unfreeable pages in the
6815 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6816 * smaller per-cpu batchsize.
0e0b864e
MG
6817 */
6818void __init set_dma_reserve(unsigned long new_dma_reserve)
6819{
6820 dma_reserve = new_dma_reserve;
6821}
6822
1da177e4
LT
6823void __init free_area_init(unsigned long *zones_size)
6824{
9109fb7b 6825 free_area_init_node(0, zones_size,
1da177e4
LT
6826 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6827}
1da177e4 6828
005fd4bb 6829static int page_alloc_cpu_dead(unsigned int cpu)
1da177e4 6830{
1da177e4 6831
005fd4bb
SAS
6832 lru_add_drain_cpu(cpu);
6833 drain_pages(cpu);
9f8f2172 6834
005fd4bb
SAS
6835 /*
6836 * Spill the event counters of the dead processor
6837 * into the current processors event counters.
6838 * This artificially elevates the count of the current
6839 * processor.
6840 */
6841 vm_events_fold_cpu(cpu);
9f8f2172 6842
005fd4bb
SAS
6843 /*
6844 * Zero the differential counters of the dead processor
6845 * so that the vm statistics are consistent.
6846 *
6847 * This is only okay since the processor is dead and cannot
6848 * race with what we are doing.
6849 */
6850 cpu_vm_stats_fold(cpu);
6851 return 0;
1da177e4 6852}
1da177e4
LT
6853
6854void __init page_alloc_init(void)
6855{
005fd4bb
SAS
6856 int ret;
6857
6858 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
6859 "mm/page_alloc:dead", NULL,
6860 page_alloc_cpu_dead);
6861 WARN_ON(ret < 0);
1da177e4
LT
6862}
6863
cb45b0e9 6864/*
34b10060 6865 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
cb45b0e9
HA
6866 * or min_free_kbytes changes.
6867 */
6868static void calculate_totalreserve_pages(void)
6869{
6870 struct pglist_data *pgdat;
6871 unsigned long reserve_pages = 0;
2f6726e5 6872 enum zone_type i, j;
cb45b0e9
HA
6873
6874 for_each_online_pgdat(pgdat) {
281e3726
MG
6875
6876 pgdat->totalreserve_pages = 0;
6877
cb45b0e9
HA
6878 for (i = 0; i < MAX_NR_ZONES; i++) {
6879 struct zone *zone = pgdat->node_zones + i;
3484b2de 6880 long max = 0;
cb45b0e9
HA
6881
6882 /* Find valid and maximum lowmem_reserve in the zone */
6883 for (j = i; j < MAX_NR_ZONES; j++) {
6884 if (zone->lowmem_reserve[j] > max)
6885 max = zone->lowmem_reserve[j];
6886 }
6887
41858966
MG
6888 /* we treat the high watermark as reserved pages. */
6889 max += high_wmark_pages(zone);
cb45b0e9 6890
b40da049
JL
6891 if (max > zone->managed_pages)
6892 max = zone->managed_pages;
a8d01437 6893
281e3726 6894 pgdat->totalreserve_pages += max;
a8d01437 6895
cb45b0e9
HA
6896 reserve_pages += max;
6897 }
6898 }
6899 totalreserve_pages = reserve_pages;
6900}
6901
1da177e4
LT
6902/*
6903 * setup_per_zone_lowmem_reserve - called whenever
34b10060 6904 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
1da177e4
LT
6905 * has a correct pages reserved value, so an adequate number of
6906 * pages are left in the zone after a successful __alloc_pages().
6907 */
6908static void setup_per_zone_lowmem_reserve(void)
6909{
6910 struct pglist_data *pgdat;
2f6726e5 6911 enum zone_type j, idx;
1da177e4 6912
ec936fc5 6913 for_each_online_pgdat(pgdat) {
1da177e4
LT
6914 for (j = 0; j < MAX_NR_ZONES; j++) {
6915 struct zone *zone = pgdat->node_zones + j;
b40da049 6916 unsigned long managed_pages = zone->managed_pages;
1da177e4
LT
6917
6918 zone->lowmem_reserve[j] = 0;
6919
2f6726e5
CL
6920 idx = j;
6921 while (idx) {
1da177e4
LT
6922 struct zone *lower_zone;
6923
2f6726e5
CL
6924 idx--;
6925
1da177e4
LT
6926 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6927 sysctl_lowmem_reserve_ratio[idx] = 1;
6928
6929 lower_zone = pgdat->node_zones + idx;
b40da049 6930 lower_zone->lowmem_reserve[j] = managed_pages /
1da177e4 6931 sysctl_lowmem_reserve_ratio[idx];
b40da049 6932 managed_pages += lower_zone->managed_pages;
1da177e4
LT
6933 }
6934 }
6935 }
cb45b0e9
HA
6936
6937 /* update totalreserve_pages */
6938 calculate_totalreserve_pages();
1da177e4
LT
6939}
6940
cfd3da1e 6941static void __setup_per_zone_wmarks(void)
1da177e4
LT
6942{
6943 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
019b711f 6944 unsigned long pages_low = extra_free_kbytes >> (PAGE_SHIFT - 10);
1da177e4
LT
6945 unsigned long lowmem_pages = 0;
6946 struct zone *zone;
6947 unsigned long flags;
6948
6949 /* Calculate total number of !ZONE_HIGHMEM pages */
6950 for_each_zone(zone) {
6951 if (!is_highmem(zone))
b40da049 6952 lowmem_pages += zone->managed_pages;
1da177e4
LT
6953 }
6954
6955 for_each_zone(zone) {
019b711f 6956 u64 min, low;
ac924c60 6957
1125b4e3 6958 spin_lock_irqsave(&zone->lock, flags);
019b711f
RR
6959 min = (u64)pages_min * zone->managed_pages;
6960 do_div(min, lowmem_pages);
6961 low = (u64)pages_low * zone->managed_pages;
6962 do_div(low, vm_total_pages);
6963
1da177e4
LT
6964 if (is_highmem(zone)) {
6965 /*
669ed175
NP
6966 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6967 * need highmem pages, so cap pages_min to a small
6968 * value here.
6969 *
41858966 6970 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
42ff2703 6971 * deltas control asynch page reclaim, and so should
669ed175 6972 * not be capped for highmem.
1da177e4 6973 */
90ae8d67 6974 unsigned long min_pages;
1da177e4 6975
b40da049 6976 min_pages = zone->managed_pages / 1024;
90ae8d67 6977 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
41858966 6978 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 6979 } else {
669ed175
NP
6980 /*
6981 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
6982 * proportionate to the zone's size.
6983 */
019b711f 6984 zone->watermark[WMARK_MIN] = min;
1da177e4
LT
6985 }
6986
795ae7a0
JW
6987 /*
6988 * Set the kswapd watermarks distance according to the
6989 * scale factor in proportion to available memory, but
6990 * ensure a minimum size on small systems.
6991 */
019b711f 6992 min = max_t(u64, min >> 2,
795ae7a0
JW
6993 mult_frac(zone->managed_pages,
6994 watermark_scale_factor, 10000));
6995
019b711f
RR
6996 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) +
6997 low + min;
6998 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) +
6999 low + min * 2;
49f223a9 7000
1125b4e3 7001 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 7002 }
cb45b0e9
HA
7003
7004 /* update totalreserve_pages */
7005 calculate_totalreserve_pages();
1da177e4
LT
7006}
7007
cfd3da1e
MG
7008/**
7009 * setup_per_zone_wmarks - called when min_free_kbytes changes
7010 * or when memory is hot-{added|removed}
7011 *
7012 * Ensures that the watermark[min,low,high] values for each zone are set
7013 * correctly with respect to min_free_kbytes.
7014 */
7015void setup_per_zone_wmarks(void)
7016{
b93e0f32
MH
7017 static DEFINE_SPINLOCK(lock);
7018
7019 spin_lock(&lock);
cfd3da1e 7020 __setup_per_zone_wmarks();
b93e0f32 7021 spin_unlock(&lock);
cfd3da1e
MG
7022}
7023
1da177e4
LT
7024/*
7025 * Initialise min_free_kbytes.
7026 *
7027 * For small machines we want it small (128k min). For large machines
7028 * we want it large (64MB max). But it is not linear, because network
7029 * bandwidth does not increase linearly with machine size. We use
7030 *
b8af2941 7031 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
7032 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
7033 *
7034 * which yields
7035 *
7036 * 16MB: 512k
7037 * 32MB: 724k
7038 * 64MB: 1024k
7039 * 128MB: 1448k
7040 * 256MB: 2048k
7041 * 512MB: 2896k
7042 * 1024MB: 4096k
7043 * 2048MB: 5792k
7044 * 4096MB: 8192k
7045 * 8192MB: 11584k
7046 * 16384MB: 16384k
7047 */
1b79acc9 7048int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
7049{
7050 unsigned long lowmem_kbytes;
5f12733e 7051 int new_min_free_kbytes;
1da177e4
LT
7052
7053 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
7054 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7055
7056 if (new_min_free_kbytes > user_min_free_kbytes) {
7057 min_free_kbytes = new_min_free_kbytes;
7058 if (min_free_kbytes < 128)
7059 min_free_kbytes = 128;
7060 if (min_free_kbytes > 65536)
7061 min_free_kbytes = 65536;
7062 } else {
7063 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7064 new_min_free_kbytes, user_min_free_kbytes);
7065 }
bc75d33f 7066 setup_per_zone_wmarks();
a6cccdc3 7067 refresh_zone_stat_thresholds();
1da177e4 7068 setup_per_zone_lowmem_reserve();
6423aa81
JK
7069
7070#ifdef CONFIG_NUMA
7071 setup_min_unmapped_ratio();
7072 setup_min_slab_ratio();
7073#endif
7074
1da177e4
LT
7075 return 0;
7076}
bc22af74 7077core_initcall(init_per_zone_wmark_min)
1da177e4
LT
7078
7079/*
b8af2941 7080 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4 7081 * that we can call two helper functions whenever min_free_kbytes
019b711f 7082 * or extra_free_kbytes changes.
1da177e4 7083 */
cccad5b9 7084int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7085 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 7086{
da8c757b
HP
7087 int rc;
7088
7089 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7090 if (rc)
7091 return rc;
7092
5f12733e
MH
7093 if (write) {
7094 user_min_free_kbytes = min_free_kbytes;
bc75d33f 7095 setup_per_zone_wmarks();
5f12733e 7096 }
1da177e4
LT
7097 return 0;
7098}
7099
795ae7a0
JW
7100int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
7101 void __user *buffer, size_t *length, loff_t *ppos)
7102{
7103 int rc;
7104
7105 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7106 if (rc)
7107 return rc;
7108
7109 if (write)
7110 setup_per_zone_wmarks();
7111
7112 return 0;
7113}
7114
9614634f 7115#ifdef CONFIG_NUMA
6423aa81 7116static void setup_min_unmapped_ratio(void)
9614634f 7117{
6423aa81 7118 pg_data_t *pgdat;
9614634f 7119 struct zone *zone;
9614634f 7120
a5f5f91d 7121 for_each_online_pgdat(pgdat)
81cbcbc2 7122 pgdat->min_unmapped_pages = 0;
a5f5f91d 7123
9614634f 7124 for_each_zone(zone)
a5f5f91d 7125 zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
9614634f 7126 sysctl_min_unmapped_ratio) / 100;
9614634f 7127}
0ff38490 7128
6423aa81
JK
7129
7130int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7131 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490 7132{
0ff38490
CL
7133 int rc;
7134
8d65af78 7135 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
7136 if (rc)
7137 return rc;
7138
6423aa81
JK
7139 setup_min_unmapped_ratio();
7140
7141 return 0;
7142}
7143
7144static void setup_min_slab_ratio(void)
7145{
7146 pg_data_t *pgdat;
7147 struct zone *zone;
7148
a5f5f91d
MG
7149 for_each_online_pgdat(pgdat)
7150 pgdat->min_slab_pages = 0;
7151
0ff38490 7152 for_each_zone(zone)
a5f5f91d 7153 zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
0ff38490 7154 sysctl_min_slab_ratio) / 100;
6423aa81
JK
7155}
7156
7157int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7158 void __user *buffer, size_t *length, loff_t *ppos)
7159{
7160 int rc;
7161
7162 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7163 if (rc)
7164 return rc;
7165
7166 setup_min_slab_ratio();
7167
0ff38490
CL
7168 return 0;
7169}
9614634f
CL
7170#endif
7171
1da177e4
LT
7172/*
7173 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7174 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7175 * whenever sysctl_lowmem_reserve_ratio changes.
7176 *
7177 * The reserve ratio obviously has absolutely no relation with the
41858966 7178 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
7179 * if in function of the boot time zone sizes.
7180 */
cccad5b9 7181int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7182 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 7183{
8d65af78 7184 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
7185 setup_per_zone_lowmem_reserve();
7186 return 0;
7187}
7188
8ad4b1fb
RS
7189/*
7190 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
7191 * cpu. It is the fraction of total pages in each zone that a hot per cpu
7192 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 7193 */
cccad5b9 7194int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8d65af78 7195 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
7196{
7197 struct zone *zone;
7cd2b0a3 7198 int old_percpu_pagelist_fraction;
8ad4b1fb
RS
7199 int ret;
7200
7cd2b0a3
DR
7201 mutex_lock(&pcp_batch_high_lock);
7202 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
7203
8d65af78 7204 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
7205 if (!write || ret < 0)
7206 goto out;
7207
7208 /* Sanity checking to avoid pcp imbalance */
7209 if (percpu_pagelist_fraction &&
7210 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
7211 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
7212 ret = -EINVAL;
7213 goto out;
7214 }
7215
7216 /* No change? */
7217 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
7218 goto out;
c8e251fa 7219
364df0eb 7220 for_each_populated_zone(zone) {
7cd2b0a3
DR
7221 unsigned int cpu;
7222
22a7f12b 7223 for_each_possible_cpu(cpu)
7cd2b0a3
DR
7224 pageset_set_high_and_batch(zone,
7225 per_cpu_ptr(zone->pageset, cpu));
8ad4b1fb 7226 }
7cd2b0a3 7227out:
c8e251fa 7228 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 7229 return ret;
8ad4b1fb
RS
7230}
7231
a9919c79 7232#ifdef CONFIG_NUMA
f034b5d4 7233int hashdist = HASHDIST_DEFAULT;
1da177e4 7234
1da177e4
LT
7235static int __init set_hashdist(char *str)
7236{
7237 if (!str)
7238 return 0;
7239 hashdist = simple_strtoul(str, &str, 0);
7240 return 1;
7241}
7242__setup("hashdist=", set_hashdist);
7243#endif
7244
f6f34b43
SD
7245#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
7246/*
7247 * Returns the number of pages that arch has reserved but
7248 * is not known to alloc_large_system_hash().
7249 */
7250static unsigned long __init arch_reserved_kernel_pages(void)
7251{
7252 return 0;
7253}
7254#endif
7255
9017217b
PT
7256/*
7257 * Adaptive scale is meant to reduce sizes of hash tables on large memory
7258 * machines. As memory size is increased the scale is also increased but at
7259 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
7260 * quadruples the scale is increased by one, which means the size of hash table
7261 * only doubles, instead of quadrupling as well.
7262 * Because 32-bit systems cannot have large physical memory, where this scaling
7263 * makes sense, it is disabled on such platforms.
7264 */
7265#if __BITS_PER_LONG > 32
7266#define ADAPT_SCALE_BASE (64ul << 30)
7267#define ADAPT_SCALE_SHIFT 2
7268#define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
7269#endif
7270
1da177e4
LT
7271/*
7272 * allocate a large system hash table from bootmem
7273 * - it is assumed that the hash table must contain an exact power-of-2
7274 * quantity of entries
7275 * - limit is the number of hash buckets, not the total allocation size
7276 */
7277void *__init alloc_large_system_hash(const char *tablename,
7278 unsigned long bucketsize,
7279 unsigned long numentries,
7280 int scale,
7281 int flags,
7282 unsigned int *_hash_shift,
7283 unsigned int *_hash_mask,
31fe62b9
TB
7284 unsigned long low_limit,
7285 unsigned long high_limit)
1da177e4 7286{
31fe62b9 7287 unsigned long long max = high_limit;
1da177e4
LT
7288 unsigned long log2qty, size;
7289 void *table = NULL;
3749a8f0 7290 gfp_t gfp_flags;
1da177e4
LT
7291
7292 /* allow the kernel cmdline to have a say */
7293 if (!numentries) {
7294 /* round applicable memory size up to nearest megabyte */
04903664 7295 numentries = nr_kernel_pages;
f6f34b43 7296 numentries -= arch_reserved_kernel_pages();
a7e83318
JZ
7297
7298 /* It isn't necessary when PAGE_SIZE >= 1MB */
7299 if (PAGE_SHIFT < 20)
7300 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4 7301
9017217b
PT
7302#if __BITS_PER_LONG > 32
7303 if (!high_limit) {
7304 unsigned long adapt;
7305
7306 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
7307 adapt <<= ADAPT_SCALE_SHIFT)
7308 scale++;
7309 }
7310#endif
7311
1da177e4
LT
7312 /* limit to 1 bucket per 2^scale bytes of low memory */
7313 if (scale > PAGE_SHIFT)
7314 numentries >>= (scale - PAGE_SHIFT);
7315 else
7316 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
7317
7318 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
7319 if (unlikely(flags & HASH_SMALL)) {
7320 /* Makes no sense without HASH_EARLY */
7321 WARN_ON(!(flags & HASH_EARLY));
7322 if (!(numentries >> *_hash_shift)) {
7323 numentries = 1UL << *_hash_shift;
7324 BUG_ON(!numentries);
7325 }
7326 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 7327 numentries = PAGE_SIZE / bucketsize;
1da177e4 7328 }
6e692ed3 7329 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
7330
7331 /* limit allocation size to 1/16 total memory by default */
7332 if (max == 0) {
7333 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7334 do_div(max, bucketsize);
7335 }
074b8517 7336 max = min(max, 0x80000000ULL);
1da177e4 7337
31fe62b9
TB
7338 if (numentries < low_limit)
7339 numentries = low_limit;
1da177e4
LT
7340 if (numentries > max)
7341 numentries = max;
7342
f0d1b0b3 7343 log2qty = ilog2(numentries);
1da177e4 7344
3749a8f0
PT
7345 /*
7346 * memblock allocator returns zeroed memory already, so HASH_ZERO is
7347 * currently not used when HASH_EARLY is specified.
7348 */
7349 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
1da177e4
LT
7350 do {
7351 size = bucketsize << log2qty;
7352 if (flags & HASH_EARLY)
6782832e 7353 table = memblock_virt_alloc_nopanic(size, 0);
1da177e4 7354 else if (hashdist)
3749a8f0 7355 table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
1da177e4 7356 else {
1037b83b
ED
7357 /*
7358 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
7359 * some pages at the end of hash table which
7360 * alloc_pages_exact() automatically does
1037b83b 7361 */
264ef8a9 7362 if (get_order(size) < MAX_ORDER) {
3749a8f0
PT
7363 table = alloc_pages_exact(size, gfp_flags);
7364 kmemleak_alloc(table, size, 1, gfp_flags);
264ef8a9 7365 }
1da177e4
LT
7366 }
7367 } while (!table && size > PAGE_SIZE && --log2qty);
7368
7369 if (!table)
7370 panic("Failed to allocate %s hash table\n", tablename);
7371
1170532b
JP
7372 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7373 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
1da177e4
LT
7374
7375 if (_hash_shift)
7376 *_hash_shift = log2qty;
7377 if (_hash_mask)
7378 *_hash_mask = (1 << log2qty) - 1;
7379
7380 return table;
7381}
a117e66e 7382
a5d76b54 7383/*
80934513
MK
7384 * This function checks whether pageblock includes unmovable pages or not.
7385 * If @count is not zero, it is okay to include less @count unmovable pages
7386 *
b8af2941 7387 * PageLRU check without isolation or lru_lock could race so that
0efadf48
YX
7388 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
7389 * check without lock_page also may miss some movable non-lru pages at
7390 * race condition. So you can't expect this function should be exact.
a5d76b54 7391 */
b023f468
WC
7392bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7393 bool skip_hwpoisoned_pages)
49ac8255
KH
7394{
7395 unsigned long pfn, iter, found;
47118af0
MN
7396 int mt;
7397
49ac8255
KH
7398 /*
7399 * For avoiding noise data, lru_add_drain_all() should be called
80934513 7400 * If ZONE_MOVABLE, the zone never contains unmovable pages
49ac8255
KH
7401 */
7402 if (zone_idx(zone) == ZONE_MOVABLE)
80934513 7403 return false;
47118af0
MN
7404 mt = get_pageblock_migratetype(page);
7405 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
80934513 7406 return false;
49ac8255
KH
7407
7408 pfn = page_to_pfn(page);
7409 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7410 unsigned long check = pfn + iter;
7411
29723fcc 7412 if (!pfn_valid_within(check))
49ac8255 7413 continue;
29723fcc 7414
49ac8255 7415 page = pfn_to_page(check);
c8721bbb
NH
7416
7417 /*
7418 * Hugepages are not in LRU lists, but they're movable.
7419 * We need not scan over tail pages bacause we don't
7420 * handle each tail page individually in migration.
7421 */
7422 if (PageHuge(page)) {
7423 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
7424 continue;
7425 }
7426
97d255c8
MK
7427 /*
7428 * We can't use page_count without pin a page
7429 * because another CPU can free compound page.
7430 * This check already skips compound tails of THP
0139aa7b 7431 * because their page->_refcount is zero at all time.
97d255c8 7432 */
fe896d18 7433 if (!page_ref_count(page)) {
49ac8255
KH
7434 if (PageBuddy(page))
7435 iter += (1 << page_order(page)) - 1;
7436 continue;
7437 }
97d255c8 7438
b023f468
WC
7439 /*
7440 * The HWPoisoned page may be not in buddy system, and
7441 * page_count() is not 0.
7442 */
7443 if (skip_hwpoisoned_pages && PageHWPoison(page))
7444 continue;
7445
0efadf48
YX
7446 if (__PageMovable(page))
7447 continue;
7448
49ac8255
KH
7449 if (!PageLRU(page))
7450 found++;
7451 /*
6b4f7799
JW
7452 * If there are RECLAIMABLE pages, we need to check
7453 * it. But now, memory offline itself doesn't call
7454 * shrink_node_slabs() and it still to be fixed.
49ac8255
KH
7455 */
7456 /*
7457 * If the page is not RAM, page_count()should be 0.
7458 * we don't need more check. This is an _used_ not-movable page.
7459 *
7460 * The problematic thing here is PG_reserved pages. PG_reserved
7461 * is set to both of a memory hole page and a _used_ kernel
7462 * page at boot.
7463 */
7464 if (found > count)
80934513 7465 return true;
49ac8255 7466 }
80934513 7467 return false;
49ac8255
KH
7468}
7469
7470bool is_pageblock_removable_nolock(struct page *page)
7471{
656a0706
MH
7472 struct zone *zone;
7473 unsigned long pfn;
687875fb
MH
7474
7475 /*
7476 * We have to be careful here because we are iterating over memory
7477 * sections which are not zone aware so we might end up outside of
7478 * the zone but still within the section.
656a0706
MH
7479 * We have to take care about the node as well. If the node is offline
7480 * its NODE_DATA will be NULL - see page_zone.
687875fb 7481 */
656a0706
MH
7482 if (!node_online(page_to_nid(page)))
7483 return false;
7484
7485 zone = page_zone(page);
7486 pfn = page_to_pfn(page);
108bcc96 7487 if (!zone_spans_pfn(zone, pfn))
687875fb
MH
7488 return false;
7489
b023f468 7490 return !has_unmovable_pages(zone, page, 0, true);
a5d76b54 7491}
0c0e6195 7492
080fe206 7493#if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
041d3a8c
MN
7494
7495static unsigned long pfn_max_align_down(unsigned long pfn)
7496{
7497 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7498 pageblock_nr_pages) - 1);
7499}
7500
7501static unsigned long pfn_max_align_up(unsigned long pfn)
7502{
7503 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7504 pageblock_nr_pages));
7505}
7506
041d3a8c 7507/* [start, end) must belong to a single zone. */
bb13ffeb 7508static int __alloc_contig_migrate_range(struct compact_control *cc,
1977d9f2
CK
7509 unsigned long start, unsigned long end,
7510 bool drain)
041d3a8c
MN
7511{
7512 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 7513 unsigned long nr_reclaimed;
041d3a8c
MN
7514 unsigned long pfn = start;
7515 unsigned int tries = 0;
7516 int ret = 0;
7517
1977d9f2
CK
7518 if (drain)
7519 migrate_prep();
041d3a8c 7520
bb13ffeb 7521 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
7522 if (fatal_signal_pending(current)) {
7523 ret = -EINTR;
7524 break;
7525 }
7526
bb13ffeb
MG
7527 if (list_empty(&cc->migratepages)) {
7528 cc->nr_migratepages = 0;
edc2ca61 7529 pfn = isolate_migratepages_range(cc, pfn, end);
041d3a8c
MN
7530 if (!pfn) {
7531 ret = -EINTR;
7532 break;
7533 }
7534 tries = 0;
7535 } else if (++tries == 5) {
7536 ret = ret < 0 ? ret : -EBUSY;
7537 break;
7538 }
7539
beb51eaa
MK
7540 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7541 &cc->migratepages);
7542 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 7543
9c620e2b 7544 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
9a698553 7545 NULL, 0, cc->mode, drain ? MR_CMA : MR_HPA);
041d3a8c 7546 }
2a6f5124
SP
7547 if (ret < 0) {
7548 putback_movable_pages(&cc->migratepages);
7549 return ret;
7550 }
7551 return 0;
041d3a8c
MN
7552}
7553
7554/**
7555 * alloc_contig_range() -- tries to allocate given range of pages
7556 * @start: start PFN to allocate
7557 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
7558 * @migratetype: migratetype of the underlaying pageblocks (either
7559 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
7560 * in range must have the same migratetype and it must
7561 * be either of the two.
ca96b625 7562 * @gfp_mask: GFP mask to use during compaction
041d3a8c
MN
7563 *
7564 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7565 * aligned, however it's the caller's responsibility to guarantee that
7566 * we are the only thread that changes migrate type of pageblocks the
7567 * pages fall in.
7568 *
7569 * The PFN range must belong to a single zone.
7570 *
7571 * Returns zero on success or negative error code. On success all
7572 * pages which PFN is in [start, end) are allocated for the caller and
7573 * need to be freed with free_contig_range().
7574 */
1977d9f2
CK
7575int __alloc_contig_range(unsigned long start, unsigned long end,
7576 unsigned migratetype, gfp_t gfp_mask, bool drain)
041d3a8c 7577{
041d3a8c 7578 unsigned long outer_start, outer_end;
d00181b9
KS
7579 unsigned int order;
7580 int ret = 0;
041d3a8c 7581
bb13ffeb
MG
7582 struct compact_control cc = {
7583 .nr_migratepages = 0,
7584 .order = -1,
7585 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 7586 .mode = MIGRATE_SYNC,
bb13ffeb 7587 .ignore_skip_hint = true,
7dea19f9 7588 .gfp_mask = current_gfp_context(gfp_mask),
bb13ffeb
MG
7589 };
7590 INIT_LIST_HEAD(&cc.migratepages);
7591
041d3a8c
MN
7592 /*
7593 * What we do here is we mark all pageblocks in range as
7594 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7595 * have different sizes, and due to the way page allocator
7596 * work, we align the range to biggest of the two pages so
7597 * that page allocator won't try to merge buddies from
7598 * different pageblocks and change MIGRATE_ISOLATE to some
7599 * other migration type.
7600 *
7601 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7602 * migrate the pages from an unaligned range (ie. pages that
7603 * we are interested in). This will put all the pages in
7604 * range back to page allocator as MIGRATE_ISOLATE.
7605 *
7606 * When this is done, we take the pages in range from page
7607 * allocator removing them from the buddy system. This way
7608 * page allocator will never consider using them.
7609 *
7610 * This lets us mark the pageblocks back as
7611 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7612 * aligned range but not in the unaligned, original range are
7613 * put back to page allocator so that buddy can use them.
7614 */
7615
7616 ret = start_isolate_page_range(pfn_max_align_down(start),
b023f468
WC
7617 pfn_max_align_up(end), migratetype,
7618 false);
041d3a8c 7619 if (ret)
86a595f9 7620 return ret;
041d3a8c 7621
8ef5849f
JK
7622 /*
7623 * In case of -EBUSY, we'd like to know which page causes problem.
b4c8fce6
MK
7624 * So, just fall through. test_pages_isolated() has a tracepoint
7625 * which will report the busy page.
7626 *
7627 * It is possible that busy pages could become available before
7628 * the call to test_pages_isolated, and the range will actually be
7629 * allocated. So, if we fall through be sure to clear ret so that
7630 * -EBUSY is not accidentally used or returned to caller.
8ef5849f 7631 */
1977d9f2 7632 ret = __alloc_contig_migrate_range(&cc, start, end, drain);
8ef5849f 7633 if (ret && ret != -EBUSY)
041d3a8c 7634 goto done;
b4c8fce6 7635 ret =0;
041d3a8c
MN
7636
7637 /*
7638 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7639 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7640 * more, all pages in [start, end) are free in page allocator.
7641 * What we are going to do is to allocate all pages from
7642 * [start, end) (that is remove them from page allocator).
7643 *
7644 * The only problem is that pages at the beginning and at the
7645 * end of interesting range may be not aligned with pages that
7646 * page allocator holds, ie. they can be part of higher order
7647 * pages. Because of this, we reserve the bigger range and
7648 * once this is done free the pages we are not interested in.
7649 *
7650 * We don't have to hold zone->lock here because the pages are
7651 * isolated thus they won't get removed from buddy.
7652 */
7653
041d3a8c
MN
7654 order = 0;
7655 outer_start = start;
1977d9f2
CK
7656
7657 if (drain) {
7658 lru_add_drain_all();
7659 drain_all_pages(cc.zone);
7660
7661 while (!PageBuddy(pfn_to_page(outer_start))) {
7662 if (++order >= MAX_ORDER) {
7663 outer_start = start;
7664 break;
7665 }
7666 outer_start &= ~0UL << order;
041d3a8c 7667 }
041d3a8c 7668
1977d9f2
CK
7669 if (outer_start != start) {
7670 order = page_order(pfn_to_page(outer_start));
8ef5849f 7671
1977d9f2
CK
7672 /*
7673 * outer_start page could be small order buddy page and
7674 * it doesn't include start page. Adjust outer_start
7675 * in this case to report failed page properly
7676 * on tracepoint in test_pages_isolated()
7677 */
7678 if (outer_start + (1UL << order) <= start)
7679 outer_start = start;
7680 }
8ef5849f 7681
1977d9f2
CK
7682 /* Make sure the range is really isolated. */
7683 if (test_pages_isolated(outer_start, end, false)) {
7684 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
7685 __func__, outer_start, end);
7686 ret = -EBUSY;
7687 goto done;
7688 }
041d3a8c
MN
7689 }
7690
49f223a9 7691 /* Grab isolated pages from freelists. */
bb13ffeb 7692 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
7693 if (!outer_end) {
7694 ret = -EBUSY;
7695 goto done;
7696 }
7697
7698 /* Free head and tail (if any) */
7699 if (start != outer_start)
7700 free_contig_range(outer_start, start - outer_start);
7701 if (end != outer_end)
7702 free_contig_range(end, outer_end - end);
7703
7704done:
7705 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 7706 pfn_max_align_up(end), migratetype);
041d3a8c
MN
7707 return ret;
7708}
7709
1977d9f2
CK
7710int alloc_contig_range(unsigned long start, unsigned long end,
7711 unsigned migratetype, gfp_t gfp_mask)
7712{
7713 return __alloc_contig_range(start, end, migratetype, gfp_mask, true);
7714}
7715
7716int alloc_contig_range_fast(unsigned long start, unsigned long end,
7717 unsigned migratetype)
7718{
7719 return __alloc_contig_range(start, end, migratetype, GFP_KERNEL, false);
7720}
7721
041d3a8c
MN
7722void free_contig_range(unsigned long pfn, unsigned nr_pages)
7723{
bcc2b02f
MS
7724 unsigned int count = 0;
7725
7726 for (; nr_pages--; pfn++) {
7727 struct page *page = pfn_to_page(pfn);
7728
7729 count += page_count(page) != 1;
7730 __free_page(page);
7731 }
7732 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c
MN
7733}
7734#endif
7735
4ed7e022 7736#ifdef CONFIG_MEMORY_HOTPLUG
0a647f38
CS
7737/*
7738 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7739 * page high values need to be recalulated.
7740 */
4ed7e022
JL
7741void __meminit zone_pcp_update(struct zone *zone)
7742{
0a647f38 7743 unsigned cpu;
c8e251fa 7744 mutex_lock(&pcp_batch_high_lock);
0a647f38 7745 for_each_possible_cpu(cpu)
169f6c19
CS
7746 pageset_set_high_and_batch(zone,
7747 per_cpu_ptr(zone->pageset, cpu));
c8e251fa 7748 mutex_unlock(&pcp_batch_high_lock);
4ed7e022
JL
7749}
7750#endif
7751
340175b7
JL
7752void zone_pcp_reset(struct zone *zone)
7753{
7754 unsigned long flags;
5a883813
MK
7755 int cpu;
7756 struct per_cpu_pageset *pset;
340175b7
JL
7757
7758 /* avoid races with drain_pages() */
7759 local_irq_save(flags);
7760 if (zone->pageset != &boot_pageset) {
5a883813
MK
7761 for_each_online_cpu(cpu) {
7762 pset = per_cpu_ptr(zone->pageset, cpu);
7763 drain_zonestat(zone, pset);
7764 }
340175b7
JL
7765 free_percpu(zone->pageset);
7766 zone->pageset = &boot_pageset;
7767 }
7768 local_irq_restore(flags);
7769}
7770
6dcd73d7 7771#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195 7772/*
b9eb6319
JK
7773 * All pages in the range must be in a single zone and isolated
7774 * before calling this.
0c0e6195
KH
7775 */
7776void
7777__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7778{
7779 struct page *page;
7780 struct zone *zone;
7aeb09f9 7781 unsigned int order, i;
0c0e6195
KH
7782 unsigned long pfn;
7783 unsigned long flags;
7784 /* find the first valid pfn */
7785 for (pfn = start_pfn; pfn < end_pfn; pfn++)
7786 if (pfn_valid(pfn))
7787 break;
7788 if (pfn == end_pfn)
7789 return;
2d070eab 7790 offline_mem_sections(pfn, end_pfn);
0c0e6195
KH
7791 zone = page_zone(pfn_to_page(pfn));
7792 spin_lock_irqsave(&zone->lock, flags);
7793 pfn = start_pfn;
7794 while (pfn < end_pfn) {
7795 if (!pfn_valid(pfn)) {
7796 pfn++;
7797 continue;
7798 }
7799 page = pfn_to_page(pfn);
b023f468
WC
7800 /*
7801 * The HWPoisoned page may be not in buddy system, and
7802 * page_count() is not 0.
7803 */
7804 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7805 pfn++;
7806 SetPageReserved(page);
7807 continue;
7808 }
7809
0c0e6195
KH
7810 BUG_ON(page_count(page));
7811 BUG_ON(!PageBuddy(page));
7812 order = page_order(page);
7813#ifdef CONFIG_DEBUG_VM
1170532b
JP
7814 pr_info("remove from free list %lx %d %lx\n",
7815 pfn, 1 << order, end_pfn);
0c0e6195
KH
7816#endif
7817 list_del(&page->lru);
7818 rmv_page_order(page);
7819 zone->free_area[order].nr_free--;
0c0e6195
KH
7820 for (i = 0; i < (1 << order); i++)
7821 SetPageReserved((page+i));
7822 pfn += (1 << order);
7823 }
7824 spin_unlock_irqrestore(&zone->lock, flags);
7825}
7826#endif
8d22ba1b 7827
8d22ba1b
WF
7828bool is_free_buddy_page(struct page *page)
7829{
7830 struct zone *zone = page_zone(page);
7831 unsigned long pfn = page_to_pfn(page);
7832 unsigned long flags;
7aeb09f9 7833 unsigned int order;
8d22ba1b
WF
7834
7835 spin_lock_irqsave(&zone->lock, flags);
7836 for (order = 0; order < MAX_ORDER; order++) {
7837 struct page *page_head = page - (pfn & ((1 << order) - 1));
7838
7839 if (PageBuddy(page_head) && page_order(page_head) >= order)
7840 break;
7841 }
7842 spin_unlock_irqrestore(&zone->lock, flags);
7843
7844 return order < MAX_ORDER;
7845}