mm: kmem_cache_create(): make it easier to catch NULL cache names
[GitHub/moto-9609/android_kernel_motorola_exynos9610.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4
LT
23#include <linux/bootmem.h>
24#include <linux/compiler.h>
9f158333 25#include <linux/kernel.h>
b1eeab67 26#include <linux/kmemcheck.h>
1da177e4
LT
27#include <linux/module.h>
28#include <linux/suspend.h>
29#include <linux/pagevec.h>
30#include <linux/blkdev.h>
31#include <linux/slab.h>
5a3135c2 32#include <linux/oom.h>
1da177e4
LT
33#include <linux/notifier.h>
34#include <linux/topology.h>
35#include <linux/sysctl.h>
36#include <linux/cpu.h>
37#include <linux/cpuset.h>
bdc8cb98 38#include <linux/memory_hotplug.h>
1da177e4
LT
39#include <linux/nodemask.h>
40#include <linux/vmalloc.h>
4be38e35 41#include <linux/mempolicy.h>
6811378e 42#include <linux/stop_machine.h>
c713216d
MG
43#include <linux/sort.h>
44#include <linux/pfn.h>
3fcfab16 45#include <linux/backing-dev.h>
933e312e 46#include <linux/fault-inject.h>
a5d76b54 47#include <linux/page-isolation.h>
52d4b9ac 48#include <linux/page_cgroup.h>
3ac7fe5a 49#include <linux/debugobjects.h>
dbb1f81c 50#include <linux/kmemleak.h>
1da177e4
LT
51
52#include <asm/tlbflush.h>
ac924c60 53#include <asm/div64.h>
1da177e4
LT
54#include "internal.h"
55
56/*
13808910 57 * Array of node states.
1da177e4 58 */
13808910
CL
59nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
60 [N_POSSIBLE] = NODE_MASK_ALL,
61 [N_ONLINE] = { { [0] = 1UL } },
62#ifndef CONFIG_NUMA
63 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
64#ifdef CONFIG_HIGHMEM
65 [N_HIGH_MEMORY] = { { [0] = 1UL } },
66#endif
67 [N_CPU] = { { [0] = 1UL } },
68#endif /* NUMA */
69};
70EXPORT_SYMBOL(node_states);
71
6c231b7b 72unsigned long totalram_pages __read_mostly;
cb45b0e9 73unsigned long totalreserve_pages __read_mostly;
22b31eec 74unsigned long highest_memmap_pfn __read_mostly;
8ad4b1fb 75int percpu_pagelist_fraction;
dcce284a 76gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 77
d9c23400
MG
78#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
79int pageblock_order __read_mostly;
80#endif
81
d98c7a09 82static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 83
1da177e4
LT
84/*
85 * results with 256, 32 in the lowmem_reserve sysctl:
86 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
87 * 1G machine -> (16M dma, 784M normal, 224M high)
88 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
89 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
90 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
91 *
92 * TBD: should special case ZONE_DMA32 machines here - in those we normally
93 * don't need any ZONE_NORMAL reservation
1da177e4 94 */
2f1b6248 95int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 96#ifdef CONFIG_ZONE_DMA
2f1b6248 97 256,
4b51d669 98#endif
fb0e7942 99#ifdef CONFIG_ZONE_DMA32
2f1b6248 100 256,
fb0e7942 101#endif
e53ef38d 102#ifdef CONFIG_HIGHMEM
2a1e274a 103 32,
e53ef38d 104#endif
2a1e274a 105 32,
2f1b6248 106};
1da177e4
LT
107
108EXPORT_SYMBOL(totalram_pages);
1da177e4 109
15ad7cdc 110static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 111#ifdef CONFIG_ZONE_DMA
2f1b6248 112 "DMA",
4b51d669 113#endif
fb0e7942 114#ifdef CONFIG_ZONE_DMA32
2f1b6248 115 "DMA32",
fb0e7942 116#endif
2f1b6248 117 "Normal",
e53ef38d 118#ifdef CONFIG_HIGHMEM
2a1e274a 119 "HighMem",
e53ef38d 120#endif
2a1e274a 121 "Movable",
2f1b6248
CL
122};
123
1da177e4
LT
124int min_free_kbytes = 1024;
125
86356ab1
YG
126unsigned long __meminitdata nr_kernel_pages;
127unsigned long __meminitdata nr_all_pages;
a3142c8e 128static unsigned long __meminitdata dma_reserve;
1da177e4 129
c713216d
MG
130#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
131 /*
183ff22b 132 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
c713216d
MG
133 * ranges of memory (RAM) that may be registered with add_active_range().
134 * Ranges passed to add_active_range() will be merged if possible
135 * so the number of times add_active_range() can be called is
136 * related to the number of nodes and the number of holes
137 */
138 #ifdef CONFIG_MAX_ACTIVE_REGIONS
139 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
140 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
141 #else
142 #if MAX_NUMNODES >= 32
143 /* If there can be many nodes, allow up to 50 holes per node */
144 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
145 #else
146 /* By default, allow up to 256 distinct regions */
147 #define MAX_ACTIVE_REGIONS 256
148 #endif
149 #endif
150
98011f56
JB
151 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
152 static int __meminitdata nr_nodemap_entries;
153 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
154 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
b69a7288 155 static unsigned long __initdata required_kernelcore;
484f51f8 156 static unsigned long __initdata required_movablecore;
b69a7288 157 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
2a1e274a
MG
158
159 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
160 int movable_zone;
161 EXPORT_SYMBOL(movable_zone);
c713216d
MG
162#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
163
418508c1
MS
164#if MAX_NUMNODES > 1
165int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 166int nr_online_nodes __read_mostly = 1;
418508c1 167EXPORT_SYMBOL(nr_node_ids);
62bc62a8 168EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
169#endif
170
9ef9acb0
MG
171int page_group_by_mobility_disabled __read_mostly;
172
b2a0ac88
MG
173static void set_pageblock_migratetype(struct page *page, int migratetype)
174{
49255c61
MG
175
176 if (unlikely(page_group_by_mobility_disabled))
177 migratetype = MIGRATE_UNMOVABLE;
178
b2a0ac88
MG
179 set_pageblock_flags_group(page, (unsigned long)migratetype,
180 PB_migrate, PB_migrate_end);
181}
182
7f33d49a
RW
183bool oom_killer_disabled __read_mostly;
184
13e7444b 185#ifdef CONFIG_DEBUG_VM
c6a57e19 186static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 187{
bdc8cb98
DH
188 int ret = 0;
189 unsigned seq;
190 unsigned long pfn = page_to_pfn(page);
c6a57e19 191
bdc8cb98
DH
192 do {
193 seq = zone_span_seqbegin(zone);
194 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
195 ret = 1;
196 else if (pfn < zone->zone_start_pfn)
197 ret = 1;
198 } while (zone_span_seqretry(zone, seq));
199
200 return ret;
c6a57e19
DH
201}
202
203static int page_is_consistent(struct zone *zone, struct page *page)
204{
14e07298 205 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 206 return 0;
1da177e4 207 if (zone != page_zone(page))
c6a57e19
DH
208 return 0;
209
210 return 1;
211}
212/*
213 * Temporary debugging check for pages not lying within a given zone.
214 */
215static int bad_range(struct zone *zone, struct page *page)
216{
217 if (page_outside_zone_boundaries(zone, page))
1da177e4 218 return 1;
c6a57e19
DH
219 if (!page_is_consistent(zone, page))
220 return 1;
221
1da177e4
LT
222 return 0;
223}
13e7444b
NP
224#else
225static inline int bad_range(struct zone *zone, struct page *page)
226{
227 return 0;
228}
229#endif
230
224abf92 231static void bad_page(struct page *page)
1da177e4 232{
d936cf9b
HD
233 static unsigned long resume;
234 static unsigned long nr_shown;
235 static unsigned long nr_unshown;
236
237 /*
238 * Allow a burst of 60 reports, then keep quiet for that minute;
239 * or allow a steady drip of one report per second.
240 */
241 if (nr_shown == 60) {
242 if (time_before(jiffies, resume)) {
243 nr_unshown++;
244 goto out;
245 }
246 if (nr_unshown) {
1e9e6365
HD
247 printk(KERN_ALERT
248 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
249 nr_unshown);
250 nr_unshown = 0;
251 }
252 nr_shown = 0;
253 }
254 if (nr_shown++ == 0)
255 resume = jiffies + 60 * HZ;
256
1e9e6365 257 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 258 current->comm, page_to_pfn(page));
1e9e6365 259 printk(KERN_ALERT
3dc14741
HD
260 "page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
261 page, (void *)page->flags, page_count(page),
262 page_mapcount(page), page->mapping, page->index);
3dc14741 263
1da177e4 264 dump_stack();
d936cf9b 265out:
8cc3b392
HD
266 /* Leave bad fields for debug, except PageBuddy could make trouble */
267 __ClearPageBuddy(page);
9f158333 268 add_taint(TAINT_BAD_PAGE);
1da177e4
LT
269}
270
1da177e4
LT
271/*
272 * Higher-order pages are called "compound pages". They are structured thusly:
273 *
274 * The first PAGE_SIZE page is called the "head page".
275 *
276 * The remaining PAGE_SIZE pages are called "tail pages".
277 *
278 * All pages have PG_compound set. All pages have their ->private pointing at
279 * the head page (even the head page has this).
280 *
41d78ba5
HD
281 * The first tail page's ->lru.next holds the address of the compound page's
282 * put_page() function. Its ->lru.prev holds the order of allocation.
283 * This usage means that zero-order pages may not be compound.
1da177e4 284 */
d98c7a09
HD
285
286static void free_compound_page(struct page *page)
287{
d85f3385 288 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
289}
290
01ad1c08 291void prep_compound_page(struct page *page, unsigned long order)
18229df5
AW
292{
293 int i;
294 int nr_pages = 1 << order;
295
296 set_compound_page_dtor(page, free_compound_page);
297 set_compound_order(page, order);
298 __SetPageHead(page);
299 for (i = 1; i < nr_pages; i++) {
300 struct page *p = page + i;
301
302 __SetPageTail(p);
303 p->first_page = page;
304 }
305}
306
8cc3b392 307static int destroy_compound_page(struct page *page, unsigned long order)
1da177e4
LT
308{
309 int i;
310 int nr_pages = 1 << order;
8cc3b392 311 int bad = 0;
1da177e4 312
8cc3b392
HD
313 if (unlikely(compound_order(page) != order) ||
314 unlikely(!PageHead(page))) {
224abf92 315 bad_page(page);
8cc3b392
HD
316 bad++;
317 }
1da177e4 318
6d777953 319 __ClearPageHead(page);
8cc3b392 320
18229df5
AW
321 for (i = 1; i < nr_pages; i++) {
322 struct page *p = page + i;
1da177e4 323
e713a21d 324 if (unlikely(!PageTail(p) || (p->first_page != page))) {
224abf92 325 bad_page(page);
8cc3b392
HD
326 bad++;
327 }
d85f3385 328 __ClearPageTail(p);
1da177e4 329 }
8cc3b392
HD
330
331 return bad;
1da177e4 332}
1da177e4 333
17cf4406
NP
334static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
335{
336 int i;
337
6626c5d5
AM
338 /*
339 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
340 * and __GFP_HIGHMEM from hard or soft interrupt context.
341 */
725d704e 342 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
17cf4406
NP
343 for (i = 0; i < (1 << order); i++)
344 clear_highpage(page + i);
345}
346
6aa3001b
AM
347static inline void set_page_order(struct page *page, int order)
348{
4c21e2f2 349 set_page_private(page, order);
676165a8 350 __SetPageBuddy(page);
1da177e4
LT
351}
352
353static inline void rmv_page_order(struct page *page)
354{
676165a8 355 __ClearPageBuddy(page);
4c21e2f2 356 set_page_private(page, 0);
1da177e4
LT
357}
358
359/*
360 * Locate the struct page for both the matching buddy in our
361 * pair (buddy1) and the combined O(n+1) page they form (page).
362 *
363 * 1) Any buddy B1 will have an order O twin B2 which satisfies
364 * the following equation:
365 * B2 = B1 ^ (1 << O)
366 * For example, if the starting buddy (buddy2) is #8 its order
367 * 1 buddy is #10:
368 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
369 *
370 * 2) Any buddy B will have an order O+1 parent P which
371 * satisfies the following equation:
372 * P = B & ~(1 << O)
373 *
d6e05edc 374 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
1da177e4
LT
375 */
376static inline struct page *
377__page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
378{
379 unsigned long buddy_idx = page_idx ^ (1 << order);
380
381 return page + (buddy_idx - page_idx);
382}
383
384static inline unsigned long
385__find_combined_index(unsigned long page_idx, unsigned int order)
386{
387 return (page_idx & ~(1 << order));
388}
389
390/*
391 * This function checks whether a page is free && is the buddy
392 * we can do coalesce a page and its buddy if
13e7444b 393 * (a) the buddy is not in a hole &&
676165a8 394 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
395 * (c) a page and its buddy have the same order &&
396 * (d) a page and its buddy are in the same zone.
676165a8
NP
397 *
398 * For recording whether a page is in the buddy system, we use PG_buddy.
399 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
1da177e4 400 *
676165a8 401 * For recording page's order, we use page_private(page).
1da177e4 402 */
cb2b95e1
AW
403static inline int page_is_buddy(struct page *page, struct page *buddy,
404 int order)
1da177e4 405{
14e07298 406 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 407 return 0;
13e7444b 408
cb2b95e1
AW
409 if (page_zone_id(page) != page_zone_id(buddy))
410 return 0;
411
412 if (PageBuddy(buddy) && page_order(buddy) == order) {
a3af9c38 413 VM_BUG_ON(page_count(buddy) != 0);
6aa3001b 414 return 1;
676165a8 415 }
6aa3001b 416 return 0;
1da177e4
LT
417}
418
419/*
420 * Freeing function for a buddy system allocator.
421 *
422 * The concept of a buddy system is to maintain direct-mapped table
423 * (containing bit values) for memory blocks of various "orders".
424 * The bottom level table contains the map for the smallest allocatable
425 * units of memory (here, pages), and each level above it describes
426 * pairs of units from the levels below, hence, "buddies".
427 * At a high level, all that happens here is marking the table entry
428 * at the bottom level available, and propagating the changes upward
429 * as necessary, plus some accounting needed to play nicely with other
430 * parts of the VM system.
431 * At each level, we keep a list of pages, which are heads of continuous
676165a8 432 * free pages of length of (1 << order) and marked with PG_buddy. Page's
4c21e2f2 433 * order is recorded in page_private(page) field.
1da177e4
LT
434 * So when we are allocating or freeing one, we can derive the state of the
435 * other. That is, if we allocate a small block, and both were
436 * free, the remainder of the region must be split into blocks.
437 * If a block is freed, and its buddy is also free, then this
438 * triggers coalescing into a block of larger size.
439 *
440 * -- wli
441 */
442
48db57f8 443static inline void __free_one_page(struct page *page,
ed0ae21d
MG
444 struct zone *zone, unsigned int order,
445 int migratetype)
1da177e4
LT
446{
447 unsigned long page_idx;
1da177e4 448
224abf92 449 if (unlikely(PageCompound(page)))
8cc3b392
HD
450 if (unlikely(destroy_compound_page(page, order)))
451 return;
1da177e4 452
ed0ae21d
MG
453 VM_BUG_ON(migratetype == -1);
454
1da177e4
LT
455 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
456
f2260e6b 457 VM_BUG_ON(page_idx & ((1 << order) - 1));
725d704e 458 VM_BUG_ON(bad_range(zone, page));
1da177e4 459
1da177e4
LT
460 while (order < MAX_ORDER-1) {
461 unsigned long combined_idx;
1da177e4
LT
462 struct page *buddy;
463
1da177e4 464 buddy = __page_find_buddy(page, page_idx, order);
cb2b95e1 465 if (!page_is_buddy(page, buddy, order))
3c82d0ce 466 break;
13e7444b 467
3c82d0ce 468 /* Our buddy is free, merge with it and move up one order. */
1da177e4 469 list_del(&buddy->lru);
b2a0ac88 470 zone->free_area[order].nr_free--;
1da177e4 471 rmv_page_order(buddy);
13e7444b 472 combined_idx = __find_combined_index(page_idx, order);
1da177e4
LT
473 page = page + (combined_idx - page_idx);
474 page_idx = combined_idx;
475 order++;
476 }
477 set_page_order(page, order);
b2a0ac88
MG
478 list_add(&page->lru,
479 &zone->free_area[order].free_list[migratetype]);
1da177e4
LT
480 zone->free_area[order].nr_free++;
481}
482
092cead6
KM
483#ifdef CONFIG_HAVE_MLOCKED_PAGE_BIT
484/*
485 * free_page_mlock() -- clean up attempts to free and mlocked() page.
486 * Page should not be on lru, so no need to fix that up.
487 * free_pages_check() will verify...
488 */
489static inline void free_page_mlock(struct page *page)
490{
092cead6
KM
491 __dec_zone_page_state(page, NR_MLOCK);
492 __count_vm_event(UNEVICTABLE_MLOCKFREED);
493}
494#else
495static void free_page_mlock(struct page *page) { }
496#endif
497
224abf92 498static inline int free_pages_check(struct page *page)
1da177e4 499{
92be2e33
NP
500 if (unlikely(page_mapcount(page) |
501 (page->mapping != NULL) |
a3af9c38 502 (atomic_read(&page->_count) != 0) |
8cc3b392 503 (page->flags & PAGE_FLAGS_CHECK_AT_FREE))) {
224abf92 504 bad_page(page);
79f4b7bf 505 return 1;
8cc3b392 506 }
79f4b7bf
HD
507 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
508 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
509 return 0;
1da177e4
LT
510}
511
512/*
513 * Frees a list of pages.
514 * Assumes all pages on list are in same zone, and of same order.
207f36ee 515 * count is the number of pages to free.
1da177e4
LT
516 *
517 * If the zone was previously in an "all pages pinned" state then look to
518 * see if this freeing clears that state.
519 *
520 * And clear the zone's pages_scanned counter, to hold off the "all pages are
521 * pinned" detection logic.
522 */
48db57f8
NP
523static void free_pages_bulk(struct zone *zone, int count,
524 struct list_head *list, int order)
1da177e4 525{
c54ad30c 526 spin_lock(&zone->lock);
e815af95 527 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
1da177e4 528 zone->pages_scanned = 0;
f2260e6b
MG
529
530 __mod_zone_page_state(zone, NR_FREE_PAGES, count << order);
48db57f8
NP
531 while (count--) {
532 struct page *page;
533
725d704e 534 VM_BUG_ON(list_empty(list));
1da177e4 535 page = list_entry(list->prev, struct page, lru);
48db57f8 536 /* have to delete it as __free_one_page list manipulates */
1da177e4 537 list_del(&page->lru);
ed0ae21d 538 __free_one_page(page, zone, order, page_private(page));
1da177e4 539 }
c54ad30c 540 spin_unlock(&zone->lock);
1da177e4
LT
541}
542
ed0ae21d
MG
543static void free_one_page(struct zone *zone, struct page *page, int order,
544 int migratetype)
1da177e4 545{
006d22d9 546 spin_lock(&zone->lock);
e815af95 547 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
006d22d9 548 zone->pages_scanned = 0;
f2260e6b
MG
549
550 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
ed0ae21d 551 __free_one_page(page, zone, order, migratetype);
006d22d9 552 spin_unlock(&zone->lock);
48db57f8
NP
553}
554
555static void __free_pages_ok(struct page *page, unsigned int order)
556{
557 unsigned long flags;
1da177e4 558 int i;
8cc3b392 559 int bad = 0;
451ea25d 560 int wasMlocked = __TestClearPageMlocked(page);
1da177e4 561
b1eeab67
VN
562 kmemcheck_free_shadow(page, order);
563
1da177e4 564 for (i = 0 ; i < (1 << order) ; ++i)
8cc3b392
HD
565 bad += free_pages_check(page + i);
566 if (bad)
689bcebf
HD
567 return;
568
3ac7fe5a 569 if (!PageHighMem(page)) {
9858db50 570 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
3ac7fe5a
TG
571 debug_check_no_obj_freed(page_address(page),
572 PAGE_SIZE << order);
573 }
dafb1367 574 arch_free_page(page, order);
48db57f8 575 kernel_map_pages(page, 1 << order, 0);
dafb1367 576
c54ad30c 577 local_irq_save(flags);
c277331d 578 if (unlikely(wasMlocked))
da456f14 579 free_page_mlock(page);
f8891e5e 580 __count_vm_events(PGFREE, 1 << order);
ed0ae21d
MG
581 free_one_page(page_zone(page), page, order,
582 get_pageblock_migratetype(page));
c54ad30c 583 local_irq_restore(flags);
1da177e4
LT
584}
585
a226f6c8
DH
586/*
587 * permit the bootmem allocator to evade page validation on high-order frees
588 */
af370fb8 589void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
a226f6c8
DH
590{
591 if (order == 0) {
592 __ClearPageReserved(page);
593 set_page_count(page, 0);
7835e98b 594 set_page_refcounted(page);
545b1ea9 595 __free_page(page);
a226f6c8 596 } else {
a226f6c8
DH
597 int loop;
598
545b1ea9 599 prefetchw(page);
a226f6c8
DH
600 for (loop = 0; loop < BITS_PER_LONG; loop++) {
601 struct page *p = &page[loop];
602
545b1ea9
NP
603 if (loop + 1 < BITS_PER_LONG)
604 prefetchw(p + 1);
a226f6c8
DH
605 __ClearPageReserved(p);
606 set_page_count(p, 0);
607 }
608
7835e98b 609 set_page_refcounted(page);
545b1ea9 610 __free_pages(page, order);
a226f6c8
DH
611 }
612}
613
1da177e4
LT
614
615/*
616 * The order of subdivision here is critical for the IO subsystem.
617 * Please do not alter this order without good reasons and regression
618 * testing. Specifically, as large blocks of memory are subdivided,
619 * the order in which smaller blocks are delivered depends on the order
620 * they're subdivided in this function. This is the primary factor
621 * influencing the order in which pages are delivered to the IO
622 * subsystem according to empirical testing, and this is also justified
623 * by considering the behavior of a buddy system containing a single
624 * large block of memory acted on by a series of small allocations.
625 * This behavior is a critical factor in sglist merging's success.
626 *
627 * -- wli
628 */
085cc7d5 629static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
630 int low, int high, struct free_area *area,
631 int migratetype)
1da177e4
LT
632{
633 unsigned long size = 1 << high;
634
635 while (high > low) {
636 area--;
637 high--;
638 size >>= 1;
725d704e 639 VM_BUG_ON(bad_range(zone, &page[size]));
b2a0ac88 640 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
641 area->nr_free++;
642 set_page_order(&page[size], high);
643 }
1da177e4
LT
644}
645
1da177e4
LT
646/*
647 * This page is about to be returned from the page allocator
648 */
17cf4406 649static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
1da177e4 650{
92be2e33
NP
651 if (unlikely(page_mapcount(page) |
652 (page->mapping != NULL) |
a3af9c38 653 (atomic_read(&page->_count) != 0) |
8cc3b392 654 (page->flags & PAGE_FLAGS_CHECK_AT_PREP))) {
224abf92 655 bad_page(page);
689bcebf 656 return 1;
8cc3b392 657 }
689bcebf 658
4c21e2f2 659 set_page_private(page, 0);
7835e98b 660 set_page_refcounted(page);
cc102509
NP
661
662 arch_alloc_page(page, order);
1da177e4 663 kernel_map_pages(page, 1 << order, 1);
17cf4406
NP
664
665 if (gfp_flags & __GFP_ZERO)
666 prep_zero_page(page, order, gfp_flags);
667
668 if (order && (gfp_flags & __GFP_COMP))
669 prep_compound_page(page, order);
670
689bcebf 671 return 0;
1da177e4
LT
672}
673
56fd56b8
MG
674/*
675 * Go through the free lists for the given migratetype and remove
676 * the smallest available page from the freelists
677 */
728ec980
MG
678static inline
679struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
680 int migratetype)
681{
682 unsigned int current_order;
683 struct free_area * area;
684 struct page *page;
685
686 /* Find a page of the appropriate size in the preferred list */
687 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
688 area = &(zone->free_area[current_order]);
689 if (list_empty(&area->free_list[migratetype]))
690 continue;
691
692 page = list_entry(area->free_list[migratetype].next,
693 struct page, lru);
694 list_del(&page->lru);
695 rmv_page_order(page);
696 area->nr_free--;
56fd56b8
MG
697 expand(zone, page, order, current_order, area, migratetype);
698 return page;
699 }
700
701 return NULL;
702}
703
704
b2a0ac88
MG
705/*
706 * This array describes the order lists are fallen back to when
707 * the free lists for the desirable migrate type are depleted
708 */
709static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
64c5e135
MG
710 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
711 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
712 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
713 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
b2a0ac88
MG
714};
715
c361be55
MG
716/*
717 * Move the free pages in a range to the free lists of the requested type.
d9c23400 718 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
719 * boundary. If alignment is required, use move_freepages_block()
720 */
b69a7288
AB
721static int move_freepages(struct zone *zone,
722 struct page *start_page, struct page *end_page,
723 int migratetype)
c361be55
MG
724{
725 struct page *page;
726 unsigned long order;
d100313f 727 int pages_moved = 0;
c361be55
MG
728
729#ifndef CONFIG_HOLES_IN_ZONE
730 /*
731 * page_zone is not safe to call in this context when
732 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
733 * anyway as we check zone boundaries in move_freepages_block().
734 * Remove at a later date when no bug reports exist related to
ac0e5b7a 735 * grouping pages by mobility
c361be55
MG
736 */
737 BUG_ON(page_zone(start_page) != page_zone(end_page));
738#endif
739
740 for (page = start_page; page <= end_page;) {
344c790e
AL
741 /* Make sure we are not inadvertently changing nodes */
742 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
743
c361be55
MG
744 if (!pfn_valid_within(page_to_pfn(page))) {
745 page++;
746 continue;
747 }
748
749 if (!PageBuddy(page)) {
750 page++;
751 continue;
752 }
753
754 order = page_order(page);
755 list_del(&page->lru);
756 list_add(&page->lru,
757 &zone->free_area[order].free_list[migratetype]);
758 page += 1 << order;
d100313f 759 pages_moved += 1 << order;
c361be55
MG
760 }
761
d100313f 762 return pages_moved;
c361be55
MG
763}
764
b69a7288
AB
765static int move_freepages_block(struct zone *zone, struct page *page,
766 int migratetype)
c361be55
MG
767{
768 unsigned long start_pfn, end_pfn;
769 struct page *start_page, *end_page;
770
771 start_pfn = page_to_pfn(page);
d9c23400 772 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 773 start_page = pfn_to_page(start_pfn);
d9c23400
MG
774 end_page = start_page + pageblock_nr_pages - 1;
775 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
776
777 /* Do not cross zone boundaries */
778 if (start_pfn < zone->zone_start_pfn)
779 start_page = page;
780 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
781 return 0;
782
783 return move_freepages(zone, start_page, end_page, migratetype);
784}
785
b2a0ac88 786/* Remove an element from the buddy allocator from the fallback list */
0ac3a409
MG
787static inline struct page *
788__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
b2a0ac88
MG
789{
790 struct free_area * area;
791 int current_order;
792 struct page *page;
793 int migratetype, i;
794
795 /* Find the largest possible block of pages in the other list */
796 for (current_order = MAX_ORDER-1; current_order >= order;
797 --current_order) {
798 for (i = 0; i < MIGRATE_TYPES - 1; i++) {
799 migratetype = fallbacks[start_migratetype][i];
800
56fd56b8
MG
801 /* MIGRATE_RESERVE handled later if necessary */
802 if (migratetype == MIGRATE_RESERVE)
803 continue;
e010487d 804
b2a0ac88
MG
805 area = &(zone->free_area[current_order]);
806 if (list_empty(&area->free_list[migratetype]))
807 continue;
808
809 page = list_entry(area->free_list[migratetype].next,
810 struct page, lru);
811 area->nr_free--;
812
813 /*
c361be55 814 * If breaking a large block of pages, move all free
46dafbca
MG
815 * pages to the preferred allocation list. If falling
816 * back for a reclaimable kernel allocation, be more
817 * agressive about taking ownership of free pages
b2a0ac88 818 */
d9c23400 819 if (unlikely(current_order >= (pageblock_order >> 1)) ||
dd5d241e
MG
820 start_migratetype == MIGRATE_RECLAIMABLE ||
821 page_group_by_mobility_disabled) {
46dafbca
MG
822 unsigned long pages;
823 pages = move_freepages_block(zone, page,
824 start_migratetype);
825
826 /* Claim the whole block if over half of it is free */
dd5d241e
MG
827 if (pages >= (1 << (pageblock_order-1)) ||
828 page_group_by_mobility_disabled)
46dafbca
MG
829 set_pageblock_migratetype(page,
830 start_migratetype);
831
b2a0ac88 832 migratetype = start_migratetype;
c361be55 833 }
b2a0ac88
MG
834
835 /* Remove the page from the freelists */
836 list_del(&page->lru);
837 rmv_page_order(page);
b2a0ac88 838
d9c23400 839 if (current_order == pageblock_order)
b2a0ac88
MG
840 set_pageblock_migratetype(page,
841 start_migratetype);
842
843 expand(zone, page, order, current_order, area, migratetype);
844 return page;
845 }
846 }
847
728ec980 848 return NULL;
b2a0ac88
MG
849}
850
56fd56b8 851/*
1da177e4
LT
852 * Do the hard work of removing an element from the buddy allocator.
853 * Call me with the zone->lock already held.
854 */
b2a0ac88
MG
855static struct page *__rmqueue(struct zone *zone, unsigned int order,
856 int migratetype)
1da177e4 857{
1da177e4
LT
858 struct page *page;
859
728ec980 860retry_reserve:
56fd56b8 861 page = __rmqueue_smallest(zone, order, migratetype);
b2a0ac88 862
728ec980 863 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
56fd56b8 864 page = __rmqueue_fallback(zone, order, migratetype);
b2a0ac88 865
728ec980
MG
866 /*
867 * Use MIGRATE_RESERVE rather than fail an allocation. goto
868 * is used because __rmqueue_smallest is an inline function
869 * and we want just one call site
870 */
871 if (!page) {
872 migratetype = MIGRATE_RESERVE;
873 goto retry_reserve;
874 }
875 }
876
b2a0ac88 877 return page;
1da177e4
LT
878}
879
880/*
881 * Obtain a specified number of elements from the buddy allocator, all under
882 * a single hold of the lock, for efficiency. Add them to the supplied list.
883 * Returns the number of new pages which were placed at *list.
884 */
885static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 886 unsigned long count, struct list_head *list,
e084b2d9 887 int migratetype, int cold)
1da177e4 888{
1da177e4 889 int i;
1da177e4 890
c54ad30c 891 spin_lock(&zone->lock);
1da177e4 892 for (i = 0; i < count; ++i) {
b2a0ac88 893 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 894 if (unlikely(page == NULL))
1da177e4 895 break;
81eabcbe
MG
896
897 /*
898 * Split buddy pages returned by expand() are received here
899 * in physical page order. The page is added to the callers and
900 * list and the list head then moves forward. From the callers
901 * perspective, the linked list is ordered by page number in
902 * some conditions. This is useful for IO devices that can
903 * merge IO requests if the physical pages are ordered
904 * properly.
905 */
e084b2d9
MG
906 if (likely(cold == 0))
907 list_add(&page->lru, list);
908 else
909 list_add_tail(&page->lru, list);
535131e6 910 set_page_private(page, migratetype);
81eabcbe 911 list = &page->lru;
1da177e4 912 }
f2260e6b 913 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 914 spin_unlock(&zone->lock);
085cc7d5 915 return i;
1da177e4
LT
916}
917
4ae7c039 918#ifdef CONFIG_NUMA
8fce4d8e 919/*
4037d452
CL
920 * Called from the vmstat counter updater to drain pagesets of this
921 * currently executing processor on remote nodes after they have
922 * expired.
923 *
879336c3
CL
924 * Note that this function must be called with the thread pinned to
925 * a single processor.
8fce4d8e 926 */
4037d452 927void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 928{
4ae7c039 929 unsigned long flags;
4037d452 930 int to_drain;
4ae7c039 931
4037d452
CL
932 local_irq_save(flags);
933 if (pcp->count >= pcp->batch)
934 to_drain = pcp->batch;
935 else
936 to_drain = pcp->count;
937 free_pages_bulk(zone, to_drain, &pcp->list, 0);
938 pcp->count -= to_drain;
939 local_irq_restore(flags);
4ae7c039
CL
940}
941#endif
942
9f8f2172
CL
943/*
944 * Drain pages of the indicated processor.
945 *
946 * The processor must either be the current processor and the
947 * thread pinned to the current processor or a processor that
948 * is not online.
949 */
950static void drain_pages(unsigned int cpu)
1da177e4 951{
c54ad30c 952 unsigned long flags;
1da177e4 953 struct zone *zone;
1da177e4 954
ee99c71c 955 for_each_populated_zone(zone) {
1da177e4 956 struct per_cpu_pageset *pset;
3dfa5721 957 struct per_cpu_pages *pcp;
1da177e4 958
e7c8d5c9 959 pset = zone_pcp(zone, cpu);
3dfa5721
CL
960
961 pcp = &pset->pcp;
962 local_irq_save(flags);
963 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
964 pcp->count = 0;
965 local_irq_restore(flags);
1da177e4
LT
966 }
967}
1da177e4 968
9f8f2172
CL
969/*
970 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
971 */
972void drain_local_pages(void *arg)
973{
974 drain_pages(smp_processor_id());
975}
976
977/*
978 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
979 */
980void drain_all_pages(void)
981{
15c8b6c1 982 on_each_cpu(drain_local_pages, NULL, 1);
9f8f2172
CL
983}
984
296699de 985#ifdef CONFIG_HIBERNATION
1da177e4
LT
986
987void mark_free_pages(struct zone *zone)
988{
f623f0db
RW
989 unsigned long pfn, max_zone_pfn;
990 unsigned long flags;
b2a0ac88 991 int order, t;
1da177e4
LT
992 struct list_head *curr;
993
994 if (!zone->spanned_pages)
995 return;
996
997 spin_lock_irqsave(&zone->lock, flags);
f623f0db
RW
998
999 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1000 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1001 if (pfn_valid(pfn)) {
1002 struct page *page = pfn_to_page(pfn);
1003
7be98234
RW
1004 if (!swsusp_page_is_forbidden(page))
1005 swsusp_unset_page_free(page);
f623f0db 1006 }
1da177e4 1007
b2a0ac88
MG
1008 for_each_migratetype_order(order, t) {
1009 list_for_each(curr, &zone->free_area[order].free_list[t]) {
f623f0db 1010 unsigned long i;
1da177e4 1011
f623f0db
RW
1012 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1013 for (i = 0; i < (1UL << order); i++)
7be98234 1014 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 1015 }
b2a0ac88 1016 }
1da177e4
LT
1017 spin_unlock_irqrestore(&zone->lock, flags);
1018}
e2c55dc8 1019#endif /* CONFIG_PM */
1da177e4 1020
1da177e4
LT
1021/*
1022 * Free a 0-order page
1023 */
920c7a5d 1024static void free_hot_cold_page(struct page *page, int cold)
1da177e4
LT
1025{
1026 struct zone *zone = page_zone(page);
1027 struct per_cpu_pages *pcp;
1028 unsigned long flags;
451ea25d 1029 int wasMlocked = __TestClearPageMlocked(page);
1da177e4 1030
b1eeab67
VN
1031 kmemcheck_free_shadow(page, 0);
1032
1da177e4
LT
1033 if (PageAnon(page))
1034 page->mapping = NULL;
224abf92 1035 if (free_pages_check(page))
689bcebf
HD
1036 return;
1037
3ac7fe5a 1038 if (!PageHighMem(page)) {
9858db50 1039 debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
3ac7fe5a
TG
1040 debug_check_no_obj_freed(page_address(page), PAGE_SIZE);
1041 }
dafb1367 1042 arch_free_page(page, 0);
689bcebf
HD
1043 kernel_map_pages(page, 1, 0);
1044
3dfa5721 1045 pcp = &zone_pcp(zone, get_cpu())->pcp;
974709bd 1046 set_page_private(page, get_pageblock_migratetype(page));
1da177e4 1047 local_irq_save(flags);
c277331d 1048 if (unlikely(wasMlocked))
da456f14 1049 free_page_mlock(page);
f8891e5e 1050 __count_vm_event(PGFREE);
da456f14 1051
3dfa5721
CL
1052 if (cold)
1053 list_add_tail(&page->lru, &pcp->list);
1054 else
1055 list_add(&page->lru, &pcp->list);
1da177e4 1056 pcp->count++;
48db57f8
NP
1057 if (pcp->count >= pcp->high) {
1058 free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
1059 pcp->count -= pcp->batch;
1060 }
1da177e4
LT
1061 local_irq_restore(flags);
1062 put_cpu();
1063}
1064
920c7a5d 1065void free_hot_page(struct page *page)
1da177e4
LT
1066{
1067 free_hot_cold_page(page, 0);
1068}
1069
920c7a5d 1070void free_cold_page(struct page *page)
1da177e4
LT
1071{
1072 free_hot_cold_page(page, 1);
1073}
1074
8dfcc9ba
NP
1075/*
1076 * split_page takes a non-compound higher-order page, and splits it into
1077 * n (1<<order) sub-pages: page[0..n]
1078 * Each sub-page must be freed individually.
1079 *
1080 * Note: this is probably too low level an operation for use in drivers.
1081 * Please consult with lkml before using this in your driver.
1082 */
1083void split_page(struct page *page, unsigned int order)
1084{
1085 int i;
1086
725d704e
NP
1087 VM_BUG_ON(PageCompound(page));
1088 VM_BUG_ON(!page_count(page));
b1eeab67
VN
1089
1090#ifdef CONFIG_KMEMCHECK
1091 /*
1092 * Split shadow pages too, because free(page[0]) would
1093 * otherwise free the whole shadow.
1094 */
1095 if (kmemcheck_page_is_tracked(page))
1096 split_page(virt_to_page(page[0].shadow), order);
1097#endif
1098
7835e98b
NP
1099 for (i = 1; i < (1 << order); i++)
1100 set_page_refcounted(page + i);
8dfcc9ba 1101}
8dfcc9ba 1102
1da177e4
LT
1103/*
1104 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1105 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1106 * or two.
1107 */
0a15c3e9
MG
1108static inline
1109struct page *buffered_rmqueue(struct zone *preferred_zone,
3dd28266
MG
1110 struct zone *zone, int order, gfp_t gfp_flags,
1111 int migratetype)
1da177e4
LT
1112{
1113 unsigned long flags;
689bcebf 1114 struct page *page;
1da177e4 1115 int cold = !!(gfp_flags & __GFP_COLD);
a74609fa 1116 int cpu;
1da177e4 1117
689bcebf 1118again:
a74609fa 1119 cpu = get_cpu();
48db57f8 1120 if (likely(order == 0)) {
1da177e4
LT
1121 struct per_cpu_pages *pcp;
1122
3dfa5721 1123 pcp = &zone_pcp(zone, cpu)->pcp;
1da177e4 1124 local_irq_save(flags);
a74609fa 1125 if (!pcp->count) {
941c7105 1126 pcp->count = rmqueue_bulk(zone, 0,
e084b2d9
MG
1127 pcp->batch, &pcp->list,
1128 migratetype, cold);
a74609fa
NP
1129 if (unlikely(!pcp->count))
1130 goto failed;
1da177e4 1131 }
b92a6edd 1132
535131e6 1133 /* Find a page of the appropriate migrate type */
3dfa5721
CL
1134 if (cold) {
1135 list_for_each_entry_reverse(page, &pcp->list, lru)
1136 if (page_private(page) == migratetype)
1137 break;
1138 } else {
1139 list_for_each_entry(page, &pcp->list, lru)
1140 if (page_private(page) == migratetype)
1141 break;
1142 }
535131e6 1143
b92a6edd
MG
1144 /* Allocate more to the pcp list if necessary */
1145 if (unlikely(&page->lru == &pcp->list)) {
6fb332fa
SL
1146 int get_one_page = 0;
1147
535131e6 1148 pcp->count += rmqueue_bulk(zone, 0,
e084b2d9
MG
1149 pcp->batch, &pcp->list,
1150 migratetype, cold);
6fb332fa
SL
1151 list_for_each_entry(page, &pcp->list, lru) {
1152 if (get_pageblock_migratetype(page) !=
1153 MIGRATE_ISOLATE) {
1154 get_one_page = 1;
1155 break;
1156 }
1157 }
1158 if (!get_one_page)
1159 goto failed;
535131e6 1160 }
b92a6edd
MG
1161
1162 list_del(&page->lru);
1163 pcp->count--;
7fb1d9fc 1164 } else {
dab48dab
AM
1165 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1166 /*
1167 * __GFP_NOFAIL is not to be used in new code.
1168 *
1169 * All __GFP_NOFAIL callers should be fixed so that they
1170 * properly detect and handle allocation failures.
1171 *
1172 * We most definitely don't want callers attempting to
4923abf9 1173 * allocate greater than order-1 page units with
dab48dab
AM
1174 * __GFP_NOFAIL.
1175 */
4923abf9 1176 WARN_ON_ONCE(order > 1);
dab48dab 1177 }
1da177e4 1178 spin_lock_irqsave(&zone->lock, flags);
b2a0ac88 1179 page = __rmqueue(zone, order, migratetype);
f2260e6b 1180 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
a74609fa
NP
1181 spin_unlock(&zone->lock);
1182 if (!page)
1183 goto failed;
1da177e4
LT
1184 }
1185
f8891e5e 1186 __count_zone_vm_events(PGALLOC, zone, 1 << order);
18ea7e71 1187 zone_statistics(preferred_zone, zone);
a74609fa
NP
1188 local_irq_restore(flags);
1189 put_cpu();
1da177e4 1190
725d704e 1191 VM_BUG_ON(bad_range(zone, page));
17cf4406 1192 if (prep_new_page(page, order, gfp_flags))
a74609fa 1193 goto again;
1da177e4 1194 return page;
a74609fa
NP
1195
1196failed:
1197 local_irq_restore(flags);
1198 put_cpu();
1199 return NULL;
1da177e4
LT
1200}
1201
41858966
MG
1202/* The ALLOC_WMARK bits are used as an index to zone->watermark */
1203#define ALLOC_WMARK_MIN WMARK_MIN
1204#define ALLOC_WMARK_LOW WMARK_LOW
1205#define ALLOC_WMARK_HIGH WMARK_HIGH
1206#define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
1207
1208/* Mask to get the watermark bits */
1209#define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
1210
3148890b
NP
1211#define ALLOC_HARDER 0x10 /* try to alloc harder */
1212#define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1213#define ALLOC_CPUSET 0x40 /* check for correct cpuset */
7fb1d9fc 1214
933e312e
AM
1215#ifdef CONFIG_FAIL_PAGE_ALLOC
1216
1217static struct fail_page_alloc_attr {
1218 struct fault_attr attr;
1219
1220 u32 ignore_gfp_highmem;
1221 u32 ignore_gfp_wait;
54114994 1222 u32 min_order;
933e312e
AM
1223
1224#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1225
1226 struct dentry *ignore_gfp_highmem_file;
1227 struct dentry *ignore_gfp_wait_file;
54114994 1228 struct dentry *min_order_file;
933e312e
AM
1229
1230#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1231
1232} fail_page_alloc = {
1233 .attr = FAULT_ATTR_INITIALIZER,
6b1b60f4
DM
1234 .ignore_gfp_wait = 1,
1235 .ignore_gfp_highmem = 1,
54114994 1236 .min_order = 1,
933e312e
AM
1237};
1238
1239static int __init setup_fail_page_alloc(char *str)
1240{
1241 return setup_fault_attr(&fail_page_alloc.attr, str);
1242}
1243__setup("fail_page_alloc=", setup_fail_page_alloc);
1244
1245static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1246{
54114994
AM
1247 if (order < fail_page_alloc.min_order)
1248 return 0;
933e312e
AM
1249 if (gfp_mask & __GFP_NOFAIL)
1250 return 0;
1251 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1252 return 0;
1253 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1254 return 0;
1255
1256 return should_fail(&fail_page_alloc.attr, 1 << order);
1257}
1258
1259#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1260
1261static int __init fail_page_alloc_debugfs(void)
1262{
1263 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1264 struct dentry *dir;
1265 int err;
1266
1267 err = init_fault_attr_dentries(&fail_page_alloc.attr,
1268 "fail_page_alloc");
1269 if (err)
1270 return err;
1271 dir = fail_page_alloc.attr.dentries.dir;
1272
1273 fail_page_alloc.ignore_gfp_wait_file =
1274 debugfs_create_bool("ignore-gfp-wait", mode, dir,
1275 &fail_page_alloc.ignore_gfp_wait);
1276
1277 fail_page_alloc.ignore_gfp_highmem_file =
1278 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1279 &fail_page_alloc.ignore_gfp_highmem);
54114994
AM
1280 fail_page_alloc.min_order_file =
1281 debugfs_create_u32("min-order", mode, dir,
1282 &fail_page_alloc.min_order);
933e312e
AM
1283
1284 if (!fail_page_alloc.ignore_gfp_wait_file ||
54114994
AM
1285 !fail_page_alloc.ignore_gfp_highmem_file ||
1286 !fail_page_alloc.min_order_file) {
933e312e
AM
1287 err = -ENOMEM;
1288 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1289 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
54114994 1290 debugfs_remove(fail_page_alloc.min_order_file);
933e312e
AM
1291 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1292 }
1293
1294 return err;
1295}
1296
1297late_initcall(fail_page_alloc_debugfs);
1298
1299#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1300
1301#else /* CONFIG_FAIL_PAGE_ALLOC */
1302
1303static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1304{
1305 return 0;
1306}
1307
1308#endif /* CONFIG_FAIL_PAGE_ALLOC */
1309
1da177e4
LT
1310/*
1311 * Return 1 if free pages are above 'mark'. This takes into account the order
1312 * of the allocation.
1313 */
1314int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
7fb1d9fc 1315 int classzone_idx, int alloc_flags)
1da177e4
LT
1316{
1317 /* free_pages my go negative - that's OK */
d23ad423
CL
1318 long min = mark;
1319 long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1da177e4
LT
1320 int o;
1321
7fb1d9fc 1322 if (alloc_flags & ALLOC_HIGH)
1da177e4 1323 min -= min / 2;
7fb1d9fc 1324 if (alloc_flags & ALLOC_HARDER)
1da177e4
LT
1325 min -= min / 4;
1326
1327 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1328 return 0;
1329 for (o = 0; o < order; o++) {
1330 /* At the next order, this order's pages become unavailable */
1331 free_pages -= z->free_area[o].nr_free << o;
1332
1333 /* Require fewer higher order pages to be free */
1334 min >>= 1;
1335
1336 if (free_pages <= min)
1337 return 0;
1338 }
1339 return 1;
1340}
1341
9276b1bc
PJ
1342#ifdef CONFIG_NUMA
1343/*
1344 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1345 * skip over zones that are not allowed by the cpuset, or that have
1346 * been recently (in last second) found to be nearly full. See further
1347 * comments in mmzone.h. Reduces cache footprint of zonelist scans
183ff22b 1348 * that have to skip over a lot of full or unallowed zones.
9276b1bc
PJ
1349 *
1350 * If the zonelist cache is present in the passed in zonelist, then
1351 * returns a pointer to the allowed node mask (either the current
37b07e41 1352 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
9276b1bc
PJ
1353 *
1354 * If the zonelist cache is not available for this zonelist, does
1355 * nothing and returns NULL.
1356 *
1357 * If the fullzones BITMAP in the zonelist cache is stale (more than
1358 * a second since last zap'd) then we zap it out (clear its bits.)
1359 *
1360 * We hold off even calling zlc_setup, until after we've checked the
1361 * first zone in the zonelist, on the theory that most allocations will
1362 * be satisfied from that first zone, so best to examine that zone as
1363 * quickly as we can.
1364 */
1365static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1366{
1367 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1368 nodemask_t *allowednodes; /* zonelist_cache approximation */
1369
1370 zlc = zonelist->zlcache_ptr;
1371 if (!zlc)
1372 return NULL;
1373
f05111f5 1374 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
9276b1bc
PJ
1375 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1376 zlc->last_full_zap = jiffies;
1377 }
1378
1379 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1380 &cpuset_current_mems_allowed :
37b07e41 1381 &node_states[N_HIGH_MEMORY];
9276b1bc
PJ
1382 return allowednodes;
1383}
1384
1385/*
1386 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1387 * if it is worth looking at further for free memory:
1388 * 1) Check that the zone isn't thought to be full (doesn't have its
1389 * bit set in the zonelist_cache fullzones BITMAP).
1390 * 2) Check that the zones node (obtained from the zonelist_cache
1391 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1392 * Return true (non-zero) if zone is worth looking at further, or
1393 * else return false (zero) if it is not.
1394 *
1395 * This check -ignores- the distinction between various watermarks,
1396 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1397 * found to be full for any variation of these watermarks, it will
1398 * be considered full for up to one second by all requests, unless
1399 * we are so low on memory on all allowed nodes that we are forced
1400 * into the second scan of the zonelist.
1401 *
1402 * In the second scan we ignore this zonelist cache and exactly
1403 * apply the watermarks to all zones, even it is slower to do so.
1404 * We are low on memory in the second scan, and should leave no stone
1405 * unturned looking for a free page.
1406 */
dd1a239f 1407static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1408 nodemask_t *allowednodes)
1409{
1410 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1411 int i; /* index of *z in zonelist zones */
1412 int n; /* node that zone *z is on */
1413
1414 zlc = zonelist->zlcache_ptr;
1415 if (!zlc)
1416 return 1;
1417
dd1a239f 1418 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1419 n = zlc->z_to_n[i];
1420
1421 /* This zone is worth trying if it is allowed but not full */
1422 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1423}
1424
1425/*
1426 * Given 'z' scanning a zonelist, set the corresponding bit in
1427 * zlc->fullzones, so that subsequent attempts to allocate a page
1428 * from that zone don't waste time re-examining it.
1429 */
dd1a239f 1430static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1431{
1432 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1433 int i; /* index of *z in zonelist zones */
1434
1435 zlc = zonelist->zlcache_ptr;
1436 if (!zlc)
1437 return;
1438
dd1a239f 1439 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1440
1441 set_bit(i, zlc->fullzones);
1442}
1443
1444#else /* CONFIG_NUMA */
1445
1446static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1447{
1448 return NULL;
1449}
1450
dd1a239f 1451static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1452 nodemask_t *allowednodes)
1453{
1454 return 1;
1455}
1456
dd1a239f 1457static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1458{
1459}
1460#endif /* CONFIG_NUMA */
1461
7fb1d9fc 1462/*
0798e519 1463 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
1464 * a page.
1465 */
1466static struct page *
19770b32 1467get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
5117f45d 1468 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
3dd28266 1469 struct zone *preferred_zone, int migratetype)
753ee728 1470{
dd1a239f 1471 struct zoneref *z;
7fb1d9fc 1472 struct page *page = NULL;
54a6eb5c 1473 int classzone_idx;
5117f45d 1474 struct zone *zone;
9276b1bc
PJ
1475 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1476 int zlc_active = 0; /* set if using zonelist_cache */
1477 int did_zlc_setup = 0; /* just call zlc_setup() one time */
54a6eb5c 1478
19770b32 1479 classzone_idx = zone_idx(preferred_zone);
9276b1bc 1480zonelist_scan:
7fb1d9fc 1481 /*
9276b1bc 1482 * Scan zonelist, looking for a zone with enough free.
7fb1d9fc
RS
1483 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1484 */
19770b32
MG
1485 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1486 high_zoneidx, nodemask) {
9276b1bc
PJ
1487 if (NUMA_BUILD && zlc_active &&
1488 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1489 continue;
7fb1d9fc 1490 if ((alloc_flags & ALLOC_CPUSET) &&
02a0e53d 1491 !cpuset_zone_allowed_softwall(zone, gfp_mask))
9276b1bc 1492 goto try_next_zone;
7fb1d9fc 1493
41858966 1494 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
7fb1d9fc 1495 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
3148890b 1496 unsigned long mark;
fa5e084e
MG
1497 int ret;
1498
41858966 1499 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
fa5e084e
MG
1500 if (zone_watermark_ok(zone, order, mark,
1501 classzone_idx, alloc_flags))
1502 goto try_this_zone;
1503
1504 if (zone_reclaim_mode == 0)
1505 goto this_zone_full;
1506
1507 ret = zone_reclaim(zone, gfp_mask, order);
1508 switch (ret) {
1509 case ZONE_RECLAIM_NOSCAN:
1510 /* did not scan */
1511 goto try_next_zone;
1512 case ZONE_RECLAIM_FULL:
1513 /* scanned but unreclaimable */
1514 goto this_zone_full;
1515 default:
1516 /* did we reclaim enough */
1517 if (!zone_watermark_ok(zone, order, mark,
1518 classzone_idx, alloc_flags))
9276b1bc 1519 goto this_zone_full;
0798e519 1520 }
7fb1d9fc
RS
1521 }
1522
fa5e084e 1523try_this_zone:
3dd28266
MG
1524 page = buffered_rmqueue(preferred_zone, zone, order,
1525 gfp_mask, migratetype);
0798e519 1526 if (page)
7fb1d9fc 1527 break;
9276b1bc
PJ
1528this_zone_full:
1529 if (NUMA_BUILD)
1530 zlc_mark_zone_full(zonelist, z);
1531try_next_zone:
62bc62a8 1532 if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
d395b734
MG
1533 /*
1534 * we do zlc_setup after the first zone is tried but only
1535 * if there are multiple nodes make it worthwhile
1536 */
9276b1bc
PJ
1537 allowednodes = zlc_setup(zonelist, alloc_flags);
1538 zlc_active = 1;
1539 did_zlc_setup = 1;
1540 }
54a6eb5c 1541 }
9276b1bc
PJ
1542
1543 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1544 /* Disable zlc cache for second zonelist scan */
1545 zlc_active = 0;
1546 goto zonelist_scan;
1547 }
7fb1d9fc 1548 return page;
753ee728
MH
1549}
1550
11e33f6a
MG
1551static inline int
1552should_alloc_retry(gfp_t gfp_mask, unsigned int order,
1553 unsigned long pages_reclaimed)
1da177e4 1554{
11e33f6a
MG
1555 /* Do not loop if specifically requested */
1556 if (gfp_mask & __GFP_NORETRY)
1557 return 0;
1da177e4 1558
11e33f6a
MG
1559 /*
1560 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1561 * means __GFP_NOFAIL, but that may not be true in other
1562 * implementations.
1563 */
1564 if (order <= PAGE_ALLOC_COSTLY_ORDER)
1565 return 1;
1566
1567 /*
1568 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1569 * specified, then we retry until we no longer reclaim any pages
1570 * (above), or we've reclaimed an order of pages at least as
1571 * large as the allocation's order. In both cases, if the
1572 * allocation still fails, we stop retrying.
1573 */
1574 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
1575 return 1;
cf40bd16 1576
11e33f6a
MG
1577 /*
1578 * Don't let big-order allocations loop unless the caller
1579 * explicitly requests that.
1580 */
1581 if (gfp_mask & __GFP_NOFAIL)
1582 return 1;
1da177e4 1583
11e33f6a
MG
1584 return 0;
1585}
933e312e 1586
11e33f6a
MG
1587static inline struct page *
1588__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
1589 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
1590 nodemask_t *nodemask, struct zone *preferred_zone,
1591 int migratetype)
11e33f6a
MG
1592{
1593 struct page *page;
1594
1595 /* Acquire the OOM killer lock for the zones in zonelist */
1596 if (!try_set_zone_oom(zonelist, gfp_mask)) {
1597 schedule_timeout_uninterruptible(1);
1da177e4
LT
1598 return NULL;
1599 }
6b1de916 1600
11e33f6a
MG
1601 /*
1602 * Go through the zonelist yet one more time, keep very high watermark
1603 * here, this is only to catch a parallel oom killing, we must fail if
1604 * we're still under heavy pressure.
1605 */
1606 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1607 order, zonelist, high_zoneidx,
5117f45d 1608 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
3dd28266 1609 preferred_zone, migratetype);
7fb1d9fc 1610 if (page)
11e33f6a
MG
1611 goto out;
1612
1613 /* The OOM killer will not help higher order allocs */
82553a93 1614 if (order > PAGE_ALLOC_COSTLY_ORDER && !(gfp_mask & __GFP_NOFAIL))
11e33f6a
MG
1615 goto out;
1616
1617 /* Exhausted what can be done so it's blamo time */
1618 out_of_memory(zonelist, gfp_mask, order);
1619
1620out:
1621 clear_zonelist_oom(zonelist, gfp_mask);
1622 return page;
1623}
1624
1625/* The really slow allocator path where we enter direct reclaim */
1626static inline struct page *
1627__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
1628 struct zonelist *zonelist, enum zone_type high_zoneidx,
5117f45d 1629 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
3dd28266 1630 int migratetype, unsigned long *did_some_progress)
11e33f6a
MG
1631{
1632 struct page *page = NULL;
1633 struct reclaim_state reclaim_state;
1634 struct task_struct *p = current;
1635
1636 cond_resched();
1637
1638 /* We now go into synchronous reclaim */
1639 cpuset_memory_pressure_bump();
11e33f6a
MG
1640 p->flags |= PF_MEMALLOC;
1641 lockdep_set_current_reclaim_state(gfp_mask);
1642 reclaim_state.reclaimed_slab = 0;
1643 p->reclaim_state = &reclaim_state;
1644
1645 *did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
1646
1647 p->reclaim_state = NULL;
1648 lockdep_clear_current_reclaim_state();
1649 p->flags &= ~PF_MEMALLOC;
1650
1651 cond_resched();
1652
1653 if (order != 0)
1654 drain_all_pages();
1655
1656 if (likely(*did_some_progress))
1657 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 1658 zonelist, high_zoneidx,
3dd28266
MG
1659 alloc_flags, preferred_zone,
1660 migratetype);
11e33f6a
MG
1661 return page;
1662}
1663
1da177e4 1664/*
11e33f6a
MG
1665 * This is called in the allocator slow-path if the allocation request is of
1666 * sufficient urgency to ignore watermarks and take other desperate measures
1da177e4 1667 */
11e33f6a
MG
1668static inline struct page *
1669__alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
1670 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
1671 nodemask_t *nodemask, struct zone *preferred_zone,
1672 int migratetype)
11e33f6a
MG
1673{
1674 struct page *page;
1675
1676 do {
1677 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 1678 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
3dd28266 1679 preferred_zone, migratetype);
11e33f6a
MG
1680
1681 if (!page && gfp_mask & __GFP_NOFAIL)
8aa7e847 1682 congestion_wait(BLK_RW_ASYNC, HZ/50);
11e33f6a
MG
1683 } while (!page && (gfp_mask & __GFP_NOFAIL));
1684
1685 return page;
1686}
1687
1688static inline
1689void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
1690 enum zone_type high_zoneidx)
1da177e4 1691{
dd1a239f
MG
1692 struct zoneref *z;
1693 struct zone *zone;
1da177e4 1694
11e33f6a
MG
1695 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
1696 wakeup_kswapd(zone, order);
1697}
cf40bd16 1698
341ce06f
PZ
1699static inline int
1700gfp_to_alloc_flags(gfp_t gfp_mask)
1701{
1702 struct task_struct *p = current;
1703 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1704 const gfp_t wait = gfp_mask & __GFP_WAIT;
1da177e4 1705
a56f57ff
MG
1706 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
1707 BUILD_BUG_ON(__GFP_HIGH != ALLOC_HIGH);
933e312e 1708
341ce06f
PZ
1709 /*
1710 * The caller may dip into page reserves a bit more if the caller
1711 * cannot run direct reclaim, or if the caller has realtime scheduling
1712 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1713 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1714 */
a56f57ff 1715 alloc_flags |= (gfp_mask & __GFP_HIGH);
1da177e4 1716
341ce06f
PZ
1717 if (!wait) {
1718 alloc_flags |= ALLOC_HARDER;
523b9458 1719 /*
341ce06f
PZ
1720 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1721 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
523b9458 1722 */
341ce06f
PZ
1723 alloc_flags &= ~ALLOC_CPUSET;
1724 } else if (unlikely(rt_task(p)))
1725 alloc_flags |= ALLOC_HARDER;
1726
1727 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
1728 if (!in_interrupt() &&
1729 ((p->flags & PF_MEMALLOC) ||
1730 unlikely(test_thread_flag(TIF_MEMDIE))))
1731 alloc_flags |= ALLOC_NO_WATERMARKS;
1da177e4 1732 }
6b1de916 1733
341ce06f
PZ
1734 return alloc_flags;
1735}
1736
11e33f6a
MG
1737static inline struct page *
1738__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
1739 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
1740 nodemask_t *nodemask, struct zone *preferred_zone,
1741 int migratetype)
11e33f6a
MG
1742{
1743 const gfp_t wait = gfp_mask & __GFP_WAIT;
1744 struct page *page = NULL;
1745 int alloc_flags;
1746 unsigned long pages_reclaimed = 0;
1747 unsigned long did_some_progress;
1748 struct task_struct *p = current;
1da177e4 1749
72807a74
MG
1750 /*
1751 * In the slowpath, we sanity check order to avoid ever trying to
1752 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
1753 * be using allocators in order of preference for an area that is
1754 * too large.
1755 */
1fc28b70
MG
1756 if (order >= MAX_ORDER) {
1757 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 1758 return NULL;
1fc28b70 1759 }
1da177e4 1760
952f3b51
CL
1761 /*
1762 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1763 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1764 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1765 * using a larger set of nodes after it has established that the
1766 * allowed per node queues are empty and that nodes are
1767 * over allocated.
1768 */
1769 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1770 goto nopage;
1771
11e33f6a 1772 wake_all_kswapd(order, zonelist, high_zoneidx);
1da177e4 1773
b259fbde 1774restart:
9bf2229f 1775 /*
7fb1d9fc
RS
1776 * OK, we're below the kswapd watermark and have kicked background
1777 * reclaim. Now things get more complex, so set up alloc_flags according
1778 * to how we want to proceed.
9bf2229f 1779 */
341ce06f 1780 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 1781
341ce06f 1782 /* This is the last chance, in general, before the goto nopage. */
19770b32 1783 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
341ce06f
PZ
1784 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
1785 preferred_zone, migratetype);
7fb1d9fc
RS
1786 if (page)
1787 goto got_pg;
1da177e4 1788
b43a57bb 1789rebalance:
11e33f6a 1790 /* Allocate without watermarks if the context allows */
341ce06f
PZ
1791 if (alloc_flags & ALLOC_NO_WATERMARKS) {
1792 page = __alloc_pages_high_priority(gfp_mask, order,
1793 zonelist, high_zoneidx, nodemask,
1794 preferred_zone, migratetype);
1795 if (page)
1796 goto got_pg;
1da177e4
LT
1797 }
1798
1799 /* Atomic allocations - we can't balance anything */
1800 if (!wait)
1801 goto nopage;
1802
341ce06f
PZ
1803 /* Avoid recursion of direct reclaim */
1804 if (p->flags & PF_MEMALLOC)
1805 goto nopage;
1806
6583bb64
DR
1807 /* Avoid allocations with no watermarks from looping endlessly */
1808 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
1809 goto nopage;
1810
11e33f6a
MG
1811 /* Try direct reclaim and then allocating */
1812 page = __alloc_pages_direct_reclaim(gfp_mask, order,
1813 zonelist, high_zoneidx,
1814 nodemask,
5117f45d 1815 alloc_flags, preferred_zone,
3dd28266 1816 migratetype, &did_some_progress);
11e33f6a
MG
1817 if (page)
1818 goto got_pg;
1da177e4 1819
e33c3b5e 1820 /*
11e33f6a
MG
1821 * If we failed to make any progress reclaiming, then we are
1822 * running out of options and have to consider going OOM
e33c3b5e 1823 */
11e33f6a
MG
1824 if (!did_some_progress) {
1825 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
7f33d49a
RW
1826 if (oom_killer_disabled)
1827 goto nopage;
11e33f6a
MG
1828 page = __alloc_pages_may_oom(gfp_mask, order,
1829 zonelist, high_zoneidx,
3dd28266
MG
1830 nodemask, preferred_zone,
1831 migratetype);
11e33f6a
MG
1832 if (page)
1833 goto got_pg;
1da177e4 1834
11e33f6a 1835 /*
82553a93
DR
1836 * The OOM killer does not trigger for high-order
1837 * ~__GFP_NOFAIL allocations so if no progress is being
1838 * made, there are no other options and retrying is
1839 * unlikely to help.
11e33f6a 1840 */
82553a93
DR
1841 if (order > PAGE_ALLOC_COSTLY_ORDER &&
1842 !(gfp_mask & __GFP_NOFAIL))
11e33f6a 1843 goto nopage;
e2c55dc8 1844
ff0ceb9d
DR
1845 goto restart;
1846 }
1da177e4
LT
1847 }
1848
11e33f6a 1849 /* Check if we should retry the allocation */
a41f24ea 1850 pages_reclaimed += did_some_progress;
11e33f6a
MG
1851 if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) {
1852 /* Wait for some write requests to complete then retry */
8aa7e847 1853 congestion_wait(BLK_RW_ASYNC, HZ/50);
1da177e4
LT
1854 goto rebalance;
1855 }
1856
1857nopage:
1858 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1859 printk(KERN_WARNING "%s: page allocation failure."
1860 " order:%d, mode:0x%x\n",
1861 p->comm, order, gfp_mask);
1862 dump_stack();
578c2fd6 1863 show_mem();
1da177e4 1864 }
b1eeab67 1865 return page;
1da177e4 1866got_pg:
b1eeab67
VN
1867 if (kmemcheck_enabled)
1868 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
1da177e4 1869 return page;
11e33f6a 1870
1da177e4 1871}
11e33f6a
MG
1872
1873/*
1874 * This is the 'heart' of the zoned buddy allocator.
1875 */
1876struct page *
1877__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
1878 struct zonelist *zonelist, nodemask_t *nodemask)
1879{
1880 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
5117f45d 1881 struct zone *preferred_zone;
11e33f6a 1882 struct page *page;
3dd28266 1883 int migratetype = allocflags_to_migratetype(gfp_mask);
11e33f6a 1884
dcce284a
BH
1885 gfp_mask &= gfp_allowed_mask;
1886
11e33f6a
MG
1887 lockdep_trace_alloc(gfp_mask);
1888
1889 might_sleep_if(gfp_mask & __GFP_WAIT);
1890
1891 if (should_fail_alloc_page(gfp_mask, order))
1892 return NULL;
1893
1894 /*
1895 * Check the zones suitable for the gfp_mask contain at least one
1896 * valid zone. It's possible to have an empty zonelist as a result
1897 * of GFP_THISNODE and a memoryless node
1898 */
1899 if (unlikely(!zonelist->_zonerefs->zone))
1900 return NULL;
1901
5117f45d
MG
1902 /* The preferred zone is used for statistics later */
1903 first_zones_zonelist(zonelist, high_zoneidx, nodemask, &preferred_zone);
1904 if (!preferred_zone)
1905 return NULL;
1906
1907 /* First allocation attempt */
11e33f6a 1908 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
5117f45d 1909 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
3dd28266 1910 preferred_zone, migratetype);
11e33f6a
MG
1911 if (unlikely(!page))
1912 page = __alloc_pages_slowpath(gfp_mask, order,
5117f45d 1913 zonelist, high_zoneidx, nodemask,
3dd28266 1914 preferred_zone, migratetype);
11e33f6a
MG
1915
1916 return page;
1da177e4 1917}
d239171e 1918EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
1919
1920/*
1921 * Common helper functions.
1922 */
920c7a5d 1923unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 1924{
945a1113
AM
1925 struct page *page;
1926
1927 /*
1928 * __get_free_pages() returns a 32-bit address, which cannot represent
1929 * a highmem page
1930 */
1931 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1932
1da177e4
LT
1933 page = alloc_pages(gfp_mask, order);
1934 if (!page)
1935 return 0;
1936 return (unsigned long) page_address(page);
1937}
1da177e4
LT
1938EXPORT_SYMBOL(__get_free_pages);
1939
920c7a5d 1940unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 1941{
945a1113 1942 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 1943}
1da177e4
LT
1944EXPORT_SYMBOL(get_zeroed_page);
1945
1946void __pagevec_free(struct pagevec *pvec)
1947{
1948 int i = pagevec_count(pvec);
1949
1950 while (--i >= 0)
1951 free_hot_cold_page(pvec->pages[i], pvec->cold);
1952}
1953
920c7a5d 1954void __free_pages(struct page *page, unsigned int order)
1da177e4 1955{
b5810039 1956 if (put_page_testzero(page)) {
1da177e4
LT
1957 if (order == 0)
1958 free_hot_page(page);
1959 else
1960 __free_pages_ok(page, order);
1961 }
1962}
1963
1964EXPORT_SYMBOL(__free_pages);
1965
920c7a5d 1966void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
1967{
1968 if (addr != 0) {
725d704e 1969 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
1970 __free_pages(virt_to_page((void *)addr), order);
1971 }
1972}
1973
1974EXPORT_SYMBOL(free_pages);
1975
2be0ffe2
TT
1976/**
1977 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
1978 * @size: the number of bytes to allocate
1979 * @gfp_mask: GFP flags for the allocation
1980 *
1981 * This function is similar to alloc_pages(), except that it allocates the
1982 * minimum number of pages to satisfy the request. alloc_pages() can only
1983 * allocate memory in power-of-two pages.
1984 *
1985 * This function is also limited by MAX_ORDER.
1986 *
1987 * Memory allocated by this function must be released by free_pages_exact().
1988 */
1989void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
1990{
1991 unsigned int order = get_order(size);
1992 unsigned long addr;
1993
1994 addr = __get_free_pages(gfp_mask, order);
1995 if (addr) {
1996 unsigned long alloc_end = addr + (PAGE_SIZE << order);
1997 unsigned long used = addr + PAGE_ALIGN(size);
1998
5bfd7560 1999 split_page(virt_to_page((void *)addr), order);
2be0ffe2
TT
2000 while (used < alloc_end) {
2001 free_page(used);
2002 used += PAGE_SIZE;
2003 }
2004 }
2005
2006 return (void *)addr;
2007}
2008EXPORT_SYMBOL(alloc_pages_exact);
2009
2010/**
2011 * free_pages_exact - release memory allocated via alloc_pages_exact()
2012 * @virt: the value returned by alloc_pages_exact.
2013 * @size: size of allocation, same value as passed to alloc_pages_exact().
2014 *
2015 * Release the memory allocated by a previous call to alloc_pages_exact.
2016 */
2017void free_pages_exact(void *virt, size_t size)
2018{
2019 unsigned long addr = (unsigned long)virt;
2020 unsigned long end = addr + PAGE_ALIGN(size);
2021
2022 while (addr < end) {
2023 free_page(addr);
2024 addr += PAGE_SIZE;
2025 }
2026}
2027EXPORT_SYMBOL(free_pages_exact);
2028
1da177e4
LT
2029static unsigned int nr_free_zone_pages(int offset)
2030{
dd1a239f 2031 struct zoneref *z;
54a6eb5c
MG
2032 struct zone *zone;
2033
e310fd43 2034 /* Just pick one node, since fallback list is circular */
1da177e4
LT
2035 unsigned int sum = 0;
2036
0e88460d 2037 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 2038
54a6eb5c 2039 for_each_zone_zonelist(zone, z, zonelist, offset) {
e310fd43 2040 unsigned long size = zone->present_pages;
41858966 2041 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
2042 if (size > high)
2043 sum += size - high;
1da177e4
LT
2044 }
2045
2046 return sum;
2047}
2048
2049/*
2050 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2051 */
2052unsigned int nr_free_buffer_pages(void)
2053{
af4ca457 2054 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 2055}
c2f1a551 2056EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4
LT
2057
2058/*
2059 * Amount of free RAM allocatable within all zones
2060 */
2061unsigned int nr_free_pagecache_pages(void)
2062{
2a1e274a 2063 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 2064}
08e0f6a9
CL
2065
2066static inline void show_node(struct zone *zone)
1da177e4 2067{
08e0f6a9 2068 if (NUMA_BUILD)
25ba77c1 2069 printk("Node %d ", zone_to_nid(zone));
1da177e4 2070}
1da177e4 2071
1da177e4
LT
2072void si_meminfo(struct sysinfo *val)
2073{
2074 val->totalram = totalram_pages;
2075 val->sharedram = 0;
d23ad423 2076 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 2077 val->bufferram = nr_blockdev_pages();
1da177e4
LT
2078 val->totalhigh = totalhigh_pages;
2079 val->freehigh = nr_free_highpages();
1da177e4
LT
2080 val->mem_unit = PAGE_SIZE;
2081}
2082
2083EXPORT_SYMBOL(si_meminfo);
2084
2085#ifdef CONFIG_NUMA
2086void si_meminfo_node(struct sysinfo *val, int nid)
2087{
2088 pg_data_t *pgdat = NODE_DATA(nid);
2089
2090 val->totalram = pgdat->node_present_pages;
d23ad423 2091 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 2092#ifdef CONFIG_HIGHMEM
1da177e4 2093 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
d23ad423
CL
2094 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2095 NR_FREE_PAGES);
98d2b0eb
CL
2096#else
2097 val->totalhigh = 0;
2098 val->freehigh = 0;
2099#endif
1da177e4
LT
2100 val->mem_unit = PAGE_SIZE;
2101}
2102#endif
2103
2104#define K(x) ((x) << (PAGE_SHIFT-10))
2105
2106/*
2107 * Show free area list (used inside shift_scroll-lock stuff)
2108 * We also calculate the percentage fragmentation. We do this by counting the
2109 * memory on each free list with the exception of the first item on the list.
2110 */
2111void show_free_areas(void)
2112{
c7241913 2113 int cpu;
1da177e4
LT
2114 struct zone *zone;
2115
ee99c71c 2116 for_each_populated_zone(zone) {
c7241913
JS
2117 show_node(zone);
2118 printk("%s per-cpu:\n", zone->name);
1da177e4 2119
6b482c67 2120 for_each_online_cpu(cpu) {
1da177e4
LT
2121 struct per_cpu_pageset *pageset;
2122
e7c8d5c9 2123 pageset = zone_pcp(zone, cpu);
1da177e4 2124
3dfa5721
CL
2125 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2126 cpu, pageset->pcp.high,
2127 pageset->pcp.batch, pageset->pcp.count);
1da177e4
LT
2128 }
2129 }
2130
a731286d
KM
2131 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2132 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
7b854121 2133 " unevictable:%lu"
71de1ccb 2134 " dirty:%lu writeback:%lu unstable:%lu buffer:%lu\n"
3701b033 2135 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4b02108a 2136 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
4f98a2fe 2137 global_page_state(NR_ACTIVE_ANON),
4f98a2fe 2138 global_page_state(NR_INACTIVE_ANON),
a731286d
KM
2139 global_page_state(NR_ISOLATED_ANON),
2140 global_page_state(NR_ACTIVE_FILE),
4f98a2fe 2141 global_page_state(NR_INACTIVE_FILE),
a731286d 2142 global_page_state(NR_ISOLATED_FILE),
7b854121 2143 global_page_state(NR_UNEVICTABLE),
b1e7a8fd 2144 global_page_state(NR_FILE_DIRTY),
ce866b34 2145 global_page_state(NR_WRITEBACK),
fd39fc85 2146 global_page_state(NR_UNSTABLE_NFS),
71de1ccb 2147 nr_blockdev_pages(),
d23ad423 2148 global_page_state(NR_FREE_PAGES),
3701b033
KM
2149 global_page_state(NR_SLAB_RECLAIMABLE),
2150 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 2151 global_page_state(NR_FILE_MAPPED),
4b02108a 2152 global_page_state(NR_SHMEM),
a25700a5
AM
2153 global_page_state(NR_PAGETABLE),
2154 global_page_state(NR_BOUNCE));
1da177e4 2155
ee99c71c 2156 for_each_populated_zone(zone) {
1da177e4
LT
2157 int i;
2158
2159 show_node(zone);
2160 printk("%s"
2161 " free:%lukB"
2162 " min:%lukB"
2163 " low:%lukB"
2164 " high:%lukB"
4f98a2fe
RR
2165 " active_anon:%lukB"
2166 " inactive_anon:%lukB"
2167 " active_file:%lukB"
2168 " inactive_file:%lukB"
7b854121 2169 " unevictable:%lukB"
a731286d
KM
2170 " isolated(anon):%lukB"
2171 " isolated(file):%lukB"
1da177e4 2172 " present:%lukB"
4a0aa73f
KM
2173 " mlocked:%lukB"
2174 " dirty:%lukB"
2175 " writeback:%lukB"
2176 " mapped:%lukB"
4b02108a 2177 " shmem:%lukB"
4a0aa73f
KM
2178 " slab_reclaimable:%lukB"
2179 " slab_unreclaimable:%lukB"
c6a7f572 2180 " kernel_stack:%lukB"
4a0aa73f
KM
2181 " pagetables:%lukB"
2182 " unstable:%lukB"
2183 " bounce:%lukB"
2184 " writeback_tmp:%lukB"
1da177e4
LT
2185 " pages_scanned:%lu"
2186 " all_unreclaimable? %s"
2187 "\n",
2188 zone->name,
d23ad423 2189 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
2190 K(min_wmark_pages(zone)),
2191 K(low_wmark_pages(zone)),
2192 K(high_wmark_pages(zone)),
4f98a2fe
RR
2193 K(zone_page_state(zone, NR_ACTIVE_ANON)),
2194 K(zone_page_state(zone, NR_INACTIVE_ANON)),
2195 K(zone_page_state(zone, NR_ACTIVE_FILE)),
2196 K(zone_page_state(zone, NR_INACTIVE_FILE)),
7b854121 2197 K(zone_page_state(zone, NR_UNEVICTABLE)),
a731286d
KM
2198 K(zone_page_state(zone, NR_ISOLATED_ANON)),
2199 K(zone_page_state(zone, NR_ISOLATED_FILE)),
1da177e4 2200 K(zone->present_pages),
4a0aa73f
KM
2201 K(zone_page_state(zone, NR_MLOCK)),
2202 K(zone_page_state(zone, NR_FILE_DIRTY)),
2203 K(zone_page_state(zone, NR_WRITEBACK)),
2204 K(zone_page_state(zone, NR_FILE_MAPPED)),
4b02108a 2205 K(zone_page_state(zone, NR_SHMEM)),
4a0aa73f
KM
2206 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
2207 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
c6a7f572
KM
2208 zone_page_state(zone, NR_KERNEL_STACK) *
2209 THREAD_SIZE / 1024,
4a0aa73f
KM
2210 K(zone_page_state(zone, NR_PAGETABLE)),
2211 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
2212 K(zone_page_state(zone, NR_BOUNCE)),
2213 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
1da177e4 2214 zone->pages_scanned,
e815af95 2215 (zone_is_all_unreclaimable(zone) ? "yes" : "no")
1da177e4
LT
2216 );
2217 printk("lowmem_reserve[]:");
2218 for (i = 0; i < MAX_NR_ZONES; i++)
2219 printk(" %lu", zone->lowmem_reserve[i]);
2220 printk("\n");
2221 }
2222
ee99c71c 2223 for_each_populated_zone(zone) {
8f9de51a 2224 unsigned long nr[MAX_ORDER], flags, order, total = 0;
1da177e4
LT
2225
2226 show_node(zone);
2227 printk("%s: ", zone->name);
1da177e4
LT
2228
2229 spin_lock_irqsave(&zone->lock, flags);
2230 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a
KK
2231 nr[order] = zone->free_area[order].nr_free;
2232 total += nr[order] << order;
1da177e4
LT
2233 }
2234 spin_unlock_irqrestore(&zone->lock, flags);
8f9de51a
KK
2235 for (order = 0; order < MAX_ORDER; order++)
2236 printk("%lu*%lukB ", nr[order], K(1UL) << order);
1da177e4
LT
2237 printk("= %lukB\n", K(total));
2238 }
2239
e6f3602d
LW
2240 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2241
1da177e4
LT
2242 show_swap_cache_info();
2243}
2244
19770b32
MG
2245static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2246{
2247 zoneref->zone = zone;
2248 zoneref->zone_idx = zone_idx(zone);
2249}
2250
1da177e4
LT
2251/*
2252 * Builds allocation fallback zone lists.
1a93205b
CL
2253 *
2254 * Add all populated zones of a node to the zonelist.
1da177e4 2255 */
f0c0b2b8
KH
2256static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2257 int nr_zones, enum zone_type zone_type)
1da177e4 2258{
1a93205b
CL
2259 struct zone *zone;
2260
98d2b0eb 2261 BUG_ON(zone_type >= MAX_NR_ZONES);
2f6726e5 2262 zone_type++;
02a68a5e
CL
2263
2264 do {
2f6726e5 2265 zone_type--;
070f8032 2266 zone = pgdat->node_zones + zone_type;
1a93205b 2267 if (populated_zone(zone)) {
dd1a239f
MG
2268 zoneref_set_zone(zone,
2269 &zonelist->_zonerefs[nr_zones++]);
070f8032 2270 check_highest_zone(zone_type);
1da177e4 2271 }
02a68a5e 2272
2f6726e5 2273 } while (zone_type);
070f8032 2274 return nr_zones;
1da177e4
LT
2275}
2276
f0c0b2b8
KH
2277
2278/*
2279 * zonelist_order:
2280 * 0 = automatic detection of better ordering.
2281 * 1 = order by ([node] distance, -zonetype)
2282 * 2 = order by (-zonetype, [node] distance)
2283 *
2284 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2285 * the same zonelist. So only NUMA can configure this param.
2286 */
2287#define ZONELIST_ORDER_DEFAULT 0
2288#define ZONELIST_ORDER_NODE 1
2289#define ZONELIST_ORDER_ZONE 2
2290
2291/* zonelist order in the kernel.
2292 * set_zonelist_order() will set this to NODE or ZONE.
2293 */
2294static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2295static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2296
2297
1da177e4 2298#ifdef CONFIG_NUMA
f0c0b2b8
KH
2299/* The value user specified ....changed by config */
2300static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2301/* string for sysctl */
2302#define NUMA_ZONELIST_ORDER_LEN 16
2303char numa_zonelist_order[16] = "default";
2304
2305/*
2306 * interface for configure zonelist ordering.
2307 * command line option "numa_zonelist_order"
2308 * = "[dD]efault - default, automatic configuration.
2309 * = "[nN]ode - order by node locality, then by zone within node
2310 * = "[zZ]one - order by zone, then by locality within zone
2311 */
2312
2313static int __parse_numa_zonelist_order(char *s)
2314{
2315 if (*s == 'd' || *s == 'D') {
2316 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2317 } else if (*s == 'n' || *s == 'N') {
2318 user_zonelist_order = ZONELIST_ORDER_NODE;
2319 } else if (*s == 'z' || *s == 'Z') {
2320 user_zonelist_order = ZONELIST_ORDER_ZONE;
2321 } else {
2322 printk(KERN_WARNING
2323 "Ignoring invalid numa_zonelist_order value: "
2324 "%s\n", s);
2325 return -EINVAL;
2326 }
2327 return 0;
2328}
2329
2330static __init int setup_numa_zonelist_order(char *s)
2331{
2332 if (s)
2333 return __parse_numa_zonelist_order(s);
2334 return 0;
2335}
2336early_param("numa_zonelist_order", setup_numa_zonelist_order);
2337
2338/*
2339 * sysctl handler for numa_zonelist_order
2340 */
2341int numa_zonelist_order_handler(ctl_table *table, int write,
2342 struct file *file, void __user *buffer, size_t *length,
2343 loff_t *ppos)
2344{
2345 char saved_string[NUMA_ZONELIST_ORDER_LEN];
2346 int ret;
2347
2348 if (write)
2349 strncpy(saved_string, (char*)table->data,
2350 NUMA_ZONELIST_ORDER_LEN);
2351 ret = proc_dostring(table, write, file, buffer, length, ppos);
2352 if (ret)
2353 return ret;
2354 if (write) {
2355 int oldval = user_zonelist_order;
2356 if (__parse_numa_zonelist_order((char*)table->data)) {
2357 /*
2358 * bogus value. restore saved string
2359 */
2360 strncpy((char*)table->data, saved_string,
2361 NUMA_ZONELIST_ORDER_LEN);
2362 user_zonelist_order = oldval;
2363 } else if (oldval != user_zonelist_order)
2364 build_all_zonelists();
2365 }
2366 return 0;
2367}
2368
2369
62bc62a8 2370#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
2371static int node_load[MAX_NUMNODES];
2372
1da177e4 2373/**
4dc3b16b 2374 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
2375 * @node: node whose fallback list we're appending
2376 * @used_node_mask: nodemask_t of already used nodes
2377 *
2378 * We use a number of factors to determine which is the next node that should
2379 * appear on a given node's fallback list. The node should not have appeared
2380 * already in @node's fallback list, and it should be the next closest node
2381 * according to the distance array (which contains arbitrary distance values
2382 * from each node to each node in the system), and should also prefer nodes
2383 * with no CPUs, since presumably they'll have very little allocation pressure
2384 * on them otherwise.
2385 * It returns -1 if no node is found.
2386 */
f0c0b2b8 2387static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 2388{
4cf808eb 2389 int n, val;
1da177e4
LT
2390 int min_val = INT_MAX;
2391 int best_node = -1;
a70f7302 2392 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 2393
4cf808eb
LT
2394 /* Use the local node if we haven't already */
2395 if (!node_isset(node, *used_node_mask)) {
2396 node_set(node, *used_node_mask);
2397 return node;
2398 }
1da177e4 2399
37b07e41 2400 for_each_node_state(n, N_HIGH_MEMORY) {
1da177e4
LT
2401
2402 /* Don't want a node to appear more than once */
2403 if (node_isset(n, *used_node_mask))
2404 continue;
2405
1da177e4
LT
2406 /* Use the distance array to find the distance */
2407 val = node_distance(node, n);
2408
4cf808eb
LT
2409 /* Penalize nodes under us ("prefer the next node") */
2410 val += (n < node);
2411
1da177e4 2412 /* Give preference to headless and unused nodes */
a70f7302
RR
2413 tmp = cpumask_of_node(n);
2414 if (!cpumask_empty(tmp))
1da177e4
LT
2415 val += PENALTY_FOR_NODE_WITH_CPUS;
2416
2417 /* Slight preference for less loaded node */
2418 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2419 val += node_load[n];
2420
2421 if (val < min_val) {
2422 min_val = val;
2423 best_node = n;
2424 }
2425 }
2426
2427 if (best_node >= 0)
2428 node_set(best_node, *used_node_mask);
2429
2430 return best_node;
2431}
2432
f0c0b2b8
KH
2433
2434/*
2435 * Build zonelists ordered by node and zones within node.
2436 * This results in maximum locality--normal zone overflows into local
2437 * DMA zone, if any--but risks exhausting DMA zone.
2438 */
2439static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 2440{
f0c0b2b8 2441 int j;
1da177e4 2442 struct zonelist *zonelist;
f0c0b2b8 2443
54a6eb5c 2444 zonelist = &pgdat->node_zonelists[0];
dd1a239f 2445 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c
MG
2446 ;
2447 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2448 MAX_NR_ZONES - 1);
dd1a239f
MG
2449 zonelist->_zonerefs[j].zone = NULL;
2450 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
2451}
2452
523b9458
CL
2453/*
2454 * Build gfp_thisnode zonelists
2455 */
2456static void build_thisnode_zonelists(pg_data_t *pgdat)
2457{
523b9458
CL
2458 int j;
2459 struct zonelist *zonelist;
2460
54a6eb5c
MG
2461 zonelist = &pgdat->node_zonelists[1];
2462 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
dd1a239f
MG
2463 zonelist->_zonerefs[j].zone = NULL;
2464 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
2465}
2466
f0c0b2b8
KH
2467/*
2468 * Build zonelists ordered by zone and nodes within zones.
2469 * This results in conserving DMA zone[s] until all Normal memory is
2470 * exhausted, but results in overflowing to remote node while memory
2471 * may still exist in local DMA zone.
2472 */
2473static int node_order[MAX_NUMNODES];
2474
2475static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2476{
f0c0b2b8
KH
2477 int pos, j, node;
2478 int zone_type; /* needs to be signed */
2479 struct zone *z;
2480 struct zonelist *zonelist;
2481
54a6eb5c
MG
2482 zonelist = &pgdat->node_zonelists[0];
2483 pos = 0;
2484 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2485 for (j = 0; j < nr_nodes; j++) {
2486 node = node_order[j];
2487 z = &NODE_DATA(node)->node_zones[zone_type];
2488 if (populated_zone(z)) {
dd1a239f
MG
2489 zoneref_set_zone(z,
2490 &zonelist->_zonerefs[pos++]);
54a6eb5c 2491 check_highest_zone(zone_type);
f0c0b2b8
KH
2492 }
2493 }
f0c0b2b8 2494 }
dd1a239f
MG
2495 zonelist->_zonerefs[pos].zone = NULL;
2496 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
2497}
2498
2499static int default_zonelist_order(void)
2500{
2501 int nid, zone_type;
2502 unsigned long low_kmem_size,total_size;
2503 struct zone *z;
2504 int average_size;
2505 /*
2506 * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
2507 * If they are really small and used heavily, the system can fall
2508 * into OOM very easily.
2509 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
2510 */
2511 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2512 low_kmem_size = 0;
2513 total_size = 0;
2514 for_each_online_node(nid) {
2515 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2516 z = &NODE_DATA(nid)->node_zones[zone_type];
2517 if (populated_zone(z)) {
2518 if (zone_type < ZONE_NORMAL)
2519 low_kmem_size += z->present_pages;
2520 total_size += z->present_pages;
2521 }
2522 }
2523 }
2524 if (!low_kmem_size || /* there are no DMA area. */
2525 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2526 return ZONELIST_ORDER_NODE;
2527 /*
2528 * look into each node's config.
2529 * If there is a node whose DMA/DMA32 memory is very big area on
2530 * local memory, NODE_ORDER may be suitable.
2531 */
37b07e41
LS
2532 average_size = total_size /
2533 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
f0c0b2b8
KH
2534 for_each_online_node(nid) {
2535 low_kmem_size = 0;
2536 total_size = 0;
2537 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2538 z = &NODE_DATA(nid)->node_zones[zone_type];
2539 if (populated_zone(z)) {
2540 if (zone_type < ZONE_NORMAL)
2541 low_kmem_size += z->present_pages;
2542 total_size += z->present_pages;
2543 }
2544 }
2545 if (low_kmem_size &&
2546 total_size > average_size && /* ignore small node */
2547 low_kmem_size > total_size * 70/100)
2548 return ZONELIST_ORDER_NODE;
2549 }
2550 return ZONELIST_ORDER_ZONE;
2551}
2552
2553static void set_zonelist_order(void)
2554{
2555 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2556 current_zonelist_order = default_zonelist_order();
2557 else
2558 current_zonelist_order = user_zonelist_order;
2559}
2560
2561static void build_zonelists(pg_data_t *pgdat)
2562{
2563 int j, node, load;
2564 enum zone_type i;
1da177e4 2565 nodemask_t used_mask;
f0c0b2b8
KH
2566 int local_node, prev_node;
2567 struct zonelist *zonelist;
2568 int order = current_zonelist_order;
1da177e4
LT
2569
2570 /* initialize zonelists */
523b9458 2571 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 2572 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
2573 zonelist->_zonerefs[0].zone = NULL;
2574 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
2575 }
2576
2577 /* NUMA-aware ordering of nodes */
2578 local_node = pgdat->node_id;
62bc62a8 2579 load = nr_online_nodes;
1da177e4
LT
2580 prev_node = local_node;
2581 nodes_clear(used_mask);
f0c0b2b8 2582
f0c0b2b8
KH
2583 memset(node_order, 0, sizeof(node_order));
2584 j = 0;
2585
1da177e4 2586 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
9eeff239
CL
2587 int distance = node_distance(local_node, node);
2588
2589 /*
2590 * If another node is sufficiently far away then it is better
2591 * to reclaim pages in a zone before going off node.
2592 */
2593 if (distance > RECLAIM_DISTANCE)
2594 zone_reclaim_mode = 1;
2595
1da177e4
LT
2596 /*
2597 * We don't want to pressure a particular node.
2598 * So adding penalty to the first node in same
2599 * distance group to make it round-robin.
2600 */
9eeff239 2601 if (distance != node_distance(local_node, prev_node))
f0c0b2b8
KH
2602 node_load[node] = load;
2603
1da177e4
LT
2604 prev_node = node;
2605 load--;
f0c0b2b8
KH
2606 if (order == ZONELIST_ORDER_NODE)
2607 build_zonelists_in_node_order(pgdat, node);
2608 else
2609 node_order[j++] = node; /* remember order */
2610 }
1da177e4 2611
f0c0b2b8
KH
2612 if (order == ZONELIST_ORDER_ZONE) {
2613 /* calculate node order -- i.e., DMA last! */
2614 build_zonelists_in_zone_order(pgdat, j);
1da177e4 2615 }
523b9458
CL
2616
2617 build_thisnode_zonelists(pgdat);
1da177e4
LT
2618}
2619
9276b1bc 2620/* Construct the zonelist performance cache - see further mmzone.h */
f0c0b2b8 2621static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 2622{
54a6eb5c
MG
2623 struct zonelist *zonelist;
2624 struct zonelist_cache *zlc;
dd1a239f 2625 struct zoneref *z;
9276b1bc 2626
54a6eb5c
MG
2627 zonelist = &pgdat->node_zonelists[0];
2628 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2629 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
dd1a239f
MG
2630 for (z = zonelist->_zonerefs; z->zone; z++)
2631 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
9276b1bc
PJ
2632}
2633
f0c0b2b8 2634
1da177e4
LT
2635#else /* CONFIG_NUMA */
2636
f0c0b2b8
KH
2637static void set_zonelist_order(void)
2638{
2639 current_zonelist_order = ZONELIST_ORDER_ZONE;
2640}
2641
2642static void build_zonelists(pg_data_t *pgdat)
1da177e4 2643{
19655d34 2644 int node, local_node;
54a6eb5c
MG
2645 enum zone_type j;
2646 struct zonelist *zonelist;
1da177e4
LT
2647
2648 local_node = pgdat->node_id;
1da177e4 2649
54a6eb5c
MG
2650 zonelist = &pgdat->node_zonelists[0];
2651 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
1da177e4 2652
54a6eb5c
MG
2653 /*
2654 * Now we build the zonelist so that it contains the zones
2655 * of all the other nodes.
2656 * We don't want to pressure a particular node, so when
2657 * building the zones for node N, we make sure that the
2658 * zones coming right after the local ones are those from
2659 * node N+1 (modulo N)
2660 */
2661 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2662 if (!node_online(node))
2663 continue;
2664 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2665 MAX_NR_ZONES - 1);
1da177e4 2666 }
54a6eb5c
MG
2667 for (node = 0; node < local_node; node++) {
2668 if (!node_online(node))
2669 continue;
2670 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2671 MAX_NR_ZONES - 1);
2672 }
2673
dd1a239f
MG
2674 zonelist->_zonerefs[j].zone = NULL;
2675 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
2676}
2677
9276b1bc 2678/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
f0c0b2b8 2679static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 2680{
54a6eb5c 2681 pgdat->node_zonelists[0].zlcache_ptr = NULL;
9276b1bc
PJ
2682}
2683
1da177e4
LT
2684#endif /* CONFIG_NUMA */
2685
9b1a4d38 2686/* return values int ....just for stop_machine() */
f0c0b2b8 2687static int __build_all_zonelists(void *dummy)
1da177e4 2688{
6811378e 2689 int nid;
9276b1bc 2690
7f9cfb31
BL
2691#ifdef CONFIG_NUMA
2692 memset(node_load, 0, sizeof(node_load));
2693#endif
9276b1bc 2694 for_each_online_node(nid) {
7ea1530a
CL
2695 pg_data_t *pgdat = NODE_DATA(nid);
2696
2697 build_zonelists(pgdat);
2698 build_zonelist_cache(pgdat);
9276b1bc 2699 }
6811378e
YG
2700 return 0;
2701}
2702
f0c0b2b8 2703void build_all_zonelists(void)
6811378e 2704{
f0c0b2b8
KH
2705 set_zonelist_order();
2706
6811378e 2707 if (system_state == SYSTEM_BOOTING) {
423b41d7 2708 __build_all_zonelists(NULL);
68ad8df4 2709 mminit_verify_zonelist();
6811378e
YG
2710 cpuset_init_current_mems_allowed();
2711 } else {
183ff22b 2712 /* we have to stop all cpus to guarantee there is no user
6811378e 2713 of zonelist */
9b1a4d38 2714 stop_machine(__build_all_zonelists, NULL, NULL);
6811378e
YG
2715 /* cpuset refresh routine should be here */
2716 }
bd1e22b8 2717 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
2718 /*
2719 * Disable grouping by mobility if the number of pages in the
2720 * system is too low to allow the mechanism to work. It would be
2721 * more accurate, but expensive to check per-zone. This check is
2722 * made on memory-hotadd so a system can start with mobility
2723 * disabled and enable it later
2724 */
d9c23400 2725 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
2726 page_group_by_mobility_disabled = 1;
2727 else
2728 page_group_by_mobility_disabled = 0;
2729
2730 printk("Built %i zonelists in %s order, mobility grouping %s. "
2731 "Total pages: %ld\n",
62bc62a8 2732 nr_online_nodes,
f0c0b2b8 2733 zonelist_order_name[current_zonelist_order],
9ef9acb0 2734 page_group_by_mobility_disabled ? "off" : "on",
f0c0b2b8
KH
2735 vm_total_pages);
2736#ifdef CONFIG_NUMA
2737 printk("Policy zone: %s\n", zone_names[policy_zone]);
2738#endif
1da177e4
LT
2739}
2740
2741/*
2742 * Helper functions to size the waitqueue hash table.
2743 * Essentially these want to choose hash table sizes sufficiently
2744 * large so that collisions trying to wait on pages are rare.
2745 * But in fact, the number of active page waitqueues on typical
2746 * systems is ridiculously low, less than 200. So this is even
2747 * conservative, even though it seems large.
2748 *
2749 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2750 * waitqueues, i.e. the size of the waitq table given the number of pages.
2751 */
2752#define PAGES_PER_WAITQUEUE 256
2753
cca448fe 2754#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 2755static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
2756{
2757 unsigned long size = 1;
2758
2759 pages /= PAGES_PER_WAITQUEUE;
2760
2761 while (size < pages)
2762 size <<= 1;
2763
2764 /*
2765 * Once we have dozens or even hundreds of threads sleeping
2766 * on IO we've got bigger problems than wait queue collision.
2767 * Limit the size of the wait table to a reasonable size.
2768 */
2769 size = min(size, 4096UL);
2770
2771 return max(size, 4UL);
2772}
cca448fe
YG
2773#else
2774/*
2775 * A zone's size might be changed by hot-add, so it is not possible to determine
2776 * a suitable size for its wait_table. So we use the maximum size now.
2777 *
2778 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
2779 *
2780 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
2781 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2782 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
2783 *
2784 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2785 * or more by the traditional way. (See above). It equals:
2786 *
2787 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
2788 * ia64(16K page size) : = ( 8G + 4M)byte.
2789 * powerpc (64K page size) : = (32G +16M)byte.
2790 */
2791static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2792{
2793 return 4096UL;
2794}
2795#endif
1da177e4
LT
2796
2797/*
2798 * This is an integer logarithm so that shifts can be used later
2799 * to extract the more random high bits from the multiplicative
2800 * hash function before the remainder is taken.
2801 */
2802static inline unsigned long wait_table_bits(unsigned long size)
2803{
2804 return ffz(~size);
2805}
2806
2807#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2808
56fd56b8 2809/*
d9c23400 2810 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
41858966
MG
2811 * of blocks reserved is based on min_wmark_pages(zone). The memory within
2812 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
56fd56b8
MG
2813 * higher will lead to a bigger reserve which will get freed as contiguous
2814 * blocks as reclaim kicks in
2815 */
2816static void setup_zone_migrate_reserve(struct zone *zone)
2817{
2818 unsigned long start_pfn, pfn, end_pfn;
2819 struct page *page;
2820 unsigned long reserve, block_migratetype;
2821
2822 /* Get the start pfn, end pfn and the number of blocks to reserve */
2823 start_pfn = zone->zone_start_pfn;
2824 end_pfn = start_pfn + zone->spanned_pages;
41858966 2825 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
d9c23400 2826 pageblock_order;
56fd56b8 2827
d9c23400 2828 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
56fd56b8
MG
2829 if (!pfn_valid(pfn))
2830 continue;
2831 page = pfn_to_page(pfn);
2832
344c790e
AL
2833 /* Watch out for overlapping nodes */
2834 if (page_to_nid(page) != zone_to_nid(zone))
2835 continue;
2836
56fd56b8
MG
2837 /* Blocks with reserved pages will never free, skip them. */
2838 if (PageReserved(page))
2839 continue;
2840
2841 block_migratetype = get_pageblock_migratetype(page);
2842
2843 /* If this block is reserved, account for it */
2844 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
2845 reserve--;
2846 continue;
2847 }
2848
2849 /* Suitable for reserving if this block is movable */
2850 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
2851 set_pageblock_migratetype(page, MIGRATE_RESERVE);
2852 move_freepages_block(zone, page, MIGRATE_RESERVE);
2853 reserve--;
2854 continue;
2855 }
2856
2857 /*
2858 * If the reserve is met and this is a previous reserved block,
2859 * take it back
2860 */
2861 if (block_migratetype == MIGRATE_RESERVE) {
2862 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2863 move_freepages_block(zone, page, MIGRATE_MOVABLE);
2864 }
2865 }
2866}
ac0e5b7a 2867
1da177e4
LT
2868/*
2869 * Initially all pages are reserved - free ones are freed
2870 * up by free_all_bootmem() once the early boot process is
2871 * done. Non-atomic initialization, single-pass.
2872 */
c09b4240 2873void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 2874 unsigned long start_pfn, enum memmap_context context)
1da177e4 2875{
1da177e4 2876 struct page *page;
29751f69
AW
2877 unsigned long end_pfn = start_pfn + size;
2878 unsigned long pfn;
86051ca5 2879 struct zone *z;
1da177e4 2880
22b31eec
HD
2881 if (highest_memmap_pfn < end_pfn - 1)
2882 highest_memmap_pfn = end_pfn - 1;
2883
86051ca5 2884 z = &NODE_DATA(nid)->node_zones[zone];
cbe8dd4a 2885 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02
DH
2886 /*
2887 * There can be holes in boot-time mem_map[]s
2888 * handed to this function. They do not
2889 * exist on hotplugged memory.
2890 */
2891 if (context == MEMMAP_EARLY) {
2892 if (!early_pfn_valid(pfn))
2893 continue;
2894 if (!early_pfn_in_nid(pfn, nid))
2895 continue;
2896 }
d41dee36
AW
2897 page = pfn_to_page(pfn);
2898 set_page_links(page, zone, nid, pfn);
708614e6 2899 mminit_verify_page_links(page, zone, nid, pfn);
7835e98b 2900 init_page_count(page);
1da177e4
LT
2901 reset_page_mapcount(page);
2902 SetPageReserved(page);
b2a0ac88
MG
2903 /*
2904 * Mark the block movable so that blocks are reserved for
2905 * movable at startup. This will force kernel allocations
2906 * to reserve their blocks rather than leaking throughout
2907 * the address space during boot when many long-lived
56fd56b8
MG
2908 * kernel allocations are made. Later some blocks near
2909 * the start are marked MIGRATE_RESERVE by
2910 * setup_zone_migrate_reserve()
86051ca5
KH
2911 *
2912 * bitmap is created for zone's valid pfn range. but memmap
2913 * can be created for invalid pages (for alignment)
2914 * check here not to call set_pageblock_migratetype() against
2915 * pfn out of zone.
b2a0ac88 2916 */
86051ca5
KH
2917 if ((z->zone_start_pfn <= pfn)
2918 && (pfn < z->zone_start_pfn + z->spanned_pages)
2919 && !(pfn & (pageblock_nr_pages - 1)))
56fd56b8 2920 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
b2a0ac88 2921
1da177e4
LT
2922 INIT_LIST_HEAD(&page->lru);
2923#ifdef WANT_PAGE_VIRTUAL
2924 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
2925 if (!is_highmem_idx(zone))
3212c6be 2926 set_page_address(page, __va(pfn << PAGE_SHIFT));
1da177e4 2927#endif
1da177e4
LT
2928 }
2929}
2930
1e548deb 2931static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 2932{
b2a0ac88
MG
2933 int order, t;
2934 for_each_migratetype_order(order, t) {
2935 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
2936 zone->free_area[order].nr_free = 0;
2937 }
2938}
2939
2940#ifndef __HAVE_ARCH_MEMMAP_INIT
2941#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 2942 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
2943#endif
2944
1d6f4e60 2945static int zone_batchsize(struct zone *zone)
e7c8d5c9 2946{
3a6be87f 2947#ifdef CONFIG_MMU
e7c8d5c9
CL
2948 int batch;
2949
2950 /*
2951 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 2952 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
2953 *
2954 * OK, so we don't know how big the cache is. So guess.
2955 */
2956 batch = zone->present_pages / 1024;
ba56e91c
SR
2957 if (batch * PAGE_SIZE > 512 * 1024)
2958 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
2959 batch /= 4; /* We effectively *= 4 below */
2960 if (batch < 1)
2961 batch = 1;
2962
2963 /*
0ceaacc9
NP
2964 * Clamp the batch to a 2^n - 1 value. Having a power
2965 * of 2 value was found to be more likely to have
2966 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 2967 *
0ceaacc9
NP
2968 * For example if 2 tasks are alternately allocating
2969 * batches of pages, one task can end up with a lot
2970 * of pages of one half of the possible page colors
2971 * and the other with pages of the other colors.
e7c8d5c9 2972 */
9155203a 2973 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 2974
e7c8d5c9 2975 return batch;
3a6be87f
DH
2976
2977#else
2978 /* The deferral and batching of frees should be suppressed under NOMMU
2979 * conditions.
2980 *
2981 * The problem is that NOMMU needs to be able to allocate large chunks
2982 * of contiguous memory as there's no hardware page translation to
2983 * assemble apparent contiguous memory from discontiguous pages.
2984 *
2985 * Queueing large contiguous runs of pages for batching, however,
2986 * causes the pages to actually be freed in smaller chunks. As there
2987 * can be a significant delay between the individual batches being
2988 * recycled, this leads to the once large chunks of space being
2989 * fragmented and becoming unavailable for high-order allocations.
2990 */
2991 return 0;
2992#endif
e7c8d5c9
CL
2993}
2994
b69a7288 2995static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2caaad41
CL
2996{
2997 struct per_cpu_pages *pcp;
2998
1c6fe946
MD
2999 memset(p, 0, sizeof(*p));
3000
3dfa5721 3001 pcp = &p->pcp;
2caaad41 3002 pcp->count = 0;
2caaad41
CL
3003 pcp->high = 6 * batch;
3004 pcp->batch = max(1UL, 1 * batch);
3005 INIT_LIST_HEAD(&pcp->list);
2caaad41
CL
3006}
3007
8ad4b1fb
RS
3008/*
3009 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3010 * to the value high for the pageset p.
3011 */
3012
3013static void setup_pagelist_highmark(struct per_cpu_pageset *p,
3014 unsigned long high)
3015{
3016 struct per_cpu_pages *pcp;
3017
3dfa5721 3018 pcp = &p->pcp;
8ad4b1fb
RS
3019 pcp->high = high;
3020 pcp->batch = max(1UL, high/4);
3021 if ((high/4) > (PAGE_SHIFT * 8))
3022 pcp->batch = PAGE_SHIFT * 8;
3023}
3024
3025
e7c8d5c9
CL
3026#ifdef CONFIG_NUMA
3027/*
2caaad41
CL
3028 * Boot pageset table. One per cpu which is going to be used for all
3029 * zones and all nodes. The parameters will be set in such a way
3030 * that an item put on a list will immediately be handed over to
3031 * the buddy list. This is safe since pageset manipulation is done
3032 * with interrupts disabled.
3033 *
3034 * Some NUMA counter updates may also be caught by the boot pagesets.
b7c84c6a
CL
3035 *
3036 * The boot_pagesets must be kept even after bootup is complete for
3037 * unused processors and/or zones. They do play a role for bootstrapping
3038 * hotplugged processors.
3039 *
3040 * zoneinfo_show() and maybe other functions do
3041 * not check if the processor is online before following the pageset pointer.
3042 * Other parts of the kernel may not check if the zone is available.
2caaad41 3043 */
88a2a4ac 3044static struct per_cpu_pageset boot_pageset[NR_CPUS];
2caaad41
CL
3045
3046/*
3047 * Dynamically allocate memory for the
e7c8d5c9
CL
3048 * per cpu pageset array in struct zone.
3049 */
6292d9aa 3050static int __cpuinit process_zones(int cpu)
e7c8d5c9
CL
3051{
3052 struct zone *zone, *dzone;
37c0708d
CL
3053 int node = cpu_to_node(cpu);
3054
3055 node_set_state(node, N_CPU); /* this node has a cpu */
e7c8d5c9 3056
ee99c71c 3057 for_each_populated_zone(zone) {
23316bc8 3058 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
37c0708d 3059 GFP_KERNEL, node);
23316bc8 3060 if (!zone_pcp(zone, cpu))
e7c8d5c9 3061 goto bad;
e7c8d5c9 3062
23316bc8 3063 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
8ad4b1fb
RS
3064
3065 if (percpu_pagelist_fraction)
3066 setup_pagelist_highmark(zone_pcp(zone, cpu),
3067 (zone->present_pages / percpu_pagelist_fraction));
e7c8d5c9
CL
3068 }
3069
3070 return 0;
3071bad:
3072 for_each_zone(dzone) {
64191688
AM
3073 if (!populated_zone(dzone))
3074 continue;
e7c8d5c9
CL
3075 if (dzone == zone)
3076 break;
23316bc8 3077 kfree(zone_pcp(dzone, cpu));
364df0eb 3078 zone_pcp(dzone, cpu) = &boot_pageset[cpu];
e7c8d5c9
CL
3079 }
3080 return -ENOMEM;
3081}
3082
3083static inline void free_zone_pagesets(int cpu)
3084{
e7c8d5c9
CL
3085 struct zone *zone;
3086
3087 for_each_zone(zone) {
3088 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
3089
f3ef9ead
DR
3090 /* Free per_cpu_pageset if it is slab allocated */
3091 if (pset != &boot_pageset[cpu])
3092 kfree(pset);
364df0eb 3093 zone_pcp(zone, cpu) = &boot_pageset[cpu];
e7c8d5c9 3094 }
e7c8d5c9
CL
3095}
3096
9c7b216d 3097static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
e7c8d5c9
CL
3098 unsigned long action,
3099 void *hcpu)
3100{
3101 int cpu = (long)hcpu;
3102 int ret = NOTIFY_OK;
3103
3104 switch (action) {
ce421c79 3105 case CPU_UP_PREPARE:
8bb78442 3106 case CPU_UP_PREPARE_FROZEN:
ce421c79
AW
3107 if (process_zones(cpu))
3108 ret = NOTIFY_BAD;
3109 break;
3110 case CPU_UP_CANCELED:
8bb78442 3111 case CPU_UP_CANCELED_FROZEN:
ce421c79 3112 case CPU_DEAD:
8bb78442 3113 case CPU_DEAD_FROZEN:
ce421c79
AW
3114 free_zone_pagesets(cpu);
3115 break;
3116 default:
3117 break;
e7c8d5c9
CL
3118 }
3119 return ret;
3120}
3121
74b85f37 3122static struct notifier_block __cpuinitdata pageset_notifier =
e7c8d5c9
CL
3123 { &pageset_cpuup_callback, NULL, 0 };
3124
78d9955b 3125void __init setup_per_cpu_pageset(void)
e7c8d5c9
CL
3126{
3127 int err;
3128
3129 /* Initialize per_cpu_pageset for cpu 0.
3130 * A cpuup callback will do this for every cpu
3131 * as it comes online
3132 */
3133 err = process_zones(smp_processor_id());
3134 BUG_ON(err);
3135 register_cpu_notifier(&pageset_notifier);
3136}
3137
3138#endif
3139
577a32f6 3140static noinline __init_refok
cca448fe 3141int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
3142{
3143 int i;
3144 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe 3145 size_t alloc_size;
ed8ece2e
DH
3146
3147 /*
3148 * The per-page waitqueue mechanism uses hashed waitqueues
3149 * per zone.
3150 */
02b694de
YG
3151 zone->wait_table_hash_nr_entries =
3152 wait_table_hash_nr_entries(zone_size_pages);
3153 zone->wait_table_bits =
3154 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
3155 alloc_size = zone->wait_table_hash_nr_entries
3156 * sizeof(wait_queue_head_t);
3157
cd94b9db 3158 if (!slab_is_available()) {
cca448fe
YG
3159 zone->wait_table = (wait_queue_head_t *)
3160 alloc_bootmem_node(pgdat, alloc_size);
3161 } else {
3162 /*
3163 * This case means that a zone whose size was 0 gets new memory
3164 * via memory hot-add.
3165 * But it may be the case that a new node was hot-added. In
3166 * this case vmalloc() will not be able to use this new node's
3167 * memory - this wait_table must be initialized to use this new
3168 * node itself as well.
3169 * To use this new node's memory, further consideration will be
3170 * necessary.
3171 */
8691f3a7 3172 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
3173 }
3174 if (!zone->wait_table)
3175 return -ENOMEM;
ed8ece2e 3176
02b694de 3177 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 3178 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
3179
3180 return 0;
ed8ece2e
DH
3181}
3182
112067f0
SL
3183static int __zone_pcp_update(void *data)
3184{
3185 struct zone *zone = data;
3186 int cpu;
3187 unsigned long batch = zone_batchsize(zone), flags;
3188
3189 for (cpu = 0; cpu < NR_CPUS; cpu++) {
3190 struct per_cpu_pageset *pset;
3191 struct per_cpu_pages *pcp;
3192
3193 pset = zone_pcp(zone, cpu);
3194 pcp = &pset->pcp;
3195
3196 local_irq_save(flags);
3197 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
3198 setup_pageset(pset, batch);
3199 local_irq_restore(flags);
3200 }
3201 return 0;
3202}
3203
3204void zone_pcp_update(struct zone *zone)
3205{
3206 stop_machine(__zone_pcp_update, zone, NULL);
3207}
3208
c09b4240 3209static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e
DH
3210{
3211 int cpu;
3212 unsigned long batch = zone_batchsize(zone);
3213
3214 for (cpu = 0; cpu < NR_CPUS; cpu++) {
3215#ifdef CONFIG_NUMA
3216 /* Early boot. Slab allocator not functional yet */
23316bc8 3217 zone_pcp(zone, cpu) = &boot_pageset[cpu];
ed8ece2e
DH
3218 setup_pageset(&boot_pageset[cpu],0);
3219#else
3220 setup_pageset(zone_pcp(zone,cpu), batch);
3221#endif
3222 }
f5335c0f
AB
3223 if (zone->present_pages)
3224 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
3225 zone->name, zone->present_pages, batch);
ed8ece2e
DH
3226}
3227
718127cc
YG
3228__meminit int init_currently_empty_zone(struct zone *zone,
3229 unsigned long zone_start_pfn,
a2f3aa02
DH
3230 unsigned long size,
3231 enum memmap_context context)
ed8ece2e
DH
3232{
3233 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
3234 int ret;
3235 ret = zone_wait_table_init(zone, size);
3236 if (ret)
3237 return ret;
ed8ece2e
DH
3238 pgdat->nr_zones = zone_idx(zone) + 1;
3239
ed8ece2e
DH
3240 zone->zone_start_pfn = zone_start_pfn;
3241
708614e6
MG
3242 mminit_dprintk(MMINIT_TRACE, "memmap_init",
3243 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
3244 pgdat->node_id,
3245 (unsigned long)zone_idx(zone),
3246 zone_start_pfn, (zone_start_pfn + size));
3247
1e548deb 3248 zone_init_free_lists(zone);
718127cc
YG
3249
3250 return 0;
ed8ece2e
DH
3251}
3252
c713216d
MG
3253#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3254/*
3255 * Basic iterator support. Return the first range of PFNs for a node
3256 * Note: nid == MAX_NUMNODES returns first region regardless of node
3257 */
a3142c8e 3258static int __meminit first_active_region_index_in_nid(int nid)
c713216d
MG
3259{
3260 int i;
3261
3262 for (i = 0; i < nr_nodemap_entries; i++)
3263 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
3264 return i;
3265
3266 return -1;
3267}
3268
3269/*
3270 * Basic iterator support. Return the next active range of PFNs for a node
183ff22b 3271 * Note: nid == MAX_NUMNODES returns next region regardless of node
c713216d 3272 */
a3142c8e 3273static int __meminit next_active_region_index_in_nid(int index, int nid)
c713216d
MG
3274{
3275 for (index = index + 1; index < nr_nodemap_entries; index++)
3276 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
3277 return index;
3278
3279 return -1;
3280}
3281
3282#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3283/*
3284 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3285 * Architectures may implement their own version but if add_active_range()
3286 * was used and there are no special requirements, this is a convenient
3287 * alternative
3288 */
f2dbcfa7 3289int __meminit __early_pfn_to_nid(unsigned long pfn)
c713216d
MG
3290{
3291 int i;
3292
3293 for (i = 0; i < nr_nodemap_entries; i++) {
3294 unsigned long start_pfn = early_node_map[i].start_pfn;
3295 unsigned long end_pfn = early_node_map[i].end_pfn;
3296
3297 if (start_pfn <= pfn && pfn < end_pfn)
3298 return early_node_map[i].nid;
3299 }
cc2559bc
KH
3300 /* This is a memory hole */
3301 return -1;
c713216d
MG
3302}
3303#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3304
f2dbcfa7
KH
3305int __meminit early_pfn_to_nid(unsigned long pfn)
3306{
cc2559bc
KH
3307 int nid;
3308
3309 nid = __early_pfn_to_nid(pfn);
3310 if (nid >= 0)
3311 return nid;
3312 /* just returns 0 */
3313 return 0;
f2dbcfa7
KH
3314}
3315
cc2559bc
KH
3316#ifdef CONFIG_NODES_SPAN_OTHER_NODES
3317bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3318{
3319 int nid;
3320
3321 nid = __early_pfn_to_nid(pfn);
3322 if (nid >= 0 && nid != node)
3323 return false;
3324 return true;
3325}
3326#endif
f2dbcfa7 3327
c713216d
MG
3328/* Basic iterator support to walk early_node_map[] */
3329#define for_each_active_range_index_in_nid(i, nid) \
3330 for (i = first_active_region_index_in_nid(nid); i != -1; \
3331 i = next_active_region_index_in_nid(i, nid))
3332
3333/**
3334 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
88ca3b94
RD
3335 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3336 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
c713216d
MG
3337 *
3338 * If an architecture guarantees that all ranges registered with
3339 * add_active_ranges() contain no holes and may be freed, this
3340 * this function may be used instead of calling free_bootmem() manually.
3341 */
3342void __init free_bootmem_with_active_regions(int nid,
3343 unsigned long max_low_pfn)
3344{
3345 int i;
3346
3347 for_each_active_range_index_in_nid(i, nid) {
3348 unsigned long size_pages = 0;
3349 unsigned long end_pfn = early_node_map[i].end_pfn;
3350
3351 if (early_node_map[i].start_pfn >= max_low_pfn)
3352 continue;
3353
3354 if (end_pfn > max_low_pfn)
3355 end_pfn = max_low_pfn;
3356
3357 size_pages = end_pfn - early_node_map[i].start_pfn;
3358 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
3359 PFN_PHYS(early_node_map[i].start_pfn),
3360 size_pages << PAGE_SHIFT);
3361 }
3362}
3363
b5bc6c0e
YL
3364void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
3365{
3366 int i;
d52d53b8 3367 int ret;
b5bc6c0e 3368
d52d53b8
YL
3369 for_each_active_range_index_in_nid(i, nid) {
3370 ret = work_fn(early_node_map[i].start_pfn,
3371 early_node_map[i].end_pfn, data);
3372 if (ret)
3373 break;
3374 }
b5bc6c0e 3375}
c713216d
MG
3376/**
3377 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 3378 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d
MG
3379 *
3380 * If an architecture guarantees that all ranges registered with
3381 * add_active_ranges() contain no holes and may be freed, this
88ca3b94 3382 * function may be used instead of calling memory_present() manually.
c713216d
MG
3383 */
3384void __init sparse_memory_present_with_active_regions(int nid)
3385{
3386 int i;
3387
3388 for_each_active_range_index_in_nid(i, nid)
3389 memory_present(early_node_map[i].nid,
3390 early_node_map[i].start_pfn,
3391 early_node_map[i].end_pfn);
3392}
3393
3394/**
3395 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
3396 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3397 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3398 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
3399 *
3400 * It returns the start and end page frame of a node based on information
3401 * provided by an arch calling add_active_range(). If called for a node
3402 * with no available memory, a warning is printed and the start and end
88ca3b94 3403 * PFNs will be 0.
c713216d 3404 */
a3142c8e 3405void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
3406 unsigned long *start_pfn, unsigned long *end_pfn)
3407{
3408 int i;
3409 *start_pfn = -1UL;
3410 *end_pfn = 0;
3411
3412 for_each_active_range_index_in_nid(i, nid) {
3413 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3414 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3415 }
3416
633c0666 3417 if (*start_pfn == -1UL)
c713216d 3418 *start_pfn = 0;
c713216d
MG
3419}
3420
2a1e274a
MG
3421/*
3422 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3423 * assumption is made that zones within a node are ordered in monotonic
3424 * increasing memory addresses so that the "highest" populated zone is used
3425 */
b69a7288 3426static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
3427{
3428 int zone_index;
3429 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3430 if (zone_index == ZONE_MOVABLE)
3431 continue;
3432
3433 if (arch_zone_highest_possible_pfn[zone_index] >
3434 arch_zone_lowest_possible_pfn[zone_index])
3435 break;
3436 }
3437
3438 VM_BUG_ON(zone_index == -1);
3439 movable_zone = zone_index;
3440}
3441
3442/*
3443 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3444 * because it is sized independant of architecture. Unlike the other zones,
3445 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3446 * in each node depending on the size of each node and how evenly kernelcore
3447 * is distributed. This helper function adjusts the zone ranges
3448 * provided by the architecture for a given node by using the end of the
3449 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3450 * zones within a node are in order of monotonic increases memory addresses
3451 */
b69a7288 3452static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
3453 unsigned long zone_type,
3454 unsigned long node_start_pfn,
3455 unsigned long node_end_pfn,
3456 unsigned long *zone_start_pfn,
3457 unsigned long *zone_end_pfn)
3458{
3459 /* Only adjust if ZONE_MOVABLE is on this node */
3460 if (zone_movable_pfn[nid]) {
3461 /* Size ZONE_MOVABLE */
3462 if (zone_type == ZONE_MOVABLE) {
3463 *zone_start_pfn = zone_movable_pfn[nid];
3464 *zone_end_pfn = min(node_end_pfn,
3465 arch_zone_highest_possible_pfn[movable_zone]);
3466
3467 /* Adjust for ZONE_MOVABLE starting within this range */
3468 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3469 *zone_end_pfn > zone_movable_pfn[nid]) {
3470 *zone_end_pfn = zone_movable_pfn[nid];
3471
3472 /* Check if this whole range is within ZONE_MOVABLE */
3473 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
3474 *zone_start_pfn = *zone_end_pfn;
3475 }
3476}
3477
c713216d
MG
3478/*
3479 * Return the number of pages a zone spans in a node, including holes
3480 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3481 */
6ea6e688 3482static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
3483 unsigned long zone_type,
3484 unsigned long *ignored)
3485{
3486 unsigned long node_start_pfn, node_end_pfn;
3487 unsigned long zone_start_pfn, zone_end_pfn;
3488
3489 /* Get the start and end of the node and zone */
3490 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3491 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3492 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
3493 adjust_zone_range_for_zone_movable(nid, zone_type,
3494 node_start_pfn, node_end_pfn,
3495 &zone_start_pfn, &zone_end_pfn);
c713216d
MG
3496
3497 /* Check that this node has pages within the zone's required range */
3498 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3499 return 0;
3500
3501 /* Move the zone boundaries inside the node if necessary */
3502 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3503 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3504
3505 /* Return the spanned pages */
3506 return zone_end_pfn - zone_start_pfn;
3507}
3508
3509/*
3510 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 3511 * then all holes in the requested range will be accounted for.
c713216d 3512 */
b69a7288 3513static unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
3514 unsigned long range_start_pfn,
3515 unsigned long range_end_pfn)
3516{
3517 int i = 0;
3518 unsigned long prev_end_pfn = 0, hole_pages = 0;
3519 unsigned long start_pfn;
3520
3521 /* Find the end_pfn of the first active range of pfns in the node */
3522 i = first_active_region_index_in_nid(nid);
3523 if (i == -1)
3524 return 0;
3525
b5445f95
MG
3526 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3527
9c7cd687
MG
3528 /* Account for ranges before physical memory on this node */
3529 if (early_node_map[i].start_pfn > range_start_pfn)
b5445f95 3530 hole_pages = prev_end_pfn - range_start_pfn;
c713216d
MG
3531
3532 /* Find all holes for the zone within the node */
3533 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3534
3535 /* No need to continue if prev_end_pfn is outside the zone */
3536 if (prev_end_pfn >= range_end_pfn)
3537 break;
3538
3539 /* Make sure the end of the zone is not within the hole */
3540 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3541 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3542
3543 /* Update the hole size cound and move on */
3544 if (start_pfn > range_start_pfn) {
3545 BUG_ON(prev_end_pfn > start_pfn);
3546 hole_pages += start_pfn - prev_end_pfn;
3547 }
3548 prev_end_pfn = early_node_map[i].end_pfn;
3549 }
3550
9c7cd687
MG
3551 /* Account for ranges past physical memory on this node */
3552 if (range_end_pfn > prev_end_pfn)
0c6cb974 3553 hole_pages += range_end_pfn -
9c7cd687
MG
3554 max(range_start_pfn, prev_end_pfn);
3555
c713216d
MG
3556 return hole_pages;
3557}
3558
3559/**
3560 * absent_pages_in_range - Return number of page frames in holes within a range
3561 * @start_pfn: The start PFN to start searching for holes
3562 * @end_pfn: The end PFN to stop searching for holes
3563 *
88ca3b94 3564 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
3565 */
3566unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3567 unsigned long end_pfn)
3568{
3569 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3570}
3571
3572/* Return the number of page frames in holes in a zone on a node */
6ea6e688 3573static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
3574 unsigned long zone_type,
3575 unsigned long *ignored)
3576{
9c7cd687
MG
3577 unsigned long node_start_pfn, node_end_pfn;
3578 unsigned long zone_start_pfn, zone_end_pfn;
3579
3580 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3581 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3582 node_start_pfn);
3583 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3584 node_end_pfn);
3585
2a1e274a
MG
3586 adjust_zone_range_for_zone_movable(nid, zone_type,
3587 node_start_pfn, node_end_pfn,
3588 &zone_start_pfn, &zone_end_pfn);
9c7cd687 3589 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
c713216d 3590}
0e0b864e 3591
c713216d 3592#else
6ea6e688 3593static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
3594 unsigned long zone_type,
3595 unsigned long *zones_size)
3596{
3597 return zones_size[zone_type];
3598}
3599
6ea6e688 3600static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
3601 unsigned long zone_type,
3602 unsigned long *zholes_size)
3603{
3604 if (!zholes_size)
3605 return 0;
3606
3607 return zholes_size[zone_type];
3608}
0e0b864e 3609
c713216d
MG
3610#endif
3611
a3142c8e 3612static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
c713216d
MG
3613 unsigned long *zones_size, unsigned long *zholes_size)
3614{
3615 unsigned long realtotalpages, totalpages = 0;
3616 enum zone_type i;
3617
3618 for (i = 0; i < MAX_NR_ZONES; i++)
3619 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3620 zones_size);
3621 pgdat->node_spanned_pages = totalpages;
3622
3623 realtotalpages = totalpages;
3624 for (i = 0; i < MAX_NR_ZONES; i++)
3625 realtotalpages -=
3626 zone_absent_pages_in_node(pgdat->node_id, i,
3627 zholes_size);
3628 pgdat->node_present_pages = realtotalpages;
3629 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3630 realtotalpages);
3631}
3632
835c134e
MG
3633#ifndef CONFIG_SPARSEMEM
3634/*
3635 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
3636 * Start by making sure zonesize is a multiple of pageblock_order by rounding
3637 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
3638 * round what is now in bits to nearest long in bits, then return it in
3639 * bytes.
3640 */
3641static unsigned long __init usemap_size(unsigned long zonesize)
3642{
3643 unsigned long usemapsize;
3644
d9c23400
MG
3645 usemapsize = roundup(zonesize, pageblock_nr_pages);
3646 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
3647 usemapsize *= NR_PAGEBLOCK_BITS;
3648 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
3649
3650 return usemapsize / 8;
3651}
3652
3653static void __init setup_usemap(struct pglist_data *pgdat,
3654 struct zone *zone, unsigned long zonesize)
3655{
3656 unsigned long usemapsize = usemap_size(zonesize);
3657 zone->pageblock_flags = NULL;
58a01a45 3658 if (usemapsize)
835c134e 3659 zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
835c134e
MG
3660}
3661#else
3662static void inline setup_usemap(struct pglist_data *pgdat,
3663 struct zone *zone, unsigned long zonesize) {}
3664#endif /* CONFIG_SPARSEMEM */
3665
d9c23400 3666#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c
MG
3667
3668/* Return a sensible default order for the pageblock size. */
3669static inline int pageblock_default_order(void)
3670{
3671 if (HPAGE_SHIFT > PAGE_SHIFT)
3672 return HUGETLB_PAGE_ORDER;
3673
3674 return MAX_ORDER-1;
3675}
3676
d9c23400
MG
3677/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3678static inline void __init set_pageblock_order(unsigned int order)
3679{
3680 /* Check that pageblock_nr_pages has not already been setup */
3681 if (pageblock_order)
3682 return;
3683
3684 /*
3685 * Assume the largest contiguous order of interest is a huge page.
3686 * This value may be variable depending on boot parameters on IA64
3687 */
3688 pageblock_order = order;
3689}
3690#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3691
ba72cb8c
MG
3692/*
3693 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
3694 * and pageblock_default_order() are unused as pageblock_order is set
3695 * at compile-time. See include/linux/pageblock-flags.h for the values of
3696 * pageblock_order based on the kernel config
3697 */
3698static inline int pageblock_default_order(unsigned int order)
3699{
3700 return MAX_ORDER-1;
3701}
d9c23400
MG
3702#define set_pageblock_order(x) do {} while (0)
3703
3704#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3705
1da177e4
LT
3706/*
3707 * Set up the zone data structures:
3708 * - mark all pages reserved
3709 * - mark all memory queues empty
3710 * - clear the memory bitmaps
3711 */
b5a0e011 3712static void __paginginit free_area_init_core(struct pglist_data *pgdat,
1da177e4
LT
3713 unsigned long *zones_size, unsigned long *zholes_size)
3714{
2f1b6248 3715 enum zone_type j;
ed8ece2e 3716 int nid = pgdat->node_id;
1da177e4 3717 unsigned long zone_start_pfn = pgdat->node_start_pfn;
718127cc 3718 int ret;
1da177e4 3719
208d54e5 3720 pgdat_resize_init(pgdat);
1da177e4
LT
3721 pgdat->nr_zones = 0;
3722 init_waitqueue_head(&pgdat->kswapd_wait);
3723 pgdat->kswapd_max_order = 0;
52d4b9ac 3724 pgdat_page_cgroup_init(pgdat);
1da177e4
LT
3725
3726 for (j = 0; j < MAX_NR_ZONES; j++) {
3727 struct zone *zone = pgdat->node_zones + j;
0e0b864e 3728 unsigned long size, realsize, memmap_pages;
b69408e8 3729 enum lru_list l;
1da177e4 3730
c713216d
MG
3731 size = zone_spanned_pages_in_node(nid, j, zones_size);
3732 realsize = size - zone_absent_pages_in_node(nid, j,
3733 zholes_size);
1da177e4 3734
0e0b864e
MG
3735 /*
3736 * Adjust realsize so that it accounts for how much memory
3737 * is used by this zone for memmap. This affects the watermark
3738 * and per-cpu initialisations
3739 */
f7232154
JW
3740 memmap_pages =
3741 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
0e0b864e
MG
3742 if (realsize >= memmap_pages) {
3743 realsize -= memmap_pages;
5594c8c8
YL
3744 if (memmap_pages)
3745 printk(KERN_DEBUG
3746 " %s zone: %lu pages used for memmap\n",
3747 zone_names[j], memmap_pages);
0e0b864e
MG
3748 } else
3749 printk(KERN_WARNING
3750 " %s zone: %lu pages exceeds realsize %lu\n",
3751 zone_names[j], memmap_pages, realsize);
3752
6267276f
CL
3753 /* Account for reserved pages */
3754 if (j == 0 && realsize > dma_reserve) {
0e0b864e 3755 realsize -= dma_reserve;
d903ef9f 3756 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 3757 zone_names[0], dma_reserve);
0e0b864e
MG
3758 }
3759
98d2b0eb 3760 if (!is_highmem_idx(j))
1da177e4
LT
3761 nr_kernel_pages += realsize;
3762 nr_all_pages += realsize;
3763
3764 zone->spanned_pages = size;
3765 zone->present_pages = realsize;
9614634f 3766#ifdef CONFIG_NUMA
d5f541ed 3767 zone->node = nid;
8417bba4 3768 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
9614634f 3769 / 100;
0ff38490 3770 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
9614634f 3771#endif
1da177e4
LT
3772 zone->name = zone_names[j];
3773 spin_lock_init(&zone->lock);
3774 spin_lock_init(&zone->lru_lock);
bdc8cb98 3775 zone_seqlock_init(zone);
1da177e4 3776 zone->zone_pgdat = pgdat;
1da177e4 3777
3bb1a852 3778 zone->prev_priority = DEF_PRIORITY;
1da177e4 3779
ed8ece2e 3780 zone_pcp_init(zone);
b69408e8
CL
3781 for_each_lru(l) {
3782 INIT_LIST_HEAD(&zone->lru[l].list);
6e08a369 3783 zone->lru[l].nr_saved_scan = 0;
b69408e8 3784 }
6e901571
KM
3785 zone->reclaim_stat.recent_rotated[0] = 0;
3786 zone->reclaim_stat.recent_rotated[1] = 0;
3787 zone->reclaim_stat.recent_scanned[0] = 0;
3788 zone->reclaim_stat.recent_scanned[1] = 0;
2244b95a 3789 zap_zone_vm_stats(zone);
e815af95 3790 zone->flags = 0;
1da177e4
LT
3791 if (!size)
3792 continue;
3793
ba72cb8c 3794 set_pageblock_order(pageblock_default_order());
835c134e 3795 setup_usemap(pgdat, zone, size);
a2f3aa02
DH
3796 ret = init_currently_empty_zone(zone, zone_start_pfn,
3797 size, MEMMAP_EARLY);
718127cc 3798 BUG_ON(ret);
76cdd58e 3799 memmap_init(size, nid, j, zone_start_pfn);
1da177e4 3800 zone_start_pfn += size;
1da177e4
LT
3801 }
3802}
3803
577a32f6 3804static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 3805{
1da177e4
LT
3806 /* Skip empty nodes */
3807 if (!pgdat->node_spanned_pages)
3808 return;
3809
d41dee36 3810#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4
LT
3811 /* ia64 gets its own node_mem_map, before this, without bootmem */
3812 if (!pgdat->node_mem_map) {
e984bb43 3813 unsigned long size, start, end;
d41dee36
AW
3814 struct page *map;
3815
e984bb43
BP
3816 /*
3817 * The zone's endpoints aren't required to be MAX_ORDER
3818 * aligned but the node_mem_map endpoints must be in order
3819 * for the buddy allocator to function correctly.
3820 */
3821 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
3822 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
3823 end = ALIGN(end, MAX_ORDER_NR_PAGES);
3824 size = (end - start) * sizeof(struct page);
6f167ec7
DH
3825 map = alloc_remap(pgdat->node_id, size);
3826 if (!map)
3827 map = alloc_bootmem_node(pgdat, size);
e984bb43 3828 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
1da177e4 3829 }
12d810c1 3830#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
3831 /*
3832 * With no DISCONTIG, the global mem_map is just set as node 0's
3833 */
c713216d 3834 if (pgdat == NODE_DATA(0)) {
1da177e4 3835 mem_map = NODE_DATA(0)->node_mem_map;
c713216d
MG
3836#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3837 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
467bc461 3838 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
c713216d
MG
3839#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3840 }
1da177e4 3841#endif
d41dee36 3842#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
3843}
3844
9109fb7b
JW
3845void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
3846 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 3847{
9109fb7b
JW
3848 pg_data_t *pgdat = NODE_DATA(nid);
3849
1da177e4
LT
3850 pgdat->node_id = nid;
3851 pgdat->node_start_pfn = node_start_pfn;
c713216d 3852 calculate_node_totalpages(pgdat, zones_size, zholes_size);
1da177e4
LT
3853
3854 alloc_node_mem_map(pgdat);
e8c27ac9
YL
3855#ifdef CONFIG_FLAT_NODE_MEM_MAP
3856 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
3857 nid, (unsigned long)pgdat,
3858 (unsigned long)pgdat->node_mem_map);
3859#endif
1da177e4
LT
3860
3861 free_area_init_core(pgdat, zones_size, zholes_size);
3862}
3863
c713216d 3864#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
418508c1
MS
3865
3866#if MAX_NUMNODES > 1
3867/*
3868 * Figure out the number of possible node ids.
3869 */
3870static void __init setup_nr_node_ids(void)
3871{
3872 unsigned int node;
3873 unsigned int highest = 0;
3874
3875 for_each_node_mask(node, node_possible_map)
3876 highest = node;
3877 nr_node_ids = highest + 1;
3878}
3879#else
3880static inline void setup_nr_node_ids(void)
3881{
3882}
3883#endif
3884
c713216d
MG
3885/**
3886 * add_active_range - Register a range of PFNs backed by physical memory
3887 * @nid: The node ID the range resides on
3888 * @start_pfn: The start PFN of the available physical memory
3889 * @end_pfn: The end PFN of the available physical memory
3890 *
3891 * These ranges are stored in an early_node_map[] and later used by
3892 * free_area_init_nodes() to calculate zone sizes and holes. If the
3893 * range spans a memory hole, it is up to the architecture to ensure
3894 * the memory is not freed by the bootmem allocator. If possible
3895 * the range being registered will be merged with existing ranges.
3896 */
3897void __init add_active_range(unsigned int nid, unsigned long start_pfn,
3898 unsigned long end_pfn)
3899{
3900 int i;
3901
6b74ab97
MG
3902 mminit_dprintk(MMINIT_TRACE, "memory_register",
3903 "Entering add_active_range(%d, %#lx, %#lx) "
3904 "%d entries of %d used\n",
3905 nid, start_pfn, end_pfn,
3906 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
c713216d 3907
2dbb51c4
MG
3908 mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
3909
c713216d
MG
3910 /* Merge with existing active regions if possible */
3911 for (i = 0; i < nr_nodemap_entries; i++) {
3912 if (early_node_map[i].nid != nid)
3913 continue;
3914
3915 /* Skip if an existing region covers this new one */
3916 if (start_pfn >= early_node_map[i].start_pfn &&
3917 end_pfn <= early_node_map[i].end_pfn)
3918 return;
3919
3920 /* Merge forward if suitable */
3921 if (start_pfn <= early_node_map[i].end_pfn &&
3922 end_pfn > early_node_map[i].end_pfn) {
3923 early_node_map[i].end_pfn = end_pfn;
3924 return;
3925 }
3926
3927 /* Merge backward if suitable */
3928 if (start_pfn < early_node_map[i].end_pfn &&
3929 end_pfn >= early_node_map[i].start_pfn) {
3930 early_node_map[i].start_pfn = start_pfn;
3931 return;
3932 }
3933 }
3934
3935 /* Check that early_node_map is large enough */
3936 if (i >= MAX_ACTIVE_REGIONS) {
3937 printk(KERN_CRIT "More than %d memory regions, truncating\n",
3938 MAX_ACTIVE_REGIONS);
3939 return;
3940 }
3941
3942 early_node_map[i].nid = nid;
3943 early_node_map[i].start_pfn = start_pfn;
3944 early_node_map[i].end_pfn = end_pfn;
3945 nr_nodemap_entries = i + 1;
3946}
3947
3948/**
cc1050ba 3949 * remove_active_range - Shrink an existing registered range of PFNs
c713216d 3950 * @nid: The node id the range is on that should be shrunk
cc1050ba
YL
3951 * @start_pfn: The new PFN of the range
3952 * @end_pfn: The new PFN of the range
c713216d
MG
3953 *
3954 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
cc1a9d86
YL
3955 * The map is kept near the end physical page range that has already been
3956 * registered. This function allows an arch to shrink an existing registered
3957 * range.
c713216d 3958 */
cc1050ba
YL
3959void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
3960 unsigned long end_pfn)
c713216d 3961{
cc1a9d86
YL
3962 int i, j;
3963 int removed = 0;
c713216d 3964
cc1050ba
YL
3965 printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
3966 nid, start_pfn, end_pfn);
3967
c713216d 3968 /* Find the old active region end and shrink */
cc1a9d86 3969 for_each_active_range_index_in_nid(i, nid) {
cc1050ba
YL
3970 if (early_node_map[i].start_pfn >= start_pfn &&
3971 early_node_map[i].end_pfn <= end_pfn) {
cc1a9d86 3972 /* clear it */
cc1050ba 3973 early_node_map[i].start_pfn = 0;
cc1a9d86
YL
3974 early_node_map[i].end_pfn = 0;
3975 removed = 1;
3976 continue;
3977 }
cc1050ba
YL
3978 if (early_node_map[i].start_pfn < start_pfn &&
3979 early_node_map[i].end_pfn > start_pfn) {
3980 unsigned long temp_end_pfn = early_node_map[i].end_pfn;
3981 early_node_map[i].end_pfn = start_pfn;
3982 if (temp_end_pfn > end_pfn)
3983 add_active_range(nid, end_pfn, temp_end_pfn);
3984 continue;
3985 }
3986 if (early_node_map[i].start_pfn >= start_pfn &&
3987 early_node_map[i].end_pfn > end_pfn &&
3988 early_node_map[i].start_pfn < end_pfn) {
3989 early_node_map[i].start_pfn = end_pfn;
cc1a9d86 3990 continue;
c713216d 3991 }
cc1a9d86
YL
3992 }
3993
3994 if (!removed)
3995 return;
3996
3997 /* remove the blank ones */
3998 for (i = nr_nodemap_entries - 1; i > 0; i--) {
3999 if (early_node_map[i].nid != nid)
4000 continue;
4001 if (early_node_map[i].end_pfn)
4002 continue;
4003 /* we found it, get rid of it */
4004 for (j = i; j < nr_nodemap_entries - 1; j++)
4005 memcpy(&early_node_map[j], &early_node_map[j+1],
4006 sizeof(early_node_map[j]));
4007 j = nr_nodemap_entries - 1;
4008 memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
4009 nr_nodemap_entries--;
4010 }
c713216d
MG
4011}
4012
4013/**
4014 * remove_all_active_ranges - Remove all currently registered regions
88ca3b94 4015 *
c713216d
MG
4016 * During discovery, it may be found that a table like SRAT is invalid
4017 * and an alternative discovery method must be used. This function removes
4018 * all currently registered regions.
4019 */
88ca3b94 4020void __init remove_all_active_ranges(void)
c713216d
MG
4021{
4022 memset(early_node_map, 0, sizeof(early_node_map));
4023 nr_nodemap_entries = 0;
4024}
4025
4026/* Compare two active node_active_regions */
4027static int __init cmp_node_active_region(const void *a, const void *b)
4028{
4029 struct node_active_region *arange = (struct node_active_region *)a;
4030 struct node_active_region *brange = (struct node_active_region *)b;
4031
4032 /* Done this way to avoid overflows */
4033 if (arange->start_pfn > brange->start_pfn)
4034 return 1;
4035 if (arange->start_pfn < brange->start_pfn)
4036 return -1;
4037
4038 return 0;
4039}
4040
4041/* sort the node_map by start_pfn */
4042static void __init sort_node_map(void)
4043{
4044 sort(early_node_map, (size_t)nr_nodemap_entries,
4045 sizeof(struct node_active_region),
4046 cmp_node_active_region, NULL);
4047}
4048
a6af2bc3 4049/* Find the lowest pfn for a node */
b69a7288 4050static unsigned long __init find_min_pfn_for_node(int nid)
c713216d
MG
4051{
4052 int i;
a6af2bc3 4053 unsigned long min_pfn = ULONG_MAX;
1abbfb41 4054
c713216d
MG
4055 /* Assuming a sorted map, the first range found has the starting pfn */
4056 for_each_active_range_index_in_nid(i, nid)
a6af2bc3 4057 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
c713216d 4058
a6af2bc3
MG
4059 if (min_pfn == ULONG_MAX) {
4060 printk(KERN_WARNING
2bc0d261 4061 "Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
4062 return 0;
4063 }
4064
4065 return min_pfn;
c713216d
MG
4066}
4067
4068/**
4069 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4070 *
4071 * It returns the minimum PFN based on information provided via
88ca3b94 4072 * add_active_range().
c713216d
MG
4073 */
4074unsigned long __init find_min_pfn_with_active_regions(void)
4075{
4076 return find_min_pfn_for_node(MAX_NUMNODES);
4077}
4078
37b07e41
LS
4079/*
4080 * early_calculate_totalpages()
4081 * Sum pages in active regions for movable zone.
4082 * Populate N_HIGH_MEMORY for calculating usable_nodes.
4083 */
484f51f8 4084static unsigned long __init early_calculate_totalpages(void)
7e63efef
MG
4085{
4086 int i;
4087 unsigned long totalpages = 0;
4088
37b07e41
LS
4089 for (i = 0; i < nr_nodemap_entries; i++) {
4090 unsigned long pages = early_node_map[i].end_pfn -
7e63efef 4091 early_node_map[i].start_pfn;
37b07e41
LS
4092 totalpages += pages;
4093 if (pages)
4094 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
4095 }
4096 return totalpages;
7e63efef
MG
4097}
4098
2a1e274a
MG
4099/*
4100 * Find the PFN the Movable zone begins in each node. Kernel memory
4101 * is spread evenly between nodes as long as the nodes have enough
4102 * memory. When they don't, some nodes will have more kernelcore than
4103 * others
4104 */
b69a7288 4105static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
2a1e274a
MG
4106{
4107 int i, nid;
4108 unsigned long usable_startpfn;
4109 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd
YL
4110 /* save the state before borrow the nodemask */
4111 nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
37b07e41
LS
4112 unsigned long totalpages = early_calculate_totalpages();
4113 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
2a1e274a 4114
7e63efef
MG
4115 /*
4116 * If movablecore was specified, calculate what size of
4117 * kernelcore that corresponds so that memory usable for
4118 * any allocation type is evenly spread. If both kernelcore
4119 * and movablecore are specified, then the value of kernelcore
4120 * will be used for required_kernelcore if it's greater than
4121 * what movablecore would have allowed.
4122 */
4123 if (required_movablecore) {
7e63efef
MG
4124 unsigned long corepages;
4125
4126 /*
4127 * Round-up so that ZONE_MOVABLE is at least as large as what
4128 * was requested by the user
4129 */
4130 required_movablecore =
4131 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4132 corepages = totalpages - required_movablecore;
4133
4134 required_kernelcore = max(required_kernelcore, corepages);
4135 }
4136
2a1e274a
MG
4137 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4138 if (!required_kernelcore)
66918dcd 4139 goto out;
2a1e274a
MG
4140
4141 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4142 find_usable_zone_for_movable();
4143 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4144
4145restart:
4146 /* Spread kernelcore memory as evenly as possible throughout nodes */
4147 kernelcore_node = required_kernelcore / usable_nodes;
37b07e41 4148 for_each_node_state(nid, N_HIGH_MEMORY) {
2a1e274a
MG
4149 /*
4150 * Recalculate kernelcore_node if the division per node
4151 * now exceeds what is necessary to satisfy the requested
4152 * amount of memory for the kernel
4153 */
4154 if (required_kernelcore < kernelcore_node)
4155 kernelcore_node = required_kernelcore / usable_nodes;
4156
4157 /*
4158 * As the map is walked, we track how much memory is usable
4159 * by the kernel using kernelcore_remaining. When it is
4160 * 0, the rest of the node is usable by ZONE_MOVABLE
4161 */
4162 kernelcore_remaining = kernelcore_node;
4163
4164 /* Go through each range of PFNs within this node */
4165 for_each_active_range_index_in_nid(i, nid) {
4166 unsigned long start_pfn, end_pfn;
4167 unsigned long size_pages;
4168
4169 start_pfn = max(early_node_map[i].start_pfn,
4170 zone_movable_pfn[nid]);
4171 end_pfn = early_node_map[i].end_pfn;
4172 if (start_pfn >= end_pfn)
4173 continue;
4174
4175 /* Account for what is only usable for kernelcore */
4176 if (start_pfn < usable_startpfn) {
4177 unsigned long kernel_pages;
4178 kernel_pages = min(end_pfn, usable_startpfn)
4179 - start_pfn;
4180
4181 kernelcore_remaining -= min(kernel_pages,
4182 kernelcore_remaining);
4183 required_kernelcore -= min(kernel_pages,
4184 required_kernelcore);
4185
4186 /* Continue if range is now fully accounted */
4187 if (end_pfn <= usable_startpfn) {
4188
4189 /*
4190 * Push zone_movable_pfn to the end so
4191 * that if we have to rebalance
4192 * kernelcore across nodes, we will
4193 * not double account here
4194 */
4195 zone_movable_pfn[nid] = end_pfn;
4196 continue;
4197 }
4198 start_pfn = usable_startpfn;
4199 }
4200
4201 /*
4202 * The usable PFN range for ZONE_MOVABLE is from
4203 * start_pfn->end_pfn. Calculate size_pages as the
4204 * number of pages used as kernelcore
4205 */
4206 size_pages = end_pfn - start_pfn;
4207 if (size_pages > kernelcore_remaining)
4208 size_pages = kernelcore_remaining;
4209 zone_movable_pfn[nid] = start_pfn + size_pages;
4210
4211 /*
4212 * Some kernelcore has been met, update counts and
4213 * break if the kernelcore for this node has been
4214 * satisified
4215 */
4216 required_kernelcore -= min(required_kernelcore,
4217 size_pages);
4218 kernelcore_remaining -= size_pages;
4219 if (!kernelcore_remaining)
4220 break;
4221 }
4222 }
4223
4224 /*
4225 * If there is still required_kernelcore, we do another pass with one
4226 * less node in the count. This will push zone_movable_pfn[nid] further
4227 * along on the nodes that still have memory until kernelcore is
4228 * satisified
4229 */
4230 usable_nodes--;
4231 if (usable_nodes && required_kernelcore > usable_nodes)
4232 goto restart;
4233
4234 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4235 for (nid = 0; nid < MAX_NUMNODES; nid++)
4236 zone_movable_pfn[nid] =
4237 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd
YL
4238
4239out:
4240 /* restore the node_state */
4241 node_states[N_HIGH_MEMORY] = saved_node_state;
2a1e274a
MG
4242}
4243
37b07e41
LS
4244/* Any regular memory on that node ? */
4245static void check_for_regular_memory(pg_data_t *pgdat)
4246{
4247#ifdef CONFIG_HIGHMEM
4248 enum zone_type zone_type;
4249
4250 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4251 struct zone *zone = &pgdat->node_zones[zone_type];
4252 if (zone->present_pages)
4253 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4254 }
4255#endif
4256}
4257
c713216d
MG
4258/**
4259 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 4260 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
4261 *
4262 * This will call free_area_init_node() for each active node in the system.
4263 * Using the page ranges provided by add_active_range(), the size of each
4264 * zone in each node and their holes is calculated. If the maximum PFN
4265 * between two adjacent zones match, it is assumed that the zone is empty.
4266 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4267 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4268 * starts where the previous one ended. For example, ZONE_DMA32 starts
4269 * at arch_max_dma_pfn.
4270 */
4271void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4272{
4273 unsigned long nid;
db99100d 4274 int i;
c713216d 4275
a6af2bc3
MG
4276 /* Sort early_node_map as initialisation assumes it is sorted */
4277 sort_node_map();
4278
c713216d
MG
4279 /* Record where the zone boundaries are */
4280 memset(arch_zone_lowest_possible_pfn, 0,
4281 sizeof(arch_zone_lowest_possible_pfn));
4282 memset(arch_zone_highest_possible_pfn, 0,
4283 sizeof(arch_zone_highest_possible_pfn));
4284 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4285 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4286 for (i = 1; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
4287 if (i == ZONE_MOVABLE)
4288 continue;
c713216d
MG
4289 arch_zone_lowest_possible_pfn[i] =
4290 arch_zone_highest_possible_pfn[i-1];
4291 arch_zone_highest_possible_pfn[i] =
4292 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4293 }
2a1e274a
MG
4294 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4295 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4296
4297 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4298 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4299 find_zone_movable_pfns_for_nodes(zone_movable_pfn);
c713216d 4300
c713216d
MG
4301 /* Print out the zone ranges */
4302 printk("Zone PFN ranges:\n");
2a1e274a
MG
4303 for (i = 0; i < MAX_NR_ZONES; i++) {
4304 if (i == ZONE_MOVABLE)
4305 continue;
5dab8ec1 4306 printk(" %-8s %0#10lx -> %0#10lx\n",
c713216d
MG
4307 zone_names[i],
4308 arch_zone_lowest_possible_pfn[i],
4309 arch_zone_highest_possible_pfn[i]);
2a1e274a
MG
4310 }
4311
4312 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4313 printk("Movable zone start PFN for each node\n");
4314 for (i = 0; i < MAX_NUMNODES; i++) {
4315 if (zone_movable_pfn[i])
4316 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
4317 }
c713216d
MG
4318
4319 /* Print out the early_node_map[] */
4320 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4321 for (i = 0; i < nr_nodemap_entries; i++)
5dab8ec1 4322 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
c713216d
MG
4323 early_node_map[i].start_pfn,
4324 early_node_map[i].end_pfn);
4325
4326 /* Initialise every node */
708614e6 4327 mminit_verify_pageflags_layout();
8ef82866 4328 setup_nr_node_ids();
c713216d
MG
4329 for_each_online_node(nid) {
4330 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 4331 free_area_init_node(nid, NULL,
c713216d 4332 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
4333
4334 /* Any memory on that node */
4335 if (pgdat->node_present_pages)
4336 node_set_state(nid, N_HIGH_MEMORY);
4337 check_for_regular_memory(pgdat);
c713216d
MG
4338 }
4339}
2a1e274a 4340
7e63efef 4341static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
4342{
4343 unsigned long long coremem;
4344 if (!p)
4345 return -EINVAL;
4346
4347 coremem = memparse(p, &p);
7e63efef 4348 *core = coremem >> PAGE_SHIFT;
2a1e274a 4349
7e63efef 4350 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
4351 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4352
4353 return 0;
4354}
ed7ed365 4355
7e63efef
MG
4356/*
4357 * kernelcore=size sets the amount of memory for use for allocations that
4358 * cannot be reclaimed or migrated.
4359 */
4360static int __init cmdline_parse_kernelcore(char *p)
4361{
4362 return cmdline_parse_core(p, &required_kernelcore);
4363}
4364
4365/*
4366 * movablecore=size sets the amount of memory for use for allocations that
4367 * can be reclaimed or migrated.
4368 */
4369static int __init cmdline_parse_movablecore(char *p)
4370{
4371 return cmdline_parse_core(p, &required_movablecore);
4372}
4373
ed7ed365 4374early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 4375early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 4376
c713216d
MG
4377#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4378
0e0b864e 4379/**
88ca3b94
RD
4380 * set_dma_reserve - set the specified number of pages reserved in the first zone
4381 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e
MG
4382 *
4383 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4384 * In the DMA zone, a significant percentage may be consumed by kernel image
4385 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
4386 * function may optionally be used to account for unfreeable pages in the
4387 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4388 * smaller per-cpu batchsize.
0e0b864e
MG
4389 */
4390void __init set_dma_reserve(unsigned long new_dma_reserve)
4391{
4392 dma_reserve = new_dma_reserve;
4393}
4394
93b7504e 4395#ifndef CONFIG_NEED_MULTIPLE_NODES
52765583 4396struct pglist_data __refdata contig_page_data = { .bdata = &bootmem_node_data[0] };
1da177e4 4397EXPORT_SYMBOL(contig_page_data);
93b7504e 4398#endif
1da177e4
LT
4399
4400void __init free_area_init(unsigned long *zones_size)
4401{
9109fb7b 4402 free_area_init_node(0, zones_size,
1da177e4
LT
4403 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4404}
1da177e4 4405
1da177e4
LT
4406static int page_alloc_cpu_notify(struct notifier_block *self,
4407 unsigned long action, void *hcpu)
4408{
4409 int cpu = (unsigned long)hcpu;
1da177e4 4410
8bb78442 4411 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
9f8f2172
CL
4412 drain_pages(cpu);
4413
4414 /*
4415 * Spill the event counters of the dead processor
4416 * into the current processors event counters.
4417 * This artificially elevates the count of the current
4418 * processor.
4419 */
f8891e5e 4420 vm_events_fold_cpu(cpu);
9f8f2172
CL
4421
4422 /*
4423 * Zero the differential counters of the dead processor
4424 * so that the vm statistics are consistent.
4425 *
4426 * This is only okay since the processor is dead and cannot
4427 * race with what we are doing.
4428 */
2244b95a 4429 refresh_cpu_vm_stats(cpu);
1da177e4
LT
4430 }
4431 return NOTIFY_OK;
4432}
1da177e4
LT
4433
4434void __init page_alloc_init(void)
4435{
4436 hotcpu_notifier(page_alloc_cpu_notify, 0);
4437}
4438
cb45b0e9
HA
4439/*
4440 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4441 * or min_free_kbytes changes.
4442 */
4443static void calculate_totalreserve_pages(void)
4444{
4445 struct pglist_data *pgdat;
4446 unsigned long reserve_pages = 0;
2f6726e5 4447 enum zone_type i, j;
cb45b0e9
HA
4448
4449 for_each_online_pgdat(pgdat) {
4450 for (i = 0; i < MAX_NR_ZONES; i++) {
4451 struct zone *zone = pgdat->node_zones + i;
4452 unsigned long max = 0;
4453
4454 /* Find valid and maximum lowmem_reserve in the zone */
4455 for (j = i; j < MAX_NR_ZONES; j++) {
4456 if (zone->lowmem_reserve[j] > max)
4457 max = zone->lowmem_reserve[j];
4458 }
4459
41858966
MG
4460 /* we treat the high watermark as reserved pages. */
4461 max += high_wmark_pages(zone);
cb45b0e9
HA
4462
4463 if (max > zone->present_pages)
4464 max = zone->present_pages;
4465 reserve_pages += max;
4466 }
4467 }
4468 totalreserve_pages = reserve_pages;
4469}
4470
1da177e4
LT
4471/*
4472 * setup_per_zone_lowmem_reserve - called whenever
4473 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4474 * has a correct pages reserved value, so an adequate number of
4475 * pages are left in the zone after a successful __alloc_pages().
4476 */
4477static void setup_per_zone_lowmem_reserve(void)
4478{
4479 struct pglist_data *pgdat;
2f6726e5 4480 enum zone_type j, idx;
1da177e4 4481
ec936fc5 4482 for_each_online_pgdat(pgdat) {
1da177e4
LT
4483 for (j = 0; j < MAX_NR_ZONES; j++) {
4484 struct zone *zone = pgdat->node_zones + j;
4485 unsigned long present_pages = zone->present_pages;
4486
4487 zone->lowmem_reserve[j] = 0;
4488
2f6726e5
CL
4489 idx = j;
4490 while (idx) {
1da177e4
LT
4491 struct zone *lower_zone;
4492
2f6726e5
CL
4493 idx--;
4494
1da177e4
LT
4495 if (sysctl_lowmem_reserve_ratio[idx] < 1)
4496 sysctl_lowmem_reserve_ratio[idx] = 1;
4497
4498 lower_zone = pgdat->node_zones + idx;
4499 lower_zone->lowmem_reserve[j] = present_pages /
4500 sysctl_lowmem_reserve_ratio[idx];
4501 present_pages += lower_zone->present_pages;
4502 }
4503 }
4504 }
cb45b0e9
HA
4505
4506 /* update totalreserve_pages */
4507 calculate_totalreserve_pages();
1da177e4
LT
4508}
4509
88ca3b94 4510/**
bc75d33f 4511 * setup_per_zone_wmarks - called when min_free_kbytes changes
bce7394a 4512 * or when memory is hot-{added|removed}
88ca3b94 4513 *
bc75d33f
MK
4514 * Ensures that the watermark[min,low,high] values for each zone are set
4515 * correctly with respect to min_free_kbytes.
1da177e4 4516 */
bc75d33f 4517void setup_per_zone_wmarks(void)
1da177e4
LT
4518{
4519 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4520 unsigned long lowmem_pages = 0;
4521 struct zone *zone;
4522 unsigned long flags;
4523
4524 /* Calculate total number of !ZONE_HIGHMEM pages */
4525 for_each_zone(zone) {
4526 if (!is_highmem(zone))
4527 lowmem_pages += zone->present_pages;
4528 }
4529
4530 for_each_zone(zone) {
ac924c60
AM
4531 u64 tmp;
4532
1125b4e3 4533 spin_lock_irqsave(&zone->lock, flags);
ac924c60
AM
4534 tmp = (u64)pages_min * zone->present_pages;
4535 do_div(tmp, lowmem_pages);
1da177e4
LT
4536 if (is_highmem(zone)) {
4537 /*
669ed175
NP
4538 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4539 * need highmem pages, so cap pages_min to a small
4540 * value here.
4541 *
41858966 4542 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
669ed175
NP
4543 * deltas controls asynch page reclaim, and so should
4544 * not be capped for highmem.
1da177e4
LT
4545 */
4546 int min_pages;
4547
4548 min_pages = zone->present_pages / 1024;
4549 if (min_pages < SWAP_CLUSTER_MAX)
4550 min_pages = SWAP_CLUSTER_MAX;
4551 if (min_pages > 128)
4552 min_pages = 128;
41858966 4553 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 4554 } else {
669ed175
NP
4555 /*
4556 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
4557 * proportionate to the zone's size.
4558 */
41858966 4559 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
4560 }
4561
41858966
MG
4562 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
4563 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
56fd56b8 4564 setup_zone_migrate_reserve(zone);
1125b4e3 4565 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 4566 }
cb45b0e9
HA
4567
4568 /* update totalreserve_pages */
4569 calculate_totalreserve_pages();
1da177e4
LT
4570}
4571
55a4462a 4572/*
556adecb
RR
4573 * The inactive anon list should be small enough that the VM never has to
4574 * do too much work, but large enough that each inactive page has a chance
4575 * to be referenced again before it is swapped out.
4576 *
4577 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
4578 * INACTIVE_ANON pages on this zone's LRU, maintained by the
4579 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
4580 * the anonymous pages are kept on the inactive list.
4581 *
4582 * total target max
4583 * memory ratio inactive anon
4584 * -------------------------------------
4585 * 10MB 1 5MB
4586 * 100MB 1 50MB
4587 * 1GB 3 250MB
4588 * 10GB 10 0.9GB
4589 * 100GB 31 3GB
4590 * 1TB 101 10GB
4591 * 10TB 320 32GB
4592 */
96cb4df5 4593void calculate_zone_inactive_ratio(struct zone *zone)
556adecb 4594{
96cb4df5 4595 unsigned int gb, ratio;
556adecb 4596
96cb4df5
MK
4597 /* Zone size in gigabytes */
4598 gb = zone->present_pages >> (30 - PAGE_SHIFT);
4599 if (gb)
556adecb 4600 ratio = int_sqrt(10 * gb);
96cb4df5
MK
4601 else
4602 ratio = 1;
556adecb 4603
96cb4df5
MK
4604 zone->inactive_ratio = ratio;
4605}
556adecb 4606
96cb4df5
MK
4607static void __init setup_per_zone_inactive_ratio(void)
4608{
4609 struct zone *zone;
4610
4611 for_each_zone(zone)
4612 calculate_zone_inactive_ratio(zone);
556adecb
RR
4613}
4614
1da177e4
LT
4615/*
4616 * Initialise min_free_kbytes.
4617 *
4618 * For small machines we want it small (128k min). For large machines
4619 * we want it large (64MB max). But it is not linear, because network
4620 * bandwidth does not increase linearly with machine size. We use
4621 *
4622 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4623 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
4624 *
4625 * which yields
4626 *
4627 * 16MB: 512k
4628 * 32MB: 724k
4629 * 64MB: 1024k
4630 * 128MB: 1448k
4631 * 256MB: 2048k
4632 * 512MB: 2896k
4633 * 1024MB: 4096k
4634 * 2048MB: 5792k
4635 * 4096MB: 8192k
4636 * 8192MB: 11584k
4637 * 16384MB: 16384k
4638 */
bc75d33f 4639static int __init init_per_zone_wmark_min(void)
1da177e4
LT
4640{
4641 unsigned long lowmem_kbytes;
4642
4643 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
4644
4645 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
4646 if (min_free_kbytes < 128)
4647 min_free_kbytes = 128;
4648 if (min_free_kbytes > 65536)
4649 min_free_kbytes = 65536;
bc75d33f 4650 setup_per_zone_wmarks();
1da177e4 4651 setup_per_zone_lowmem_reserve();
556adecb 4652 setup_per_zone_inactive_ratio();
1da177e4
LT
4653 return 0;
4654}
bc75d33f 4655module_init(init_per_zone_wmark_min)
1da177e4
LT
4656
4657/*
4658 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4659 * that we can call two helper functions whenever min_free_kbytes
4660 * changes.
4661 */
4662int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
4663 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4664{
4665 proc_dointvec(table, write, file, buffer, length, ppos);
3b1d92c5 4666 if (write)
bc75d33f 4667 setup_per_zone_wmarks();
1da177e4
LT
4668 return 0;
4669}
4670
9614634f
CL
4671#ifdef CONFIG_NUMA
4672int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
4673 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4674{
4675 struct zone *zone;
4676 int rc;
4677
4678 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4679 if (rc)
4680 return rc;
4681
4682 for_each_zone(zone)
8417bba4 4683 zone->min_unmapped_pages = (zone->present_pages *
9614634f
CL
4684 sysctl_min_unmapped_ratio) / 100;
4685 return 0;
4686}
0ff38490
CL
4687
4688int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
4689 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4690{
4691 struct zone *zone;
4692 int rc;
4693
4694 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4695 if (rc)
4696 return rc;
4697
4698 for_each_zone(zone)
4699 zone->min_slab_pages = (zone->present_pages *
4700 sysctl_min_slab_ratio) / 100;
4701 return 0;
4702}
9614634f
CL
4703#endif
4704
1da177e4
LT
4705/*
4706 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4707 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4708 * whenever sysctl_lowmem_reserve_ratio changes.
4709 *
4710 * The reserve ratio obviously has absolutely no relation with the
41858966 4711 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
4712 * if in function of the boot time zone sizes.
4713 */
4714int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
4715 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4716{
4717 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4718 setup_per_zone_lowmem_reserve();
4719 return 0;
4720}
4721
8ad4b1fb
RS
4722/*
4723 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4724 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
4725 * can have before it gets flushed back to buddy allocator.
4726 */
4727
4728int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
4729 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4730{
4731 struct zone *zone;
4732 unsigned int cpu;
4733 int ret;
4734
4735 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4736 if (!write || (ret == -EINVAL))
4737 return ret;
364df0eb 4738 for_each_populated_zone(zone) {
8ad4b1fb
RS
4739 for_each_online_cpu(cpu) {
4740 unsigned long high;
4741 high = zone->present_pages / percpu_pagelist_fraction;
4742 setup_pagelist_highmark(zone_pcp(zone, cpu), high);
4743 }
4744 }
4745 return 0;
4746}
4747
f034b5d4 4748int hashdist = HASHDIST_DEFAULT;
1da177e4
LT
4749
4750#ifdef CONFIG_NUMA
4751static int __init set_hashdist(char *str)
4752{
4753 if (!str)
4754 return 0;
4755 hashdist = simple_strtoul(str, &str, 0);
4756 return 1;
4757}
4758__setup("hashdist=", set_hashdist);
4759#endif
4760
4761/*
4762 * allocate a large system hash table from bootmem
4763 * - it is assumed that the hash table must contain an exact power-of-2
4764 * quantity of entries
4765 * - limit is the number of hash buckets, not the total allocation size
4766 */
4767void *__init alloc_large_system_hash(const char *tablename,
4768 unsigned long bucketsize,
4769 unsigned long numentries,
4770 int scale,
4771 int flags,
4772 unsigned int *_hash_shift,
4773 unsigned int *_hash_mask,
4774 unsigned long limit)
4775{
4776 unsigned long long max = limit;
4777 unsigned long log2qty, size;
4778 void *table = NULL;
4779
4780 /* allow the kernel cmdline to have a say */
4781 if (!numentries) {
4782 /* round applicable memory size up to nearest megabyte */
04903664 4783 numentries = nr_kernel_pages;
1da177e4
LT
4784 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
4785 numentries >>= 20 - PAGE_SHIFT;
4786 numentries <<= 20 - PAGE_SHIFT;
4787
4788 /* limit to 1 bucket per 2^scale bytes of low memory */
4789 if (scale > PAGE_SHIFT)
4790 numentries >>= (scale - PAGE_SHIFT);
4791 else
4792 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
4793
4794 /* Make sure we've got at least a 0-order allocation.. */
4795 if (unlikely((numentries * bucketsize) < PAGE_SIZE))
4796 numentries = PAGE_SIZE / bucketsize;
1da177e4 4797 }
6e692ed3 4798 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
4799
4800 /* limit allocation size to 1/16 total memory by default */
4801 if (max == 0) {
4802 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
4803 do_div(max, bucketsize);
4804 }
4805
4806 if (numentries > max)
4807 numentries = max;
4808
f0d1b0b3 4809 log2qty = ilog2(numentries);
1da177e4
LT
4810
4811 do {
4812 size = bucketsize << log2qty;
4813 if (flags & HASH_EARLY)
74768ed8 4814 table = alloc_bootmem_nopanic(size);
1da177e4
LT
4815 else if (hashdist)
4816 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
4817 else {
1037b83b
ED
4818 /*
4819 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
4820 * some pages at the end of hash table which
4821 * alloc_pages_exact() automatically does
1037b83b 4822 */
264ef8a9 4823 if (get_order(size) < MAX_ORDER) {
a1dd268c 4824 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
4825 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
4826 }
1da177e4
LT
4827 }
4828 } while (!table && size > PAGE_SIZE && --log2qty);
4829
4830 if (!table)
4831 panic("Failed to allocate %s hash table\n", tablename);
4832
b49ad484 4833 printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
1da177e4
LT
4834 tablename,
4835 (1U << log2qty),
f0d1b0b3 4836 ilog2(size) - PAGE_SHIFT,
1da177e4
LT
4837 size);
4838
4839 if (_hash_shift)
4840 *_hash_shift = log2qty;
4841 if (_hash_mask)
4842 *_hash_mask = (1 << log2qty) - 1;
4843
4844 return table;
4845}
a117e66e 4846
835c134e
MG
4847/* Return a pointer to the bitmap storing bits affecting a block of pages */
4848static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
4849 unsigned long pfn)
4850{
4851#ifdef CONFIG_SPARSEMEM
4852 return __pfn_to_section(pfn)->pageblock_flags;
4853#else
4854 return zone->pageblock_flags;
4855#endif /* CONFIG_SPARSEMEM */
4856}
4857
4858static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
4859{
4860#ifdef CONFIG_SPARSEMEM
4861 pfn &= (PAGES_PER_SECTION-1);
d9c23400 4862 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
4863#else
4864 pfn = pfn - zone->zone_start_pfn;
d9c23400 4865 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
4866#endif /* CONFIG_SPARSEMEM */
4867}
4868
4869/**
d9c23400 4870 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
835c134e
MG
4871 * @page: The page within the block of interest
4872 * @start_bitidx: The first bit of interest to retrieve
4873 * @end_bitidx: The last bit of interest
4874 * returns pageblock_bits flags
4875 */
4876unsigned long get_pageblock_flags_group(struct page *page,
4877 int start_bitidx, int end_bitidx)
4878{
4879 struct zone *zone;
4880 unsigned long *bitmap;
4881 unsigned long pfn, bitidx;
4882 unsigned long flags = 0;
4883 unsigned long value = 1;
4884
4885 zone = page_zone(page);
4886 pfn = page_to_pfn(page);
4887 bitmap = get_pageblock_bitmap(zone, pfn);
4888 bitidx = pfn_to_bitidx(zone, pfn);
4889
4890 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4891 if (test_bit(bitidx + start_bitidx, bitmap))
4892 flags |= value;
6220ec78 4893
835c134e
MG
4894 return flags;
4895}
4896
4897/**
d9c23400 4898 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
835c134e
MG
4899 * @page: The page within the block of interest
4900 * @start_bitidx: The first bit of interest
4901 * @end_bitidx: The last bit of interest
4902 * @flags: The flags to set
4903 */
4904void set_pageblock_flags_group(struct page *page, unsigned long flags,
4905 int start_bitidx, int end_bitidx)
4906{
4907 struct zone *zone;
4908 unsigned long *bitmap;
4909 unsigned long pfn, bitidx;
4910 unsigned long value = 1;
4911
4912 zone = page_zone(page);
4913 pfn = page_to_pfn(page);
4914 bitmap = get_pageblock_bitmap(zone, pfn);
4915 bitidx = pfn_to_bitidx(zone, pfn);
86051ca5
KH
4916 VM_BUG_ON(pfn < zone->zone_start_pfn);
4917 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
835c134e
MG
4918
4919 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4920 if (flags & value)
4921 __set_bit(bitidx + start_bitidx, bitmap);
4922 else
4923 __clear_bit(bitidx + start_bitidx, bitmap);
4924}
a5d76b54
KH
4925
4926/*
4927 * This is designed as sub function...plz see page_isolation.c also.
4928 * set/clear page block's type to be ISOLATE.
4929 * page allocater never alloc memory from ISOLATE block.
4930 */
4931
4932int set_migratetype_isolate(struct page *page)
4933{
4934 struct zone *zone;
4935 unsigned long flags;
4936 int ret = -EBUSY;
8e7e40d9 4937 int zone_idx;
a5d76b54
KH
4938
4939 zone = page_zone(page);
8e7e40d9 4940 zone_idx = zone_idx(zone);
a5d76b54
KH
4941 spin_lock_irqsave(&zone->lock, flags);
4942 /*
4943 * In future, more migrate types will be able to be isolation target.
4944 */
8e7e40d9
SL
4945 if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE &&
4946 zone_idx != ZONE_MOVABLE)
a5d76b54
KH
4947 goto out;
4948 set_pageblock_migratetype(page, MIGRATE_ISOLATE);
4949 move_freepages_block(zone, page, MIGRATE_ISOLATE);
4950 ret = 0;
4951out:
4952 spin_unlock_irqrestore(&zone->lock, flags);
4953 if (!ret)
9f8f2172 4954 drain_all_pages();
a5d76b54
KH
4955 return ret;
4956}
4957
4958void unset_migratetype_isolate(struct page *page)
4959{
4960 struct zone *zone;
4961 unsigned long flags;
4962 zone = page_zone(page);
4963 spin_lock_irqsave(&zone->lock, flags);
4964 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
4965 goto out;
4966 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4967 move_freepages_block(zone, page, MIGRATE_MOVABLE);
4968out:
4969 spin_unlock_irqrestore(&zone->lock, flags);
4970}
0c0e6195
KH
4971
4972#ifdef CONFIG_MEMORY_HOTREMOVE
4973/*
4974 * All pages in the range must be isolated before calling this.
4975 */
4976void
4977__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
4978{
4979 struct page *page;
4980 struct zone *zone;
4981 int order, i;
4982 unsigned long pfn;
4983 unsigned long flags;
4984 /* find the first valid pfn */
4985 for (pfn = start_pfn; pfn < end_pfn; pfn++)
4986 if (pfn_valid(pfn))
4987 break;
4988 if (pfn == end_pfn)
4989 return;
4990 zone = page_zone(pfn_to_page(pfn));
4991 spin_lock_irqsave(&zone->lock, flags);
4992 pfn = start_pfn;
4993 while (pfn < end_pfn) {
4994 if (!pfn_valid(pfn)) {
4995 pfn++;
4996 continue;
4997 }
4998 page = pfn_to_page(pfn);
4999 BUG_ON(page_count(page));
5000 BUG_ON(!PageBuddy(page));
5001 order = page_order(page);
5002#ifdef CONFIG_DEBUG_VM
5003 printk(KERN_INFO "remove from free list %lx %d %lx\n",
5004 pfn, 1 << order, end_pfn);
5005#endif
5006 list_del(&page->lru);
5007 rmv_page_order(page);
5008 zone->free_area[order].nr_free--;
5009 __mod_zone_page_state(zone, NR_FREE_PAGES,
5010 - (1UL << order));
5011 for (i = 0; i < (1 << order); i++)
5012 SetPageReserved((page+i));
5013 pfn += (1 << order);
5014 }
5015 spin_unlock_irqrestore(&zone->lock, flags);
5016}
5017#endif