mm: kswapd: use the classzone idx that kswapd was using for sleeping_prematurely()
[GitHub/moto-9609/android_kernel_motorola_exynos9610.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b1eeab67 27#include <linux/kmemcheck.h>
1da177e4
LT
28#include <linux/module.h>
29#include <linux/suspend.h>
30#include <linux/pagevec.h>
31#include <linux/blkdev.h>
32#include <linux/slab.h>
5a3135c2 33#include <linux/oom.h>
1da177e4
LT
34#include <linux/notifier.h>
35#include <linux/topology.h>
36#include <linux/sysctl.h>
37#include <linux/cpu.h>
38#include <linux/cpuset.h>
bdc8cb98 39#include <linux/memory_hotplug.h>
1da177e4
LT
40#include <linux/nodemask.h>
41#include <linux/vmalloc.h>
4be38e35 42#include <linux/mempolicy.h>
6811378e 43#include <linux/stop_machine.h>
c713216d
MG
44#include <linux/sort.h>
45#include <linux/pfn.h>
3fcfab16 46#include <linux/backing-dev.h>
933e312e 47#include <linux/fault-inject.h>
a5d76b54 48#include <linux/page-isolation.h>
52d4b9ac 49#include <linux/page_cgroup.h>
3ac7fe5a 50#include <linux/debugobjects.h>
dbb1f81c 51#include <linux/kmemleak.h>
925cc71e 52#include <linux/memory.h>
56de7263 53#include <linux/compaction.h>
0d3d062a 54#include <trace/events/kmem.h>
718a3821 55#include <linux/ftrace_event.h>
1da177e4
LT
56
57#include <asm/tlbflush.h>
ac924c60 58#include <asm/div64.h>
1da177e4
LT
59#include "internal.h"
60
72812019
LS
61#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
62DEFINE_PER_CPU(int, numa_node);
63EXPORT_PER_CPU_SYMBOL(numa_node);
64#endif
65
7aac7898
LS
66#ifdef CONFIG_HAVE_MEMORYLESS_NODES
67/*
68 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
69 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
70 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
71 * defined in <linux/topology.h>.
72 */
73DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
74EXPORT_PER_CPU_SYMBOL(_numa_mem_);
75#endif
76
1da177e4 77/*
13808910 78 * Array of node states.
1da177e4 79 */
13808910
CL
80nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
81 [N_POSSIBLE] = NODE_MASK_ALL,
82 [N_ONLINE] = { { [0] = 1UL } },
83#ifndef CONFIG_NUMA
84 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
85#ifdef CONFIG_HIGHMEM
86 [N_HIGH_MEMORY] = { { [0] = 1UL } },
87#endif
88 [N_CPU] = { { [0] = 1UL } },
89#endif /* NUMA */
90};
91EXPORT_SYMBOL(node_states);
92
6c231b7b 93unsigned long totalram_pages __read_mostly;
cb45b0e9 94unsigned long totalreserve_pages __read_mostly;
8ad4b1fb 95int percpu_pagelist_fraction;
dcce284a 96gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 97
452aa699
RW
98#ifdef CONFIG_PM_SLEEP
99/*
100 * The following functions are used by the suspend/hibernate code to temporarily
101 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
102 * while devices are suspended. To avoid races with the suspend/hibernate code,
103 * they should always be called with pm_mutex held (gfp_allowed_mask also should
104 * only be modified with pm_mutex held, unless the suspend/hibernate code is
105 * guaranteed not to run in parallel with that modification).
106 */
c9e664f1
RW
107
108static gfp_t saved_gfp_mask;
109
110void pm_restore_gfp_mask(void)
452aa699
RW
111{
112 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
113 if (saved_gfp_mask) {
114 gfp_allowed_mask = saved_gfp_mask;
115 saved_gfp_mask = 0;
116 }
452aa699
RW
117}
118
c9e664f1 119void pm_restrict_gfp_mask(void)
452aa699 120{
452aa699 121 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
122 WARN_ON(saved_gfp_mask);
123 saved_gfp_mask = gfp_allowed_mask;
124 gfp_allowed_mask &= ~GFP_IOFS;
452aa699
RW
125}
126#endif /* CONFIG_PM_SLEEP */
127
d9c23400
MG
128#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
129int pageblock_order __read_mostly;
130#endif
131
d98c7a09 132static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 133
1da177e4
LT
134/*
135 * results with 256, 32 in the lowmem_reserve sysctl:
136 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
137 * 1G machine -> (16M dma, 784M normal, 224M high)
138 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
139 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
140 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
141 *
142 * TBD: should special case ZONE_DMA32 machines here - in those we normally
143 * don't need any ZONE_NORMAL reservation
1da177e4 144 */
2f1b6248 145int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 146#ifdef CONFIG_ZONE_DMA
2f1b6248 147 256,
4b51d669 148#endif
fb0e7942 149#ifdef CONFIG_ZONE_DMA32
2f1b6248 150 256,
fb0e7942 151#endif
e53ef38d 152#ifdef CONFIG_HIGHMEM
2a1e274a 153 32,
e53ef38d 154#endif
2a1e274a 155 32,
2f1b6248 156};
1da177e4
LT
157
158EXPORT_SYMBOL(totalram_pages);
1da177e4 159
15ad7cdc 160static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 161#ifdef CONFIG_ZONE_DMA
2f1b6248 162 "DMA",
4b51d669 163#endif
fb0e7942 164#ifdef CONFIG_ZONE_DMA32
2f1b6248 165 "DMA32",
fb0e7942 166#endif
2f1b6248 167 "Normal",
e53ef38d 168#ifdef CONFIG_HIGHMEM
2a1e274a 169 "HighMem",
e53ef38d 170#endif
2a1e274a 171 "Movable",
2f1b6248
CL
172};
173
1da177e4
LT
174int min_free_kbytes = 1024;
175
2c85f51d
JB
176static unsigned long __meminitdata nr_kernel_pages;
177static unsigned long __meminitdata nr_all_pages;
a3142c8e 178static unsigned long __meminitdata dma_reserve;
1da177e4 179
c713216d
MG
180#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
181 /*
183ff22b 182 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
c713216d
MG
183 * ranges of memory (RAM) that may be registered with add_active_range().
184 * Ranges passed to add_active_range() will be merged if possible
185 * so the number of times add_active_range() can be called is
186 * related to the number of nodes and the number of holes
187 */
188 #ifdef CONFIG_MAX_ACTIVE_REGIONS
189 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
190 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
191 #else
192 #if MAX_NUMNODES >= 32
193 /* If there can be many nodes, allow up to 50 holes per node */
194 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
195 #else
196 /* By default, allow up to 256 distinct regions */
197 #define MAX_ACTIVE_REGIONS 256
198 #endif
199 #endif
200
98011f56
JB
201 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
202 static int __meminitdata nr_nodemap_entries;
203 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
204 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
b69a7288 205 static unsigned long __initdata required_kernelcore;
484f51f8 206 static unsigned long __initdata required_movablecore;
b69a7288 207 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
2a1e274a
MG
208
209 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
210 int movable_zone;
211 EXPORT_SYMBOL(movable_zone);
c713216d
MG
212#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
213
418508c1
MS
214#if MAX_NUMNODES > 1
215int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 216int nr_online_nodes __read_mostly = 1;
418508c1 217EXPORT_SYMBOL(nr_node_ids);
62bc62a8 218EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
219#endif
220
9ef9acb0
MG
221int page_group_by_mobility_disabled __read_mostly;
222
b2a0ac88
MG
223static void set_pageblock_migratetype(struct page *page, int migratetype)
224{
49255c61
MG
225
226 if (unlikely(page_group_by_mobility_disabled))
227 migratetype = MIGRATE_UNMOVABLE;
228
b2a0ac88
MG
229 set_pageblock_flags_group(page, (unsigned long)migratetype,
230 PB_migrate, PB_migrate_end);
231}
232
7f33d49a
RW
233bool oom_killer_disabled __read_mostly;
234
13e7444b 235#ifdef CONFIG_DEBUG_VM
c6a57e19 236static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 237{
bdc8cb98
DH
238 int ret = 0;
239 unsigned seq;
240 unsigned long pfn = page_to_pfn(page);
c6a57e19 241
bdc8cb98
DH
242 do {
243 seq = zone_span_seqbegin(zone);
244 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
245 ret = 1;
246 else if (pfn < zone->zone_start_pfn)
247 ret = 1;
248 } while (zone_span_seqretry(zone, seq));
249
250 return ret;
c6a57e19
DH
251}
252
253static int page_is_consistent(struct zone *zone, struct page *page)
254{
14e07298 255 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 256 return 0;
1da177e4 257 if (zone != page_zone(page))
c6a57e19
DH
258 return 0;
259
260 return 1;
261}
262/*
263 * Temporary debugging check for pages not lying within a given zone.
264 */
265static int bad_range(struct zone *zone, struct page *page)
266{
267 if (page_outside_zone_boundaries(zone, page))
1da177e4 268 return 1;
c6a57e19
DH
269 if (!page_is_consistent(zone, page))
270 return 1;
271
1da177e4
LT
272 return 0;
273}
13e7444b
NP
274#else
275static inline int bad_range(struct zone *zone, struct page *page)
276{
277 return 0;
278}
279#endif
280
224abf92 281static void bad_page(struct page *page)
1da177e4 282{
d936cf9b
HD
283 static unsigned long resume;
284 static unsigned long nr_shown;
285 static unsigned long nr_unshown;
286
2a7684a2
WF
287 /* Don't complain about poisoned pages */
288 if (PageHWPoison(page)) {
289 __ClearPageBuddy(page);
290 return;
291 }
292
d936cf9b
HD
293 /*
294 * Allow a burst of 60 reports, then keep quiet for that minute;
295 * or allow a steady drip of one report per second.
296 */
297 if (nr_shown == 60) {
298 if (time_before(jiffies, resume)) {
299 nr_unshown++;
300 goto out;
301 }
302 if (nr_unshown) {
1e9e6365
HD
303 printk(KERN_ALERT
304 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
305 nr_unshown);
306 nr_unshown = 0;
307 }
308 nr_shown = 0;
309 }
310 if (nr_shown++ == 0)
311 resume = jiffies + 60 * HZ;
312
1e9e6365 313 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 314 current->comm, page_to_pfn(page));
718a3821 315 dump_page(page);
3dc14741 316
1da177e4 317 dump_stack();
d936cf9b 318out:
8cc3b392
HD
319 /* Leave bad fields for debug, except PageBuddy could make trouble */
320 __ClearPageBuddy(page);
9f158333 321 add_taint(TAINT_BAD_PAGE);
1da177e4
LT
322}
323
1da177e4
LT
324/*
325 * Higher-order pages are called "compound pages". They are structured thusly:
326 *
327 * The first PAGE_SIZE page is called the "head page".
328 *
329 * The remaining PAGE_SIZE pages are called "tail pages".
330 *
331 * All pages have PG_compound set. All pages have their ->private pointing at
332 * the head page (even the head page has this).
333 *
41d78ba5
HD
334 * The first tail page's ->lru.next holds the address of the compound page's
335 * put_page() function. Its ->lru.prev holds the order of allocation.
336 * This usage means that zero-order pages may not be compound.
1da177e4 337 */
d98c7a09
HD
338
339static void free_compound_page(struct page *page)
340{
d85f3385 341 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
342}
343
01ad1c08 344void prep_compound_page(struct page *page, unsigned long order)
18229df5
AW
345{
346 int i;
347 int nr_pages = 1 << order;
348
349 set_compound_page_dtor(page, free_compound_page);
350 set_compound_order(page, order);
351 __SetPageHead(page);
352 for (i = 1; i < nr_pages; i++) {
353 struct page *p = page + i;
354
355 __SetPageTail(p);
356 p->first_page = page;
357 }
358}
359
8cc3b392 360static int destroy_compound_page(struct page *page, unsigned long order)
1da177e4
LT
361{
362 int i;
363 int nr_pages = 1 << order;
8cc3b392 364 int bad = 0;
1da177e4 365
8cc3b392
HD
366 if (unlikely(compound_order(page) != order) ||
367 unlikely(!PageHead(page))) {
224abf92 368 bad_page(page);
8cc3b392
HD
369 bad++;
370 }
1da177e4 371
6d777953 372 __ClearPageHead(page);
8cc3b392 373
18229df5
AW
374 for (i = 1; i < nr_pages; i++) {
375 struct page *p = page + i;
1da177e4 376
e713a21d 377 if (unlikely(!PageTail(p) || (p->first_page != page))) {
224abf92 378 bad_page(page);
8cc3b392
HD
379 bad++;
380 }
d85f3385 381 __ClearPageTail(p);
1da177e4 382 }
8cc3b392
HD
383
384 return bad;
1da177e4 385}
1da177e4 386
17cf4406
NP
387static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
388{
389 int i;
390
6626c5d5
AM
391 /*
392 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
393 * and __GFP_HIGHMEM from hard or soft interrupt context.
394 */
725d704e 395 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
17cf4406
NP
396 for (i = 0; i < (1 << order); i++)
397 clear_highpage(page + i);
398}
399
6aa3001b
AM
400static inline void set_page_order(struct page *page, int order)
401{
4c21e2f2 402 set_page_private(page, order);
676165a8 403 __SetPageBuddy(page);
1da177e4
LT
404}
405
406static inline void rmv_page_order(struct page *page)
407{
676165a8 408 __ClearPageBuddy(page);
4c21e2f2 409 set_page_private(page, 0);
1da177e4
LT
410}
411
412/*
413 * Locate the struct page for both the matching buddy in our
414 * pair (buddy1) and the combined O(n+1) page they form (page).
415 *
416 * 1) Any buddy B1 will have an order O twin B2 which satisfies
417 * the following equation:
418 * B2 = B1 ^ (1 << O)
419 * For example, if the starting buddy (buddy2) is #8 its order
420 * 1 buddy is #10:
421 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
422 *
423 * 2) Any buddy B will have an order O+1 parent P which
424 * satisfies the following equation:
425 * P = B & ~(1 << O)
426 *
d6e05edc 427 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
1da177e4
LT
428 */
429static inline struct page *
430__page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
431{
432 unsigned long buddy_idx = page_idx ^ (1 << order);
433
434 return page + (buddy_idx - page_idx);
435}
436
437static inline unsigned long
438__find_combined_index(unsigned long page_idx, unsigned int order)
439{
440 return (page_idx & ~(1 << order));
441}
442
443/*
444 * This function checks whether a page is free && is the buddy
445 * we can do coalesce a page and its buddy if
13e7444b 446 * (a) the buddy is not in a hole &&
676165a8 447 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
448 * (c) a page and its buddy have the same order &&
449 * (d) a page and its buddy are in the same zone.
676165a8
NP
450 *
451 * For recording whether a page is in the buddy system, we use PG_buddy.
452 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
1da177e4 453 *
676165a8 454 * For recording page's order, we use page_private(page).
1da177e4 455 */
cb2b95e1
AW
456static inline int page_is_buddy(struct page *page, struct page *buddy,
457 int order)
1da177e4 458{
14e07298 459 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 460 return 0;
13e7444b 461
cb2b95e1
AW
462 if (page_zone_id(page) != page_zone_id(buddy))
463 return 0;
464
465 if (PageBuddy(buddy) && page_order(buddy) == order) {
a3af9c38 466 VM_BUG_ON(page_count(buddy) != 0);
6aa3001b 467 return 1;
676165a8 468 }
6aa3001b 469 return 0;
1da177e4
LT
470}
471
472/*
473 * Freeing function for a buddy system allocator.
474 *
475 * The concept of a buddy system is to maintain direct-mapped table
476 * (containing bit values) for memory blocks of various "orders".
477 * The bottom level table contains the map for the smallest allocatable
478 * units of memory (here, pages), and each level above it describes
479 * pairs of units from the levels below, hence, "buddies".
480 * At a high level, all that happens here is marking the table entry
481 * at the bottom level available, and propagating the changes upward
482 * as necessary, plus some accounting needed to play nicely with other
483 * parts of the VM system.
484 * At each level, we keep a list of pages, which are heads of continuous
676165a8 485 * free pages of length of (1 << order) and marked with PG_buddy. Page's
4c21e2f2 486 * order is recorded in page_private(page) field.
1da177e4
LT
487 * So when we are allocating or freeing one, we can derive the state of the
488 * other. That is, if we allocate a small block, and both were
489 * free, the remainder of the region must be split into blocks.
490 * If a block is freed, and its buddy is also free, then this
491 * triggers coalescing into a block of larger size.
492 *
493 * -- wli
494 */
495
48db57f8 496static inline void __free_one_page(struct page *page,
ed0ae21d
MG
497 struct zone *zone, unsigned int order,
498 int migratetype)
1da177e4
LT
499{
500 unsigned long page_idx;
6dda9d55
CZ
501 unsigned long combined_idx;
502 struct page *buddy;
1da177e4 503
224abf92 504 if (unlikely(PageCompound(page)))
8cc3b392
HD
505 if (unlikely(destroy_compound_page(page, order)))
506 return;
1da177e4 507
ed0ae21d
MG
508 VM_BUG_ON(migratetype == -1);
509
1da177e4
LT
510 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
511
f2260e6b 512 VM_BUG_ON(page_idx & ((1 << order) - 1));
725d704e 513 VM_BUG_ON(bad_range(zone, page));
1da177e4 514
1da177e4 515 while (order < MAX_ORDER-1) {
1da177e4 516 buddy = __page_find_buddy(page, page_idx, order);
cb2b95e1 517 if (!page_is_buddy(page, buddy, order))
3c82d0ce 518 break;
13e7444b 519
3c82d0ce 520 /* Our buddy is free, merge with it and move up one order. */
1da177e4 521 list_del(&buddy->lru);
b2a0ac88 522 zone->free_area[order].nr_free--;
1da177e4 523 rmv_page_order(buddy);
13e7444b 524 combined_idx = __find_combined_index(page_idx, order);
1da177e4
LT
525 page = page + (combined_idx - page_idx);
526 page_idx = combined_idx;
527 order++;
528 }
529 set_page_order(page, order);
6dda9d55
CZ
530
531 /*
532 * If this is not the largest possible page, check if the buddy
533 * of the next-highest order is free. If it is, it's possible
534 * that pages are being freed that will coalesce soon. In case,
535 * that is happening, add the free page to the tail of the list
536 * so it's less likely to be used soon and more likely to be merged
537 * as a higher order page
538 */
b7f50cfa 539 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
6dda9d55
CZ
540 struct page *higher_page, *higher_buddy;
541 combined_idx = __find_combined_index(page_idx, order);
542 higher_page = page + combined_idx - page_idx;
543 higher_buddy = __page_find_buddy(higher_page, combined_idx, order + 1);
544 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
545 list_add_tail(&page->lru,
546 &zone->free_area[order].free_list[migratetype]);
547 goto out;
548 }
549 }
550
551 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
552out:
1da177e4
LT
553 zone->free_area[order].nr_free++;
554}
555
092cead6
KM
556/*
557 * free_page_mlock() -- clean up attempts to free and mlocked() page.
558 * Page should not be on lru, so no need to fix that up.
559 * free_pages_check() will verify...
560 */
561static inline void free_page_mlock(struct page *page)
562{
092cead6
KM
563 __dec_zone_page_state(page, NR_MLOCK);
564 __count_vm_event(UNEVICTABLE_MLOCKFREED);
565}
092cead6 566
224abf92 567static inline int free_pages_check(struct page *page)
1da177e4 568{
92be2e33
NP
569 if (unlikely(page_mapcount(page) |
570 (page->mapping != NULL) |
a3af9c38 571 (atomic_read(&page->_count) != 0) |
8cc3b392 572 (page->flags & PAGE_FLAGS_CHECK_AT_FREE))) {
224abf92 573 bad_page(page);
79f4b7bf 574 return 1;
8cc3b392 575 }
79f4b7bf
HD
576 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
577 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
578 return 0;
1da177e4
LT
579}
580
581/*
5f8dcc21 582 * Frees a number of pages from the PCP lists
1da177e4 583 * Assumes all pages on list are in same zone, and of same order.
207f36ee 584 * count is the number of pages to free.
1da177e4
LT
585 *
586 * If the zone was previously in an "all pages pinned" state then look to
587 * see if this freeing clears that state.
588 *
589 * And clear the zone's pages_scanned counter, to hold off the "all pages are
590 * pinned" detection logic.
591 */
5f8dcc21
MG
592static void free_pcppages_bulk(struct zone *zone, int count,
593 struct per_cpu_pages *pcp)
1da177e4 594{
5f8dcc21 595 int migratetype = 0;
a6f9edd6 596 int batch_free = 0;
72853e29 597 int to_free = count;
5f8dcc21 598
c54ad30c 599 spin_lock(&zone->lock);
93e4a89a 600 zone->all_unreclaimable = 0;
1da177e4 601 zone->pages_scanned = 0;
f2260e6b 602
72853e29 603 while (to_free) {
48db57f8 604 struct page *page;
5f8dcc21
MG
605 struct list_head *list;
606
607 /*
a6f9edd6
MG
608 * Remove pages from lists in a round-robin fashion. A
609 * batch_free count is maintained that is incremented when an
610 * empty list is encountered. This is so more pages are freed
611 * off fuller lists instead of spinning excessively around empty
612 * lists
5f8dcc21
MG
613 */
614 do {
a6f9edd6 615 batch_free++;
5f8dcc21
MG
616 if (++migratetype == MIGRATE_PCPTYPES)
617 migratetype = 0;
618 list = &pcp->lists[migratetype];
619 } while (list_empty(list));
48db57f8 620
a6f9edd6
MG
621 do {
622 page = list_entry(list->prev, struct page, lru);
623 /* must delete as __free_one_page list manipulates */
624 list_del(&page->lru);
a7016235
HD
625 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
626 __free_one_page(page, zone, 0, page_private(page));
627 trace_mm_page_pcpu_drain(page, 0, page_private(page));
72853e29 628 } while (--to_free && --batch_free && !list_empty(list));
1da177e4 629 }
72853e29 630 __mod_zone_page_state(zone, NR_FREE_PAGES, count);
c54ad30c 631 spin_unlock(&zone->lock);
1da177e4
LT
632}
633
ed0ae21d
MG
634static void free_one_page(struct zone *zone, struct page *page, int order,
635 int migratetype)
1da177e4 636{
006d22d9 637 spin_lock(&zone->lock);
93e4a89a 638 zone->all_unreclaimable = 0;
006d22d9 639 zone->pages_scanned = 0;
f2260e6b 640
ed0ae21d 641 __free_one_page(page, zone, order, migratetype);
72853e29 642 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
006d22d9 643 spin_unlock(&zone->lock);
48db57f8
NP
644}
645
ec95f53a 646static bool free_pages_prepare(struct page *page, unsigned int order)
48db57f8 647{
1da177e4 648 int i;
8cc3b392 649 int bad = 0;
1da177e4 650
f650316c 651 trace_mm_page_free_direct(page, order);
b1eeab67
VN
652 kmemcheck_free_shadow(page, order);
653
ec95f53a
KM
654 for (i = 0; i < (1 << order); i++) {
655 struct page *pg = page + i;
656
657 if (PageAnon(pg))
658 pg->mapping = NULL;
659 bad += free_pages_check(pg);
660 }
8cc3b392 661 if (bad)
ec95f53a 662 return false;
689bcebf 663
3ac7fe5a 664 if (!PageHighMem(page)) {
9858db50 665 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
3ac7fe5a
TG
666 debug_check_no_obj_freed(page_address(page),
667 PAGE_SIZE << order);
668 }
dafb1367 669 arch_free_page(page, order);
48db57f8 670 kernel_map_pages(page, 1 << order, 0);
dafb1367 671
ec95f53a
KM
672 return true;
673}
674
675static void __free_pages_ok(struct page *page, unsigned int order)
676{
677 unsigned long flags;
678 int wasMlocked = __TestClearPageMlocked(page);
679
680 if (!free_pages_prepare(page, order))
681 return;
682
c54ad30c 683 local_irq_save(flags);
c277331d 684 if (unlikely(wasMlocked))
da456f14 685 free_page_mlock(page);
f8891e5e 686 __count_vm_events(PGFREE, 1 << order);
ed0ae21d
MG
687 free_one_page(page_zone(page), page, order,
688 get_pageblock_migratetype(page));
c54ad30c 689 local_irq_restore(flags);
1da177e4
LT
690}
691
a226f6c8
DH
692/*
693 * permit the bootmem allocator to evade page validation on high-order frees
694 */
af370fb8 695void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
a226f6c8
DH
696{
697 if (order == 0) {
698 __ClearPageReserved(page);
699 set_page_count(page, 0);
7835e98b 700 set_page_refcounted(page);
545b1ea9 701 __free_page(page);
a226f6c8 702 } else {
a226f6c8
DH
703 int loop;
704
545b1ea9 705 prefetchw(page);
a226f6c8
DH
706 for (loop = 0; loop < BITS_PER_LONG; loop++) {
707 struct page *p = &page[loop];
708
545b1ea9
NP
709 if (loop + 1 < BITS_PER_LONG)
710 prefetchw(p + 1);
a226f6c8
DH
711 __ClearPageReserved(p);
712 set_page_count(p, 0);
713 }
714
7835e98b 715 set_page_refcounted(page);
545b1ea9 716 __free_pages(page, order);
a226f6c8
DH
717 }
718}
719
1da177e4
LT
720
721/*
722 * The order of subdivision here is critical for the IO subsystem.
723 * Please do not alter this order without good reasons and regression
724 * testing. Specifically, as large blocks of memory are subdivided,
725 * the order in which smaller blocks are delivered depends on the order
726 * they're subdivided in this function. This is the primary factor
727 * influencing the order in which pages are delivered to the IO
728 * subsystem according to empirical testing, and this is also justified
729 * by considering the behavior of a buddy system containing a single
730 * large block of memory acted on by a series of small allocations.
731 * This behavior is a critical factor in sglist merging's success.
732 *
733 * -- wli
734 */
085cc7d5 735static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
736 int low, int high, struct free_area *area,
737 int migratetype)
1da177e4
LT
738{
739 unsigned long size = 1 << high;
740
741 while (high > low) {
742 area--;
743 high--;
744 size >>= 1;
725d704e 745 VM_BUG_ON(bad_range(zone, &page[size]));
b2a0ac88 746 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
747 area->nr_free++;
748 set_page_order(&page[size], high);
749 }
1da177e4
LT
750}
751
1da177e4
LT
752/*
753 * This page is about to be returned from the page allocator
754 */
2a7684a2 755static inline int check_new_page(struct page *page)
1da177e4 756{
92be2e33
NP
757 if (unlikely(page_mapcount(page) |
758 (page->mapping != NULL) |
a3af9c38 759 (atomic_read(&page->_count) != 0) |
8cc3b392 760 (page->flags & PAGE_FLAGS_CHECK_AT_PREP))) {
224abf92 761 bad_page(page);
689bcebf 762 return 1;
8cc3b392 763 }
2a7684a2
WF
764 return 0;
765}
766
767static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
768{
769 int i;
770
771 for (i = 0; i < (1 << order); i++) {
772 struct page *p = page + i;
773 if (unlikely(check_new_page(p)))
774 return 1;
775 }
689bcebf 776
4c21e2f2 777 set_page_private(page, 0);
7835e98b 778 set_page_refcounted(page);
cc102509
NP
779
780 arch_alloc_page(page, order);
1da177e4 781 kernel_map_pages(page, 1 << order, 1);
17cf4406
NP
782
783 if (gfp_flags & __GFP_ZERO)
784 prep_zero_page(page, order, gfp_flags);
785
786 if (order && (gfp_flags & __GFP_COMP))
787 prep_compound_page(page, order);
788
689bcebf 789 return 0;
1da177e4
LT
790}
791
56fd56b8
MG
792/*
793 * Go through the free lists for the given migratetype and remove
794 * the smallest available page from the freelists
795 */
728ec980
MG
796static inline
797struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
798 int migratetype)
799{
800 unsigned int current_order;
801 struct free_area * area;
802 struct page *page;
803
804 /* Find a page of the appropriate size in the preferred list */
805 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
806 area = &(zone->free_area[current_order]);
807 if (list_empty(&area->free_list[migratetype]))
808 continue;
809
810 page = list_entry(area->free_list[migratetype].next,
811 struct page, lru);
812 list_del(&page->lru);
813 rmv_page_order(page);
814 area->nr_free--;
56fd56b8
MG
815 expand(zone, page, order, current_order, area, migratetype);
816 return page;
817 }
818
819 return NULL;
820}
821
822
b2a0ac88
MG
823/*
824 * This array describes the order lists are fallen back to when
825 * the free lists for the desirable migrate type are depleted
826 */
827static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
64c5e135
MG
828 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
829 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
830 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
831 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
b2a0ac88
MG
832};
833
c361be55
MG
834/*
835 * Move the free pages in a range to the free lists of the requested type.
d9c23400 836 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
837 * boundary. If alignment is required, use move_freepages_block()
838 */
b69a7288
AB
839static int move_freepages(struct zone *zone,
840 struct page *start_page, struct page *end_page,
841 int migratetype)
c361be55
MG
842{
843 struct page *page;
844 unsigned long order;
d100313f 845 int pages_moved = 0;
c361be55
MG
846
847#ifndef CONFIG_HOLES_IN_ZONE
848 /*
849 * page_zone is not safe to call in this context when
850 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
851 * anyway as we check zone boundaries in move_freepages_block().
852 * Remove at a later date when no bug reports exist related to
ac0e5b7a 853 * grouping pages by mobility
c361be55
MG
854 */
855 BUG_ON(page_zone(start_page) != page_zone(end_page));
856#endif
857
858 for (page = start_page; page <= end_page;) {
344c790e
AL
859 /* Make sure we are not inadvertently changing nodes */
860 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
861
c361be55
MG
862 if (!pfn_valid_within(page_to_pfn(page))) {
863 page++;
864 continue;
865 }
866
867 if (!PageBuddy(page)) {
868 page++;
869 continue;
870 }
871
872 order = page_order(page);
873 list_del(&page->lru);
874 list_add(&page->lru,
875 &zone->free_area[order].free_list[migratetype]);
876 page += 1 << order;
d100313f 877 pages_moved += 1 << order;
c361be55
MG
878 }
879
d100313f 880 return pages_moved;
c361be55
MG
881}
882
b69a7288
AB
883static int move_freepages_block(struct zone *zone, struct page *page,
884 int migratetype)
c361be55
MG
885{
886 unsigned long start_pfn, end_pfn;
887 struct page *start_page, *end_page;
888
889 start_pfn = page_to_pfn(page);
d9c23400 890 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 891 start_page = pfn_to_page(start_pfn);
d9c23400
MG
892 end_page = start_page + pageblock_nr_pages - 1;
893 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
894
895 /* Do not cross zone boundaries */
896 if (start_pfn < zone->zone_start_pfn)
897 start_page = page;
898 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
899 return 0;
900
901 return move_freepages(zone, start_page, end_page, migratetype);
902}
903
2f66a68f
MG
904static void change_pageblock_range(struct page *pageblock_page,
905 int start_order, int migratetype)
906{
907 int nr_pageblocks = 1 << (start_order - pageblock_order);
908
909 while (nr_pageblocks--) {
910 set_pageblock_migratetype(pageblock_page, migratetype);
911 pageblock_page += pageblock_nr_pages;
912 }
913}
914
b2a0ac88 915/* Remove an element from the buddy allocator from the fallback list */
0ac3a409
MG
916static inline struct page *
917__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
b2a0ac88
MG
918{
919 struct free_area * area;
920 int current_order;
921 struct page *page;
922 int migratetype, i;
923
924 /* Find the largest possible block of pages in the other list */
925 for (current_order = MAX_ORDER-1; current_order >= order;
926 --current_order) {
927 for (i = 0; i < MIGRATE_TYPES - 1; i++) {
928 migratetype = fallbacks[start_migratetype][i];
929
56fd56b8
MG
930 /* MIGRATE_RESERVE handled later if necessary */
931 if (migratetype == MIGRATE_RESERVE)
932 continue;
e010487d 933
b2a0ac88
MG
934 area = &(zone->free_area[current_order]);
935 if (list_empty(&area->free_list[migratetype]))
936 continue;
937
938 page = list_entry(area->free_list[migratetype].next,
939 struct page, lru);
940 area->nr_free--;
941
942 /*
c361be55 943 * If breaking a large block of pages, move all free
46dafbca
MG
944 * pages to the preferred allocation list. If falling
945 * back for a reclaimable kernel allocation, be more
946 * agressive about taking ownership of free pages
b2a0ac88 947 */
d9c23400 948 if (unlikely(current_order >= (pageblock_order >> 1)) ||
dd5d241e
MG
949 start_migratetype == MIGRATE_RECLAIMABLE ||
950 page_group_by_mobility_disabled) {
46dafbca
MG
951 unsigned long pages;
952 pages = move_freepages_block(zone, page,
953 start_migratetype);
954
955 /* Claim the whole block if over half of it is free */
dd5d241e
MG
956 if (pages >= (1 << (pageblock_order-1)) ||
957 page_group_by_mobility_disabled)
46dafbca
MG
958 set_pageblock_migratetype(page,
959 start_migratetype);
960
b2a0ac88 961 migratetype = start_migratetype;
c361be55 962 }
b2a0ac88
MG
963
964 /* Remove the page from the freelists */
965 list_del(&page->lru);
966 rmv_page_order(page);
b2a0ac88 967
2f66a68f
MG
968 /* Take ownership for orders >= pageblock_order */
969 if (current_order >= pageblock_order)
970 change_pageblock_range(page, current_order,
b2a0ac88
MG
971 start_migratetype);
972
973 expand(zone, page, order, current_order, area, migratetype);
e0fff1bd
MG
974
975 trace_mm_page_alloc_extfrag(page, order, current_order,
976 start_migratetype, migratetype);
977
b2a0ac88
MG
978 return page;
979 }
980 }
981
728ec980 982 return NULL;
b2a0ac88
MG
983}
984
56fd56b8 985/*
1da177e4
LT
986 * Do the hard work of removing an element from the buddy allocator.
987 * Call me with the zone->lock already held.
988 */
b2a0ac88
MG
989static struct page *__rmqueue(struct zone *zone, unsigned int order,
990 int migratetype)
1da177e4 991{
1da177e4
LT
992 struct page *page;
993
728ec980 994retry_reserve:
56fd56b8 995 page = __rmqueue_smallest(zone, order, migratetype);
b2a0ac88 996
728ec980 997 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
56fd56b8 998 page = __rmqueue_fallback(zone, order, migratetype);
b2a0ac88 999
728ec980
MG
1000 /*
1001 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1002 * is used because __rmqueue_smallest is an inline function
1003 * and we want just one call site
1004 */
1005 if (!page) {
1006 migratetype = MIGRATE_RESERVE;
1007 goto retry_reserve;
1008 }
1009 }
1010
0d3d062a 1011 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 1012 return page;
1da177e4
LT
1013}
1014
1015/*
1016 * Obtain a specified number of elements from the buddy allocator, all under
1017 * a single hold of the lock, for efficiency. Add them to the supplied list.
1018 * Returns the number of new pages which were placed at *list.
1019 */
1020static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 1021 unsigned long count, struct list_head *list,
e084b2d9 1022 int migratetype, int cold)
1da177e4 1023{
1da177e4 1024 int i;
1da177e4 1025
c54ad30c 1026 spin_lock(&zone->lock);
1da177e4 1027 for (i = 0; i < count; ++i) {
b2a0ac88 1028 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 1029 if (unlikely(page == NULL))
1da177e4 1030 break;
81eabcbe
MG
1031
1032 /*
1033 * Split buddy pages returned by expand() are received here
1034 * in physical page order. The page is added to the callers and
1035 * list and the list head then moves forward. From the callers
1036 * perspective, the linked list is ordered by page number in
1037 * some conditions. This is useful for IO devices that can
1038 * merge IO requests if the physical pages are ordered
1039 * properly.
1040 */
e084b2d9
MG
1041 if (likely(cold == 0))
1042 list_add(&page->lru, list);
1043 else
1044 list_add_tail(&page->lru, list);
535131e6 1045 set_page_private(page, migratetype);
81eabcbe 1046 list = &page->lru;
1da177e4 1047 }
f2260e6b 1048 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 1049 spin_unlock(&zone->lock);
085cc7d5 1050 return i;
1da177e4
LT
1051}
1052
4ae7c039 1053#ifdef CONFIG_NUMA
8fce4d8e 1054/*
4037d452
CL
1055 * Called from the vmstat counter updater to drain pagesets of this
1056 * currently executing processor on remote nodes after they have
1057 * expired.
1058 *
879336c3
CL
1059 * Note that this function must be called with the thread pinned to
1060 * a single processor.
8fce4d8e 1061 */
4037d452 1062void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 1063{
4ae7c039 1064 unsigned long flags;
4037d452 1065 int to_drain;
4ae7c039 1066
4037d452
CL
1067 local_irq_save(flags);
1068 if (pcp->count >= pcp->batch)
1069 to_drain = pcp->batch;
1070 else
1071 to_drain = pcp->count;
5f8dcc21 1072 free_pcppages_bulk(zone, to_drain, pcp);
4037d452
CL
1073 pcp->count -= to_drain;
1074 local_irq_restore(flags);
4ae7c039
CL
1075}
1076#endif
1077
9f8f2172
CL
1078/*
1079 * Drain pages of the indicated processor.
1080 *
1081 * The processor must either be the current processor and the
1082 * thread pinned to the current processor or a processor that
1083 * is not online.
1084 */
1085static void drain_pages(unsigned int cpu)
1da177e4 1086{
c54ad30c 1087 unsigned long flags;
1da177e4 1088 struct zone *zone;
1da177e4 1089
ee99c71c 1090 for_each_populated_zone(zone) {
1da177e4 1091 struct per_cpu_pageset *pset;
3dfa5721 1092 struct per_cpu_pages *pcp;
1da177e4 1093
99dcc3e5
CL
1094 local_irq_save(flags);
1095 pset = per_cpu_ptr(zone->pageset, cpu);
3dfa5721
CL
1096
1097 pcp = &pset->pcp;
5f8dcc21 1098 free_pcppages_bulk(zone, pcp->count, pcp);
3dfa5721
CL
1099 pcp->count = 0;
1100 local_irq_restore(flags);
1da177e4
LT
1101 }
1102}
1da177e4 1103
9f8f2172
CL
1104/*
1105 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1106 */
1107void drain_local_pages(void *arg)
1108{
1109 drain_pages(smp_processor_id());
1110}
1111
1112/*
1113 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
1114 */
1115void drain_all_pages(void)
1116{
15c8b6c1 1117 on_each_cpu(drain_local_pages, NULL, 1);
9f8f2172
CL
1118}
1119
296699de 1120#ifdef CONFIG_HIBERNATION
1da177e4
LT
1121
1122void mark_free_pages(struct zone *zone)
1123{
f623f0db
RW
1124 unsigned long pfn, max_zone_pfn;
1125 unsigned long flags;
b2a0ac88 1126 int order, t;
1da177e4
LT
1127 struct list_head *curr;
1128
1129 if (!zone->spanned_pages)
1130 return;
1131
1132 spin_lock_irqsave(&zone->lock, flags);
f623f0db
RW
1133
1134 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1135 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1136 if (pfn_valid(pfn)) {
1137 struct page *page = pfn_to_page(pfn);
1138
7be98234
RW
1139 if (!swsusp_page_is_forbidden(page))
1140 swsusp_unset_page_free(page);
f623f0db 1141 }
1da177e4 1142
b2a0ac88
MG
1143 for_each_migratetype_order(order, t) {
1144 list_for_each(curr, &zone->free_area[order].free_list[t]) {
f623f0db 1145 unsigned long i;
1da177e4 1146
f623f0db
RW
1147 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1148 for (i = 0; i < (1UL << order); i++)
7be98234 1149 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 1150 }
b2a0ac88 1151 }
1da177e4
LT
1152 spin_unlock_irqrestore(&zone->lock, flags);
1153}
e2c55dc8 1154#endif /* CONFIG_PM */
1da177e4 1155
1da177e4
LT
1156/*
1157 * Free a 0-order page
fc91668e 1158 * cold == 1 ? free a cold page : free a hot page
1da177e4 1159 */
fc91668e 1160void free_hot_cold_page(struct page *page, int cold)
1da177e4
LT
1161{
1162 struct zone *zone = page_zone(page);
1163 struct per_cpu_pages *pcp;
1164 unsigned long flags;
5f8dcc21 1165 int migratetype;
451ea25d 1166 int wasMlocked = __TestClearPageMlocked(page);
1da177e4 1167
ec95f53a 1168 if (!free_pages_prepare(page, 0))
689bcebf
HD
1169 return;
1170
5f8dcc21
MG
1171 migratetype = get_pageblock_migratetype(page);
1172 set_page_private(page, migratetype);
1da177e4 1173 local_irq_save(flags);
c277331d 1174 if (unlikely(wasMlocked))
da456f14 1175 free_page_mlock(page);
f8891e5e 1176 __count_vm_event(PGFREE);
da456f14 1177
5f8dcc21
MG
1178 /*
1179 * We only track unmovable, reclaimable and movable on pcp lists.
1180 * Free ISOLATE pages back to the allocator because they are being
1181 * offlined but treat RESERVE as movable pages so we can get those
1182 * areas back if necessary. Otherwise, we may have to free
1183 * excessively into the page allocator
1184 */
1185 if (migratetype >= MIGRATE_PCPTYPES) {
1186 if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1187 free_one_page(zone, page, 0, migratetype);
1188 goto out;
1189 }
1190 migratetype = MIGRATE_MOVABLE;
1191 }
1192
99dcc3e5 1193 pcp = &this_cpu_ptr(zone->pageset)->pcp;
3dfa5721 1194 if (cold)
5f8dcc21 1195 list_add_tail(&page->lru, &pcp->lists[migratetype]);
3dfa5721 1196 else
5f8dcc21 1197 list_add(&page->lru, &pcp->lists[migratetype]);
1da177e4 1198 pcp->count++;
48db57f8 1199 if (pcp->count >= pcp->high) {
5f8dcc21 1200 free_pcppages_bulk(zone, pcp->batch, pcp);
48db57f8
NP
1201 pcp->count -= pcp->batch;
1202 }
5f8dcc21
MG
1203
1204out:
1da177e4 1205 local_irq_restore(flags);
1da177e4
LT
1206}
1207
8dfcc9ba
NP
1208/*
1209 * split_page takes a non-compound higher-order page, and splits it into
1210 * n (1<<order) sub-pages: page[0..n]
1211 * Each sub-page must be freed individually.
1212 *
1213 * Note: this is probably too low level an operation for use in drivers.
1214 * Please consult with lkml before using this in your driver.
1215 */
1216void split_page(struct page *page, unsigned int order)
1217{
1218 int i;
1219
725d704e
NP
1220 VM_BUG_ON(PageCompound(page));
1221 VM_BUG_ON(!page_count(page));
b1eeab67
VN
1222
1223#ifdef CONFIG_KMEMCHECK
1224 /*
1225 * Split shadow pages too, because free(page[0]) would
1226 * otherwise free the whole shadow.
1227 */
1228 if (kmemcheck_page_is_tracked(page))
1229 split_page(virt_to_page(page[0].shadow), order);
1230#endif
1231
7835e98b
NP
1232 for (i = 1; i < (1 << order); i++)
1233 set_page_refcounted(page + i);
8dfcc9ba 1234}
8dfcc9ba 1235
748446bb
MG
1236/*
1237 * Similar to split_page except the page is already free. As this is only
1238 * being used for migration, the migratetype of the block also changes.
1239 * As this is called with interrupts disabled, the caller is responsible
1240 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1241 * are enabled.
1242 *
1243 * Note: this is probably too low level an operation for use in drivers.
1244 * Please consult with lkml before using this in your driver.
1245 */
1246int split_free_page(struct page *page)
1247{
1248 unsigned int order;
1249 unsigned long watermark;
1250 struct zone *zone;
1251
1252 BUG_ON(!PageBuddy(page));
1253
1254 zone = page_zone(page);
1255 order = page_order(page);
1256
1257 /* Obey watermarks as if the page was being allocated */
1258 watermark = low_wmark_pages(zone) + (1 << order);
1259 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1260 return 0;
1261
1262 /* Remove page from free list */
1263 list_del(&page->lru);
1264 zone->free_area[order].nr_free--;
1265 rmv_page_order(page);
1266 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1UL << order));
1267
1268 /* Split into individual pages */
1269 set_page_refcounted(page);
1270 split_page(page, order);
1271
1272 if (order >= pageblock_order - 1) {
1273 struct page *endpage = page + (1 << order) - 1;
1274 for (; page < endpage; page += pageblock_nr_pages)
1275 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1276 }
1277
1278 return 1 << order;
1279}
1280
1da177e4
LT
1281/*
1282 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1283 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1284 * or two.
1285 */
0a15c3e9
MG
1286static inline
1287struct page *buffered_rmqueue(struct zone *preferred_zone,
3dd28266
MG
1288 struct zone *zone, int order, gfp_t gfp_flags,
1289 int migratetype)
1da177e4
LT
1290{
1291 unsigned long flags;
689bcebf 1292 struct page *page;
1da177e4
LT
1293 int cold = !!(gfp_flags & __GFP_COLD);
1294
689bcebf 1295again:
48db57f8 1296 if (likely(order == 0)) {
1da177e4 1297 struct per_cpu_pages *pcp;
5f8dcc21 1298 struct list_head *list;
1da177e4 1299
1da177e4 1300 local_irq_save(flags);
99dcc3e5
CL
1301 pcp = &this_cpu_ptr(zone->pageset)->pcp;
1302 list = &pcp->lists[migratetype];
5f8dcc21 1303 if (list_empty(list)) {
535131e6 1304 pcp->count += rmqueue_bulk(zone, 0,
5f8dcc21 1305 pcp->batch, list,
e084b2d9 1306 migratetype, cold);
5f8dcc21 1307 if (unlikely(list_empty(list)))
6fb332fa 1308 goto failed;
535131e6 1309 }
b92a6edd 1310
5f8dcc21
MG
1311 if (cold)
1312 page = list_entry(list->prev, struct page, lru);
1313 else
1314 page = list_entry(list->next, struct page, lru);
1315
b92a6edd
MG
1316 list_del(&page->lru);
1317 pcp->count--;
7fb1d9fc 1318 } else {
dab48dab
AM
1319 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1320 /*
1321 * __GFP_NOFAIL is not to be used in new code.
1322 *
1323 * All __GFP_NOFAIL callers should be fixed so that they
1324 * properly detect and handle allocation failures.
1325 *
1326 * We most definitely don't want callers attempting to
4923abf9 1327 * allocate greater than order-1 page units with
dab48dab
AM
1328 * __GFP_NOFAIL.
1329 */
4923abf9 1330 WARN_ON_ONCE(order > 1);
dab48dab 1331 }
1da177e4 1332 spin_lock_irqsave(&zone->lock, flags);
b2a0ac88 1333 page = __rmqueue(zone, order, migratetype);
a74609fa
NP
1334 spin_unlock(&zone->lock);
1335 if (!page)
1336 goto failed;
6ccf80eb 1337 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
1da177e4
LT
1338 }
1339
f8891e5e 1340 __count_zone_vm_events(PGALLOC, zone, 1 << order);
18ea7e71 1341 zone_statistics(preferred_zone, zone);
a74609fa 1342 local_irq_restore(flags);
1da177e4 1343
725d704e 1344 VM_BUG_ON(bad_range(zone, page));
17cf4406 1345 if (prep_new_page(page, order, gfp_flags))
a74609fa 1346 goto again;
1da177e4 1347 return page;
a74609fa
NP
1348
1349failed:
1350 local_irq_restore(flags);
a74609fa 1351 return NULL;
1da177e4
LT
1352}
1353
41858966
MG
1354/* The ALLOC_WMARK bits are used as an index to zone->watermark */
1355#define ALLOC_WMARK_MIN WMARK_MIN
1356#define ALLOC_WMARK_LOW WMARK_LOW
1357#define ALLOC_WMARK_HIGH WMARK_HIGH
1358#define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
1359
1360/* Mask to get the watermark bits */
1361#define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
1362
3148890b
NP
1363#define ALLOC_HARDER 0x10 /* try to alloc harder */
1364#define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1365#define ALLOC_CPUSET 0x40 /* check for correct cpuset */
7fb1d9fc 1366
933e312e
AM
1367#ifdef CONFIG_FAIL_PAGE_ALLOC
1368
1369static struct fail_page_alloc_attr {
1370 struct fault_attr attr;
1371
1372 u32 ignore_gfp_highmem;
1373 u32 ignore_gfp_wait;
54114994 1374 u32 min_order;
933e312e
AM
1375
1376#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1377
1378 struct dentry *ignore_gfp_highmem_file;
1379 struct dentry *ignore_gfp_wait_file;
54114994 1380 struct dentry *min_order_file;
933e312e
AM
1381
1382#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1383
1384} fail_page_alloc = {
1385 .attr = FAULT_ATTR_INITIALIZER,
6b1b60f4
DM
1386 .ignore_gfp_wait = 1,
1387 .ignore_gfp_highmem = 1,
54114994 1388 .min_order = 1,
933e312e
AM
1389};
1390
1391static int __init setup_fail_page_alloc(char *str)
1392{
1393 return setup_fault_attr(&fail_page_alloc.attr, str);
1394}
1395__setup("fail_page_alloc=", setup_fail_page_alloc);
1396
1397static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1398{
54114994
AM
1399 if (order < fail_page_alloc.min_order)
1400 return 0;
933e312e
AM
1401 if (gfp_mask & __GFP_NOFAIL)
1402 return 0;
1403 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1404 return 0;
1405 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1406 return 0;
1407
1408 return should_fail(&fail_page_alloc.attr, 1 << order);
1409}
1410
1411#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1412
1413static int __init fail_page_alloc_debugfs(void)
1414{
1415 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1416 struct dentry *dir;
1417 int err;
1418
1419 err = init_fault_attr_dentries(&fail_page_alloc.attr,
1420 "fail_page_alloc");
1421 if (err)
1422 return err;
1423 dir = fail_page_alloc.attr.dentries.dir;
1424
1425 fail_page_alloc.ignore_gfp_wait_file =
1426 debugfs_create_bool("ignore-gfp-wait", mode, dir,
1427 &fail_page_alloc.ignore_gfp_wait);
1428
1429 fail_page_alloc.ignore_gfp_highmem_file =
1430 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1431 &fail_page_alloc.ignore_gfp_highmem);
54114994
AM
1432 fail_page_alloc.min_order_file =
1433 debugfs_create_u32("min-order", mode, dir,
1434 &fail_page_alloc.min_order);
933e312e
AM
1435
1436 if (!fail_page_alloc.ignore_gfp_wait_file ||
54114994
AM
1437 !fail_page_alloc.ignore_gfp_highmem_file ||
1438 !fail_page_alloc.min_order_file) {
933e312e
AM
1439 err = -ENOMEM;
1440 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1441 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
54114994 1442 debugfs_remove(fail_page_alloc.min_order_file);
933e312e
AM
1443 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1444 }
1445
1446 return err;
1447}
1448
1449late_initcall(fail_page_alloc_debugfs);
1450
1451#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1452
1453#else /* CONFIG_FAIL_PAGE_ALLOC */
1454
1455static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1456{
1457 return 0;
1458}
1459
1460#endif /* CONFIG_FAIL_PAGE_ALLOC */
1461
1da177e4 1462/*
88f5acf8 1463 * Return true if free pages are above 'mark'. This takes into account the order
1da177e4
LT
1464 * of the allocation.
1465 */
88f5acf8
MG
1466static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1467 int classzone_idx, int alloc_flags, long free_pages)
1da177e4
LT
1468{
1469 /* free_pages my go negative - that's OK */
d23ad423 1470 long min = mark;
1da177e4
LT
1471 int o;
1472
88f5acf8 1473 free_pages -= (1 << order) + 1;
7fb1d9fc 1474 if (alloc_flags & ALLOC_HIGH)
1da177e4 1475 min -= min / 2;
7fb1d9fc 1476 if (alloc_flags & ALLOC_HARDER)
1da177e4
LT
1477 min -= min / 4;
1478
1479 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
88f5acf8 1480 return false;
1da177e4
LT
1481 for (o = 0; o < order; o++) {
1482 /* At the next order, this order's pages become unavailable */
1483 free_pages -= z->free_area[o].nr_free << o;
1484
1485 /* Require fewer higher order pages to be free */
1486 min >>= 1;
1487
1488 if (free_pages <= min)
88f5acf8 1489 return false;
1da177e4 1490 }
88f5acf8
MG
1491 return true;
1492}
1493
1494bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1495 int classzone_idx, int alloc_flags)
1496{
1497 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1498 zone_page_state(z, NR_FREE_PAGES));
1499}
1500
1501bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1502 int classzone_idx, int alloc_flags)
1503{
1504 long free_pages = zone_page_state(z, NR_FREE_PAGES);
1505
1506 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1507 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1508
1509 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1510 free_pages);
1da177e4
LT
1511}
1512
9276b1bc
PJ
1513#ifdef CONFIG_NUMA
1514/*
1515 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1516 * skip over zones that are not allowed by the cpuset, or that have
1517 * been recently (in last second) found to be nearly full. See further
1518 * comments in mmzone.h. Reduces cache footprint of zonelist scans
183ff22b 1519 * that have to skip over a lot of full or unallowed zones.
9276b1bc
PJ
1520 *
1521 * If the zonelist cache is present in the passed in zonelist, then
1522 * returns a pointer to the allowed node mask (either the current
37b07e41 1523 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
9276b1bc
PJ
1524 *
1525 * If the zonelist cache is not available for this zonelist, does
1526 * nothing and returns NULL.
1527 *
1528 * If the fullzones BITMAP in the zonelist cache is stale (more than
1529 * a second since last zap'd) then we zap it out (clear its bits.)
1530 *
1531 * We hold off even calling zlc_setup, until after we've checked the
1532 * first zone in the zonelist, on the theory that most allocations will
1533 * be satisfied from that first zone, so best to examine that zone as
1534 * quickly as we can.
1535 */
1536static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1537{
1538 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1539 nodemask_t *allowednodes; /* zonelist_cache approximation */
1540
1541 zlc = zonelist->zlcache_ptr;
1542 if (!zlc)
1543 return NULL;
1544
f05111f5 1545 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
9276b1bc
PJ
1546 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1547 zlc->last_full_zap = jiffies;
1548 }
1549
1550 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1551 &cpuset_current_mems_allowed :
37b07e41 1552 &node_states[N_HIGH_MEMORY];
9276b1bc
PJ
1553 return allowednodes;
1554}
1555
1556/*
1557 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1558 * if it is worth looking at further for free memory:
1559 * 1) Check that the zone isn't thought to be full (doesn't have its
1560 * bit set in the zonelist_cache fullzones BITMAP).
1561 * 2) Check that the zones node (obtained from the zonelist_cache
1562 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1563 * Return true (non-zero) if zone is worth looking at further, or
1564 * else return false (zero) if it is not.
1565 *
1566 * This check -ignores- the distinction between various watermarks,
1567 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1568 * found to be full for any variation of these watermarks, it will
1569 * be considered full for up to one second by all requests, unless
1570 * we are so low on memory on all allowed nodes that we are forced
1571 * into the second scan of the zonelist.
1572 *
1573 * In the second scan we ignore this zonelist cache and exactly
1574 * apply the watermarks to all zones, even it is slower to do so.
1575 * We are low on memory in the second scan, and should leave no stone
1576 * unturned looking for a free page.
1577 */
dd1a239f 1578static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1579 nodemask_t *allowednodes)
1580{
1581 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1582 int i; /* index of *z in zonelist zones */
1583 int n; /* node that zone *z is on */
1584
1585 zlc = zonelist->zlcache_ptr;
1586 if (!zlc)
1587 return 1;
1588
dd1a239f 1589 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1590 n = zlc->z_to_n[i];
1591
1592 /* This zone is worth trying if it is allowed but not full */
1593 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1594}
1595
1596/*
1597 * Given 'z' scanning a zonelist, set the corresponding bit in
1598 * zlc->fullzones, so that subsequent attempts to allocate a page
1599 * from that zone don't waste time re-examining it.
1600 */
dd1a239f 1601static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1602{
1603 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1604 int i; /* index of *z in zonelist zones */
1605
1606 zlc = zonelist->zlcache_ptr;
1607 if (!zlc)
1608 return;
1609
dd1a239f 1610 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1611
1612 set_bit(i, zlc->fullzones);
1613}
1614
1615#else /* CONFIG_NUMA */
1616
1617static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1618{
1619 return NULL;
1620}
1621
dd1a239f 1622static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1623 nodemask_t *allowednodes)
1624{
1625 return 1;
1626}
1627
dd1a239f 1628static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1629{
1630}
1631#endif /* CONFIG_NUMA */
1632
7fb1d9fc 1633/*
0798e519 1634 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
1635 * a page.
1636 */
1637static struct page *
19770b32 1638get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
5117f45d 1639 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
3dd28266 1640 struct zone *preferred_zone, int migratetype)
753ee728 1641{
dd1a239f 1642 struct zoneref *z;
7fb1d9fc 1643 struct page *page = NULL;
54a6eb5c 1644 int classzone_idx;
5117f45d 1645 struct zone *zone;
9276b1bc
PJ
1646 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1647 int zlc_active = 0; /* set if using zonelist_cache */
1648 int did_zlc_setup = 0; /* just call zlc_setup() one time */
54a6eb5c 1649
19770b32 1650 classzone_idx = zone_idx(preferred_zone);
9276b1bc 1651zonelist_scan:
7fb1d9fc 1652 /*
9276b1bc 1653 * Scan zonelist, looking for a zone with enough free.
7fb1d9fc
RS
1654 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1655 */
19770b32
MG
1656 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1657 high_zoneidx, nodemask) {
9276b1bc
PJ
1658 if (NUMA_BUILD && zlc_active &&
1659 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1660 continue;
7fb1d9fc 1661 if ((alloc_flags & ALLOC_CPUSET) &&
02a0e53d 1662 !cpuset_zone_allowed_softwall(zone, gfp_mask))
9276b1bc 1663 goto try_next_zone;
7fb1d9fc 1664
41858966 1665 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
7fb1d9fc 1666 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
3148890b 1667 unsigned long mark;
fa5e084e
MG
1668 int ret;
1669
41858966 1670 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
fa5e084e
MG
1671 if (zone_watermark_ok(zone, order, mark,
1672 classzone_idx, alloc_flags))
1673 goto try_this_zone;
1674
1675 if (zone_reclaim_mode == 0)
1676 goto this_zone_full;
1677
1678 ret = zone_reclaim(zone, gfp_mask, order);
1679 switch (ret) {
1680 case ZONE_RECLAIM_NOSCAN:
1681 /* did not scan */
1682 goto try_next_zone;
1683 case ZONE_RECLAIM_FULL:
1684 /* scanned but unreclaimable */
1685 goto this_zone_full;
1686 default:
1687 /* did we reclaim enough */
1688 if (!zone_watermark_ok(zone, order, mark,
1689 classzone_idx, alloc_flags))
9276b1bc 1690 goto this_zone_full;
0798e519 1691 }
7fb1d9fc
RS
1692 }
1693
fa5e084e 1694try_this_zone:
3dd28266
MG
1695 page = buffered_rmqueue(preferred_zone, zone, order,
1696 gfp_mask, migratetype);
0798e519 1697 if (page)
7fb1d9fc 1698 break;
9276b1bc
PJ
1699this_zone_full:
1700 if (NUMA_BUILD)
1701 zlc_mark_zone_full(zonelist, z);
1702try_next_zone:
62bc62a8 1703 if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
d395b734
MG
1704 /*
1705 * we do zlc_setup after the first zone is tried but only
1706 * if there are multiple nodes make it worthwhile
1707 */
9276b1bc
PJ
1708 allowednodes = zlc_setup(zonelist, alloc_flags);
1709 zlc_active = 1;
1710 did_zlc_setup = 1;
1711 }
54a6eb5c 1712 }
9276b1bc
PJ
1713
1714 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1715 /* Disable zlc cache for second zonelist scan */
1716 zlc_active = 0;
1717 goto zonelist_scan;
1718 }
7fb1d9fc 1719 return page;
753ee728
MH
1720}
1721
11e33f6a
MG
1722static inline int
1723should_alloc_retry(gfp_t gfp_mask, unsigned int order,
1724 unsigned long pages_reclaimed)
1da177e4 1725{
11e33f6a
MG
1726 /* Do not loop if specifically requested */
1727 if (gfp_mask & __GFP_NORETRY)
1728 return 0;
1da177e4 1729
11e33f6a
MG
1730 /*
1731 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1732 * means __GFP_NOFAIL, but that may not be true in other
1733 * implementations.
1734 */
1735 if (order <= PAGE_ALLOC_COSTLY_ORDER)
1736 return 1;
1737
1738 /*
1739 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1740 * specified, then we retry until we no longer reclaim any pages
1741 * (above), or we've reclaimed an order of pages at least as
1742 * large as the allocation's order. In both cases, if the
1743 * allocation still fails, we stop retrying.
1744 */
1745 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
1746 return 1;
cf40bd16 1747
11e33f6a
MG
1748 /*
1749 * Don't let big-order allocations loop unless the caller
1750 * explicitly requests that.
1751 */
1752 if (gfp_mask & __GFP_NOFAIL)
1753 return 1;
1da177e4 1754
11e33f6a
MG
1755 return 0;
1756}
933e312e 1757
11e33f6a
MG
1758static inline struct page *
1759__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
1760 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
1761 nodemask_t *nodemask, struct zone *preferred_zone,
1762 int migratetype)
11e33f6a
MG
1763{
1764 struct page *page;
1765
1766 /* Acquire the OOM killer lock for the zones in zonelist */
ff321fea 1767 if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
11e33f6a 1768 schedule_timeout_uninterruptible(1);
1da177e4
LT
1769 return NULL;
1770 }
6b1de916 1771
11e33f6a
MG
1772 /*
1773 * Go through the zonelist yet one more time, keep very high watermark
1774 * here, this is only to catch a parallel oom killing, we must fail if
1775 * we're still under heavy pressure.
1776 */
1777 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1778 order, zonelist, high_zoneidx,
5117f45d 1779 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
3dd28266 1780 preferred_zone, migratetype);
7fb1d9fc 1781 if (page)
11e33f6a
MG
1782 goto out;
1783
4365a567
KH
1784 if (!(gfp_mask & __GFP_NOFAIL)) {
1785 /* The OOM killer will not help higher order allocs */
1786 if (order > PAGE_ALLOC_COSTLY_ORDER)
1787 goto out;
03668b3c
DR
1788 /* The OOM killer does not needlessly kill tasks for lowmem */
1789 if (high_zoneidx < ZONE_NORMAL)
1790 goto out;
4365a567
KH
1791 /*
1792 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
1793 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
1794 * The caller should handle page allocation failure by itself if
1795 * it specifies __GFP_THISNODE.
1796 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
1797 */
1798 if (gfp_mask & __GFP_THISNODE)
1799 goto out;
1800 }
11e33f6a 1801 /* Exhausted what can be done so it's blamo time */
4365a567 1802 out_of_memory(zonelist, gfp_mask, order, nodemask);
11e33f6a
MG
1803
1804out:
1805 clear_zonelist_oom(zonelist, gfp_mask);
1806 return page;
1807}
1808
56de7263
MG
1809#ifdef CONFIG_COMPACTION
1810/* Try memory compaction for high-order allocations before reclaim */
1811static struct page *
1812__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
1813 struct zonelist *zonelist, enum zone_type high_zoneidx,
1814 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
77f1fe6b
MG
1815 int migratetype, unsigned long *did_some_progress,
1816 bool sync_migration)
56de7263
MG
1817{
1818 struct page *page;
3e7d3449 1819 struct task_struct *tsk = current;
56de7263 1820
4f92e258 1821 if (!order || compaction_deferred(preferred_zone))
56de7263
MG
1822 return NULL;
1823
3e7d3449 1824 tsk->flags |= PF_MEMALLOC;
56de7263 1825 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
77f1fe6b 1826 nodemask, sync_migration);
3e7d3449 1827 tsk->flags &= ~PF_MEMALLOC;
56de7263
MG
1828 if (*did_some_progress != COMPACT_SKIPPED) {
1829
1830 /* Page migration frees to the PCP lists but we want merging */
1831 drain_pages(get_cpu());
1832 put_cpu();
1833
1834 page = get_page_from_freelist(gfp_mask, nodemask,
1835 order, zonelist, high_zoneidx,
1836 alloc_flags, preferred_zone,
1837 migratetype);
1838 if (page) {
4f92e258
MG
1839 preferred_zone->compact_considered = 0;
1840 preferred_zone->compact_defer_shift = 0;
56de7263
MG
1841 count_vm_event(COMPACTSUCCESS);
1842 return page;
1843 }
1844
1845 /*
1846 * It's bad if compaction run occurs and fails.
1847 * The most likely reason is that pages exist,
1848 * but not enough to satisfy watermarks.
1849 */
1850 count_vm_event(COMPACTFAIL);
4f92e258 1851 defer_compaction(preferred_zone);
56de7263
MG
1852
1853 cond_resched();
1854 }
1855
1856 return NULL;
1857}
1858#else
1859static inline struct page *
1860__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
1861 struct zonelist *zonelist, enum zone_type high_zoneidx,
1862 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
77f1fe6b
MG
1863 int migratetype, unsigned long *did_some_progress,
1864 bool sync_migration)
56de7263
MG
1865{
1866 return NULL;
1867}
1868#endif /* CONFIG_COMPACTION */
1869
11e33f6a
MG
1870/* The really slow allocator path where we enter direct reclaim */
1871static inline struct page *
1872__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
1873 struct zonelist *zonelist, enum zone_type high_zoneidx,
5117f45d 1874 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
3dd28266 1875 int migratetype, unsigned long *did_some_progress)
11e33f6a
MG
1876{
1877 struct page *page = NULL;
1878 struct reclaim_state reclaim_state;
1879 struct task_struct *p = current;
9ee493ce 1880 bool drained = false;
11e33f6a
MG
1881
1882 cond_resched();
1883
1884 /* We now go into synchronous reclaim */
1885 cpuset_memory_pressure_bump();
11e33f6a
MG
1886 p->flags |= PF_MEMALLOC;
1887 lockdep_set_current_reclaim_state(gfp_mask);
1888 reclaim_state.reclaimed_slab = 0;
1889 p->reclaim_state = &reclaim_state;
1890
1891 *did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
1892
1893 p->reclaim_state = NULL;
1894 lockdep_clear_current_reclaim_state();
1895 p->flags &= ~PF_MEMALLOC;
1896
1897 cond_resched();
1898
9ee493ce
MG
1899 if (unlikely(!(*did_some_progress)))
1900 return NULL;
11e33f6a 1901
9ee493ce
MG
1902retry:
1903 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 1904 zonelist, high_zoneidx,
3dd28266
MG
1905 alloc_flags, preferred_zone,
1906 migratetype);
9ee493ce
MG
1907
1908 /*
1909 * If an allocation failed after direct reclaim, it could be because
1910 * pages are pinned on the per-cpu lists. Drain them and try again
1911 */
1912 if (!page && !drained) {
1913 drain_all_pages();
1914 drained = true;
1915 goto retry;
1916 }
1917
11e33f6a
MG
1918 return page;
1919}
1920
1da177e4 1921/*
11e33f6a
MG
1922 * This is called in the allocator slow-path if the allocation request is of
1923 * sufficient urgency to ignore watermarks and take other desperate measures
1da177e4 1924 */
11e33f6a
MG
1925static inline struct page *
1926__alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
1927 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
1928 nodemask_t *nodemask, struct zone *preferred_zone,
1929 int migratetype)
11e33f6a
MG
1930{
1931 struct page *page;
1932
1933 do {
1934 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 1935 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
3dd28266 1936 preferred_zone, migratetype);
11e33f6a
MG
1937
1938 if (!page && gfp_mask & __GFP_NOFAIL)
0e093d99 1939 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
11e33f6a
MG
1940 } while (!page && (gfp_mask & __GFP_NOFAIL));
1941
1942 return page;
1943}
1944
1945static inline
1946void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
99504748
MG
1947 enum zone_type high_zoneidx,
1948 enum zone_type classzone_idx)
1da177e4 1949{
dd1a239f
MG
1950 struct zoneref *z;
1951 struct zone *zone;
1da177e4 1952
11e33f6a 1953 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
99504748 1954 wakeup_kswapd(zone, order, classzone_idx);
11e33f6a 1955}
cf40bd16 1956
341ce06f
PZ
1957static inline int
1958gfp_to_alloc_flags(gfp_t gfp_mask)
1959{
1960 struct task_struct *p = current;
1961 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1962 const gfp_t wait = gfp_mask & __GFP_WAIT;
1da177e4 1963
a56f57ff 1964 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 1965 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 1966
341ce06f
PZ
1967 /*
1968 * The caller may dip into page reserves a bit more if the caller
1969 * cannot run direct reclaim, or if the caller has realtime scheduling
1970 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1971 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1972 */
e6223a3b 1973 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 1974
341ce06f
PZ
1975 if (!wait) {
1976 alloc_flags |= ALLOC_HARDER;
523b9458 1977 /*
341ce06f
PZ
1978 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1979 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
523b9458 1980 */
341ce06f 1981 alloc_flags &= ~ALLOC_CPUSET;
9d0ed60f 1982 } else if (unlikely(rt_task(p)) && !in_interrupt())
341ce06f
PZ
1983 alloc_flags |= ALLOC_HARDER;
1984
1985 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
1986 if (!in_interrupt() &&
1987 ((p->flags & PF_MEMALLOC) ||
1988 unlikely(test_thread_flag(TIF_MEMDIE))))
1989 alloc_flags |= ALLOC_NO_WATERMARKS;
1da177e4 1990 }
6b1de916 1991
341ce06f
PZ
1992 return alloc_flags;
1993}
1994
11e33f6a
MG
1995static inline struct page *
1996__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
1997 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
1998 nodemask_t *nodemask, struct zone *preferred_zone,
1999 int migratetype)
11e33f6a
MG
2000{
2001 const gfp_t wait = gfp_mask & __GFP_WAIT;
2002 struct page *page = NULL;
2003 int alloc_flags;
2004 unsigned long pages_reclaimed = 0;
2005 unsigned long did_some_progress;
2006 struct task_struct *p = current;
77f1fe6b 2007 bool sync_migration = false;
1da177e4 2008
72807a74
MG
2009 /*
2010 * In the slowpath, we sanity check order to avoid ever trying to
2011 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2012 * be using allocators in order of preference for an area that is
2013 * too large.
2014 */
1fc28b70
MG
2015 if (order >= MAX_ORDER) {
2016 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 2017 return NULL;
1fc28b70 2018 }
1da177e4 2019
952f3b51
CL
2020 /*
2021 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2022 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2023 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2024 * using a larger set of nodes after it has established that the
2025 * allowed per node queues are empty and that nodes are
2026 * over allocated.
2027 */
2028 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2029 goto nopage;
2030
cc4a6851 2031restart:
99504748
MG
2032 wake_all_kswapd(order, zonelist, high_zoneidx,
2033 zone_idx(preferred_zone));
1da177e4 2034
9bf2229f 2035 /*
7fb1d9fc
RS
2036 * OK, we're below the kswapd watermark and have kicked background
2037 * reclaim. Now things get more complex, so set up alloc_flags according
2038 * to how we want to proceed.
9bf2229f 2039 */
341ce06f 2040 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 2041
341ce06f 2042 /* This is the last chance, in general, before the goto nopage. */
19770b32 2043 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
341ce06f
PZ
2044 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2045 preferred_zone, migratetype);
7fb1d9fc
RS
2046 if (page)
2047 goto got_pg;
1da177e4 2048
b43a57bb 2049rebalance:
11e33f6a 2050 /* Allocate without watermarks if the context allows */
341ce06f
PZ
2051 if (alloc_flags & ALLOC_NO_WATERMARKS) {
2052 page = __alloc_pages_high_priority(gfp_mask, order,
2053 zonelist, high_zoneidx, nodemask,
2054 preferred_zone, migratetype);
2055 if (page)
2056 goto got_pg;
1da177e4
LT
2057 }
2058
2059 /* Atomic allocations - we can't balance anything */
2060 if (!wait)
2061 goto nopage;
2062
341ce06f
PZ
2063 /* Avoid recursion of direct reclaim */
2064 if (p->flags & PF_MEMALLOC)
2065 goto nopage;
2066
6583bb64
DR
2067 /* Avoid allocations with no watermarks from looping endlessly */
2068 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2069 goto nopage;
2070
77f1fe6b
MG
2071 /*
2072 * Try direct compaction. The first pass is asynchronous. Subsequent
2073 * attempts after direct reclaim are synchronous
2074 */
56de7263
MG
2075 page = __alloc_pages_direct_compact(gfp_mask, order,
2076 zonelist, high_zoneidx,
2077 nodemask,
2078 alloc_flags, preferred_zone,
77f1fe6b
MG
2079 migratetype, &did_some_progress,
2080 sync_migration);
56de7263
MG
2081 if (page)
2082 goto got_pg;
77f1fe6b 2083 sync_migration = true;
56de7263 2084
11e33f6a
MG
2085 /* Try direct reclaim and then allocating */
2086 page = __alloc_pages_direct_reclaim(gfp_mask, order,
2087 zonelist, high_zoneidx,
2088 nodemask,
5117f45d 2089 alloc_flags, preferred_zone,
3dd28266 2090 migratetype, &did_some_progress);
11e33f6a
MG
2091 if (page)
2092 goto got_pg;
1da177e4 2093
e33c3b5e 2094 /*
11e33f6a
MG
2095 * If we failed to make any progress reclaiming, then we are
2096 * running out of options and have to consider going OOM
e33c3b5e 2097 */
11e33f6a
MG
2098 if (!did_some_progress) {
2099 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
7f33d49a
RW
2100 if (oom_killer_disabled)
2101 goto nopage;
11e33f6a
MG
2102 page = __alloc_pages_may_oom(gfp_mask, order,
2103 zonelist, high_zoneidx,
3dd28266
MG
2104 nodemask, preferred_zone,
2105 migratetype);
11e33f6a
MG
2106 if (page)
2107 goto got_pg;
1da177e4 2108
03668b3c
DR
2109 if (!(gfp_mask & __GFP_NOFAIL)) {
2110 /*
2111 * The oom killer is not called for high-order
2112 * allocations that may fail, so if no progress
2113 * is being made, there are no other options and
2114 * retrying is unlikely to help.
2115 */
2116 if (order > PAGE_ALLOC_COSTLY_ORDER)
2117 goto nopage;
2118 /*
2119 * The oom killer is not called for lowmem
2120 * allocations to prevent needlessly killing
2121 * innocent tasks.
2122 */
2123 if (high_zoneidx < ZONE_NORMAL)
2124 goto nopage;
2125 }
e2c55dc8 2126
ff0ceb9d
DR
2127 goto restart;
2128 }
1da177e4
LT
2129 }
2130
11e33f6a 2131 /* Check if we should retry the allocation */
a41f24ea 2132 pages_reclaimed += did_some_progress;
11e33f6a
MG
2133 if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) {
2134 /* Wait for some write requests to complete then retry */
0e093d99 2135 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
1da177e4 2136 goto rebalance;
3e7d3449
MG
2137 } else {
2138 /*
2139 * High-order allocations do not necessarily loop after
2140 * direct reclaim and reclaim/compaction depends on compaction
2141 * being called after reclaim so call directly if necessary
2142 */
2143 page = __alloc_pages_direct_compact(gfp_mask, order,
2144 zonelist, high_zoneidx,
2145 nodemask,
2146 alloc_flags, preferred_zone,
77f1fe6b
MG
2147 migratetype, &did_some_progress,
2148 sync_migration);
3e7d3449
MG
2149 if (page)
2150 goto got_pg;
1da177e4
LT
2151 }
2152
2153nopage:
2154 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
2155 printk(KERN_WARNING "%s: page allocation failure."
2156 " order:%d, mode:0x%x\n",
2157 p->comm, order, gfp_mask);
2158 dump_stack();
578c2fd6 2159 show_mem();
1da177e4 2160 }
b1eeab67 2161 return page;
1da177e4 2162got_pg:
b1eeab67
VN
2163 if (kmemcheck_enabled)
2164 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
1da177e4 2165 return page;
11e33f6a 2166
1da177e4 2167}
11e33f6a
MG
2168
2169/*
2170 * This is the 'heart' of the zoned buddy allocator.
2171 */
2172struct page *
2173__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2174 struct zonelist *zonelist, nodemask_t *nodemask)
2175{
2176 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
5117f45d 2177 struct zone *preferred_zone;
11e33f6a 2178 struct page *page;
3dd28266 2179 int migratetype = allocflags_to_migratetype(gfp_mask);
11e33f6a 2180
dcce284a
BH
2181 gfp_mask &= gfp_allowed_mask;
2182
11e33f6a
MG
2183 lockdep_trace_alloc(gfp_mask);
2184
2185 might_sleep_if(gfp_mask & __GFP_WAIT);
2186
2187 if (should_fail_alloc_page(gfp_mask, order))
2188 return NULL;
2189
2190 /*
2191 * Check the zones suitable for the gfp_mask contain at least one
2192 * valid zone. It's possible to have an empty zonelist as a result
2193 * of GFP_THISNODE and a memoryless node
2194 */
2195 if (unlikely(!zonelist->_zonerefs->zone))
2196 return NULL;
2197
c0ff7453 2198 get_mems_allowed();
5117f45d
MG
2199 /* The preferred zone is used for statistics later */
2200 first_zones_zonelist(zonelist, high_zoneidx, nodemask, &preferred_zone);
c0ff7453
MX
2201 if (!preferred_zone) {
2202 put_mems_allowed();
5117f45d 2203 return NULL;
c0ff7453 2204 }
5117f45d
MG
2205
2206 /* First allocation attempt */
11e33f6a 2207 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
5117f45d 2208 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
3dd28266 2209 preferred_zone, migratetype);
11e33f6a
MG
2210 if (unlikely(!page))
2211 page = __alloc_pages_slowpath(gfp_mask, order,
5117f45d 2212 zonelist, high_zoneidx, nodemask,
3dd28266 2213 preferred_zone, migratetype);
c0ff7453 2214 put_mems_allowed();
11e33f6a 2215
4b4f278c 2216 trace_mm_page_alloc(page, order, gfp_mask, migratetype);
11e33f6a 2217 return page;
1da177e4 2218}
d239171e 2219EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
2220
2221/*
2222 * Common helper functions.
2223 */
920c7a5d 2224unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 2225{
945a1113
AM
2226 struct page *page;
2227
2228 /*
2229 * __get_free_pages() returns a 32-bit address, which cannot represent
2230 * a highmem page
2231 */
2232 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2233
1da177e4
LT
2234 page = alloc_pages(gfp_mask, order);
2235 if (!page)
2236 return 0;
2237 return (unsigned long) page_address(page);
2238}
1da177e4
LT
2239EXPORT_SYMBOL(__get_free_pages);
2240
920c7a5d 2241unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 2242{
945a1113 2243 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 2244}
1da177e4
LT
2245EXPORT_SYMBOL(get_zeroed_page);
2246
2247void __pagevec_free(struct pagevec *pvec)
2248{
2249 int i = pagevec_count(pvec);
2250
4b4f278c
MG
2251 while (--i >= 0) {
2252 trace_mm_pagevec_free(pvec->pages[i], pvec->cold);
1da177e4 2253 free_hot_cold_page(pvec->pages[i], pvec->cold);
4b4f278c 2254 }
1da177e4
LT
2255}
2256
920c7a5d 2257void __free_pages(struct page *page, unsigned int order)
1da177e4 2258{
b5810039 2259 if (put_page_testzero(page)) {
1da177e4 2260 if (order == 0)
fc91668e 2261 free_hot_cold_page(page, 0);
1da177e4
LT
2262 else
2263 __free_pages_ok(page, order);
2264 }
2265}
2266
2267EXPORT_SYMBOL(__free_pages);
2268
920c7a5d 2269void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
2270{
2271 if (addr != 0) {
725d704e 2272 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
2273 __free_pages(virt_to_page((void *)addr), order);
2274 }
2275}
2276
2277EXPORT_SYMBOL(free_pages);
2278
2be0ffe2
TT
2279/**
2280 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2281 * @size: the number of bytes to allocate
2282 * @gfp_mask: GFP flags for the allocation
2283 *
2284 * This function is similar to alloc_pages(), except that it allocates the
2285 * minimum number of pages to satisfy the request. alloc_pages() can only
2286 * allocate memory in power-of-two pages.
2287 *
2288 * This function is also limited by MAX_ORDER.
2289 *
2290 * Memory allocated by this function must be released by free_pages_exact().
2291 */
2292void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2293{
2294 unsigned int order = get_order(size);
2295 unsigned long addr;
2296
2297 addr = __get_free_pages(gfp_mask, order);
2298 if (addr) {
2299 unsigned long alloc_end = addr + (PAGE_SIZE << order);
2300 unsigned long used = addr + PAGE_ALIGN(size);
2301
5bfd7560 2302 split_page(virt_to_page((void *)addr), order);
2be0ffe2
TT
2303 while (used < alloc_end) {
2304 free_page(used);
2305 used += PAGE_SIZE;
2306 }
2307 }
2308
2309 return (void *)addr;
2310}
2311EXPORT_SYMBOL(alloc_pages_exact);
2312
2313/**
2314 * free_pages_exact - release memory allocated via alloc_pages_exact()
2315 * @virt: the value returned by alloc_pages_exact.
2316 * @size: size of allocation, same value as passed to alloc_pages_exact().
2317 *
2318 * Release the memory allocated by a previous call to alloc_pages_exact.
2319 */
2320void free_pages_exact(void *virt, size_t size)
2321{
2322 unsigned long addr = (unsigned long)virt;
2323 unsigned long end = addr + PAGE_ALIGN(size);
2324
2325 while (addr < end) {
2326 free_page(addr);
2327 addr += PAGE_SIZE;
2328 }
2329}
2330EXPORT_SYMBOL(free_pages_exact);
2331
1da177e4
LT
2332static unsigned int nr_free_zone_pages(int offset)
2333{
dd1a239f 2334 struct zoneref *z;
54a6eb5c
MG
2335 struct zone *zone;
2336
e310fd43 2337 /* Just pick one node, since fallback list is circular */
1da177e4
LT
2338 unsigned int sum = 0;
2339
0e88460d 2340 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 2341
54a6eb5c 2342 for_each_zone_zonelist(zone, z, zonelist, offset) {
e310fd43 2343 unsigned long size = zone->present_pages;
41858966 2344 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
2345 if (size > high)
2346 sum += size - high;
1da177e4
LT
2347 }
2348
2349 return sum;
2350}
2351
2352/*
2353 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2354 */
2355unsigned int nr_free_buffer_pages(void)
2356{
af4ca457 2357 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 2358}
c2f1a551 2359EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4
LT
2360
2361/*
2362 * Amount of free RAM allocatable within all zones
2363 */
2364unsigned int nr_free_pagecache_pages(void)
2365{
2a1e274a 2366 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 2367}
08e0f6a9
CL
2368
2369static inline void show_node(struct zone *zone)
1da177e4 2370{
08e0f6a9 2371 if (NUMA_BUILD)
25ba77c1 2372 printk("Node %d ", zone_to_nid(zone));
1da177e4 2373}
1da177e4 2374
1da177e4
LT
2375void si_meminfo(struct sysinfo *val)
2376{
2377 val->totalram = totalram_pages;
2378 val->sharedram = 0;
d23ad423 2379 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 2380 val->bufferram = nr_blockdev_pages();
1da177e4
LT
2381 val->totalhigh = totalhigh_pages;
2382 val->freehigh = nr_free_highpages();
1da177e4
LT
2383 val->mem_unit = PAGE_SIZE;
2384}
2385
2386EXPORT_SYMBOL(si_meminfo);
2387
2388#ifdef CONFIG_NUMA
2389void si_meminfo_node(struct sysinfo *val, int nid)
2390{
2391 pg_data_t *pgdat = NODE_DATA(nid);
2392
2393 val->totalram = pgdat->node_present_pages;
d23ad423 2394 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 2395#ifdef CONFIG_HIGHMEM
1da177e4 2396 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
d23ad423
CL
2397 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2398 NR_FREE_PAGES);
98d2b0eb
CL
2399#else
2400 val->totalhigh = 0;
2401 val->freehigh = 0;
2402#endif
1da177e4
LT
2403 val->mem_unit = PAGE_SIZE;
2404}
2405#endif
2406
2407#define K(x) ((x) << (PAGE_SHIFT-10))
2408
2409/*
2410 * Show free area list (used inside shift_scroll-lock stuff)
2411 * We also calculate the percentage fragmentation. We do this by counting the
2412 * memory on each free list with the exception of the first item on the list.
2413 */
2414void show_free_areas(void)
2415{
c7241913 2416 int cpu;
1da177e4
LT
2417 struct zone *zone;
2418
ee99c71c 2419 for_each_populated_zone(zone) {
c7241913
JS
2420 show_node(zone);
2421 printk("%s per-cpu:\n", zone->name);
1da177e4 2422
6b482c67 2423 for_each_online_cpu(cpu) {
1da177e4
LT
2424 struct per_cpu_pageset *pageset;
2425
99dcc3e5 2426 pageset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2427
3dfa5721
CL
2428 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2429 cpu, pageset->pcp.high,
2430 pageset->pcp.batch, pageset->pcp.count);
1da177e4
LT
2431 }
2432 }
2433
a731286d
KM
2434 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2435 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
7b854121 2436 " unevictable:%lu"
b76146ed 2437 " dirty:%lu writeback:%lu unstable:%lu\n"
3701b033 2438 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4b02108a 2439 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
4f98a2fe 2440 global_page_state(NR_ACTIVE_ANON),
4f98a2fe 2441 global_page_state(NR_INACTIVE_ANON),
a731286d
KM
2442 global_page_state(NR_ISOLATED_ANON),
2443 global_page_state(NR_ACTIVE_FILE),
4f98a2fe 2444 global_page_state(NR_INACTIVE_FILE),
a731286d 2445 global_page_state(NR_ISOLATED_FILE),
7b854121 2446 global_page_state(NR_UNEVICTABLE),
b1e7a8fd 2447 global_page_state(NR_FILE_DIRTY),
ce866b34 2448 global_page_state(NR_WRITEBACK),
fd39fc85 2449 global_page_state(NR_UNSTABLE_NFS),
d23ad423 2450 global_page_state(NR_FREE_PAGES),
3701b033
KM
2451 global_page_state(NR_SLAB_RECLAIMABLE),
2452 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 2453 global_page_state(NR_FILE_MAPPED),
4b02108a 2454 global_page_state(NR_SHMEM),
a25700a5
AM
2455 global_page_state(NR_PAGETABLE),
2456 global_page_state(NR_BOUNCE));
1da177e4 2457
ee99c71c 2458 for_each_populated_zone(zone) {
1da177e4
LT
2459 int i;
2460
2461 show_node(zone);
2462 printk("%s"
2463 " free:%lukB"
2464 " min:%lukB"
2465 " low:%lukB"
2466 " high:%lukB"
4f98a2fe
RR
2467 " active_anon:%lukB"
2468 " inactive_anon:%lukB"
2469 " active_file:%lukB"
2470 " inactive_file:%lukB"
7b854121 2471 " unevictable:%lukB"
a731286d
KM
2472 " isolated(anon):%lukB"
2473 " isolated(file):%lukB"
1da177e4 2474 " present:%lukB"
4a0aa73f
KM
2475 " mlocked:%lukB"
2476 " dirty:%lukB"
2477 " writeback:%lukB"
2478 " mapped:%lukB"
4b02108a 2479 " shmem:%lukB"
4a0aa73f
KM
2480 " slab_reclaimable:%lukB"
2481 " slab_unreclaimable:%lukB"
c6a7f572 2482 " kernel_stack:%lukB"
4a0aa73f
KM
2483 " pagetables:%lukB"
2484 " unstable:%lukB"
2485 " bounce:%lukB"
2486 " writeback_tmp:%lukB"
1da177e4
LT
2487 " pages_scanned:%lu"
2488 " all_unreclaimable? %s"
2489 "\n",
2490 zone->name,
88f5acf8 2491 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
2492 K(min_wmark_pages(zone)),
2493 K(low_wmark_pages(zone)),
2494 K(high_wmark_pages(zone)),
4f98a2fe
RR
2495 K(zone_page_state(zone, NR_ACTIVE_ANON)),
2496 K(zone_page_state(zone, NR_INACTIVE_ANON)),
2497 K(zone_page_state(zone, NR_ACTIVE_FILE)),
2498 K(zone_page_state(zone, NR_INACTIVE_FILE)),
7b854121 2499 K(zone_page_state(zone, NR_UNEVICTABLE)),
a731286d
KM
2500 K(zone_page_state(zone, NR_ISOLATED_ANON)),
2501 K(zone_page_state(zone, NR_ISOLATED_FILE)),
1da177e4 2502 K(zone->present_pages),
4a0aa73f
KM
2503 K(zone_page_state(zone, NR_MLOCK)),
2504 K(zone_page_state(zone, NR_FILE_DIRTY)),
2505 K(zone_page_state(zone, NR_WRITEBACK)),
2506 K(zone_page_state(zone, NR_FILE_MAPPED)),
4b02108a 2507 K(zone_page_state(zone, NR_SHMEM)),
4a0aa73f
KM
2508 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
2509 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
c6a7f572
KM
2510 zone_page_state(zone, NR_KERNEL_STACK) *
2511 THREAD_SIZE / 1024,
4a0aa73f
KM
2512 K(zone_page_state(zone, NR_PAGETABLE)),
2513 K(zone_page_state(zone, NR_UNSTABLE_NFS)),
2514 K(zone_page_state(zone, NR_BOUNCE)),
2515 K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
1da177e4 2516 zone->pages_scanned,
93e4a89a 2517 (zone->all_unreclaimable ? "yes" : "no")
1da177e4
LT
2518 );
2519 printk("lowmem_reserve[]:");
2520 for (i = 0; i < MAX_NR_ZONES; i++)
2521 printk(" %lu", zone->lowmem_reserve[i]);
2522 printk("\n");
2523 }
2524
ee99c71c 2525 for_each_populated_zone(zone) {
8f9de51a 2526 unsigned long nr[MAX_ORDER], flags, order, total = 0;
1da177e4
LT
2527
2528 show_node(zone);
2529 printk("%s: ", zone->name);
1da177e4
LT
2530
2531 spin_lock_irqsave(&zone->lock, flags);
2532 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a
KK
2533 nr[order] = zone->free_area[order].nr_free;
2534 total += nr[order] << order;
1da177e4
LT
2535 }
2536 spin_unlock_irqrestore(&zone->lock, flags);
8f9de51a
KK
2537 for (order = 0; order < MAX_ORDER; order++)
2538 printk("%lu*%lukB ", nr[order], K(1UL) << order);
1da177e4
LT
2539 printk("= %lukB\n", K(total));
2540 }
2541
e6f3602d
LW
2542 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2543
1da177e4
LT
2544 show_swap_cache_info();
2545}
2546
19770b32
MG
2547static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2548{
2549 zoneref->zone = zone;
2550 zoneref->zone_idx = zone_idx(zone);
2551}
2552
1da177e4
LT
2553/*
2554 * Builds allocation fallback zone lists.
1a93205b
CL
2555 *
2556 * Add all populated zones of a node to the zonelist.
1da177e4 2557 */
f0c0b2b8
KH
2558static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2559 int nr_zones, enum zone_type zone_type)
1da177e4 2560{
1a93205b
CL
2561 struct zone *zone;
2562
98d2b0eb 2563 BUG_ON(zone_type >= MAX_NR_ZONES);
2f6726e5 2564 zone_type++;
02a68a5e
CL
2565
2566 do {
2f6726e5 2567 zone_type--;
070f8032 2568 zone = pgdat->node_zones + zone_type;
1a93205b 2569 if (populated_zone(zone)) {
dd1a239f
MG
2570 zoneref_set_zone(zone,
2571 &zonelist->_zonerefs[nr_zones++]);
070f8032 2572 check_highest_zone(zone_type);
1da177e4 2573 }
02a68a5e 2574
2f6726e5 2575 } while (zone_type);
070f8032 2576 return nr_zones;
1da177e4
LT
2577}
2578
f0c0b2b8
KH
2579
2580/*
2581 * zonelist_order:
2582 * 0 = automatic detection of better ordering.
2583 * 1 = order by ([node] distance, -zonetype)
2584 * 2 = order by (-zonetype, [node] distance)
2585 *
2586 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2587 * the same zonelist. So only NUMA can configure this param.
2588 */
2589#define ZONELIST_ORDER_DEFAULT 0
2590#define ZONELIST_ORDER_NODE 1
2591#define ZONELIST_ORDER_ZONE 2
2592
2593/* zonelist order in the kernel.
2594 * set_zonelist_order() will set this to NODE or ZONE.
2595 */
2596static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2597static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2598
2599
1da177e4 2600#ifdef CONFIG_NUMA
f0c0b2b8
KH
2601/* The value user specified ....changed by config */
2602static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2603/* string for sysctl */
2604#define NUMA_ZONELIST_ORDER_LEN 16
2605char numa_zonelist_order[16] = "default";
2606
2607/*
2608 * interface for configure zonelist ordering.
2609 * command line option "numa_zonelist_order"
2610 * = "[dD]efault - default, automatic configuration.
2611 * = "[nN]ode - order by node locality, then by zone within node
2612 * = "[zZ]one - order by zone, then by locality within zone
2613 */
2614
2615static int __parse_numa_zonelist_order(char *s)
2616{
2617 if (*s == 'd' || *s == 'D') {
2618 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2619 } else if (*s == 'n' || *s == 'N') {
2620 user_zonelist_order = ZONELIST_ORDER_NODE;
2621 } else if (*s == 'z' || *s == 'Z') {
2622 user_zonelist_order = ZONELIST_ORDER_ZONE;
2623 } else {
2624 printk(KERN_WARNING
2625 "Ignoring invalid numa_zonelist_order value: "
2626 "%s\n", s);
2627 return -EINVAL;
2628 }
2629 return 0;
2630}
2631
2632static __init int setup_numa_zonelist_order(char *s)
2633{
2634 if (s)
2635 return __parse_numa_zonelist_order(s);
2636 return 0;
2637}
2638early_param("numa_zonelist_order", setup_numa_zonelist_order);
2639
2640/*
2641 * sysctl handler for numa_zonelist_order
2642 */
2643int numa_zonelist_order_handler(ctl_table *table, int write,
8d65af78 2644 void __user *buffer, size_t *length,
f0c0b2b8
KH
2645 loff_t *ppos)
2646{
2647 char saved_string[NUMA_ZONELIST_ORDER_LEN];
2648 int ret;
443c6f14 2649 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 2650
443c6f14 2651 mutex_lock(&zl_order_mutex);
f0c0b2b8 2652 if (write)
443c6f14 2653 strcpy(saved_string, (char*)table->data);
8d65af78 2654 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 2655 if (ret)
443c6f14 2656 goto out;
f0c0b2b8
KH
2657 if (write) {
2658 int oldval = user_zonelist_order;
2659 if (__parse_numa_zonelist_order((char*)table->data)) {
2660 /*
2661 * bogus value. restore saved string
2662 */
2663 strncpy((char*)table->data, saved_string,
2664 NUMA_ZONELIST_ORDER_LEN);
2665 user_zonelist_order = oldval;
4eaf3f64
HL
2666 } else if (oldval != user_zonelist_order) {
2667 mutex_lock(&zonelists_mutex);
1f522509 2668 build_all_zonelists(NULL);
4eaf3f64
HL
2669 mutex_unlock(&zonelists_mutex);
2670 }
f0c0b2b8 2671 }
443c6f14
AK
2672out:
2673 mutex_unlock(&zl_order_mutex);
2674 return ret;
f0c0b2b8
KH
2675}
2676
2677
62bc62a8 2678#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
2679static int node_load[MAX_NUMNODES];
2680
1da177e4 2681/**
4dc3b16b 2682 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
2683 * @node: node whose fallback list we're appending
2684 * @used_node_mask: nodemask_t of already used nodes
2685 *
2686 * We use a number of factors to determine which is the next node that should
2687 * appear on a given node's fallback list. The node should not have appeared
2688 * already in @node's fallback list, and it should be the next closest node
2689 * according to the distance array (which contains arbitrary distance values
2690 * from each node to each node in the system), and should also prefer nodes
2691 * with no CPUs, since presumably they'll have very little allocation pressure
2692 * on them otherwise.
2693 * It returns -1 if no node is found.
2694 */
f0c0b2b8 2695static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 2696{
4cf808eb 2697 int n, val;
1da177e4
LT
2698 int min_val = INT_MAX;
2699 int best_node = -1;
a70f7302 2700 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 2701
4cf808eb
LT
2702 /* Use the local node if we haven't already */
2703 if (!node_isset(node, *used_node_mask)) {
2704 node_set(node, *used_node_mask);
2705 return node;
2706 }
1da177e4 2707
37b07e41 2708 for_each_node_state(n, N_HIGH_MEMORY) {
1da177e4
LT
2709
2710 /* Don't want a node to appear more than once */
2711 if (node_isset(n, *used_node_mask))
2712 continue;
2713
1da177e4
LT
2714 /* Use the distance array to find the distance */
2715 val = node_distance(node, n);
2716
4cf808eb
LT
2717 /* Penalize nodes under us ("prefer the next node") */
2718 val += (n < node);
2719
1da177e4 2720 /* Give preference to headless and unused nodes */
a70f7302
RR
2721 tmp = cpumask_of_node(n);
2722 if (!cpumask_empty(tmp))
1da177e4
LT
2723 val += PENALTY_FOR_NODE_WITH_CPUS;
2724
2725 /* Slight preference for less loaded node */
2726 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2727 val += node_load[n];
2728
2729 if (val < min_val) {
2730 min_val = val;
2731 best_node = n;
2732 }
2733 }
2734
2735 if (best_node >= 0)
2736 node_set(best_node, *used_node_mask);
2737
2738 return best_node;
2739}
2740
f0c0b2b8
KH
2741
2742/*
2743 * Build zonelists ordered by node and zones within node.
2744 * This results in maximum locality--normal zone overflows into local
2745 * DMA zone, if any--but risks exhausting DMA zone.
2746 */
2747static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 2748{
f0c0b2b8 2749 int j;
1da177e4 2750 struct zonelist *zonelist;
f0c0b2b8 2751
54a6eb5c 2752 zonelist = &pgdat->node_zonelists[0];
dd1a239f 2753 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c
MG
2754 ;
2755 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2756 MAX_NR_ZONES - 1);
dd1a239f
MG
2757 zonelist->_zonerefs[j].zone = NULL;
2758 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
2759}
2760
523b9458
CL
2761/*
2762 * Build gfp_thisnode zonelists
2763 */
2764static void build_thisnode_zonelists(pg_data_t *pgdat)
2765{
523b9458
CL
2766 int j;
2767 struct zonelist *zonelist;
2768
54a6eb5c
MG
2769 zonelist = &pgdat->node_zonelists[1];
2770 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
dd1a239f
MG
2771 zonelist->_zonerefs[j].zone = NULL;
2772 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
2773}
2774
f0c0b2b8
KH
2775/*
2776 * Build zonelists ordered by zone and nodes within zones.
2777 * This results in conserving DMA zone[s] until all Normal memory is
2778 * exhausted, but results in overflowing to remote node while memory
2779 * may still exist in local DMA zone.
2780 */
2781static int node_order[MAX_NUMNODES];
2782
2783static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2784{
f0c0b2b8
KH
2785 int pos, j, node;
2786 int zone_type; /* needs to be signed */
2787 struct zone *z;
2788 struct zonelist *zonelist;
2789
54a6eb5c
MG
2790 zonelist = &pgdat->node_zonelists[0];
2791 pos = 0;
2792 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2793 for (j = 0; j < nr_nodes; j++) {
2794 node = node_order[j];
2795 z = &NODE_DATA(node)->node_zones[zone_type];
2796 if (populated_zone(z)) {
dd1a239f
MG
2797 zoneref_set_zone(z,
2798 &zonelist->_zonerefs[pos++]);
54a6eb5c 2799 check_highest_zone(zone_type);
f0c0b2b8
KH
2800 }
2801 }
f0c0b2b8 2802 }
dd1a239f
MG
2803 zonelist->_zonerefs[pos].zone = NULL;
2804 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
2805}
2806
2807static int default_zonelist_order(void)
2808{
2809 int nid, zone_type;
2810 unsigned long low_kmem_size,total_size;
2811 struct zone *z;
2812 int average_size;
2813 /*
88393161 2814 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
f0c0b2b8
KH
2815 * If they are really small and used heavily, the system can fall
2816 * into OOM very easily.
e325c90f 2817 * This function detect ZONE_DMA/DMA32 size and configures zone order.
f0c0b2b8
KH
2818 */
2819 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2820 low_kmem_size = 0;
2821 total_size = 0;
2822 for_each_online_node(nid) {
2823 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2824 z = &NODE_DATA(nid)->node_zones[zone_type];
2825 if (populated_zone(z)) {
2826 if (zone_type < ZONE_NORMAL)
2827 low_kmem_size += z->present_pages;
2828 total_size += z->present_pages;
e325c90f
DR
2829 } else if (zone_type == ZONE_NORMAL) {
2830 /*
2831 * If any node has only lowmem, then node order
2832 * is preferred to allow kernel allocations
2833 * locally; otherwise, they can easily infringe
2834 * on other nodes when there is an abundance of
2835 * lowmem available to allocate from.
2836 */
2837 return ZONELIST_ORDER_NODE;
f0c0b2b8
KH
2838 }
2839 }
2840 }
2841 if (!low_kmem_size || /* there are no DMA area. */
2842 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2843 return ZONELIST_ORDER_NODE;
2844 /*
2845 * look into each node's config.
2846 * If there is a node whose DMA/DMA32 memory is very big area on
2847 * local memory, NODE_ORDER may be suitable.
2848 */
37b07e41
LS
2849 average_size = total_size /
2850 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
f0c0b2b8
KH
2851 for_each_online_node(nid) {
2852 low_kmem_size = 0;
2853 total_size = 0;
2854 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2855 z = &NODE_DATA(nid)->node_zones[zone_type];
2856 if (populated_zone(z)) {
2857 if (zone_type < ZONE_NORMAL)
2858 low_kmem_size += z->present_pages;
2859 total_size += z->present_pages;
2860 }
2861 }
2862 if (low_kmem_size &&
2863 total_size > average_size && /* ignore small node */
2864 low_kmem_size > total_size * 70/100)
2865 return ZONELIST_ORDER_NODE;
2866 }
2867 return ZONELIST_ORDER_ZONE;
2868}
2869
2870static void set_zonelist_order(void)
2871{
2872 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2873 current_zonelist_order = default_zonelist_order();
2874 else
2875 current_zonelist_order = user_zonelist_order;
2876}
2877
2878static void build_zonelists(pg_data_t *pgdat)
2879{
2880 int j, node, load;
2881 enum zone_type i;
1da177e4 2882 nodemask_t used_mask;
f0c0b2b8
KH
2883 int local_node, prev_node;
2884 struct zonelist *zonelist;
2885 int order = current_zonelist_order;
1da177e4
LT
2886
2887 /* initialize zonelists */
523b9458 2888 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 2889 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
2890 zonelist->_zonerefs[0].zone = NULL;
2891 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
2892 }
2893
2894 /* NUMA-aware ordering of nodes */
2895 local_node = pgdat->node_id;
62bc62a8 2896 load = nr_online_nodes;
1da177e4
LT
2897 prev_node = local_node;
2898 nodes_clear(used_mask);
f0c0b2b8 2899
f0c0b2b8
KH
2900 memset(node_order, 0, sizeof(node_order));
2901 j = 0;
2902
1da177e4 2903 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
9eeff239
CL
2904 int distance = node_distance(local_node, node);
2905
2906 /*
2907 * If another node is sufficiently far away then it is better
2908 * to reclaim pages in a zone before going off node.
2909 */
2910 if (distance > RECLAIM_DISTANCE)
2911 zone_reclaim_mode = 1;
2912
1da177e4
LT
2913 /*
2914 * We don't want to pressure a particular node.
2915 * So adding penalty to the first node in same
2916 * distance group to make it round-robin.
2917 */
9eeff239 2918 if (distance != node_distance(local_node, prev_node))
f0c0b2b8
KH
2919 node_load[node] = load;
2920
1da177e4
LT
2921 prev_node = node;
2922 load--;
f0c0b2b8
KH
2923 if (order == ZONELIST_ORDER_NODE)
2924 build_zonelists_in_node_order(pgdat, node);
2925 else
2926 node_order[j++] = node; /* remember order */
2927 }
1da177e4 2928
f0c0b2b8
KH
2929 if (order == ZONELIST_ORDER_ZONE) {
2930 /* calculate node order -- i.e., DMA last! */
2931 build_zonelists_in_zone_order(pgdat, j);
1da177e4 2932 }
523b9458
CL
2933
2934 build_thisnode_zonelists(pgdat);
1da177e4
LT
2935}
2936
9276b1bc 2937/* Construct the zonelist performance cache - see further mmzone.h */
f0c0b2b8 2938static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 2939{
54a6eb5c
MG
2940 struct zonelist *zonelist;
2941 struct zonelist_cache *zlc;
dd1a239f 2942 struct zoneref *z;
9276b1bc 2943
54a6eb5c
MG
2944 zonelist = &pgdat->node_zonelists[0];
2945 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2946 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
dd1a239f
MG
2947 for (z = zonelist->_zonerefs; z->zone; z++)
2948 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
9276b1bc
PJ
2949}
2950
7aac7898
LS
2951#ifdef CONFIG_HAVE_MEMORYLESS_NODES
2952/*
2953 * Return node id of node used for "local" allocations.
2954 * I.e., first node id of first zone in arg node's generic zonelist.
2955 * Used for initializing percpu 'numa_mem', which is used primarily
2956 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
2957 */
2958int local_memory_node(int node)
2959{
2960 struct zone *zone;
2961
2962 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
2963 gfp_zone(GFP_KERNEL),
2964 NULL,
2965 &zone);
2966 return zone->node;
2967}
2968#endif
f0c0b2b8 2969
1da177e4
LT
2970#else /* CONFIG_NUMA */
2971
f0c0b2b8
KH
2972static void set_zonelist_order(void)
2973{
2974 current_zonelist_order = ZONELIST_ORDER_ZONE;
2975}
2976
2977static void build_zonelists(pg_data_t *pgdat)
1da177e4 2978{
19655d34 2979 int node, local_node;
54a6eb5c
MG
2980 enum zone_type j;
2981 struct zonelist *zonelist;
1da177e4
LT
2982
2983 local_node = pgdat->node_id;
1da177e4 2984
54a6eb5c
MG
2985 zonelist = &pgdat->node_zonelists[0];
2986 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
1da177e4 2987
54a6eb5c
MG
2988 /*
2989 * Now we build the zonelist so that it contains the zones
2990 * of all the other nodes.
2991 * We don't want to pressure a particular node, so when
2992 * building the zones for node N, we make sure that the
2993 * zones coming right after the local ones are those from
2994 * node N+1 (modulo N)
2995 */
2996 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2997 if (!node_online(node))
2998 continue;
2999 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3000 MAX_NR_ZONES - 1);
1da177e4 3001 }
54a6eb5c
MG
3002 for (node = 0; node < local_node; node++) {
3003 if (!node_online(node))
3004 continue;
3005 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3006 MAX_NR_ZONES - 1);
3007 }
3008
dd1a239f
MG
3009 zonelist->_zonerefs[j].zone = NULL;
3010 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
3011}
3012
9276b1bc 3013/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
f0c0b2b8 3014static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 3015{
54a6eb5c 3016 pgdat->node_zonelists[0].zlcache_ptr = NULL;
9276b1bc
PJ
3017}
3018
1da177e4
LT
3019#endif /* CONFIG_NUMA */
3020
99dcc3e5
CL
3021/*
3022 * Boot pageset table. One per cpu which is going to be used for all
3023 * zones and all nodes. The parameters will be set in such a way
3024 * that an item put on a list will immediately be handed over to
3025 * the buddy list. This is safe since pageset manipulation is done
3026 * with interrupts disabled.
3027 *
3028 * The boot_pagesets must be kept even after bootup is complete for
3029 * unused processors and/or zones. They do play a role for bootstrapping
3030 * hotplugged processors.
3031 *
3032 * zoneinfo_show() and maybe other functions do
3033 * not check if the processor is online before following the pageset pointer.
3034 * Other parts of the kernel may not check if the zone is available.
3035 */
3036static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3037static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
1f522509 3038static void setup_zone_pageset(struct zone *zone);
99dcc3e5 3039
4eaf3f64
HL
3040/*
3041 * Global mutex to protect against size modification of zonelists
3042 * as well as to serialize pageset setup for the new populated zone.
3043 */
3044DEFINE_MUTEX(zonelists_mutex);
3045
9b1a4d38 3046/* return values int ....just for stop_machine() */
1f522509 3047static __init_refok int __build_all_zonelists(void *data)
1da177e4 3048{
6811378e 3049 int nid;
99dcc3e5 3050 int cpu;
9276b1bc 3051
7f9cfb31
BL
3052#ifdef CONFIG_NUMA
3053 memset(node_load, 0, sizeof(node_load));
3054#endif
9276b1bc 3055 for_each_online_node(nid) {
7ea1530a
CL
3056 pg_data_t *pgdat = NODE_DATA(nid);
3057
3058 build_zonelists(pgdat);
3059 build_zonelist_cache(pgdat);
9276b1bc 3060 }
99dcc3e5
CL
3061
3062 /*
3063 * Initialize the boot_pagesets that are going to be used
3064 * for bootstrapping processors. The real pagesets for
3065 * each zone will be allocated later when the per cpu
3066 * allocator is available.
3067 *
3068 * boot_pagesets are used also for bootstrapping offline
3069 * cpus if the system is already booted because the pagesets
3070 * are needed to initialize allocators on a specific cpu too.
3071 * F.e. the percpu allocator needs the page allocator which
3072 * needs the percpu allocator in order to allocate its pagesets
3073 * (a chicken-egg dilemma).
3074 */
7aac7898 3075 for_each_possible_cpu(cpu) {
99dcc3e5
CL
3076 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3077
7aac7898
LS
3078#ifdef CONFIG_HAVE_MEMORYLESS_NODES
3079 /*
3080 * We now know the "local memory node" for each node--
3081 * i.e., the node of the first zone in the generic zonelist.
3082 * Set up numa_mem percpu variable for on-line cpus. During
3083 * boot, only the boot cpu should be on-line; we'll init the
3084 * secondary cpus' numa_mem as they come on-line. During
3085 * node/memory hotplug, we'll fixup all on-line cpus.
3086 */
3087 if (cpu_online(cpu))
3088 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3089#endif
3090 }
3091
6811378e
YG
3092 return 0;
3093}
3094
4eaf3f64
HL
3095/*
3096 * Called with zonelists_mutex held always
3097 * unless system_state == SYSTEM_BOOTING.
3098 */
1f522509 3099void build_all_zonelists(void *data)
6811378e 3100{
f0c0b2b8
KH
3101 set_zonelist_order();
3102
6811378e 3103 if (system_state == SYSTEM_BOOTING) {
423b41d7 3104 __build_all_zonelists(NULL);
68ad8df4 3105 mminit_verify_zonelist();
6811378e
YG
3106 cpuset_init_current_mems_allowed();
3107 } else {
183ff22b 3108 /* we have to stop all cpus to guarantee there is no user
6811378e 3109 of zonelist */
e9959f0f
KH
3110#ifdef CONFIG_MEMORY_HOTPLUG
3111 if (data)
3112 setup_zone_pageset((struct zone *)data);
3113#endif
3114 stop_machine(__build_all_zonelists, NULL, NULL);
6811378e
YG
3115 /* cpuset refresh routine should be here */
3116 }
bd1e22b8 3117 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
3118 /*
3119 * Disable grouping by mobility if the number of pages in the
3120 * system is too low to allow the mechanism to work. It would be
3121 * more accurate, but expensive to check per-zone. This check is
3122 * made on memory-hotadd so a system can start with mobility
3123 * disabled and enable it later
3124 */
d9c23400 3125 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
3126 page_group_by_mobility_disabled = 1;
3127 else
3128 page_group_by_mobility_disabled = 0;
3129
3130 printk("Built %i zonelists in %s order, mobility grouping %s. "
3131 "Total pages: %ld\n",
62bc62a8 3132 nr_online_nodes,
f0c0b2b8 3133 zonelist_order_name[current_zonelist_order],
9ef9acb0 3134 page_group_by_mobility_disabled ? "off" : "on",
f0c0b2b8
KH
3135 vm_total_pages);
3136#ifdef CONFIG_NUMA
3137 printk("Policy zone: %s\n", zone_names[policy_zone]);
3138#endif
1da177e4
LT
3139}
3140
3141/*
3142 * Helper functions to size the waitqueue hash table.
3143 * Essentially these want to choose hash table sizes sufficiently
3144 * large so that collisions trying to wait on pages are rare.
3145 * But in fact, the number of active page waitqueues on typical
3146 * systems is ridiculously low, less than 200. So this is even
3147 * conservative, even though it seems large.
3148 *
3149 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3150 * waitqueues, i.e. the size of the waitq table given the number of pages.
3151 */
3152#define PAGES_PER_WAITQUEUE 256
3153
cca448fe 3154#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 3155static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
3156{
3157 unsigned long size = 1;
3158
3159 pages /= PAGES_PER_WAITQUEUE;
3160
3161 while (size < pages)
3162 size <<= 1;
3163
3164 /*
3165 * Once we have dozens or even hundreds of threads sleeping
3166 * on IO we've got bigger problems than wait queue collision.
3167 * Limit the size of the wait table to a reasonable size.
3168 */
3169 size = min(size, 4096UL);
3170
3171 return max(size, 4UL);
3172}
cca448fe
YG
3173#else
3174/*
3175 * A zone's size might be changed by hot-add, so it is not possible to determine
3176 * a suitable size for its wait_table. So we use the maximum size now.
3177 *
3178 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3179 *
3180 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3181 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3182 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3183 *
3184 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3185 * or more by the traditional way. (See above). It equals:
3186 *
3187 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3188 * ia64(16K page size) : = ( 8G + 4M)byte.
3189 * powerpc (64K page size) : = (32G +16M)byte.
3190 */
3191static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3192{
3193 return 4096UL;
3194}
3195#endif
1da177e4
LT
3196
3197/*
3198 * This is an integer logarithm so that shifts can be used later
3199 * to extract the more random high bits from the multiplicative
3200 * hash function before the remainder is taken.
3201 */
3202static inline unsigned long wait_table_bits(unsigned long size)
3203{
3204 return ffz(~size);
3205}
3206
3207#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3208
56fd56b8 3209/*
d9c23400 3210 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
41858966
MG
3211 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3212 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
56fd56b8
MG
3213 * higher will lead to a bigger reserve which will get freed as contiguous
3214 * blocks as reclaim kicks in
3215 */
3216static void setup_zone_migrate_reserve(struct zone *zone)
3217{
3218 unsigned long start_pfn, pfn, end_pfn;
3219 struct page *page;
78986a67
MG
3220 unsigned long block_migratetype;
3221 int reserve;
56fd56b8
MG
3222
3223 /* Get the start pfn, end pfn and the number of blocks to reserve */
3224 start_pfn = zone->zone_start_pfn;
3225 end_pfn = start_pfn + zone->spanned_pages;
41858966 3226 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
d9c23400 3227 pageblock_order;
56fd56b8 3228
78986a67
MG
3229 /*
3230 * Reserve blocks are generally in place to help high-order atomic
3231 * allocations that are short-lived. A min_free_kbytes value that
3232 * would result in more than 2 reserve blocks for atomic allocations
3233 * is assumed to be in place to help anti-fragmentation for the
3234 * future allocation of hugepages at runtime.
3235 */
3236 reserve = min(2, reserve);
3237
d9c23400 3238 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
56fd56b8
MG
3239 if (!pfn_valid(pfn))
3240 continue;
3241 page = pfn_to_page(pfn);
3242
344c790e
AL
3243 /* Watch out for overlapping nodes */
3244 if (page_to_nid(page) != zone_to_nid(zone))
3245 continue;
3246
56fd56b8
MG
3247 /* Blocks with reserved pages will never free, skip them. */
3248 if (PageReserved(page))
3249 continue;
3250
3251 block_migratetype = get_pageblock_migratetype(page);
3252
3253 /* If this block is reserved, account for it */
3254 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
3255 reserve--;
3256 continue;
3257 }
3258
3259 /* Suitable for reserving if this block is movable */
3260 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
3261 set_pageblock_migratetype(page, MIGRATE_RESERVE);
3262 move_freepages_block(zone, page, MIGRATE_RESERVE);
3263 reserve--;
3264 continue;
3265 }
3266
3267 /*
3268 * If the reserve is met and this is a previous reserved block,
3269 * take it back
3270 */
3271 if (block_migratetype == MIGRATE_RESERVE) {
3272 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3273 move_freepages_block(zone, page, MIGRATE_MOVABLE);
3274 }
3275 }
3276}
ac0e5b7a 3277
1da177e4
LT
3278/*
3279 * Initially all pages are reserved - free ones are freed
3280 * up by free_all_bootmem() once the early boot process is
3281 * done. Non-atomic initialization, single-pass.
3282 */
c09b4240 3283void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 3284 unsigned long start_pfn, enum memmap_context context)
1da177e4 3285{
1da177e4 3286 struct page *page;
29751f69
AW
3287 unsigned long end_pfn = start_pfn + size;
3288 unsigned long pfn;
86051ca5 3289 struct zone *z;
1da177e4 3290
22b31eec
HD
3291 if (highest_memmap_pfn < end_pfn - 1)
3292 highest_memmap_pfn = end_pfn - 1;
3293
86051ca5 3294 z = &NODE_DATA(nid)->node_zones[zone];
cbe8dd4a 3295 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02
DH
3296 /*
3297 * There can be holes in boot-time mem_map[]s
3298 * handed to this function. They do not
3299 * exist on hotplugged memory.
3300 */
3301 if (context == MEMMAP_EARLY) {
3302 if (!early_pfn_valid(pfn))
3303 continue;
3304 if (!early_pfn_in_nid(pfn, nid))
3305 continue;
3306 }
d41dee36
AW
3307 page = pfn_to_page(pfn);
3308 set_page_links(page, zone, nid, pfn);
708614e6 3309 mminit_verify_page_links(page, zone, nid, pfn);
7835e98b 3310 init_page_count(page);
1da177e4
LT
3311 reset_page_mapcount(page);
3312 SetPageReserved(page);
b2a0ac88
MG
3313 /*
3314 * Mark the block movable so that blocks are reserved for
3315 * movable at startup. This will force kernel allocations
3316 * to reserve their blocks rather than leaking throughout
3317 * the address space during boot when many long-lived
56fd56b8
MG
3318 * kernel allocations are made. Later some blocks near
3319 * the start are marked MIGRATE_RESERVE by
3320 * setup_zone_migrate_reserve()
86051ca5
KH
3321 *
3322 * bitmap is created for zone's valid pfn range. but memmap
3323 * can be created for invalid pages (for alignment)
3324 * check here not to call set_pageblock_migratetype() against
3325 * pfn out of zone.
b2a0ac88 3326 */
86051ca5
KH
3327 if ((z->zone_start_pfn <= pfn)
3328 && (pfn < z->zone_start_pfn + z->spanned_pages)
3329 && !(pfn & (pageblock_nr_pages - 1)))
56fd56b8 3330 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
b2a0ac88 3331
1da177e4
LT
3332 INIT_LIST_HEAD(&page->lru);
3333#ifdef WANT_PAGE_VIRTUAL
3334 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
3335 if (!is_highmem_idx(zone))
3212c6be 3336 set_page_address(page, __va(pfn << PAGE_SHIFT));
1da177e4 3337#endif
1da177e4
LT
3338 }
3339}
3340
1e548deb 3341static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 3342{
b2a0ac88
MG
3343 int order, t;
3344 for_each_migratetype_order(order, t) {
3345 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
3346 zone->free_area[order].nr_free = 0;
3347 }
3348}
3349
3350#ifndef __HAVE_ARCH_MEMMAP_INIT
3351#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 3352 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
3353#endif
3354
1d6f4e60 3355static int zone_batchsize(struct zone *zone)
e7c8d5c9 3356{
3a6be87f 3357#ifdef CONFIG_MMU
e7c8d5c9
CL
3358 int batch;
3359
3360 /*
3361 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 3362 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
3363 *
3364 * OK, so we don't know how big the cache is. So guess.
3365 */
3366 batch = zone->present_pages / 1024;
ba56e91c
SR
3367 if (batch * PAGE_SIZE > 512 * 1024)
3368 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
3369 batch /= 4; /* We effectively *= 4 below */
3370 if (batch < 1)
3371 batch = 1;
3372
3373 /*
0ceaacc9
NP
3374 * Clamp the batch to a 2^n - 1 value. Having a power
3375 * of 2 value was found to be more likely to have
3376 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 3377 *
0ceaacc9
NP
3378 * For example if 2 tasks are alternately allocating
3379 * batches of pages, one task can end up with a lot
3380 * of pages of one half of the possible page colors
3381 * and the other with pages of the other colors.
e7c8d5c9 3382 */
9155203a 3383 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 3384
e7c8d5c9 3385 return batch;
3a6be87f
DH
3386
3387#else
3388 /* The deferral and batching of frees should be suppressed under NOMMU
3389 * conditions.
3390 *
3391 * The problem is that NOMMU needs to be able to allocate large chunks
3392 * of contiguous memory as there's no hardware page translation to
3393 * assemble apparent contiguous memory from discontiguous pages.
3394 *
3395 * Queueing large contiguous runs of pages for batching, however,
3396 * causes the pages to actually be freed in smaller chunks. As there
3397 * can be a significant delay between the individual batches being
3398 * recycled, this leads to the once large chunks of space being
3399 * fragmented and becoming unavailable for high-order allocations.
3400 */
3401 return 0;
3402#endif
e7c8d5c9
CL
3403}
3404
b69a7288 3405static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2caaad41
CL
3406{
3407 struct per_cpu_pages *pcp;
5f8dcc21 3408 int migratetype;
2caaad41 3409
1c6fe946
MD
3410 memset(p, 0, sizeof(*p));
3411
3dfa5721 3412 pcp = &p->pcp;
2caaad41 3413 pcp->count = 0;
2caaad41
CL
3414 pcp->high = 6 * batch;
3415 pcp->batch = max(1UL, 1 * batch);
5f8dcc21
MG
3416 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
3417 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
3418}
3419
8ad4b1fb
RS
3420/*
3421 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3422 * to the value high for the pageset p.
3423 */
3424
3425static void setup_pagelist_highmark(struct per_cpu_pageset *p,
3426 unsigned long high)
3427{
3428 struct per_cpu_pages *pcp;
3429
3dfa5721 3430 pcp = &p->pcp;
8ad4b1fb
RS
3431 pcp->high = high;
3432 pcp->batch = max(1UL, high/4);
3433 if ((high/4) > (PAGE_SHIFT * 8))
3434 pcp->batch = PAGE_SHIFT * 8;
3435}
3436
319774e2
WF
3437static __meminit void setup_zone_pageset(struct zone *zone)
3438{
3439 int cpu;
3440
3441 zone->pageset = alloc_percpu(struct per_cpu_pageset);
3442
3443 for_each_possible_cpu(cpu) {
3444 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
3445
3446 setup_pageset(pcp, zone_batchsize(zone));
3447
3448 if (percpu_pagelist_fraction)
3449 setup_pagelist_highmark(pcp,
3450 (zone->present_pages /
3451 percpu_pagelist_fraction));
3452 }
3453}
3454
2caaad41 3455/*
99dcc3e5
CL
3456 * Allocate per cpu pagesets and initialize them.
3457 * Before this call only boot pagesets were available.
e7c8d5c9 3458 */
99dcc3e5 3459void __init setup_per_cpu_pageset(void)
e7c8d5c9 3460{
99dcc3e5 3461 struct zone *zone;
e7c8d5c9 3462
319774e2
WF
3463 for_each_populated_zone(zone)
3464 setup_zone_pageset(zone);
e7c8d5c9
CL
3465}
3466
577a32f6 3467static noinline __init_refok
cca448fe 3468int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
3469{
3470 int i;
3471 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe 3472 size_t alloc_size;
ed8ece2e
DH
3473
3474 /*
3475 * The per-page waitqueue mechanism uses hashed waitqueues
3476 * per zone.
3477 */
02b694de
YG
3478 zone->wait_table_hash_nr_entries =
3479 wait_table_hash_nr_entries(zone_size_pages);
3480 zone->wait_table_bits =
3481 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
3482 alloc_size = zone->wait_table_hash_nr_entries
3483 * sizeof(wait_queue_head_t);
3484
cd94b9db 3485 if (!slab_is_available()) {
cca448fe
YG
3486 zone->wait_table = (wait_queue_head_t *)
3487 alloc_bootmem_node(pgdat, alloc_size);
3488 } else {
3489 /*
3490 * This case means that a zone whose size was 0 gets new memory
3491 * via memory hot-add.
3492 * But it may be the case that a new node was hot-added. In
3493 * this case vmalloc() will not be able to use this new node's
3494 * memory - this wait_table must be initialized to use this new
3495 * node itself as well.
3496 * To use this new node's memory, further consideration will be
3497 * necessary.
3498 */
8691f3a7 3499 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
3500 }
3501 if (!zone->wait_table)
3502 return -ENOMEM;
ed8ece2e 3503
02b694de 3504 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 3505 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
3506
3507 return 0;
ed8ece2e
DH
3508}
3509
112067f0
SL
3510static int __zone_pcp_update(void *data)
3511{
3512 struct zone *zone = data;
3513 int cpu;
3514 unsigned long batch = zone_batchsize(zone), flags;
3515
2d30a1f6 3516 for_each_possible_cpu(cpu) {
112067f0
SL
3517 struct per_cpu_pageset *pset;
3518 struct per_cpu_pages *pcp;
3519
99dcc3e5 3520 pset = per_cpu_ptr(zone->pageset, cpu);
112067f0
SL
3521 pcp = &pset->pcp;
3522
3523 local_irq_save(flags);
5f8dcc21 3524 free_pcppages_bulk(zone, pcp->count, pcp);
112067f0
SL
3525 setup_pageset(pset, batch);
3526 local_irq_restore(flags);
3527 }
3528 return 0;
3529}
3530
3531void zone_pcp_update(struct zone *zone)
3532{
3533 stop_machine(__zone_pcp_update, zone, NULL);
3534}
3535
c09b4240 3536static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 3537{
99dcc3e5
CL
3538 /*
3539 * per cpu subsystem is not up at this point. The following code
3540 * relies on the ability of the linker to provide the
3541 * offset of a (static) per cpu variable into the per cpu area.
3542 */
3543 zone->pageset = &boot_pageset;
ed8ece2e 3544
f5335c0f 3545 if (zone->present_pages)
99dcc3e5
CL
3546 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
3547 zone->name, zone->present_pages,
3548 zone_batchsize(zone));
ed8ece2e
DH
3549}
3550
718127cc
YG
3551__meminit int init_currently_empty_zone(struct zone *zone,
3552 unsigned long zone_start_pfn,
a2f3aa02
DH
3553 unsigned long size,
3554 enum memmap_context context)
ed8ece2e
DH
3555{
3556 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
3557 int ret;
3558 ret = zone_wait_table_init(zone, size);
3559 if (ret)
3560 return ret;
ed8ece2e
DH
3561 pgdat->nr_zones = zone_idx(zone) + 1;
3562
ed8ece2e
DH
3563 zone->zone_start_pfn = zone_start_pfn;
3564
708614e6
MG
3565 mminit_dprintk(MMINIT_TRACE, "memmap_init",
3566 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
3567 pgdat->node_id,
3568 (unsigned long)zone_idx(zone),
3569 zone_start_pfn, (zone_start_pfn + size));
3570
1e548deb 3571 zone_init_free_lists(zone);
718127cc
YG
3572
3573 return 0;
ed8ece2e
DH
3574}
3575
c713216d
MG
3576#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3577/*
3578 * Basic iterator support. Return the first range of PFNs for a node
3579 * Note: nid == MAX_NUMNODES returns first region regardless of node
3580 */
a3142c8e 3581static int __meminit first_active_region_index_in_nid(int nid)
c713216d
MG
3582{
3583 int i;
3584
3585 for (i = 0; i < nr_nodemap_entries; i++)
3586 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
3587 return i;
3588
3589 return -1;
3590}
3591
3592/*
3593 * Basic iterator support. Return the next active range of PFNs for a node
183ff22b 3594 * Note: nid == MAX_NUMNODES returns next region regardless of node
c713216d 3595 */
a3142c8e 3596static int __meminit next_active_region_index_in_nid(int index, int nid)
c713216d
MG
3597{
3598 for (index = index + 1; index < nr_nodemap_entries; index++)
3599 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
3600 return index;
3601
3602 return -1;
3603}
3604
3605#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3606/*
3607 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3608 * Architectures may implement their own version but if add_active_range()
3609 * was used and there are no special requirements, this is a convenient
3610 * alternative
3611 */
f2dbcfa7 3612int __meminit __early_pfn_to_nid(unsigned long pfn)
c713216d
MG
3613{
3614 int i;
3615
3616 for (i = 0; i < nr_nodemap_entries; i++) {
3617 unsigned long start_pfn = early_node_map[i].start_pfn;
3618 unsigned long end_pfn = early_node_map[i].end_pfn;
3619
3620 if (start_pfn <= pfn && pfn < end_pfn)
3621 return early_node_map[i].nid;
3622 }
cc2559bc
KH
3623 /* This is a memory hole */
3624 return -1;
c713216d
MG
3625}
3626#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3627
f2dbcfa7
KH
3628int __meminit early_pfn_to_nid(unsigned long pfn)
3629{
cc2559bc
KH
3630 int nid;
3631
3632 nid = __early_pfn_to_nid(pfn);
3633 if (nid >= 0)
3634 return nid;
3635 /* just returns 0 */
3636 return 0;
f2dbcfa7
KH
3637}
3638
cc2559bc
KH
3639#ifdef CONFIG_NODES_SPAN_OTHER_NODES
3640bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3641{
3642 int nid;
3643
3644 nid = __early_pfn_to_nid(pfn);
3645 if (nid >= 0 && nid != node)
3646 return false;
3647 return true;
3648}
3649#endif
f2dbcfa7 3650
c713216d
MG
3651/* Basic iterator support to walk early_node_map[] */
3652#define for_each_active_range_index_in_nid(i, nid) \
3653 for (i = first_active_region_index_in_nid(nid); i != -1; \
3654 i = next_active_region_index_in_nid(i, nid))
3655
3656/**
3657 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
88ca3b94
RD
3658 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3659 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
c713216d
MG
3660 *
3661 * If an architecture guarantees that all ranges registered with
3662 * add_active_ranges() contain no holes and may be freed, this
3663 * this function may be used instead of calling free_bootmem() manually.
3664 */
3665void __init free_bootmem_with_active_regions(int nid,
3666 unsigned long max_low_pfn)
3667{
3668 int i;
3669
3670 for_each_active_range_index_in_nid(i, nid) {
3671 unsigned long size_pages = 0;
3672 unsigned long end_pfn = early_node_map[i].end_pfn;
3673
3674 if (early_node_map[i].start_pfn >= max_low_pfn)
3675 continue;
3676
3677 if (end_pfn > max_low_pfn)
3678 end_pfn = max_low_pfn;
3679
3680 size_pages = end_pfn - early_node_map[i].start_pfn;
3681 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
3682 PFN_PHYS(early_node_map[i].start_pfn),
3683 size_pages << PAGE_SHIFT);
3684 }
3685}
3686
edbe7d23
YL
3687#ifdef CONFIG_HAVE_MEMBLOCK
3688u64 __init find_memory_core_early(int nid, u64 size, u64 align,
3689 u64 goal, u64 limit)
3690{
3691 int i;
3692
3693 /* Need to go over early_node_map to find out good range for node */
3694 for_each_active_range_index_in_nid(i, nid) {
3695 u64 addr;
3696 u64 ei_start, ei_last;
3697 u64 final_start, final_end;
3698
3699 ei_last = early_node_map[i].end_pfn;
3700 ei_last <<= PAGE_SHIFT;
3701 ei_start = early_node_map[i].start_pfn;
3702 ei_start <<= PAGE_SHIFT;
3703
3704 final_start = max(ei_start, goal);
3705 final_end = min(ei_last, limit);
3706
3707 if (final_start >= final_end)
3708 continue;
3709
3710 addr = memblock_find_in_range(final_start, final_end, size, align);
3711
3712 if (addr == MEMBLOCK_ERROR)
3713 continue;
3714
3715 return addr;
3716 }
3717
3718 return MEMBLOCK_ERROR;
3719}
3720#endif
3721
08677214
YL
3722int __init add_from_early_node_map(struct range *range, int az,
3723 int nr_range, int nid)
3724{
3725 int i;
3726 u64 start, end;
3727
3728 /* need to go over early_node_map to find out good range for node */
3729 for_each_active_range_index_in_nid(i, nid) {
3730 start = early_node_map[i].start_pfn;
3731 end = early_node_map[i].end_pfn;
3732 nr_range = add_range(range, az, nr_range, start, end);
3733 }
3734 return nr_range;
3735}
3736
2ee78f7b 3737#ifdef CONFIG_NO_BOOTMEM
08677214
YL
3738void * __init __alloc_memory_core_early(int nid, u64 size, u64 align,
3739 u64 goal, u64 limit)
3740{
08677214 3741 void *ptr;
72d7c3b3 3742 u64 addr;
08677214 3743
72d7c3b3
YL
3744 if (limit > memblock.current_limit)
3745 limit = memblock.current_limit;
b8ab9f82 3746
72d7c3b3 3747 addr = find_memory_core_early(nid, size, align, goal, limit);
08677214 3748
72d7c3b3
YL
3749 if (addr == MEMBLOCK_ERROR)
3750 return NULL;
08677214 3751
72d7c3b3
YL
3752 ptr = phys_to_virt(addr);
3753 memset(ptr, 0, size);
3754 memblock_x86_reserve_range(addr, addr + size, "BOOTMEM");
3755 /*
3756 * The min_count is set to 0 so that bootmem allocated blocks
3757 * are never reported as leaks.
3758 */
3759 kmemleak_alloc(ptr, size, 0, 0);
3760 return ptr;
08677214 3761}
2ee78f7b 3762#endif
08677214
YL
3763
3764
b5bc6c0e
YL
3765void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
3766{
3767 int i;
d52d53b8 3768 int ret;
b5bc6c0e 3769
d52d53b8
YL
3770 for_each_active_range_index_in_nid(i, nid) {
3771 ret = work_fn(early_node_map[i].start_pfn,
3772 early_node_map[i].end_pfn, data);
3773 if (ret)
3774 break;
3775 }
b5bc6c0e 3776}
c713216d
MG
3777/**
3778 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 3779 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d
MG
3780 *
3781 * If an architecture guarantees that all ranges registered with
3782 * add_active_ranges() contain no holes and may be freed, this
88ca3b94 3783 * function may be used instead of calling memory_present() manually.
c713216d
MG
3784 */
3785void __init sparse_memory_present_with_active_regions(int nid)
3786{
3787 int i;
3788
3789 for_each_active_range_index_in_nid(i, nid)
3790 memory_present(early_node_map[i].nid,
3791 early_node_map[i].start_pfn,
3792 early_node_map[i].end_pfn);
3793}
3794
3795/**
3796 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
3797 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3798 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3799 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
3800 *
3801 * It returns the start and end page frame of a node based on information
3802 * provided by an arch calling add_active_range(). If called for a node
3803 * with no available memory, a warning is printed and the start and end
88ca3b94 3804 * PFNs will be 0.
c713216d 3805 */
a3142c8e 3806void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
3807 unsigned long *start_pfn, unsigned long *end_pfn)
3808{
3809 int i;
3810 *start_pfn = -1UL;
3811 *end_pfn = 0;
3812
3813 for_each_active_range_index_in_nid(i, nid) {
3814 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3815 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3816 }
3817
633c0666 3818 if (*start_pfn == -1UL)
c713216d 3819 *start_pfn = 0;
c713216d
MG
3820}
3821
2a1e274a
MG
3822/*
3823 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3824 * assumption is made that zones within a node are ordered in monotonic
3825 * increasing memory addresses so that the "highest" populated zone is used
3826 */
b69a7288 3827static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
3828{
3829 int zone_index;
3830 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3831 if (zone_index == ZONE_MOVABLE)
3832 continue;
3833
3834 if (arch_zone_highest_possible_pfn[zone_index] >
3835 arch_zone_lowest_possible_pfn[zone_index])
3836 break;
3837 }
3838
3839 VM_BUG_ON(zone_index == -1);
3840 movable_zone = zone_index;
3841}
3842
3843/*
3844 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3845 * because it is sized independant of architecture. Unlike the other zones,
3846 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3847 * in each node depending on the size of each node and how evenly kernelcore
3848 * is distributed. This helper function adjusts the zone ranges
3849 * provided by the architecture for a given node by using the end of the
3850 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3851 * zones within a node are in order of monotonic increases memory addresses
3852 */
b69a7288 3853static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
3854 unsigned long zone_type,
3855 unsigned long node_start_pfn,
3856 unsigned long node_end_pfn,
3857 unsigned long *zone_start_pfn,
3858 unsigned long *zone_end_pfn)
3859{
3860 /* Only adjust if ZONE_MOVABLE is on this node */
3861 if (zone_movable_pfn[nid]) {
3862 /* Size ZONE_MOVABLE */
3863 if (zone_type == ZONE_MOVABLE) {
3864 *zone_start_pfn = zone_movable_pfn[nid];
3865 *zone_end_pfn = min(node_end_pfn,
3866 arch_zone_highest_possible_pfn[movable_zone]);
3867
3868 /* Adjust for ZONE_MOVABLE starting within this range */
3869 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3870 *zone_end_pfn > zone_movable_pfn[nid]) {
3871 *zone_end_pfn = zone_movable_pfn[nid];
3872
3873 /* Check if this whole range is within ZONE_MOVABLE */
3874 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
3875 *zone_start_pfn = *zone_end_pfn;
3876 }
3877}
3878
c713216d
MG
3879/*
3880 * Return the number of pages a zone spans in a node, including holes
3881 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3882 */
6ea6e688 3883static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
3884 unsigned long zone_type,
3885 unsigned long *ignored)
3886{
3887 unsigned long node_start_pfn, node_end_pfn;
3888 unsigned long zone_start_pfn, zone_end_pfn;
3889
3890 /* Get the start and end of the node and zone */
3891 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3892 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3893 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
3894 adjust_zone_range_for_zone_movable(nid, zone_type,
3895 node_start_pfn, node_end_pfn,
3896 &zone_start_pfn, &zone_end_pfn);
c713216d
MG
3897
3898 /* Check that this node has pages within the zone's required range */
3899 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3900 return 0;
3901
3902 /* Move the zone boundaries inside the node if necessary */
3903 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3904 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3905
3906 /* Return the spanned pages */
3907 return zone_end_pfn - zone_start_pfn;
3908}
3909
3910/*
3911 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 3912 * then all holes in the requested range will be accounted for.
c713216d 3913 */
32996250 3914unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
3915 unsigned long range_start_pfn,
3916 unsigned long range_end_pfn)
3917{
3918 int i = 0;
3919 unsigned long prev_end_pfn = 0, hole_pages = 0;
3920 unsigned long start_pfn;
3921
3922 /* Find the end_pfn of the first active range of pfns in the node */
3923 i = first_active_region_index_in_nid(nid);
3924 if (i == -1)
3925 return 0;
3926
b5445f95
MG
3927 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3928
9c7cd687
MG
3929 /* Account for ranges before physical memory on this node */
3930 if (early_node_map[i].start_pfn > range_start_pfn)
b5445f95 3931 hole_pages = prev_end_pfn - range_start_pfn;
c713216d
MG
3932
3933 /* Find all holes for the zone within the node */
3934 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3935
3936 /* No need to continue if prev_end_pfn is outside the zone */
3937 if (prev_end_pfn >= range_end_pfn)
3938 break;
3939
3940 /* Make sure the end of the zone is not within the hole */
3941 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3942 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3943
3944 /* Update the hole size cound and move on */
3945 if (start_pfn > range_start_pfn) {
3946 BUG_ON(prev_end_pfn > start_pfn);
3947 hole_pages += start_pfn - prev_end_pfn;
3948 }
3949 prev_end_pfn = early_node_map[i].end_pfn;
3950 }
3951
9c7cd687
MG
3952 /* Account for ranges past physical memory on this node */
3953 if (range_end_pfn > prev_end_pfn)
0c6cb974 3954 hole_pages += range_end_pfn -
9c7cd687
MG
3955 max(range_start_pfn, prev_end_pfn);
3956
c713216d
MG
3957 return hole_pages;
3958}
3959
3960/**
3961 * absent_pages_in_range - Return number of page frames in holes within a range
3962 * @start_pfn: The start PFN to start searching for holes
3963 * @end_pfn: The end PFN to stop searching for holes
3964 *
88ca3b94 3965 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
3966 */
3967unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3968 unsigned long end_pfn)
3969{
3970 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3971}
3972
3973/* Return the number of page frames in holes in a zone on a node */
6ea6e688 3974static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
3975 unsigned long zone_type,
3976 unsigned long *ignored)
3977{
9c7cd687
MG
3978 unsigned long node_start_pfn, node_end_pfn;
3979 unsigned long zone_start_pfn, zone_end_pfn;
3980
3981 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3982 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3983 node_start_pfn);
3984 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3985 node_end_pfn);
3986
2a1e274a
MG
3987 adjust_zone_range_for_zone_movable(nid, zone_type,
3988 node_start_pfn, node_end_pfn,
3989 &zone_start_pfn, &zone_end_pfn);
9c7cd687 3990 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
c713216d 3991}
0e0b864e 3992
c713216d 3993#else
6ea6e688 3994static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
3995 unsigned long zone_type,
3996 unsigned long *zones_size)
3997{
3998 return zones_size[zone_type];
3999}
4000
6ea6e688 4001static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
4002 unsigned long zone_type,
4003 unsigned long *zholes_size)
4004{
4005 if (!zholes_size)
4006 return 0;
4007
4008 return zholes_size[zone_type];
4009}
0e0b864e 4010
c713216d
MG
4011#endif
4012
a3142c8e 4013static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
c713216d
MG
4014 unsigned long *zones_size, unsigned long *zholes_size)
4015{
4016 unsigned long realtotalpages, totalpages = 0;
4017 enum zone_type i;
4018
4019 for (i = 0; i < MAX_NR_ZONES; i++)
4020 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4021 zones_size);
4022 pgdat->node_spanned_pages = totalpages;
4023
4024 realtotalpages = totalpages;
4025 for (i = 0; i < MAX_NR_ZONES; i++)
4026 realtotalpages -=
4027 zone_absent_pages_in_node(pgdat->node_id, i,
4028 zholes_size);
4029 pgdat->node_present_pages = realtotalpages;
4030 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4031 realtotalpages);
4032}
4033
835c134e
MG
4034#ifndef CONFIG_SPARSEMEM
4035/*
4036 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
4037 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4038 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
4039 * round what is now in bits to nearest long in bits, then return it in
4040 * bytes.
4041 */
4042static unsigned long __init usemap_size(unsigned long zonesize)
4043{
4044 unsigned long usemapsize;
4045
d9c23400
MG
4046 usemapsize = roundup(zonesize, pageblock_nr_pages);
4047 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
4048 usemapsize *= NR_PAGEBLOCK_BITS;
4049 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4050
4051 return usemapsize / 8;
4052}
4053
4054static void __init setup_usemap(struct pglist_data *pgdat,
4055 struct zone *zone, unsigned long zonesize)
4056{
4057 unsigned long usemapsize = usemap_size(zonesize);
4058 zone->pageblock_flags = NULL;
58a01a45 4059 if (usemapsize)
835c134e 4060 zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
835c134e
MG
4061}
4062#else
fa9f90be 4063static inline void setup_usemap(struct pglist_data *pgdat,
835c134e
MG
4064 struct zone *zone, unsigned long zonesize) {}
4065#endif /* CONFIG_SPARSEMEM */
4066
d9c23400 4067#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c
MG
4068
4069/* Return a sensible default order for the pageblock size. */
4070static inline int pageblock_default_order(void)
4071{
4072 if (HPAGE_SHIFT > PAGE_SHIFT)
4073 return HUGETLB_PAGE_ORDER;
4074
4075 return MAX_ORDER-1;
4076}
4077
d9c23400
MG
4078/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4079static inline void __init set_pageblock_order(unsigned int order)
4080{
4081 /* Check that pageblock_nr_pages has not already been setup */
4082 if (pageblock_order)
4083 return;
4084
4085 /*
4086 * Assume the largest contiguous order of interest is a huge page.
4087 * This value may be variable depending on boot parameters on IA64
4088 */
4089 pageblock_order = order;
4090}
4091#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4092
ba72cb8c
MG
4093/*
4094 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4095 * and pageblock_default_order() are unused as pageblock_order is set
4096 * at compile-time. See include/linux/pageblock-flags.h for the values of
4097 * pageblock_order based on the kernel config
4098 */
4099static inline int pageblock_default_order(unsigned int order)
4100{
4101 return MAX_ORDER-1;
4102}
d9c23400
MG
4103#define set_pageblock_order(x) do {} while (0)
4104
4105#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4106
1da177e4
LT
4107/*
4108 * Set up the zone data structures:
4109 * - mark all pages reserved
4110 * - mark all memory queues empty
4111 * - clear the memory bitmaps
4112 */
b5a0e011 4113static void __paginginit free_area_init_core(struct pglist_data *pgdat,
1da177e4
LT
4114 unsigned long *zones_size, unsigned long *zholes_size)
4115{
2f1b6248 4116 enum zone_type j;
ed8ece2e 4117 int nid = pgdat->node_id;
1da177e4 4118 unsigned long zone_start_pfn = pgdat->node_start_pfn;
718127cc 4119 int ret;
1da177e4 4120
208d54e5 4121 pgdat_resize_init(pgdat);
1da177e4
LT
4122 pgdat->nr_zones = 0;
4123 init_waitqueue_head(&pgdat->kswapd_wait);
4124 pgdat->kswapd_max_order = 0;
52d4b9ac 4125 pgdat_page_cgroup_init(pgdat);
1da177e4
LT
4126
4127 for (j = 0; j < MAX_NR_ZONES; j++) {
4128 struct zone *zone = pgdat->node_zones + j;
0e0b864e 4129 unsigned long size, realsize, memmap_pages;
b69408e8 4130 enum lru_list l;
1da177e4 4131
c713216d
MG
4132 size = zone_spanned_pages_in_node(nid, j, zones_size);
4133 realsize = size - zone_absent_pages_in_node(nid, j,
4134 zholes_size);
1da177e4 4135
0e0b864e
MG
4136 /*
4137 * Adjust realsize so that it accounts for how much memory
4138 * is used by this zone for memmap. This affects the watermark
4139 * and per-cpu initialisations
4140 */
f7232154
JW
4141 memmap_pages =
4142 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
0e0b864e
MG
4143 if (realsize >= memmap_pages) {
4144 realsize -= memmap_pages;
5594c8c8
YL
4145 if (memmap_pages)
4146 printk(KERN_DEBUG
4147 " %s zone: %lu pages used for memmap\n",
4148 zone_names[j], memmap_pages);
0e0b864e
MG
4149 } else
4150 printk(KERN_WARNING
4151 " %s zone: %lu pages exceeds realsize %lu\n",
4152 zone_names[j], memmap_pages, realsize);
4153
6267276f
CL
4154 /* Account for reserved pages */
4155 if (j == 0 && realsize > dma_reserve) {
0e0b864e 4156 realsize -= dma_reserve;
d903ef9f 4157 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 4158 zone_names[0], dma_reserve);
0e0b864e
MG
4159 }
4160
98d2b0eb 4161 if (!is_highmem_idx(j))
1da177e4
LT
4162 nr_kernel_pages += realsize;
4163 nr_all_pages += realsize;
4164
4165 zone->spanned_pages = size;
4166 zone->present_pages = realsize;
9614634f 4167#ifdef CONFIG_NUMA
d5f541ed 4168 zone->node = nid;
8417bba4 4169 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
9614634f 4170 / 100;
0ff38490 4171 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
9614634f 4172#endif
1da177e4
LT
4173 zone->name = zone_names[j];
4174 spin_lock_init(&zone->lock);
4175 spin_lock_init(&zone->lru_lock);
bdc8cb98 4176 zone_seqlock_init(zone);
1da177e4 4177 zone->zone_pgdat = pgdat;
1da177e4 4178
ed8ece2e 4179 zone_pcp_init(zone);
b69408e8
CL
4180 for_each_lru(l) {
4181 INIT_LIST_HEAD(&zone->lru[l].list);
f8629631 4182 zone->reclaim_stat.nr_saved_scan[l] = 0;
b69408e8 4183 }
6e901571
KM
4184 zone->reclaim_stat.recent_rotated[0] = 0;
4185 zone->reclaim_stat.recent_rotated[1] = 0;
4186 zone->reclaim_stat.recent_scanned[0] = 0;
4187 zone->reclaim_stat.recent_scanned[1] = 0;
2244b95a 4188 zap_zone_vm_stats(zone);
e815af95 4189 zone->flags = 0;
1da177e4
LT
4190 if (!size)
4191 continue;
4192
ba72cb8c 4193 set_pageblock_order(pageblock_default_order());
835c134e 4194 setup_usemap(pgdat, zone, size);
a2f3aa02
DH
4195 ret = init_currently_empty_zone(zone, zone_start_pfn,
4196 size, MEMMAP_EARLY);
718127cc 4197 BUG_ON(ret);
76cdd58e 4198 memmap_init(size, nid, j, zone_start_pfn);
1da177e4 4199 zone_start_pfn += size;
1da177e4
LT
4200 }
4201}
4202
577a32f6 4203static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 4204{
1da177e4
LT
4205 /* Skip empty nodes */
4206 if (!pgdat->node_spanned_pages)
4207 return;
4208
d41dee36 4209#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4
LT
4210 /* ia64 gets its own node_mem_map, before this, without bootmem */
4211 if (!pgdat->node_mem_map) {
e984bb43 4212 unsigned long size, start, end;
d41dee36
AW
4213 struct page *map;
4214
e984bb43
BP
4215 /*
4216 * The zone's endpoints aren't required to be MAX_ORDER
4217 * aligned but the node_mem_map endpoints must be in order
4218 * for the buddy allocator to function correctly.
4219 */
4220 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4221 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
4222 end = ALIGN(end, MAX_ORDER_NR_PAGES);
4223 size = (end - start) * sizeof(struct page);
6f167ec7
DH
4224 map = alloc_remap(pgdat->node_id, size);
4225 if (!map)
4226 map = alloc_bootmem_node(pgdat, size);
e984bb43 4227 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
1da177e4 4228 }
12d810c1 4229#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
4230 /*
4231 * With no DISCONTIG, the global mem_map is just set as node 0's
4232 */
c713216d 4233 if (pgdat == NODE_DATA(0)) {
1da177e4 4234 mem_map = NODE_DATA(0)->node_mem_map;
c713216d
MG
4235#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
4236 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
467bc461 4237 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
c713216d
MG
4238#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4239 }
1da177e4 4240#endif
d41dee36 4241#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
4242}
4243
9109fb7b
JW
4244void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4245 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 4246{
9109fb7b
JW
4247 pg_data_t *pgdat = NODE_DATA(nid);
4248
1da177e4
LT
4249 pgdat->node_id = nid;
4250 pgdat->node_start_pfn = node_start_pfn;
c713216d 4251 calculate_node_totalpages(pgdat, zones_size, zholes_size);
1da177e4
LT
4252
4253 alloc_node_mem_map(pgdat);
e8c27ac9
YL
4254#ifdef CONFIG_FLAT_NODE_MEM_MAP
4255 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4256 nid, (unsigned long)pgdat,
4257 (unsigned long)pgdat->node_mem_map);
4258#endif
1da177e4
LT
4259
4260 free_area_init_core(pgdat, zones_size, zholes_size);
4261}
4262
c713216d 4263#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
418508c1
MS
4264
4265#if MAX_NUMNODES > 1
4266/*
4267 * Figure out the number of possible node ids.
4268 */
4269static void __init setup_nr_node_ids(void)
4270{
4271 unsigned int node;
4272 unsigned int highest = 0;
4273
4274 for_each_node_mask(node, node_possible_map)
4275 highest = node;
4276 nr_node_ids = highest + 1;
4277}
4278#else
4279static inline void setup_nr_node_ids(void)
4280{
4281}
4282#endif
4283
c713216d
MG
4284/**
4285 * add_active_range - Register a range of PFNs backed by physical memory
4286 * @nid: The node ID the range resides on
4287 * @start_pfn: The start PFN of the available physical memory
4288 * @end_pfn: The end PFN of the available physical memory
4289 *
4290 * These ranges are stored in an early_node_map[] and later used by
4291 * free_area_init_nodes() to calculate zone sizes and holes. If the
4292 * range spans a memory hole, it is up to the architecture to ensure
4293 * the memory is not freed by the bootmem allocator. If possible
4294 * the range being registered will be merged with existing ranges.
4295 */
4296void __init add_active_range(unsigned int nid, unsigned long start_pfn,
4297 unsigned long end_pfn)
4298{
4299 int i;
4300
6b74ab97
MG
4301 mminit_dprintk(MMINIT_TRACE, "memory_register",
4302 "Entering add_active_range(%d, %#lx, %#lx) "
4303 "%d entries of %d used\n",
4304 nid, start_pfn, end_pfn,
4305 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
c713216d 4306
2dbb51c4
MG
4307 mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
4308
c713216d
MG
4309 /* Merge with existing active regions if possible */
4310 for (i = 0; i < nr_nodemap_entries; i++) {
4311 if (early_node_map[i].nid != nid)
4312 continue;
4313
4314 /* Skip if an existing region covers this new one */
4315 if (start_pfn >= early_node_map[i].start_pfn &&
4316 end_pfn <= early_node_map[i].end_pfn)
4317 return;
4318
4319 /* Merge forward if suitable */
4320 if (start_pfn <= early_node_map[i].end_pfn &&
4321 end_pfn > early_node_map[i].end_pfn) {
4322 early_node_map[i].end_pfn = end_pfn;
4323 return;
4324 }
4325
4326 /* Merge backward if suitable */
d2dbe08d 4327 if (start_pfn < early_node_map[i].start_pfn &&
c713216d
MG
4328 end_pfn >= early_node_map[i].start_pfn) {
4329 early_node_map[i].start_pfn = start_pfn;
4330 return;
4331 }
4332 }
4333
4334 /* Check that early_node_map is large enough */
4335 if (i >= MAX_ACTIVE_REGIONS) {
4336 printk(KERN_CRIT "More than %d memory regions, truncating\n",
4337 MAX_ACTIVE_REGIONS);
4338 return;
4339 }
4340
4341 early_node_map[i].nid = nid;
4342 early_node_map[i].start_pfn = start_pfn;
4343 early_node_map[i].end_pfn = end_pfn;
4344 nr_nodemap_entries = i + 1;
4345}
4346
4347/**
cc1050ba 4348 * remove_active_range - Shrink an existing registered range of PFNs
c713216d 4349 * @nid: The node id the range is on that should be shrunk
cc1050ba
YL
4350 * @start_pfn: The new PFN of the range
4351 * @end_pfn: The new PFN of the range
c713216d
MG
4352 *
4353 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
cc1a9d86
YL
4354 * The map is kept near the end physical page range that has already been
4355 * registered. This function allows an arch to shrink an existing registered
4356 * range.
c713216d 4357 */
cc1050ba
YL
4358void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
4359 unsigned long end_pfn)
c713216d 4360{
cc1a9d86
YL
4361 int i, j;
4362 int removed = 0;
c713216d 4363
cc1050ba
YL
4364 printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
4365 nid, start_pfn, end_pfn);
4366
c713216d 4367 /* Find the old active region end and shrink */
cc1a9d86 4368 for_each_active_range_index_in_nid(i, nid) {
cc1050ba
YL
4369 if (early_node_map[i].start_pfn >= start_pfn &&
4370 early_node_map[i].end_pfn <= end_pfn) {
cc1a9d86 4371 /* clear it */
cc1050ba 4372 early_node_map[i].start_pfn = 0;
cc1a9d86
YL
4373 early_node_map[i].end_pfn = 0;
4374 removed = 1;
4375 continue;
4376 }
cc1050ba
YL
4377 if (early_node_map[i].start_pfn < start_pfn &&
4378 early_node_map[i].end_pfn > start_pfn) {
4379 unsigned long temp_end_pfn = early_node_map[i].end_pfn;
4380 early_node_map[i].end_pfn = start_pfn;
4381 if (temp_end_pfn > end_pfn)
4382 add_active_range(nid, end_pfn, temp_end_pfn);
4383 continue;
4384 }
4385 if (early_node_map[i].start_pfn >= start_pfn &&
4386 early_node_map[i].end_pfn > end_pfn &&
4387 early_node_map[i].start_pfn < end_pfn) {
4388 early_node_map[i].start_pfn = end_pfn;
cc1a9d86 4389 continue;
c713216d 4390 }
cc1a9d86
YL
4391 }
4392
4393 if (!removed)
4394 return;
4395
4396 /* remove the blank ones */
4397 for (i = nr_nodemap_entries - 1; i > 0; i--) {
4398 if (early_node_map[i].nid != nid)
4399 continue;
4400 if (early_node_map[i].end_pfn)
4401 continue;
4402 /* we found it, get rid of it */
4403 for (j = i; j < nr_nodemap_entries - 1; j++)
4404 memcpy(&early_node_map[j], &early_node_map[j+1],
4405 sizeof(early_node_map[j]));
4406 j = nr_nodemap_entries - 1;
4407 memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
4408 nr_nodemap_entries--;
4409 }
c713216d
MG
4410}
4411
4412/**
4413 * remove_all_active_ranges - Remove all currently registered regions
88ca3b94 4414 *
c713216d
MG
4415 * During discovery, it may be found that a table like SRAT is invalid
4416 * and an alternative discovery method must be used. This function removes
4417 * all currently registered regions.
4418 */
88ca3b94 4419void __init remove_all_active_ranges(void)
c713216d
MG
4420{
4421 memset(early_node_map, 0, sizeof(early_node_map));
4422 nr_nodemap_entries = 0;
4423}
4424
4425/* Compare two active node_active_regions */
4426static int __init cmp_node_active_region(const void *a, const void *b)
4427{
4428 struct node_active_region *arange = (struct node_active_region *)a;
4429 struct node_active_region *brange = (struct node_active_region *)b;
4430
4431 /* Done this way to avoid overflows */
4432 if (arange->start_pfn > brange->start_pfn)
4433 return 1;
4434 if (arange->start_pfn < brange->start_pfn)
4435 return -1;
4436
4437 return 0;
4438}
4439
4440/* sort the node_map by start_pfn */
32996250 4441void __init sort_node_map(void)
c713216d
MG
4442{
4443 sort(early_node_map, (size_t)nr_nodemap_entries,
4444 sizeof(struct node_active_region),
4445 cmp_node_active_region, NULL);
4446}
4447
a6af2bc3 4448/* Find the lowest pfn for a node */
b69a7288 4449static unsigned long __init find_min_pfn_for_node(int nid)
c713216d
MG
4450{
4451 int i;
a6af2bc3 4452 unsigned long min_pfn = ULONG_MAX;
1abbfb41 4453
c713216d
MG
4454 /* Assuming a sorted map, the first range found has the starting pfn */
4455 for_each_active_range_index_in_nid(i, nid)
a6af2bc3 4456 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
c713216d 4457
a6af2bc3
MG
4458 if (min_pfn == ULONG_MAX) {
4459 printk(KERN_WARNING
2bc0d261 4460 "Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
4461 return 0;
4462 }
4463
4464 return min_pfn;
c713216d
MG
4465}
4466
4467/**
4468 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4469 *
4470 * It returns the minimum PFN based on information provided via
88ca3b94 4471 * add_active_range().
c713216d
MG
4472 */
4473unsigned long __init find_min_pfn_with_active_regions(void)
4474{
4475 return find_min_pfn_for_node(MAX_NUMNODES);
4476}
4477
37b07e41
LS
4478/*
4479 * early_calculate_totalpages()
4480 * Sum pages in active regions for movable zone.
4481 * Populate N_HIGH_MEMORY for calculating usable_nodes.
4482 */
484f51f8 4483static unsigned long __init early_calculate_totalpages(void)
7e63efef
MG
4484{
4485 int i;
4486 unsigned long totalpages = 0;
4487
37b07e41
LS
4488 for (i = 0; i < nr_nodemap_entries; i++) {
4489 unsigned long pages = early_node_map[i].end_pfn -
7e63efef 4490 early_node_map[i].start_pfn;
37b07e41
LS
4491 totalpages += pages;
4492 if (pages)
4493 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
4494 }
4495 return totalpages;
7e63efef
MG
4496}
4497
2a1e274a
MG
4498/*
4499 * Find the PFN the Movable zone begins in each node. Kernel memory
4500 * is spread evenly between nodes as long as the nodes have enough
4501 * memory. When they don't, some nodes will have more kernelcore than
4502 * others
4503 */
b69a7288 4504static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
2a1e274a
MG
4505{
4506 int i, nid;
4507 unsigned long usable_startpfn;
4508 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd
YL
4509 /* save the state before borrow the nodemask */
4510 nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
37b07e41
LS
4511 unsigned long totalpages = early_calculate_totalpages();
4512 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
2a1e274a 4513
7e63efef
MG
4514 /*
4515 * If movablecore was specified, calculate what size of
4516 * kernelcore that corresponds so that memory usable for
4517 * any allocation type is evenly spread. If both kernelcore
4518 * and movablecore are specified, then the value of kernelcore
4519 * will be used for required_kernelcore if it's greater than
4520 * what movablecore would have allowed.
4521 */
4522 if (required_movablecore) {
7e63efef
MG
4523 unsigned long corepages;
4524
4525 /*
4526 * Round-up so that ZONE_MOVABLE is at least as large as what
4527 * was requested by the user
4528 */
4529 required_movablecore =
4530 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4531 corepages = totalpages - required_movablecore;
4532
4533 required_kernelcore = max(required_kernelcore, corepages);
4534 }
4535
2a1e274a
MG
4536 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4537 if (!required_kernelcore)
66918dcd 4538 goto out;
2a1e274a
MG
4539
4540 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4541 find_usable_zone_for_movable();
4542 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4543
4544restart:
4545 /* Spread kernelcore memory as evenly as possible throughout nodes */
4546 kernelcore_node = required_kernelcore / usable_nodes;
37b07e41 4547 for_each_node_state(nid, N_HIGH_MEMORY) {
2a1e274a
MG
4548 /*
4549 * Recalculate kernelcore_node if the division per node
4550 * now exceeds what is necessary to satisfy the requested
4551 * amount of memory for the kernel
4552 */
4553 if (required_kernelcore < kernelcore_node)
4554 kernelcore_node = required_kernelcore / usable_nodes;
4555
4556 /*
4557 * As the map is walked, we track how much memory is usable
4558 * by the kernel using kernelcore_remaining. When it is
4559 * 0, the rest of the node is usable by ZONE_MOVABLE
4560 */
4561 kernelcore_remaining = kernelcore_node;
4562
4563 /* Go through each range of PFNs within this node */
4564 for_each_active_range_index_in_nid(i, nid) {
4565 unsigned long start_pfn, end_pfn;
4566 unsigned long size_pages;
4567
4568 start_pfn = max(early_node_map[i].start_pfn,
4569 zone_movable_pfn[nid]);
4570 end_pfn = early_node_map[i].end_pfn;
4571 if (start_pfn >= end_pfn)
4572 continue;
4573
4574 /* Account for what is only usable for kernelcore */
4575 if (start_pfn < usable_startpfn) {
4576 unsigned long kernel_pages;
4577 kernel_pages = min(end_pfn, usable_startpfn)
4578 - start_pfn;
4579
4580 kernelcore_remaining -= min(kernel_pages,
4581 kernelcore_remaining);
4582 required_kernelcore -= min(kernel_pages,
4583 required_kernelcore);
4584
4585 /* Continue if range is now fully accounted */
4586 if (end_pfn <= usable_startpfn) {
4587
4588 /*
4589 * Push zone_movable_pfn to the end so
4590 * that if we have to rebalance
4591 * kernelcore across nodes, we will
4592 * not double account here
4593 */
4594 zone_movable_pfn[nid] = end_pfn;
4595 continue;
4596 }
4597 start_pfn = usable_startpfn;
4598 }
4599
4600 /*
4601 * The usable PFN range for ZONE_MOVABLE is from
4602 * start_pfn->end_pfn. Calculate size_pages as the
4603 * number of pages used as kernelcore
4604 */
4605 size_pages = end_pfn - start_pfn;
4606 if (size_pages > kernelcore_remaining)
4607 size_pages = kernelcore_remaining;
4608 zone_movable_pfn[nid] = start_pfn + size_pages;
4609
4610 /*
4611 * Some kernelcore has been met, update counts and
4612 * break if the kernelcore for this node has been
4613 * satisified
4614 */
4615 required_kernelcore -= min(required_kernelcore,
4616 size_pages);
4617 kernelcore_remaining -= size_pages;
4618 if (!kernelcore_remaining)
4619 break;
4620 }
4621 }
4622
4623 /*
4624 * If there is still required_kernelcore, we do another pass with one
4625 * less node in the count. This will push zone_movable_pfn[nid] further
4626 * along on the nodes that still have memory until kernelcore is
4627 * satisified
4628 */
4629 usable_nodes--;
4630 if (usable_nodes && required_kernelcore > usable_nodes)
4631 goto restart;
4632
4633 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4634 for (nid = 0; nid < MAX_NUMNODES; nid++)
4635 zone_movable_pfn[nid] =
4636 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd
YL
4637
4638out:
4639 /* restore the node_state */
4640 node_states[N_HIGH_MEMORY] = saved_node_state;
2a1e274a
MG
4641}
4642
37b07e41
LS
4643/* Any regular memory on that node ? */
4644static void check_for_regular_memory(pg_data_t *pgdat)
4645{
4646#ifdef CONFIG_HIGHMEM
4647 enum zone_type zone_type;
4648
4649 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4650 struct zone *zone = &pgdat->node_zones[zone_type];
4651 if (zone->present_pages)
4652 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4653 }
4654#endif
4655}
4656
c713216d
MG
4657/**
4658 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 4659 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
4660 *
4661 * This will call free_area_init_node() for each active node in the system.
4662 * Using the page ranges provided by add_active_range(), the size of each
4663 * zone in each node and their holes is calculated. If the maximum PFN
4664 * between two adjacent zones match, it is assumed that the zone is empty.
4665 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4666 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4667 * starts where the previous one ended. For example, ZONE_DMA32 starts
4668 * at arch_max_dma_pfn.
4669 */
4670void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4671{
4672 unsigned long nid;
db99100d 4673 int i;
c713216d 4674
a6af2bc3
MG
4675 /* Sort early_node_map as initialisation assumes it is sorted */
4676 sort_node_map();
4677
c713216d
MG
4678 /* Record where the zone boundaries are */
4679 memset(arch_zone_lowest_possible_pfn, 0,
4680 sizeof(arch_zone_lowest_possible_pfn));
4681 memset(arch_zone_highest_possible_pfn, 0,
4682 sizeof(arch_zone_highest_possible_pfn));
4683 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4684 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4685 for (i = 1; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
4686 if (i == ZONE_MOVABLE)
4687 continue;
c713216d
MG
4688 arch_zone_lowest_possible_pfn[i] =
4689 arch_zone_highest_possible_pfn[i-1];
4690 arch_zone_highest_possible_pfn[i] =
4691 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4692 }
2a1e274a
MG
4693 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4694 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4695
4696 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4697 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4698 find_zone_movable_pfns_for_nodes(zone_movable_pfn);
c713216d 4699
c713216d
MG
4700 /* Print out the zone ranges */
4701 printk("Zone PFN ranges:\n");
2a1e274a
MG
4702 for (i = 0; i < MAX_NR_ZONES; i++) {
4703 if (i == ZONE_MOVABLE)
4704 continue;
72f0ba02
DR
4705 printk(" %-8s ", zone_names[i]);
4706 if (arch_zone_lowest_possible_pfn[i] ==
4707 arch_zone_highest_possible_pfn[i])
4708 printk("empty\n");
4709 else
4710 printk("%0#10lx -> %0#10lx\n",
c713216d
MG
4711 arch_zone_lowest_possible_pfn[i],
4712 arch_zone_highest_possible_pfn[i]);
2a1e274a
MG
4713 }
4714
4715 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4716 printk("Movable zone start PFN for each node\n");
4717 for (i = 0; i < MAX_NUMNODES; i++) {
4718 if (zone_movable_pfn[i])
4719 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
4720 }
c713216d
MG
4721
4722 /* Print out the early_node_map[] */
4723 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4724 for (i = 0; i < nr_nodemap_entries; i++)
5dab8ec1 4725 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
c713216d
MG
4726 early_node_map[i].start_pfn,
4727 early_node_map[i].end_pfn);
4728
4729 /* Initialise every node */
708614e6 4730 mminit_verify_pageflags_layout();
8ef82866 4731 setup_nr_node_ids();
c713216d
MG
4732 for_each_online_node(nid) {
4733 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 4734 free_area_init_node(nid, NULL,
c713216d 4735 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
4736
4737 /* Any memory on that node */
4738 if (pgdat->node_present_pages)
4739 node_set_state(nid, N_HIGH_MEMORY);
4740 check_for_regular_memory(pgdat);
c713216d
MG
4741 }
4742}
2a1e274a 4743
7e63efef 4744static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
4745{
4746 unsigned long long coremem;
4747 if (!p)
4748 return -EINVAL;
4749
4750 coremem = memparse(p, &p);
7e63efef 4751 *core = coremem >> PAGE_SHIFT;
2a1e274a 4752
7e63efef 4753 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
4754 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4755
4756 return 0;
4757}
ed7ed365 4758
7e63efef
MG
4759/*
4760 * kernelcore=size sets the amount of memory for use for allocations that
4761 * cannot be reclaimed or migrated.
4762 */
4763static int __init cmdline_parse_kernelcore(char *p)
4764{
4765 return cmdline_parse_core(p, &required_kernelcore);
4766}
4767
4768/*
4769 * movablecore=size sets the amount of memory for use for allocations that
4770 * can be reclaimed or migrated.
4771 */
4772static int __init cmdline_parse_movablecore(char *p)
4773{
4774 return cmdline_parse_core(p, &required_movablecore);
4775}
4776
ed7ed365 4777early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 4778early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 4779
c713216d
MG
4780#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4781
0e0b864e 4782/**
88ca3b94
RD
4783 * set_dma_reserve - set the specified number of pages reserved in the first zone
4784 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e
MG
4785 *
4786 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4787 * In the DMA zone, a significant percentage may be consumed by kernel image
4788 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
4789 * function may optionally be used to account for unfreeable pages in the
4790 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4791 * smaller per-cpu batchsize.
0e0b864e
MG
4792 */
4793void __init set_dma_reserve(unsigned long new_dma_reserve)
4794{
4795 dma_reserve = new_dma_reserve;
4796}
4797
93b7504e 4798#ifndef CONFIG_NEED_MULTIPLE_NODES
08677214
YL
4799struct pglist_data __refdata contig_page_data = {
4800#ifndef CONFIG_NO_BOOTMEM
4801 .bdata = &bootmem_node_data[0]
4802#endif
4803 };
1da177e4 4804EXPORT_SYMBOL(contig_page_data);
93b7504e 4805#endif
1da177e4
LT
4806
4807void __init free_area_init(unsigned long *zones_size)
4808{
9109fb7b 4809 free_area_init_node(0, zones_size,
1da177e4
LT
4810 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4811}
1da177e4 4812
1da177e4
LT
4813static int page_alloc_cpu_notify(struct notifier_block *self,
4814 unsigned long action, void *hcpu)
4815{
4816 int cpu = (unsigned long)hcpu;
1da177e4 4817
8bb78442 4818 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
9f8f2172
CL
4819 drain_pages(cpu);
4820
4821 /*
4822 * Spill the event counters of the dead processor
4823 * into the current processors event counters.
4824 * This artificially elevates the count of the current
4825 * processor.
4826 */
f8891e5e 4827 vm_events_fold_cpu(cpu);
9f8f2172
CL
4828
4829 /*
4830 * Zero the differential counters of the dead processor
4831 * so that the vm statistics are consistent.
4832 *
4833 * This is only okay since the processor is dead and cannot
4834 * race with what we are doing.
4835 */
2244b95a 4836 refresh_cpu_vm_stats(cpu);
1da177e4
LT
4837 }
4838 return NOTIFY_OK;
4839}
1da177e4
LT
4840
4841void __init page_alloc_init(void)
4842{
4843 hotcpu_notifier(page_alloc_cpu_notify, 0);
4844}
4845
cb45b0e9
HA
4846/*
4847 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4848 * or min_free_kbytes changes.
4849 */
4850static void calculate_totalreserve_pages(void)
4851{
4852 struct pglist_data *pgdat;
4853 unsigned long reserve_pages = 0;
2f6726e5 4854 enum zone_type i, j;
cb45b0e9
HA
4855
4856 for_each_online_pgdat(pgdat) {
4857 for (i = 0; i < MAX_NR_ZONES; i++) {
4858 struct zone *zone = pgdat->node_zones + i;
4859 unsigned long max = 0;
4860
4861 /* Find valid and maximum lowmem_reserve in the zone */
4862 for (j = i; j < MAX_NR_ZONES; j++) {
4863 if (zone->lowmem_reserve[j] > max)
4864 max = zone->lowmem_reserve[j];
4865 }
4866
41858966
MG
4867 /* we treat the high watermark as reserved pages. */
4868 max += high_wmark_pages(zone);
cb45b0e9
HA
4869
4870 if (max > zone->present_pages)
4871 max = zone->present_pages;
4872 reserve_pages += max;
4873 }
4874 }
4875 totalreserve_pages = reserve_pages;
4876}
4877
1da177e4
LT
4878/*
4879 * setup_per_zone_lowmem_reserve - called whenever
4880 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4881 * has a correct pages reserved value, so an adequate number of
4882 * pages are left in the zone after a successful __alloc_pages().
4883 */
4884static void setup_per_zone_lowmem_reserve(void)
4885{
4886 struct pglist_data *pgdat;
2f6726e5 4887 enum zone_type j, idx;
1da177e4 4888
ec936fc5 4889 for_each_online_pgdat(pgdat) {
1da177e4
LT
4890 for (j = 0; j < MAX_NR_ZONES; j++) {
4891 struct zone *zone = pgdat->node_zones + j;
4892 unsigned long present_pages = zone->present_pages;
4893
4894 zone->lowmem_reserve[j] = 0;
4895
2f6726e5
CL
4896 idx = j;
4897 while (idx) {
1da177e4
LT
4898 struct zone *lower_zone;
4899
2f6726e5
CL
4900 idx--;
4901
1da177e4
LT
4902 if (sysctl_lowmem_reserve_ratio[idx] < 1)
4903 sysctl_lowmem_reserve_ratio[idx] = 1;
4904
4905 lower_zone = pgdat->node_zones + idx;
4906 lower_zone->lowmem_reserve[j] = present_pages /
4907 sysctl_lowmem_reserve_ratio[idx];
4908 present_pages += lower_zone->present_pages;
4909 }
4910 }
4911 }
cb45b0e9
HA
4912
4913 /* update totalreserve_pages */
4914 calculate_totalreserve_pages();
1da177e4
LT
4915}
4916
88ca3b94 4917/**
bc75d33f 4918 * setup_per_zone_wmarks - called when min_free_kbytes changes
bce7394a 4919 * or when memory is hot-{added|removed}
88ca3b94 4920 *
bc75d33f
MK
4921 * Ensures that the watermark[min,low,high] values for each zone are set
4922 * correctly with respect to min_free_kbytes.
1da177e4 4923 */
bc75d33f 4924void setup_per_zone_wmarks(void)
1da177e4
LT
4925{
4926 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4927 unsigned long lowmem_pages = 0;
4928 struct zone *zone;
4929 unsigned long flags;
4930
4931 /* Calculate total number of !ZONE_HIGHMEM pages */
4932 for_each_zone(zone) {
4933 if (!is_highmem(zone))
4934 lowmem_pages += zone->present_pages;
4935 }
4936
4937 for_each_zone(zone) {
ac924c60
AM
4938 u64 tmp;
4939
1125b4e3 4940 spin_lock_irqsave(&zone->lock, flags);
ac924c60
AM
4941 tmp = (u64)pages_min * zone->present_pages;
4942 do_div(tmp, lowmem_pages);
1da177e4
LT
4943 if (is_highmem(zone)) {
4944 /*
669ed175
NP
4945 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4946 * need highmem pages, so cap pages_min to a small
4947 * value here.
4948 *
41858966 4949 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
669ed175
NP
4950 * deltas controls asynch page reclaim, and so should
4951 * not be capped for highmem.
1da177e4
LT
4952 */
4953 int min_pages;
4954
4955 min_pages = zone->present_pages / 1024;
4956 if (min_pages < SWAP_CLUSTER_MAX)
4957 min_pages = SWAP_CLUSTER_MAX;
4958 if (min_pages > 128)
4959 min_pages = 128;
41858966 4960 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 4961 } else {
669ed175
NP
4962 /*
4963 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
4964 * proportionate to the zone's size.
4965 */
41858966 4966 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
4967 }
4968
41858966
MG
4969 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
4970 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
56fd56b8 4971 setup_zone_migrate_reserve(zone);
1125b4e3 4972 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 4973 }
cb45b0e9
HA
4974
4975 /* update totalreserve_pages */
4976 calculate_totalreserve_pages();
1da177e4
LT
4977}
4978
55a4462a 4979/*
556adecb
RR
4980 * The inactive anon list should be small enough that the VM never has to
4981 * do too much work, but large enough that each inactive page has a chance
4982 * to be referenced again before it is swapped out.
4983 *
4984 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
4985 * INACTIVE_ANON pages on this zone's LRU, maintained by the
4986 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
4987 * the anonymous pages are kept on the inactive list.
4988 *
4989 * total target max
4990 * memory ratio inactive anon
4991 * -------------------------------------
4992 * 10MB 1 5MB
4993 * 100MB 1 50MB
4994 * 1GB 3 250MB
4995 * 10GB 10 0.9GB
4996 * 100GB 31 3GB
4997 * 1TB 101 10GB
4998 * 10TB 320 32GB
4999 */
96cb4df5 5000void calculate_zone_inactive_ratio(struct zone *zone)
556adecb 5001{
96cb4df5 5002 unsigned int gb, ratio;
556adecb 5003
96cb4df5
MK
5004 /* Zone size in gigabytes */
5005 gb = zone->present_pages >> (30 - PAGE_SHIFT);
5006 if (gb)
556adecb 5007 ratio = int_sqrt(10 * gb);
96cb4df5
MK
5008 else
5009 ratio = 1;
556adecb 5010
96cb4df5
MK
5011 zone->inactive_ratio = ratio;
5012}
556adecb 5013
96cb4df5
MK
5014static void __init setup_per_zone_inactive_ratio(void)
5015{
5016 struct zone *zone;
5017
5018 for_each_zone(zone)
5019 calculate_zone_inactive_ratio(zone);
556adecb
RR
5020}
5021
1da177e4
LT
5022/*
5023 * Initialise min_free_kbytes.
5024 *
5025 * For small machines we want it small (128k min). For large machines
5026 * we want it large (64MB max). But it is not linear, because network
5027 * bandwidth does not increase linearly with machine size. We use
5028 *
5029 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5030 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5031 *
5032 * which yields
5033 *
5034 * 16MB: 512k
5035 * 32MB: 724k
5036 * 64MB: 1024k
5037 * 128MB: 1448k
5038 * 256MB: 2048k
5039 * 512MB: 2896k
5040 * 1024MB: 4096k
5041 * 2048MB: 5792k
5042 * 4096MB: 8192k
5043 * 8192MB: 11584k
5044 * 16384MB: 16384k
5045 */
bc75d33f 5046static int __init init_per_zone_wmark_min(void)
1da177e4
LT
5047{
5048 unsigned long lowmem_kbytes;
5049
5050 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5051
5052 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5053 if (min_free_kbytes < 128)
5054 min_free_kbytes = 128;
5055 if (min_free_kbytes > 65536)
5056 min_free_kbytes = 65536;
bc75d33f 5057 setup_per_zone_wmarks();
1da177e4 5058 setup_per_zone_lowmem_reserve();
556adecb 5059 setup_per_zone_inactive_ratio();
1da177e4
LT
5060 return 0;
5061}
bc75d33f 5062module_init(init_per_zone_wmark_min)
1da177e4
LT
5063
5064/*
5065 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5066 * that we can call two helper functions whenever min_free_kbytes
5067 * changes.
5068 */
5069int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
8d65af78 5070 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 5071{
8d65af78 5072 proc_dointvec(table, write, buffer, length, ppos);
3b1d92c5 5073 if (write)
bc75d33f 5074 setup_per_zone_wmarks();
1da177e4
LT
5075 return 0;
5076}
5077
9614634f
CL
5078#ifdef CONFIG_NUMA
5079int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5080 void __user *buffer, size_t *length, loff_t *ppos)
9614634f
CL
5081{
5082 struct zone *zone;
5083 int rc;
5084
8d65af78 5085 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
9614634f
CL
5086 if (rc)
5087 return rc;
5088
5089 for_each_zone(zone)
8417bba4 5090 zone->min_unmapped_pages = (zone->present_pages *
9614634f
CL
5091 sysctl_min_unmapped_ratio) / 100;
5092 return 0;
5093}
0ff38490
CL
5094
5095int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5096 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490
CL
5097{
5098 struct zone *zone;
5099 int rc;
5100
8d65af78 5101 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
5102 if (rc)
5103 return rc;
5104
5105 for_each_zone(zone)
5106 zone->min_slab_pages = (zone->present_pages *
5107 sysctl_min_slab_ratio) / 100;
5108 return 0;
5109}
9614634f
CL
5110#endif
5111
1da177e4
LT
5112/*
5113 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5114 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5115 * whenever sysctl_lowmem_reserve_ratio changes.
5116 *
5117 * The reserve ratio obviously has absolutely no relation with the
41858966 5118 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
5119 * if in function of the boot time zone sizes.
5120 */
5121int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
8d65af78 5122 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 5123{
8d65af78 5124 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
5125 setup_per_zone_lowmem_reserve();
5126 return 0;
5127}
5128
8ad4b1fb
RS
5129/*
5130 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5131 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
5132 * can have before it gets flushed back to buddy allocator.
5133 */
5134
5135int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
8d65af78 5136 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
5137{
5138 struct zone *zone;
5139 unsigned int cpu;
5140 int ret;
5141
8d65af78 5142 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
8ad4b1fb
RS
5143 if (!write || (ret == -EINVAL))
5144 return ret;
364df0eb 5145 for_each_populated_zone(zone) {
99dcc3e5 5146 for_each_possible_cpu(cpu) {
8ad4b1fb
RS
5147 unsigned long high;
5148 high = zone->present_pages / percpu_pagelist_fraction;
99dcc3e5
CL
5149 setup_pagelist_highmark(
5150 per_cpu_ptr(zone->pageset, cpu), high);
8ad4b1fb
RS
5151 }
5152 }
5153 return 0;
5154}
5155
f034b5d4 5156int hashdist = HASHDIST_DEFAULT;
1da177e4
LT
5157
5158#ifdef CONFIG_NUMA
5159static int __init set_hashdist(char *str)
5160{
5161 if (!str)
5162 return 0;
5163 hashdist = simple_strtoul(str, &str, 0);
5164 return 1;
5165}
5166__setup("hashdist=", set_hashdist);
5167#endif
5168
5169/*
5170 * allocate a large system hash table from bootmem
5171 * - it is assumed that the hash table must contain an exact power-of-2
5172 * quantity of entries
5173 * - limit is the number of hash buckets, not the total allocation size
5174 */
5175void *__init alloc_large_system_hash(const char *tablename,
5176 unsigned long bucketsize,
5177 unsigned long numentries,
5178 int scale,
5179 int flags,
5180 unsigned int *_hash_shift,
5181 unsigned int *_hash_mask,
5182 unsigned long limit)
5183{
5184 unsigned long long max = limit;
5185 unsigned long log2qty, size;
5186 void *table = NULL;
5187
5188 /* allow the kernel cmdline to have a say */
5189 if (!numentries) {
5190 /* round applicable memory size up to nearest megabyte */
04903664 5191 numentries = nr_kernel_pages;
1da177e4
LT
5192 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
5193 numentries >>= 20 - PAGE_SHIFT;
5194 numentries <<= 20 - PAGE_SHIFT;
5195
5196 /* limit to 1 bucket per 2^scale bytes of low memory */
5197 if (scale > PAGE_SHIFT)
5198 numentries >>= (scale - PAGE_SHIFT);
5199 else
5200 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
5201
5202 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
5203 if (unlikely(flags & HASH_SMALL)) {
5204 /* Makes no sense without HASH_EARLY */
5205 WARN_ON(!(flags & HASH_EARLY));
5206 if (!(numentries >> *_hash_shift)) {
5207 numentries = 1UL << *_hash_shift;
5208 BUG_ON(!numentries);
5209 }
5210 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 5211 numentries = PAGE_SIZE / bucketsize;
1da177e4 5212 }
6e692ed3 5213 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
5214
5215 /* limit allocation size to 1/16 total memory by default */
5216 if (max == 0) {
5217 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5218 do_div(max, bucketsize);
5219 }
5220
5221 if (numentries > max)
5222 numentries = max;
5223
f0d1b0b3 5224 log2qty = ilog2(numentries);
1da177e4
LT
5225
5226 do {
5227 size = bucketsize << log2qty;
5228 if (flags & HASH_EARLY)
74768ed8 5229 table = alloc_bootmem_nopanic(size);
1da177e4
LT
5230 else if (hashdist)
5231 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5232 else {
1037b83b
ED
5233 /*
5234 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
5235 * some pages at the end of hash table which
5236 * alloc_pages_exact() automatically does
1037b83b 5237 */
264ef8a9 5238 if (get_order(size) < MAX_ORDER) {
a1dd268c 5239 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
5240 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5241 }
1da177e4
LT
5242 }
5243 } while (!table && size > PAGE_SIZE && --log2qty);
5244
5245 if (!table)
5246 panic("Failed to allocate %s hash table\n", tablename);
5247
f241e660 5248 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
1da177e4 5249 tablename,
f241e660 5250 (1UL << log2qty),
f0d1b0b3 5251 ilog2(size) - PAGE_SHIFT,
1da177e4
LT
5252 size);
5253
5254 if (_hash_shift)
5255 *_hash_shift = log2qty;
5256 if (_hash_mask)
5257 *_hash_mask = (1 << log2qty) - 1;
5258
5259 return table;
5260}
a117e66e 5261
835c134e
MG
5262/* Return a pointer to the bitmap storing bits affecting a block of pages */
5263static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5264 unsigned long pfn)
5265{
5266#ifdef CONFIG_SPARSEMEM
5267 return __pfn_to_section(pfn)->pageblock_flags;
5268#else
5269 return zone->pageblock_flags;
5270#endif /* CONFIG_SPARSEMEM */
5271}
5272
5273static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5274{
5275#ifdef CONFIG_SPARSEMEM
5276 pfn &= (PAGES_PER_SECTION-1);
d9c23400 5277 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
5278#else
5279 pfn = pfn - zone->zone_start_pfn;
d9c23400 5280 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
5281#endif /* CONFIG_SPARSEMEM */
5282}
5283
5284/**
d9c23400 5285 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
835c134e
MG
5286 * @page: The page within the block of interest
5287 * @start_bitidx: The first bit of interest to retrieve
5288 * @end_bitidx: The last bit of interest
5289 * returns pageblock_bits flags
5290 */
5291unsigned long get_pageblock_flags_group(struct page *page,
5292 int start_bitidx, int end_bitidx)
5293{
5294 struct zone *zone;
5295 unsigned long *bitmap;
5296 unsigned long pfn, bitidx;
5297 unsigned long flags = 0;
5298 unsigned long value = 1;
5299
5300 zone = page_zone(page);
5301 pfn = page_to_pfn(page);
5302 bitmap = get_pageblock_bitmap(zone, pfn);
5303 bitidx = pfn_to_bitidx(zone, pfn);
5304
5305 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5306 if (test_bit(bitidx + start_bitidx, bitmap))
5307 flags |= value;
6220ec78 5308
835c134e
MG
5309 return flags;
5310}
5311
5312/**
d9c23400 5313 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
835c134e
MG
5314 * @page: The page within the block of interest
5315 * @start_bitidx: The first bit of interest
5316 * @end_bitidx: The last bit of interest
5317 * @flags: The flags to set
5318 */
5319void set_pageblock_flags_group(struct page *page, unsigned long flags,
5320 int start_bitidx, int end_bitidx)
5321{
5322 struct zone *zone;
5323 unsigned long *bitmap;
5324 unsigned long pfn, bitidx;
5325 unsigned long value = 1;
5326
5327 zone = page_zone(page);
5328 pfn = page_to_pfn(page);
5329 bitmap = get_pageblock_bitmap(zone, pfn);
5330 bitidx = pfn_to_bitidx(zone, pfn);
86051ca5
KH
5331 VM_BUG_ON(pfn < zone->zone_start_pfn);
5332 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
835c134e
MG
5333
5334 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5335 if (flags & value)
5336 __set_bit(bitidx + start_bitidx, bitmap);
5337 else
5338 __clear_bit(bitidx + start_bitidx, bitmap);
5339}
a5d76b54
KH
5340
5341/*
5342 * This is designed as sub function...plz see page_isolation.c also.
5343 * set/clear page block's type to be ISOLATE.
5344 * page allocater never alloc memory from ISOLATE block.
5345 */
5346
49ac8255
KH
5347static int
5348__count_immobile_pages(struct zone *zone, struct page *page, int count)
5349{
5350 unsigned long pfn, iter, found;
5351 /*
5352 * For avoiding noise data, lru_add_drain_all() should be called
5353 * If ZONE_MOVABLE, the zone never contains immobile pages
5354 */
5355 if (zone_idx(zone) == ZONE_MOVABLE)
5356 return true;
5357
5358 if (get_pageblock_migratetype(page) == MIGRATE_MOVABLE)
5359 return true;
5360
5361 pfn = page_to_pfn(page);
5362 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
5363 unsigned long check = pfn + iter;
5364
5365 if (!pfn_valid_within(check)) {
5366 iter++;
5367 continue;
5368 }
5369 page = pfn_to_page(check);
5370 if (!page_count(page)) {
5371 if (PageBuddy(page))
5372 iter += (1 << page_order(page)) - 1;
5373 continue;
5374 }
5375 if (!PageLRU(page))
5376 found++;
5377 /*
5378 * If there are RECLAIMABLE pages, we need to check it.
5379 * But now, memory offline itself doesn't call shrink_slab()
5380 * and it still to be fixed.
5381 */
5382 /*
5383 * If the page is not RAM, page_count()should be 0.
5384 * we don't need more check. This is an _used_ not-movable page.
5385 *
5386 * The problematic thing here is PG_reserved pages. PG_reserved
5387 * is set to both of a memory hole page and a _used_ kernel
5388 * page at boot.
5389 */
5390 if (found > count)
5391 return false;
5392 }
5393 return true;
5394}
5395
5396bool is_pageblock_removable_nolock(struct page *page)
5397{
5398 struct zone *zone = page_zone(page);
5399 return __count_immobile_pages(zone, page, 0);
5400}
5401
a5d76b54
KH
5402int set_migratetype_isolate(struct page *page)
5403{
5404 struct zone *zone;
49ac8255 5405 unsigned long flags, pfn;
925cc71e
RJ
5406 struct memory_isolate_notify arg;
5407 int notifier_ret;
a5d76b54 5408 int ret = -EBUSY;
8e7e40d9 5409 int zone_idx;
a5d76b54
KH
5410
5411 zone = page_zone(page);
8e7e40d9 5412 zone_idx = zone_idx(zone);
925cc71e 5413
a5d76b54 5414 spin_lock_irqsave(&zone->lock, flags);
925cc71e
RJ
5415
5416 pfn = page_to_pfn(page);
5417 arg.start_pfn = pfn;
5418 arg.nr_pages = pageblock_nr_pages;
5419 arg.pages_found = 0;
5420
a5d76b54 5421 /*
925cc71e
RJ
5422 * It may be possible to isolate a pageblock even if the
5423 * migratetype is not MIGRATE_MOVABLE. The memory isolation
5424 * notifier chain is used by balloon drivers to return the
5425 * number of pages in a range that are held by the balloon
5426 * driver to shrink memory. If all the pages are accounted for
5427 * by balloons, are free, or on the LRU, isolation can continue.
5428 * Later, for example, when memory hotplug notifier runs, these
5429 * pages reported as "can be isolated" should be isolated(freed)
5430 * by the balloon driver through the memory notifier chain.
a5d76b54 5431 */
925cc71e
RJ
5432 notifier_ret = memory_isolate_notify(MEM_ISOLATE_COUNT, &arg);
5433 notifier_ret = notifier_to_errno(notifier_ret);
4b20477f 5434 if (notifier_ret)
a5d76b54 5435 goto out;
49ac8255
KH
5436 /*
5437 * FIXME: Now, memory hotplug doesn't call shrink_slab() by itself.
5438 * We just check MOVABLE pages.
5439 */
5440 if (__count_immobile_pages(zone, page, arg.pages_found))
925cc71e
RJ
5441 ret = 0;
5442
49ac8255
KH
5443 /*
5444 * immobile means "not-on-lru" paes. If immobile is larger than
5445 * removable-by-driver pages reported by notifier, we'll fail.
5446 */
5447
a5d76b54 5448out:
925cc71e
RJ
5449 if (!ret) {
5450 set_pageblock_migratetype(page, MIGRATE_ISOLATE);
5451 move_freepages_block(zone, page, MIGRATE_ISOLATE);
5452 }
5453
a5d76b54
KH
5454 spin_unlock_irqrestore(&zone->lock, flags);
5455 if (!ret)
9f8f2172 5456 drain_all_pages();
a5d76b54
KH
5457 return ret;
5458}
5459
5460void unset_migratetype_isolate(struct page *page)
5461{
5462 struct zone *zone;
5463 unsigned long flags;
5464 zone = page_zone(page);
5465 spin_lock_irqsave(&zone->lock, flags);
5466 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
5467 goto out;
5468 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5469 move_freepages_block(zone, page, MIGRATE_MOVABLE);
5470out:
5471 spin_unlock_irqrestore(&zone->lock, flags);
5472}
0c0e6195
KH
5473
5474#ifdef CONFIG_MEMORY_HOTREMOVE
5475/*
5476 * All pages in the range must be isolated before calling this.
5477 */
5478void
5479__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
5480{
5481 struct page *page;
5482 struct zone *zone;
5483 int order, i;
5484 unsigned long pfn;
5485 unsigned long flags;
5486 /* find the first valid pfn */
5487 for (pfn = start_pfn; pfn < end_pfn; pfn++)
5488 if (pfn_valid(pfn))
5489 break;
5490 if (pfn == end_pfn)
5491 return;
5492 zone = page_zone(pfn_to_page(pfn));
5493 spin_lock_irqsave(&zone->lock, flags);
5494 pfn = start_pfn;
5495 while (pfn < end_pfn) {
5496 if (!pfn_valid(pfn)) {
5497 pfn++;
5498 continue;
5499 }
5500 page = pfn_to_page(pfn);
5501 BUG_ON(page_count(page));
5502 BUG_ON(!PageBuddy(page));
5503 order = page_order(page);
5504#ifdef CONFIG_DEBUG_VM
5505 printk(KERN_INFO "remove from free list %lx %d %lx\n",
5506 pfn, 1 << order, end_pfn);
5507#endif
5508 list_del(&page->lru);
5509 rmv_page_order(page);
5510 zone->free_area[order].nr_free--;
5511 __mod_zone_page_state(zone, NR_FREE_PAGES,
5512 - (1UL << order));
5513 for (i = 0; i < (1 << order); i++)
5514 SetPageReserved((page+i));
5515 pfn += (1 << order);
5516 }
5517 spin_unlock_irqrestore(&zone->lock, flags);
5518}
5519#endif
8d22ba1b
WF
5520
5521#ifdef CONFIG_MEMORY_FAILURE
5522bool is_free_buddy_page(struct page *page)
5523{
5524 struct zone *zone = page_zone(page);
5525 unsigned long pfn = page_to_pfn(page);
5526 unsigned long flags;
5527 int order;
5528
5529 spin_lock_irqsave(&zone->lock, flags);
5530 for (order = 0; order < MAX_ORDER; order++) {
5531 struct page *page_head = page - (pfn & ((1 << order) - 1));
5532
5533 if (PageBuddy(page_head) && page_order(page_head) >= order)
5534 break;
5535 }
5536 spin_unlock_irqrestore(&zone->lock, flags);
5537
5538 return order < MAX_ORDER;
5539}
5540#endif
718a3821
WF
5541
5542static struct trace_print_flags pageflag_names[] = {
5543 {1UL << PG_locked, "locked" },
5544 {1UL << PG_error, "error" },
5545 {1UL << PG_referenced, "referenced" },
5546 {1UL << PG_uptodate, "uptodate" },
5547 {1UL << PG_dirty, "dirty" },
5548 {1UL << PG_lru, "lru" },
5549 {1UL << PG_active, "active" },
5550 {1UL << PG_slab, "slab" },
5551 {1UL << PG_owner_priv_1, "owner_priv_1" },
5552 {1UL << PG_arch_1, "arch_1" },
5553 {1UL << PG_reserved, "reserved" },
5554 {1UL << PG_private, "private" },
5555 {1UL << PG_private_2, "private_2" },
5556 {1UL << PG_writeback, "writeback" },
5557#ifdef CONFIG_PAGEFLAGS_EXTENDED
5558 {1UL << PG_head, "head" },
5559 {1UL << PG_tail, "tail" },
5560#else
5561 {1UL << PG_compound, "compound" },
5562#endif
5563 {1UL << PG_swapcache, "swapcache" },
5564 {1UL << PG_mappedtodisk, "mappedtodisk" },
5565 {1UL << PG_reclaim, "reclaim" },
5566 {1UL << PG_buddy, "buddy" },
5567 {1UL << PG_swapbacked, "swapbacked" },
5568 {1UL << PG_unevictable, "unevictable" },
5569#ifdef CONFIG_MMU
5570 {1UL << PG_mlocked, "mlocked" },
5571#endif
5572#ifdef CONFIG_ARCH_USES_PG_UNCACHED
5573 {1UL << PG_uncached, "uncached" },
5574#endif
5575#ifdef CONFIG_MEMORY_FAILURE
5576 {1UL << PG_hwpoison, "hwpoison" },
5577#endif
5578 {-1UL, NULL },
5579};
5580
5581static void dump_page_flags(unsigned long flags)
5582{
5583 const char *delim = "";
5584 unsigned long mask;
5585 int i;
5586
5587 printk(KERN_ALERT "page flags: %#lx(", flags);
5588
5589 /* remove zone id */
5590 flags &= (1UL << NR_PAGEFLAGS) - 1;
5591
5592 for (i = 0; pageflag_names[i].name && flags; i++) {
5593
5594 mask = pageflag_names[i].mask;
5595 if ((flags & mask) != mask)
5596 continue;
5597
5598 flags &= ~mask;
5599 printk("%s%s", delim, pageflag_names[i].name);
5600 delim = "|";
5601 }
5602
5603 /* check for left over flags */
5604 if (flags)
5605 printk("%s%#lx", delim, flags);
5606
5607 printk(")\n");
5608}
5609
5610void dump_page(struct page *page)
5611{
5612 printk(KERN_ALERT
5613 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
5614 page, page_count(page), page_mapcount(page),
5615 page->mapping, page->index);
5616 dump_page_flags(page->flags);
5617}