remove libdss from Makefile
[GitHub/moto-9609/android_kernel_motorola_exynos9610.git] / mm / page_alloc.c
1 /*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kasan.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/memremap.h>
46 #include <linux/stop_machine.h>
47 #include <linux/sort.h>
48 #include <linux/pfn.h>
49 #include <linux/backing-dev.h>
50 #include <linux/fault-inject.h>
51 #include <linux/page-isolation.h>
52 #include <linux/page_ext.h>
53 #include <linux/debugobjects.h>
54 #include <linux/kmemleak.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <trace/events/oom.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/migrate.h>
61 #include <linux/hugetlb.h>
62 #include <linux/sched/rt.h>
63 #include <linux/sched/mm.h>
64 #include <linux/page_owner.h>
65 #include <linux/kthread.h>
66 #include <linux/memcontrol.h>
67 #include <linux/ftrace.h>
68 #include <linux/lockdep.h>
69 #include <linux/nmi.h>
70 #include <linux/psi.h>
71
72 #include <asm/sections.h>
73 #include <asm/tlbflush.h>
74 #include <asm/div64.h>
75 #include "internal.h"
76
77 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
78 static DEFINE_MUTEX(pcp_batch_high_lock);
79 #define MIN_PERCPU_PAGELIST_FRACTION (8)
80
81 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
82 DEFINE_PER_CPU(int, numa_node);
83 EXPORT_PER_CPU_SYMBOL(numa_node);
84 #endif
85
86 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
87 /*
88 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
89 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
90 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
91 * defined in <linux/topology.h>.
92 */
93 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
94 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
95 int _node_numa_mem_[MAX_NUMNODES];
96 #endif
97
98 /* work_structs for global per-cpu drains */
99 DEFINE_MUTEX(pcpu_drain_mutex);
100 DEFINE_PER_CPU(struct work_struct, pcpu_drain);
101
102 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
103 volatile unsigned long latent_entropy __latent_entropy;
104 EXPORT_SYMBOL(latent_entropy);
105 #endif
106
107 /*
108 * Array of node states.
109 */
110 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
111 [N_POSSIBLE] = NODE_MASK_ALL,
112 [N_ONLINE] = { { [0] = 1UL } },
113 #ifndef CONFIG_NUMA
114 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
115 #ifdef CONFIG_HIGHMEM
116 [N_HIGH_MEMORY] = { { [0] = 1UL } },
117 #endif
118 [N_MEMORY] = { { [0] = 1UL } },
119 [N_CPU] = { { [0] = 1UL } },
120 #endif /* NUMA */
121 };
122 EXPORT_SYMBOL(node_states);
123
124 /* Protect totalram_pages and zone->managed_pages */
125 static DEFINE_SPINLOCK(managed_page_count_lock);
126
127 unsigned long totalram_pages __read_mostly;
128 unsigned long totalreserve_pages __read_mostly;
129 unsigned long totalcma_pages __read_mostly;
130
131 int percpu_pagelist_fraction;
132 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
133
134 #ifdef CONFIG_PM_SLEEP
135 /*
136 * The following functions are used by the suspend/hibernate code to temporarily
137 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
138 * while devices are suspended. To avoid races with the suspend/hibernate code,
139 * they should always be called with pm_mutex held (gfp_allowed_mask also should
140 * only be modified with pm_mutex held, unless the suspend/hibernate code is
141 * guaranteed not to run in parallel with that modification).
142 */
143
144 static gfp_t saved_gfp_mask;
145
146 void pm_restore_gfp_mask(void)
147 {
148 WARN_ON(!mutex_is_locked(&pm_mutex));
149 if (saved_gfp_mask) {
150 gfp_allowed_mask = saved_gfp_mask;
151 saved_gfp_mask = 0;
152 }
153 }
154
155 void pm_restrict_gfp_mask(void)
156 {
157 WARN_ON(!mutex_is_locked(&pm_mutex));
158 WARN_ON(saved_gfp_mask);
159 saved_gfp_mask = gfp_allowed_mask;
160 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
161 }
162
163 bool pm_suspended_storage(void)
164 {
165 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
166 return false;
167 return true;
168 }
169 #endif /* CONFIG_PM_SLEEP */
170
171 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
172 unsigned int pageblock_order __read_mostly;
173 #endif
174
175 static void __free_pages_ok(struct page *page, unsigned int order);
176
177 /*
178 * results with 256, 32 in the lowmem_reserve sysctl:
179 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
180 * 1G machine -> (16M dma, 784M normal, 224M high)
181 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
182 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
183 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
184 *
185 * TBD: should special case ZONE_DMA32 machines here - in those we normally
186 * don't need any ZONE_NORMAL reservation
187 */
188 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
189 #ifdef CONFIG_ZONE_DMA
190 256,
191 #endif
192 #ifdef CONFIG_ZONE_DMA32
193 256,
194 #endif
195 #ifdef CONFIG_HIGHMEM
196 32,
197 #endif
198 32,
199 };
200
201 EXPORT_SYMBOL(totalram_pages);
202
203 static char * const zone_names[MAX_NR_ZONES] = {
204 #ifdef CONFIG_ZONE_DMA
205 "DMA",
206 #endif
207 #ifdef CONFIG_ZONE_DMA32
208 "DMA32",
209 #endif
210 "Normal",
211 #ifdef CONFIG_HIGHMEM
212 "HighMem",
213 #endif
214 "Movable",
215 #ifdef CONFIG_ZONE_DEVICE
216 "Device",
217 #endif
218 };
219
220 char * const migratetype_names[MIGRATE_TYPES] = {
221 "Unmovable",
222 "Movable",
223 "Reclaimable",
224 "HighAtomic",
225 #ifdef CONFIG_CMA
226 "CMA",
227 #endif
228 #ifdef CONFIG_MEMORY_ISOLATION
229 "Isolate",
230 #endif
231 };
232
233 compound_page_dtor * const compound_page_dtors[] = {
234 NULL,
235 free_compound_page,
236 #ifdef CONFIG_HUGETLB_PAGE
237 free_huge_page,
238 #endif
239 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
240 free_transhuge_page,
241 #endif
242 };
243
244 /*
245 * Try to keep at least this much lowmem free. Do not allow normal
246 * allocations below this point, only high priority ones. Automatically
247 * tuned according to the amount of memory in the system.
248 */
249 int min_free_kbytes = 1024;
250 int user_min_free_kbytes = -1;
251 int watermark_scale_factor = 10;
252
253 /*
254 * Extra memory for the system to try freeing. Used to temporarily
255 * free memory, to make space for new workloads. Anyone can allocate
256 * down to the min watermarks controlled by min_free_kbytes above.
257 */
258 int extra_free_kbytes = 0;
259
260 static unsigned long __meminitdata nr_kernel_pages;
261 static unsigned long __meminitdata nr_all_pages;
262 static unsigned long __meminitdata dma_reserve;
263
264 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
265 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
266 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
267 static unsigned long __initdata required_kernelcore;
268 static unsigned long __initdata required_movablecore;
269 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
270 static bool mirrored_kernelcore;
271
272 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
273 int movable_zone;
274 EXPORT_SYMBOL(movable_zone);
275 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
276
277 #if MAX_NUMNODES > 1
278 int nr_node_ids __read_mostly = MAX_NUMNODES;
279 int nr_online_nodes __read_mostly = 1;
280 EXPORT_SYMBOL(nr_node_ids);
281 EXPORT_SYMBOL(nr_online_nodes);
282 #endif
283
284 int page_group_by_mobility_disabled __read_mostly;
285
286 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
287
288 /*
289 * Determine how many pages need to be initialized durig early boot
290 * (non-deferred initialization).
291 * The value of first_deferred_pfn will be set later, once non-deferred pages
292 * are initialized, but for now set it ULONG_MAX.
293 */
294 static inline void reset_deferred_meminit(pg_data_t *pgdat)
295 {
296 phys_addr_t start_addr, end_addr;
297 unsigned long max_pgcnt;
298 unsigned long reserved;
299
300 /*
301 * Initialise at least 2G of a node but also take into account that
302 * two large system hashes that can take up 1GB for 0.25TB/node.
303 */
304 max_pgcnt = max(2UL << (30 - PAGE_SHIFT),
305 (pgdat->node_spanned_pages >> 8));
306
307 /*
308 * Compensate the all the memblock reservations (e.g. crash kernel)
309 * from the initial estimation to make sure we will initialize enough
310 * memory to boot.
311 */
312 start_addr = PFN_PHYS(pgdat->node_start_pfn);
313 end_addr = PFN_PHYS(pgdat->node_start_pfn + max_pgcnt);
314 reserved = memblock_reserved_memory_within(start_addr, end_addr);
315 max_pgcnt += PHYS_PFN(reserved);
316
317 pgdat->static_init_pgcnt = min(max_pgcnt, pgdat->node_spanned_pages);
318 pgdat->first_deferred_pfn = ULONG_MAX;
319 }
320
321 /* Returns true if the struct page for the pfn is uninitialised */
322 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
323 {
324 int nid = early_pfn_to_nid(pfn);
325
326 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
327 return true;
328
329 return false;
330 }
331
332 /*
333 * Returns false when the remaining initialisation should be deferred until
334 * later in the boot cycle when it can be parallelised.
335 */
336 static inline bool update_defer_init(pg_data_t *pgdat,
337 unsigned long pfn, unsigned long zone_end,
338 unsigned long *nr_initialised)
339 {
340 /* Always populate low zones for address-contrained allocations */
341 if (zone_end < pgdat_end_pfn(pgdat))
342 return true;
343 (*nr_initialised)++;
344 if ((*nr_initialised > pgdat->static_init_pgcnt) &&
345 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
346 pgdat->first_deferred_pfn = pfn;
347 return false;
348 }
349
350 return true;
351 }
352 #else
353 static inline void reset_deferred_meminit(pg_data_t *pgdat)
354 {
355 }
356
357 static inline bool early_page_uninitialised(unsigned long pfn)
358 {
359 return false;
360 }
361
362 static inline bool update_defer_init(pg_data_t *pgdat,
363 unsigned long pfn, unsigned long zone_end,
364 unsigned long *nr_initialised)
365 {
366 return true;
367 }
368 #endif
369
370 /* Return a pointer to the bitmap storing bits affecting a block of pages */
371 static inline unsigned long *get_pageblock_bitmap(struct page *page,
372 unsigned long pfn)
373 {
374 #ifdef CONFIG_SPARSEMEM
375 return __pfn_to_section(pfn)->pageblock_flags;
376 #else
377 return page_zone(page)->pageblock_flags;
378 #endif /* CONFIG_SPARSEMEM */
379 }
380
381 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
382 {
383 #ifdef CONFIG_SPARSEMEM
384 pfn &= (PAGES_PER_SECTION-1);
385 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
386 #else
387 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
388 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
389 #endif /* CONFIG_SPARSEMEM */
390 }
391
392 /**
393 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
394 * @page: The page within the block of interest
395 * @pfn: The target page frame number
396 * @end_bitidx: The last bit of interest to retrieve
397 * @mask: mask of bits that the caller is interested in
398 *
399 * Return: pageblock_bits flags
400 */
401 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
402 unsigned long pfn,
403 unsigned long end_bitidx,
404 unsigned long mask)
405 {
406 unsigned long *bitmap;
407 unsigned long bitidx, word_bitidx;
408 unsigned long word;
409
410 bitmap = get_pageblock_bitmap(page, pfn);
411 bitidx = pfn_to_bitidx(page, pfn);
412 word_bitidx = bitidx / BITS_PER_LONG;
413 bitidx &= (BITS_PER_LONG-1);
414
415 word = bitmap[word_bitidx];
416 bitidx += end_bitidx;
417 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
418 }
419
420 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
421 unsigned long end_bitidx,
422 unsigned long mask)
423 {
424 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
425 }
426
427 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
428 {
429 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
430 }
431
432 /**
433 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
434 * @page: The page within the block of interest
435 * @flags: The flags to set
436 * @pfn: The target page frame number
437 * @end_bitidx: The last bit of interest
438 * @mask: mask of bits that the caller is interested in
439 */
440 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
441 unsigned long pfn,
442 unsigned long end_bitidx,
443 unsigned long mask)
444 {
445 unsigned long *bitmap;
446 unsigned long bitidx, word_bitidx;
447 unsigned long old_word, word;
448
449 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
450
451 bitmap = get_pageblock_bitmap(page, pfn);
452 bitidx = pfn_to_bitidx(page, pfn);
453 word_bitidx = bitidx / BITS_PER_LONG;
454 bitidx &= (BITS_PER_LONG-1);
455
456 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
457
458 bitidx += end_bitidx;
459 mask <<= (BITS_PER_LONG - bitidx - 1);
460 flags <<= (BITS_PER_LONG - bitidx - 1);
461
462 word = READ_ONCE(bitmap[word_bitidx]);
463 for (;;) {
464 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
465 if (word == old_word)
466 break;
467 word = old_word;
468 }
469 }
470
471 void set_pageblock_migratetype(struct page *page, int migratetype)
472 {
473 if (unlikely(page_group_by_mobility_disabled &&
474 migratetype < MIGRATE_PCPTYPES))
475 migratetype = MIGRATE_UNMOVABLE;
476
477 set_pageblock_flags_group(page, (unsigned long)migratetype,
478 PB_migrate, PB_migrate_end);
479 }
480
481 #ifdef CONFIG_DEBUG_VM
482 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
483 {
484 int ret = 0;
485 unsigned seq;
486 unsigned long pfn = page_to_pfn(page);
487 unsigned long sp, start_pfn;
488
489 do {
490 seq = zone_span_seqbegin(zone);
491 start_pfn = zone->zone_start_pfn;
492 sp = zone->spanned_pages;
493 if (!zone_spans_pfn(zone, pfn))
494 ret = 1;
495 } while (zone_span_seqretry(zone, seq));
496
497 if (ret)
498 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
499 pfn, zone_to_nid(zone), zone->name,
500 start_pfn, start_pfn + sp);
501
502 return ret;
503 }
504
505 static int page_is_consistent(struct zone *zone, struct page *page)
506 {
507 if (!pfn_valid_within(page_to_pfn(page)))
508 return 0;
509 if (zone != page_zone(page))
510 return 0;
511
512 return 1;
513 }
514 /*
515 * Temporary debugging check for pages not lying within a given zone.
516 */
517 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
518 {
519 if (page_outside_zone_boundaries(zone, page))
520 return 1;
521 if (!page_is_consistent(zone, page))
522 return 1;
523
524 return 0;
525 }
526 #else
527 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
528 {
529 return 0;
530 }
531 #endif
532
533 static void bad_page(struct page *page, const char *reason,
534 unsigned long bad_flags)
535 {
536 static unsigned long resume;
537 static unsigned long nr_shown;
538 static unsigned long nr_unshown;
539
540 /*
541 * Allow a burst of 60 reports, then keep quiet for that minute;
542 * or allow a steady drip of one report per second.
543 */
544 if (nr_shown == 60) {
545 if (time_before(jiffies, resume)) {
546 nr_unshown++;
547 goto out;
548 }
549 if (nr_unshown) {
550 pr_alert(
551 "BUG: Bad page state: %lu messages suppressed\n",
552 nr_unshown);
553 nr_unshown = 0;
554 }
555 nr_shown = 0;
556 }
557 if (nr_shown++ == 0)
558 resume = jiffies + 60 * HZ;
559
560 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
561 current->comm, page_to_pfn(page));
562 __dump_page(page, reason);
563 bad_flags &= page->flags;
564 if (bad_flags)
565 pr_alert("bad because of flags: %#lx(%pGp)\n",
566 bad_flags, &bad_flags);
567 dump_page_owner(page);
568
569 print_modules();
570 dump_stack();
571 out:
572 /* Leave bad fields for debug, except PageBuddy could make trouble */
573 page_mapcount_reset(page); /* remove PageBuddy */
574 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
575 }
576
577 /*
578 * Higher-order pages are called "compound pages". They are structured thusly:
579 *
580 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
581 *
582 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
583 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
584 *
585 * The first tail page's ->compound_dtor holds the offset in array of compound
586 * page destructors. See compound_page_dtors.
587 *
588 * The first tail page's ->compound_order holds the order of allocation.
589 * This usage means that zero-order pages may not be compound.
590 */
591
592 void free_compound_page(struct page *page)
593 {
594 __free_pages_ok(page, compound_order(page));
595 }
596
597 void prep_compound_page(struct page *page, unsigned int order)
598 {
599 int i;
600 int nr_pages = 1 << order;
601
602 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
603 set_compound_order(page, order);
604 __SetPageHead(page);
605 for (i = 1; i < nr_pages; i++) {
606 struct page *p = page + i;
607 set_page_count(p, 0);
608 p->mapping = TAIL_MAPPING;
609 set_compound_head(p, page);
610 }
611 atomic_set(compound_mapcount_ptr(page), -1);
612 }
613
614 #ifdef CONFIG_DEBUG_PAGEALLOC
615 unsigned int _debug_guardpage_minorder;
616 bool _debug_pagealloc_enabled __read_mostly
617 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
618 EXPORT_SYMBOL(_debug_pagealloc_enabled);
619 bool _debug_guardpage_enabled __read_mostly;
620
621 static int __init early_debug_pagealloc(char *buf)
622 {
623 if (!buf)
624 return -EINVAL;
625 return kstrtobool(buf, &_debug_pagealloc_enabled);
626 }
627 early_param("debug_pagealloc", early_debug_pagealloc);
628
629 static bool need_debug_guardpage(void)
630 {
631 /* If we don't use debug_pagealloc, we don't need guard page */
632 if (!debug_pagealloc_enabled())
633 return false;
634
635 if (!debug_guardpage_minorder())
636 return false;
637
638 return true;
639 }
640
641 static void init_debug_guardpage(void)
642 {
643 if (!debug_pagealloc_enabled())
644 return;
645
646 if (!debug_guardpage_minorder())
647 return;
648
649 _debug_guardpage_enabled = true;
650 }
651
652 struct page_ext_operations debug_guardpage_ops = {
653 .need = need_debug_guardpage,
654 .init = init_debug_guardpage,
655 };
656
657 static int __init debug_guardpage_minorder_setup(char *buf)
658 {
659 unsigned long res;
660
661 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
662 pr_err("Bad debug_guardpage_minorder value\n");
663 return 0;
664 }
665 _debug_guardpage_minorder = res;
666 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
667 return 0;
668 }
669 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
670
671 static inline bool set_page_guard(struct zone *zone, struct page *page,
672 unsigned int order, int migratetype)
673 {
674 struct page_ext *page_ext;
675
676 if (!debug_guardpage_enabled())
677 return false;
678
679 if (order >= debug_guardpage_minorder())
680 return false;
681
682 page_ext = lookup_page_ext(page);
683 if (unlikely(!page_ext))
684 return false;
685
686 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
687
688 INIT_LIST_HEAD(&page->lru);
689 set_page_private(page, order);
690 /* Guard pages are not available for any usage */
691 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
692
693 return true;
694 }
695
696 static inline void clear_page_guard(struct zone *zone, struct page *page,
697 unsigned int order, int migratetype)
698 {
699 struct page_ext *page_ext;
700
701 if (!debug_guardpage_enabled())
702 return;
703
704 page_ext = lookup_page_ext(page);
705 if (unlikely(!page_ext))
706 return;
707
708 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
709
710 set_page_private(page, 0);
711 if (!is_migrate_isolate(migratetype))
712 __mod_zone_freepage_state(zone, (1 << order), migratetype);
713 }
714 #else
715 struct page_ext_operations debug_guardpage_ops;
716 static inline bool set_page_guard(struct zone *zone, struct page *page,
717 unsigned int order, int migratetype) { return false; }
718 static inline void clear_page_guard(struct zone *zone, struct page *page,
719 unsigned int order, int migratetype) {}
720 #endif
721
722 static inline void set_page_order(struct page *page, unsigned int order)
723 {
724 set_page_private(page, order);
725 __SetPageBuddy(page);
726 }
727
728 static inline void rmv_page_order(struct page *page)
729 {
730 __ClearPageBuddy(page);
731 set_page_private(page, 0);
732 }
733
734 /*
735 * This function checks whether a page is free && is the buddy
736 * we can do coalesce a page and its buddy if
737 * (a) the buddy is not in a hole (check before calling!) &&
738 * (b) the buddy is in the buddy system &&
739 * (c) a page and its buddy have the same order &&
740 * (d) a page and its buddy are in the same zone.
741 *
742 * For recording whether a page is in the buddy system, we set ->_mapcount
743 * PAGE_BUDDY_MAPCOUNT_VALUE.
744 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
745 * serialized by zone->lock.
746 *
747 * For recording page's order, we use page_private(page).
748 */
749 static inline int page_is_buddy(struct page *page, struct page *buddy,
750 unsigned int order)
751 {
752 if (page_is_guard(buddy) && page_order(buddy) == order) {
753 if (page_zone_id(page) != page_zone_id(buddy))
754 return 0;
755
756 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
757
758 return 1;
759 }
760
761 if (PageBuddy(buddy) && page_order(buddy) == order) {
762 /*
763 * zone check is done late to avoid uselessly
764 * calculating zone/node ids for pages that could
765 * never merge.
766 */
767 if (page_zone_id(page) != page_zone_id(buddy))
768 return 0;
769
770 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
771
772 return 1;
773 }
774 return 0;
775 }
776
777 /*
778 * Freeing function for a buddy system allocator.
779 *
780 * The concept of a buddy system is to maintain direct-mapped table
781 * (containing bit values) for memory blocks of various "orders".
782 * The bottom level table contains the map for the smallest allocatable
783 * units of memory (here, pages), and each level above it describes
784 * pairs of units from the levels below, hence, "buddies".
785 * At a high level, all that happens here is marking the table entry
786 * at the bottom level available, and propagating the changes upward
787 * as necessary, plus some accounting needed to play nicely with other
788 * parts of the VM system.
789 * At each level, we keep a list of pages, which are heads of continuous
790 * free pages of length of (1 << order) and marked with _mapcount
791 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
792 * field.
793 * So when we are allocating or freeing one, we can derive the state of the
794 * other. That is, if we allocate a small block, and both were
795 * free, the remainder of the region must be split into blocks.
796 * If a block is freed, and its buddy is also free, then this
797 * triggers coalescing into a block of larger size.
798 *
799 * -- nyc
800 */
801
802 static inline void __free_one_page(struct page *page,
803 unsigned long pfn,
804 struct zone *zone, unsigned int order,
805 int migratetype)
806 {
807 unsigned long combined_pfn;
808 unsigned long uninitialized_var(buddy_pfn);
809 struct page *buddy;
810 unsigned int max_order;
811
812 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
813
814 VM_BUG_ON(!zone_is_initialized(zone));
815 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
816
817 VM_BUG_ON(migratetype == -1);
818 if (likely(!is_migrate_isolate(migratetype)))
819 __mod_zone_freepage_state(zone, 1 << order, migratetype);
820
821 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
822 VM_BUG_ON_PAGE(bad_range(zone, page), page);
823
824 continue_merging:
825 while (order < max_order - 1) {
826 buddy_pfn = __find_buddy_pfn(pfn, order);
827 buddy = page + (buddy_pfn - pfn);
828
829 if (!pfn_valid_within(buddy_pfn))
830 goto done_merging;
831 if (!page_is_buddy(page, buddy, order))
832 goto done_merging;
833 /*
834 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
835 * merge with it and move up one order.
836 */
837 if (page_is_guard(buddy)) {
838 clear_page_guard(zone, buddy, order, migratetype);
839 } else {
840 list_del(&buddy->lru);
841 zone->free_area[order].nr_free--;
842 rmv_page_order(buddy);
843 }
844 combined_pfn = buddy_pfn & pfn;
845 page = page + (combined_pfn - pfn);
846 pfn = combined_pfn;
847 order++;
848 }
849 if (max_order < MAX_ORDER) {
850 /* If we are here, it means order is >= pageblock_order.
851 * We want to prevent merge between freepages on isolate
852 * pageblock and normal pageblock. Without this, pageblock
853 * isolation could cause incorrect freepage or CMA accounting.
854 *
855 * We don't want to hit this code for the more frequent
856 * low-order merging.
857 */
858 if (unlikely(has_isolate_pageblock(zone))) {
859 int buddy_mt;
860
861 buddy_pfn = __find_buddy_pfn(pfn, order);
862 buddy = page + (buddy_pfn - pfn);
863 buddy_mt = get_pageblock_migratetype(buddy);
864
865 if (migratetype != buddy_mt
866 && (is_migrate_isolate(migratetype) ||
867 is_migrate_isolate(buddy_mt)))
868 goto done_merging;
869 }
870 max_order++;
871 goto continue_merging;
872 }
873
874 done_merging:
875 set_page_order(page, order);
876
877 /*
878 * If this is not the largest possible page, check if the buddy
879 * of the next-highest order is free. If it is, it's possible
880 * that pages are being freed that will coalesce soon. In case,
881 * that is happening, add the free page to the tail of the list
882 * so it's less likely to be used soon and more likely to be merged
883 * as a higher order page
884 */
885 if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
886 struct page *higher_page, *higher_buddy;
887 combined_pfn = buddy_pfn & pfn;
888 higher_page = page + (combined_pfn - pfn);
889 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
890 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
891 if (pfn_valid_within(buddy_pfn) &&
892 page_is_buddy(higher_page, higher_buddy, order + 1)) {
893 list_add_tail(&page->lru,
894 &zone->free_area[order].free_list[migratetype]);
895 goto out;
896 }
897 }
898
899 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
900 out:
901 zone->free_area[order].nr_free++;
902 }
903
904 /*
905 * A bad page could be due to a number of fields. Instead of multiple branches,
906 * try and check multiple fields with one check. The caller must do a detailed
907 * check if necessary.
908 */
909 static inline bool page_expected_state(struct page *page,
910 unsigned long check_flags)
911 {
912 if (unlikely(atomic_read(&page->_mapcount) != -1))
913 return false;
914
915 if (unlikely((unsigned long)page->mapping |
916 page_ref_count(page) |
917 #ifdef CONFIG_MEMCG
918 (unsigned long)page->mem_cgroup |
919 #endif
920 (page->flags & check_flags)))
921 return false;
922
923 return true;
924 }
925
926 static void free_pages_check_bad(struct page *page)
927 {
928 const char *bad_reason;
929 unsigned long bad_flags;
930
931 bad_reason = NULL;
932 bad_flags = 0;
933
934 if (unlikely(atomic_read(&page->_mapcount) != -1))
935 bad_reason = "nonzero mapcount";
936 if (unlikely(page->mapping != NULL))
937 bad_reason = "non-NULL mapping";
938 if (unlikely(page_ref_count(page) != 0))
939 bad_reason = "nonzero _refcount";
940 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
941 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
942 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
943 }
944 #ifdef CONFIG_MEMCG
945 if (unlikely(page->mem_cgroup))
946 bad_reason = "page still charged to cgroup";
947 #endif
948 bad_page(page, bad_reason, bad_flags);
949 }
950
951 static inline int free_pages_check(struct page *page)
952 {
953 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
954 return 0;
955
956 /* Something has gone sideways, find it */
957 free_pages_check_bad(page);
958 return 1;
959 }
960
961 static int free_tail_pages_check(struct page *head_page, struct page *page)
962 {
963 int ret = 1;
964
965 /*
966 * We rely page->lru.next never has bit 0 set, unless the page
967 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
968 */
969 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
970
971 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
972 ret = 0;
973 goto out;
974 }
975 switch (page - head_page) {
976 case 1:
977 /* the first tail page: ->mapping is compound_mapcount() */
978 if (unlikely(compound_mapcount(page))) {
979 bad_page(page, "nonzero compound_mapcount", 0);
980 goto out;
981 }
982 break;
983 case 2:
984 /*
985 * the second tail page: ->mapping is
986 * page_deferred_list().next -- ignore value.
987 */
988 break;
989 default:
990 if (page->mapping != TAIL_MAPPING) {
991 bad_page(page, "corrupted mapping in tail page", 0);
992 goto out;
993 }
994 break;
995 }
996 if (unlikely(!PageTail(page))) {
997 bad_page(page, "PageTail not set", 0);
998 goto out;
999 }
1000 if (unlikely(compound_head(page) != head_page)) {
1001 bad_page(page, "compound_head not consistent", 0);
1002 goto out;
1003 }
1004 ret = 0;
1005 out:
1006 page->mapping = NULL;
1007 clear_compound_head(page);
1008 return ret;
1009 }
1010
1011 static __always_inline bool free_pages_prepare(struct page *page,
1012 unsigned int order, bool check_free)
1013 {
1014 int bad = 0;
1015
1016 VM_BUG_ON_PAGE(PageTail(page), page);
1017
1018 trace_mm_page_free(page, order);
1019
1020 /*
1021 * Check tail pages before head page information is cleared to
1022 * avoid checking PageCompound for order-0 pages.
1023 */
1024 if (unlikely(order)) {
1025 bool compound = PageCompound(page);
1026 int i;
1027
1028 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1029
1030 if (compound)
1031 ClearPageDoubleMap(page);
1032 for (i = 1; i < (1 << order); i++) {
1033 if (compound)
1034 bad += free_tail_pages_check(page, page + i);
1035 if (unlikely(free_pages_check(page + i))) {
1036 bad++;
1037 continue;
1038 }
1039 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1040 }
1041 }
1042 if (PageMappingFlags(page))
1043 page->mapping = NULL;
1044 if (memcg_kmem_enabled() && PageKmemcg(page))
1045 memcg_kmem_uncharge(page, order);
1046 if (check_free)
1047 bad += free_pages_check(page);
1048 if (bad)
1049 return false;
1050
1051 page_cpupid_reset_last(page);
1052 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1053 reset_page_owner(page, order);
1054
1055 if (!PageHighMem(page)) {
1056 debug_check_no_locks_freed(page_address(page),
1057 PAGE_SIZE << order);
1058 debug_check_no_obj_freed(page_address(page),
1059 PAGE_SIZE << order);
1060 }
1061 arch_free_page(page, order);
1062 kernel_poison_pages(page, 1 << order, 0);
1063 kernel_map_pages(page, 1 << order, 0);
1064 kasan_free_pages(page, order);
1065
1066 return true;
1067 }
1068
1069 #ifdef CONFIG_DEBUG_VM
1070 static inline bool free_pcp_prepare(struct page *page)
1071 {
1072 return free_pages_prepare(page, 0, true);
1073 }
1074
1075 static inline bool bulkfree_pcp_prepare(struct page *page)
1076 {
1077 return false;
1078 }
1079 #else
1080 static bool free_pcp_prepare(struct page *page)
1081 {
1082 return free_pages_prepare(page, 0, false);
1083 }
1084
1085 static bool bulkfree_pcp_prepare(struct page *page)
1086 {
1087 return free_pages_check(page);
1088 }
1089 #endif /* CONFIG_DEBUG_VM */
1090
1091 /*
1092 * Frees a number of pages from the PCP lists
1093 * Assumes all pages on list are in same zone, and of same order.
1094 * count is the number of pages to free.
1095 *
1096 * If the zone was previously in an "all pages pinned" state then look to
1097 * see if this freeing clears that state.
1098 *
1099 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1100 * pinned" detection logic.
1101 */
1102 static void free_pcppages_bulk(struct zone *zone, int count,
1103 struct per_cpu_pages *pcp)
1104 {
1105 int migratetype = 0;
1106 int batch_free = 0;
1107 bool isolated_pageblocks;
1108
1109 spin_lock(&zone->lock);
1110 isolated_pageblocks = has_isolate_pageblock(zone);
1111
1112 while (count) {
1113 struct page *page;
1114 struct list_head *list;
1115
1116 /*
1117 * Remove pages from lists in a round-robin fashion. A
1118 * batch_free count is maintained that is incremented when an
1119 * empty list is encountered. This is so more pages are freed
1120 * off fuller lists instead of spinning excessively around empty
1121 * lists
1122 */
1123 do {
1124 batch_free++;
1125 if (++migratetype == MIGRATE_PCPTYPES)
1126 migratetype = 0;
1127 list = &pcp->lists[migratetype];
1128 } while (list_empty(list));
1129
1130 /* This is the only non-empty list. Free them all. */
1131 if (batch_free == MIGRATE_PCPTYPES)
1132 batch_free = count;
1133
1134 do {
1135 int mt; /* migratetype of the to-be-freed page */
1136
1137 page = list_last_entry(list, struct page, lru);
1138 /* must delete as __free_one_page list manipulates */
1139 list_del(&page->lru);
1140
1141 mt = get_pcppage_migratetype(page);
1142 /* MIGRATE_ISOLATE page should not go to pcplists */
1143 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1144 /* Pageblock could have been isolated meanwhile */
1145 if (unlikely(isolated_pageblocks))
1146 mt = get_pageblock_migratetype(page);
1147
1148 if (bulkfree_pcp_prepare(page))
1149 continue;
1150
1151 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
1152 trace_mm_page_pcpu_drain(page, 0, mt);
1153 } while (--count && --batch_free && !list_empty(list));
1154 }
1155 spin_unlock(&zone->lock);
1156 }
1157
1158 static void free_one_page(struct zone *zone,
1159 struct page *page, unsigned long pfn,
1160 unsigned int order,
1161 int migratetype)
1162 {
1163 spin_lock(&zone->lock);
1164 if (unlikely(has_isolate_pageblock(zone) ||
1165 is_migrate_isolate(migratetype))) {
1166 migratetype = get_pfnblock_migratetype(page, pfn);
1167 }
1168 __free_one_page(page, pfn, zone, order, migratetype);
1169 spin_unlock(&zone->lock);
1170 }
1171
1172 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1173 unsigned long zone, int nid)
1174 {
1175 set_page_links(page, zone, nid, pfn);
1176 init_page_count(page);
1177 page_mapcount_reset(page);
1178 page_cpupid_reset_last(page);
1179
1180 INIT_LIST_HEAD(&page->lru);
1181 #ifdef WANT_PAGE_VIRTUAL
1182 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1183 if (!is_highmem_idx(zone))
1184 set_page_address(page, __va(pfn << PAGE_SHIFT));
1185 #endif
1186 }
1187
1188 static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
1189 int nid)
1190 {
1191 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
1192 }
1193
1194 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1195 static void __meminit init_reserved_page(unsigned long pfn)
1196 {
1197 pg_data_t *pgdat;
1198 int nid, zid;
1199
1200 if (!early_page_uninitialised(pfn))
1201 return;
1202
1203 nid = early_pfn_to_nid(pfn);
1204 pgdat = NODE_DATA(nid);
1205
1206 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1207 struct zone *zone = &pgdat->node_zones[zid];
1208
1209 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1210 break;
1211 }
1212 __init_single_pfn(pfn, zid, nid);
1213 }
1214 #else
1215 static inline void init_reserved_page(unsigned long pfn)
1216 {
1217 }
1218 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1219
1220 /*
1221 * Initialised pages do not have PageReserved set. This function is
1222 * called for each range allocated by the bootmem allocator and
1223 * marks the pages PageReserved. The remaining valid pages are later
1224 * sent to the buddy page allocator.
1225 */
1226 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1227 {
1228 unsigned long start_pfn = PFN_DOWN(start);
1229 unsigned long end_pfn = PFN_UP(end);
1230
1231 for (; start_pfn < end_pfn; start_pfn++) {
1232 if (pfn_valid(start_pfn)) {
1233 struct page *page = pfn_to_page(start_pfn);
1234
1235 init_reserved_page(start_pfn);
1236
1237 /* Avoid false-positive PageTail() */
1238 INIT_LIST_HEAD(&page->lru);
1239
1240 SetPageReserved(page);
1241 }
1242 }
1243 }
1244
1245 static void __free_pages_ok(struct page *page, unsigned int order)
1246 {
1247 unsigned long flags;
1248 int migratetype;
1249 unsigned long pfn = page_to_pfn(page);
1250
1251 if (!free_pages_prepare(page, order, true))
1252 return;
1253
1254 migratetype = get_pfnblock_migratetype(page, pfn);
1255 local_irq_save(flags);
1256 __count_vm_events(PGFREE, 1 << order);
1257 free_one_page(page_zone(page), page, pfn, order, migratetype);
1258 local_irq_restore(flags);
1259 }
1260
1261 static void __init __free_pages_boot_core(struct page *page, unsigned int order)
1262 {
1263 unsigned int nr_pages = 1 << order;
1264 struct page *p = page;
1265 unsigned int loop;
1266
1267 prefetchw(p);
1268 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1269 prefetchw(p + 1);
1270 __ClearPageReserved(p);
1271 set_page_count(p, 0);
1272 }
1273 __ClearPageReserved(p);
1274 set_page_count(p, 0);
1275
1276 page_zone(page)->managed_pages += nr_pages;
1277 set_page_refcounted(page);
1278 __free_pages(page, order);
1279 }
1280
1281 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1282 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1283
1284 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1285
1286 int __meminit early_pfn_to_nid(unsigned long pfn)
1287 {
1288 static DEFINE_SPINLOCK(early_pfn_lock);
1289 int nid;
1290
1291 spin_lock(&early_pfn_lock);
1292 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1293 if (nid < 0)
1294 nid = first_online_node;
1295 spin_unlock(&early_pfn_lock);
1296
1297 return nid;
1298 }
1299 #endif
1300
1301 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1302 static inline bool __meminit __maybe_unused
1303 meminit_pfn_in_nid(unsigned long pfn, int node,
1304 struct mminit_pfnnid_cache *state)
1305 {
1306 int nid;
1307
1308 nid = __early_pfn_to_nid(pfn, state);
1309 if (nid >= 0 && nid != node)
1310 return false;
1311 return true;
1312 }
1313
1314 /* Only safe to use early in boot when initialisation is single-threaded */
1315 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1316 {
1317 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1318 }
1319
1320 #else
1321
1322 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1323 {
1324 return true;
1325 }
1326 static inline bool __meminit __maybe_unused
1327 meminit_pfn_in_nid(unsigned long pfn, int node,
1328 struct mminit_pfnnid_cache *state)
1329 {
1330 return true;
1331 }
1332 #endif
1333
1334
1335 void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1336 unsigned int order)
1337 {
1338 if (early_page_uninitialised(pfn))
1339 return;
1340 return __free_pages_boot_core(page, order);
1341 }
1342
1343 /*
1344 * Check that the whole (or subset of) a pageblock given by the interval of
1345 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1346 * with the migration of free compaction scanner. The scanners then need to
1347 * use only pfn_valid_within() check for arches that allow holes within
1348 * pageblocks.
1349 *
1350 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1351 *
1352 * It's possible on some configurations to have a setup like node0 node1 node0
1353 * i.e. it's possible that all pages within a zones range of pages do not
1354 * belong to a single zone. We assume that a border between node0 and node1
1355 * can occur within a single pageblock, but not a node0 node1 node0
1356 * interleaving within a single pageblock. It is therefore sufficient to check
1357 * the first and last page of a pageblock and avoid checking each individual
1358 * page in a pageblock.
1359 */
1360 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1361 unsigned long end_pfn, struct zone *zone)
1362 {
1363 struct page *start_page;
1364 struct page *end_page;
1365
1366 /* end_pfn is one past the range we are checking */
1367 end_pfn--;
1368
1369 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1370 return NULL;
1371
1372 start_page = pfn_to_online_page(start_pfn);
1373 if (!start_page)
1374 return NULL;
1375
1376 if (page_zone(start_page) != zone)
1377 return NULL;
1378
1379 end_page = pfn_to_page(end_pfn);
1380
1381 /* This gives a shorter code than deriving page_zone(end_page) */
1382 if (page_zone_id(start_page) != page_zone_id(end_page))
1383 return NULL;
1384
1385 return start_page;
1386 }
1387
1388 void set_zone_contiguous(struct zone *zone)
1389 {
1390 unsigned long block_start_pfn = zone->zone_start_pfn;
1391 unsigned long block_end_pfn;
1392
1393 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1394 for (; block_start_pfn < zone_end_pfn(zone);
1395 block_start_pfn = block_end_pfn,
1396 block_end_pfn += pageblock_nr_pages) {
1397
1398 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1399
1400 if (!__pageblock_pfn_to_page(block_start_pfn,
1401 block_end_pfn, zone))
1402 return;
1403 }
1404
1405 /* We confirm that there is no hole */
1406 zone->contiguous = true;
1407 }
1408
1409 void clear_zone_contiguous(struct zone *zone)
1410 {
1411 zone->contiguous = false;
1412 }
1413
1414 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1415 static void __init deferred_free_range(struct page *page,
1416 unsigned long pfn, int nr_pages)
1417 {
1418 int i;
1419
1420 if (!page)
1421 return;
1422
1423 /* Free a large naturally-aligned chunk if possible */
1424 if (nr_pages == pageblock_nr_pages &&
1425 (pfn & (pageblock_nr_pages - 1)) == 0) {
1426 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1427 __free_pages_boot_core(page, pageblock_order);
1428 return;
1429 }
1430
1431 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1432 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1433 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1434 __free_pages_boot_core(page, 0);
1435 }
1436 }
1437
1438 /* Completion tracking for deferred_init_memmap() threads */
1439 static atomic_t pgdat_init_n_undone __initdata;
1440 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1441
1442 static inline void __init pgdat_init_report_one_done(void)
1443 {
1444 if (atomic_dec_and_test(&pgdat_init_n_undone))
1445 complete(&pgdat_init_all_done_comp);
1446 }
1447
1448 /* Initialise remaining memory on a node */
1449 static int __init deferred_init_memmap(void *data)
1450 {
1451 pg_data_t *pgdat = data;
1452 int nid = pgdat->node_id;
1453 struct mminit_pfnnid_cache nid_init_state = { };
1454 unsigned long start = jiffies;
1455 unsigned long nr_pages = 0;
1456 unsigned long walk_start, walk_end;
1457 int i, zid;
1458 struct zone *zone;
1459 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
1460 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1461
1462 if (first_init_pfn == ULONG_MAX) {
1463 pgdat_init_report_one_done();
1464 return 0;
1465 }
1466
1467 /* Bind memory initialisation thread to a local node if possible */
1468 if (!cpumask_empty(cpumask))
1469 set_cpus_allowed_ptr(current, cpumask);
1470
1471 /* Sanity check boundaries */
1472 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1473 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1474 pgdat->first_deferred_pfn = ULONG_MAX;
1475
1476 /* Only the highest zone is deferred so find it */
1477 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1478 zone = pgdat->node_zones + zid;
1479 if (first_init_pfn < zone_end_pfn(zone))
1480 break;
1481 }
1482
1483 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1484 unsigned long pfn, end_pfn;
1485 struct page *page = NULL;
1486 struct page *free_base_page = NULL;
1487 unsigned long free_base_pfn = 0;
1488 int nr_to_free = 0;
1489
1490 end_pfn = min(walk_end, zone_end_pfn(zone));
1491 pfn = first_init_pfn;
1492 if (pfn < walk_start)
1493 pfn = walk_start;
1494 if (pfn < zone->zone_start_pfn)
1495 pfn = zone->zone_start_pfn;
1496
1497 for (; pfn < end_pfn; pfn++) {
1498 if (!pfn_valid_within(pfn))
1499 goto free_range;
1500
1501 /*
1502 * Ensure pfn_valid is checked every
1503 * pageblock_nr_pages for memory holes
1504 */
1505 if ((pfn & (pageblock_nr_pages - 1)) == 0) {
1506 if (!pfn_valid(pfn)) {
1507 page = NULL;
1508 goto free_range;
1509 }
1510 }
1511
1512 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1513 page = NULL;
1514 goto free_range;
1515 }
1516
1517 /* Minimise pfn page lookups and scheduler checks */
1518 if (page && (pfn & (pageblock_nr_pages - 1)) != 0) {
1519 page++;
1520 } else {
1521 nr_pages += nr_to_free;
1522 deferred_free_range(free_base_page,
1523 free_base_pfn, nr_to_free);
1524 free_base_page = NULL;
1525 free_base_pfn = nr_to_free = 0;
1526
1527 page = pfn_to_page(pfn);
1528 cond_resched();
1529 }
1530
1531 if (page->flags) {
1532 VM_BUG_ON(page_zone(page) != zone);
1533 goto free_range;
1534 }
1535
1536 __init_single_page(page, pfn, zid, nid);
1537 if (!free_base_page) {
1538 free_base_page = page;
1539 free_base_pfn = pfn;
1540 nr_to_free = 0;
1541 }
1542 nr_to_free++;
1543
1544 /* Where possible, batch up pages for a single free */
1545 continue;
1546 free_range:
1547 /* Free the current block of pages to allocator */
1548 nr_pages += nr_to_free;
1549 deferred_free_range(free_base_page, free_base_pfn,
1550 nr_to_free);
1551 free_base_page = NULL;
1552 free_base_pfn = nr_to_free = 0;
1553 }
1554 /* Free the last block of pages to allocator */
1555 nr_pages += nr_to_free;
1556 deferred_free_range(free_base_page, free_base_pfn, nr_to_free);
1557
1558 first_init_pfn = max(end_pfn, first_init_pfn);
1559 }
1560
1561 /* Sanity check that the next zone really is unpopulated */
1562 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1563
1564 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1565 jiffies_to_msecs(jiffies - start));
1566
1567 pgdat_init_report_one_done();
1568 return 0;
1569 }
1570 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1571
1572 void __init page_alloc_init_late(void)
1573 {
1574 struct zone *zone;
1575
1576 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1577 int nid;
1578
1579 /* There will be num_node_state(N_MEMORY) threads */
1580 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1581 for_each_node_state(nid, N_MEMORY) {
1582 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1583 }
1584
1585 /* Block until all are initialised */
1586 wait_for_completion(&pgdat_init_all_done_comp);
1587
1588 /* Reinit limits that are based on free pages after the kernel is up */
1589 files_maxfiles_init();
1590 #endif
1591 #ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
1592 /* Discard memblock private memory */
1593 memblock_discard();
1594 #endif
1595
1596 for_each_populated_zone(zone)
1597 set_zone_contiguous(zone);
1598 }
1599
1600 #ifdef CONFIG_CMA
1601 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1602 void __init init_cma_reserved_pageblock(struct page *page)
1603 {
1604 unsigned i = pageblock_nr_pages;
1605 struct page *p = page;
1606
1607 do {
1608 __ClearPageReserved(p);
1609 set_page_count(p, 0);
1610 } while (++p, --i);
1611
1612 set_pageblock_migratetype(page, MIGRATE_CMA);
1613
1614 if (pageblock_order >= MAX_ORDER) {
1615 i = pageblock_nr_pages;
1616 p = page;
1617 do {
1618 set_page_refcounted(p);
1619 __free_pages(p, MAX_ORDER - 1);
1620 p += MAX_ORDER_NR_PAGES;
1621 } while (i -= MAX_ORDER_NR_PAGES);
1622 } else {
1623 set_page_refcounted(page);
1624 __free_pages(page, pageblock_order);
1625 }
1626
1627 adjust_managed_page_count(page, pageblock_nr_pages);
1628 }
1629 #endif
1630
1631 /*
1632 * The order of subdivision here is critical for the IO subsystem.
1633 * Please do not alter this order without good reasons and regression
1634 * testing. Specifically, as large blocks of memory are subdivided,
1635 * the order in which smaller blocks are delivered depends on the order
1636 * they're subdivided in this function. This is the primary factor
1637 * influencing the order in which pages are delivered to the IO
1638 * subsystem according to empirical testing, and this is also justified
1639 * by considering the behavior of a buddy system containing a single
1640 * large block of memory acted on by a series of small allocations.
1641 * This behavior is a critical factor in sglist merging's success.
1642 *
1643 * -- nyc
1644 */
1645 static inline void expand(struct zone *zone, struct page *page,
1646 int low, int high, struct free_area *area,
1647 int migratetype)
1648 {
1649 unsigned long size = 1 << high;
1650
1651 while (high > low) {
1652 area--;
1653 high--;
1654 size >>= 1;
1655 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1656
1657 /*
1658 * Mark as guard pages (or page), that will allow to
1659 * merge back to allocator when buddy will be freed.
1660 * Corresponding page table entries will not be touched,
1661 * pages will stay not present in virtual address space
1662 */
1663 if (set_page_guard(zone, &page[size], high, migratetype))
1664 continue;
1665
1666 list_add(&page[size].lru, &area->free_list[migratetype]);
1667 area->nr_free++;
1668 set_page_order(&page[size], high);
1669 }
1670 }
1671
1672 static void check_new_page_bad(struct page *page)
1673 {
1674 const char *bad_reason = NULL;
1675 unsigned long bad_flags = 0;
1676
1677 if (unlikely(atomic_read(&page->_mapcount) != -1))
1678 bad_reason = "nonzero mapcount";
1679 if (unlikely(page->mapping != NULL))
1680 bad_reason = "non-NULL mapping";
1681 if (unlikely(page_ref_count(page) != 0))
1682 bad_reason = "nonzero _count";
1683 if (unlikely(page->flags & __PG_HWPOISON)) {
1684 bad_reason = "HWPoisoned (hardware-corrupted)";
1685 bad_flags = __PG_HWPOISON;
1686 /* Don't complain about hwpoisoned pages */
1687 page_mapcount_reset(page); /* remove PageBuddy */
1688 return;
1689 }
1690 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1691 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1692 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1693 }
1694 #ifdef CONFIG_MEMCG
1695 if (unlikely(page->mem_cgroup))
1696 bad_reason = "page still charged to cgroup";
1697 #endif
1698 bad_page(page, bad_reason, bad_flags);
1699 }
1700
1701 /*
1702 * This page is about to be returned from the page allocator
1703 */
1704 static inline int check_new_page(struct page *page)
1705 {
1706 if (likely(page_expected_state(page,
1707 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1708 return 0;
1709
1710 check_new_page_bad(page);
1711 return 1;
1712 }
1713
1714 static inline bool free_pages_prezeroed(void)
1715 {
1716 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1717 page_poisoning_enabled();
1718 }
1719
1720 #ifdef CONFIG_DEBUG_VM
1721 static bool check_pcp_refill(struct page *page)
1722 {
1723 return false;
1724 }
1725
1726 static bool check_new_pcp(struct page *page)
1727 {
1728 return check_new_page(page);
1729 }
1730 #else
1731 static bool check_pcp_refill(struct page *page)
1732 {
1733 return check_new_page(page);
1734 }
1735 static bool check_new_pcp(struct page *page)
1736 {
1737 return false;
1738 }
1739 #endif /* CONFIG_DEBUG_VM */
1740
1741 static bool check_new_pages(struct page *page, unsigned int order)
1742 {
1743 int i;
1744 for (i = 0; i < (1 << order); i++) {
1745 struct page *p = page + i;
1746
1747 if (unlikely(check_new_page(p)))
1748 return true;
1749 }
1750
1751 return false;
1752 }
1753
1754 inline void post_alloc_hook(struct page *page, unsigned int order,
1755 gfp_t gfp_flags)
1756 {
1757 set_page_private(page, 0);
1758 set_page_refcounted(page);
1759
1760 arch_alloc_page(page, order);
1761 kernel_map_pages(page, 1 << order, 1);
1762 kasan_alloc_pages(page, order);
1763 kernel_poison_pages(page, 1 << order, 1);
1764 set_page_owner(page, order, gfp_flags);
1765 }
1766
1767 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1768 unsigned int alloc_flags)
1769 {
1770 int i;
1771
1772 post_alloc_hook(page, order, gfp_flags);
1773
1774 if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO))
1775 for (i = 0; i < (1 << order); i++)
1776 clear_highpage(page + i);
1777
1778 if (order && (gfp_flags & __GFP_COMP))
1779 prep_compound_page(page, order);
1780
1781 /*
1782 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1783 * allocate the page. The expectation is that the caller is taking
1784 * steps that will free more memory. The caller should avoid the page
1785 * being used for !PFMEMALLOC purposes.
1786 */
1787 if (alloc_flags & ALLOC_NO_WATERMARKS)
1788 set_page_pfmemalloc(page);
1789 else
1790 clear_page_pfmemalloc(page);
1791 }
1792
1793 /*
1794 * Go through the free lists for the given migratetype and remove
1795 * the smallest available page from the freelists
1796 */
1797 static inline
1798 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1799 int migratetype)
1800 {
1801 unsigned int current_order;
1802 struct free_area *area;
1803 struct page *page;
1804
1805 /* Find a page of the appropriate size in the preferred list */
1806 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1807 area = &(zone->free_area[current_order]);
1808 page = list_first_entry_or_null(&area->free_list[migratetype],
1809 struct page, lru);
1810 if (!page)
1811 continue;
1812 list_del(&page->lru);
1813 rmv_page_order(page);
1814 area->nr_free--;
1815 expand(zone, page, order, current_order, area, migratetype);
1816 set_pcppage_migratetype(page, migratetype);
1817 return page;
1818 }
1819
1820 return NULL;
1821 }
1822
1823
1824 /*
1825 * This array describes the order lists are fallen back to when
1826 * the free lists for the desirable migrate type are depleted
1827 */
1828 static int fallbacks[MIGRATE_TYPES][4] = {
1829 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1830 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1831 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
1832 #ifdef CONFIG_CMA
1833 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
1834 #endif
1835 #ifdef CONFIG_MEMORY_ISOLATION
1836 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
1837 #endif
1838 };
1839
1840 #ifdef CONFIG_CMA
1841 static struct page *__rmqueue_cma_fallback(struct zone *zone,
1842 unsigned int order)
1843 {
1844 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1845 }
1846 #else
1847 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1848 unsigned int order) { return NULL; }
1849 #endif
1850
1851 /*
1852 * Move the free pages in a range to the free lists of the requested type.
1853 * Note that start_page and end_pages are not aligned on a pageblock
1854 * boundary. If alignment is required, use move_freepages_block()
1855 */
1856 static int move_freepages(struct zone *zone,
1857 struct page *start_page, struct page *end_page,
1858 int migratetype, int *num_movable)
1859 {
1860 struct page *page;
1861 unsigned int order;
1862 int pages_moved = 0;
1863
1864 #ifndef CONFIG_HOLES_IN_ZONE
1865 /*
1866 * page_zone is not safe to call in this context when
1867 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1868 * anyway as we check zone boundaries in move_freepages_block().
1869 * Remove at a later date when no bug reports exist related to
1870 * grouping pages by mobility
1871 */
1872 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1873 #endif
1874
1875 if (num_movable)
1876 *num_movable = 0;
1877
1878 for (page = start_page; page <= end_page;) {
1879 if (!pfn_valid_within(page_to_pfn(page))) {
1880 page++;
1881 continue;
1882 }
1883
1884 /* Make sure we are not inadvertently changing nodes */
1885 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1886
1887 if (!PageBuddy(page)) {
1888 /*
1889 * We assume that pages that could be isolated for
1890 * migration are movable. But we don't actually try
1891 * isolating, as that would be expensive.
1892 */
1893 if (num_movable &&
1894 (PageLRU(page) || __PageMovable(page)))
1895 (*num_movable)++;
1896
1897 page++;
1898 continue;
1899 }
1900
1901 order = page_order(page);
1902 list_move(&page->lru,
1903 &zone->free_area[order].free_list[migratetype]);
1904 page += 1 << order;
1905 pages_moved += 1 << order;
1906 }
1907
1908 return pages_moved;
1909 }
1910
1911 int move_freepages_block(struct zone *zone, struct page *page,
1912 int migratetype, int *num_movable)
1913 {
1914 unsigned long start_pfn, end_pfn;
1915 struct page *start_page, *end_page;
1916
1917 start_pfn = page_to_pfn(page);
1918 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1919 start_page = pfn_to_page(start_pfn);
1920 end_page = start_page + pageblock_nr_pages - 1;
1921 end_pfn = start_pfn + pageblock_nr_pages - 1;
1922
1923 /* Do not cross zone boundaries */
1924 if (!zone_spans_pfn(zone, start_pfn))
1925 start_page = page;
1926 if (!zone_spans_pfn(zone, end_pfn))
1927 return 0;
1928
1929 return move_freepages(zone, start_page, end_page, migratetype,
1930 num_movable);
1931 }
1932
1933 static void change_pageblock_range(struct page *pageblock_page,
1934 int start_order, int migratetype)
1935 {
1936 int nr_pageblocks = 1 << (start_order - pageblock_order);
1937
1938 while (nr_pageblocks--) {
1939 set_pageblock_migratetype(pageblock_page, migratetype);
1940 pageblock_page += pageblock_nr_pages;
1941 }
1942 }
1943
1944 /*
1945 * When we are falling back to another migratetype during allocation, try to
1946 * steal extra free pages from the same pageblocks to satisfy further
1947 * allocations, instead of polluting multiple pageblocks.
1948 *
1949 * If we are stealing a relatively large buddy page, it is likely there will
1950 * be more free pages in the pageblock, so try to steal them all. For
1951 * reclaimable and unmovable allocations, we steal regardless of page size,
1952 * as fragmentation caused by those allocations polluting movable pageblocks
1953 * is worse than movable allocations stealing from unmovable and reclaimable
1954 * pageblocks.
1955 */
1956 static bool can_steal_fallback(unsigned int order, int start_mt)
1957 {
1958 /*
1959 * Leaving this order check is intended, although there is
1960 * relaxed order check in next check. The reason is that
1961 * we can actually steal whole pageblock if this condition met,
1962 * but, below check doesn't guarantee it and that is just heuristic
1963 * so could be changed anytime.
1964 */
1965 if (order >= pageblock_order)
1966 return true;
1967
1968 if (order >= pageblock_order / 2 ||
1969 start_mt == MIGRATE_RECLAIMABLE ||
1970 start_mt == MIGRATE_UNMOVABLE ||
1971 page_group_by_mobility_disabled)
1972 return true;
1973
1974 return false;
1975 }
1976
1977 /*
1978 * This function implements actual steal behaviour. If order is large enough,
1979 * we can steal whole pageblock. If not, we first move freepages in this
1980 * pageblock to our migratetype and determine how many already-allocated pages
1981 * are there in the pageblock with a compatible migratetype. If at least half
1982 * of pages are free or compatible, we can change migratetype of the pageblock
1983 * itself, so pages freed in the future will be put on the correct free list.
1984 */
1985 static void steal_suitable_fallback(struct zone *zone, struct page *page,
1986 int start_type, bool whole_block)
1987 {
1988 unsigned int current_order = page_order(page);
1989 struct free_area *area;
1990 int free_pages, movable_pages, alike_pages;
1991 int old_block_type;
1992
1993 old_block_type = get_pageblock_migratetype(page);
1994
1995 /*
1996 * This can happen due to races and we want to prevent broken
1997 * highatomic accounting.
1998 */
1999 if (is_migrate_highatomic(old_block_type))
2000 goto single_page;
2001
2002 /* Take ownership for orders >= pageblock_order */
2003 if (current_order >= pageblock_order) {
2004 change_pageblock_range(page, current_order, start_type);
2005 goto single_page;
2006 }
2007
2008 /* We are not allowed to try stealing from the whole block */
2009 if (!whole_block)
2010 goto single_page;
2011
2012 free_pages = move_freepages_block(zone, page, start_type,
2013 &movable_pages);
2014 /*
2015 * Determine how many pages are compatible with our allocation.
2016 * For movable allocation, it's the number of movable pages which
2017 * we just obtained. For other types it's a bit more tricky.
2018 */
2019 if (start_type == MIGRATE_MOVABLE) {
2020 alike_pages = movable_pages;
2021 } else {
2022 /*
2023 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2024 * to MOVABLE pageblock, consider all non-movable pages as
2025 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2026 * vice versa, be conservative since we can't distinguish the
2027 * exact migratetype of non-movable pages.
2028 */
2029 if (old_block_type == MIGRATE_MOVABLE)
2030 alike_pages = pageblock_nr_pages
2031 - (free_pages + movable_pages);
2032 else
2033 alike_pages = 0;
2034 }
2035
2036 /* moving whole block can fail due to zone boundary conditions */
2037 if (!free_pages)
2038 goto single_page;
2039
2040 /*
2041 * If a sufficient number of pages in the block are either free or of
2042 * comparable migratability as our allocation, claim the whole block.
2043 */
2044 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2045 page_group_by_mobility_disabled)
2046 set_pageblock_migratetype(page, start_type);
2047
2048 return;
2049
2050 single_page:
2051 area = &zone->free_area[current_order];
2052 list_move(&page->lru, &area->free_list[start_type]);
2053 }
2054
2055 /*
2056 * Check whether there is a suitable fallback freepage with requested order.
2057 * If only_stealable is true, this function returns fallback_mt only if
2058 * we can steal other freepages all together. This would help to reduce
2059 * fragmentation due to mixed migratetype pages in one pageblock.
2060 */
2061 int find_suitable_fallback(struct free_area *area, unsigned int order,
2062 int migratetype, bool only_stealable, bool *can_steal)
2063 {
2064 int i;
2065 int fallback_mt;
2066
2067 if (area->nr_free == 0)
2068 return -1;
2069
2070 *can_steal = false;
2071 for (i = 0;; i++) {
2072 fallback_mt = fallbacks[migratetype][i];
2073 if (fallback_mt == MIGRATE_TYPES)
2074 break;
2075
2076 if (list_empty(&area->free_list[fallback_mt]))
2077 continue;
2078
2079 if (can_steal_fallback(order, migratetype))
2080 *can_steal = true;
2081
2082 if (!only_stealable)
2083 return fallback_mt;
2084
2085 if (*can_steal)
2086 return fallback_mt;
2087 }
2088
2089 return -1;
2090 }
2091
2092 /*
2093 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2094 * there are no empty page blocks that contain a page with a suitable order
2095 */
2096 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2097 unsigned int alloc_order)
2098 {
2099 int mt;
2100 unsigned long max_managed, flags;
2101
2102 /*
2103 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2104 * Check is race-prone but harmless.
2105 */
2106 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2107 if (zone->nr_reserved_highatomic >= max_managed)
2108 return;
2109
2110 spin_lock_irqsave(&zone->lock, flags);
2111
2112 /* Recheck the nr_reserved_highatomic limit under the lock */
2113 if (zone->nr_reserved_highatomic >= max_managed)
2114 goto out_unlock;
2115
2116 /* Yoink! */
2117 mt = get_pageblock_migratetype(page);
2118 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2119 && !is_migrate_cma(mt)) {
2120 zone->nr_reserved_highatomic += pageblock_nr_pages;
2121 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2122 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2123 }
2124
2125 out_unlock:
2126 spin_unlock_irqrestore(&zone->lock, flags);
2127 }
2128
2129 /*
2130 * Used when an allocation is about to fail under memory pressure. This
2131 * potentially hurts the reliability of high-order allocations when under
2132 * intense memory pressure but failed atomic allocations should be easier
2133 * to recover from than an OOM.
2134 *
2135 * If @force is true, try to unreserve a pageblock even though highatomic
2136 * pageblock is exhausted.
2137 */
2138 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2139 bool force)
2140 {
2141 struct zonelist *zonelist = ac->zonelist;
2142 unsigned long flags;
2143 struct zoneref *z;
2144 struct zone *zone;
2145 struct page *page;
2146 int order;
2147 bool ret;
2148
2149 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2150 ac->nodemask) {
2151 /*
2152 * Preserve at least one pageblock unless memory pressure
2153 * is really high.
2154 */
2155 if (!force && zone->nr_reserved_highatomic <=
2156 pageblock_nr_pages)
2157 continue;
2158
2159 spin_lock_irqsave(&zone->lock, flags);
2160 for (order = 0; order < MAX_ORDER; order++) {
2161 struct free_area *area = &(zone->free_area[order]);
2162
2163 page = list_first_entry_or_null(
2164 &area->free_list[MIGRATE_HIGHATOMIC],
2165 struct page, lru);
2166 if (!page)
2167 continue;
2168
2169 /*
2170 * In page freeing path, migratetype change is racy so
2171 * we can counter several free pages in a pageblock
2172 * in this loop althoug we changed the pageblock type
2173 * from highatomic to ac->migratetype. So we should
2174 * adjust the count once.
2175 */
2176 if (is_migrate_highatomic_page(page)) {
2177 /*
2178 * It should never happen but changes to
2179 * locking could inadvertently allow a per-cpu
2180 * drain to add pages to MIGRATE_HIGHATOMIC
2181 * while unreserving so be safe and watch for
2182 * underflows.
2183 */
2184 zone->nr_reserved_highatomic -= min(
2185 pageblock_nr_pages,
2186 zone->nr_reserved_highatomic);
2187 }
2188
2189 /*
2190 * Convert to ac->migratetype and avoid the normal
2191 * pageblock stealing heuristics. Minimally, the caller
2192 * is doing the work and needs the pages. More
2193 * importantly, if the block was always converted to
2194 * MIGRATE_UNMOVABLE or another type then the number
2195 * of pageblocks that cannot be completely freed
2196 * may increase.
2197 */
2198 set_pageblock_migratetype(page, ac->migratetype);
2199 ret = move_freepages_block(zone, page, ac->migratetype,
2200 NULL);
2201 if (ret) {
2202 spin_unlock_irqrestore(&zone->lock, flags);
2203 return ret;
2204 }
2205 }
2206 spin_unlock_irqrestore(&zone->lock, flags);
2207 }
2208
2209 return false;
2210 }
2211
2212 /*
2213 * Try finding a free buddy page on the fallback list and put it on the free
2214 * list of requested migratetype, possibly along with other pages from the same
2215 * block, depending on fragmentation avoidance heuristics. Returns true if
2216 * fallback was found so that __rmqueue_smallest() can grab it.
2217 *
2218 * The use of signed ints for order and current_order is a deliberate
2219 * deviation from the rest of this file, to make the for loop
2220 * condition simpler.
2221 */
2222 static inline bool
2223 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
2224 {
2225 struct free_area *area;
2226 int current_order;
2227 struct page *page;
2228 int fallback_mt;
2229 bool can_steal;
2230
2231 /*
2232 * Find the largest available free page in the other list. This roughly
2233 * approximates finding the pageblock with the most free pages, which
2234 * would be too costly to do exactly.
2235 */
2236 for (current_order = MAX_ORDER - 1; current_order >= order;
2237 --current_order) {
2238 area = &(zone->free_area[current_order]);
2239 fallback_mt = find_suitable_fallback(area, current_order,
2240 start_migratetype, false, &can_steal);
2241 if (fallback_mt == -1)
2242 continue;
2243
2244 /*
2245 * We cannot steal all free pages from the pageblock and the
2246 * requested migratetype is movable. In that case it's better to
2247 * steal and split the smallest available page instead of the
2248 * largest available page, because even if the next movable
2249 * allocation falls back into a different pageblock than this
2250 * one, it won't cause permanent fragmentation.
2251 */
2252 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2253 && current_order > order)
2254 goto find_smallest;
2255
2256 goto do_steal;
2257 }
2258
2259 return false;
2260
2261 find_smallest:
2262 for (current_order = order; current_order < MAX_ORDER;
2263 current_order++) {
2264 area = &(zone->free_area[current_order]);
2265 fallback_mt = find_suitable_fallback(area, current_order,
2266 start_migratetype, false, &can_steal);
2267 if (fallback_mt != -1)
2268 break;
2269 }
2270
2271 /*
2272 * This should not happen - we already found a suitable fallback
2273 * when looking for the largest page.
2274 */
2275 VM_BUG_ON(current_order == MAX_ORDER);
2276
2277 do_steal:
2278 page = list_first_entry(&area->free_list[fallback_mt],
2279 struct page, lru);
2280
2281 steal_suitable_fallback(zone, page, start_migratetype, can_steal);
2282
2283 trace_mm_page_alloc_extfrag(page, order, current_order,
2284 start_migratetype, fallback_mt);
2285
2286 return true;
2287
2288 }
2289
2290 /*
2291 * Do the hard work of removing an element from the buddy allocator.
2292 * Call me with the zone->lock already held.
2293 * If gfp mask of the page allocation has GFP_HIGHUSER_MOVABLE, @migratetype
2294 * is changed from MIGRATE_MOVABLE to MIGRATE_CMA in rmqueue() to select the
2295 * free list of MIGRATE_CMA. It helps depleting CMA free pages so that
2296 * evaluation of watermark for unmovable page allocations is not too different
2297 * from movable page allocations.
2298 * If @migratetype is MIGRATE_CMA, it should be corrected to MIGRATE_MOVABLE
2299 * after the free list of MIGRATE_CMA is searched to have a chance to search the
2300 * free list of MIGRATE_MOVABLE. It also records correct migrate type in the
2301 * trace as intended by the page allocation.
2302 */
2303 static struct page *__rmqueue(struct zone *zone, unsigned int order,
2304 int migratetype)
2305 {
2306 struct page *page = NULL;
2307
2308 #ifdef CONFIG_CMA
2309 if (migratetype == MIGRATE_CMA) {
2310 #else
2311 if (migratetype == MIGRATE_MOVABLE) {
2312 #endif
2313 page = __rmqueue_cma_fallback(zone, order);
2314 migratetype = MIGRATE_MOVABLE;
2315 }
2316
2317 while (!page) {
2318 page = __rmqueue_smallest(zone, order, migratetype);
2319 if (unlikely(!page) &&
2320 !__rmqueue_fallback(zone, order, migratetype))
2321 break;
2322 }
2323
2324 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2325 return page;
2326 }
2327
2328 /*
2329 * Obtain a specified number of elements from the buddy allocator, all under
2330 * a single hold of the lock, for efficiency. Add them to the supplied list.
2331 * Returns the number of new pages which were placed at *list.
2332 */
2333 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2334 unsigned long count, struct list_head *list,
2335 int migratetype, bool cold)
2336 {
2337 int i, alloced = 0;
2338
2339 spin_lock(&zone->lock);
2340 for (i = 0; i < count; ++i) {
2341 struct page *page = __rmqueue(zone, order, migratetype);
2342 if (unlikely(page == NULL))
2343 break;
2344
2345 if (unlikely(check_pcp_refill(page)))
2346 continue;
2347
2348 /*
2349 * Split buddy pages returned by expand() are received here
2350 * in physical page order. The page is added to the callers and
2351 * list and the list head then moves forward. From the callers
2352 * perspective, the linked list is ordered by page number in
2353 * some conditions. This is useful for IO devices that can
2354 * merge IO requests if the physical pages are ordered
2355 * properly.
2356 */
2357 if (likely(!cold))
2358 list_add(&page->lru, list);
2359 else
2360 list_add_tail(&page->lru, list);
2361 list = &page->lru;
2362 alloced++;
2363 if (is_migrate_cma(get_pcppage_migratetype(page)))
2364 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2365 -(1 << order));
2366 }
2367
2368 /*
2369 * i pages were removed from the buddy list even if some leak due
2370 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2371 * on i. Do not confuse with 'alloced' which is the number of
2372 * pages added to the pcp list.
2373 */
2374 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2375 spin_unlock(&zone->lock);
2376 return alloced;
2377 }
2378
2379 #ifdef CONFIG_NUMA
2380 /*
2381 * Called from the vmstat counter updater to drain pagesets of this
2382 * currently executing processor on remote nodes after they have
2383 * expired.
2384 *
2385 * Note that this function must be called with the thread pinned to
2386 * a single processor.
2387 */
2388 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2389 {
2390 unsigned long flags;
2391 int to_drain, batch;
2392
2393 local_irq_save(flags);
2394 batch = READ_ONCE(pcp->batch);
2395 to_drain = min(pcp->count, batch);
2396 if (to_drain > 0) {
2397 free_pcppages_bulk(zone, to_drain, pcp);
2398 pcp->count -= to_drain;
2399 }
2400 local_irq_restore(flags);
2401 }
2402 #endif
2403
2404 /*
2405 * Drain pcplists of the indicated processor and zone.
2406 *
2407 * The processor must either be the current processor and the
2408 * thread pinned to the current processor or a processor that
2409 * is not online.
2410 */
2411 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2412 {
2413 unsigned long flags;
2414 struct per_cpu_pageset *pset;
2415 struct per_cpu_pages *pcp;
2416
2417 local_irq_save(flags);
2418 pset = per_cpu_ptr(zone->pageset, cpu);
2419
2420 pcp = &pset->pcp;
2421 if (pcp->count) {
2422 free_pcppages_bulk(zone, pcp->count, pcp);
2423 pcp->count = 0;
2424 }
2425 local_irq_restore(flags);
2426 }
2427
2428 /*
2429 * Drain pcplists of all zones on the indicated processor.
2430 *
2431 * The processor must either be the current processor and the
2432 * thread pinned to the current processor or a processor that
2433 * is not online.
2434 */
2435 static void drain_pages(unsigned int cpu)
2436 {
2437 struct zone *zone;
2438
2439 for_each_populated_zone(zone) {
2440 drain_pages_zone(cpu, zone);
2441 }
2442 }
2443
2444 /*
2445 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2446 *
2447 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2448 * the single zone's pages.
2449 */
2450 void drain_local_pages(struct zone *zone)
2451 {
2452 int cpu = smp_processor_id();
2453
2454 if (zone)
2455 drain_pages_zone(cpu, zone);
2456 else
2457 drain_pages(cpu);
2458 }
2459
2460 static void drain_local_pages_wq(struct work_struct *work)
2461 {
2462 /*
2463 * drain_all_pages doesn't use proper cpu hotplug protection so
2464 * we can race with cpu offline when the WQ can move this from
2465 * a cpu pinned worker to an unbound one. We can operate on a different
2466 * cpu which is allright but we also have to make sure to not move to
2467 * a different one.
2468 */
2469 preempt_disable();
2470 drain_local_pages(NULL);
2471 preempt_enable();
2472 }
2473
2474 /*
2475 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2476 *
2477 * When zone parameter is non-NULL, spill just the single zone's pages.
2478 *
2479 * Note that this can be extremely slow as the draining happens in a workqueue.
2480 */
2481 void drain_all_pages(struct zone *zone)
2482 {
2483 int cpu;
2484
2485 /*
2486 * Allocate in the BSS so we wont require allocation in
2487 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2488 */
2489 static cpumask_t cpus_with_pcps;
2490
2491 /*
2492 * Make sure nobody triggers this path before mm_percpu_wq is fully
2493 * initialized.
2494 */
2495 if (WARN_ON_ONCE(!mm_percpu_wq))
2496 return;
2497
2498 /*
2499 * Do not drain if one is already in progress unless it's specific to
2500 * a zone. Such callers are primarily CMA and memory hotplug and need
2501 * the drain to be complete when the call returns.
2502 */
2503 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2504 if (!zone)
2505 return;
2506 mutex_lock(&pcpu_drain_mutex);
2507 }
2508
2509 /*
2510 * We don't care about racing with CPU hotplug event
2511 * as offline notification will cause the notified
2512 * cpu to drain that CPU pcps and on_each_cpu_mask
2513 * disables preemption as part of its processing
2514 */
2515 for_each_online_cpu(cpu) {
2516 struct per_cpu_pageset *pcp;
2517 struct zone *z;
2518 bool has_pcps = false;
2519
2520 if (zone) {
2521 pcp = per_cpu_ptr(zone->pageset, cpu);
2522 if (pcp->pcp.count)
2523 has_pcps = true;
2524 } else {
2525 for_each_populated_zone(z) {
2526 pcp = per_cpu_ptr(z->pageset, cpu);
2527 if (pcp->pcp.count) {
2528 has_pcps = true;
2529 break;
2530 }
2531 }
2532 }
2533
2534 if (has_pcps)
2535 cpumask_set_cpu(cpu, &cpus_with_pcps);
2536 else
2537 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2538 }
2539
2540 for_each_cpu(cpu, &cpus_with_pcps) {
2541 struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu);
2542 INIT_WORK(work, drain_local_pages_wq);
2543 queue_work_on(cpu, mm_percpu_wq, work);
2544 }
2545 for_each_cpu(cpu, &cpus_with_pcps)
2546 flush_work(per_cpu_ptr(&pcpu_drain, cpu));
2547
2548 mutex_unlock(&pcpu_drain_mutex);
2549 }
2550
2551 #ifdef CONFIG_HIBERNATION
2552
2553 /*
2554 * Touch the watchdog for every WD_PAGE_COUNT pages.
2555 */
2556 #define WD_PAGE_COUNT (128*1024)
2557
2558 void mark_free_pages(struct zone *zone)
2559 {
2560 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
2561 unsigned long flags;
2562 unsigned int order, t;
2563 struct page *page;
2564
2565 if (zone_is_empty(zone))
2566 return;
2567
2568 spin_lock_irqsave(&zone->lock, flags);
2569
2570 max_zone_pfn = zone_end_pfn(zone);
2571 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2572 if (pfn_valid(pfn)) {
2573 page = pfn_to_page(pfn);
2574
2575 if (!--page_count) {
2576 touch_nmi_watchdog();
2577 page_count = WD_PAGE_COUNT;
2578 }
2579
2580 if (page_zone(page) != zone)
2581 continue;
2582
2583 if (!swsusp_page_is_forbidden(page))
2584 swsusp_unset_page_free(page);
2585 }
2586
2587 for_each_migratetype_order(order, t) {
2588 list_for_each_entry(page,
2589 &zone->free_area[order].free_list[t], lru) {
2590 unsigned long i;
2591
2592 pfn = page_to_pfn(page);
2593 for (i = 0; i < (1UL << order); i++) {
2594 if (!--page_count) {
2595 touch_nmi_watchdog();
2596 page_count = WD_PAGE_COUNT;
2597 }
2598 swsusp_set_page_free(pfn_to_page(pfn + i));
2599 }
2600 }
2601 }
2602 spin_unlock_irqrestore(&zone->lock, flags);
2603 }
2604 #endif /* CONFIG_PM */
2605
2606 /*
2607 * Free a 0-order page
2608 * cold == true ? free a cold page : free a hot page
2609 */
2610 void free_hot_cold_page(struct page *page, bool cold)
2611 {
2612 struct zone *zone = page_zone(page);
2613 struct per_cpu_pages *pcp;
2614 unsigned long flags;
2615 unsigned long pfn = page_to_pfn(page);
2616 int migratetype;
2617
2618 if (!free_pcp_prepare(page))
2619 return;
2620
2621 migratetype = get_pfnblock_migratetype(page, pfn);
2622 set_pcppage_migratetype(page, migratetype);
2623 local_irq_save(flags);
2624 __count_vm_event(PGFREE);
2625
2626 /*
2627 * We only track unmovable, reclaimable and movable on pcp lists.
2628 * Free ISOLATE pages back to the allocator because they are being
2629 * offlined but treat HIGHATOMIC as movable pages so we can get those
2630 * areas back if necessary. Otherwise, we may have to free
2631 * excessively into the page allocator
2632 */
2633 if (migratetype >= MIGRATE_PCPTYPES) {
2634 if (unlikely(is_migrate_isolate(migratetype))) {
2635 free_one_page(zone, page, pfn, 0, migratetype);
2636 goto out;
2637 }
2638 migratetype = MIGRATE_MOVABLE;
2639 }
2640
2641 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2642 if (!cold)
2643 list_add(&page->lru, &pcp->lists[migratetype]);
2644 else
2645 list_add_tail(&page->lru, &pcp->lists[migratetype]);
2646 pcp->count++;
2647 if (pcp->count >= pcp->high) {
2648 unsigned long batch = READ_ONCE(pcp->batch);
2649 free_pcppages_bulk(zone, batch, pcp);
2650 pcp->count -= batch;
2651 }
2652
2653 out:
2654 local_irq_restore(flags);
2655 }
2656
2657 /*
2658 * Free a list of 0-order pages
2659 */
2660 void free_hot_cold_page_list(struct list_head *list, bool cold)
2661 {
2662 struct page *page, *next;
2663
2664 list_for_each_entry_safe(page, next, list, lru) {
2665 trace_mm_page_free_batched(page, cold);
2666 free_hot_cold_page(page, cold);
2667 }
2668 }
2669
2670 /*
2671 * split_page takes a non-compound higher-order page, and splits it into
2672 * n (1<<order) sub-pages: page[0..n]
2673 * Each sub-page must be freed individually.
2674 *
2675 * Note: this is probably too low level an operation for use in drivers.
2676 * Please consult with lkml before using this in your driver.
2677 */
2678 void split_page(struct page *page, unsigned int order)
2679 {
2680 int i;
2681
2682 VM_BUG_ON_PAGE(PageCompound(page), page);
2683 VM_BUG_ON_PAGE(!page_count(page), page);
2684
2685 for (i = 1; i < (1 << order); i++)
2686 set_page_refcounted(page + i);
2687 split_page_owner(page, order);
2688 }
2689 EXPORT_SYMBOL_GPL(split_page);
2690
2691 int __isolate_free_page(struct page *page, unsigned int order)
2692 {
2693 unsigned long watermark;
2694 struct zone *zone;
2695 int mt;
2696
2697 BUG_ON(!PageBuddy(page));
2698
2699 zone = page_zone(page);
2700 mt = get_pageblock_migratetype(page);
2701
2702 if (!is_migrate_isolate(mt)) {
2703 /*
2704 * Obey watermarks as if the page was being allocated. We can
2705 * emulate a high-order watermark check with a raised order-0
2706 * watermark, because we already know our high-order page
2707 * exists.
2708 */
2709 watermark = min_wmark_pages(zone) + (1UL << order);
2710 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
2711 return 0;
2712
2713 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2714 }
2715
2716 /* Remove page from free list */
2717 list_del(&page->lru);
2718 zone->free_area[order].nr_free--;
2719 rmv_page_order(page);
2720
2721 /*
2722 * Set the pageblock if the isolated page is at least half of a
2723 * pageblock
2724 */
2725 if (order >= pageblock_order - 1) {
2726 struct page *endpage = page + (1 << order) - 1;
2727 for (; page < endpage; page += pageblock_nr_pages) {
2728 int mt = get_pageblock_migratetype(page);
2729 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
2730 && !is_migrate_highatomic(mt))
2731 set_pageblock_migratetype(page,
2732 MIGRATE_MOVABLE);
2733 }
2734 }
2735
2736
2737 return 1UL << order;
2738 }
2739
2740 /*
2741 * Update NUMA hit/miss statistics
2742 *
2743 * Must be called with interrupts disabled.
2744 */
2745 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
2746 {
2747 #ifdef CONFIG_NUMA
2748 enum numa_stat_item local_stat = NUMA_LOCAL;
2749
2750 if (z->node != numa_node_id())
2751 local_stat = NUMA_OTHER;
2752
2753 if (z->node == preferred_zone->node)
2754 __inc_numa_state(z, NUMA_HIT);
2755 else {
2756 __inc_numa_state(z, NUMA_MISS);
2757 __inc_numa_state(preferred_zone, NUMA_FOREIGN);
2758 }
2759 __inc_numa_state(z, local_stat);
2760 #endif
2761 }
2762
2763 /* Remove page from the per-cpu list, caller must protect the list */
2764 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
2765 bool cold, struct per_cpu_pages *pcp,
2766 struct list_head *list)
2767 {
2768 struct page *page;
2769
2770 do {
2771 if (list_empty(list)) {
2772 pcp->count += rmqueue_bulk(zone, 0,
2773 pcp->batch, list,
2774 migratetype, cold);
2775 if (unlikely(list_empty(list)))
2776 return NULL;
2777 }
2778
2779 if (cold)
2780 page = list_last_entry(list, struct page, lru);
2781 else
2782 page = list_first_entry(list, struct page, lru);
2783
2784 /*
2785 * If the head or the tail page in the pcp list is CMA page and
2786 * the gfp flags is not GFP_HIGHUSER_MOVABLE, do not allocate a
2787 * page from the pcp list. The free list of MIGRATE_CMA is a
2788 * special case of the free list of MIGRATE_MOVABLE and the
2789 * pages from the free list of MIGRATE_CMA are pushed to the pcp
2790 * list of MIGRATE_MOVABLE. Since the pcp list of
2791 * MIGRATE_MOVABLE is selected if the gfp flags has GFP_MOVABLE,
2792 * we should avoid the case that a cma page in the pcp list of
2793 * MIGRATE_MOVABLE is allocated to a movable allocation without
2794 * GFP_HIGHUSER_MOVABLE.
2795 * If this is the case, allocate a movable page from the free
2796 * list of MIGRATE_MOVABLE instead of pcp list of
2797 * MIGRATE_MOVABLE.
2798 */
2799 #ifdef CONFIG_CMA
2800 if (is_migrate_cma_page(page) && (migratetype != MIGRATE_CMA))
2801 return NULL;
2802 #endif
2803 list_del(&page->lru);
2804 pcp->count--;
2805 } while (check_new_pcp(page));
2806
2807 return page;
2808 }
2809
2810 /* Lock and remove page from the per-cpu list */
2811 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2812 struct zone *zone, unsigned int order,
2813 gfp_t gfp_flags, int migratetype,
2814 int migratetype_rmqueue)
2815 {
2816 struct per_cpu_pages *pcp;
2817 struct list_head *list;
2818 bool cold = ((gfp_flags & __GFP_COLD) != 0);
2819 struct page *page;
2820 unsigned long flags;
2821
2822 local_irq_save(flags);
2823 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2824 list = &pcp->lists[migratetype];
2825 page = __rmqueue_pcplist(zone, migratetype_rmqueue, cold, pcp, list);
2826 if (page) {
2827 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2828 zone_statistics(preferred_zone, zone);
2829 }
2830 local_irq_restore(flags);
2831 return page;
2832 }
2833
2834 /*
2835 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2836 */
2837 static inline
2838 struct page *rmqueue(struct zone *preferred_zone,
2839 struct zone *zone, unsigned int order,
2840 gfp_t gfp_flags, unsigned int alloc_flags,
2841 int migratetype)
2842 {
2843 unsigned long flags;
2844 struct page *page;
2845 int migratetype_rmqueue = migratetype;
2846
2847 #ifdef CONFIG_CMA
2848 if ((migratetype_rmqueue == MIGRATE_MOVABLE) &&
2849 ((gfp_flags & GFP_HIGHUSER_MOVABLE) == GFP_HIGHUSER_MOVABLE))
2850 migratetype_rmqueue = MIGRATE_CMA;
2851 #endif
2852 if (likely(order == 0)) {
2853 page = rmqueue_pcplist(preferred_zone, zone, order,
2854 gfp_flags, migratetype, migratetype_rmqueue);
2855 /*
2856 * Allocation with GFP_MOVABLE and !GFP_HIGHMEM will have
2857 * another chance of page allocation from the free list.
2858 * See the comment in __rmqueue_pcplist().
2859 */
2860 #ifdef CONFIG_CMA
2861 if (likely(page) || (migratetype_rmqueue != MIGRATE_MOVABLE))
2862 #endif
2863 goto out;
2864 }
2865
2866 /*
2867 * We most definitely don't want callers attempting to
2868 * allocate greater than order-1 page units with __GFP_NOFAIL.
2869 */
2870 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2871 spin_lock_irqsave(&zone->lock, flags);
2872
2873 do {
2874 page = NULL;
2875 if (alloc_flags & ALLOC_HARDER) {
2876 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2877 if (page)
2878 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2879 }
2880 if (!page)
2881 page = __rmqueue(zone, order, migratetype_rmqueue);
2882 } while (page && check_new_pages(page, order));
2883 spin_unlock(&zone->lock);
2884 if (!page)
2885 goto failed;
2886 __mod_zone_freepage_state(zone, -(1 << order),
2887 get_pcppage_migratetype(page));
2888
2889 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2890 zone_statistics(preferred_zone, zone);
2891 local_irq_restore(flags);
2892
2893 out:
2894 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
2895 return page;
2896
2897 failed:
2898 local_irq_restore(flags);
2899 return NULL;
2900 }
2901
2902 #ifdef CONFIG_FAIL_PAGE_ALLOC
2903
2904 static struct {
2905 struct fault_attr attr;
2906
2907 bool ignore_gfp_highmem;
2908 bool ignore_gfp_reclaim;
2909 u32 min_order;
2910 } fail_page_alloc = {
2911 .attr = FAULT_ATTR_INITIALIZER,
2912 .ignore_gfp_reclaim = true,
2913 .ignore_gfp_highmem = true,
2914 .min_order = 1,
2915 };
2916
2917 static int __init setup_fail_page_alloc(char *str)
2918 {
2919 return setup_fault_attr(&fail_page_alloc.attr, str);
2920 }
2921 __setup("fail_page_alloc=", setup_fail_page_alloc);
2922
2923 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2924 {
2925 if (order < fail_page_alloc.min_order)
2926 return false;
2927 if (gfp_mask & __GFP_NOFAIL)
2928 return false;
2929 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
2930 return false;
2931 if (fail_page_alloc.ignore_gfp_reclaim &&
2932 (gfp_mask & __GFP_DIRECT_RECLAIM))
2933 return false;
2934
2935 return should_fail(&fail_page_alloc.attr, 1 << order);
2936 }
2937
2938 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2939
2940 static int __init fail_page_alloc_debugfs(void)
2941 {
2942 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
2943 struct dentry *dir;
2944
2945 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2946 &fail_page_alloc.attr);
2947 if (IS_ERR(dir))
2948 return PTR_ERR(dir);
2949
2950 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
2951 &fail_page_alloc.ignore_gfp_reclaim))
2952 goto fail;
2953 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2954 &fail_page_alloc.ignore_gfp_highmem))
2955 goto fail;
2956 if (!debugfs_create_u32("min-order", mode, dir,
2957 &fail_page_alloc.min_order))
2958 goto fail;
2959
2960 return 0;
2961 fail:
2962 debugfs_remove_recursive(dir);
2963
2964 return -ENOMEM;
2965 }
2966
2967 late_initcall(fail_page_alloc_debugfs);
2968
2969 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2970
2971 #else /* CONFIG_FAIL_PAGE_ALLOC */
2972
2973 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2974 {
2975 return false;
2976 }
2977
2978 #endif /* CONFIG_FAIL_PAGE_ALLOC */
2979
2980 /*
2981 * Return true if free base pages are above 'mark'. For high-order checks it
2982 * will return true of the order-0 watermark is reached and there is at least
2983 * one free page of a suitable size. Checking now avoids taking the zone lock
2984 * to check in the allocation paths if no pages are free.
2985 */
2986 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2987 int classzone_idx, unsigned int alloc_flags,
2988 long free_pages)
2989 {
2990 long min = mark;
2991 int o;
2992 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
2993
2994 /* free_pages may go negative - that's OK */
2995 free_pages -= (1 << order) - 1;
2996
2997 if (alloc_flags & ALLOC_HIGH)
2998 min -= min / 2;
2999
3000 /*
3001 * If the caller does not have rights to ALLOC_HARDER then subtract
3002 * the high-atomic reserves. This will over-estimate the size of the
3003 * atomic reserve but it avoids a search.
3004 */
3005 if (likely(!alloc_harder)) {
3006 free_pages -= z->nr_reserved_highatomic;
3007 } else {
3008 /*
3009 * OOM victims can try even harder than normal ALLOC_HARDER
3010 * users on the grounds that it's definitely going to be in
3011 * the exit path shortly and free memory. Any allocation it
3012 * makes during the free path will be small and short-lived.
3013 */
3014 if (alloc_flags & ALLOC_OOM)
3015 min -= min / 2;
3016 else
3017 min -= min / 4;
3018 }
3019
3020
3021 #ifdef CONFIG_CMA
3022 /* If allocation can't use CMA areas don't use free CMA pages */
3023 if (!(alloc_flags & ALLOC_CMA))
3024 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
3025 #endif
3026
3027 /*
3028 * Check watermarks for an order-0 allocation request. If these
3029 * are not met, then a high-order request also cannot go ahead
3030 * even if a suitable page happened to be free.
3031 */
3032 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
3033 return false;
3034
3035 /* If this is an order-0 request then the watermark is fine */
3036 if (!order)
3037 return true;
3038
3039 /* For a high-order request, check at least one suitable page is free */
3040 for (o = order; o < MAX_ORDER; o++) {
3041 struct free_area *area = &z->free_area[o];
3042 int mt;
3043
3044 if (!area->nr_free)
3045 continue;
3046
3047 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3048 if (!list_empty(&area->free_list[mt]))
3049 return true;
3050 }
3051
3052 #ifdef CONFIG_CMA
3053 if ((alloc_flags & ALLOC_CMA) &&
3054 !list_empty(&area->free_list[MIGRATE_CMA])) {
3055 return true;
3056 }
3057 #endif
3058 if (alloc_harder &&
3059 !list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
3060 return true;
3061 }
3062 return false;
3063 }
3064
3065 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3066 int classzone_idx, unsigned int alloc_flags)
3067 {
3068 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3069 zone_page_state(z, NR_FREE_PAGES));
3070 }
3071
3072 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3073 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
3074 {
3075 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3076 long cma_pages = 0;
3077
3078 #ifdef CONFIG_CMA
3079 /* If allocation can't use CMA areas don't use free CMA pages */
3080 if (!(alloc_flags & ALLOC_CMA))
3081 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
3082 #endif
3083
3084 /*
3085 * Fast check for order-0 only. If this fails then the reserves
3086 * need to be calculated. There is a corner case where the check
3087 * passes but only the high-order atomic reserve are free. If
3088 * the caller is !atomic then it'll uselessly search the free
3089 * list. That corner case is then slower but it is harmless.
3090 */
3091 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
3092 return true;
3093
3094 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3095 free_pages);
3096 }
3097
3098 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3099 unsigned long mark, int classzone_idx)
3100 {
3101 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3102
3103 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3104 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3105
3106 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
3107 free_pages);
3108 }
3109
3110 #ifdef CONFIG_NUMA
3111 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3112 {
3113 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3114 RECLAIM_DISTANCE;
3115 }
3116 #else /* CONFIG_NUMA */
3117 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3118 {
3119 return true;
3120 }
3121 #endif /* CONFIG_NUMA */
3122
3123 /*
3124 * get_page_from_freelist goes through the zonelist trying to allocate
3125 * a page.
3126 */
3127 static struct page *
3128 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3129 const struct alloc_context *ac)
3130 {
3131 struct zoneref *z = ac->preferred_zoneref;
3132 struct zone *zone;
3133 struct pglist_data *last_pgdat_dirty_limit = NULL;
3134
3135 /*
3136 * Scan zonelist, looking for a zone with enough free.
3137 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3138 */
3139 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3140 ac->nodemask) {
3141 struct page *page;
3142 unsigned long mark;
3143
3144 if (cpusets_enabled() &&
3145 (alloc_flags & ALLOC_CPUSET) &&
3146 !__cpuset_zone_allowed(zone, gfp_mask))
3147 continue;
3148 /*
3149 * When allocating a page cache page for writing, we
3150 * want to get it from a node that is within its dirty
3151 * limit, such that no single node holds more than its
3152 * proportional share of globally allowed dirty pages.
3153 * The dirty limits take into account the node's
3154 * lowmem reserves and high watermark so that kswapd
3155 * should be able to balance it without having to
3156 * write pages from its LRU list.
3157 *
3158 * XXX: For now, allow allocations to potentially
3159 * exceed the per-node dirty limit in the slowpath
3160 * (spread_dirty_pages unset) before going into reclaim,
3161 * which is important when on a NUMA setup the allowed
3162 * nodes are together not big enough to reach the
3163 * global limit. The proper fix for these situations
3164 * will require awareness of nodes in the
3165 * dirty-throttling and the flusher threads.
3166 */
3167 if (ac->spread_dirty_pages) {
3168 if (last_pgdat_dirty_limit == zone->zone_pgdat)
3169 continue;
3170
3171 if (!node_dirty_ok(zone->zone_pgdat)) {
3172 last_pgdat_dirty_limit = zone->zone_pgdat;
3173 continue;
3174 }
3175 }
3176
3177 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
3178 if (!zone_watermark_fast(zone, order, mark,
3179 ac_classzone_idx(ac), alloc_flags)) {
3180 int ret;
3181
3182 /* Checked here to keep the fast path fast */
3183 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3184 if (alloc_flags & ALLOC_NO_WATERMARKS)
3185 goto try_this_zone;
3186
3187 if (node_reclaim_mode == 0 ||
3188 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3189 continue;
3190
3191 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3192 switch (ret) {
3193 case NODE_RECLAIM_NOSCAN:
3194 /* did not scan */
3195 continue;
3196 case NODE_RECLAIM_FULL:
3197 /* scanned but unreclaimable */
3198 continue;
3199 default:
3200 /* did we reclaim enough */
3201 if (zone_watermark_ok(zone, order, mark,
3202 ac_classzone_idx(ac), alloc_flags))
3203 goto try_this_zone;
3204
3205 continue;
3206 }
3207 }
3208
3209 try_this_zone:
3210 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3211 gfp_mask, alloc_flags, ac->migratetype);
3212 if (page) {
3213 prep_new_page(page, order, gfp_mask, alloc_flags);
3214
3215 /*
3216 * If this is a high-order atomic allocation then check
3217 * if the pageblock should be reserved for the future
3218 */
3219 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3220 reserve_highatomic_pageblock(page, zone, order);
3221
3222 return page;
3223 }
3224 }
3225
3226 return NULL;
3227 }
3228
3229 /*
3230 * Large machines with many possible nodes should not always dump per-node
3231 * meminfo in irq context.
3232 */
3233 static inline bool should_suppress_show_mem(void)
3234 {
3235 bool ret = false;
3236
3237 #if NODES_SHIFT > 8
3238 ret = in_interrupt();
3239 #endif
3240 return ret;
3241 }
3242
3243 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3244 {
3245 unsigned int filter = SHOW_MEM_FILTER_NODES;
3246 static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
3247
3248 if (should_suppress_show_mem() || !__ratelimit(&show_mem_rs))
3249 return;
3250
3251 /*
3252 * This documents exceptions given to allocations in certain
3253 * contexts that are allowed to allocate outside current's set
3254 * of allowed nodes.
3255 */
3256 if (!(gfp_mask & __GFP_NOMEMALLOC))
3257 if (tsk_is_oom_victim(current) ||
3258 (current->flags & (PF_MEMALLOC | PF_EXITING)))
3259 filter &= ~SHOW_MEM_FILTER_NODES;
3260 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3261 filter &= ~SHOW_MEM_FILTER_NODES;
3262
3263 show_mem(filter, nodemask);
3264 }
3265
3266 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3267 {
3268 struct va_format vaf;
3269 va_list args;
3270 static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
3271 DEFAULT_RATELIMIT_BURST);
3272
3273 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
3274 return;
3275
3276 pr_warn("%s: ", current->comm);
3277
3278 va_start(args, fmt);
3279 vaf.fmt = fmt;
3280 vaf.va = &args;
3281 pr_cont("%pV", &vaf);
3282 va_end(args);
3283
3284 pr_cont(", mode:%#x(%pGg), nodemask=", gfp_mask, &gfp_mask);
3285 if (nodemask)
3286 pr_cont("%*pbl\n", nodemask_pr_args(nodemask));
3287 else
3288 pr_cont("(null)\n");
3289
3290 cpuset_print_current_mems_allowed();
3291
3292 dump_stack();
3293 warn_alloc_show_mem(gfp_mask, nodemask);
3294 }
3295
3296 static inline struct page *
3297 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3298 unsigned int alloc_flags,
3299 const struct alloc_context *ac)
3300 {
3301 struct page *page;
3302
3303 page = get_page_from_freelist(gfp_mask, order,
3304 alloc_flags|ALLOC_CPUSET, ac);
3305 /*
3306 * fallback to ignore cpuset restriction if our nodes
3307 * are depleted
3308 */
3309 if (!page)
3310 page = get_page_from_freelist(gfp_mask, order,
3311 alloc_flags, ac);
3312
3313 return page;
3314 }
3315
3316 static inline struct page *
3317 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3318 const struct alloc_context *ac, unsigned long *did_some_progress)
3319 {
3320 struct oom_control oc = {
3321 .zonelist = ac->zonelist,
3322 .nodemask = ac->nodemask,
3323 .memcg = NULL,
3324 .gfp_mask = gfp_mask,
3325 .order = order,
3326 };
3327 struct page *page;
3328
3329 *did_some_progress = 0;
3330
3331 /*
3332 * Acquire the oom lock. If that fails, somebody else is
3333 * making progress for us.
3334 */
3335 if (!mutex_trylock(&oom_lock)) {
3336 *did_some_progress = 1;
3337 schedule_timeout_uninterruptible(1);
3338 return NULL;
3339 }
3340
3341 /*
3342 * Go through the zonelist yet one more time, keep very high watermark
3343 * here, this is only to catch a parallel oom killing, we must fail if
3344 * we're still under heavy pressure. But make sure that this reclaim
3345 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3346 * allocation which will never fail due to oom_lock already held.
3347 */
3348 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3349 ~__GFP_DIRECT_RECLAIM, order,
3350 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3351 if (page)
3352 goto out;
3353
3354 /* Coredumps can quickly deplete all memory reserves */
3355 if (current->flags & PF_DUMPCORE)
3356 goto out;
3357 /* The OOM killer will not help higher order allocs */
3358 if (order > PAGE_ALLOC_COSTLY_ORDER)
3359 goto out;
3360 /*
3361 * We have already exhausted all our reclaim opportunities without any
3362 * success so it is time to admit defeat. We will skip the OOM killer
3363 * because it is very likely that the caller has a more reasonable
3364 * fallback than shooting a random task.
3365 */
3366 if (gfp_mask & __GFP_RETRY_MAYFAIL)
3367 goto out;
3368 /* The OOM killer does not needlessly kill tasks for lowmem */
3369 if (ac->high_zoneidx < ZONE_NORMAL)
3370 goto out;
3371 if (pm_suspended_storage())
3372 goto out;
3373 /*
3374 * XXX: GFP_NOFS allocations should rather fail than rely on
3375 * other request to make a forward progress.
3376 * We are in an unfortunate situation where out_of_memory cannot
3377 * do much for this context but let's try it to at least get
3378 * access to memory reserved if the current task is killed (see
3379 * out_of_memory). Once filesystems are ready to handle allocation
3380 * failures more gracefully we should just bail out here.
3381 */
3382
3383 /* The OOM killer may not free memory on a specific node */
3384 if (gfp_mask & __GFP_THISNODE)
3385 goto out;
3386
3387 /* Exhausted what can be done so it's blamo time */
3388 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3389 *did_some_progress = 1;
3390
3391 /*
3392 * Help non-failing allocations by giving them access to memory
3393 * reserves
3394 */
3395 if (gfp_mask & __GFP_NOFAIL)
3396 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3397 ALLOC_NO_WATERMARKS, ac);
3398 }
3399 out:
3400 mutex_unlock(&oom_lock);
3401 return page;
3402 }
3403
3404 /*
3405 * Maximum number of compaction retries wit a progress before OOM
3406 * killer is consider as the only way to move forward.
3407 */
3408 #define MAX_COMPACT_RETRIES 16
3409
3410 #ifdef CONFIG_COMPACTION
3411 /* Try memory compaction for high-order allocations before reclaim */
3412 static struct page *
3413 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3414 unsigned int alloc_flags, const struct alloc_context *ac,
3415 enum compact_priority prio, enum compact_result *compact_result)
3416 {
3417 struct page *page;
3418 unsigned long pflags;
3419 unsigned int noreclaim_flag;
3420
3421 if (!order)
3422 return NULL;
3423
3424 psi_memstall_enter(&pflags);
3425 noreclaim_flag = memalloc_noreclaim_save();
3426
3427 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3428 prio);
3429
3430 memalloc_noreclaim_restore(noreclaim_flag);
3431 psi_memstall_leave(&pflags);
3432
3433 if (*compact_result <= COMPACT_INACTIVE)
3434 return NULL;
3435
3436 /*
3437 * At least in one zone compaction wasn't deferred or skipped, so let's
3438 * count a compaction stall
3439 */
3440 count_vm_event(COMPACTSTALL);
3441
3442 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3443
3444 if (page) {
3445 struct zone *zone = page_zone(page);
3446
3447 zone->compact_blockskip_flush = false;
3448 compaction_defer_reset(zone, order, true);
3449 count_vm_event(COMPACTSUCCESS);
3450 return page;
3451 }
3452
3453 /*
3454 * It's bad if compaction run occurs and fails. The most likely reason
3455 * is that pages exist, but not enough to satisfy watermarks.
3456 */
3457 count_vm_event(COMPACTFAIL);
3458
3459 cond_resched();
3460
3461 return NULL;
3462 }
3463
3464 static inline bool
3465 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3466 enum compact_result compact_result,
3467 enum compact_priority *compact_priority,
3468 int *compaction_retries)
3469 {
3470 int max_retries = MAX_COMPACT_RETRIES;
3471 int min_priority;
3472 bool ret = false;
3473 int retries = *compaction_retries;
3474 enum compact_priority priority = *compact_priority;
3475
3476 if (!order)
3477 return false;
3478
3479 if (compaction_made_progress(compact_result))
3480 (*compaction_retries)++;
3481
3482 /*
3483 * compaction considers all the zone as desperately out of memory
3484 * so it doesn't really make much sense to retry except when the
3485 * failure could be caused by insufficient priority
3486 */
3487 if (compaction_failed(compact_result))
3488 goto check_priority;
3489
3490 /*
3491 * make sure the compaction wasn't deferred or didn't bail out early
3492 * due to locks contention before we declare that we should give up.
3493 * But do not retry if the given zonelist is not suitable for
3494 * compaction.
3495 */
3496 if (compaction_withdrawn(compact_result)) {
3497 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3498 goto out;
3499 }
3500
3501 /*
3502 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3503 * costly ones because they are de facto nofail and invoke OOM
3504 * killer to move on while costly can fail and users are ready
3505 * to cope with that. 1/4 retries is rather arbitrary but we
3506 * would need much more detailed feedback from compaction to
3507 * make a better decision.
3508 */
3509 if (order > PAGE_ALLOC_COSTLY_ORDER)
3510 max_retries /= 4;
3511 if (*compaction_retries <= max_retries) {
3512 ret = true;
3513 goto out;
3514 }
3515
3516 /*
3517 * Make sure there are attempts at the highest priority if we exhausted
3518 * all retries or failed at the lower priorities.
3519 */
3520 check_priority:
3521 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3522 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3523
3524 if (*compact_priority > min_priority) {
3525 (*compact_priority)--;
3526 *compaction_retries = 0;
3527 ret = true;
3528 }
3529 out:
3530 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3531 return ret;
3532 }
3533 #else
3534 static inline struct page *
3535 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3536 unsigned int alloc_flags, const struct alloc_context *ac,
3537 enum compact_priority prio, enum compact_result *compact_result)
3538 {
3539 *compact_result = COMPACT_SKIPPED;
3540 return NULL;
3541 }
3542
3543 static inline bool
3544 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3545 enum compact_result compact_result,
3546 enum compact_priority *compact_priority,
3547 int *compaction_retries)
3548 {
3549 struct zone *zone;
3550 struct zoneref *z;
3551
3552 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3553 return false;
3554
3555 /*
3556 * There are setups with compaction disabled which would prefer to loop
3557 * inside the allocator rather than hit the oom killer prematurely.
3558 * Let's give them a good hope and keep retrying while the order-0
3559 * watermarks are OK.
3560 */
3561 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3562 ac->nodemask) {
3563 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3564 ac_classzone_idx(ac), alloc_flags))
3565 return true;
3566 }
3567 return false;
3568 }
3569 #endif /* CONFIG_COMPACTION */
3570
3571 #ifdef CONFIG_LOCKDEP
3572 struct lockdep_map __fs_reclaim_map =
3573 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3574
3575 static bool __need_fs_reclaim(gfp_t gfp_mask)
3576 {
3577 gfp_mask = current_gfp_context(gfp_mask);
3578
3579 /* no reclaim without waiting on it */
3580 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3581 return false;
3582
3583 /* this guy won't enter reclaim */
3584 if (current->flags & PF_MEMALLOC)
3585 return false;
3586
3587 /* We're only interested __GFP_FS allocations for now */
3588 if (!(gfp_mask & __GFP_FS))
3589 return false;
3590
3591 if (gfp_mask & __GFP_NOLOCKDEP)
3592 return false;
3593
3594 return true;
3595 }
3596
3597 void fs_reclaim_acquire(gfp_t gfp_mask)
3598 {
3599 if (__need_fs_reclaim(gfp_mask))
3600 lock_map_acquire(&__fs_reclaim_map);
3601 }
3602 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
3603
3604 void fs_reclaim_release(gfp_t gfp_mask)
3605 {
3606 if (__need_fs_reclaim(gfp_mask))
3607 lock_map_release(&__fs_reclaim_map);
3608 }
3609 EXPORT_SYMBOL_GPL(fs_reclaim_release);
3610 #endif
3611
3612 /* Perform direct synchronous page reclaim */
3613 static int
3614 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3615 const struct alloc_context *ac)
3616 {
3617 struct reclaim_state reclaim_state;
3618 int progress;
3619 unsigned int noreclaim_flag;
3620 unsigned long pflags;
3621
3622 cond_resched();
3623
3624 /* We now go into synchronous reclaim */
3625 cpuset_memory_pressure_bump();
3626 psi_memstall_enter(&pflags);
3627 noreclaim_flag = memalloc_noreclaim_save();
3628 fs_reclaim_acquire(gfp_mask);
3629 reclaim_state.reclaimed_slab = 0;
3630 current->reclaim_state = &reclaim_state;
3631
3632 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3633 ac->nodemask);
3634
3635 current->reclaim_state = NULL;
3636 fs_reclaim_release(gfp_mask);
3637 memalloc_noreclaim_restore(noreclaim_flag);
3638 psi_memstall_leave(&pflags);
3639
3640 cond_resched();
3641
3642 return progress;
3643 }
3644
3645 /* The really slow allocator path where we enter direct reclaim */
3646 static inline struct page *
3647 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3648 unsigned int alloc_flags, const struct alloc_context *ac,
3649 unsigned long *did_some_progress)
3650 {
3651 struct page *page = NULL;
3652 bool drained = false;
3653
3654 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3655 if (unlikely(!(*did_some_progress)))
3656 return NULL;
3657
3658 retry:
3659 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3660
3661 /*
3662 * If an allocation failed after direct reclaim, it could be because
3663 * pages are pinned on the per-cpu lists or in high alloc reserves.
3664 * Shrink them them and try again
3665 */
3666 if (!page && !drained) {
3667 unreserve_highatomic_pageblock(ac, false);
3668 drain_all_pages(NULL);
3669 drained = true;
3670 goto retry;
3671 }
3672
3673 return page;
3674 }
3675
3676 static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3677 {
3678 struct zoneref *z;
3679 struct zone *zone;
3680 pg_data_t *last_pgdat = NULL;
3681
3682 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3683 ac->high_zoneidx, ac->nodemask) {
3684 if (last_pgdat != zone->zone_pgdat)
3685 wakeup_kswapd(zone, order, ac->high_zoneidx);
3686 last_pgdat = zone->zone_pgdat;
3687 }
3688 }
3689
3690 static inline unsigned int
3691 gfp_to_alloc_flags(gfp_t gfp_mask)
3692 {
3693 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3694
3695 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3696 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
3697
3698 /*
3699 * The caller may dip into page reserves a bit more if the caller
3700 * cannot run direct reclaim, or if the caller has realtime scheduling
3701 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
3702 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3703 */
3704 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
3705
3706 if (gfp_mask & __GFP_ATOMIC) {
3707 /*
3708 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3709 * if it can't schedule.
3710 */
3711 if (!(gfp_mask & __GFP_NOMEMALLOC))
3712 alloc_flags |= ALLOC_HARDER;
3713 /*
3714 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3715 * comment for __cpuset_node_allowed().
3716 */
3717 alloc_flags &= ~ALLOC_CPUSET;
3718 } else if (unlikely(rt_task(current)) && !in_interrupt())
3719 alloc_flags |= ALLOC_HARDER;
3720
3721 #ifdef CONFIG_CMA
3722 if ((gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE) ||
3723 ((gfp_mask & GFP_HIGHUSER_MOVABLE) == GFP_HIGHUSER_MOVABLE))
3724 alloc_flags |= ALLOC_CMA;
3725 #endif
3726 return alloc_flags;
3727 }
3728
3729 static bool oom_reserves_allowed(struct task_struct *tsk)
3730 {
3731 if (!tsk_is_oom_victim(tsk))
3732 return false;
3733
3734 /*
3735 * !MMU doesn't have oom reaper so give access to memory reserves
3736 * only to the thread with TIF_MEMDIE set
3737 */
3738 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
3739 return false;
3740
3741 return true;
3742 }
3743
3744 /*
3745 * Distinguish requests which really need access to full memory
3746 * reserves from oom victims which can live with a portion of it
3747 */
3748 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
3749 {
3750 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3751 return 0;
3752 if (gfp_mask & __GFP_MEMALLOC)
3753 return ALLOC_NO_WATERMARKS;
3754 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3755 return ALLOC_NO_WATERMARKS;
3756 if (!in_interrupt()) {
3757 if (current->flags & PF_MEMALLOC)
3758 return ALLOC_NO_WATERMARKS;
3759 else if (oom_reserves_allowed(current))
3760 return ALLOC_OOM;
3761 }
3762
3763 return 0;
3764 }
3765
3766 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3767 {
3768 return !!__gfp_pfmemalloc_flags(gfp_mask);
3769 }
3770
3771 /*
3772 * Checks whether it makes sense to retry the reclaim to make a forward progress
3773 * for the given allocation request.
3774 *
3775 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
3776 * without success, or when we couldn't even meet the watermark if we
3777 * reclaimed all remaining pages on the LRU lists.
3778 *
3779 * Returns true if a retry is viable or false to enter the oom path.
3780 */
3781 static inline bool
3782 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3783 struct alloc_context *ac, int alloc_flags,
3784 bool did_some_progress, int *no_progress_loops)
3785 {
3786 struct zone *zone;
3787 struct zoneref *z;
3788
3789 /*
3790 * Costly allocations might have made a progress but this doesn't mean
3791 * their order will become available due to high fragmentation so
3792 * always increment the no progress counter for them
3793 */
3794 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3795 *no_progress_loops = 0;
3796 else
3797 (*no_progress_loops)++;
3798
3799 /*
3800 * Make sure we converge to OOM if we cannot make any progress
3801 * several times in the row.
3802 */
3803 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
3804 /* Before OOM, exhaust highatomic_reserve */
3805 return unreserve_highatomic_pageblock(ac, true);
3806 }
3807
3808 /*
3809 * Keep reclaiming pages while there is a chance this will lead
3810 * somewhere. If none of the target zones can satisfy our allocation
3811 * request even if all reclaimable pages are considered then we are
3812 * screwed and have to go OOM.
3813 */
3814 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3815 ac->nodemask) {
3816 unsigned long available;
3817 unsigned long reclaimable;
3818 unsigned long min_wmark = min_wmark_pages(zone);
3819 bool wmark;
3820
3821 available = reclaimable = zone_reclaimable_pages(zone);
3822 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
3823
3824 /*
3825 * Would the allocation succeed if we reclaimed all
3826 * reclaimable pages?
3827 */
3828 wmark = __zone_watermark_ok(zone, order, min_wmark,
3829 ac_classzone_idx(ac), alloc_flags, available);
3830 trace_reclaim_retry_zone(z, order, reclaimable,
3831 available, min_wmark, *no_progress_loops, wmark);
3832 if (wmark) {
3833 /*
3834 * If we didn't make any progress and have a lot of
3835 * dirty + writeback pages then we should wait for
3836 * an IO to complete to slow down the reclaim and
3837 * prevent from pre mature OOM
3838 */
3839 if (!did_some_progress) {
3840 unsigned long write_pending;
3841
3842 write_pending = zone_page_state_snapshot(zone,
3843 NR_ZONE_WRITE_PENDING);
3844
3845 if (2 * write_pending > reclaimable) {
3846 congestion_wait(BLK_RW_ASYNC, HZ/10);
3847 return true;
3848 }
3849 }
3850
3851 /*
3852 * Memory allocation/reclaim might be called from a WQ
3853 * context and the current implementation of the WQ
3854 * concurrency control doesn't recognize that
3855 * a particular WQ is congested if the worker thread is
3856 * looping without ever sleeping. Therefore we have to
3857 * do a short sleep here rather than calling
3858 * cond_resched().
3859 */
3860 if (current->flags & PF_WQ_WORKER)
3861 schedule_timeout_uninterruptible(1);
3862 else
3863 cond_resched();
3864
3865 return true;
3866 }
3867 }
3868
3869 return false;
3870 }
3871
3872 static inline bool
3873 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
3874 {
3875 /*
3876 * It's possible that cpuset's mems_allowed and the nodemask from
3877 * mempolicy don't intersect. This should be normally dealt with by
3878 * policy_nodemask(), but it's possible to race with cpuset update in
3879 * such a way the check therein was true, and then it became false
3880 * before we got our cpuset_mems_cookie here.
3881 * This assumes that for all allocations, ac->nodemask can come only
3882 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
3883 * when it does not intersect with the cpuset restrictions) or the
3884 * caller can deal with a violated nodemask.
3885 */
3886 if (cpusets_enabled() && ac->nodemask &&
3887 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
3888 ac->nodemask = NULL;
3889 return true;
3890 }
3891
3892 /*
3893 * When updating a task's mems_allowed or mempolicy nodemask, it is
3894 * possible to race with parallel threads in such a way that our
3895 * allocation can fail while the mask is being updated. If we are about
3896 * to fail, check if the cpuset changed during allocation and if so,
3897 * retry.
3898 */
3899 if (read_mems_allowed_retry(cpuset_mems_cookie))
3900 return true;
3901
3902 return false;
3903 }
3904
3905 static inline struct page *
3906 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
3907 struct alloc_context *ac)
3908 {
3909 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
3910 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
3911 struct page *page = NULL;
3912 unsigned int alloc_flags;
3913 unsigned long did_some_progress;
3914 enum compact_priority compact_priority;
3915 enum compact_result compact_result;
3916 int compaction_retries;
3917 int no_progress_loops;
3918 unsigned int cpuset_mems_cookie;
3919 int reserve_flags;
3920
3921 /*
3922 * We also sanity check to catch abuse of atomic reserves being used by
3923 * callers that are not in atomic context.
3924 */
3925 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3926 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3927 gfp_mask &= ~__GFP_ATOMIC;
3928
3929 retry_cpuset:
3930 compaction_retries = 0;
3931 no_progress_loops = 0;
3932 compact_priority = DEF_COMPACT_PRIORITY;
3933 cpuset_mems_cookie = read_mems_allowed_begin();
3934
3935 /*
3936 * The fast path uses conservative alloc_flags to succeed only until
3937 * kswapd needs to be woken up, and to avoid the cost of setting up
3938 * alloc_flags precisely. So we do that now.
3939 */
3940 alloc_flags = gfp_to_alloc_flags(gfp_mask);
3941
3942 /*
3943 * We need to recalculate the starting point for the zonelist iterator
3944 * because we might have used different nodemask in the fast path, or
3945 * there was a cpuset modification and we are retrying - otherwise we
3946 * could end up iterating over non-eligible zones endlessly.
3947 */
3948 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3949 ac->high_zoneidx, ac->nodemask);
3950 if (!ac->preferred_zoneref->zone)
3951 goto nopage;
3952
3953 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3954 wake_all_kswapds(order, ac);
3955
3956 /*
3957 * The adjusted alloc_flags might result in immediate success, so try
3958 * that first
3959 */
3960 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3961 if (page)
3962 goto got_pg;
3963
3964 /*
3965 * For costly allocations, try direct compaction first, as it's likely
3966 * that we have enough base pages and don't need to reclaim. For non-
3967 * movable high-order allocations, do that as well, as compaction will
3968 * try prevent permanent fragmentation by migrating from blocks of the
3969 * same migratetype.
3970 * Don't try this for allocations that are allowed to ignore
3971 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
3972 */
3973 if (can_direct_reclaim &&
3974 (costly_order ||
3975 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
3976 && !gfp_pfmemalloc_allowed(gfp_mask)) {
3977 page = __alloc_pages_direct_compact(gfp_mask, order,
3978 alloc_flags, ac,
3979 INIT_COMPACT_PRIORITY,
3980 &compact_result);
3981 if (page)
3982 goto got_pg;
3983
3984 /*
3985 * Checks for costly allocations with __GFP_NORETRY, which
3986 * includes THP page fault allocations
3987 */
3988 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
3989 /*
3990 * If compaction is deferred for high-order allocations,
3991 * it is because sync compaction recently failed. If
3992 * this is the case and the caller requested a THP
3993 * allocation, we do not want to heavily disrupt the
3994 * system, so we fail the allocation instead of entering
3995 * direct reclaim.
3996 */
3997 if (compact_result == COMPACT_DEFERRED)
3998 goto nopage;
3999
4000 /*
4001 * Looks like reclaim/compaction is worth trying, but
4002 * sync compaction could be very expensive, so keep
4003 * using async compaction.
4004 */
4005 compact_priority = INIT_COMPACT_PRIORITY;
4006 }
4007 }
4008
4009 retry:
4010 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4011 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
4012 wake_all_kswapds(order, ac);
4013
4014 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4015 if (reserve_flags)
4016 alloc_flags = reserve_flags;
4017
4018 /*
4019 * Reset the zonelist iterators if memory policies can be ignored.
4020 * These allocations are high priority and system rather than user
4021 * orientated.
4022 */
4023 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4024 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4025 ac->high_zoneidx, ac->nodemask);
4026 }
4027
4028 /* Attempt with potentially adjusted zonelist and alloc_flags */
4029 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4030 if (page)
4031 goto got_pg;
4032
4033 /* Caller is not willing to reclaim, we can't balance anything */
4034 if (!can_direct_reclaim)
4035 goto nopage;
4036
4037 /* Avoid recursion of direct reclaim */
4038 if (current->flags & PF_MEMALLOC)
4039 goto nopage;
4040
4041 /* Try direct reclaim and then allocating */
4042 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4043 &did_some_progress);
4044 if (page)
4045 goto got_pg;
4046
4047 /* Try direct compaction and then allocating */
4048 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4049 compact_priority, &compact_result);
4050 if (page)
4051 goto got_pg;
4052
4053 /* Do not loop if specifically requested */
4054 if (gfp_mask & __GFP_NORETRY)
4055 goto nopage;
4056
4057 /*
4058 * Do not retry costly high order allocations unless they are
4059 * __GFP_RETRY_MAYFAIL
4060 */
4061 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4062 goto nopage;
4063
4064 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4065 did_some_progress > 0, &no_progress_loops))
4066 goto retry;
4067
4068 /*
4069 * It doesn't make any sense to retry for the compaction if the order-0
4070 * reclaim is not able to make any progress because the current
4071 * implementation of the compaction depends on the sufficient amount
4072 * of free memory (see __compaction_suitable)
4073 */
4074 if (did_some_progress > 0 &&
4075 should_compact_retry(ac, order, alloc_flags,
4076 compact_result, &compact_priority,
4077 &compaction_retries))
4078 goto retry;
4079
4080
4081 /* Deal with possible cpuset update races before we start OOM killing */
4082 if (check_retry_cpuset(cpuset_mems_cookie, ac))
4083 goto retry_cpuset;
4084
4085 /* Reclaim has failed us, start killing things */
4086 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4087 if (page)
4088 goto got_pg;
4089
4090 /* Avoid allocations with no watermarks from looping endlessly */
4091 if (tsk_is_oom_victim(current) &&
4092 (alloc_flags == ALLOC_OOM ||
4093 (gfp_mask & __GFP_NOMEMALLOC)))
4094 goto nopage;
4095
4096 /* Retry as long as the OOM killer is making progress */
4097 if (did_some_progress) {
4098 no_progress_loops = 0;
4099 goto retry;
4100 }
4101
4102 nopage:
4103 /* Deal with possible cpuset update races before we fail */
4104 if (check_retry_cpuset(cpuset_mems_cookie, ac))
4105 goto retry_cpuset;
4106
4107 /*
4108 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4109 * we always retry
4110 */
4111 if (gfp_mask & __GFP_NOFAIL) {
4112 /*
4113 * All existing users of the __GFP_NOFAIL are blockable, so warn
4114 * of any new users that actually require GFP_NOWAIT
4115 */
4116 if (WARN_ON_ONCE(!can_direct_reclaim))
4117 goto fail;
4118
4119 /*
4120 * PF_MEMALLOC request from this context is rather bizarre
4121 * because we cannot reclaim anything and only can loop waiting
4122 * for somebody to do a work for us
4123 */
4124 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4125
4126 /*
4127 * non failing costly orders are a hard requirement which we
4128 * are not prepared for much so let's warn about these users
4129 * so that we can identify them and convert them to something
4130 * else.
4131 */
4132 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4133
4134 /*
4135 * Help non-failing allocations by giving them access to memory
4136 * reserves but do not use ALLOC_NO_WATERMARKS because this
4137 * could deplete whole memory reserves which would just make
4138 * the situation worse
4139 */
4140 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4141 if (page)
4142 goto got_pg;
4143
4144 cond_resched();
4145 goto retry;
4146 }
4147 fail:
4148 warn_alloc(gfp_mask, ac->nodemask,
4149 "page allocation failure: order:%u", order);
4150 got_pg:
4151 return page;
4152 }
4153
4154 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4155 int preferred_nid, nodemask_t *nodemask,
4156 struct alloc_context *ac, gfp_t *alloc_mask,
4157 unsigned int *alloc_flags)
4158 {
4159 ac->high_zoneidx = gfp_zone(gfp_mask);
4160 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4161 ac->nodemask = nodemask;
4162 ac->migratetype = gfpflags_to_migratetype(gfp_mask);
4163
4164 if (cpusets_enabled()) {
4165 *alloc_mask |= __GFP_HARDWALL;
4166 if (!ac->nodemask)
4167 ac->nodemask = &cpuset_current_mems_allowed;
4168 else
4169 *alloc_flags |= ALLOC_CPUSET;
4170 }
4171
4172 fs_reclaim_acquire(gfp_mask);
4173 fs_reclaim_release(gfp_mask);
4174
4175 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4176
4177 if (should_fail_alloc_page(gfp_mask, order))
4178 return false;
4179
4180 if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
4181 *alloc_flags |= ALLOC_CMA;
4182
4183 return true;
4184 }
4185
4186 /* Determine whether to spread dirty pages and what the first usable zone */
4187 static inline void finalise_ac(gfp_t gfp_mask,
4188 unsigned int order, struct alloc_context *ac)
4189 {
4190 /* Dirty zone balancing only done in the fast path */
4191 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4192
4193 /*
4194 * The preferred zone is used for statistics but crucially it is
4195 * also used as the starting point for the zonelist iterator. It
4196 * may get reset for allocations that ignore memory policies.
4197 */
4198 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4199 ac->high_zoneidx, ac->nodemask);
4200 }
4201
4202 /*
4203 * This is the 'heart' of the zoned buddy allocator.
4204 */
4205 struct page *
4206 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4207 nodemask_t *nodemask)
4208 {
4209 struct page *page;
4210 unsigned int alloc_flags = ALLOC_WMARK_LOW;
4211 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
4212 struct alloc_context ac = { };
4213
4214 /*
4215 * There are several places where we assume that the order value is sane
4216 * so bail out early if the request is out of bound.
4217 */
4218 if (unlikely(order >= MAX_ORDER)) {
4219 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
4220 return NULL;
4221 }
4222
4223 gfp_mask &= gfp_allowed_mask;
4224 alloc_mask = gfp_mask;
4225 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
4226 return NULL;
4227
4228 finalise_ac(gfp_mask, order, &ac);
4229
4230 /* First allocation attempt */
4231 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4232 if (likely(page))
4233 goto out;
4234
4235 /*
4236 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4237 * resp. GFP_NOIO which has to be inherited for all allocation requests
4238 * from a particular context which has been marked by
4239 * memalloc_no{fs,io}_{save,restore}.
4240 */
4241 alloc_mask = current_gfp_context(gfp_mask);
4242 ac.spread_dirty_pages = false;
4243
4244 /*
4245 * Restore the original nodemask if it was potentially replaced with
4246 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4247 */
4248 if (unlikely(ac.nodemask != nodemask))
4249 ac.nodemask = nodemask;
4250
4251 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
4252
4253 out:
4254 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
4255 unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
4256 __free_pages(page, order);
4257 page = NULL;
4258 }
4259
4260 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4261
4262 return page;
4263 }
4264 EXPORT_SYMBOL(__alloc_pages_nodemask);
4265
4266 /*
4267 * Common helper functions.
4268 */
4269 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4270 {
4271 struct page *page;
4272
4273 /*
4274 * __get_free_pages() returns a 32-bit address, which cannot represent
4275 * a highmem page
4276 */
4277 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
4278
4279 page = alloc_pages(gfp_mask, order);
4280 if (!page)
4281 return 0;
4282 return (unsigned long) page_address(page);
4283 }
4284 EXPORT_SYMBOL(__get_free_pages);
4285
4286 unsigned long get_zeroed_page(gfp_t gfp_mask)
4287 {
4288 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
4289 }
4290 EXPORT_SYMBOL(get_zeroed_page);
4291
4292 void __free_pages(struct page *page, unsigned int order)
4293 {
4294 if (put_page_testzero(page)) {
4295 if (order == 0)
4296 free_hot_cold_page(page, false);
4297 else
4298 __free_pages_ok(page, order);
4299 }
4300 }
4301
4302 EXPORT_SYMBOL(__free_pages);
4303
4304 void free_pages(unsigned long addr, unsigned int order)
4305 {
4306 if (addr != 0) {
4307 VM_BUG_ON(!virt_addr_valid((void *)addr));
4308 __free_pages(virt_to_page((void *)addr), order);
4309 }
4310 }
4311
4312 EXPORT_SYMBOL(free_pages);
4313
4314 /*
4315 * Page Fragment:
4316 * An arbitrary-length arbitrary-offset area of memory which resides
4317 * within a 0 or higher order page. Multiple fragments within that page
4318 * are individually refcounted, in the page's reference counter.
4319 *
4320 * The page_frag functions below provide a simple allocation framework for
4321 * page fragments. This is used by the network stack and network device
4322 * drivers to provide a backing region of memory for use as either an
4323 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4324 */
4325 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4326 gfp_t gfp_mask)
4327 {
4328 struct page *page = NULL;
4329 gfp_t gfp = gfp_mask;
4330
4331 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4332 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4333 __GFP_NOMEMALLOC;
4334 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4335 PAGE_FRAG_CACHE_MAX_ORDER);
4336 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4337 #endif
4338 if (unlikely(!page))
4339 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4340
4341 nc->va = page ? page_address(page) : NULL;
4342
4343 return page;
4344 }
4345
4346 void __page_frag_cache_drain(struct page *page, unsigned int count)
4347 {
4348 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4349
4350 if (page_ref_sub_and_test(page, count)) {
4351 unsigned int order = compound_order(page);
4352
4353 if (order == 0)
4354 free_hot_cold_page(page, false);
4355 else
4356 __free_pages_ok(page, order);
4357 }
4358 }
4359 EXPORT_SYMBOL(__page_frag_cache_drain);
4360
4361 void *page_frag_alloc(struct page_frag_cache *nc,
4362 unsigned int fragsz, gfp_t gfp_mask)
4363 {
4364 unsigned int size = PAGE_SIZE;
4365 struct page *page;
4366 int offset;
4367
4368 if (unlikely(!nc->va)) {
4369 refill:
4370 page = __page_frag_cache_refill(nc, gfp_mask);
4371 if (!page)
4372 return NULL;
4373
4374 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4375 /* if size can vary use size else just use PAGE_SIZE */
4376 size = nc->size;
4377 #endif
4378 /* Even if we own the page, we do not use atomic_set().
4379 * This would break get_page_unless_zero() users.
4380 */
4381 page_ref_add(page, size);
4382
4383 /* reset page count bias and offset to start of new frag */
4384 nc->pfmemalloc = page_is_pfmemalloc(page);
4385 nc->pagecnt_bias = size + 1;
4386 nc->offset = size;
4387 }
4388
4389 offset = nc->offset - fragsz;
4390 if (unlikely(offset < 0)) {
4391 page = virt_to_page(nc->va);
4392
4393 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4394 goto refill;
4395
4396 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4397 /* if size can vary use size else just use PAGE_SIZE */
4398 size = nc->size;
4399 #endif
4400 /* OK, page count is 0, we can safely set it */
4401 set_page_count(page, size + 1);
4402
4403 /* reset page count bias and offset to start of new frag */
4404 nc->pagecnt_bias = size + 1;
4405 offset = size - fragsz;
4406 }
4407
4408 nc->pagecnt_bias--;
4409 nc->offset = offset;
4410
4411 return nc->va + offset;
4412 }
4413 EXPORT_SYMBOL(page_frag_alloc);
4414
4415 /*
4416 * Frees a page fragment allocated out of either a compound or order 0 page.
4417 */
4418 void page_frag_free(void *addr)
4419 {
4420 struct page *page = virt_to_head_page(addr);
4421
4422 if (unlikely(put_page_testzero(page)))
4423 __free_pages_ok(page, compound_order(page));
4424 }
4425 EXPORT_SYMBOL(page_frag_free);
4426
4427 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4428 size_t size)
4429 {
4430 if (addr) {
4431 unsigned long alloc_end = addr + (PAGE_SIZE << order);
4432 unsigned long used = addr + PAGE_ALIGN(size);
4433
4434 split_page(virt_to_page((void *)addr), order);
4435 while (used < alloc_end) {
4436 free_page(used);
4437 used += PAGE_SIZE;
4438 }
4439 }
4440 return (void *)addr;
4441 }
4442
4443 /**
4444 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4445 * @size: the number of bytes to allocate
4446 * @gfp_mask: GFP flags for the allocation
4447 *
4448 * This function is similar to alloc_pages(), except that it allocates the
4449 * minimum number of pages to satisfy the request. alloc_pages() can only
4450 * allocate memory in power-of-two pages.
4451 *
4452 * This function is also limited by MAX_ORDER.
4453 *
4454 * Memory allocated by this function must be released by free_pages_exact().
4455 */
4456 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4457 {
4458 unsigned int order = get_order(size);
4459 unsigned long addr;
4460
4461 addr = __get_free_pages(gfp_mask, order);
4462 return make_alloc_exact(addr, order, size);
4463 }
4464 EXPORT_SYMBOL(alloc_pages_exact);
4465
4466 /**
4467 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4468 * pages on a node.
4469 * @nid: the preferred node ID where memory should be allocated
4470 * @size: the number of bytes to allocate
4471 * @gfp_mask: GFP flags for the allocation
4472 *
4473 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4474 * back.
4475 */
4476 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
4477 {
4478 unsigned int order = get_order(size);
4479 struct page *p = alloc_pages_node(nid, gfp_mask, order);
4480 if (!p)
4481 return NULL;
4482 return make_alloc_exact((unsigned long)page_address(p), order, size);
4483 }
4484
4485 /**
4486 * free_pages_exact - release memory allocated via alloc_pages_exact()
4487 * @virt: the value returned by alloc_pages_exact.
4488 * @size: size of allocation, same value as passed to alloc_pages_exact().
4489 *
4490 * Release the memory allocated by a previous call to alloc_pages_exact.
4491 */
4492 void free_pages_exact(void *virt, size_t size)
4493 {
4494 unsigned long addr = (unsigned long)virt;
4495 unsigned long end = addr + PAGE_ALIGN(size);
4496
4497 while (addr < end) {
4498 free_page(addr);
4499 addr += PAGE_SIZE;
4500 }
4501 }
4502 EXPORT_SYMBOL(free_pages_exact);
4503
4504 /**
4505 * nr_free_zone_pages - count number of pages beyond high watermark
4506 * @offset: The zone index of the highest zone
4507 *
4508 * nr_free_zone_pages() counts the number of counts pages which are beyond the
4509 * high watermark within all zones at or below a given zone index. For each
4510 * zone, the number of pages is calculated as:
4511 *
4512 * nr_free_zone_pages = managed_pages - high_pages
4513 */
4514 static unsigned long nr_free_zone_pages(int offset)
4515 {
4516 struct zoneref *z;
4517 struct zone *zone;
4518
4519 /* Just pick one node, since fallback list is circular */
4520 unsigned long sum = 0;
4521
4522 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
4523
4524 for_each_zone_zonelist(zone, z, zonelist, offset) {
4525 unsigned long size = zone->managed_pages;
4526 unsigned long high = high_wmark_pages(zone);
4527 if (size > high)
4528 sum += size - high;
4529 }
4530
4531 return sum;
4532 }
4533
4534 /**
4535 * nr_free_buffer_pages - count number of pages beyond high watermark
4536 *
4537 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4538 * watermark within ZONE_DMA and ZONE_NORMAL.
4539 */
4540 unsigned long nr_free_buffer_pages(void)
4541 {
4542 return nr_free_zone_pages(gfp_zone(GFP_USER));
4543 }
4544 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
4545
4546 /**
4547 * nr_free_pagecache_pages - count number of pages beyond high watermark
4548 *
4549 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4550 * high watermark within all zones.
4551 */
4552 unsigned long nr_free_pagecache_pages(void)
4553 {
4554 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
4555 }
4556
4557 static inline void show_node(struct zone *zone)
4558 {
4559 if (IS_ENABLED(CONFIG_NUMA))
4560 printk("Node %d ", zone_to_nid(zone));
4561 }
4562
4563 long si_mem_available(void)
4564 {
4565 long available;
4566 unsigned long pagecache;
4567 unsigned long wmark_low = 0;
4568 unsigned long pages[NR_LRU_LISTS];
4569 struct zone *zone;
4570 int lru;
4571
4572 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
4573 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
4574
4575 for_each_zone(zone)
4576 wmark_low += zone->watermark[WMARK_LOW];
4577
4578 /*
4579 * Estimate the amount of memory available for userspace allocations,
4580 * without causing swapping.
4581 */
4582 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
4583
4584 /*
4585 * Not all the page cache can be freed, otherwise the system will
4586 * start swapping. Assume at least half of the page cache, or the
4587 * low watermark worth of cache, needs to stay.
4588 */
4589 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4590 pagecache -= min(pagecache / 2, wmark_low);
4591 available += pagecache;
4592
4593 /*
4594 * Part of the reclaimable slab consists of items that are in use,
4595 * and cannot be freed. Cap this estimate at the low watermark.
4596 */
4597 available += global_node_page_state(NR_SLAB_RECLAIMABLE) -
4598 min(global_node_page_state(NR_SLAB_RECLAIMABLE) / 2,
4599 wmark_low);
4600
4601 /*
4602 * Part of the kernel memory, which can be released under memory
4603 * pressure.
4604 */
4605 available += global_node_page_state(NR_INDIRECTLY_RECLAIMABLE_BYTES) >>
4606 PAGE_SHIFT;
4607
4608 if (available < 0)
4609 available = 0;
4610 return available;
4611 }
4612 EXPORT_SYMBOL_GPL(si_mem_available);
4613
4614 void si_meminfo(struct sysinfo *val)
4615 {
4616 val->totalram = totalram_pages;
4617 val->sharedram = global_node_page_state(NR_SHMEM);
4618 val->freeram = global_zone_page_state(NR_FREE_PAGES);
4619 val->bufferram = nr_blockdev_pages();
4620 val->totalhigh = totalhigh_pages;
4621 val->freehigh = nr_free_highpages();
4622 val->mem_unit = PAGE_SIZE;
4623 }
4624
4625 EXPORT_SYMBOL(si_meminfo);
4626
4627 #ifdef CONFIG_NUMA
4628 void si_meminfo_node(struct sysinfo *val, int nid)
4629 {
4630 int zone_type; /* needs to be signed */
4631 unsigned long managed_pages = 0;
4632 unsigned long managed_highpages = 0;
4633 unsigned long free_highpages = 0;
4634 pg_data_t *pgdat = NODE_DATA(nid);
4635
4636 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4637 managed_pages += pgdat->node_zones[zone_type].managed_pages;
4638 val->totalram = managed_pages;
4639 val->sharedram = node_page_state(pgdat, NR_SHMEM);
4640 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
4641 #ifdef CONFIG_HIGHMEM
4642 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4643 struct zone *zone = &pgdat->node_zones[zone_type];
4644
4645 if (is_highmem(zone)) {
4646 managed_highpages += zone->managed_pages;
4647 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4648 }
4649 }
4650 val->totalhigh = managed_highpages;
4651 val->freehigh = free_highpages;
4652 #else
4653 val->totalhigh = managed_highpages;
4654 val->freehigh = free_highpages;
4655 #endif
4656 val->mem_unit = PAGE_SIZE;
4657 }
4658 #endif
4659
4660 /*
4661 * Determine whether the node should be displayed or not, depending on whether
4662 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
4663 */
4664 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
4665 {
4666 if (!(flags & SHOW_MEM_FILTER_NODES))
4667 return false;
4668
4669 /*
4670 * no node mask - aka implicit memory numa policy. Do not bother with
4671 * the synchronization - read_mems_allowed_begin - because we do not
4672 * have to be precise here.
4673 */
4674 if (!nodemask)
4675 nodemask = &cpuset_current_mems_allowed;
4676
4677 return !node_isset(nid, *nodemask);
4678 }
4679
4680 #define K(x) ((x) << (PAGE_SHIFT-10))
4681
4682 static void show_migration_types(unsigned char type)
4683 {
4684 static const char types[MIGRATE_TYPES] = {
4685 [MIGRATE_UNMOVABLE] = 'U',
4686 [MIGRATE_MOVABLE] = 'M',
4687 [MIGRATE_RECLAIMABLE] = 'E',
4688 [MIGRATE_HIGHATOMIC] = 'H',
4689 #ifdef CONFIG_CMA
4690 [MIGRATE_CMA] = 'C',
4691 #endif
4692 #ifdef CONFIG_MEMORY_ISOLATION
4693 [MIGRATE_ISOLATE] = 'I',
4694 #endif
4695 };
4696 char tmp[MIGRATE_TYPES + 1];
4697 char *p = tmp;
4698 int i;
4699
4700 for (i = 0; i < MIGRATE_TYPES; i++) {
4701 if (type & (1 << i))
4702 *p++ = types[i];
4703 }
4704
4705 *p = '\0';
4706 printk(KERN_CONT "(%s) ", tmp);
4707 }
4708
4709 /*
4710 * Show free area list (used inside shift_scroll-lock stuff)
4711 * We also calculate the percentage fragmentation. We do this by counting the
4712 * memory on each free list with the exception of the first item on the list.
4713 *
4714 * Bits in @filter:
4715 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4716 * cpuset.
4717 */
4718 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
4719 {
4720 unsigned long free_pcp = 0;
4721 int cpu;
4722 struct zone *zone;
4723 pg_data_t *pgdat;
4724
4725 for_each_populated_zone(zone) {
4726 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4727 continue;
4728
4729 for_each_online_cpu(cpu)
4730 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4731 }
4732
4733 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4734 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
4735 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4736 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4737 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
4738 " free:%lu free_pcp:%lu free_cma:%lu\n",
4739 global_node_page_state(NR_ACTIVE_ANON),
4740 global_node_page_state(NR_INACTIVE_ANON),
4741 global_node_page_state(NR_ISOLATED_ANON),
4742 global_node_page_state(NR_ACTIVE_FILE),
4743 global_node_page_state(NR_INACTIVE_FILE),
4744 global_node_page_state(NR_ISOLATED_FILE),
4745 global_node_page_state(NR_UNEVICTABLE),
4746 global_node_page_state(NR_FILE_DIRTY),
4747 global_node_page_state(NR_WRITEBACK),
4748 global_node_page_state(NR_UNSTABLE_NFS),
4749 global_node_page_state(NR_SLAB_RECLAIMABLE),
4750 global_node_page_state(NR_SLAB_UNRECLAIMABLE),
4751 global_node_page_state(NR_FILE_MAPPED),
4752 global_node_page_state(NR_SHMEM),
4753 global_zone_page_state(NR_PAGETABLE),
4754 global_zone_page_state(NR_BOUNCE),
4755 global_zone_page_state(NR_FREE_PAGES),
4756 free_pcp,
4757 global_zone_page_state(NR_FREE_CMA_PAGES));
4758
4759 for_each_online_pgdat(pgdat) {
4760 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
4761 continue;
4762
4763 printk("Node %d"
4764 " active_anon:%lukB"
4765 " inactive_anon:%lukB"
4766 " active_file:%lukB"
4767 " inactive_file:%lukB"
4768 " unevictable:%lukB"
4769 " isolated(anon):%lukB"
4770 " isolated(file):%lukB"
4771 " mapped:%lukB"
4772 " dirty:%lukB"
4773 " writeback:%lukB"
4774 " shmem:%lukB"
4775 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4776 " shmem_thp: %lukB"
4777 " shmem_pmdmapped: %lukB"
4778 " anon_thp: %lukB"
4779 #endif
4780 " writeback_tmp:%lukB"
4781 " unstable:%lukB"
4782 " all_unreclaimable? %s"
4783 "\n",
4784 pgdat->node_id,
4785 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
4786 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
4787 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
4788 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
4789 K(node_page_state(pgdat, NR_UNEVICTABLE)),
4790 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
4791 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
4792 K(node_page_state(pgdat, NR_FILE_MAPPED)),
4793 K(node_page_state(pgdat, NR_FILE_DIRTY)),
4794 K(node_page_state(pgdat, NR_WRITEBACK)),
4795 K(node_page_state(pgdat, NR_SHMEM)),
4796 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4797 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
4798 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
4799 * HPAGE_PMD_NR),
4800 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
4801 #endif
4802 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
4803 K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
4804 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
4805 "yes" : "no");
4806 }
4807
4808 for_each_populated_zone(zone) {
4809 int i;
4810
4811 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4812 continue;
4813
4814 free_pcp = 0;
4815 for_each_online_cpu(cpu)
4816 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4817
4818 show_node(zone);
4819 printk(KERN_CONT
4820 "%s"
4821 " free:%lukB"
4822 " min:%lukB"
4823 " low:%lukB"
4824 " high:%lukB"
4825 " active_anon:%lukB"
4826 " inactive_anon:%lukB"
4827 " active_file:%lukB"
4828 " inactive_file:%lukB"
4829 " unevictable:%lukB"
4830 " writepending:%lukB"
4831 " present:%lukB"
4832 " managed:%lukB"
4833 " mlocked:%lukB"
4834 " kernel_stack:%lukB"
4835 " pagetables:%lukB"
4836 " bounce:%lukB"
4837 " free_pcp:%lukB"
4838 " local_pcp:%ukB"
4839 " free_cma:%lukB"
4840 "\n",
4841 zone->name,
4842 K(zone_page_state(zone, NR_FREE_PAGES)),
4843 K(min_wmark_pages(zone)),
4844 K(low_wmark_pages(zone)),
4845 K(high_wmark_pages(zone)),
4846 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
4847 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
4848 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
4849 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
4850 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
4851 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
4852 K(zone->present_pages),
4853 K(zone->managed_pages),
4854 K(zone_page_state(zone, NR_MLOCK)),
4855 zone_page_state(zone, NR_KERNEL_STACK_KB),
4856 K(zone_page_state(zone, NR_PAGETABLE)),
4857 K(zone_page_state(zone, NR_BOUNCE)),
4858 K(free_pcp),
4859 K(this_cpu_read(zone->pageset->pcp.count)),
4860 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
4861 printk("lowmem_reserve[]:");
4862 for (i = 0; i < MAX_NR_ZONES; i++)
4863 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
4864 printk(KERN_CONT "\n");
4865 }
4866
4867 for_each_populated_zone(zone) {
4868 unsigned int order;
4869 unsigned long nr[MAX_ORDER], flags, total = 0;
4870 unsigned char types[MAX_ORDER];
4871
4872 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4873 continue;
4874 show_node(zone);
4875 printk(KERN_CONT "%s: ", zone->name);
4876
4877 spin_lock_irqsave(&zone->lock, flags);
4878 for (order = 0; order < MAX_ORDER; order++) {
4879 struct free_area *area = &zone->free_area[order];
4880 int type;
4881
4882 nr[order] = area->nr_free;
4883 total += nr[order] << order;
4884
4885 types[order] = 0;
4886 for (type = 0; type < MIGRATE_TYPES; type++) {
4887 if (!list_empty(&area->free_list[type]))
4888 types[order] |= 1 << type;
4889 }
4890 }
4891 spin_unlock_irqrestore(&zone->lock, flags);
4892 for (order = 0; order < MAX_ORDER; order++) {
4893 printk(KERN_CONT "%lu*%lukB ",
4894 nr[order], K(1UL) << order);
4895 if (nr[order])
4896 show_migration_types(types[order]);
4897 }
4898 printk(KERN_CONT "= %lukB\n", K(total));
4899 }
4900
4901 hugetlb_show_meminfo();
4902
4903 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
4904
4905 show_swap_cache_info();
4906 }
4907
4908 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4909 {
4910 zoneref->zone = zone;
4911 zoneref->zone_idx = zone_idx(zone);
4912 }
4913
4914 /*
4915 * Builds allocation fallback zone lists.
4916 *
4917 * Add all populated zones of a node to the zonelist.
4918 */
4919 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
4920 {
4921 struct zone *zone;
4922 enum zone_type zone_type = MAX_NR_ZONES;
4923 int nr_zones = 0;
4924
4925 do {
4926 zone_type--;
4927 zone = pgdat->node_zones + zone_type;
4928 if (managed_zone(zone)) {
4929 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
4930 check_highest_zone(zone_type);
4931 }
4932 } while (zone_type);
4933
4934 return nr_zones;
4935 }
4936
4937 #ifdef CONFIG_NUMA
4938
4939 static int __parse_numa_zonelist_order(char *s)
4940 {
4941 /*
4942 * We used to support different zonlists modes but they turned
4943 * out to be just not useful. Let's keep the warning in place
4944 * if somebody still use the cmd line parameter so that we do
4945 * not fail it silently
4946 */
4947 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
4948 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
4949 return -EINVAL;
4950 }
4951 return 0;
4952 }
4953
4954 static __init int setup_numa_zonelist_order(char *s)
4955 {
4956 if (!s)
4957 return 0;
4958
4959 return __parse_numa_zonelist_order(s);
4960 }
4961 early_param("numa_zonelist_order", setup_numa_zonelist_order);
4962
4963 char numa_zonelist_order[] = "Node";
4964
4965 /*
4966 * sysctl handler for numa_zonelist_order
4967 */
4968 int numa_zonelist_order_handler(struct ctl_table *table, int write,
4969 void __user *buffer, size_t *length,
4970 loff_t *ppos)
4971 {
4972 char *str;
4973 int ret;
4974
4975 if (!write)
4976 return proc_dostring(table, write, buffer, length, ppos);
4977 str = memdup_user_nul(buffer, 16);
4978 if (IS_ERR(str))
4979 return PTR_ERR(str);
4980
4981 ret = __parse_numa_zonelist_order(str);
4982 kfree(str);
4983 return ret;
4984 }
4985
4986
4987 #define MAX_NODE_LOAD (nr_online_nodes)
4988 static int node_load[MAX_NUMNODES];
4989
4990 /**
4991 * find_next_best_node - find the next node that should appear in a given node's fallback list
4992 * @node: node whose fallback list we're appending
4993 * @used_node_mask: nodemask_t of already used nodes
4994 *
4995 * We use a number of factors to determine which is the next node that should
4996 * appear on a given node's fallback list. The node should not have appeared
4997 * already in @node's fallback list, and it should be the next closest node
4998 * according to the distance array (which contains arbitrary distance values
4999 * from each node to each node in the system), and should also prefer nodes
5000 * with no CPUs, since presumably they'll have very little allocation pressure
5001 * on them otherwise.
5002 * It returns -1 if no node is found.
5003 */
5004 static int find_next_best_node(int node, nodemask_t *used_node_mask)
5005 {
5006 int n, val;
5007 int min_val = INT_MAX;
5008 int best_node = NUMA_NO_NODE;
5009 const struct cpumask *tmp = cpumask_of_node(0);
5010
5011 /* Use the local node if we haven't already */
5012 if (!node_isset(node, *used_node_mask)) {
5013 node_set(node, *used_node_mask);
5014 return node;
5015 }
5016
5017 for_each_node_state(n, N_MEMORY) {
5018
5019 /* Don't want a node to appear more than once */
5020 if (node_isset(n, *used_node_mask))
5021 continue;
5022
5023 /* Use the distance array to find the distance */
5024 val = node_distance(node, n);
5025
5026 /* Penalize nodes under us ("prefer the next node") */
5027 val += (n < node);
5028
5029 /* Give preference to headless and unused nodes */
5030 tmp = cpumask_of_node(n);
5031 if (!cpumask_empty(tmp))
5032 val += PENALTY_FOR_NODE_WITH_CPUS;
5033
5034 /* Slight preference for less loaded node */
5035 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5036 val += node_load[n];
5037
5038 if (val < min_val) {
5039 min_val = val;
5040 best_node = n;
5041 }
5042 }
5043
5044 if (best_node >= 0)
5045 node_set(best_node, *used_node_mask);
5046
5047 return best_node;
5048 }
5049
5050
5051 /*
5052 * Build zonelists ordered by node and zones within node.
5053 * This results in maximum locality--normal zone overflows into local
5054 * DMA zone, if any--but risks exhausting DMA zone.
5055 */
5056 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5057 unsigned nr_nodes)
5058 {
5059 struct zoneref *zonerefs;
5060 int i;
5061
5062 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5063
5064 for (i = 0; i < nr_nodes; i++) {
5065 int nr_zones;
5066
5067 pg_data_t *node = NODE_DATA(node_order[i]);
5068
5069 nr_zones = build_zonerefs_node(node, zonerefs);
5070 zonerefs += nr_zones;
5071 }
5072 zonerefs->zone = NULL;
5073 zonerefs->zone_idx = 0;
5074 }
5075
5076 /*
5077 * Build gfp_thisnode zonelists
5078 */
5079 static void build_thisnode_zonelists(pg_data_t *pgdat)
5080 {
5081 struct zoneref *zonerefs;
5082 int nr_zones;
5083
5084 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5085 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5086 zonerefs += nr_zones;
5087 zonerefs->zone = NULL;
5088 zonerefs->zone_idx = 0;
5089 }
5090
5091 /*
5092 * Build zonelists ordered by zone and nodes within zones.
5093 * This results in conserving DMA zone[s] until all Normal memory is
5094 * exhausted, but results in overflowing to remote node while memory
5095 * may still exist in local DMA zone.
5096 */
5097
5098 static void build_zonelists(pg_data_t *pgdat)
5099 {
5100 static int node_order[MAX_NUMNODES];
5101 int node, load, nr_nodes = 0;
5102 nodemask_t used_mask;
5103 int local_node, prev_node;
5104
5105 /* NUMA-aware ordering of nodes */
5106 local_node = pgdat->node_id;
5107 load = nr_online_nodes;
5108 prev_node = local_node;
5109 nodes_clear(used_mask);
5110
5111 memset(node_order, 0, sizeof(node_order));
5112 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5113 /*
5114 * We don't want to pressure a particular node.
5115 * So adding penalty to the first node in same
5116 * distance group to make it round-robin.
5117 */
5118 if (node_distance(local_node, node) !=
5119 node_distance(local_node, prev_node))
5120 node_load[node] = load;
5121
5122 node_order[nr_nodes++] = node;
5123 prev_node = node;
5124 load--;
5125 }
5126
5127 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5128 build_thisnode_zonelists(pgdat);
5129 }
5130
5131 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5132 /*
5133 * Return node id of node used for "local" allocations.
5134 * I.e., first node id of first zone in arg node's generic zonelist.
5135 * Used for initializing percpu 'numa_mem', which is used primarily
5136 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5137 */
5138 int local_memory_node(int node)
5139 {
5140 struct zoneref *z;
5141
5142 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5143 gfp_zone(GFP_KERNEL),
5144 NULL);
5145 return z->zone->node;
5146 }
5147 #endif
5148
5149 static void setup_min_unmapped_ratio(void);
5150 static void setup_min_slab_ratio(void);
5151 #else /* CONFIG_NUMA */
5152
5153 static void build_zonelists(pg_data_t *pgdat)
5154 {
5155 int node, local_node;
5156 struct zoneref *zonerefs;
5157 int nr_zones;
5158
5159 local_node = pgdat->node_id;
5160
5161 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5162 nr_zones = build_zonerefs_node(pgdat, zonerefs);
5163 zonerefs += nr_zones;
5164
5165 /*
5166 * Now we build the zonelist so that it contains the zones
5167 * of all the other nodes.
5168 * We don't want to pressure a particular node, so when
5169 * building the zones for node N, we make sure that the
5170 * zones coming right after the local ones are those from
5171 * node N+1 (modulo N)
5172 */
5173 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5174 if (!node_online(node))
5175 continue;
5176 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5177 zonerefs += nr_zones;
5178 }
5179 for (node = 0; node < local_node; node++) {
5180 if (!node_online(node))
5181 continue;
5182 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5183 zonerefs += nr_zones;
5184 }
5185
5186 zonerefs->zone = NULL;
5187 zonerefs->zone_idx = 0;
5188 }
5189
5190 #endif /* CONFIG_NUMA */
5191
5192 /*
5193 * Boot pageset table. One per cpu which is going to be used for all
5194 * zones and all nodes. The parameters will be set in such a way
5195 * that an item put on a list will immediately be handed over to
5196 * the buddy list. This is safe since pageset manipulation is done
5197 * with interrupts disabled.
5198 *
5199 * The boot_pagesets must be kept even after bootup is complete for
5200 * unused processors and/or zones. They do play a role for bootstrapping
5201 * hotplugged processors.
5202 *
5203 * zoneinfo_show() and maybe other functions do
5204 * not check if the processor is online before following the pageset pointer.
5205 * Other parts of the kernel may not check if the zone is available.
5206 */
5207 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5208 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5209 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
5210
5211 static void __build_all_zonelists(void *data)
5212 {
5213 int nid;
5214 int __maybe_unused cpu;
5215 pg_data_t *self = data;
5216 static DEFINE_SPINLOCK(lock);
5217
5218 spin_lock(&lock);
5219
5220 #ifdef CONFIG_NUMA
5221 memset(node_load, 0, sizeof(node_load));
5222 #endif
5223
5224 /*
5225 * This node is hotadded and no memory is yet present. So just
5226 * building zonelists is fine - no need to touch other nodes.
5227 */
5228 if (self && !node_online(self->node_id)) {
5229 build_zonelists(self);
5230 } else {
5231 for_each_online_node(nid) {
5232 pg_data_t *pgdat = NODE_DATA(nid);
5233
5234 build_zonelists(pgdat);
5235 }
5236
5237 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5238 /*
5239 * We now know the "local memory node" for each node--
5240 * i.e., the node of the first zone in the generic zonelist.
5241 * Set up numa_mem percpu variable for on-line cpus. During
5242 * boot, only the boot cpu should be on-line; we'll init the
5243 * secondary cpus' numa_mem as they come on-line. During
5244 * node/memory hotplug, we'll fixup all on-line cpus.
5245 */
5246 for_each_online_cpu(cpu)
5247 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5248 #endif
5249 }
5250
5251 spin_unlock(&lock);
5252 }
5253
5254 static noinline void __init
5255 build_all_zonelists_init(void)
5256 {
5257 int cpu;
5258
5259 __build_all_zonelists(NULL);
5260
5261 /*
5262 * Initialize the boot_pagesets that are going to be used
5263 * for bootstrapping processors. The real pagesets for
5264 * each zone will be allocated later when the per cpu
5265 * allocator is available.
5266 *
5267 * boot_pagesets are used also for bootstrapping offline
5268 * cpus if the system is already booted because the pagesets
5269 * are needed to initialize allocators on a specific cpu too.
5270 * F.e. the percpu allocator needs the page allocator which
5271 * needs the percpu allocator in order to allocate its pagesets
5272 * (a chicken-egg dilemma).
5273 */
5274 for_each_possible_cpu(cpu)
5275 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5276
5277 mminit_verify_zonelist();
5278 cpuset_init_current_mems_allowed();
5279 }
5280
5281 /*
5282 * unless system_state == SYSTEM_BOOTING.
5283 *
5284 * __ref due to call of __init annotated helper build_all_zonelists_init
5285 * [protected by SYSTEM_BOOTING].
5286 */
5287 void __ref build_all_zonelists(pg_data_t *pgdat)
5288 {
5289 if (system_state == SYSTEM_BOOTING) {
5290 build_all_zonelists_init();
5291 } else {
5292 __build_all_zonelists(pgdat);
5293 /* cpuset refresh routine should be here */
5294 }
5295 vm_total_pages = nr_free_pagecache_pages();
5296 /*
5297 * Disable grouping by mobility if the number of pages in the
5298 * system is too low to allow the mechanism to work. It would be
5299 * more accurate, but expensive to check per-zone. This check is
5300 * made on memory-hotadd so a system can start with mobility
5301 * disabled and enable it later
5302 */
5303 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5304 page_group_by_mobility_disabled = 1;
5305 else
5306 page_group_by_mobility_disabled = 0;
5307
5308 pr_info("Built %i zonelists, mobility grouping %s. Total pages: %ld\n",
5309 nr_online_nodes,
5310 page_group_by_mobility_disabled ? "off" : "on",
5311 vm_total_pages);
5312 #ifdef CONFIG_NUMA
5313 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5314 #endif
5315 }
5316
5317 /*
5318 * Initially all pages are reserved - free ones are freed
5319 * up by free_all_bootmem() once the early boot process is
5320 * done. Non-atomic initialization, single-pass.
5321 */
5322 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5323 unsigned long start_pfn, enum memmap_context context)
5324 {
5325 struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
5326 unsigned long end_pfn = start_pfn + size;
5327 pg_data_t *pgdat = NODE_DATA(nid);
5328 unsigned long pfn;
5329 unsigned long nr_initialised = 0;
5330 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5331 struct memblock_region *r = NULL, *tmp;
5332 #endif
5333
5334 if (highest_memmap_pfn < end_pfn - 1)
5335 highest_memmap_pfn = end_pfn - 1;
5336
5337 /*
5338 * Honor reservation requested by the driver for this ZONE_DEVICE
5339 * memory
5340 */
5341 if (altmap && start_pfn == altmap->base_pfn)
5342 start_pfn += altmap->reserve;
5343
5344 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5345 /*
5346 * There can be holes in boot-time mem_map[]s handed to this
5347 * function. They do not exist on hotplugged memory.
5348 */
5349 if (context != MEMMAP_EARLY)
5350 goto not_early;
5351
5352 if (!early_pfn_valid(pfn))
5353 continue;
5354 if (!early_pfn_in_nid(pfn, nid))
5355 continue;
5356 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
5357 break;
5358
5359 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5360 /*
5361 * Check given memblock attribute by firmware which can affect
5362 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
5363 * mirrored, it's an overlapped memmap init. skip it.
5364 */
5365 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5366 if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
5367 for_each_memblock(memory, tmp)
5368 if (pfn < memblock_region_memory_end_pfn(tmp))
5369 break;
5370 r = tmp;
5371 }
5372 if (pfn >= memblock_region_memory_base_pfn(r) &&
5373 memblock_is_mirror(r)) {
5374 /* already initialized as NORMAL */
5375 pfn = memblock_region_memory_end_pfn(r);
5376 continue;
5377 }
5378 }
5379 #endif
5380
5381 not_early:
5382 /*
5383 * Mark the block movable so that blocks are reserved for
5384 * movable at startup. This will force kernel allocations
5385 * to reserve their blocks rather than leaking throughout
5386 * the address space during boot when many long-lived
5387 * kernel allocations are made.
5388 *
5389 * bitmap is created for zone's valid pfn range. but memmap
5390 * can be created for invalid pages (for alignment)
5391 * check here not to call set_pageblock_migratetype() against
5392 * pfn out of zone.
5393 */
5394 if (!(pfn & (pageblock_nr_pages - 1))) {
5395 struct page *page = pfn_to_page(pfn);
5396
5397 __init_single_page(page, pfn, zone, nid);
5398 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5399 cond_resched();
5400 } else {
5401 __init_single_pfn(pfn, zone, nid);
5402 }
5403 }
5404 }
5405
5406 static void __meminit zone_init_free_lists(struct zone *zone)
5407 {
5408 unsigned int order, t;
5409 for_each_migratetype_order(order, t) {
5410 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
5411 zone->free_area[order].nr_free = 0;
5412 }
5413 }
5414
5415 #ifndef __HAVE_ARCH_MEMMAP_INIT
5416 #define memmap_init(size, nid, zone, start_pfn) \
5417 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
5418 #endif
5419
5420 static int zone_batchsize(struct zone *zone)
5421 {
5422 #ifdef CONFIG_MMU
5423 int batch;
5424
5425 /*
5426 * The per-cpu-pages pools are set to around 1000th of the
5427 * size of the zone. But no more than 1/2 of a meg.
5428 *
5429 * OK, so we don't know how big the cache is. So guess.
5430 */
5431 batch = zone->managed_pages / 1024;
5432 if (batch * PAGE_SIZE > 512 * 1024)
5433 batch = (512 * 1024) / PAGE_SIZE;
5434 batch /= 4; /* We effectively *= 4 below */
5435 if (batch < 1)
5436 batch = 1;
5437
5438 /*
5439 * Clamp the batch to a 2^n - 1 value. Having a power
5440 * of 2 value was found to be more likely to have
5441 * suboptimal cache aliasing properties in some cases.
5442 *
5443 * For example if 2 tasks are alternately allocating
5444 * batches of pages, one task can end up with a lot
5445 * of pages of one half of the possible page colors
5446 * and the other with pages of the other colors.
5447 */
5448 batch = rounddown_pow_of_two(batch + batch/2) - 1;
5449
5450 return batch;
5451
5452 #else
5453 /* The deferral and batching of frees should be suppressed under NOMMU
5454 * conditions.
5455 *
5456 * The problem is that NOMMU needs to be able to allocate large chunks
5457 * of contiguous memory as there's no hardware page translation to
5458 * assemble apparent contiguous memory from discontiguous pages.
5459 *
5460 * Queueing large contiguous runs of pages for batching, however,
5461 * causes the pages to actually be freed in smaller chunks. As there
5462 * can be a significant delay between the individual batches being
5463 * recycled, this leads to the once large chunks of space being
5464 * fragmented and becoming unavailable for high-order allocations.
5465 */
5466 return 0;
5467 #endif
5468 }
5469
5470 /*
5471 * pcp->high and pcp->batch values are related and dependent on one another:
5472 * ->batch must never be higher then ->high.
5473 * The following function updates them in a safe manner without read side
5474 * locking.
5475 *
5476 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5477 * those fields changing asynchronously (acording the the above rule).
5478 *
5479 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5480 * outside of boot time (or some other assurance that no concurrent updaters
5481 * exist).
5482 */
5483 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5484 unsigned long batch)
5485 {
5486 /* start with a fail safe value for batch */
5487 pcp->batch = 1;
5488 smp_wmb();
5489
5490 /* Update high, then batch, in order */
5491 pcp->high = high;
5492 smp_wmb();
5493
5494 pcp->batch = batch;
5495 }
5496
5497 /* a companion to pageset_set_high() */
5498 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5499 {
5500 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
5501 }
5502
5503 static void pageset_init(struct per_cpu_pageset *p)
5504 {
5505 struct per_cpu_pages *pcp;
5506 int migratetype;
5507
5508 memset(p, 0, sizeof(*p));
5509
5510 pcp = &p->pcp;
5511 pcp->count = 0;
5512 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5513 INIT_LIST_HEAD(&pcp->lists[migratetype]);
5514 }
5515
5516 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5517 {
5518 pageset_init(p);
5519 pageset_set_batch(p, batch);
5520 }
5521
5522 /*
5523 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5524 * to the value high for the pageset p.
5525 */
5526 static void pageset_set_high(struct per_cpu_pageset *p,
5527 unsigned long high)
5528 {
5529 unsigned long batch = max(1UL, high / 4);
5530 if ((high / 4) > (PAGE_SHIFT * 8))
5531 batch = PAGE_SHIFT * 8;
5532
5533 pageset_update(&p->pcp, high, batch);
5534 }
5535
5536 static void pageset_set_high_and_batch(struct zone *zone,
5537 struct per_cpu_pageset *pcp)
5538 {
5539 if (percpu_pagelist_fraction)
5540 pageset_set_high(pcp,
5541 (zone->managed_pages /
5542 percpu_pagelist_fraction));
5543 else
5544 pageset_set_batch(pcp, zone_batchsize(zone));
5545 }
5546
5547 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5548 {
5549 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5550
5551 pageset_init(pcp);
5552 pageset_set_high_and_batch(zone, pcp);
5553 }
5554
5555 void __meminit setup_zone_pageset(struct zone *zone)
5556 {
5557 int cpu;
5558 zone->pageset = alloc_percpu(struct per_cpu_pageset);
5559 for_each_possible_cpu(cpu)
5560 zone_pageset_init(zone, cpu);
5561 }
5562
5563 /*
5564 * Allocate per cpu pagesets and initialize them.
5565 * Before this call only boot pagesets were available.
5566 */
5567 void __init setup_per_cpu_pageset(void)
5568 {
5569 struct pglist_data *pgdat;
5570 struct zone *zone;
5571
5572 for_each_populated_zone(zone)
5573 setup_zone_pageset(zone);
5574
5575 for_each_online_pgdat(pgdat)
5576 pgdat->per_cpu_nodestats =
5577 alloc_percpu(struct per_cpu_nodestat);
5578 }
5579
5580 static __meminit void zone_pcp_init(struct zone *zone)
5581 {
5582 /*
5583 * per cpu subsystem is not up at this point. The following code
5584 * relies on the ability of the linker to provide the
5585 * offset of a (static) per cpu variable into the per cpu area.
5586 */
5587 zone->pageset = &boot_pageset;
5588
5589 if (populated_zone(zone))
5590 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
5591 zone->name, zone->present_pages,
5592 zone_batchsize(zone));
5593 }
5594
5595 void __meminit init_currently_empty_zone(struct zone *zone,
5596 unsigned long zone_start_pfn,
5597 unsigned long size)
5598 {
5599 struct pglist_data *pgdat = zone->zone_pgdat;
5600 int zone_idx = zone_idx(zone) + 1;
5601
5602 if (zone_idx > pgdat->nr_zones)
5603 pgdat->nr_zones = zone_idx;
5604
5605 zone->zone_start_pfn = zone_start_pfn;
5606
5607 mminit_dprintk(MMINIT_TRACE, "memmap_init",
5608 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5609 pgdat->node_id,
5610 (unsigned long)zone_idx(zone),
5611 zone_start_pfn, (zone_start_pfn + size));
5612
5613 zone_init_free_lists(zone);
5614 zone->initialized = 1;
5615 }
5616
5617 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5618 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
5619
5620 /*
5621 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
5622 */
5623 int __meminit __early_pfn_to_nid(unsigned long pfn,
5624 struct mminit_pfnnid_cache *state)
5625 {
5626 unsigned long start_pfn, end_pfn;
5627 int nid;
5628
5629 if (state->last_start <= pfn && pfn < state->last_end)
5630 return state->last_nid;
5631
5632 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5633 if (nid != -1) {
5634 state->last_start = start_pfn;
5635 state->last_end = end_pfn;
5636 state->last_nid = nid;
5637 }
5638
5639 return nid;
5640 }
5641 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5642
5643 /**
5644 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5645 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5646 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5647 *
5648 * If an architecture guarantees that all ranges registered contain no holes
5649 * and may be freed, this this function may be used instead of calling
5650 * memblock_free_early_nid() manually.
5651 */
5652 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
5653 {
5654 unsigned long start_pfn, end_pfn;
5655 int i, this_nid;
5656
5657 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5658 start_pfn = min(start_pfn, max_low_pfn);
5659 end_pfn = min(end_pfn, max_low_pfn);
5660
5661 if (start_pfn < end_pfn)
5662 memblock_free_early_nid(PFN_PHYS(start_pfn),
5663 (end_pfn - start_pfn) << PAGE_SHIFT,
5664 this_nid);
5665 }
5666 }
5667
5668 /**
5669 * sparse_memory_present_with_active_regions - Call memory_present for each active range
5670 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5671 *
5672 * If an architecture guarantees that all ranges registered contain no holes and may
5673 * be freed, this function may be used instead of calling memory_present() manually.
5674 */
5675 void __init sparse_memory_present_with_active_regions(int nid)
5676 {
5677 unsigned long start_pfn, end_pfn;
5678 int i, this_nid;
5679
5680 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5681 memory_present(this_nid, start_pfn, end_pfn);
5682 }
5683
5684 /**
5685 * get_pfn_range_for_nid - Return the start and end page frames for a node
5686 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5687 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5688 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5689 *
5690 * It returns the start and end page frame of a node based on information
5691 * provided by memblock_set_node(). If called for a node
5692 * with no available memory, a warning is printed and the start and end
5693 * PFNs will be 0.
5694 */
5695 void __meminit get_pfn_range_for_nid(unsigned int nid,
5696 unsigned long *start_pfn, unsigned long *end_pfn)
5697 {
5698 unsigned long this_start_pfn, this_end_pfn;
5699 int i;
5700
5701 *start_pfn = -1UL;
5702 *end_pfn = 0;
5703
5704 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5705 *start_pfn = min(*start_pfn, this_start_pfn);
5706 *end_pfn = max(*end_pfn, this_end_pfn);
5707 }
5708
5709 if (*start_pfn == -1UL)
5710 *start_pfn = 0;
5711 }
5712
5713 /*
5714 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5715 * assumption is made that zones within a node are ordered in monotonic
5716 * increasing memory addresses so that the "highest" populated zone is used
5717 */
5718 static void __init find_usable_zone_for_movable(void)
5719 {
5720 int zone_index;
5721 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5722 if (zone_index == ZONE_MOVABLE)
5723 continue;
5724
5725 if (arch_zone_highest_possible_pfn[zone_index] >
5726 arch_zone_lowest_possible_pfn[zone_index])
5727 break;
5728 }
5729
5730 VM_BUG_ON(zone_index == -1);
5731 movable_zone = zone_index;
5732 }
5733
5734 /*
5735 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
5736 * because it is sized independent of architecture. Unlike the other zones,
5737 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5738 * in each node depending on the size of each node and how evenly kernelcore
5739 * is distributed. This helper function adjusts the zone ranges
5740 * provided by the architecture for a given node by using the end of the
5741 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5742 * zones within a node are in order of monotonic increases memory addresses
5743 */
5744 static void __meminit adjust_zone_range_for_zone_movable(int nid,
5745 unsigned long zone_type,
5746 unsigned long node_start_pfn,
5747 unsigned long node_end_pfn,
5748 unsigned long *zone_start_pfn,
5749 unsigned long *zone_end_pfn)
5750 {
5751 /* Only adjust if ZONE_MOVABLE is on this node */
5752 if (zone_movable_pfn[nid]) {
5753 /* Size ZONE_MOVABLE */
5754 if (zone_type == ZONE_MOVABLE) {
5755 *zone_start_pfn = zone_movable_pfn[nid];
5756 *zone_end_pfn = min(node_end_pfn,
5757 arch_zone_highest_possible_pfn[movable_zone]);
5758
5759 /* Adjust for ZONE_MOVABLE starting within this range */
5760 } else if (!mirrored_kernelcore &&
5761 *zone_start_pfn < zone_movable_pfn[nid] &&
5762 *zone_end_pfn > zone_movable_pfn[nid]) {
5763 *zone_end_pfn = zone_movable_pfn[nid];
5764
5765 /* Check if this whole range is within ZONE_MOVABLE */
5766 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5767 *zone_start_pfn = *zone_end_pfn;
5768 }
5769 }
5770
5771 /*
5772 * Return the number of pages a zone spans in a node, including holes
5773 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5774 */
5775 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
5776 unsigned long zone_type,
5777 unsigned long node_start_pfn,
5778 unsigned long node_end_pfn,
5779 unsigned long *zone_start_pfn,
5780 unsigned long *zone_end_pfn,
5781 unsigned long *ignored)
5782 {
5783 /* When hotadd a new node from cpu_up(), the node should be empty */
5784 if (!node_start_pfn && !node_end_pfn)
5785 return 0;
5786
5787 /* Get the start and end of the zone */
5788 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5789 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
5790 adjust_zone_range_for_zone_movable(nid, zone_type,
5791 node_start_pfn, node_end_pfn,
5792 zone_start_pfn, zone_end_pfn);
5793
5794 /* Check that this node has pages within the zone's required range */
5795 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
5796 return 0;
5797
5798 /* Move the zone boundaries inside the node if necessary */
5799 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5800 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
5801
5802 /* Return the spanned pages */
5803 return *zone_end_pfn - *zone_start_pfn;
5804 }
5805
5806 /*
5807 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5808 * then all holes in the requested range will be accounted for.
5809 */
5810 unsigned long __meminit __absent_pages_in_range(int nid,
5811 unsigned long range_start_pfn,
5812 unsigned long range_end_pfn)
5813 {
5814 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5815 unsigned long start_pfn, end_pfn;
5816 int i;
5817
5818 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5819 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5820 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5821 nr_absent -= end_pfn - start_pfn;
5822 }
5823 return nr_absent;
5824 }
5825
5826 /**
5827 * absent_pages_in_range - Return number of page frames in holes within a range
5828 * @start_pfn: The start PFN to start searching for holes
5829 * @end_pfn: The end PFN to stop searching for holes
5830 *
5831 * It returns the number of pages frames in memory holes within a range.
5832 */
5833 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5834 unsigned long end_pfn)
5835 {
5836 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5837 }
5838
5839 /* Return the number of page frames in holes in a zone on a node */
5840 static unsigned long __meminit zone_absent_pages_in_node(int nid,
5841 unsigned long zone_type,
5842 unsigned long node_start_pfn,
5843 unsigned long node_end_pfn,
5844 unsigned long *ignored)
5845 {
5846 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5847 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
5848 unsigned long zone_start_pfn, zone_end_pfn;
5849 unsigned long nr_absent;
5850
5851 /* When hotadd a new node from cpu_up(), the node should be empty */
5852 if (!node_start_pfn && !node_end_pfn)
5853 return 0;
5854
5855 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5856 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
5857
5858 adjust_zone_range_for_zone_movable(nid, zone_type,
5859 node_start_pfn, node_end_pfn,
5860 &zone_start_pfn, &zone_end_pfn);
5861 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5862
5863 /*
5864 * ZONE_MOVABLE handling.
5865 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5866 * and vice versa.
5867 */
5868 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
5869 unsigned long start_pfn, end_pfn;
5870 struct memblock_region *r;
5871
5872 for_each_memblock(memory, r) {
5873 start_pfn = clamp(memblock_region_memory_base_pfn(r),
5874 zone_start_pfn, zone_end_pfn);
5875 end_pfn = clamp(memblock_region_memory_end_pfn(r),
5876 zone_start_pfn, zone_end_pfn);
5877
5878 if (zone_type == ZONE_MOVABLE &&
5879 memblock_is_mirror(r))
5880 nr_absent += end_pfn - start_pfn;
5881
5882 if (zone_type == ZONE_NORMAL &&
5883 !memblock_is_mirror(r))
5884 nr_absent += end_pfn - start_pfn;
5885 }
5886 }
5887
5888 return nr_absent;
5889 }
5890
5891 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5892 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
5893 unsigned long zone_type,
5894 unsigned long node_start_pfn,
5895 unsigned long node_end_pfn,
5896 unsigned long *zone_start_pfn,
5897 unsigned long *zone_end_pfn,
5898 unsigned long *zones_size)
5899 {
5900 unsigned int zone;
5901
5902 *zone_start_pfn = node_start_pfn;
5903 for (zone = 0; zone < zone_type; zone++)
5904 *zone_start_pfn += zones_size[zone];
5905
5906 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5907
5908 return zones_size[zone_type];
5909 }
5910
5911 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
5912 unsigned long zone_type,
5913 unsigned long node_start_pfn,
5914 unsigned long node_end_pfn,
5915 unsigned long *zholes_size)
5916 {
5917 if (!zholes_size)
5918 return 0;
5919
5920 return zholes_size[zone_type];
5921 }
5922
5923 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5924
5925 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
5926 unsigned long node_start_pfn,
5927 unsigned long node_end_pfn,
5928 unsigned long *zones_size,
5929 unsigned long *zholes_size)
5930 {
5931 unsigned long realtotalpages = 0, totalpages = 0;
5932 enum zone_type i;
5933
5934 for (i = 0; i < MAX_NR_ZONES; i++) {
5935 struct zone *zone = pgdat->node_zones + i;
5936 unsigned long zone_start_pfn, zone_end_pfn;
5937 unsigned long size, real_size;
5938
5939 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5940 node_start_pfn,
5941 node_end_pfn,
5942 &zone_start_pfn,
5943 &zone_end_pfn,
5944 zones_size);
5945 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
5946 node_start_pfn, node_end_pfn,
5947 zholes_size);
5948 if (size)
5949 zone->zone_start_pfn = zone_start_pfn;
5950 else
5951 zone->zone_start_pfn = 0;
5952 zone->spanned_pages = size;
5953 zone->present_pages = real_size;
5954
5955 totalpages += size;
5956 realtotalpages += real_size;
5957 }
5958
5959 pgdat->node_spanned_pages = totalpages;
5960 pgdat->node_present_pages = realtotalpages;
5961 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5962 realtotalpages);
5963 }
5964
5965 #ifndef CONFIG_SPARSEMEM
5966 /*
5967 * Calculate the size of the zone->blockflags rounded to an unsigned long
5968 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5969 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
5970 * round what is now in bits to nearest long in bits, then return it in
5971 * bytes.
5972 */
5973 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
5974 {
5975 unsigned long usemapsize;
5976
5977 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
5978 usemapsize = roundup(zonesize, pageblock_nr_pages);
5979 usemapsize = usemapsize >> pageblock_order;
5980 usemapsize *= NR_PAGEBLOCK_BITS;
5981 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5982
5983 return usemapsize / 8;
5984 }
5985
5986 static void __init setup_usemap(struct pglist_data *pgdat,
5987 struct zone *zone,
5988 unsigned long zone_start_pfn,
5989 unsigned long zonesize)
5990 {
5991 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
5992 zone->pageblock_flags = NULL;
5993 if (usemapsize)
5994 zone->pageblock_flags =
5995 memblock_virt_alloc_node_nopanic(usemapsize,
5996 pgdat->node_id);
5997 }
5998 #else
5999 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
6000 unsigned long zone_start_pfn, unsigned long zonesize) {}
6001 #endif /* CONFIG_SPARSEMEM */
6002
6003 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6004
6005 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6006 void __paginginit set_pageblock_order(void)
6007 {
6008 unsigned int order;
6009
6010 /* Check that pageblock_nr_pages has not already been setup */
6011 if (pageblock_order)
6012 return;
6013
6014 if (HPAGE_SHIFT > PAGE_SHIFT)
6015 order = HUGETLB_PAGE_ORDER;
6016 else
6017 order = MAX_ORDER - 1;
6018
6019 /*
6020 * Assume the largest contiguous order of interest is a huge page.
6021 * This value may be variable depending on boot parameters on IA64 and
6022 * powerpc.
6023 */
6024 pageblock_order = order;
6025 }
6026 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6027
6028 /*
6029 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6030 * is unused as pageblock_order is set at compile-time. See
6031 * include/linux/pageblock-flags.h for the values of pageblock_order based on
6032 * the kernel config
6033 */
6034 void __paginginit set_pageblock_order(void)
6035 {
6036 }
6037
6038 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6039
6040 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
6041 unsigned long present_pages)
6042 {
6043 unsigned long pages = spanned_pages;
6044
6045 /*
6046 * Provide a more accurate estimation if there are holes within
6047 * the zone and SPARSEMEM is in use. If there are holes within the
6048 * zone, each populated memory region may cost us one or two extra
6049 * memmap pages due to alignment because memmap pages for each
6050 * populated regions may not be naturally aligned on page boundary.
6051 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6052 */
6053 if (spanned_pages > present_pages + (present_pages >> 4) &&
6054 IS_ENABLED(CONFIG_SPARSEMEM))
6055 pages = present_pages;
6056
6057 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6058 }
6059
6060 /*
6061 * Set up the zone data structures:
6062 * - mark all pages reserved
6063 * - mark all memory queues empty
6064 * - clear the memory bitmaps
6065 *
6066 * NOTE: pgdat should get zeroed by caller.
6067 */
6068 static void __paginginit free_area_init_core(struct pglist_data *pgdat)
6069 {
6070 enum zone_type j;
6071 int nid = pgdat->node_id;
6072
6073 pgdat_resize_init(pgdat);
6074 #ifdef CONFIG_NUMA_BALANCING
6075 spin_lock_init(&pgdat->numabalancing_migrate_lock);
6076 pgdat->numabalancing_migrate_nr_pages = 0;
6077 pgdat->numabalancing_migrate_next_window = jiffies;
6078 #endif
6079 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6080 spin_lock_init(&pgdat->split_queue_lock);
6081 INIT_LIST_HEAD(&pgdat->split_queue);
6082 pgdat->split_queue_len = 0;
6083 #endif
6084 init_waitqueue_head(&pgdat->kswapd_wait);
6085 init_waitqueue_head(&pgdat->pfmemalloc_wait);
6086 #ifdef CONFIG_COMPACTION
6087 init_waitqueue_head(&pgdat->kcompactd_wait);
6088 #endif
6089 pgdat_page_ext_init(pgdat);
6090 spin_lock_init(&pgdat->lru_lock);
6091 lruvec_init(node_lruvec(pgdat));
6092
6093 pgdat->per_cpu_nodestats = &boot_nodestats;
6094
6095 for (j = 0; j < MAX_NR_ZONES; j++) {
6096 struct zone *zone = pgdat->node_zones + j;
6097 unsigned long size, realsize, freesize, memmap_pages;
6098 unsigned long zone_start_pfn = zone->zone_start_pfn;
6099
6100 size = zone->spanned_pages;
6101 realsize = freesize = zone->present_pages;
6102
6103 /*
6104 * Adjust freesize so that it accounts for how much memory
6105 * is used by this zone for memmap. This affects the watermark
6106 * and per-cpu initialisations
6107 */
6108 memmap_pages = calc_memmap_size(size, realsize);
6109 if (!is_highmem_idx(j)) {
6110 if (freesize >= memmap_pages) {
6111 freesize -= memmap_pages;
6112 if (memmap_pages)
6113 printk(KERN_DEBUG
6114 " %s zone: %lu pages used for memmap\n",
6115 zone_names[j], memmap_pages);
6116 } else
6117 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
6118 zone_names[j], memmap_pages, freesize);
6119 }
6120
6121 /* Account for reserved pages */
6122 if (j == 0 && freesize > dma_reserve) {
6123 freesize -= dma_reserve;
6124 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6125 zone_names[0], dma_reserve);
6126 }
6127
6128 if (!is_highmem_idx(j))
6129 nr_kernel_pages += freesize;
6130 /* Charge for highmem memmap if there are enough kernel pages */
6131 else if (nr_kernel_pages > memmap_pages * 2)
6132 nr_kernel_pages -= memmap_pages;
6133 nr_all_pages += freesize;
6134
6135 /*
6136 * Set an approximate value for lowmem here, it will be adjusted
6137 * when the bootmem allocator frees pages into the buddy system.
6138 * And all highmem pages will be managed by the buddy system.
6139 */
6140 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
6141 #ifdef CONFIG_NUMA
6142 zone->node = nid;
6143 #endif
6144 zone->name = zone_names[j];
6145 zone->zone_pgdat = pgdat;
6146 spin_lock_init(&zone->lock);
6147 zone_seqlock_init(zone);
6148 zone_pcp_init(zone);
6149
6150 if (!size)
6151 continue;
6152
6153 set_pageblock_order();
6154 setup_usemap(pgdat, zone, zone_start_pfn, size);
6155 init_currently_empty_zone(zone, zone_start_pfn, size);
6156 memmap_init(size, nid, j, zone_start_pfn);
6157 }
6158 }
6159
6160 static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
6161 {
6162 unsigned long __maybe_unused start = 0;
6163 unsigned long __maybe_unused offset = 0;
6164
6165 /* Skip empty nodes */
6166 if (!pgdat->node_spanned_pages)
6167 return;
6168
6169 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6170 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6171 offset = pgdat->node_start_pfn - start;
6172 /* ia64 gets its own node_mem_map, before this, without bootmem */
6173 if (!pgdat->node_mem_map) {
6174 unsigned long size, end;
6175 struct page *map;
6176
6177 /*
6178 * The zone's endpoints aren't required to be MAX_ORDER
6179 * aligned but the node_mem_map endpoints must be in order
6180 * for the buddy allocator to function correctly.
6181 */
6182 end = pgdat_end_pfn(pgdat);
6183 end = ALIGN(end, MAX_ORDER_NR_PAGES);
6184 size = (end - start) * sizeof(struct page);
6185 map = alloc_remap(pgdat->node_id, size);
6186 if (!map)
6187 map = memblock_virt_alloc_node_nopanic(size,
6188 pgdat->node_id);
6189 pgdat->node_mem_map = map + offset;
6190 }
6191 #ifndef CONFIG_NEED_MULTIPLE_NODES
6192 /*
6193 * With no DISCONTIG, the global mem_map is just set as node 0's
6194 */
6195 if (pgdat == NODE_DATA(0)) {
6196 mem_map = NODE_DATA(0)->node_mem_map;
6197 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6198 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
6199 mem_map -= offset;
6200 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6201 }
6202 #endif
6203 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
6204 }
6205
6206 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
6207 unsigned long node_start_pfn, unsigned long *zholes_size)
6208 {
6209 pg_data_t *pgdat = NODE_DATA(nid);
6210 unsigned long start_pfn = 0;
6211 unsigned long end_pfn = 0;
6212
6213 /* pg_data_t should be reset to zero when it's allocated */
6214 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
6215
6216 pgdat->node_id = nid;
6217 pgdat->node_start_pfn = node_start_pfn;
6218 pgdat->per_cpu_nodestats = NULL;
6219 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6220 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6221 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6222 (u64)start_pfn << PAGE_SHIFT,
6223 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6224 #else
6225 start_pfn = node_start_pfn;
6226 #endif
6227 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6228 zones_size, zholes_size);
6229
6230 alloc_node_mem_map(pgdat);
6231 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6232 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
6233 nid, (unsigned long)pgdat,
6234 (unsigned long)pgdat->node_mem_map);
6235 #endif
6236
6237 reset_deferred_meminit(pgdat);
6238 free_area_init_core(pgdat);
6239 }
6240
6241 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6242
6243 #if MAX_NUMNODES > 1
6244 /*
6245 * Figure out the number of possible node ids.
6246 */
6247 void __init setup_nr_node_ids(void)
6248 {
6249 unsigned int highest;
6250
6251 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
6252 nr_node_ids = highest + 1;
6253 }
6254 #endif
6255
6256 /**
6257 * node_map_pfn_alignment - determine the maximum internode alignment
6258 *
6259 * This function should be called after node map is populated and sorted.
6260 * It calculates the maximum power of two alignment which can distinguish
6261 * all the nodes.
6262 *
6263 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6264 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
6265 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
6266 * shifted, 1GiB is enough and this function will indicate so.
6267 *
6268 * This is used to test whether pfn -> nid mapping of the chosen memory
6269 * model has fine enough granularity to avoid incorrect mapping for the
6270 * populated node map.
6271 *
6272 * Returns the determined alignment in pfn's. 0 if there is no alignment
6273 * requirement (single node).
6274 */
6275 unsigned long __init node_map_pfn_alignment(void)
6276 {
6277 unsigned long accl_mask = 0, last_end = 0;
6278 unsigned long start, end, mask;
6279 int last_nid = -1;
6280 int i, nid;
6281
6282 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
6283 if (!start || last_nid < 0 || last_nid == nid) {
6284 last_nid = nid;
6285 last_end = end;
6286 continue;
6287 }
6288
6289 /*
6290 * Start with a mask granular enough to pin-point to the
6291 * start pfn and tick off bits one-by-one until it becomes
6292 * too coarse to separate the current node from the last.
6293 */
6294 mask = ~((1 << __ffs(start)) - 1);
6295 while (mask && last_end <= (start & (mask << 1)))
6296 mask <<= 1;
6297
6298 /* accumulate all internode masks */
6299 accl_mask |= mask;
6300 }
6301
6302 /* convert mask to number of pages */
6303 return ~accl_mask + 1;
6304 }
6305
6306 /* Find the lowest pfn for a node */
6307 static unsigned long __init find_min_pfn_for_node(int nid)
6308 {
6309 unsigned long min_pfn = ULONG_MAX;
6310 unsigned long start_pfn;
6311 int i;
6312
6313 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6314 min_pfn = min(min_pfn, start_pfn);
6315
6316 if (min_pfn == ULONG_MAX) {
6317 pr_warn("Could not find start_pfn for node %d\n", nid);
6318 return 0;
6319 }
6320
6321 return min_pfn;
6322 }
6323
6324 /**
6325 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6326 *
6327 * It returns the minimum PFN based on information provided via
6328 * memblock_set_node().
6329 */
6330 unsigned long __init find_min_pfn_with_active_regions(void)
6331 {
6332 return find_min_pfn_for_node(MAX_NUMNODES);
6333 }
6334
6335 /*
6336 * early_calculate_totalpages()
6337 * Sum pages in active regions for movable zone.
6338 * Populate N_MEMORY for calculating usable_nodes.
6339 */
6340 static unsigned long __init early_calculate_totalpages(void)
6341 {
6342 unsigned long totalpages = 0;
6343 unsigned long start_pfn, end_pfn;
6344 int i, nid;
6345
6346 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6347 unsigned long pages = end_pfn - start_pfn;
6348
6349 totalpages += pages;
6350 if (pages)
6351 node_set_state(nid, N_MEMORY);
6352 }
6353 return totalpages;
6354 }
6355
6356 /*
6357 * Find the PFN the Movable zone begins in each node. Kernel memory
6358 * is spread evenly between nodes as long as the nodes have enough
6359 * memory. When they don't, some nodes will have more kernelcore than
6360 * others
6361 */
6362 static void __init find_zone_movable_pfns_for_nodes(void)
6363 {
6364 int i, nid;
6365 unsigned long usable_startpfn;
6366 unsigned long kernelcore_node, kernelcore_remaining;
6367 /* save the state before borrow the nodemask */
6368 nodemask_t saved_node_state = node_states[N_MEMORY];
6369 unsigned long totalpages = early_calculate_totalpages();
6370 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
6371 struct memblock_region *r;
6372
6373 /* Need to find movable_zone earlier when movable_node is specified. */
6374 find_usable_zone_for_movable();
6375
6376 /*
6377 * If movable_node is specified, ignore kernelcore and movablecore
6378 * options.
6379 */
6380 if (movable_node_is_enabled()) {
6381 for_each_memblock(memory, r) {
6382 if (!memblock_is_hotpluggable(r))
6383 continue;
6384
6385 nid = r->nid;
6386
6387 usable_startpfn = PFN_DOWN(r->base);
6388 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6389 min(usable_startpfn, zone_movable_pfn[nid]) :
6390 usable_startpfn;
6391 }
6392
6393 goto out2;
6394 }
6395
6396 /*
6397 * If kernelcore=mirror is specified, ignore movablecore option
6398 */
6399 if (mirrored_kernelcore) {
6400 bool mem_below_4gb_not_mirrored = false;
6401
6402 for_each_memblock(memory, r) {
6403 if (memblock_is_mirror(r))
6404 continue;
6405
6406 nid = r->nid;
6407
6408 usable_startpfn = memblock_region_memory_base_pfn(r);
6409
6410 if (usable_startpfn < 0x100000) {
6411 mem_below_4gb_not_mirrored = true;
6412 continue;
6413 }
6414
6415 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6416 min(usable_startpfn, zone_movable_pfn[nid]) :
6417 usable_startpfn;
6418 }
6419
6420 if (mem_below_4gb_not_mirrored)
6421 pr_warn("This configuration results in unmirrored kernel memory.");
6422
6423 goto out2;
6424 }
6425
6426 /*
6427 * If movablecore=nn[KMG] was specified, calculate what size of
6428 * kernelcore that corresponds so that memory usable for
6429 * any allocation type is evenly spread. If both kernelcore
6430 * and movablecore are specified, then the value of kernelcore
6431 * will be used for required_kernelcore if it's greater than
6432 * what movablecore would have allowed.
6433 */
6434 if (required_movablecore) {
6435 unsigned long corepages;
6436
6437 /*
6438 * Round-up so that ZONE_MOVABLE is at least as large as what
6439 * was requested by the user
6440 */
6441 required_movablecore =
6442 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
6443 required_movablecore = min(totalpages, required_movablecore);
6444 corepages = totalpages - required_movablecore;
6445
6446 required_kernelcore = max(required_kernelcore, corepages);
6447 }
6448
6449 /*
6450 * If kernelcore was not specified or kernelcore size is larger
6451 * than totalpages, there is no ZONE_MOVABLE.
6452 */
6453 if (!required_kernelcore || required_kernelcore >= totalpages)
6454 goto out;
6455
6456 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
6457 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6458
6459 restart:
6460 /* Spread kernelcore memory as evenly as possible throughout nodes */
6461 kernelcore_node = required_kernelcore / usable_nodes;
6462 for_each_node_state(nid, N_MEMORY) {
6463 unsigned long start_pfn, end_pfn;
6464
6465 /*
6466 * Recalculate kernelcore_node if the division per node
6467 * now exceeds what is necessary to satisfy the requested
6468 * amount of memory for the kernel
6469 */
6470 if (required_kernelcore < kernelcore_node)
6471 kernelcore_node = required_kernelcore / usable_nodes;
6472
6473 /*
6474 * As the map is walked, we track how much memory is usable
6475 * by the kernel using kernelcore_remaining. When it is
6476 * 0, the rest of the node is usable by ZONE_MOVABLE
6477 */
6478 kernelcore_remaining = kernelcore_node;
6479
6480 /* Go through each range of PFNs within this node */
6481 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6482 unsigned long size_pages;
6483
6484 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
6485 if (start_pfn >= end_pfn)
6486 continue;
6487
6488 /* Account for what is only usable for kernelcore */
6489 if (start_pfn < usable_startpfn) {
6490 unsigned long kernel_pages;
6491 kernel_pages = min(end_pfn, usable_startpfn)
6492 - start_pfn;
6493
6494 kernelcore_remaining -= min(kernel_pages,
6495 kernelcore_remaining);
6496 required_kernelcore -= min(kernel_pages,
6497 required_kernelcore);
6498
6499 /* Continue if range is now fully accounted */
6500 if (end_pfn <= usable_startpfn) {
6501
6502 /*
6503 * Push zone_movable_pfn to the end so
6504 * that if we have to rebalance
6505 * kernelcore across nodes, we will
6506 * not double account here
6507 */
6508 zone_movable_pfn[nid] = end_pfn;
6509 continue;
6510 }
6511 start_pfn = usable_startpfn;
6512 }
6513
6514 /*
6515 * The usable PFN range for ZONE_MOVABLE is from
6516 * start_pfn->end_pfn. Calculate size_pages as the
6517 * number of pages used as kernelcore
6518 */
6519 size_pages = end_pfn - start_pfn;
6520 if (size_pages > kernelcore_remaining)
6521 size_pages = kernelcore_remaining;
6522 zone_movable_pfn[nid] = start_pfn + size_pages;
6523
6524 /*
6525 * Some kernelcore has been met, update counts and
6526 * break if the kernelcore for this node has been
6527 * satisfied
6528 */
6529 required_kernelcore -= min(required_kernelcore,
6530 size_pages);
6531 kernelcore_remaining -= size_pages;
6532 if (!kernelcore_remaining)
6533 break;
6534 }
6535 }
6536
6537 /*
6538 * If there is still required_kernelcore, we do another pass with one
6539 * less node in the count. This will push zone_movable_pfn[nid] further
6540 * along on the nodes that still have memory until kernelcore is
6541 * satisfied
6542 */
6543 usable_nodes--;
6544 if (usable_nodes && required_kernelcore > usable_nodes)
6545 goto restart;
6546
6547 out2:
6548 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6549 for (nid = 0; nid < MAX_NUMNODES; nid++)
6550 zone_movable_pfn[nid] =
6551 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
6552
6553 out:
6554 /* restore the node_state */
6555 node_states[N_MEMORY] = saved_node_state;
6556 }
6557
6558 /* Any regular or high memory on that node ? */
6559 static void check_for_memory(pg_data_t *pgdat, int nid)
6560 {
6561 enum zone_type zone_type;
6562
6563 if (N_MEMORY == N_NORMAL_MEMORY)
6564 return;
6565
6566 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
6567 struct zone *zone = &pgdat->node_zones[zone_type];
6568 if (populated_zone(zone)) {
6569 node_set_state(nid, N_HIGH_MEMORY);
6570 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6571 zone_type <= ZONE_NORMAL)
6572 node_set_state(nid, N_NORMAL_MEMORY);
6573 break;
6574 }
6575 }
6576 }
6577
6578 /**
6579 * free_area_init_nodes - Initialise all pg_data_t and zone data
6580 * @max_zone_pfn: an array of max PFNs for each zone
6581 *
6582 * This will call free_area_init_node() for each active node in the system.
6583 * Using the page ranges provided by memblock_set_node(), the size of each
6584 * zone in each node and their holes is calculated. If the maximum PFN
6585 * between two adjacent zones match, it is assumed that the zone is empty.
6586 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6587 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6588 * starts where the previous one ended. For example, ZONE_DMA32 starts
6589 * at arch_max_dma_pfn.
6590 */
6591 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6592 {
6593 unsigned long start_pfn, end_pfn;
6594 int i, nid;
6595
6596 /* Record where the zone boundaries are */
6597 memset(arch_zone_lowest_possible_pfn, 0,
6598 sizeof(arch_zone_lowest_possible_pfn));
6599 memset(arch_zone_highest_possible_pfn, 0,
6600 sizeof(arch_zone_highest_possible_pfn));
6601
6602 start_pfn = find_min_pfn_with_active_regions();
6603
6604 for (i = 0; i < MAX_NR_ZONES; i++) {
6605 if (i == ZONE_MOVABLE)
6606 continue;
6607
6608 end_pfn = max(max_zone_pfn[i], start_pfn);
6609 arch_zone_lowest_possible_pfn[i] = start_pfn;
6610 arch_zone_highest_possible_pfn[i] = end_pfn;
6611
6612 start_pfn = end_pfn;
6613 }
6614
6615 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6616 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
6617 find_zone_movable_pfns_for_nodes();
6618
6619 /* Print out the zone ranges */
6620 pr_info("Zone ranges:\n");
6621 for (i = 0; i < MAX_NR_ZONES; i++) {
6622 if (i == ZONE_MOVABLE)
6623 continue;
6624 pr_info(" %-8s ", zone_names[i]);
6625 if (arch_zone_lowest_possible_pfn[i] ==
6626 arch_zone_highest_possible_pfn[i])
6627 pr_cont("empty\n");
6628 else
6629 pr_cont("[mem %#018Lx-%#018Lx]\n",
6630 (u64)arch_zone_lowest_possible_pfn[i]
6631 << PAGE_SHIFT,
6632 ((u64)arch_zone_highest_possible_pfn[i]
6633 << PAGE_SHIFT) - 1);
6634 }
6635
6636 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
6637 pr_info("Movable zone start for each node\n");
6638 for (i = 0; i < MAX_NUMNODES; i++) {
6639 if (zone_movable_pfn[i])
6640 pr_info(" Node %d: %#018Lx\n", i,
6641 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
6642 }
6643
6644 /* Print out the early node map */
6645 pr_info("Early memory node ranges\n");
6646 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
6647 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6648 (u64)start_pfn << PAGE_SHIFT,
6649 ((u64)end_pfn << PAGE_SHIFT) - 1);
6650
6651 /* Initialise every node */
6652 mminit_verify_pageflags_layout();
6653 setup_nr_node_ids();
6654 for_each_online_node(nid) {
6655 pg_data_t *pgdat = NODE_DATA(nid);
6656 free_area_init_node(nid, NULL,
6657 find_min_pfn_for_node(nid), NULL);
6658
6659 /* Any memory on that node */
6660 if (pgdat->node_present_pages)
6661 node_set_state(nid, N_MEMORY);
6662 check_for_memory(pgdat, nid);
6663 }
6664 }
6665
6666 static int __init cmdline_parse_core(char *p, unsigned long *core)
6667 {
6668 unsigned long long coremem;
6669 if (!p)
6670 return -EINVAL;
6671
6672 coremem = memparse(p, &p);
6673 *core = coremem >> PAGE_SHIFT;
6674
6675 /* Paranoid check that UL is enough for the coremem value */
6676 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6677
6678 return 0;
6679 }
6680
6681 /*
6682 * kernelcore=size sets the amount of memory for use for allocations that
6683 * cannot be reclaimed or migrated.
6684 */
6685 static int __init cmdline_parse_kernelcore(char *p)
6686 {
6687 /* parse kernelcore=mirror */
6688 if (parse_option_str(p, "mirror")) {
6689 mirrored_kernelcore = true;
6690 return 0;
6691 }
6692
6693 return cmdline_parse_core(p, &required_kernelcore);
6694 }
6695
6696 /*
6697 * movablecore=size sets the amount of memory for use for allocations that
6698 * can be reclaimed or migrated.
6699 */
6700 static int __init cmdline_parse_movablecore(char *p)
6701 {
6702 return cmdline_parse_core(p, &required_movablecore);
6703 }
6704
6705 early_param("kernelcore", cmdline_parse_kernelcore);
6706 early_param("movablecore", cmdline_parse_movablecore);
6707
6708 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6709
6710 void adjust_managed_page_count(struct page *page, long count)
6711 {
6712 spin_lock(&managed_page_count_lock);
6713 page_zone(page)->managed_pages += count;
6714 totalram_pages += count;
6715 #ifdef CONFIG_HIGHMEM
6716 if (PageHighMem(page))
6717 totalhigh_pages += count;
6718 #endif
6719 spin_unlock(&managed_page_count_lock);
6720 }
6721 EXPORT_SYMBOL(adjust_managed_page_count);
6722
6723 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
6724 {
6725 void *pos;
6726 unsigned long pages = 0;
6727
6728 start = (void *)PAGE_ALIGN((unsigned long)start);
6729 end = (void *)((unsigned long)end & PAGE_MASK);
6730 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
6731 if ((unsigned int)poison <= 0xFF)
6732 memset(pos, poison, PAGE_SIZE);
6733 free_reserved_page(virt_to_page(pos));
6734 }
6735
6736 if (pages && s)
6737 pr_info("Freeing %s memory: %ldK\n",
6738 s, pages << (PAGE_SHIFT - 10));
6739
6740 return pages;
6741 }
6742 EXPORT_SYMBOL(free_reserved_area);
6743
6744 #ifdef CONFIG_HIGHMEM
6745 void free_highmem_page(struct page *page)
6746 {
6747 __free_reserved_page(page);
6748 totalram_pages++;
6749 page_zone(page)->managed_pages++;
6750 totalhigh_pages++;
6751 }
6752 #endif
6753
6754
6755 void __init mem_init_print_info(const char *str)
6756 {
6757 unsigned long physpages, codesize, datasize, rosize, bss_size;
6758 unsigned long init_code_size, init_data_size;
6759
6760 physpages = get_num_physpages();
6761 codesize = _etext - _stext;
6762 datasize = _edata - _sdata;
6763 rosize = __end_rodata - __start_rodata;
6764 bss_size = __bss_stop - __bss_start;
6765 init_data_size = __init_end - __init_begin;
6766 init_code_size = _einittext - _sinittext;
6767
6768 /*
6769 * Detect special cases and adjust section sizes accordingly:
6770 * 1) .init.* may be embedded into .data sections
6771 * 2) .init.text.* may be out of [__init_begin, __init_end],
6772 * please refer to arch/tile/kernel/vmlinux.lds.S.
6773 * 3) .rodata.* may be embedded into .text or .data sections.
6774 */
6775 #define adj_init_size(start, end, size, pos, adj) \
6776 do { \
6777 if (start <= pos && pos < end && size > adj) \
6778 size -= adj; \
6779 } while (0)
6780
6781 adj_init_size(__init_begin, __init_end, init_data_size,
6782 _sinittext, init_code_size);
6783 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6784 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6785 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6786 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6787
6788 #undef adj_init_size
6789
6790 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
6791 #ifdef CONFIG_HIGHMEM
6792 ", %luK highmem"
6793 #endif
6794 "%s%s)\n",
6795 nr_free_pages() << (PAGE_SHIFT - 10),
6796 physpages << (PAGE_SHIFT - 10),
6797 codesize >> 10, datasize >> 10, rosize >> 10,
6798 (init_data_size + init_code_size) >> 10, bss_size >> 10,
6799 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6800 totalcma_pages << (PAGE_SHIFT - 10),
6801 #ifdef CONFIG_HIGHMEM
6802 totalhigh_pages << (PAGE_SHIFT - 10),
6803 #endif
6804 str ? ", " : "", str ? str : "");
6805 }
6806
6807 /**
6808 * set_dma_reserve - set the specified number of pages reserved in the first zone
6809 * @new_dma_reserve: The number of pages to mark reserved
6810 *
6811 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
6812 * In the DMA zone, a significant percentage may be consumed by kernel image
6813 * and other unfreeable allocations which can skew the watermarks badly. This
6814 * function may optionally be used to account for unfreeable pages in the
6815 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6816 * smaller per-cpu batchsize.
6817 */
6818 void __init set_dma_reserve(unsigned long new_dma_reserve)
6819 {
6820 dma_reserve = new_dma_reserve;
6821 }
6822
6823 void __init free_area_init(unsigned long *zones_size)
6824 {
6825 free_area_init_node(0, zones_size,
6826 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6827 }
6828
6829 static int page_alloc_cpu_dead(unsigned int cpu)
6830 {
6831
6832 lru_add_drain_cpu(cpu);
6833 drain_pages(cpu);
6834
6835 /*
6836 * Spill the event counters of the dead processor
6837 * into the current processors event counters.
6838 * This artificially elevates the count of the current
6839 * processor.
6840 */
6841 vm_events_fold_cpu(cpu);
6842
6843 /*
6844 * Zero the differential counters of the dead processor
6845 * so that the vm statistics are consistent.
6846 *
6847 * This is only okay since the processor is dead and cannot
6848 * race with what we are doing.
6849 */
6850 cpu_vm_stats_fold(cpu);
6851 return 0;
6852 }
6853
6854 void __init page_alloc_init(void)
6855 {
6856 int ret;
6857
6858 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
6859 "mm/page_alloc:dead", NULL,
6860 page_alloc_cpu_dead);
6861 WARN_ON(ret < 0);
6862 }
6863
6864 /*
6865 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
6866 * or min_free_kbytes changes.
6867 */
6868 static void calculate_totalreserve_pages(void)
6869 {
6870 struct pglist_data *pgdat;
6871 unsigned long reserve_pages = 0;
6872 enum zone_type i, j;
6873
6874 for_each_online_pgdat(pgdat) {
6875
6876 pgdat->totalreserve_pages = 0;
6877
6878 for (i = 0; i < MAX_NR_ZONES; i++) {
6879 struct zone *zone = pgdat->node_zones + i;
6880 long max = 0;
6881
6882 /* Find valid and maximum lowmem_reserve in the zone */
6883 for (j = i; j < MAX_NR_ZONES; j++) {
6884 if (zone->lowmem_reserve[j] > max)
6885 max = zone->lowmem_reserve[j];
6886 }
6887
6888 /* we treat the high watermark as reserved pages. */
6889 max += high_wmark_pages(zone);
6890
6891 if (max > zone->managed_pages)
6892 max = zone->managed_pages;
6893
6894 pgdat->totalreserve_pages += max;
6895
6896 reserve_pages += max;
6897 }
6898 }
6899 totalreserve_pages = reserve_pages;
6900 }
6901
6902 /*
6903 * setup_per_zone_lowmem_reserve - called whenever
6904 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
6905 * has a correct pages reserved value, so an adequate number of
6906 * pages are left in the zone after a successful __alloc_pages().
6907 */
6908 static void setup_per_zone_lowmem_reserve(void)
6909 {
6910 struct pglist_data *pgdat;
6911 enum zone_type j, idx;
6912
6913 for_each_online_pgdat(pgdat) {
6914 for (j = 0; j < MAX_NR_ZONES; j++) {
6915 struct zone *zone = pgdat->node_zones + j;
6916 unsigned long managed_pages = zone->managed_pages;
6917
6918 zone->lowmem_reserve[j] = 0;
6919
6920 idx = j;
6921 while (idx) {
6922 struct zone *lower_zone;
6923
6924 idx--;
6925
6926 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6927 sysctl_lowmem_reserve_ratio[idx] = 1;
6928
6929 lower_zone = pgdat->node_zones + idx;
6930 lower_zone->lowmem_reserve[j] = managed_pages /
6931 sysctl_lowmem_reserve_ratio[idx];
6932 managed_pages += lower_zone->managed_pages;
6933 }
6934 }
6935 }
6936
6937 /* update totalreserve_pages */
6938 calculate_totalreserve_pages();
6939 }
6940
6941 static void __setup_per_zone_wmarks(void)
6942 {
6943 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6944 unsigned long pages_low = extra_free_kbytes >> (PAGE_SHIFT - 10);
6945 unsigned long lowmem_pages = 0;
6946 struct zone *zone;
6947 unsigned long flags;
6948
6949 /* Calculate total number of !ZONE_HIGHMEM pages */
6950 for_each_zone(zone) {
6951 if (!is_highmem(zone))
6952 lowmem_pages += zone->managed_pages;
6953 }
6954
6955 for_each_zone(zone) {
6956 u64 min, low;
6957
6958 spin_lock_irqsave(&zone->lock, flags);
6959 min = (u64)pages_min * zone->managed_pages;
6960 do_div(min, lowmem_pages);
6961 low = (u64)pages_low * zone->managed_pages;
6962 do_div(low, vm_total_pages);
6963
6964 if (is_highmem(zone)) {
6965 /*
6966 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6967 * need highmem pages, so cap pages_min to a small
6968 * value here.
6969 *
6970 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
6971 * deltas control asynch page reclaim, and so should
6972 * not be capped for highmem.
6973 */
6974 unsigned long min_pages;
6975
6976 min_pages = zone->managed_pages / 1024;
6977 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
6978 zone->watermark[WMARK_MIN] = min_pages;
6979 } else {
6980 /*
6981 * If it's a lowmem zone, reserve a number of pages
6982 * proportionate to the zone's size.
6983 */
6984 zone->watermark[WMARK_MIN] = min;
6985 }
6986
6987 /*
6988 * Set the kswapd watermarks distance according to the
6989 * scale factor in proportion to available memory, but
6990 * ensure a minimum size on small systems.
6991 */
6992 min = max_t(u64, min >> 2,
6993 mult_frac(zone->managed_pages,
6994 watermark_scale_factor, 10000));
6995
6996 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) +
6997 low + min;
6998 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) +
6999 low + min * 2;
7000
7001 spin_unlock_irqrestore(&zone->lock, flags);
7002 }
7003
7004 /* update totalreserve_pages */
7005 calculate_totalreserve_pages();
7006 }
7007
7008 /**
7009 * setup_per_zone_wmarks - called when min_free_kbytes changes
7010 * or when memory is hot-{added|removed}
7011 *
7012 * Ensures that the watermark[min,low,high] values for each zone are set
7013 * correctly with respect to min_free_kbytes.
7014 */
7015 void setup_per_zone_wmarks(void)
7016 {
7017 static DEFINE_SPINLOCK(lock);
7018
7019 spin_lock(&lock);
7020 __setup_per_zone_wmarks();
7021 spin_unlock(&lock);
7022 }
7023
7024 /*
7025 * Initialise min_free_kbytes.
7026 *
7027 * For small machines we want it small (128k min). For large machines
7028 * we want it large (64MB max). But it is not linear, because network
7029 * bandwidth does not increase linearly with machine size. We use
7030 *
7031 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
7032 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
7033 *
7034 * which yields
7035 *
7036 * 16MB: 512k
7037 * 32MB: 724k
7038 * 64MB: 1024k
7039 * 128MB: 1448k
7040 * 256MB: 2048k
7041 * 512MB: 2896k
7042 * 1024MB: 4096k
7043 * 2048MB: 5792k
7044 * 4096MB: 8192k
7045 * 8192MB: 11584k
7046 * 16384MB: 16384k
7047 */
7048 int __meminit init_per_zone_wmark_min(void)
7049 {
7050 unsigned long lowmem_kbytes;
7051 int new_min_free_kbytes;
7052
7053 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
7054 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7055
7056 if (new_min_free_kbytes > user_min_free_kbytes) {
7057 min_free_kbytes = new_min_free_kbytes;
7058 if (min_free_kbytes < 128)
7059 min_free_kbytes = 128;
7060 if (min_free_kbytes > 65536)
7061 min_free_kbytes = 65536;
7062 } else {
7063 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7064 new_min_free_kbytes, user_min_free_kbytes);
7065 }
7066 setup_per_zone_wmarks();
7067 refresh_zone_stat_thresholds();
7068 setup_per_zone_lowmem_reserve();
7069
7070 #ifdef CONFIG_NUMA
7071 setup_min_unmapped_ratio();
7072 setup_min_slab_ratio();
7073 #endif
7074
7075 return 0;
7076 }
7077 core_initcall(init_per_zone_wmark_min)
7078
7079 /*
7080 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
7081 * that we can call two helper functions whenever min_free_kbytes
7082 * or extra_free_kbytes changes.
7083 */
7084 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
7085 void __user *buffer, size_t *length, loff_t *ppos)
7086 {
7087 int rc;
7088
7089 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7090 if (rc)
7091 return rc;
7092
7093 if (write) {
7094 user_min_free_kbytes = min_free_kbytes;
7095 setup_per_zone_wmarks();
7096 }
7097 return 0;
7098 }
7099
7100 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
7101 void __user *buffer, size_t *length, loff_t *ppos)
7102 {
7103 int rc;
7104
7105 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7106 if (rc)
7107 return rc;
7108
7109 if (write)
7110 setup_per_zone_wmarks();
7111
7112 return 0;
7113 }
7114
7115 #ifdef CONFIG_NUMA
7116 static void setup_min_unmapped_ratio(void)
7117 {
7118 pg_data_t *pgdat;
7119 struct zone *zone;
7120
7121 for_each_online_pgdat(pgdat)
7122 pgdat->min_unmapped_pages = 0;
7123
7124 for_each_zone(zone)
7125 zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
7126 sysctl_min_unmapped_ratio) / 100;
7127 }
7128
7129
7130 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
7131 void __user *buffer, size_t *length, loff_t *ppos)
7132 {
7133 int rc;
7134
7135 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7136 if (rc)
7137 return rc;
7138
7139 setup_min_unmapped_ratio();
7140
7141 return 0;
7142 }
7143
7144 static void setup_min_slab_ratio(void)
7145 {
7146 pg_data_t *pgdat;
7147 struct zone *zone;
7148
7149 for_each_online_pgdat(pgdat)
7150 pgdat->min_slab_pages = 0;
7151
7152 for_each_zone(zone)
7153 zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
7154 sysctl_min_slab_ratio) / 100;
7155 }
7156
7157 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7158 void __user *buffer, size_t *length, loff_t *ppos)
7159 {
7160 int rc;
7161
7162 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7163 if (rc)
7164 return rc;
7165
7166 setup_min_slab_ratio();
7167
7168 return 0;
7169 }
7170 #endif
7171
7172 /*
7173 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7174 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7175 * whenever sysctl_lowmem_reserve_ratio changes.
7176 *
7177 * The reserve ratio obviously has absolutely no relation with the
7178 * minimum watermarks. The lowmem reserve ratio can only make sense
7179 * if in function of the boot time zone sizes.
7180 */
7181 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
7182 void __user *buffer, size_t *length, loff_t *ppos)
7183 {
7184 proc_dointvec_minmax(table, write, buffer, length, ppos);
7185 setup_per_zone_lowmem_reserve();
7186 return 0;
7187 }
7188
7189 /*
7190 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
7191 * cpu. It is the fraction of total pages in each zone that a hot per cpu
7192 * pagelist can have before it gets flushed back to buddy allocator.
7193 */
7194 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
7195 void __user *buffer, size_t *length, loff_t *ppos)
7196 {
7197 struct zone *zone;
7198 int old_percpu_pagelist_fraction;
7199 int ret;
7200
7201 mutex_lock(&pcp_batch_high_lock);
7202 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
7203
7204 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7205 if (!write || ret < 0)
7206 goto out;
7207
7208 /* Sanity checking to avoid pcp imbalance */
7209 if (percpu_pagelist_fraction &&
7210 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
7211 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
7212 ret = -EINVAL;
7213 goto out;
7214 }
7215
7216 /* No change? */
7217 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
7218 goto out;
7219
7220 for_each_populated_zone(zone) {
7221 unsigned int cpu;
7222
7223 for_each_possible_cpu(cpu)
7224 pageset_set_high_and_batch(zone,
7225 per_cpu_ptr(zone->pageset, cpu));
7226 }
7227 out:
7228 mutex_unlock(&pcp_batch_high_lock);
7229 return ret;
7230 }
7231
7232 #ifdef CONFIG_NUMA
7233 int hashdist = HASHDIST_DEFAULT;
7234
7235 static int __init set_hashdist(char *str)
7236 {
7237 if (!str)
7238 return 0;
7239 hashdist = simple_strtoul(str, &str, 0);
7240 return 1;
7241 }
7242 __setup("hashdist=", set_hashdist);
7243 #endif
7244
7245 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
7246 /*
7247 * Returns the number of pages that arch has reserved but
7248 * is not known to alloc_large_system_hash().
7249 */
7250 static unsigned long __init arch_reserved_kernel_pages(void)
7251 {
7252 return 0;
7253 }
7254 #endif
7255
7256 /*
7257 * Adaptive scale is meant to reduce sizes of hash tables on large memory
7258 * machines. As memory size is increased the scale is also increased but at
7259 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
7260 * quadruples the scale is increased by one, which means the size of hash table
7261 * only doubles, instead of quadrupling as well.
7262 * Because 32-bit systems cannot have large physical memory, where this scaling
7263 * makes sense, it is disabled on such platforms.
7264 */
7265 #if __BITS_PER_LONG > 32
7266 #define ADAPT_SCALE_BASE (64ul << 30)
7267 #define ADAPT_SCALE_SHIFT 2
7268 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
7269 #endif
7270
7271 /*
7272 * allocate a large system hash table from bootmem
7273 * - it is assumed that the hash table must contain an exact power-of-2
7274 * quantity of entries
7275 * - limit is the number of hash buckets, not the total allocation size
7276 */
7277 void *__init alloc_large_system_hash(const char *tablename,
7278 unsigned long bucketsize,
7279 unsigned long numentries,
7280 int scale,
7281 int flags,
7282 unsigned int *_hash_shift,
7283 unsigned int *_hash_mask,
7284 unsigned long low_limit,
7285 unsigned long high_limit)
7286 {
7287 unsigned long long max = high_limit;
7288 unsigned long log2qty, size;
7289 void *table = NULL;
7290 gfp_t gfp_flags;
7291
7292 /* allow the kernel cmdline to have a say */
7293 if (!numentries) {
7294 /* round applicable memory size up to nearest megabyte */
7295 numentries = nr_kernel_pages;
7296 numentries -= arch_reserved_kernel_pages();
7297
7298 /* It isn't necessary when PAGE_SIZE >= 1MB */
7299 if (PAGE_SHIFT < 20)
7300 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
7301
7302 #if __BITS_PER_LONG > 32
7303 if (!high_limit) {
7304 unsigned long adapt;
7305
7306 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
7307 adapt <<= ADAPT_SCALE_SHIFT)
7308 scale++;
7309 }
7310 #endif
7311
7312 /* limit to 1 bucket per 2^scale bytes of low memory */
7313 if (scale > PAGE_SHIFT)
7314 numentries >>= (scale - PAGE_SHIFT);
7315 else
7316 numentries <<= (PAGE_SHIFT - scale);
7317
7318 /* Make sure we've got at least a 0-order allocation.. */
7319 if (unlikely(flags & HASH_SMALL)) {
7320 /* Makes no sense without HASH_EARLY */
7321 WARN_ON(!(flags & HASH_EARLY));
7322 if (!(numentries >> *_hash_shift)) {
7323 numentries = 1UL << *_hash_shift;
7324 BUG_ON(!numentries);
7325 }
7326 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
7327 numentries = PAGE_SIZE / bucketsize;
7328 }
7329 numentries = roundup_pow_of_two(numentries);
7330
7331 /* limit allocation size to 1/16 total memory by default */
7332 if (max == 0) {
7333 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7334 do_div(max, bucketsize);
7335 }
7336 max = min(max, 0x80000000ULL);
7337
7338 if (numentries < low_limit)
7339 numentries = low_limit;
7340 if (numentries > max)
7341 numentries = max;
7342
7343 log2qty = ilog2(numentries);
7344
7345 /*
7346 * memblock allocator returns zeroed memory already, so HASH_ZERO is
7347 * currently not used when HASH_EARLY is specified.
7348 */
7349 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
7350 do {
7351 size = bucketsize << log2qty;
7352 if (flags & HASH_EARLY)
7353 table = memblock_virt_alloc_nopanic(size, 0);
7354 else if (hashdist)
7355 table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
7356 else {
7357 /*
7358 * If bucketsize is not a power-of-two, we may free
7359 * some pages at the end of hash table which
7360 * alloc_pages_exact() automatically does
7361 */
7362 if (get_order(size) < MAX_ORDER) {
7363 table = alloc_pages_exact(size, gfp_flags);
7364 kmemleak_alloc(table, size, 1, gfp_flags);
7365 }
7366 }
7367 } while (!table && size > PAGE_SIZE && --log2qty);
7368
7369 if (!table)
7370 panic("Failed to allocate %s hash table\n", tablename);
7371
7372 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7373 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
7374
7375 if (_hash_shift)
7376 *_hash_shift = log2qty;
7377 if (_hash_mask)
7378 *_hash_mask = (1 << log2qty) - 1;
7379
7380 return table;
7381 }
7382
7383 /*
7384 * This function checks whether pageblock includes unmovable pages or not.
7385 * If @count is not zero, it is okay to include less @count unmovable pages
7386 *
7387 * PageLRU check without isolation or lru_lock could race so that
7388 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
7389 * check without lock_page also may miss some movable non-lru pages at
7390 * race condition. So you can't expect this function should be exact.
7391 */
7392 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7393 bool skip_hwpoisoned_pages)
7394 {
7395 unsigned long pfn, iter, found;
7396 int mt;
7397
7398 /*
7399 * For avoiding noise data, lru_add_drain_all() should be called
7400 * If ZONE_MOVABLE, the zone never contains unmovable pages
7401 */
7402 if (zone_idx(zone) == ZONE_MOVABLE)
7403 return false;
7404 mt = get_pageblock_migratetype(page);
7405 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
7406 return false;
7407
7408 pfn = page_to_pfn(page);
7409 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7410 unsigned long check = pfn + iter;
7411
7412 if (!pfn_valid_within(check))
7413 continue;
7414
7415 page = pfn_to_page(check);
7416
7417 /*
7418 * Hugepages are not in LRU lists, but they're movable.
7419 * We need not scan over tail pages bacause we don't
7420 * handle each tail page individually in migration.
7421 */
7422 if (PageHuge(page)) {
7423 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
7424 continue;
7425 }
7426
7427 /*
7428 * We can't use page_count without pin a page
7429 * because another CPU can free compound page.
7430 * This check already skips compound tails of THP
7431 * because their page->_refcount is zero at all time.
7432 */
7433 if (!page_ref_count(page)) {
7434 if (PageBuddy(page))
7435 iter += (1 << page_order(page)) - 1;
7436 continue;
7437 }
7438
7439 /*
7440 * The HWPoisoned page may be not in buddy system, and
7441 * page_count() is not 0.
7442 */
7443 if (skip_hwpoisoned_pages && PageHWPoison(page))
7444 continue;
7445
7446 if (__PageMovable(page))
7447 continue;
7448
7449 if (!PageLRU(page))
7450 found++;
7451 /*
7452 * If there are RECLAIMABLE pages, we need to check
7453 * it. But now, memory offline itself doesn't call
7454 * shrink_node_slabs() and it still to be fixed.
7455 */
7456 /*
7457 * If the page is not RAM, page_count()should be 0.
7458 * we don't need more check. This is an _used_ not-movable page.
7459 *
7460 * The problematic thing here is PG_reserved pages. PG_reserved
7461 * is set to both of a memory hole page and a _used_ kernel
7462 * page at boot.
7463 */
7464 if (found > count)
7465 return true;
7466 }
7467 return false;
7468 }
7469
7470 bool is_pageblock_removable_nolock(struct page *page)
7471 {
7472 struct zone *zone;
7473 unsigned long pfn;
7474
7475 /*
7476 * We have to be careful here because we are iterating over memory
7477 * sections which are not zone aware so we might end up outside of
7478 * the zone but still within the section.
7479 * We have to take care about the node as well. If the node is offline
7480 * its NODE_DATA will be NULL - see page_zone.
7481 */
7482 if (!node_online(page_to_nid(page)))
7483 return false;
7484
7485 zone = page_zone(page);
7486 pfn = page_to_pfn(page);
7487 if (!zone_spans_pfn(zone, pfn))
7488 return false;
7489
7490 return !has_unmovable_pages(zone, page, 0, true);
7491 }
7492
7493 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
7494
7495 static unsigned long pfn_max_align_down(unsigned long pfn)
7496 {
7497 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7498 pageblock_nr_pages) - 1);
7499 }
7500
7501 static unsigned long pfn_max_align_up(unsigned long pfn)
7502 {
7503 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7504 pageblock_nr_pages));
7505 }
7506
7507 /* [start, end) must belong to a single zone. */
7508 static int __alloc_contig_migrate_range(struct compact_control *cc,
7509 unsigned long start, unsigned long end,
7510 bool drain)
7511 {
7512 /* This function is based on compact_zone() from compaction.c. */
7513 unsigned long nr_reclaimed;
7514 unsigned long pfn = start;
7515 unsigned int tries = 0;
7516 int ret = 0;
7517
7518 if (drain)
7519 migrate_prep();
7520
7521 while (pfn < end || !list_empty(&cc->migratepages)) {
7522 if (fatal_signal_pending(current)) {
7523 ret = -EINTR;
7524 break;
7525 }
7526
7527 if (list_empty(&cc->migratepages)) {
7528 cc->nr_migratepages = 0;
7529 pfn = isolate_migratepages_range(cc, pfn, end);
7530 if (!pfn) {
7531 ret = -EINTR;
7532 break;
7533 }
7534 tries = 0;
7535 } else if (++tries == 5) {
7536 ret = ret < 0 ? ret : -EBUSY;
7537 break;
7538 }
7539
7540 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7541 &cc->migratepages);
7542 cc->nr_migratepages -= nr_reclaimed;
7543
7544 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
7545 NULL, 0, cc->mode, drain ? MR_CMA : MR_HPA);
7546 }
7547 if (ret < 0) {
7548 putback_movable_pages(&cc->migratepages);
7549 return ret;
7550 }
7551 return 0;
7552 }
7553
7554 /**
7555 * alloc_contig_range() -- tries to allocate given range of pages
7556 * @start: start PFN to allocate
7557 * @end: one-past-the-last PFN to allocate
7558 * @migratetype: migratetype of the underlaying pageblocks (either
7559 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
7560 * in range must have the same migratetype and it must
7561 * be either of the two.
7562 * @gfp_mask: GFP mask to use during compaction
7563 *
7564 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7565 * aligned, however it's the caller's responsibility to guarantee that
7566 * we are the only thread that changes migrate type of pageblocks the
7567 * pages fall in.
7568 *
7569 * The PFN range must belong to a single zone.
7570 *
7571 * Returns zero on success or negative error code. On success all
7572 * pages which PFN is in [start, end) are allocated for the caller and
7573 * need to be freed with free_contig_range().
7574 */
7575 int __alloc_contig_range(unsigned long start, unsigned long end,
7576 unsigned migratetype, gfp_t gfp_mask, bool drain)
7577 {
7578 unsigned long outer_start, outer_end;
7579 unsigned int order;
7580 int ret = 0;
7581
7582 struct compact_control cc = {
7583 .nr_migratepages = 0,
7584 .order = -1,
7585 .zone = page_zone(pfn_to_page(start)),
7586 .mode = MIGRATE_SYNC,
7587 .ignore_skip_hint = true,
7588 .gfp_mask = current_gfp_context(gfp_mask),
7589 };
7590 INIT_LIST_HEAD(&cc.migratepages);
7591
7592 /*
7593 * What we do here is we mark all pageblocks in range as
7594 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7595 * have different sizes, and due to the way page allocator
7596 * work, we align the range to biggest of the two pages so
7597 * that page allocator won't try to merge buddies from
7598 * different pageblocks and change MIGRATE_ISOLATE to some
7599 * other migration type.
7600 *
7601 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7602 * migrate the pages from an unaligned range (ie. pages that
7603 * we are interested in). This will put all the pages in
7604 * range back to page allocator as MIGRATE_ISOLATE.
7605 *
7606 * When this is done, we take the pages in range from page
7607 * allocator removing them from the buddy system. This way
7608 * page allocator will never consider using them.
7609 *
7610 * This lets us mark the pageblocks back as
7611 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7612 * aligned range but not in the unaligned, original range are
7613 * put back to page allocator so that buddy can use them.
7614 */
7615
7616 ret = start_isolate_page_range(pfn_max_align_down(start),
7617 pfn_max_align_up(end), migratetype,
7618 false);
7619 if (ret)
7620 return ret;
7621
7622 /*
7623 * In case of -EBUSY, we'd like to know which page causes problem.
7624 * So, just fall through. test_pages_isolated() has a tracepoint
7625 * which will report the busy page.
7626 *
7627 * It is possible that busy pages could become available before
7628 * the call to test_pages_isolated, and the range will actually be
7629 * allocated. So, if we fall through be sure to clear ret so that
7630 * -EBUSY is not accidentally used or returned to caller.
7631 */
7632 ret = __alloc_contig_migrate_range(&cc, start, end, drain);
7633 if (ret && ret != -EBUSY)
7634 goto done;
7635 ret =0;
7636
7637 /*
7638 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7639 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7640 * more, all pages in [start, end) are free in page allocator.
7641 * What we are going to do is to allocate all pages from
7642 * [start, end) (that is remove them from page allocator).
7643 *
7644 * The only problem is that pages at the beginning and at the
7645 * end of interesting range may be not aligned with pages that
7646 * page allocator holds, ie. they can be part of higher order
7647 * pages. Because of this, we reserve the bigger range and
7648 * once this is done free the pages we are not interested in.
7649 *
7650 * We don't have to hold zone->lock here because the pages are
7651 * isolated thus they won't get removed from buddy.
7652 */
7653
7654 order = 0;
7655 outer_start = start;
7656
7657 if (drain) {
7658 lru_add_drain_all();
7659 drain_all_pages(cc.zone);
7660
7661 while (!PageBuddy(pfn_to_page(outer_start))) {
7662 if (++order >= MAX_ORDER) {
7663 outer_start = start;
7664 break;
7665 }
7666 outer_start &= ~0UL << order;
7667 }
7668
7669 if (outer_start != start) {
7670 order = page_order(pfn_to_page(outer_start));
7671
7672 /*
7673 * outer_start page could be small order buddy page and
7674 * it doesn't include start page. Adjust outer_start
7675 * in this case to report failed page properly
7676 * on tracepoint in test_pages_isolated()
7677 */
7678 if (outer_start + (1UL << order) <= start)
7679 outer_start = start;
7680 }
7681
7682 /* Make sure the range is really isolated. */
7683 if (test_pages_isolated(outer_start, end, false)) {
7684 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
7685 __func__, outer_start, end);
7686 ret = -EBUSY;
7687 goto done;
7688 }
7689 }
7690
7691 /* Grab isolated pages from freelists. */
7692 outer_end = isolate_freepages_range(&cc, outer_start, end);
7693 if (!outer_end) {
7694 ret = -EBUSY;
7695 goto done;
7696 }
7697
7698 /* Free head and tail (if any) */
7699 if (start != outer_start)
7700 free_contig_range(outer_start, start - outer_start);
7701 if (end != outer_end)
7702 free_contig_range(end, outer_end - end);
7703
7704 done:
7705 undo_isolate_page_range(pfn_max_align_down(start),
7706 pfn_max_align_up(end), migratetype);
7707 return ret;
7708 }
7709
7710 int alloc_contig_range(unsigned long start, unsigned long end,
7711 unsigned migratetype, gfp_t gfp_mask)
7712 {
7713 return __alloc_contig_range(start, end, migratetype, gfp_mask, true);
7714 }
7715
7716 int alloc_contig_range_fast(unsigned long start, unsigned long end,
7717 unsigned migratetype)
7718 {
7719 return __alloc_contig_range(start, end, migratetype, GFP_KERNEL, false);
7720 }
7721
7722 void free_contig_range(unsigned long pfn, unsigned nr_pages)
7723 {
7724 unsigned int count = 0;
7725
7726 for (; nr_pages--; pfn++) {
7727 struct page *page = pfn_to_page(pfn);
7728
7729 count += page_count(page) != 1;
7730 __free_page(page);
7731 }
7732 WARN(count != 0, "%d pages are still in use!\n", count);
7733 }
7734 #endif
7735
7736 #ifdef CONFIG_MEMORY_HOTPLUG
7737 /*
7738 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7739 * page high values need to be recalulated.
7740 */
7741 void __meminit zone_pcp_update(struct zone *zone)
7742 {
7743 unsigned cpu;
7744 mutex_lock(&pcp_batch_high_lock);
7745 for_each_possible_cpu(cpu)
7746 pageset_set_high_and_batch(zone,
7747 per_cpu_ptr(zone->pageset, cpu));
7748 mutex_unlock(&pcp_batch_high_lock);
7749 }
7750 #endif
7751
7752 void zone_pcp_reset(struct zone *zone)
7753 {
7754 unsigned long flags;
7755 int cpu;
7756 struct per_cpu_pageset *pset;
7757
7758 /* avoid races with drain_pages() */
7759 local_irq_save(flags);
7760 if (zone->pageset != &boot_pageset) {
7761 for_each_online_cpu(cpu) {
7762 pset = per_cpu_ptr(zone->pageset, cpu);
7763 drain_zonestat(zone, pset);
7764 }
7765 free_percpu(zone->pageset);
7766 zone->pageset = &boot_pageset;
7767 }
7768 local_irq_restore(flags);
7769 }
7770
7771 #ifdef CONFIG_MEMORY_HOTREMOVE
7772 /*
7773 * All pages in the range must be in a single zone and isolated
7774 * before calling this.
7775 */
7776 void
7777 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7778 {
7779 struct page *page;
7780 struct zone *zone;
7781 unsigned int order, i;
7782 unsigned long pfn;
7783 unsigned long flags;
7784 /* find the first valid pfn */
7785 for (pfn = start_pfn; pfn < end_pfn; pfn++)
7786 if (pfn_valid(pfn))
7787 break;
7788 if (pfn == end_pfn)
7789 return;
7790 offline_mem_sections(pfn, end_pfn);
7791 zone = page_zone(pfn_to_page(pfn));
7792 spin_lock_irqsave(&zone->lock, flags);
7793 pfn = start_pfn;
7794 while (pfn < end_pfn) {
7795 if (!pfn_valid(pfn)) {
7796 pfn++;
7797 continue;
7798 }
7799 page = pfn_to_page(pfn);
7800 /*
7801 * The HWPoisoned page may be not in buddy system, and
7802 * page_count() is not 0.
7803 */
7804 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7805 pfn++;
7806 SetPageReserved(page);
7807 continue;
7808 }
7809
7810 BUG_ON(page_count(page));
7811 BUG_ON(!PageBuddy(page));
7812 order = page_order(page);
7813 #ifdef CONFIG_DEBUG_VM
7814 pr_info("remove from free list %lx %d %lx\n",
7815 pfn, 1 << order, end_pfn);
7816 #endif
7817 list_del(&page->lru);
7818 rmv_page_order(page);
7819 zone->free_area[order].nr_free--;
7820 for (i = 0; i < (1 << order); i++)
7821 SetPageReserved((page+i));
7822 pfn += (1 << order);
7823 }
7824 spin_unlock_irqrestore(&zone->lock, flags);
7825 }
7826 #endif
7827
7828 bool is_free_buddy_page(struct page *page)
7829 {
7830 struct zone *zone = page_zone(page);
7831 unsigned long pfn = page_to_pfn(page);
7832 unsigned long flags;
7833 unsigned int order;
7834
7835 spin_lock_irqsave(&zone->lock, flags);
7836 for (order = 0; order < MAX_ORDER; order++) {
7837 struct page *page_head = page - (pfn & ((1 << order) - 1));
7838
7839 if (PageBuddy(page_head) && page_order(page_head) >= order)
7840 break;
7841 }
7842 spin_unlock_irqrestore(&zone->lock, flags);
7843
7844 return order < MAX_ORDER;
7845 }