x86/amd-iommu: Dump fault entry on DTE error
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / x86 / kernel / amd_iommu.c
CommitLineData
b6c02715
JR
1/*
2 * Copyright (C) 2007-2008 Advanced Micro Devices, Inc.
3 * Author: Joerg Roedel <joerg.roedel@amd.com>
4 * Leo Duran <leo.duran@amd.com>
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19
20#include <linux/pci.h>
21#include <linux/gfp.h>
22#include <linux/bitops.h>
7f26508b 23#include <linux/debugfs.h>
b6c02715 24#include <linux/scatterlist.h>
51491367 25#include <linux/dma-mapping.h>
b6c02715 26#include <linux/iommu-helper.h>
c156e347 27#include <linux/iommu.h>
b6c02715 28#include <asm/proto.h>
46a7fa27 29#include <asm/iommu.h>
1d9b16d1 30#include <asm/gart.h>
b6c02715 31#include <asm/amd_iommu_types.h>
c6da992e 32#include <asm/amd_iommu.h>
b6c02715
JR
33
34#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
35
136f78a1
JR
36#define EXIT_LOOP_COUNT 10000000
37
b6c02715
JR
38static DEFINE_RWLOCK(amd_iommu_devtable_lock);
39
bd60b735
JR
40/* A list of preallocated protection domains */
41static LIST_HEAD(iommu_pd_list);
42static DEFINE_SPINLOCK(iommu_pd_list_lock);
43
26961efe
JR
44#ifdef CONFIG_IOMMU_API
45static struct iommu_ops amd_iommu_ops;
46#endif
47
431b2a20
JR
48/*
49 * general struct to manage commands send to an IOMMU
50 */
d6449536 51struct iommu_cmd {
b6c02715
JR
52 u32 data[4];
53};
54
bd0e5211
JR
55static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
56 struct unity_map_entry *e);
e275a2a0 57static struct dma_ops_domain *find_protection_domain(u16 devid);
8bda3092
JR
58static u64* alloc_pte(struct protection_domain *dom,
59 unsigned long address, u64
60 **pte_page, gfp_t gfp);
00cd122a
JR
61static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
62 unsigned long start_page,
63 unsigned int pages);
bd0e5211 64
c1eee67b
CW
65#ifndef BUS_NOTIFY_UNBOUND_DRIVER
66#define BUS_NOTIFY_UNBOUND_DRIVER 0x0005
67#endif
68
7f26508b
JR
69#ifdef CONFIG_AMD_IOMMU_STATS
70
71/*
72 * Initialization code for statistics collection
73 */
74
da49f6df 75DECLARE_STATS_COUNTER(compl_wait);
0f2a86f2 76DECLARE_STATS_COUNTER(cnt_map_single);
146a6917 77DECLARE_STATS_COUNTER(cnt_unmap_single);
d03f067a 78DECLARE_STATS_COUNTER(cnt_map_sg);
55877a6b 79DECLARE_STATS_COUNTER(cnt_unmap_sg);
c8f0fb36 80DECLARE_STATS_COUNTER(cnt_alloc_coherent);
5d31ee7e 81DECLARE_STATS_COUNTER(cnt_free_coherent);
c1858976 82DECLARE_STATS_COUNTER(cross_page);
f57d98ae 83DECLARE_STATS_COUNTER(domain_flush_single);
18811f55 84DECLARE_STATS_COUNTER(domain_flush_all);
5774f7c5 85DECLARE_STATS_COUNTER(alloced_io_mem);
8ecaf8f1 86DECLARE_STATS_COUNTER(total_map_requests);
da49f6df 87
7f26508b
JR
88static struct dentry *stats_dir;
89static struct dentry *de_isolate;
90static struct dentry *de_fflush;
91
92static void amd_iommu_stats_add(struct __iommu_counter *cnt)
93{
94 if (stats_dir == NULL)
95 return;
96
97 cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
98 &cnt->value);
99}
100
101static void amd_iommu_stats_init(void)
102{
103 stats_dir = debugfs_create_dir("amd-iommu", NULL);
104 if (stats_dir == NULL)
105 return;
106
107 de_isolate = debugfs_create_bool("isolation", 0444, stats_dir,
108 (u32 *)&amd_iommu_isolate);
109
110 de_fflush = debugfs_create_bool("fullflush", 0444, stats_dir,
111 (u32 *)&amd_iommu_unmap_flush);
da49f6df
JR
112
113 amd_iommu_stats_add(&compl_wait);
0f2a86f2 114 amd_iommu_stats_add(&cnt_map_single);
146a6917 115 amd_iommu_stats_add(&cnt_unmap_single);
d03f067a 116 amd_iommu_stats_add(&cnt_map_sg);
55877a6b 117 amd_iommu_stats_add(&cnt_unmap_sg);
c8f0fb36 118 amd_iommu_stats_add(&cnt_alloc_coherent);
5d31ee7e 119 amd_iommu_stats_add(&cnt_free_coherent);
c1858976 120 amd_iommu_stats_add(&cross_page);
f57d98ae 121 amd_iommu_stats_add(&domain_flush_single);
18811f55 122 amd_iommu_stats_add(&domain_flush_all);
5774f7c5 123 amd_iommu_stats_add(&alloced_io_mem);
8ecaf8f1 124 amd_iommu_stats_add(&total_map_requests);
7f26508b
JR
125}
126
127#endif
128
431b2a20 129/* returns !0 if the IOMMU is caching non-present entries in its TLB */
4da70b9e
JR
130static int iommu_has_npcache(struct amd_iommu *iommu)
131{
ae9b9403 132 return iommu->cap & (1UL << IOMMU_CAP_NPCACHE);
4da70b9e
JR
133}
134
a80dc3e0
JR
135/****************************************************************************
136 *
137 * Interrupt handling functions
138 *
139 ****************************************************************************/
140
e3e59876
JR
141static void dump_dte_entry(u16 devid)
142{
143 int i;
144
145 for (i = 0; i < 8; ++i)
146 pr_err("AMD-Vi: DTE[%d]: %08x\n", i,
147 amd_iommu_dev_table[devid].data[i]);
148}
149
90008ee4
JR
150static void iommu_print_event(void *__evt)
151{
152 u32 *event = __evt;
153 int type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
154 int devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
155 int domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
156 int flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
157 u64 address = (u64)(((u64)event[3]) << 32) | event[2];
158
159 printk(KERN_ERR "AMD IOMMU: Event logged [");
160
161 switch (type) {
162 case EVENT_TYPE_ILL_DEV:
163 printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
164 "address=0x%016llx flags=0x%04x]\n",
165 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
166 address, flags);
e3e59876 167 dump_dte_entry(devid);
90008ee4
JR
168 break;
169 case EVENT_TYPE_IO_FAULT:
170 printk("IO_PAGE_FAULT device=%02x:%02x.%x "
171 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
172 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
173 domid, address, flags);
174 break;
175 case EVENT_TYPE_DEV_TAB_ERR:
176 printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
177 "address=0x%016llx flags=0x%04x]\n",
178 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
179 address, flags);
180 break;
181 case EVENT_TYPE_PAGE_TAB_ERR:
182 printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
183 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
184 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
185 domid, address, flags);
186 break;
187 case EVENT_TYPE_ILL_CMD:
188 printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
189 break;
190 case EVENT_TYPE_CMD_HARD_ERR:
191 printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
192 "flags=0x%04x]\n", address, flags);
193 break;
194 case EVENT_TYPE_IOTLB_INV_TO:
195 printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
196 "address=0x%016llx]\n",
197 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
198 address);
199 break;
200 case EVENT_TYPE_INV_DEV_REQ:
201 printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
202 "address=0x%016llx flags=0x%04x]\n",
203 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
204 address, flags);
205 break;
206 default:
207 printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
208 }
209}
210
211static void iommu_poll_events(struct amd_iommu *iommu)
212{
213 u32 head, tail;
214 unsigned long flags;
215
216 spin_lock_irqsave(&iommu->lock, flags);
217
218 head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
219 tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
220
221 while (head != tail) {
222 iommu_print_event(iommu->evt_buf + head);
223 head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
224 }
225
226 writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
227
228 spin_unlock_irqrestore(&iommu->lock, flags);
229}
230
a80dc3e0
JR
231irqreturn_t amd_iommu_int_handler(int irq, void *data)
232{
90008ee4
JR
233 struct amd_iommu *iommu;
234
3bd22172 235 for_each_iommu(iommu)
90008ee4
JR
236 iommu_poll_events(iommu);
237
238 return IRQ_HANDLED;
a80dc3e0
JR
239}
240
431b2a20
JR
241/****************************************************************************
242 *
243 * IOMMU command queuing functions
244 *
245 ****************************************************************************/
246
247/*
248 * Writes the command to the IOMMUs command buffer and informs the
249 * hardware about the new command. Must be called with iommu->lock held.
250 */
d6449536 251static int __iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
a19ae1ec
JR
252{
253 u32 tail, head;
254 u8 *target;
255
256 tail = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
8a7c5ef3 257 target = iommu->cmd_buf + tail;
a19ae1ec
JR
258 memcpy_toio(target, cmd, sizeof(*cmd));
259 tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
260 head = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
261 if (tail == head)
262 return -ENOMEM;
263 writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
264
265 return 0;
266}
267
431b2a20
JR
268/*
269 * General queuing function for commands. Takes iommu->lock and calls
270 * __iommu_queue_command().
271 */
d6449536 272static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
a19ae1ec
JR
273{
274 unsigned long flags;
275 int ret;
276
277 spin_lock_irqsave(&iommu->lock, flags);
278 ret = __iommu_queue_command(iommu, cmd);
09ee17eb 279 if (!ret)
0cfd7aa9 280 iommu->need_sync = true;
a19ae1ec
JR
281 spin_unlock_irqrestore(&iommu->lock, flags);
282
283 return ret;
284}
285
8d201968
JR
286/*
287 * This function waits until an IOMMU has completed a completion
288 * wait command
289 */
290static void __iommu_wait_for_completion(struct amd_iommu *iommu)
291{
292 int ready = 0;
293 unsigned status = 0;
294 unsigned long i = 0;
295
da49f6df
JR
296 INC_STATS_COUNTER(compl_wait);
297
8d201968
JR
298 while (!ready && (i < EXIT_LOOP_COUNT)) {
299 ++i;
300 /* wait for the bit to become one */
301 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
302 ready = status & MMIO_STATUS_COM_WAIT_INT_MASK;
303 }
304
305 /* set bit back to zero */
306 status &= ~MMIO_STATUS_COM_WAIT_INT_MASK;
307 writel(status, iommu->mmio_base + MMIO_STATUS_OFFSET);
308
309 if (unlikely(i == EXIT_LOOP_COUNT))
310 panic("AMD IOMMU: Completion wait loop failed\n");
311}
312
313/*
314 * This function queues a completion wait command into the command
315 * buffer of an IOMMU
316 */
317static int __iommu_completion_wait(struct amd_iommu *iommu)
318{
319 struct iommu_cmd cmd;
320
321 memset(&cmd, 0, sizeof(cmd));
322 cmd.data[0] = CMD_COMPL_WAIT_INT_MASK;
323 CMD_SET_TYPE(&cmd, CMD_COMPL_WAIT);
324
325 return __iommu_queue_command(iommu, &cmd);
326}
327
431b2a20
JR
328/*
329 * This function is called whenever we need to ensure that the IOMMU has
330 * completed execution of all commands we sent. It sends a
331 * COMPLETION_WAIT command and waits for it to finish. The IOMMU informs
332 * us about that by writing a value to a physical address we pass with
333 * the command.
334 */
a19ae1ec
JR
335static int iommu_completion_wait(struct amd_iommu *iommu)
336{
8d201968
JR
337 int ret = 0;
338 unsigned long flags;
a19ae1ec 339
7e4f88da
JR
340 spin_lock_irqsave(&iommu->lock, flags);
341
09ee17eb
JR
342 if (!iommu->need_sync)
343 goto out;
344
8d201968 345 ret = __iommu_completion_wait(iommu);
09ee17eb 346
0cfd7aa9 347 iommu->need_sync = false;
a19ae1ec
JR
348
349 if (ret)
7e4f88da 350 goto out;
a19ae1ec 351
8d201968 352 __iommu_wait_for_completion(iommu);
84df8175 353
7e4f88da
JR
354out:
355 spin_unlock_irqrestore(&iommu->lock, flags);
a19ae1ec
JR
356
357 return 0;
358}
359
431b2a20
JR
360/*
361 * Command send function for invalidating a device table entry
362 */
a19ae1ec
JR
363static int iommu_queue_inv_dev_entry(struct amd_iommu *iommu, u16 devid)
364{
d6449536 365 struct iommu_cmd cmd;
ee2fa743 366 int ret;
a19ae1ec
JR
367
368 BUG_ON(iommu == NULL);
369
370 memset(&cmd, 0, sizeof(cmd));
371 CMD_SET_TYPE(&cmd, CMD_INV_DEV_ENTRY);
372 cmd.data[0] = devid;
373
ee2fa743
JR
374 ret = iommu_queue_command(iommu, &cmd);
375
ee2fa743 376 return ret;
a19ae1ec
JR
377}
378
237b6f33
JR
379static void __iommu_build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
380 u16 domid, int pde, int s)
381{
382 memset(cmd, 0, sizeof(*cmd));
383 address &= PAGE_MASK;
384 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
385 cmd->data[1] |= domid;
386 cmd->data[2] = lower_32_bits(address);
387 cmd->data[3] = upper_32_bits(address);
388 if (s) /* size bit - we flush more than one 4kb page */
389 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
390 if (pde) /* PDE bit - we wan't flush everything not only the PTEs */
391 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
392}
393
431b2a20
JR
394/*
395 * Generic command send function for invalidaing TLB entries
396 */
a19ae1ec
JR
397static int iommu_queue_inv_iommu_pages(struct amd_iommu *iommu,
398 u64 address, u16 domid, int pde, int s)
399{
d6449536 400 struct iommu_cmd cmd;
ee2fa743 401 int ret;
a19ae1ec 402
237b6f33 403 __iommu_build_inv_iommu_pages(&cmd, address, domid, pde, s);
a19ae1ec 404
ee2fa743
JR
405 ret = iommu_queue_command(iommu, &cmd);
406
ee2fa743 407 return ret;
a19ae1ec
JR
408}
409
431b2a20
JR
410/*
411 * TLB invalidation function which is called from the mapping functions.
412 * It invalidates a single PTE if the range to flush is within a single
413 * page. Otherwise it flushes the whole TLB of the IOMMU.
414 */
a19ae1ec
JR
415static int iommu_flush_pages(struct amd_iommu *iommu, u16 domid,
416 u64 address, size_t size)
417{
999ba417 418 int s = 0;
e3c449f5 419 unsigned pages = iommu_num_pages(address, size, PAGE_SIZE);
a19ae1ec
JR
420
421 address &= PAGE_MASK;
422
999ba417
JR
423 if (pages > 1) {
424 /*
425 * If we have to flush more than one page, flush all
426 * TLB entries for this domain
427 */
428 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
429 s = 1;
a19ae1ec
JR
430 }
431
999ba417
JR
432 iommu_queue_inv_iommu_pages(iommu, address, domid, 0, s);
433
a19ae1ec
JR
434 return 0;
435}
b6c02715 436
1c655773
JR
437/* Flush the whole IO/TLB for a given protection domain */
438static void iommu_flush_tlb(struct amd_iommu *iommu, u16 domid)
439{
440 u64 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
441
f57d98ae
JR
442 INC_STATS_COUNTER(domain_flush_single);
443
1c655773
JR
444 iommu_queue_inv_iommu_pages(iommu, address, domid, 0, 1);
445}
446
42a49f96
CW
447/* Flush the whole IO/TLB for a given protection domain - including PDE */
448static void iommu_flush_tlb_pde(struct amd_iommu *iommu, u16 domid)
449{
450 u64 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
451
452 INC_STATS_COUNTER(domain_flush_single);
453
454 iommu_queue_inv_iommu_pages(iommu, address, domid, 1, 1);
455}
456
43f49609
JR
457/*
458 * This function is used to flush the IO/TLB for a given protection domain
459 * on every IOMMU in the system
460 */
461static void iommu_flush_domain(u16 domid)
462{
463 unsigned long flags;
464 struct amd_iommu *iommu;
465 struct iommu_cmd cmd;
466
18811f55
JR
467 INC_STATS_COUNTER(domain_flush_all);
468
43f49609
JR
469 __iommu_build_inv_iommu_pages(&cmd, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
470 domid, 1, 1);
471
3bd22172 472 for_each_iommu(iommu) {
43f49609
JR
473 spin_lock_irqsave(&iommu->lock, flags);
474 __iommu_queue_command(iommu, &cmd);
475 __iommu_completion_wait(iommu);
476 __iommu_wait_for_completion(iommu);
477 spin_unlock_irqrestore(&iommu->lock, flags);
478 }
479}
43f49609 480
bfd1be18
JR
481void amd_iommu_flush_all_domains(void)
482{
483 int i;
484
485 for (i = 1; i < MAX_DOMAIN_ID; ++i) {
486 if (!test_bit(i, amd_iommu_pd_alloc_bitmap))
487 continue;
488 iommu_flush_domain(i);
489 }
490}
491
7d7a110c
JR
492void amd_iommu_flush_all_devices(void)
493{
494 struct amd_iommu *iommu;
495 int i;
496
497 for (i = 0; i <= amd_iommu_last_bdf; ++i) {
498 if (amd_iommu_pd_table[i] == NULL)
499 continue;
500
501 iommu = amd_iommu_rlookup_table[i];
502 if (!iommu)
503 continue;
504
505 iommu_queue_inv_dev_entry(iommu, i);
506 iommu_completion_wait(iommu);
507 }
508}
509
431b2a20
JR
510/****************************************************************************
511 *
512 * The functions below are used the create the page table mappings for
513 * unity mapped regions.
514 *
515 ****************************************************************************/
516
517/*
518 * Generic mapping functions. It maps a physical address into a DMA
519 * address space. It allocates the page table pages if necessary.
520 * In the future it can be extended to a generic mapping function
521 * supporting all features of AMD IOMMU page tables like level skipping
522 * and full 64 bit address spaces.
523 */
38e817fe
JR
524static int iommu_map_page(struct protection_domain *dom,
525 unsigned long bus_addr,
526 unsigned long phys_addr,
527 int prot)
bd0e5211 528{
8bda3092 529 u64 __pte, *pte;
bd0e5211
JR
530
531 bus_addr = PAGE_ALIGN(bus_addr);
bb9d4ff8 532 phys_addr = PAGE_ALIGN(phys_addr);
bd0e5211
JR
533
534 /* only support 512GB address spaces for now */
535 if (bus_addr > IOMMU_MAP_SIZE_L3 || !(prot & IOMMU_PROT_MASK))
536 return -EINVAL;
537
8bda3092 538 pte = alloc_pte(dom, bus_addr, NULL, GFP_KERNEL);
bd0e5211
JR
539
540 if (IOMMU_PTE_PRESENT(*pte))
541 return -EBUSY;
542
543 __pte = phys_addr | IOMMU_PTE_P;
544 if (prot & IOMMU_PROT_IR)
545 __pte |= IOMMU_PTE_IR;
546 if (prot & IOMMU_PROT_IW)
547 __pte |= IOMMU_PTE_IW;
548
549 *pte = __pte;
550
551 return 0;
552}
553
eb74ff6c
JR
554static void iommu_unmap_page(struct protection_domain *dom,
555 unsigned long bus_addr)
556{
557 u64 *pte;
558
559 pte = &dom->pt_root[IOMMU_PTE_L2_INDEX(bus_addr)];
560
561 if (!IOMMU_PTE_PRESENT(*pte))
562 return;
563
564 pte = IOMMU_PTE_PAGE(*pte);
565 pte = &pte[IOMMU_PTE_L1_INDEX(bus_addr)];
566
567 if (!IOMMU_PTE_PRESENT(*pte))
568 return;
569
570 pte = IOMMU_PTE_PAGE(*pte);
571 pte = &pte[IOMMU_PTE_L1_INDEX(bus_addr)];
572
573 *pte = 0;
574}
eb74ff6c 575
431b2a20
JR
576/*
577 * This function checks if a specific unity mapping entry is needed for
578 * this specific IOMMU.
579 */
bd0e5211
JR
580static int iommu_for_unity_map(struct amd_iommu *iommu,
581 struct unity_map_entry *entry)
582{
583 u16 bdf, i;
584
585 for (i = entry->devid_start; i <= entry->devid_end; ++i) {
586 bdf = amd_iommu_alias_table[i];
587 if (amd_iommu_rlookup_table[bdf] == iommu)
588 return 1;
589 }
590
591 return 0;
592}
593
431b2a20
JR
594/*
595 * Init the unity mappings for a specific IOMMU in the system
596 *
597 * Basically iterates over all unity mapping entries and applies them to
598 * the default domain DMA of that IOMMU if necessary.
599 */
bd0e5211
JR
600static int iommu_init_unity_mappings(struct amd_iommu *iommu)
601{
602 struct unity_map_entry *entry;
603 int ret;
604
605 list_for_each_entry(entry, &amd_iommu_unity_map, list) {
606 if (!iommu_for_unity_map(iommu, entry))
607 continue;
608 ret = dma_ops_unity_map(iommu->default_dom, entry);
609 if (ret)
610 return ret;
611 }
612
613 return 0;
614}
615
431b2a20
JR
616/*
617 * This function actually applies the mapping to the page table of the
618 * dma_ops domain.
619 */
bd0e5211
JR
620static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
621 struct unity_map_entry *e)
622{
623 u64 addr;
624 int ret;
625
626 for (addr = e->address_start; addr < e->address_end;
627 addr += PAGE_SIZE) {
38e817fe 628 ret = iommu_map_page(&dma_dom->domain, addr, addr, e->prot);
bd0e5211
JR
629 if (ret)
630 return ret;
631 /*
632 * if unity mapping is in aperture range mark the page
633 * as allocated in the aperture
634 */
635 if (addr < dma_dom->aperture_size)
c3239567 636 __set_bit(addr >> PAGE_SHIFT,
384de729 637 dma_dom->aperture[0]->bitmap);
bd0e5211
JR
638 }
639
640 return 0;
641}
642
431b2a20
JR
643/*
644 * Inits the unity mappings required for a specific device
645 */
bd0e5211
JR
646static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
647 u16 devid)
648{
649 struct unity_map_entry *e;
650 int ret;
651
652 list_for_each_entry(e, &amd_iommu_unity_map, list) {
653 if (!(devid >= e->devid_start && devid <= e->devid_end))
654 continue;
655 ret = dma_ops_unity_map(dma_dom, e);
656 if (ret)
657 return ret;
658 }
659
660 return 0;
661}
662
431b2a20
JR
663/****************************************************************************
664 *
665 * The next functions belong to the address allocator for the dma_ops
666 * interface functions. They work like the allocators in the other IOMMU
667 * drivers. Its basically a bitmap which marks the allocated pages in
668 * the aperture. Maybe it could be enhanced in the future to a more
669 * efficient allocator.
670 *
671 ****************************************************************************/
d3086444 672
431b2a20 673/*
384de729 674 * The address allocator core functions.
431b2a20
JR
675 *
676 * called with domain->lock held
677 */
384de729 678
00cd122a
JR
679/*
680 * This function checks if there is a PTE for a given dma address. If
681 * there is one, it returns the pointer to it.
682 */
683static u64* fetch_pte(struct protection_domain *domain,
684 unsigned long address)
685{
686 u64 *pte;
687
688 pte = &domain->pt_root[IOMMU_PTE_L2_INDEX(address)];
689
690 if (!IOMMU_PTE_PRESENT(*pte))
691 return NULL;
692
693 pte = IOMMU_PTE_PAGE(*pte);
694 pte = &pte[IOMMU_PTE_L1_INDEX(address)];
695
696 if (!IOMMU_PTE_PRESENT(*pte))
697 return NULL;
698
699 pte = IOMMU_PTE_PAGE(*pte);
700 pte = &pte[IOMMU_PTE_L0_INDEX(address)];
701
702 return pte;
703}
704
9cabe89b
JR
705/*
706 * This function is used to add a new aperture range to an existing
707 * aperture in case of dma_ops domain allocation or address allocation
708 * failure.
709 */
00cd122a
JR
710static int alloc_new_range(struct amd_iommu *iommu,
711 struct dma_ops_domain *dma_dom,
9cabe89b
JR
712 bool populate, gfp_t gfp)
713{
714 int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
00cd122a 715 int i;
9cabe89b 716
f5e9705c
JR
717#ifdef CONFIG_IOMMU_STRESS
718 populate = false;
719#endif
720
9cabe89b
JR
721 if (index >= APERTURE_MAX_RANGES)
722 return -ENOMEM;
723
724 dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp);
725 if (!dma_dom->aperture[index])
726 return -ENOMEM;
727
728 dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp);
729 if (!dma_dom->aperture[index]->bitmap)
730 goto out_free;
731
732 dma_dom->aperture[index]->offset = dma_dom->aperture_size;
733
734 if (populate) {
735 unsigned long address = dma_dom->aperture_size;
736 int i, num_ptes = APERTURE_RANGE_PAGES / 512;
737 u64 *pte, *pte_page;
738
739 for (i = 0; i < num_ptes; ++i) {
740 pte = alloc_pte(&dma_dom->domain, address,
741 &pte_page, gfp);
742 if (!pte)
743 goto out_free;
744
745 dma_dom->aperture[index]->pte_pages[i] = pte_page;
746
747 address += APERTURE_RANGE_SIZE / 64;
748 }
749 }
750
751 dma_dom->aperture_size += APERTURE_RANGE_SIZE;
752
00cd122a
JR
753 /* Intialize the exclusion range if necessary */
754 if (iommu->exclusion_start &&
755 iommu->exclusion_start >= dma_dom->aperture[index]->offset &&
756 iommu->exclusion_start < dma_dom->aperture_size) {
757 unsigned long startpage = iommu->exclusion_start >> PAGE_SHIFT;
758 int pages = iommu_num_pages(iommu->exclusion_start,
759 iommu->exclusion_length,
760 PAGE_SIZE);
761 dma_ops_reserve_addresses(dma_dom, startpage, pages);
762 }
763
764 /*
765 * Check for areas already mapped as present in the new aperture
766 * range and mark those pages as reserved in the allocator. Such
767 * mappings may already exist as a result of requested unity
768 * mappings for devices.
769 */
770 for (i = dma_dom->aperture[index]->offset;
771 i < dma_dom->aperture_size;
772 i += PAGE_SIZE) {
773 u64 *pte = fetch_pte(&dma_dom->domain, i);
774 if (!pte || !IOMMU_PTE_PRESENT(*pte))
775 continue;
776
777 dma_ops_reserve_addresses(dma_dom, i << PAGE_SHIFT, 1);
778 }
779
9cabe89b
JR
780 return 0;
781
782out_free:
783 free_page((unsigned long)dma_dom->aperture[index]->bitmap);
784
785 kfree(dma_dom->aperture[index]);
786 dma_dom->aperture[index] = NULL;
787
788 return -ENOMEM;
789}
790
384de729
JR
791static unsigned long dma_ops_area_alloc(struct device *dev,
792 struct dma_ops_domain *dom,
793 unsigned int pages,
794 unsigned long align_mask,
795 u64 dma_mask,
796 unsigned long start)
797{
803b8cb4 798 unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE;
384de729
JR
799 int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT;
800 int i = start >> APERTURE_RANGE_SHIFT;
801 unsigned long boundary_size;
802 unsigned long address = -1;
803 unsigned long limit;
804
803b8cb4
JR
805 next_bit >>= PAGE_SHIFT;
806
384de729
JR
807 boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
808 PAGE_SIZE) >> PAGE_SHIFT;
809
810 for (;i < max_index; ++i) {
811 unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT;
812
813 if (dom->aperture[i]->offset >= dma_mask)
814 break;
815
816 limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
817 dma_mask >> PAGE_SHIFT);
818
819 address = iommu_area_alloc(dom->aperture[i]->bitmap,
820 limit, next_bit, pages, 0,
821 boundary_size, align_mask);
822 if (address != -1) {
823 address = dom->aperture[i]->offset +
824 (address << PAGE_SHIFT);
803b8cb4 825 dom->next_address = address + (pages << PAGE_SHIFT);
384de729
JR
826 break;
827 }
828
829 next_bit = 0;
830 }
831
832 return address;
833}
834
d3086444
JR
835static unsigned long dma_ops_alloc_addresses(struct device *dev,
836 struct dma_ops_domain *dom,
6d4f343f 837 unsigned int pages,
832a90c3
JR
838 unsigned long align_mask,
839 u64 dma_mask)
d3086444 840{
d3086444 841 unsigned long address;
d3086444 842
fe16f088
JR
843#ifdef CONFIG_IOMMU_STRESS
844 dom->next_address = 0;
845 dom->need_flush = true;
846#endif
d3086444 847
384de729 848 address = dma_ops_area_alloc(dev, dom, pages, align_mask,
803b8cb4 849 dma_mask, dom->next_address);
d3086444 850
1c655773 851 if (address == -1) {
803b8cb4 852 dom->next_address = 0;
384de729
JR
853 address = dma_ops_area_alloc(dev, dom, pages, align_mask,
854 dma_mask, 0);
1c655773
JR
855 dom->need_flush = true;
856 }
d3086444 857
384de729 858 if (unlikely(address == -1))
d3086444
JR
859 address = bad_dma_address;
860
861 WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);
862
863 return address;
864}
865
431b2a20
JR
866/*
867 * The address free function.
868 *
869 * called with domain->lock held
870 */
d3086444
JR
871static void dma_ops_free_addresses(struct dma_ops_domain *dom,
872 unsigned long address,
873 unsigned int pages)
874{
384de729
JR
875 unsigned i = address >> APERTURE_RANGE_SHIFT;
876 struct aperture_range *range = dom->aperture[i];
80be308d 877
384de729
JR
878 BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);
879
47bccd6b
JR
880#ifdef CONFIG_IOMMU_STRESS
881 if (i < 4)
882 return;
883#endif
80be308d 884
803b8cb4 885 if (address >= dom->next_address)
80be308d 886 dom->need_flush = true;
384de729
JR
887
888 address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
803b8cb4 889
384de729
JR
890 iommu_area_free(range->bitmap, address, pages);
891
d3086444
JR
892}
893
431b2a20
JR
894/****************************************************************************
895 *
896 * The next functions belong to the domain allocation. A domain is
897 * allocated for every IOMMU as the default domain. If device isolation
898 * is enabled, every device get its own domain. The most important thing
899 * about domains is the page table mapping the DMA address space they
900 * contain.
901 *
902 ****************************************************************************/
903
ec487d1a
JR
904static u16 domain_id_alloc(void)
905{
906 unsigned long flags;
907 int id;
908
909 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
910 id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
911 BUG_ON(id == 0);
912 if (id > 0 && id < MAX_DOMAIN_ID)
913 __set_bit(id, amd_iommu_pd_alloc_bitmap);
914 else
915 id = 0;
916 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
917
918 return id;
919}
920
a2acfb75
JR
921static void domain_id_free(int id)
922{
923 unsigned long flags;
924
925 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
926 if (id > 0 && id < MAX_DOMAIN_ID)
927 __clear_bit(id, amd_iommu_pd_alloc_bitmap);
928 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
929}
a2acfb75 930
431b2a20
JR
931/*
932 * Used to reserve address ranges in the aperture (e.g. for exclusion
933 * ranges.
934 */
ec487d1a
JR
935static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
936 unsigned long start_page,
937 unsigned int pages)
938{
384de729 939 unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;
ec487d1a
JR
940
941 if (start_page + pages > last_page)
942 pages = last_page - start_page;
943
384de729
JR
944 for (i = start_page; i < start_page + pages; ++i) {
945 int index = i / APERTURE_RANGE_PAGES;
946 int page = i % APERTURE_RANGE_PAGES;
947 __set_bit(page, dom->aperture[index]->bitmap);
948 }
ec487d1a
JR
949}
950
86db2e5d 951static void free_pagetable(struct protection_domain *domain)
ec487d1a
JR
952{
953 int i, j;
954 u64 *p1, *p2, *p3;
955
86db2e5d 956 p1 = domain->pt_root;
ec487d1a
JR
957
958 if (!p1)
959 return;
960
961 for (i = 0; i < 512; ++i) {
962 if (!IOMMU_PTE_PRESENT(p1[i]))
963 continue;
964
965 p2 = IOMMU_PTE_PAGE(p1[i]);
3cc3d84b 966 for (j = 0; j < 512; ++j) {
ec487d1a
JR
967 if (!IOMMU_PTE_PRESENT(p2[j]))
968 continue;
969 p3 = IOMMU_PTE_PAGE(p2[j]);
970 free_page((unsigned long)p3);
971 }
972
973 free_page((unsigned long)p2);
974 }
975
976 free_page((unsigned long)p1);
86db2e5d
JR
977
978 domain->pt_root = NULL;
ec487d1a
JR
979}
980
431b2a20
JR
981/*
982 * Free a domain, only used if something went wrong in the
983 * allocation path and we need to free an already allocated page table
984 */
ec487d1a
JR
985static void dma_ops_domain_free(struct dma_ops_domain *dom)
986{
384de729
JR
987 int i;
988
ec487d1a
JR
989 if (!dom)
990 return;
991
86db2e5d 992 free_pagetable(&dom->domain);
ec487d1a 993
384de729
JR
994 for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
995 if (!dom->aperture[i])
996 continue;
997 free_page((unsigned long)dom->aperture[i]->bitmap);
998 kfree(dom->aperture[i]);
999 }
ec487d1a
JR
1000
1001 kfree(dom);
1002}
1003
431b2a20
JR
1004/*
1005 * Allocates a new protection domain usable for the dma_ops functions.
1006 * It also intializes the page table and the address allocator data
1007 * structures required for the dma_ops interface
1008 */
d9cfed92 1009static struct dma_ops_domain *dma_ops_domain_alloc(struct amd_iommu *iommu)
ec487d1a
JR
1010{
1011 struct dma_ops_domain *dma_dom;
ec487d1a
JR
1012
1013 dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
1014 if (!dma_dom)
1015 return NULL;
1016
1017 spin_lock_init(&dma_dom->domain.lock);
1018
1019 dma_dom->domain.id = domain_id_alloc();
1020 if (dma_dom->domain.id == 0)
1021 goto free_dma_dom;
1022 dma_dom->domain.mode = PAGE_MODE_3_LEVEL;
1023 dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
9fdb19d6 1024 dma_dom->domain.flags = PD_DMA_OPS_MASK;
ec487d1a
JR
1025 dma_dom->domain.priv = dma_dom;
1026 if (!dma_dom->domain.pt_root)
1027 goto free_dma_dom;
ec487d1a 1028
1c655773 1029 dma_dom->need_flush = false;
bd60b735 1030 dma_dom->target_dev = 0xffff;
1c655773 1031
00cd122a 1032 if (alloc_new_range(iommu, dma_dom, true, GFP_KERNEL))
ec487d1a 1033 goto free_dma_dom;
ec487d1a 1034
431b2a20 1035 /*
ec487d1a
JR
1036 * mark the first page as allocated so we never return 0 as
1037 * a valid dma-address. So we can use 0 as error value
431b2a20 1038 */
384de729 1039 dma_dom->aperture[0]->bitmap[0] = 1;
803b8cb4 1040 dma_dom->next_address = 0;
ec487d1a 1041
ec487d1a
JR
1042
1043 return dma_dom;
1044
1045free_dma_dom:
1046 dma_ops_domain_free(dma_dom);
1047
1048 return NULL;
1049}
1050
5b28df6f
JR
1051/*
1052 * little helper function to check whether a given protection domain is a
1053 * dma_ops domain
1054 */
1055static bool dma_ops_domain(struct protection_domain *domain)
1056{
1057 return domain->flags & PD_DMA_OPS_MASK;
1058}
1059
431b2a20
JR
1060/*
1061 * Find out the protection domain structure for a given PCI device. This
1062 * will give us the pointer to the page table root for example.
1063 */
b20ac0d4
JR
1064static struct protection_domain *domain_for_device(u16 devid)
1065{
1066 struct protection_domain *dom;
1067 unsigned long flags;
1068
1069 read_lock_irqsave(&amd_iommu_devtable_lock, flags);
1070 dom = amd_iommu_pd_table[devid];
1071 read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1072
1073 return dom;
1074}
1075
431b2a20
JR
1076/*
1077 * If a device is not yet associated with a domain, this function does
1078 * assigns it visible for the hardware
1079 */
f1179dc0
JR
1080static void attach_device(struct amd_iommu *iommu,
1081 struct protection_domain *domain,
1082 u16 devid)
b20ac0d4
JR
1083{
1084 unsigned long flags;
b20ac0d4
JR
1085 u64 pte_root = virt_to_phys(domain->pt_root);
1086
863c74eb
JR
1087 domain->dev_cnt += 1;
1088
38ddf41b
JR
1089 pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
1090 << DEV_ENTRY_MODE_SHIFT;
1091 pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
b20ac0d4
JR
1092
1093 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
38ddf41b
JR
1094 amd_iommu_dev_table[devid].data[0] = lower_32_bits(pte_root);
1095 amd_iommu_dev_table[devid].data[1] = upper_32_bits(pte_root);
b20ac0d4
JR
1096 amd_iommu_dev_table[devid].data[2] = domain->id;
1097
1098 amd_iommu_pd_table[devid] = domain;
1099 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1100
42a49f96
CW
1101 /*
1102 * We might boot into a crash-kernel here. The crashed kernel
1103 * left the caches in the IOMMU dirty. So we have to flush
1104 * here to evict all dirty stuff.
1105 */
b20ac0d4 1106 iommu_queue_inv_dev_entry(iommu, devid);
42a49f96 1107 iommu_flush_tlb_pde(iommu, domain->id);
b20ac0d4
JR
1108}
1109
355bf553
JR
1110/*
1111 * Removes a device from a protection domain (unlocked)
1112 */
1113static void __detach_device(struct protection_domain *domain, u16 devid)
1114{
1115
1116 /* lock domain */
1117 spin_lock(&domain->lock);
1118
1119 /* remove domain from the lookup table */
1120 amd_iommu_pd_table[devid] = NULL;
1121
1122 /* remove entry from the device table seen by the hardware */
1123 amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
1124 amd_iommu_dev_table[devid].data[1] = 0;
1125 amd_iommu_dev_table[devid].data[2] = 0;
1126
1127 /* decrease reference counter */
1128 domain->dev_cnt -= 1;
1129
1130 /* ready */
1131 spin_unlock(&domain->lock);
1132}
1133
1134/*
1135 * Removes a device from a protection domain (with devtable_lock held)
1136 */
1137static void detach_device(struct protection_domain *domain, u16 devid)
1138{
1139 unsigned long flags;
1140
1141 /* lock device table */
1142 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1143 __detach_device(domain, devid);
1144 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1145}
e275a2a0
JR
1146
1147static int device_change_notifier(struct notifier_block *nb,
1148 unsigned long action, void *data)
1149{
1150 struct device *dev = data;
1151 struct pci_dev *pdev = to_pci_dev(dev);
1152 u16 devid = calc_devid(pdev->bus->number, pdev->devfn);
1153 struct protection_domain *domain;
1154 struct dma_ops_domain *dma_domain;
1155 struct amd_iommu *iommu;
1ac4cbbc 1156 unsigned long flags;
e275a2a0
JR
1157
1158 if (devid > amd_iommu_last_bdf)
1159 goto out;
1160
1161 devid = amd_iommu_alias_table[devid];
1162
1163 iommu = amd_iommu_rlookup_table[devid];
1164 if (iommu == NULL)
1165 goto out;
1166
1167 domain = domain_for_device(devid);
1168
1169 if (domain && !dma_ops_domain(domain))
1170 WARN_ONCE(1, "AMD IOMMU WARNING: device %s already bound "
1171 "to a non-dma-ops domain\n", dev_name(dev));
1172
1173 switch (action) {
c1eee67b 1174 case BUS_NOTIFY_UNBOUND_DRIVER:
e275a2a0
JR
1175 if (!domain)
1176 goto out;
1177 detach_device(domain, devid);
1ac4cbbc
JR
1178 break;
1179 case BUS_NOTIFY_ADD_DEVICE:
1180 /* allocate a protection domain if a device is added */
1181 dma_domain = find_protection_domain(devid);
1182 if (dma_domain)
1183 goto out;
d9cfed92 1184 dma_domain = dma_ops_domain_alloc(iommu);
1ac4cbbc
JR
1185 if (!dma_domain)
1186 goto out;
1187 dma_domain->target_dev = devid;
1188
1189 spin_lock_irqsave(&iommu_pd_list_lock, flags);
1190 list_add_tail(&dma_domain->list, &iommu_pd_list);
1191 spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
1192
e275a2a0
JR
1193 break;
1194 default:
1195 goto out;
1196 }
1197
1198 iommu_queue_inv_dev_entry(iommu, devid);
1199 iommu_completion_wait(iommu);
1200
1201out:
1202 return 0;
1203}
1204
b25ae679 1205static struct notifier_block device_nb = {
e275a2a0
JR
1206 .notifier_call = device_change_notifier,
1207};
355bf553 1208
431b2a20
JR
1209/*****************************************************************************
1210 *
1211 * The next functions belong to the dma_ops mapping/unmapping code.
1212 *
1213 *****************************************************************************/
1214
dbcc112e
JR
1215/*
1216 * This function checks if the driver got a valid device from the caller to
1217 * avoid dereferencing invalid pointers.
1218 */
1219static bool check_device(struct device *dev)
1220{
1221 if (!dev || !dev->dma_mask)
1222 return false;
1223
1224 return true;
1225}
1226
bd60b735
JR
1227/*
1228 * In this function the list of preallocated protection domains is traversed to
1229 * find the domain for a specific device
1230 */
1231static struct dma_ops_domain *find_protection_domain(u16 devid)
1232{
1233 struct dma_ops_domain *entry, *ret = NULL;
1234 unsigned long flags;
1235
1236 if (list_empty(&iommu_pd_list))
1237 return NULL;
1238
1239 spin_lock_irqsave(&iommu_pd_list_lock, flags);
1240
1241 list_for_each_entry(entry, &iommu_pd_list, list) {
1242 if (entry->target_dev == devid) {
1243 ret = entry;
bd60b735
JR
1244 break;
1245 }
1246 }
1247
1248 spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
1249
1250 return ret;
1251}
1252
431b2a20
JR
1253/*
1254 * In the dma_ops path we only have the struct device. This function
1255 * finds the corresponding IOMMU, the protection domain and the
1256 * requestor id for a given device.
1257 * If the device is not yet associated with a domain this is also done
1258 * in this function.
1259 */
b20ac0d4
JR
1260static int get_device_resources(struct device *dev,
1261 struct amd_iommu **iommu,
1262 struct protection_domain **domain,
1263 u16 *bdf)
1264{
1265 struct dma_ops_domain *dma_dom;
1266 struct pci_dev *pcidev;
1267 u16 _bdf;
1268
dbcc112e
JR
1269 *iommu = NULL;
1270 *domain = NULL;
1271 *bdf = 0xffff;
1272
1273 if (dev->bus != &pci_bus_type)
1274 return 0;
b20ac0d4
JR
1275
1276 pcidev = to_pci_dev(dev);
d591b0a3 1277 _bdf = calc_devid(pcidev->bus->number, pcidev->devfn);
b20ac0d4 1278
431b2a20 1279 /* device not translated by any IOMMU in the system? */
dbcc112e 1280 if (_bdf > amd_iommu_last_bdf)
b20ac0d4 1281 return 0;
b20ac0d4
JR
1282
1283 *bdf = amd_iommu_alias_table[_bdf];
1284
1285 *iommu = amd_iommu_rlookup_table[*bdf];
1286 if (*iommu == NULL)
1287 return 0;
b20ac0d4
JR
1288 *domain = domain_for_device(*bdf);
1289 if (*domain == NULL) {
bd60b735
JR
1290 dma_dom = find_protection_domain(*bdf);
1291 if (!dma_dom)
1292 dma_dom = (*iommu)->default_dom;
b20ac0d4 1293 *domain = &dma_dom->domain;
f1179dc0 1294 attach_device(*iommu, *domain, *bdf);
e9a22a13
JR
1295 DUMP_printk("Using protection domain %d for device %s\n",
1296 (*domain)->id, dev_name(dev));
b20ac0d4
JR
1297 }
1298
f91ba190 1299 if (domain_for_device(_bdf) == NULL)
f1179dc0 1300 attach_device(*iommu, *domain, _bdf);
f91ba190 1301
b20ac0d4
JR
1302 return 1;
1303}
1304
8bda3092
JR
1305/*
1306 * If the pte_page is not yet allocated this function is called
1307 */
1308static u64* alloc_pte(struct protection_domain *dom,
1309 unsigned long address, u64 **pte_page, gfp_t gfp)
1310{
1311 u64 *pte, *page;
1312
1313 pte = &dom->pt_root[IOMMU_PTE_L2_INDEX(address)];
1314
1315 if (!IOMMU_PTE_PRESENT(*pte)) {
1316 page = (u64 *)get_zeroed_page(gfp);
1317 if (!page)
1318 return NULL;
1319 *pte = IOMMU_L2_PDE(virt_to_phys(page));
1320 }
1321
1322 pte = IOMMU_PTE_PAGE(*pte);
1323 pte = &pte[IOMMU_PTE_L1_INDEX(address)];
1324
1325 if (!IOMMU_PTE_PRESENT(*pte)) {
1326 page = (u64 *)get_zeroed_page(gfp);
1327 if (!page)
1328 return NULL;
1329 *pte = IOMMU_L1_PDE(virt_to_phys(page));
1330 }
1331
1332 pte = IOMMU_PTE_PAGE(*pte);
1333
1334 if (pte_page)
1335 *pte_page = pte;
1336
1337 pte = &pte[IOMMU_PTE_L0_INDEX(address)];
1338
1339 return pte;
1340}
1341
1342/*
1343 * This function fetches the PTE for a given address in the aperture
1344 */
1345static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
1346 unsigned long address)
1347{
384de729 1348 struct aperture_range *aperture;
8bda3092
JR
1349 u64 *pte, *pte_page;
1350
384de729
JR
1351 aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
1352 if (!aperture)
1353 return NULL;
1354
1355 pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
8bda3092
JR
1356 if (!pte) {
1357 pte = alloc_pte(&dom->domain, address, &pte_page, GFP_ATOMIC);
384de729
JR
1358 aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
1359 } else
1360 pte += IOMMU_PTE_L0_INDEX(address);
8bda3092
JR
1361
1362 return pte;
1363}
1364
431b2a20
JR
1365/*
1366 * This is the generic map function. It maps one 4kb page at paddr to
1367 * the given address in the DMA address space for the domain.
1368 */
cb76c322
JR
1369static dma_addr_t dma_ops_domain_map(struct amd_iommu *iommu,
1370 struct dma_ops_domain *dom,
1371 unsigned long address,
1372 phys_addr_t paddr,
1373 int direction)
1374{
1375 u64 *pte, __pte;
1376
1377 WARN_ON(address > dom->aperture_size);
1378
1379 paddr &= PAGE_MASK;
1380
8bda3092 1381 pte = dma_ops_get_pte(dom, address);
53812c11
JR
1382 if (!pte)
1383 return bad_dma_address;
cb76c322
JR
1384
1385 __pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;
1386
1387 if (direction == DMA_TO_DEVICE)
1388 __pte |= IOMMU_PTE_IR;
1389 else if (direction == DMA_FROM_DEVICE)
1390 __pte |= IOMMU_PTE_IW;
1391 else if (direction == DMA_BIDIRECTIONAL)
1392 __pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;
1393
1394 WARN_ON(*pte);
1395
1396 *pte = __pte;
1397
1398 return (dma_addr_t)address;
1399}
1400
431b2a20
JR
1401/*
1402 * The generic unmapping function for on page in the DMA address space.
1403 */
cb76c322
JR
1404static void dma_ops_domain_unmap(struct amd_iommu *iommu,
1405 struct dma_ops_domain *dom,
1406 unsigned long address)
1407{
384de729 1408 struct aperture_range *aperture;
cb76c322
JR
1409 u64 *pte;
1410
1411 if (address >= dom->aperture_size)
1412 return;
1413
384de729
JR
1414 aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
1415 if (!aperture)
1416 return;
1417
1418 pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
1419 if (!pte)
1420 return;
cb76c322 1421
cb76c322
JR
1422 pte += IOMMU_PTE_L0_INDEX(address);
1423
1424 WARN_ON(!*pte);
1425
1426 *pte = 0ULL;
1427}
1428
431b2a20
JR
1429/*
1430 * This function contains common code for mapping of a physically
24f81160
JR
1431 * contiguous memory region into DMA address space. It is used by all
1432 * mapping functions provided with this IOMMU driver.
431b2a20
JR
1433 * Must be called with the domain lock held.
1434 */
cb76c322
JR
1435static dma_addr_t __map_single(struct device *dev,
1436 struct amd_iommu *iommu,
1437 struct dma_ops_domain *dma_dom,
1438 phys_addr_t paddr,
1439 size_t size,
6d4f343f 1440 int dir,
832a90c3
JR
1441 bool align,
1442 u64 dma_mask)
cb76c322
JR
1443{
1444 dma_addr_t offset = paddr & ~PAGE_MASK;
53812c11 1445 dma_addr_t address, start, ret;
cb76c322 1446 unsigned int pages;
6d4f343f 1447 unsigned long align_mask = 0;
cb76c322
JR
1448 int i;
1449
e3c449f5 1450 pages = iommu_num_pages(paddr, size, PAGE_SIZE);
cb76c322
JR
1451 paddr &= PAGE_MASK;
1452
8ecaf8f1
JR
1453 INC_STATS_COUNTER(total_map_requests);
1454
c1858976
JR
1455 if (pages > 1)
1456 INC_STATS_COUNTER(cross_page);
1457
6d4f343f
JR
1458 if (align)
1459 align_mask = (1UL << get_order(size)) - 1;
1460
11b83888 1461retry:
832a90c3
JR
1462 address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
1463 dma_mask);
11b83888
JR
1464 if (unlikely(address == bad_dma_address)) {
1465 /*
1466 * setting next_address here will let the address
1467 * allocator only scan the new allocated range in the
1468 * first run. This is a small optimization.
1469 */
1470 dma_dom->next_address = dma_dom->aperture_size;
1471
1472 if (alloc_new_range(iommu, dma_dom, false, GFP_ATOMIC))
1473 goto out;
1474
1475 /*
1476 * aperture was sucessfully enlarged by 128 MB, try
1477 * allocation again
1478 */
1479 goto retry;
1480 }
cb76c322
JR
1481
1482 start = address;
1483 for (i = 0; i < pages; ++i) {
53812c11
JR
1484 ret = dma_ops_domain_map(iommu, dma_dom, start, paddr, dir);
1485 if (ret == bad_dma_address)
1486 goto out_unmap;
1487
cb76c322
JR
1488 paddr += PAGE_SIZE;
1489 start += PAGE_SIZE;
1490 }
1491 address += offset;
1492
5774f7c5
JR
1493 ADD_STATS_COUNTER(alloced_io_mem, size);
1494
afa9fdc2 1495 if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
1c655773
JR
1496 iommu_flush_tlb(iommu, dma_dom->domain.id);
1497 dma_dom->need_flush = false;
1498 } else if (unlikely(iommu_has_npcache(iommu)))
270cab24
JR
1499 iommu_flush_pages(iommu, dma_dom->domain.id, address, size);
1500
cb76c322
JR
1501out:
1502 return address;
53812c11
JR
1503
1504out_unmap:
1505
1506 for (--i; i >= 0; --i) {
1507 start -= PAGE_SIZE;
1508 dma_ops_domain_unmap(iommu, dma_dom, start);
1509 }
1510
1511 dma_ops_free_addresses(dma_dom, address, pages);
1512
1513 return bad_dma_address;
cb76c322
JR
1514}
1515
431b2a20
JR
1516/*
1517 * Does the reverse of the __map_single function. Must be called with
1518 * the domain lock held too
1519 */
cb76c322
JR
1520static void __unmap_single(struct amd_iommu *iommu,
1521 struct dma_ops_domain *dma_dom,
1522 dma_addr_t dma_addr,
1523 size_t size,
1524 int dir)
1525{
1526 dma_addr_t i, start;
1527 unsigned int pages;
1528
b8d9905d
JR
1529 if ((dma_addr == bad_dma_address) ||
1530 (dma_addr + size > dma_dom->aperture_size))
cb76c322
JR
1531 return;
1532
e3c449f5 1533 pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
cb76c322
JR
1534 dma_addr &= PAGE_MASK;
1535 start = dma_addr;
1536
1537 for (i = 0; i < pages; ++i) {
1538 dma_ops_domain_unmap(iommu, dma_dom, start);
1539 start += PAGE_SIZE;
1540 }
1541
5774f7c5
JR
1542 SUB_STATS_COUNTER(alloced_io_mem, size);
1543
cb76c322 1544 dma_ops_free_addresses(dma_dom, dma_addr, pages);
270cab24 1545
80be308d 1546 if (amd_iommu_unmap_flush || dma_dom->need_flush) {
1c655773 1547 iommu_flush_pages(iommu, dma_dom->domain.id, dma_addr, size);
80be308d
JR
1548 dma_dom->need_flush = false;
1549 }
cb76c322
JR
1550}
1551
431b2a20
JR
1552/*
1553 * The exported map_single function for dma_ops.
1554 */
51491367
FT
1555static dma_addr_t map_page(struct device *dev, struct page *page,
1556 unsigned long offset, size_t size,
1557 enum dma_data_direction dir,
1558 struct dma_attrs *attrs)
4da70b9e
JR
1559{
1560 unsigned long flags;
1561 struct amd_iommu *iommu;
1562 struct protection_domain *domain;
1563 u16 devid;
1564 dma_addr_t addr;
832a90c3 1565 u64 dma_mask;
51491367 1566 phys_addr_t paddr = page_to_phys(page) + offset;
4da70b9e 1567
0f2a86f2
JR
1568 INC_STATS_COUNTER(cnt_map_single);
1569
dbcc112e
JR
1570 if (!check_device(dev))
1571 return bad_dma_address;
1572
832a90c3 1573 dma_mask = *dev->dma_mask;
4da70b9e
JR
1574
1575 get_device_resources(dev, &iommu, &domain, &devid);
1576
1577 if (iommu == NULL || domain == NULL)
431b2a20 1578 /* device not handled by any AMD IOMMU */
4da70b9e
JR
1579 return (dma_addr_t)paddr;
1580
5b28df6f
JR
1581 if (!dma_ops_domain(domain))
1582 return bad_dma_address;
1583
4da70b9e 1584 spin_lock_irqsave(&domain->lock, flags);
832a90c3
JR
1585 addr = __map_single(dev, iommu, domain->priv, paddr, size, dir, false,
1586 dma_mask);
4da70b9e
JR
1587 if (addr == bad_dma_address)
1588 goto out;
1589
09ee17eb 1590 iommu_completion_wait(iommu);
4da70b9e
JR
1591
1592out:
1593 spin_unlock_irqrestore(&domain->lock, flags);
1594
1595 return addr;
1596}
1597
431b2a20
JR
1598/*
1599 * The exported unmap_single function for dma_ops.
1600 */
51491367
FT
1601static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
1602 enum dma_data_direction dir, struct dma_attrs *attrs)
4da70b9e
JR
1603{
1604 unsigned long flags;
1605 struct amd_iommu *iommu;
1606 struct protection_domain *domain;
1607 u16 devid;
1608
146a6917
JR
1609 INC_STATS_COUNTER(cnt_unmap_single);
1610
dbcc112e
JR
1611 if (!check_device(dev) ||
1612 !get_device_resources(dev, &iommu, &domain, &devid))
431b2a20 1613 /* device not handled by any AMD IOMMU */
4da70b9e
JR
1614 return;
1615
5b28df6f
JR
1616 if (!dma_ops_domain(domain))
1617 return;
1618
4da70b9e
JR
1619 spin_lock_irqsave(&domain->lock, flags);
1620
1621 __unmap_single(iommu, domain->priv, dma_addr, size, dir);
1622
09ee17eb 1623 iommu_completion_wait(iommu);
4da70b9e
JR
1624
1625 spin_unlock_irqrestore(&domain->lock, flags);
1626}
1627
431b2a20
JR
1628/*
1629 * This is a special map_sg function which is used if we should map a
1630 * device which is not handled by an AMD IOMMU in the system.
1631 */
65b050ad
JR
1632static int map_sg_no_iommu(struct device *dev, struct scatterlist *sglist,
1633 int nelems, int dir)
1634{
1635 struct scatterlist *s;
1636 int i;
1637
1638 for_each_sg(sglist, s, nelems, i) {
1639 s->dma_address = (dma_addr_t)sg_phys(s);
1640 s->dma_length = s->length;
1641 }
1642
1643 return nelems;
1644}
1645
431b2a20
JR
1646/*
1647 * The exported map_sg function for dma_ops (handles scatter-gather
1648 * lists).
1649 */
65b050ad 1650static int map_sg(struct device *dev, struct scatterlist *sglist,
160c1d8e
FT
1651 int nelems, enum dma_data_direction dir,
1652 struct dma_attrs *attrs)
65b050ad
JR
1653{
1654 unsigned long flags;
1655 struct amd_iommu *iommu;
1656 struct protection_domain *domain;
1657 u16 devid;
1658 int i;
1659 struct scatterlist *s;
1660 phys_addr_t paddr;
1661 int mapped_elems = 0;
832a90c3 1662 u64 dma_mask;
65b050ad 1663
d03f067a
JR
1664 INC_STATS_COUNTER(cnt_map_sg);
1665
dbcc112e
JR
1666 if (!check_device(dev))
1667 return 0;
1668
832a90c3 1669 dma_mask = *dev->dma_mask;
65b050ad
JR
1670
1671 get_device_resources(dev, &iommu, &domain, &devid);
1672
1673 if (!iommu || !domain)
1674 return map_sg_no_iommu(dev, sglist, nelems, dir);
1675
5b28df6f
JR
1676 if (!dma_ops_domain(domain))
1677 return 0;
1678
65b050ad
JR
1679 spin_lock_irqsave(&domain->lock, flags);
1680
1681 for_each_sg(sglist, s, nelems, i) {
1682 paddr = sg_phys(s);
1683
1684 s->dma_address = __map_single(dev, iommu, domain->priv,
832a90c3
JR
1685 paddr, s->length, dir, false,
1686 dma_mask);
65b050ad
JR
1687
1688 if (s->dma_address) {
1689 s->dma_length = s->length;
1690 mapped_elems++;
1691 } else
1692 goto unmap;
65b050ad
JR
1693 }
1694
09ee17eb 1695 iommu_completion_wait(iommu);
65b050ad
JR
1696
1697out:
1698 spin_unlock_irqrestore(&domain->lock, flags);
1699
1700 return mapped_elems;
1701unmap:
1702 for_each_sg(sglist, s, mapped_elems, i) {
1703 if (s->dma_address)
1704 __unmap_single(iommu, domain->priv, s->dma_address,
1705 s->dma_length, dir);
1706 s->dma_address = s->dma_length = 0;
1707 }
1708
1709 mapped_elems = 0;
1710
1711 goto out;
1712}
1713
431b2a20
JR
1714/*
1715 * The exported map_sg function for dma_ops (handles scatter-gather
1716 * lists).
1717 */
65b050ad 1718static void unmap_sg(struct device *dev, struct scatterlist *sglist,
160c1d8e
FT
1719 int nelems, enum dma_data_direction dir,
1720 struct dma_attrs *attrs)
65b050ad
JR
1721{
1722 unsigned long flags;
1723 struct amd_iommu *iommu;
1724 struct protection_domain *domain;
1725 struct scatterlist *s;
1726 u16 devid;
1727 int i;
1728
55877a6b
JR
1729 INC_STATS_COUNTER(cnt_unmap_sg);
1730
dbcc112e
JR
1731 if (!check_device(dev) ||
1732 !get_device_resources(dev, &iommu, &domain, &devid))
65b050ad
JR
1733 return;
1734
5b28df6f
JR
1735 if (!dma_ops_domain(domain))
1736 return;
1737
65b050ad
JR
1738 spin_lock_irqsave(&domain->lock, flags);
1739
1740 for_each_sg(sglist, s, nelems, i) {
1741 __unmap_single(iommu, domain->priv, s->dma_address,
1742 s->dma_length, dir);
65b050ad
JR
1743 s->dma_address = s->dma_length = 0;
1744 }
1745
09ee17eb 1746 iommu_completion_wait(iommu);
65b050ad
JR
1747
1748 spin_unlock_irqrestore(&domain->lock, flags);
1749}
1750
431b2a20
JR
1751/*
1752 * The exported alloc_coherent function for dma_ops.
1753 */
5d8b53cf
JR
1754static void *alloc_coherent(struct device *dev, size_t size,
1755 dma_addr_t *dma_addr, gfp_t flag)
1756{
1757 unsigned long flags;
1758 void *virt_addr;
1759 struct amd_iommu *iommu;
1760 struct protection_domain *domain;
1761 u16 devid;
1762 phys_addr_t paddr;
832a90c3 1763 u64 dma_mask = dev->coherent_dma_mask;
5d8b53cf 1764
c8f0fb36
JR
1765 INC_STATS_COUNTER(cnt_alloc_coherent);
1766
dbcc112e
JR
1767 if (!check_device(dev))
1768 return NULL;
5d8b53cf 1769
13d9fead
FT
1770 if (!get_device_resources(dev, &iommu, &domain, &devid))
1771 flag &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
5d8b53cf 1772
c97ac535 1773 flag |= __GFP_ZERO;
5d8b53cf
JR
1774 virt_addr = (void *)__get_free_pages(flag, get_order(size));
1775 if (!virt_addr)
b25ae679 1776 return NULL;
5d8b53cf 1777
5d8b53cf
JR
1778 paddr = virt_to_phys(virt_addr);
1779
5d8b53cf
JR
1780 if (!iommu || !domain) {
1781 *dma_addr = (dma_addr_t)paddr;
1782 return virt_addr;
1783 }
1784
5b28df6f
JR
1785 if (!dma_ops_domain(domain))
1786 goto out_free;
1787
832a90c3
JR
1788 if (!dma_mask)
1789 dma_mask = *dev->dma_mask;
1790
5d8b53cf
JR
1791 spin_lock_irqsave(&domain->lock, flags);
1792
1793 *dma_addr = __map_single(dev, iommu, domain->priv, paddr,
832a90c3 1794 size, DMA_BIDIRECTIONAL, true, dma_mask);
5d8b53cf 1795
367d04c4
JS
1796 if (*dma_addr == bad_dma_address) {
1797 spin_unlock_irqrestore(&domain->lock, flags);
5b28df6f 1798 goto out_free;
367d04c4 1799 }
5d8b53cf 1800
09ee17eb 1801 iommu_completion_wait(iommu);
5d8b53cf 1802
5d8b53cf
JR
1803 spin_unlock_irqrestore(&domain->lock, flags);
1804
1805 return virt_addr;
5b28df6f
JR
1806
1807out_free:
1808
1809 free_pages((unsigned long)virt_addr, get_order(size));
1810
1811 return NULL;
5d8b53cf
JR
1812}
1813
431b2a20
JR
1814/*
1815 * The exported free_coherent function for dma_ops.
431b2a20 1816 */
5d8b53cf
JR
1817static void free_coherent(struct device *dev, size_t size,
1818 void *virt_addr, dma_addr_t dma_addr)
1819{
1820 unsigned long flags;
1821 struct amd_iommu *iommu;
1822 struct protection_domain *domain;
1823 u16 devid;
1824
5d31ee7e
JR
1825 INC_STATS_COUNTER(cnt_free_coherent);
1826
dbcc112e
JR
1827 if (!check_device(dev))
1828 return;
1829
5d8b53cf
JR
1830 get_device_resources(dev, &iommu, &domain, &devid);
1831
1832 if (!iommu || !domain)
1833 goto free_mem;
1834
5b28df6f
JR
1835 if (!dma_ops_domain(domain))
1836 goto free_mem;
1837
5d8b53cf
JR
1838 spin_lock_irqsave(&domain->lock, flags);
1839
1840 __unmap_single(iommu, domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
5d8b53cf 1841
09ee17eb 1842 iommu_completion_wait(iommu);
5d8b53cf
JR
1843
1844 spin_unlock_irqrestore(&domain->lock, flags);
1845
1846free_mem:
1847 free_pages((unsigned long)virt_addr, get_order(size));
1848}
1849
b39ba6ad
JR
1850/*
1851 * This function is called by the DMA layer to find out if we can handle a
1852 * particular device. It is part of the dma_ops.
1853 */
1854static int amd_iommu_dma_supported(struct device *dev, u64 mask)
1855{
1856 u16 bdf;
1857 struct pci_dev *pcidev;
1858
1859 /* No device or no PCI device */
1860 if (!dev || dev->bus != &pci_bus_type)
1861 return 0;
1862
1863 pcidev = to_pci_dev(dev);
1864
1865 bdf = calc_devid(pcidev->bus->number, pcidev->devfn);
1866
1867 /* Out of our scope? */
1868 if (bdf > amd_iommu_last_bdf)
1869 return 0;
1870
1871 return 1;
1872}
1873
c432f3df 1874/*
431b2a20
JR
1875 * The function for pre-allocating protection domains.
1876 *
c432f3df
JR
1877 * If the driver core informs the DMA layer if a driver grabs a device
1878 * we don't need to preallocate the protection domains anymore.
1879 * For now we have to.
1880 */
0e93dd88 1881static void prealloc_protection_domains(void)
c432f3df
JR
1882{
1883 struct pci_dev *dev = NULL;
1884 struct dma_ops_domain *dma_dom;
1885 struct amd_iommu *iommu;
c432f3df
JR
1886 u16 devid;
1887
1888 while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
edcb34da 1889 devid = calc_devid(dev->bus->number, dev->devfn);
3a61ec38 1890 if (devid > amd_iommu_last_bdf)
c432f3df
JR
1891 continue;
1892 devid = amd_iommu_alias_table[devid];
1893 if (domain_for_device(devid))
1894 continue;
1895 iommu = amd_iommu_rlookup_table[devid];
1896 if (!iommu)
1897 continue;
d9cfed92 1898 dma_dom = dma_ops_domain_alloc(iommu);
c432f3df
JR
1899 if (!dma_dom)
1900 continue;
1901 init_unity_mappings_for_device(dma_dom, devid);
bd60b735
JR
1902 dma_dom->target_dev = devid;
1903
1904 list_add_tail(&dma_dom->list, &iommu_pd_list);
c432f3df
JR
1905 }
1906}
1907
160c1d8e 1908static struct dma_map_ops amd_iommu_dma_ops = {
6631ee9d
JR
1909 .alloc_coherent = alloc_coherent,
1910 .free_coherent = free_coherent,
51491367
FT
1911 .map_page = map_page,
1912 .unmap_page = unmap_page,
6631ee9d
JR
1913 .map_sg = map_sg,
1914 .unmap_sg = unmap_sg,
b39ba6ad 1915 .dma_supported = amd_iommu_dma_supported,
6631ee9d
JR
1916};
1917
431b2a20
JR
1918/*
1919 * The function which clues the AMD IOMMU driver into dma_ops.
1920 */
6631ee9d
JR
1921int __init amd_iommu_init_dma_ops(void)
1922{
1923 struct amd_iommu *iommu;
6631ee9d
JR
1924 int ret;
1925
431b2a20
JR
1926 /*
1927 * first allocate a default protection domain for every IOMMU we
1928 * found in the system. Devices not assigned to any other
1929 * protection domain will be assigned to the default one.
1930 */
3bd22172 1931 for_each_iommu(iommu) {
d9cfed92 1932 iommu->default_dom = dma_ops_domain_alloc(iommu);
6631ee9d
JR
1933 if (iommu->default_dom == NULL)
1934 return -ENOMEM;
e2dc14a2 1935 iommu->default_dom->domain.flags |= PD_DEFAULT_MASK;
6631ee9d
JR
1936 ret = iommu_init_unity_mappings(iommu);
1937 if (ret)
1938 goto free_domains;
1939 }
1940
431b2a20
JR
1941 /*
1942 * If device isolation is enabled, pre-allocate the protection
1943 * domains for each device.
1944 */
6631ee9d
JR
1945 if (amd_iommu_isolate)
1946 prealloc_protection_domains();
1947
1948 iommu_detected = 1;
1949 force_iommu = 1;
1950 bad_dma_address = 0;
92af4e29 1951#ifdef CONFIG_GART_IOMMU
6631ee9d
JR
1952 gart_iommu_aperture_disabled = 1;
1953 gart_iommu_aperture = 0;
92af4e29 1954#endif
6631ee9d 1955
431b2a20 1956 /* Make the driver finally visible to the drivers */
6631ee9d
JR
1957 dma_ops = &amd_iommu_dma_ops;
1958
26961efe 1959 register_iommu(&amd_iommu_ops);
26961efe 1960
e275a2a0
JR
1961 bus_register_notifier(&pci_bus_type, &device_nb);
1962
7f26508b
JR
1963 amd_iommu_stats_init();
1964
6631ee9d
JR
1965 return 0;
1966
1967free_domains:
1968
3bd22172 1969 for_each_iommu(iommu) {
6631ee9d
JR
1970 if (iommu->default_dom)
1971 dma_ops_domain_free(iommu->default_dom);
1972 }
1973
1974 return ret;
1975}
6d98cd80
JR
1976
1977/*****************************************************************************
1978 *
1979 * The following functions belong to the exported interface of AMD IOMMU
1980 *
1981 * This interface allows access to lower level functions of the IOMMU
1982 * like protection domain handling and assignement of devices to domains
1983 * which is not possible with the dma_ops interface.
1984 *
1985 *****************************************************************************/
1986
6d98cd80
JR
1987static void cleanup_domain(struct protection_domain *domain)
1988{
1989 unsigned long flags;
1990 u16 devid;
1991
1992 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1993
1994 for (devid = 0; devid <= amd_iommu_last_bdf; ++devid)
1995 if (amd_iommu_pd_table[devid] == domain)
1996 __detach_device(domain, devid);
1997
1998 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1999}
2000
c156e347
JR
2001static int amd_iommu_domain_init(struct iommu_domain *dom)
2002{
2003 struct protection_domain *domain;
2004
2005 domain = kzalloc(sizeof(*domain), GFP_KERNEL);
2006 if (!domain)
2007 return -ENOMEM;
2008
2009 spin_lock_init(&domain->lock);
2010 domain->mode = PAGE_MODE_3_LEVEL;
2011 domain->id = domain_id_alloc();
2012 if (!domain->id)
2013 goto out_free;
2014 domain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
2015 if (!domain->pt_root)
2016 goto out_free;
2017
2018 dom->priv = domain;
2019
2020 return 0;
2021
2022out_free:
2023 kfree(domain);
2024
2025 return -ENOMEM;
2026}
2027
98383fc3
JR
2028static void amd_iommu_domain_destroy(struct iommu_domain *dom)
2029{
2030 struct protection_domain *domain = dom->priv;
2031
2032 if (!domain)
2033 return;
2034
2035 if (domain->dev_cnt > 0)
2036 cleanup_domain(domain);
2037
2038 BUG_ON(domain->dev_cnt != 0);
2039
2040 free_pagetable(domain);
2041
2042 domain_id_free(domain->id);
2043
2044 kfree(domain);
2045
2046 dom->priv = NULL;
2047}
2048
684f2888
JR
2049static void amd_iommu_detach_device(struct iommu_domain *dom,
2050 struct device *dev)
2051{
2052 struct protection_domain *domain = dom->priv;
2053 struct amd_iommu *iommu;
2054 struct pci_dev *pdev;
2055 u16 devid;
2056
2057 if (dev->bus != &pci_bus_type)
2058 return;
2059
2060 pdev = to_pci_dev(dev);
2061
2062 devid = calc_devid(pdev->bus->number, pdev->devfn);
2063
2064 if (devid > 0)
2065 detach_device(domain, devid);
2066
2067 iommu = amd_iommu_rlookup_table[devid];
2068 if (!iommu)
2069 return;
2070
2071 iommu_queue_inv_dev_entry(iommu, devid);
2072 iommu_completion_wait(iommu);
2073}
2074
01106066
JR
2075static int amd_iommu_attach_device(struct iommu_domain *dom,
2076 struct device *dev)
2077{
2078 struct protection_domain *domain = dom->priv;
2079 struct protection_domain *old_domain;
2080 struct amd_iommu *iommu;
2081 struct pci_dev *pdev;
2082 u16 devid;
2083
2084 if (dev->bus != &pci_bus_type)
2085 return -EINVAL;
2086
2087 pdev = to_pci_dev(dev);
2088
2089 devid = calc_devid(pdev->bus->number, pdev->devfn);
2090
2091 if (devid >= amd_iommu_last_bdf ||
2092 devid != amd_iommu_alias_table[devid])
2093 return -EINVAL;
2094
2095 iommu = amd_iommu_rlookup_table[devid];
2096 if (!iommu)
2097 return -EINVAL;
2098
2099 old_domain = domain_for_device(devid);
2100 if (old_domain)
71ff3bca 2101 detach_device(old_domain, devid);
01106066
JR
2102
2103 attach_device(iommu, domain, devid);
2104
2105 iommu_completion_wait(iommu);
2106
2107 return 0;
2108}
2109
c6229ca6
JR
2110static int amd_iommu_map_range(struct iommu_domain *dom,
2111 unsigned long iova, phys_addr_t paddr,
2112 size_t size, int iommu_prot)
2113{
2114 struct protection_domain *domain = dom->priv;
2115 unsigned long i, npages = iommu_num_pages(paddr, size, PAGE_SIZE);
2116 int prot = 0;
2117 int ret;
2118
2119 if (iommu_prot & IOMMU_READ)
2120 prot |= IOMMU_PROT_IR;
2121 if (iommu_prot & IOMMU_WRITE)
2122 prot |= IOMMU_PROT_IW;
2123
2124 iova &= PAGE_MASK;
2125 paddr &= PAGE_MASK;
2126
2127 for (i = 0; i < npages; ++i) {
2128 ret = iommu_map_page(domain, iova, paddr, prot);
2129 if (ret)
2130 return ret;
2131
2132 iova += PAGE_SIZE;
2133 paddr += PAGE_SIZE;
2134 }
2135
2136 return 0;
2137}
2138
eb74ff6c
JR
2139static void amd_iommu_unmap_range(struct iommu_domain *dom,
2140 unsigned long iova, size_t size)
2141{
2142
2143 struct protection_domain *domain = dom->priv;
2144 unsigned long i, npages = iommu_num_pages(iova, size, PAGE_SIZE);
2145
2146 iova &= PAGE_MASK;
2147
2148 for (i = 0; i < npages; ++i) {
2149 iommu_unmap_page(domain, iova);
2150 iova += PAGE_SIZE;
2151 }
2152
2153 iommu_flush_domain(domain->id);
2154}
2155
645c4c8d
JR
2156static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
2157 unsigned long iova)
2158{
2159 struct protection_domain *domain = dom->priv;
2160 unsigned long offset = iova & ~PAGE_MASK;
2161 phys_addr_t paddr;
2162 u64 *pte;
2163
2164 pte = &domain->pt_root[IOMMU_PTE_L2_INDEX(iova)];
2165
2166 if (!IOMMU_PTE_PRESENT(*pte))
2167 return 0;
2168
2169 pte = IOMMU_PTE_PAGE(*pte);
2170 pte = &pte[IOMMU_PTE_L1_INDEX(iova)];
2171
2172 if (!IOMMU_PTE_PRESENT(*pte))
2173 return 0;
2174
2175 pte = IOMMU_PTE_PAGE(*pte);
2176 pte = &pte[IOMMU_PTE_L0_INDEX(iova)];
2177
2178 if (!IOMMU_PTE_PRESENT(*pte))
2179 return 0;
2180
2181 paddr = *pte & IOMMU_PAGE_MASK;
2182 paddr |= offset;
2183
2184 return paddr;
2185}
2186
dbb9fd86
SY
2187static int amd_iommu_domain_has_cap(struct iommu_domain *domain,
2188 unsigned long cap)
2189{
2190 return 0;
2191}
2192
26961efe
JR
2193static struct iommu_ops amd_iommu_ops = {
2194 .domain_init = amd_iommu_domain_init,
2195 .domain_destroy = amd_iommu_domain_destroy,
2196 .attach_dev = amd_iommu_attach_device,
2197 .detach_dev = amd_iommu_detach_device,
2198 .map = amd_iommu_map_range,
2199 .unmap = amd_iommu_unmap_range,
2200 .iova_to_phys = amd_iommu_iova_to_phys,
dbb9fd86 2201 .domain_has_cap = amd_iommu_domain_has_cap,
26961efe
JR
2202};
2203