Merge branch 'v6v7' into devel
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / ceph / messenger.c
1 #include <linux/ceph/ceph_debug.h>
2
3 #include <linux/crc32c.h>
4 #include <linux/ctype.h>
5 #include <linux/highmem.h>
6 #include <linux/inet.h>
7 #include <linux/kthread.h>
8 #include <linux/net.h>
9 #include <linux/slab.h>
10 #include <linux/socket.h>
11 #include <linux/string.h>
12 #include <linux/bio.h>
13 #include <linux/blkdev.h>
14 #include <net/tcp.h>
15
16 #include <linux/ceph/libceph.h>
17 #include <linux/ceph/messenger.h>
18 #include <linux/ceph/decode.h>
19 #include <linux/ceph/pagelist.h>
20
21 /*
22 * Ceph uses the messenger to exchange ceph_msg messages with other
23 * hosts in the system. The messenger provides ordered and reliable
24 * delivery. We tolerate TCP disconnects by reconnecting (with
25 * exponential backoff) in the case of a fault (disconnection, bad
26 * crc, protocol error). Acks allow sent messages to be discarded by
27 * the sender.
28 */
29
30 /* static tag bytes (protocol control messages) */
31 static char tag_msg = CEPH_MSGR_TAG_MSG;
32 static char tag_ack = CEPH_MSGR_TAG_ACK;
33 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
34
35 #ifdef CONFIG_LOCKDEP
36 static struct lock_class_key socket_class;
37 #endif
38
39
40 static void queue_con(struct ceph_connection *con);
41 static void con_work(struct work_struct *);
42 static void ceph_fault(struct ceph_connection *con);
43
44 /*
45 * nicely render a sockaddr as a string.
46 */
47 #define MAX_ADDR_STR 20
48 #define MAX_ADDR_STR_LEN 60
49 static char addr_str[MAX_ADDR_STR][MAX_ADDR_STR_LEN];
50 static DEFINE_SPINLOCK(addr_str_lock);
51 static int last_addr_str;
52
53 const char *ceph_pr_addr(const struct sockaddr_storage *ss)
54 {
55 int i;
56 char *s;
57 struct sockaddr_in *in4 = (void *)ss;
58 struct sockaddr_in6 *in6 = (void *)ss;
59
60 spin_lock(&addr_str_lock);
61 i = last_addr_str++;
62 if (last_addr_str == MAX_ADDR_STR)
63 last_addr_str = 0;
64 spin_unlock(&addr_str_lock);
65 s = addr_str[i];
66
67 switch (ss->ss_family) {
68 case AF_INET:
69 snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%u", &in4->sin_addr,
70 (unsigned int)ntohs(in4->sin_port));
71 break;
72
73 case AF_INET6:
74 snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%u", &in6->sin6_addr,
75 (unsigned int)ntohs(in6->sin6_port));
76 break;
77
78 default:
79 sprintf(s, "(unknown sockaddr family %d)", (int)ss->ss_family);
80 }
81
82 return s;
83 }
84 EXPORT_SYMBOL(ceph_pr_addr);
85
86 static void encode_my_addr(struct ceph_messenger *msgr)
87 {
88 memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
89 ceph_encode_addr(&msgr->my_enc_addr);
90 }
91
92 /*
93 * work queue for all reading and writing to/from the socket.
94 */
95 struct workqueue_struct *ceph_msgr_wq;
96
97 int ceph_msgr_init(void)
98 {
99 ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_NON_REENTRANT, 0);
100 if (!ceph_msgr_wq) {
101 pr_err("msgr_init failed to create workqueue\n");
102 return -ENOMEM;
103 }
104 return 0;
105 }
106 EXPORT_SYMBOL(ceph_msgr_init);
107
108 void ceph_msgr_exit(void)
109 {
110 destroy_workqueue(ceph_msgr_wq);
111 }
112 EXPORT_SYMBOL(ceph_msgr_exit);
113
114 void ceph_msgr_flush(void)
115 {
116 flush_workqueue(ceph_msgr_wq);
117 }
118 EXPORT_SYMBOL(ceph_msgr_flush);
119
120
121 /*
122 * socket callback functions
123 */
124
125 /* data available on socket, or listen socket received a connect */
126 static void ceph_data_ready(struct sock *sk, int count_unused)
127 {
128 struct ceph_connection *con =
129 (struct ceph_connection *)sk->sk_user_data;
130 if (sk->sk_state != TCP_CLOSE_WAIT) {
131 dout("ceph_data_ready on %p state = %lu, queueing work\n",
132 con, con->state);
133 queue_con(con);
134 }
135 }
136
137 /* socket has buffer space for writing */
138 static void ceph_write_space(struct sock *sk)
139 {
140 struct ceph_connection *con =
141 (struct ceph_connection *)sk->sk_user_data;
142
143 /* only queue to workqueue if there is data we want to write. */
144 if (test_bit(WRITE_PENDING, &con->state)) {
145 dout("ceph_write_space %p queueing write work\n", con);
146 queue_con(con);
147 } else {
148 dout("ceph_write_space %p nothing to write\n", con);
149 }
150
151 /* since we have our own write_space, clear the SOCK_NOSPACE flag */
152 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
153 }
154
155 /* socket's state has changed */
156 static void ceph_state_change(struct sock *sk)
157 {
158 struct ceph_connection *con =
159 (struct ceph_connection *)sk->sk_user_data;
160
161 dout("ceph_state_change %p state = %lu sk_state = %u\n",
162 con, con->state, sk->sk_state);
163
164 if (test_bit(CLOSED, &con->state))
165 return;
166
167 switch (sk->sk_state) {
168 case TCP_CLOSE:
169 dout("ceph_state_change TCP_CLOSE\n");
170 case TCP_CLOSE_WAIT:
171 dout("ceph_state_change TCP_CLOSE_WAIT\n");
172 if (test_and_set_bit(SOCK_CLOSED, &con->state) == 0) {
173 if (test_bit(CONNECTING, &con->state))
174 con->error_msg = "connection failed";
175 else
176 con->error_msg = "socket closed";
177 queue_con(con);
178 }
179 break;
180 case TCP_ESTABLISHED:
181 dout("ceph_state_change TCP_ESTABLISHED\n");
182 queue_con(con);
183 break;
184 }
185 }
186
187 /*
188 * set up socket callbacks
189 */
190 static void set_sock_callbacks(struct socket *sock,
191 struct ceph_connection *con)
192 {
193 struct sock *sk = sock->sk;
194 sk->sk_user_data = (void *)con;
195 sk->sk_data_ready = ceph_data_ready;
196 sk->sk_write_space = ceph_write_space;
197 sk->sk_state_change = ceph_state_change;
198 }
199
200
201 /*
202 * socket helpers
203 */
204
205 /*
206 * initiate connection to a remote socket.
207 */
208 static struct socket *ceph_tcp_connect(struct ceph_connection *con)
209 {
210 struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
211 struct socket *sock;
212 int ret;
213
214 BUG_ON(con->sock);
215 ret = sock_create_kern(con->peer_addr.in_addr.ss_family, SOCK_STREAM,
216 IPPROTO_TCP, &sock);
217 if (ret)
218 return ERR_PTR(ret);
219 con->sock = sock;
220 sock->sk->sk_allocation = GFP_NOFS;
221
222 #ifdef CONFIG_LOCKDEP
223 lockdep_set_class(&sock->sk->sk_lock, &socket_class);
224 #endif
225
226 set_sock_callbacks(sock, con);
227
228 dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
229
230 ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
231 O_NONBLOCK);
232 if (ret == -EINPROGRESS) {
233 dout("connect %s EINPROGRESS sk_state = %u\n",
234 ceph_pr_addr(&con->peer_addr.in_addr),
235 sock->sk->sk_state);
236 ret = 0;
237 }
238 if (ret < 0) {
239 pr_err("connect %s error %d\n",
240 ceph_pr_addr(&con->peer_addr.in_addr), ret);
241 sock_release(sock);
242 con->sock = NULL;
243 con->error_msg = "connect error";
244 }
245
246 if (ret < 0)
247 return ERR_PTR(ret);
248 return sock;
249 }
250
251 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
252 {
253 struct kvec iov = {buf, len};
254 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
255 int r;
256
257 r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
258 if (r == -EAGAIN)
259 r = 0;
260 return r;
261 }
262
263 /*
264 * write something. @more is true if caller will be sending more data
265 * shortly.
266 */
267 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
268 size_t kvlen, size_t len, int more)
269 {
270 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
271 int r;
272
273 if (more)
274 msg.msg_flags |= MSG_MORE;
275 else
276 msg.msg_flags |= MSG_EOR; /* superfluous, but what the hell */
277
278 r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
279 if (r == -EAGAIN)
280 r = 0;
281 return r;
282 }
283
284
285 /*
286 * Shutdown/close the socket for the given connection.
287 */
288 static int con_close_socket(struct ceph_connection *con)
289 {
290 int rc;
291
292 dout("con_close_socket on %p sock %p\n", con, con->sock);
293 if (!con->sock)
294 return 0;
295 set_bit(SOCK_CLOSED, &con->state);
296 rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
297 sock_release(con->sock);
298 con->sock = NULL;
299 clear_bit(SOCK_CLOSED, &con->state);
300 return rc;
301 }
302
303 /*
304 * Reset a connection. Discard all incoming and outgoing messages
305 * and clear *_seq state.
306 */
307 static void ceph_msg_remove(struct ceph_msg *msg)
308 {
309 list_del_init(&msg->list_head);
310 ceph_msg_put(msg);
311 }
312 static void ceph_msg_remove_list(struct list_head *head)
313 {
314 while (!list_empty(head)) {
315 struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
316 list_head);
317 ceph_msg_remove(msg);
318 }
319 }
320
321 static void reset_connection(struct ceph_connection *con)
322 {
323 /* reset connection, out_queue, msg_ and connect_seq */
324 /* discard existing out_queue and msg_seq */
325 ceph_msg_remove_list(&con->out_queue);
326 ceph_msg_remove_list(&con->out_sent);
327
328 if (con->in_msg) {
329 ceph_msg_put(con->in_msg);
330 con->in_msg = NULL;
331 }
332
333 con->connect_seq = 0;
334 con->out_seq = 0;
335 if (con->out_msg) {
336 ceph_msg_put(con->out_msg);
337 con->out_msg = NULL;
338 }
339 con->in_seq = 0;
340 con->in_seq_acked = 0;
341 }
342
343 /*
344 * mark a peer down. drop any open connections.
345 */
346 void ceph_con_close(struct ceph_connection *con)
347 {
348 dout("con_close %p peer %s\n", con,
349 ceph_pr_addr(&con->peer_addr.in_addr));
350 set_bit(CLOSED, &con->state); /* in case there's queued work */
351 clear_bit(STANDBY, &con->state); /* avoid connect_seq bump */
352 clear_bit(LOSSYTX, &con->state); /* so we retry next connect */
353 clear_bit(KEEPALIVE_PENDING, &con->state);
354 clear_bit(WRITE_PENDING, &con->state);
355 mutex_lock(&con->mutex);
356 reset_connection(con);
357 con->peer_global_seq = 0;
358 cancel_delayed_work(&con->work);
359 mutex_unlock(&con->mutex);
360 queue_con(con);
361 }
362 EXPORT_SYMBOL(ceph_con_close);
363
364 /*
365 * Reopen a closed connection, with a new peer address.
366 */
367 void ceph_con_open(struct ceph_connection *con, struct ceph_entity_addr *addr)
368 {
369 dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
370 set_bit(OPENING, &con->state);
371 clear_bit(CLOSED, &con->state);
372 memcpy(&con->peer_addr, addr, sizeof(*addr));
373 con->delay = 0; /* reset backoff memory */
374 queue_con(con);
375 }
376 EXPORT_SYMBOL(ceph_con_open);
377
378 /*
379 * return true if this connection ever successfully opened
380 */
381 bool ceph_con_opened(struct ceph_connection *con)
382 {
383 return con->connect_seq > 0;
384 }
385
386 /*
387 * generic get/put
388 */
389 struct ceph_connection *ceph_con_get(struct ceph_connection *con)
390 {
391 dout("con_get %p nref = %d -> %d\n", con,
392 atomic_read(&con->nref), atomic_read(&con->nref) + 1);
393 if (atomic_inc_not_zero(&con->nref))
394 return con;
395 return NULL;
396 }
397
398 void ceph_con_put(struct ceph_connection *con)
399 {
400 dout("con_put %p nref = %d -> %d\n", con,
401 atomic_read(&con->nref), atomic_read(&con->nref) - 1);
402 BUG_ON(atomic_read(&con->nref) == 0);
403 if (atomic_dec_and_test(&con->nref)) {
404 BUG_ON(con->sock);
405 kfree(con);
406 }
407 }
408
409 /*
410 * initialize a new connection.
411 */
412 void ceph_con_init(struct ceph_messenger *msgr, struct ceph_connection *con)
413 {
414 dout("con_init %p\n", con);
415 memset(con, 0, sizeof(*con));
416 atomic_set(&con->nref, 1);
417 con->msgr = msgr;
418 mutex_init(&con->mutex);
419 INIT_LIST_HEAD(&con->out_queue);
420 INIT_LIST_HEAD(&con->out_sent);
421 INIT_DELAYED_WORK(&con->work, con_work);
422 }
423 EXPORT_SYMBOL(ceph_con_init);
424
425
426 /*
427 * We maintain a global counter to order connection attempts. Get
428 * a unique seq greater than @gt.
429 */
430 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
431 {
432 u32 ret;
433
434 spin_lock(&msgr->global_seq_lock);
435 if (msgr->global_seq < gt)
436 msgr->global_seq = gt;
437 ret = ++msgr->global_seq;
438 spin_unlock(&msgr->global_seq_lock);
439 return ret;
440 }
441
442
443 /*
444 * Prepare footer for currently outgoing message, and finish things
445 * off. Assumes out_kvec* are already valid.. we just add on to the end.
446 */
447 static void prepare_write_message_footer(struct ceph_connection *con, int v)
448 {
449 struct ceph_msg *m = con->out_msg;
450
451 dout("prepare_write_message_footer %p\n", con);
452 con->out_kvec_is_msg = true;
453 con->out_kvec[v].iov_base = &m->footer;
454 con->out_kvec[v].iov_len = sizeof(m->footer);
455 con->out_kvec_bytes += sizeof(m->footer);
456 con->out_kvec_left++;
457 con->out_more = m->more_to_follow;
458 con->out_msg_done = true;
459 }
460
461 /*
462 * Prepare headers for the next outgoing message.
463 */
464 static void prepare_write_message(struct ceph_connection *con)
465 {
466 struct ceph_msg *m;
467 int v = 0;
468
469 con->out_kvec_bytes = 0;
470 con->out_kvec_is_msg = true;
471 con->out_msg_done = false;
472
473 /* Sneak an ack in there first? If we can get it into the same
474 * TCP packet that's a good thing. */
475 if (con->in_seq > con->in_seq_acked) {
476 con->in_seq_acked = con->in_seq;
477 con->out_kvec[v].iov_base = &tag_ack;
478 con->out_kvec[v++].iov_len = 1;
479 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
480 con->out_kvec[v].iov_base = &con->out_temp_ack;
481 con->out_kvec[v++].iov_len = sizeof(con->out_temp_ack);
482 con->out_kvec_bytes = 1 + sizeof(con->out_temp_ack);
483 }
484
485 m = list_first_entry(&con->out_queue,
486 struct ceph_msg, list_head);
487 con->out_msg = m;
488 if (test_bit(LOSSYTX, &con->state)) {
489 list_del_init(&m->list_head);
490 } else {
491 /* put message on sent list */
492 ceph_msg_get(m);
493 list_move_tail(&m->list_head, &con->out_sent);
494 }
495
496 /*
497 * only assign outgoing seq # if we haven't sent this message
498 * yet. if it is requeued, resend with it's original seq.
499 */
500 if (m->needs_out_seq) {
501 m->hdr.seq = cpu_to_le64(++con->out_seq);
502 m->needs_out_seq = false;
503 }
504
505 dout("prepare_write_message %p seq %lld type %d len %d+%d+%d %d pgs\n",
506 m, con->out_seq, le16_to_cpu(m->hdr.type),
507 le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
508 le32_to_cpu(m->hdr.data_len),
509 m->nr_pages);
510 BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
511
512 /* tag + hdr + front + middle */
513 con->out_kvec[v].iov_base = &tag_msg;
514 con->out_kvec[v++].iov_len = 1;
515 con->out_kvec[v].iov_base = &m->hdr;
516 con->out_kvec[v++].iov_len = sizeof(m->hdr);
517 con->out_kvec[v++] = m->front;
518 if (m->middle)
519 con->out_kvec[v++] = m->middle->vec;
520 con->out_kvec_left = v;
521 con->out_kvec_bytes += 1 + sizeof(m->hdr) + m->front.iov_len +
522 (m->middle ? m->middle->vec.iov_len : 0);
523 con->out_kvec_cur = con->out_kvec;
524
525 /* fill in crc (except data pages), footer */
526 con->out_msg->hdr.crc =
527 cpu_to_le32(crc32c(0, (void *)&m->hdr,
528 sizeof(m->hdr) - sizeof(m->hdr.crc)));
529 con->out_msg->footer.flags = CEPH_MSG_FOOTER_COMPLETE;
530 con->out_msg->footer.front_crc =
531 cpu_to_le32(crc32c(0, m->front.iov_base, m->front.iov_len));
532 if (m->middle)
533 con->out_msg->footer.middle_crc =
534 cpu_to_le32(crc32c(0, m->middle->vec.iov_base,
535 m->middle->vec.iov_len));
536 else
537 con->out_msg->footer.middle_crc = 0;
538 con->out_msg->footer.data_crc = 0;
539 dout("prepare_write_message front_crc %u data_crc %u\n",
540 le32_to_cpu(con->out_msg->footer.front_crc),
541 le32_to_cpu(con->out_msg->footer.middle_crc));
542
543 /* is there a data payload? */
544 if (le32_to_cpu(m->hdr.data_len) > 0) {
545 /* initialize page iterator */
546 con->out_msg_pos.page = 0;
547 if (m->pages)
548 con->out_msg_pos.page_pos = m->page_alignment;
549 else
550 con->out_msg_pos.page_pos = 0;
551 con->out_msg_pos.data_pos = 0;
552 con->out_msg_pos.did_page_crc = 0;
553 con->out_more = 1; /* data + footer will follow */
554 } else {
555 /* no, queue up footer too and be done */
556 prepare_write_message_footer(con, v);
557 }
558
559 set_bit(WRITE_PENDING, &con->state);
560 }
561
562 /*
563 * Prepare an ack.
564 */
565 static void prepare_write_ack(struct ceph_connection *con)
566 {
567 dout("prepare_write_ack %p %llu -> %llu\n", con,
568 con->in_seq_acked, con->in_seq);
569 con->in_seq_acked = con->in_seq;
570
571 con->out_kvec[0].iov_base = &tag_ack;
572 con->out_kvec[0].iov_len = 1;
573 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
574 con->out_kvec[1].iov_base = &con->out_temp_ack;
575 con->out_kvec[1].iov_len = sizeof(con->out_temp_ack);
576 con->out_kvec_left = 2;
577 con->out_kvec_bytes = 1 + sizeof(con->out_temp_ack);
578 con->out_kvec_cur = con->out_kvec;
579 con->out_more = 1; /* more will follow.. eventually.. */
580 set_bit(WRITE_PENDING, &con->state);
581 }
582
583 /*
584 * Prepare to write keepalive byte.
585 */
586 static void prepare_write_keepalive(struct ceph_connection *con)
587 {
588 dout("prepare_write_keepalive %p\n", con);
589 con->out_kvec[0].iov_base = &tag_keepalive;
590 con->out_kvec[0].iov_len = 1;
591 con->out_kvec_left = 1;
592 con->out_kvec_bytes = 1;
593 con->out_kvec_cur = con->out_kvec;
594 set_bit(WRITE_PENDING, &con->state);
595 }
596
597 /*
598 * Connection negotiation.
599 */
600
601 static void prepare_connect_authorizer(struct ceph_connection *con)
602 {
603 void *auth_buf;
604 int auth_len = 0;
605 int auth_protocol = 0;
606
607 mutex_unlock(&con->mutex);
608 if (con->ops->get_authorizer)
609 con->ops->get_authorizer(con, &auth_buf, &auth_len,
610 &auth_protocol, &con->auth_reply_buf,
611 &con->auth_reply_buf_len,
612 con->auth_retry);
613 mutex_lock(&con->mutex);
614
615 con->out_connect.authorizer_protocol = cpu_to_le32(auth_protocol);
616 con->out_connect.authorizer_len = cpu_to_le32(auth_len);
617
618 con->out_kvec[con->out_kvec_left].iov_base = auth_buf;
619 con->out_kvec[con->out_kvec_left].iov_len = auth_len;
620 con->out_kvec_left++;
621 con->out_kvec_bytes += auth_len;
622 }
623
624 /*
625 * We connected to a peer and are saying hello.
626 */
627 static void prepare_write_banner(struct ceph_messenger *msgr,
628 struct ceph_connection *con)
629 {
630 int len = strlen(CEPH_BANNER);
631
632 con->out_kvec[0].iov_base = CEPH_BANNER;
633 con->out_kvec[0].iov_len = len;
634 con->out_kvec[1].iov_base = &msgr->my_enc_addr;
635 con->out_kvec[1].iov_len = sizeof(msgr->my_enc_addr);
636 con->out_kvec_left = 2;
637 con->out_kvec_bytes = len + sizeof(msgr->my_enc_addr);
638 con->out_kvec_cur = con->out_kvec;
639 con->out_more = 0;
640 set_bit(WRITE_PENDING, &con->state);
641 }
642
643 static void prepare_write_connect(struct ceph_messenger *msgr,
644 struct ceph_connection *con,
645 int after_banner)
646 {
647 unsigned global_seq = get_global_seq(con->msgr, 0);
648 int proto;
649
650 switch (con->peer_name.type) {
651 case CEPH_ENTITY_TYPE_MON:
652 proto = CEPH_MONC_PROTOCOL;
653 break;
654 case CEPH_ENTITY_TYPE_OSD:
655 proto = CEPH_OSDC_PROTOCOL;
656 break;
657 case CEPH_ENTITY_TYPE_MDS:
658 proto = CEPH_MDSC_PROTOCOL;
659 break;
660 default:
661 BUG();
662 }
663
664 dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
665 con->connect_seq, global_seq, proto);
666
667 con->out_connect.features = cpu_to_le64(msgr->supported_features);
668 con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
669 con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
670 con->out_connect.global_seq = cpu_to_le32(global_seq);
671 con->out_connect.protocol_version = cpu_to_le32(proto);
672 con->out_connect.flags = 0;
673
674 if (!after_banner) {
675 con->out_kvec_left = 0;
676 con->out_kvec_bytes = 0;
677 }
678 con->out_kvec[con->out_kvec_left].iov_base = &con->out_connect;
679 con->out_kvec[con->out_kvec_left].iov_len = sizeof(con->out_connect);
680 con->out_kvec_left++;
681 con->out_kvec_bytes += sizeof(con->out_connect);
682 con->out_kvec_cur = con->out_kvec;
683 con->out_more = 0;
684 set_bit(WRITE_PENDING, &con->state);
685
686 prepare_connect_authorizer(con);
687 }
688
689
690 /*
691 * write as much of pending kvecs to the socket as we can.
692 * 1 -> done
693 * 0 -> socket full, but more to do
694 * <0 -> error
695 */
696 static int write_partial_kvec(struct ceph_connection *con)
697 {
698 int ret;
699
700 dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
701 while (con->out_kvec_bytes > 0) {
702 ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
703 con->out_kvec_left, con->out_kvec_bytes,
704 con->out_more);
705 if (ret <= 0)
706 goto out;
707 con->out_kvec_bytes -= ret;
708 if (con->out_kvec_bytes == 0)
709 break; /* done */
710 while (ret > 0) {
711 if (ret >= con->out_kvec_cur->iov_len) {
712 ret -= con->out_kvec_cur->iov_len;
713 con->out_kvec_cur++;
714 con->out_kvec_left--;
715 } else {
716 con->out_kvec_cur->iov_len -= ret;
717 con->out_kvec_cur->iov_base += ret;
718 ret = 0;
719 break;
720 }
721 }
722 }
723 con->out_kvec_left = 0;
724 con->out_kvec_is_msg = false;
725 ret = 1;
726 out:
727 dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
728 con->out_kvec_bytes, con->out_kvec_left, ret);
729 return ret; /* done! */
730 }
731
732 #ifdef CONFIG_BLOCK
733 static void init_bio_iter(struct bio *bio, struct bio **iter, int *seg)
734 {
735 if (!bio) {
736 *iter = NULL;
737 *seg = 0;
738 return;
739 }
740 *iter = bio;
741 *seg = bio->bi_idx;
742 }
743
744 static void iter_bio_next(struct bio **bio_iter, int *seg)
745 {
746 if (*bio_iter == NULL)
747 return;
748
749 BUG_ON(*seg >= (*bio_iter)->bi_vcnt);
750
751 (*seg)++;
752 if (*seg == (*bio_iter)->bi_vcnt)
753 init_bio_iter((*bio_iter)->bi_next, bio_iter, seg);
754 }
755 #endif
756
757 /*
758 * Write as much message data payload as we can. If we finish, queue
759 * up the footer.
760 * 1 -> done, footer is now queued in out_kvec[].
761 * 0 -> socket full, but more to do
762 * <0 -> error
763 */
764 static int write_partial_msg_pages(struct ceph_connection *con)
765 {
766 struct ceph_msg *msg = con->out_msg;
767 unsigned data_len = le32_to_cpu(msg->hdr.data_len);
768 size_t len;
769 int crc = con->msgr->nocrc;
770 int ret;
771 int total_max_write;
772 int in_trail = 0;
773 size_t trail_len = (msg->trail ? msg->trail->length : 0);
774
775 dout("write_partial_msg_pages %p msg %p page %d/%d offset %d\n",
776 con, con->out_msg, con->out_msg_pos.page, con->out_msg->nr_pages,
777 con->out_msg_pos.page_pos);
778
779 #ifdef CONFIG_BLOCK
780 if (msg->bio && !msg->bio_iter)
781 init_bio_iter(msg->bio, &msg->bio_iter, &msg->bio_seg);
782 #endif
783
784 while (data_len > con->out_msg_pos.data_pos) {
785 struct page *page = NULL;
786 void *kaddr = NULL;
787 int max_write = PAGE_SIZE;
788 int page_shift = 0;
789
790 total_max_write = data_len - trail_len -
791 con->out_msg_pos.data_pos;
792
793 /*
794 * if we are calculating the data crc (the default), we need
795 * to map the page. if our pages[] has been revoked, use the
796 * zero page.
797 */
798
799 /* have we reached the trail part of the data? */
800 if (con->out_msg_pos.data_pos >= data_len - trail_len) {
801 in_trail = 1;
802
803 total_max_write = data_len - con->out_msg_pos.data_pos;
804
805 page = list_first_entry(&msg->trail->head,
806 struct page, lru);
807 if (crc)
808 kaddr = kmap(page);
809 max_write = PAGE_SIZE;
810 } else if (msg->pages) {
811 page = msg->pages[con->out_msg_pos.page];
812 if (crc)
813 kaddr = kmap(page);
814 } else if (msg->pagelist) {
815 page = list_first_entry(&msg->pagelist->head,
816 struct page, lru);
817 if (crc)
818 kaddr = kmap(page);
819 #ifdef CONFIG_BLOCK
820 } else if (msg->bio) {
821 struct bio_vec *bv;
822
823 bv = bio_iovec_idx(msg->bio_iter, msg->bio_seg);
824 page = bv->bv_page;
825 page_shift = bv->bv_offset;
826 if (crc)
827 kaddr = kmap(page) + page_shift;
828 max_write = bv->bv_len;
829 #endif
830 } else {
831 page = con->msgr->zero_page;
832 if (crc)
833 kaddr = page_address(con->msgr->zero_page);
834 }
835 len = min_t(int, max_write - con->out_msg_pos.page_pos,
836 total_max_write);
837
838 if (crc && !con->out_msg_pos.did_page_crc) {
839 void *base = kaddr + con->out_msg_pos.page_pos;
840 u32 tmpcrc = le32_to_cpu(con->out_msg->footer.data_crc);
841
842 BUG_ON(kaddr == NULL);
843 con->out_msg->footer.data_crc =
844 cpu_to_le32(crc32c(tmpcrc, base, len));
845 con->out_msg_pos.did_page_crc = 1;
846 }
847 ret = kernel_sendpage(con->sock, page,
848 con->out_msg_pos.page_pos + page_shift,
849 len,
850 MSG_DONTWAIT | MSG_NOSIGNAL |
851 MSG_MORE);
852
853 if (crc &&
854 (msg->pages || msg->pagelist || msg->bio || in_trail))
855 kunmap(page);
856
857 if (ret == -EAGAIN)
858 ret = 0;
859 if (ret <= 0)
860 goto out;
861
862 con->out_msg_pos.data_pos += ret;
863 con->out_msg_pos.page_pos += ret;
864 if (ret == len) {
865 con->out_msg_pos.page_pos = 0;
866 con->out_msg_pos.page++;
867 con->out_msg_pos.did_page_crc = 0;
868 if (in_trail)
869 list_move_tail(&page->lru,
870 &msg->trail->head);
871 else if (msg->pagelist)
872 list_move_tail(&page->lru,
873 &msg->pagelist->head);
874 #ifdef CONFIG_BLOCK
875 else if (msg->bio)
876 iter_bio_next(&msg->bio_iter, &msg->bio_seg);
877 #endif
878 }
879 }
880
881 dout("write_partial_msg_pages %p msg %p done\n", con, msg);
882
883 /* prepare and queue up footer, too */
884 if (!crc)
885 con->out_msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
886 con->out_kvec_bytes = 0;
887 con->out_kvec_left = 0;
888 con->out_kvec_cur = con->out_kvec;
889 prepare_write_message_footer(con, 0);
890 ret = 1;
891 out:
892 return ret;
893 }
894
895 /*
896 * write some zeros
897 */
898 static int write_partial_skip(struct ceph_connection *con)
899 {
900 int ret;
901
902 while (con->out_skip > 0) {
903 struct kvec iov = {
904 .iov_base = page_address(con->msgr->zero_page),
905 .iov_len = min(con->out_skip, (int)PAGE_CACHE_SIZE)
906 };
907
908 ret = ceph_tcp_sendmsg(con->sock, &iov, 1, iov.iov_len, 1);
909 if (ret <= 0)
910 goto out;
911 con->out_skip -= ret;
912 }
913 ret = 1;
914 out:
915 return ret;
916 }
917
918 /*
919 * Prepare to read connection handshake, or an ack.
920 */
921 static void prepare_read_banner(struct ceph_connection *con)
922 {
923 dout("prepare_read_banner %p\n", con);
924 con->in_base_pos = 0;
925 }
926
927 static void prepare_read_connect(struct ceph_connection *con)
928 {
929 dout("prepare_read_connect %p\n", con);
930 con->in_base_pos = 0;
931 }
932
933 static void prepare_read_ack(struct ceph_connection *con)
934 {
935 dout("prepare_read_ack %p\n", con);
936 con->in_base_pos = 0;
937 }
938
939 static void prepare_read_tag(struct ceph_connection *con)
940 {
941 dout("prepare_read_tag %p\n", con);
942 con->in_base_pos = 0;
943 con->in_tag = CEPH_MSGR_TAG_READY;
944 }
945
946 /*
947 * Prepare to read a message.
948 */
949 static int prepare_read_message(struct ceph_connection *con)
950 {
951 dout("prepare_read_message %p\n", con);
952 BUG_ON(con->in_msg != NULL);
953 con->in_base_pos = 0;
954 con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
955 return 0;
956 }
957
958
959 static int read_partial(struct ceph_connection *con,
960 int *to, int size, void *object)
961 {
962 *to += size;
963 while (con->in_base_pos < *to) {
964 int left = *to - con->in_base_pos;
965 int have = size - left;
966 int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
967 if (ret <= 0)
968 return ret;
969 con->in_base_pos += ret;
970 }
971 return 1;
972 }
973
974
975 /*
976 * Read all or part of the connect-side handshake on a new connection
977 */
978 static int read_partial_banner(struct ceph_connection *con)
979 {
980 int ret, to = 0;
981
982 dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
983
984 /* peer's banner */
985 ret = read_partial(con, &to, strlen(CEPH_BANNER), con->in_banner);
986 if (ret <= 0)
987 goto out;
988 ret = read_partial(con, &to, sizeof(con->actual_peer_addr),
989 &con->actual_peer_addr);
990 if (ret <= 0)
991 goto out;
992 ret = read_partial(con, &to, sizeof(con->peer_addr_for_me),
993 &con->peer_addr_for_me);
994 if (ret <= 0)
995 goto out;
996 out:
997 return ret;
998 }
999
1000 static int read_partial_connect(struct ceph_connection *con)
1001 {
1002 int ret, to = 0;
1003
1004 dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1005
1006 ret = read_partial(con, &to, sizeof(con->in_reply), &con->in_reply);
1007 if (ret <= 0)
1008 goto out;
1009 ret = read_partial(con, &to, le32_to_cpu(con->in_reply.authorizer_len),
1010 con->auth_reply_buf);
1011 if (ret <= 0)
1012 goto out;
1013
1014 dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1015 con, (int)con->in_reply.tag,
1016 le32_to_cpu(con->in_reply.connect_seq),
1017 le32_to_cpu(con->in_reply.global_seq));
1018 out:
1019 return ret;
1020
1021 }
1022
1023 /*
1024 * Verify the hello banner looks okay.
1025 */
1026 static int verify_hello(struct ceph_connection *con)
1027 {
1028 if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1029 pr_err("connect to %s got bad banner\n",
1030 ceph_pr_addr(&con->peer_addr.in_addr));
1031 con->error_msg = "protocol error, bad banner";
1032 return -1;
1033 }
1034 return 0;
1035 }
1036
1037 static bool addr_is_blank(struct sockaddr_storage *ss)
1038 {
1039 switch (ss->ss_family) {
1040 case AF_INET:
1041 return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0;
1042 case AF_INET6:
1043 return
1044 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 &&
1045 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 &&
1046 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 &&
1047 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0;
1048 }
1049 return false;
1050 }
1051
1052 static int addr_port(struct sockaddr_storage *ss)
1053 {
1054 switch (ss->ss_family) {
1055 case AF_INET:
1056 return ntohs(((struct sockaddr_in *)ss)->sin_port);
1057 case AF_INET6:
1058 return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
1059 }
1060 return 0;
1061 }
1062
1063 static void addr_set_port(struct sockaddr_storage *ss, int p)
1064 {
1065 switch (ss->ss_family) {
1066 case AF_INET:
1067 ((struct sockaddr_in *)ss)->sin_port = htons(p);
1068 case AF_INET6:
1069 ((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
1070 }
1071 }
1072
1073 /*
1074 * Parse an ip[:port] list into an addr array. Use the default
1075 * monitor port if a port isn't specified.
1076 */
1077 int ceph_parse_ips(const char *c, const char *end,
1078 struct ceph_entity_addr *addr,
1079 int max_count, int *count)
1080 {
1081 int i;
1082 const char *p = c;
1083
1084 dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1085 for (i = 0; i < max_count; i++) {
1086 const char *ipend;
1087 struct sockaddr_storage *ss = &addr[i].in_addr;
1088 struct sockaddr_in *in4 = (void *)ss;
1089 struct sockaddr_in6 *in6 = (void *)ss;
1090 int port;
1091 char delim = ',';
1092
1093 if (*p == '[') {
1094 delim = ']';
1095 p++;
1096 }
1097
1098 memset(ss, 0, sizeof(*ss));
1099 if (in4_pton(p, end - p, (u8 *)&in4->sin_addr.s_addr,
1100 delim, &ipend))
1101 ss->ss_family = AF_INET;
1102 else if (in6_pton(p, end - p, (u8 *)&in6->sin6_addr.s6_addr,
1103 delim, &ipend))
1104 ss->ss_family = AF_INET6;
1105 else
1106 goto bad;
1107 p = ipend;
1108
1109 if (delim == ']') {
1110 if (*p != ']') {
1111 dout("missing matching ']'\n");
1112 goto bad;
1113 }
1114 p++;
1115 }
1116
1117 /* port? */
1118 if (p < end && *p == ':') {
1119 port = 0;
1120 p++;
1121 while (p < end && *p >= '0' && *p <= '9') {
1122 port = (port * 10) + (*p - '0');
1123 p++;
1124 }
1125 if (port > 65535 || port == 0)
1126 goto bad;
1127 } else {
1128 port = CEPH_MON_PORT;
1129 }
1130
1131 addr_set_port(ss, port);
1132
1133 dout("parse_ips got %s\n", ceph_pr_addr(ss));
1134
1135 if (p == end)
1136 break;
1137 if (*p != ',')
1138 goto bad;
1139 p++;
1140 }
1141
1142 if (p != end)
1143 goto bad;
1144
1145 if (count)
1146 *count = i + 1;
1147 return 0;
1148
1149 bad:
1150 pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
1151 return -EINVAL;
1152 }
1153 EXPORT_SYMBOL(ceph_parse_ips);
1154
1155 static int process_banner(struct ceph_connection *con)
1156 {
1157 dout("process_banner on %p\n", con);
1158
1159 if (verify_hello(con) < 0)
1160 return -1;
1161
1162 ceph_decode_addr(&con->actual_peer_addr);
1163 ceph_decode_addr(&con->peer_addr_for_me);
1164
1165 /*
1166 * Make sure the other end is who we wanted. note that the other
1167 * end may not yet know their ip address, so if it's 0.0.0.0, give
1168 * them the benefit of the doubt.
1169 */
1170 if (memcmp(&con->peer_addr, &con->actual_peer_addr,
1171 sizeof(con->peer_addr)) != 0 &&
1172 !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
1173 con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
1174 pr_warning("wrong peer, want %s/%d, got %s/%d\n",
1175 ceph_pr_addr(&con->peer_addr.in_addr),
1176 (int)le32_to_cpu(con->peer_addr.nonce),
1177 ceph_pr_addr(&con->actual_peer_addr.in_addr),
1178 (int)le32_to_cpu(con->actual_peer_addr.nonce));
1179 con->error_msg = "wrong peer at address";
1180 return -1;
1181 }
1182
1183 /*
1184 * did we learn our address?
1185 */
1186 if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
1187 int port = addr_port(&con->msgr->inst.addr.in_addr);
1188
1189 memcpy(&con->msgr->inst.addr.in_addr,
1190 &con->peer_addr_for_me.in_addr,
1191 sizeof(con->peer_addr_for_me.in_addr));
1192 addr_set_port(&con->msgr->inst.addr.in_addr, port);
1193 encode_my_addr(con->msgr);
1194 dout("process_banner learned my addr is %s\n",
1195 ceph_pr_addr(&con->msgr->inst.addr.in_addr));
1196 }
1197
1198 set_bit(NEGOTIATING, &con->state);
1199 prepare_read_connect(con);
1200 return 0;
1201 }
1202
1203 static void fail_protocol(struct ceph_connection *con)
1204 {
1205 reset_connection(con);
1206 set_bit(CLOSED, &con->state); /* in case there's queued work */
1207
1208 mutex_unlock(&con->mutex);
1209 if (con->ops->bad_proto)
1210 con->ops->bad_proto(con);
1211 mutex_lock(&con->mutex);
1212 }
1213
1214 static int process_connect(struct ceph_connection *con)
1215 {
1216 u64 sup_feat = con->msgr->supported_features;
1217 u64 req_feat = con->msgr->required_features;
1218 u64 server_feat = le64_to_cpu(con->in_reply.features);
1219
1220 dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
1221
1222 switch (con->in_reply.tag) {
1223 case CEPH_MSGR_TAG_FEATURES:
1224 pr_err("%s%lld %s feature set mismatch,"
1225 " my %llx < server's %llx, missing %llx\n",
1226 ENTITY_NAME(con->peer_name),
1227 ceph_pr_addr(&con->peer_addr.in_addr),
1228 sup_feat, server_feat, server_feat & ~sup_feat);
1229 con->error_msg = "missing required protocol features";
1230 fail_protocol(con);
1231 return -1;
1232
1233 case CEPH_MSGR_TAG_BADPROTOVER:
1234 pr_err("%s%lld %s protocol version mismatch,"
1235 " my %d != server's %d\n",
1236 ENTITY_NAME(con->peer_name),
1237 ceph_pr_addr(&con->peer_addr.in_addr),
1238 le32_to_cpu(con->out_connect.protocol_version),
1239 le32_to_cpu(con->in_reply.protocol_version));
1240 con->error_msg = "protocol version mismatch";
1241 fail_protocol(con);
1242 return -1;
1243
1244 case CEPH_MSGR_TAG_BADAUTHORIZER:
1245 con->auth_retry++;
1246 dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
1247 con->auth_retry);
1248 if (con->auth_retry == 2) {
1249 con->error_msg = "connect authorization failure";
1250 return -1;
1251 }
1252 con->auth_retry = 1;
1253 prepare_write_connect(con->msgr, con, 0);
1254 prepare_read_connect(con);
1255 break;
1256
1257 case CEPH_MSGR_TAG_RESETSESSION:
1258 /*
1259 * If we connected with a large connect_seq but the peer
1260 * has no record of a session with us (no connection, or
1261 * connect_seq == 0), they will send RESETSESION to indicate
1262 * that they must have reset their session, and may have
1263 * dropped messages.
1264 */
1265 dout("process_connect got RESET peer seq %u\n",
1266 le32_to_cpu(con->in_connect.connect_seq));
1267 pr_err("%s%lld %s connection reset\n",
1268 ENTITY_NAME(con->peer_name),
1269 ceph_pr_addr(&con->peer_addr.in_addr));
1270 reset_connection(con);
1271 prepare_write_connect(con->msgr, con, 0);
1272 prepare_read_connect(con);
1273
1274 /* Tell ceph about it. */
1275 mutex_unlock(&con->mutex);
1276 pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
1277 if (con->ops->peer_reset)
1278 con->ops->peer_reset(con);
1279 mutex_lock(&con->mutex);
1280 break;
1281
1282 case CEPH_MSGR_TAG_RETRY_SESSION:
1283 /*
1284 * If we sent a smaller connect_seq than the peer has, try
1285 * again with a larger value.
1286 */
1287 dout("process_connect got RETRY my seq = %u, peer_seq = %u\n",
1288 le32_to_cpu(con->out_connect.connect_seq),
1289 le32_to_cpu(con->in_connect.connect_seq));
1290 con->connect_seq = le32_to_cpu(con->in_connect.connect_seq);
1291 prepare_write_connect(con->msgr, con, 0);
1292 prepare_read_connect(con);
1293 break;
1294
1295 case CEPH_MSGR_TAG_RETRY_GLOBAL:
1296 /*
1297 * If we sent a smaller global_seq than the peer has, try
1298 * again with a larger value.
1299 */
1300 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
1301 con->peer_global_seq,
1302 le32_to_cpu(con->in_connect.global_seq));
1303 get_global_seq(con->msgr,
1304 le32_to_cpu(con->in_connect.global_seq));
1305 prepare_write_connect(con->msgr, con, 0);
1306 prepare_read_connect(con);
1307 break;
1308
1309 case CEPH_MSGR_TAG_READY:
1310 if (req_feat & ~server_feat) {
1311 pr_err("%s%lld %s protocol feature mismatch,"
1312 " my required %llx > server's %llx, need %llx\n",
1313 ENTITY_NAME(con->peer_name),
1314 ceph_pr_addr(&con->peer_addr.in_addr),
1315 req_feat, server_feat, req_feat & ~server_feat);
1316 con->error_msg = "missing required protocol features";
1317 fail_protocol(con);
1318 return -1;
1319 }
1320 clear_bit(CONNECTING, &con->state);
1321 con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
1322 con->connect_seq++;
1323 con->peer_features = server_feat;
1324 dout("process_connect got READY gseq %d cseq %d (%d)\n",
1325 con->peer_global_seq,
1326 le32_to_cpu(con->in_reply.connect_seq),
1327 con->connect_seq);
1328 WARN_ON(con->connect_seq !=
1329 le32_to_cpu(con->in_reply.connect_seq));
1330
1331 if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
1332 set_bit(LOSSYTX, &con->state);
1333
1334 prepare_read_tag(con);
1335 break;
1336
1337 case CEPH_MSGR_TAG_WAIT:
1338 /*
1339 * If there is a connection race (we are opening
1340 * connections to each other), one of us may just have
1341 * to WAIT. This shouldn't happen if we are the
1342 * client.
1343 */
1344 pr_err("process_connect peer connecting WAIT\n");
1345
1346 default:
1347 pr_err("connect protocol error, will retry\n");
1348 con->error_msg = "protocol error, garbage tag during connect";
1349 return -1;
1350 }
1351 return 0;
1352 }
1353
1354
1355 /*
1356 * read (part of) an ack
1357 */
1358 static int read_partial_ack(struct ceph_connection *con)
1359 {
1360 int to = 0;
1361
1362 return read_partial(con, &to, sizeof(con->in_temp_ack),
1363 &con->in_temp_ack);
1364 }
1365
1366
1367 /*
1368 * We can finally discard anything that's been acked.
1369 */
1370 static void process_ack(struct ceph_connection *con)
1371 {
1372 struct ceph_msg *m;
1373 u64 ack = le64_to_cpu(con->in_temp_ack);
1374 u64 seq;
1375
1376 while (!list_empty(&con->out_sent)) {
1377 m = list_first_entry(&con->out_sent, struct ceph_msg,
1378 list_head);
1379 seq = le64_to_cpu(m->hdr.seq);
1380 if (seq > ack)
1381 break;
1382 dout("got ack for seq %llu type %d at %p\n", seq,
1383 le16_to_cpu(m->hdr.type), m);
1384 ceph_msg_remove(m);
1385 }
1386 prepare_read_tag(con);
1387 }
1388
1389
1390
1391
1392 static int read_partial_message_section(struct ceph_connection *con,
1393 struct kvec *section,
1394 unsigned int sec_len, u32 *crc)
1395 {
1396 int ret, left;
1397
1398 BUG_ON(!section);
1399
1400 while (section->iov_len < sec_len) {
1401 BUG_ON(section->iov_base == NULL);
1402 left = sec_len - section->iov_len;
1403 ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
1404 section->iov_len, left);
1405 if (ret <= 0)
1406 return ret;
1407 section->iov_len += ret;
1408 if (section->iov_len == sec_len)
1409 *crc = crc32c(0, section->iov_base,
1410 section->iov_len);
1411 }
1412
1413 return 1;
1414 }
1415
1416 static struct ceph_msg *ceph_alloc_msg(struct ceph_connection *con,
1417 struct ceph_msg_header *hdr,
1418 int *skip);
1419
1420
1421 static int read_partial_message_pages(struct ceph_connection *con,
1422 struct page **pages,
1423 unsigned data_len, int datacrc)
1424 {
1425 void *p;
1426 int ret;
1427 int left;
1428
1429 left = min((int)(data_len - con->in_msg_pos.data_pos),
1430 (int)(PAGE_SIZE - con->in_msg_pos.page_pos));
1431 /* (page) data */
1432 BUG_ON(pages == NULL);
1433 p = kmap(pages[con->in_msg_pos.page]);
1434 ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
1435 left);
1436 if (ret > 0 && datacrc)
1437 con->in_data_crc =
1438 crc32c(con->in_data_crc,
1439 p + con->in_msg_pos.page_pos, ret);
1440 kunmap(pages[con->in_msg_pos.page]);
1441 if (ret <= 0)
1442 return ret;
1443 con->in_msg_pos.data_pos += ret;
1444 con->in_msg_pos.page_pos += ret;
1445 if (con->in_msg_pos.page_pos == PAGE_SIZE) {
1446 con->in_msg_pos.page_pos = 0;
1447 con->in_msg_pos.page++;
1448 }
1449
1450 return ret;
1451 }
1452
1453 #ifdef CONFIG_BLOCK
1454 static int read_partial_message_bio(struct ceph_connection *con,
1455 struct bio **bio_iter, int *bio_seg,
1456 unsigned data_len, int datacrc)
1457 {
1458 struct bio_vec *bv = bio_iovec_idx(*bio_iter, *bio_seg);
1459 void *p;
1460 int ret, left;
1461
1462 if (IS_ERR(bv))
1463 return PTR_ERR(bv);
1464
1465 left = min((int)(data_len - con->in_msg_pos.data_pos),
1466 (int)(bv->bv_len - con->in_msg_pos.page_pos));
1467
1468 p = kmap(bv->bv_page) + bv->bv_offset;
1469
1470 ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
1471 left);
1472 if (ret > 0 && datacrc)
1473 con->in_data_crc =
1474 crc32c(con->in_data_crc,
1475 p + con->in_msg_pos.page_pos, ret);
1476 kunmap(bv->bv_page);
1477 if (ret <= 0)
1478 return ret;
1479 con->in_msg_pos.data_pos += ret;
1480 con->in_msg_pos.page_pos += ret;
1481 if (con->in_msg_pos.page_pos == bv->bv_len) {
1482 con->in_msg_pos.page_pos = 0;
1483 iter_bio_next(bio_iter, bio_seg);
1484 }
1485
1486 return ret;
1487 }
1488 #endif
1489
1490 /*
1491 * read (part of) a message.
1492 */
1493 static int read_partial_message(struct ceph_connection *con)
1494 {
1495 struct ceph_msg *m = con->in_msg;
1496 int ret;
1497 int to, left;
1498 unsigned front_len, middle_len, data_len;
1499 int datacrc = con->msgr->nocrc;
1500 int skip;
1501 u64 seq;
1502
1503 dout("read_partial_message con %p msg %p\n", con, m);
1504
1505 /* header */
1506 while (con->in_base_pos < sizeof(con->in_hdr)) {
1507 left = sizeof(con->in_hdr) - con->in_base_pos;
1508 ret = ceph_tcp_recvmsg(con->sock,
1509 (char *)&con->in_hdr + con->in_base_pos,
1510 left);
1511 if (ret <= 0)
1512 return ret;
1513 con->in_base_pos += ret;
1514 if (con->in_base_pos == sizeof(con->in_hdr)) {
1515 u32 crc = crc32c(0, (void *)&con->in_hdr,
1516 sizeof(con->in_hdr) - sizeof(con->in_hdr.crc));
1517 if (crc != le32_to_cpu(con->in_hdr.crc)) {
1518 pr_err("read_partial_message bad hdr "
1519 " crc %u != expected %u\n",
1520 crc, con->in_hdr.crc);
1521 return -EBADMSG;
1522 }
1523 }
1524 }
1525 front_len = le32_to_cpu(con->in_hdr.front_len);
1526 if (front_len > CEPH_MSG_MAX_FRONT_LEN)
1527 return -EIO;
1528 middle_len = le32_to_cpu(con->in_hdr.middle_len);
1529 if (middle_len > CEPH_MSG_MAX_DATA_LEN)
1530 return -EIO;
1531 data_len = le32_to_cpu(con->in_hdr.data_len);
1532 if (data_len > CEPH_MSG_MAX_DATA_LEN)
1533 return -EIO;
1534
1535 /* verify seq# */
1536 seq = le64_to_cpu(con->in_hdr.seq);
1537 if ((s64)seq - (s64)con->in_seq < 1) {
1538 pr_info("skipping %s%lld %s seq %lld expected %lld\n",
1539 ENTITY_NAME(con->peer_name),
1540 ceph_pr_addr(&con->peer_addr.in_addr),
1541 seq, con->in_seq + 1);
1542 con->in_base_pos = -front_len - middle_len - data_len -
1543 sizeof(m->footer);
1544 con->in_tag = CEPH_MSGR_TAG_READY;
1545 return 0;
1546 } else if ((s64)seq - (s64)con->in_seq > 1) {
1547 pr_err("read_partial_message bad seq %lld expected %lld\n",
1548 seq, con->in_seq + 1);
1549 con->error_msg = "bad message sequence # for incoming message";
1550 return -EBADMSG;
1551 }
1552
1553 /* allocate message? */
1554 if (!con->in_msg) {
1555 dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
1556 con->in_hdr.front_len, con->in_hdr.data_len);
1557 skip = 0;
1558 con->in_msg = ceph_alloc_msg(con, &con->in_hdr, &skip);
1559 if (skip) {
1560 /* skip this message */
1561 dout("alloc_msg said skip message\n");
1562 BUG_ON(con->in_msg);
1563 con->in_base_pos = -front_len - middle_len - data_len -
1564 sizeof(m->footer);
1565 con->in_tag = CEPH_MSGR_TAG_READY;
1566 con->in_seq++;
1567 return 0;
1568 }
1569 if (!con->in_msg) {
1570 con->error_msg =
1571 "error allocating memory for incoming message";
1572 return -ENOMEM;
1573 }
1574 m = con->in_msg;
1575 m->front.iov_len = 0; /* haven't read it yet */
1576 if (m->middle)
1577 m->middle->vec.iov_len = 0;
1578
1579 con->in_msg_pos.page = 0;
1580 if (m->pages)
1581 con->in_msg_pos.page_pos = m->page_alignment;
1582 else
1583 con->in_msg_pos.page_pos = 0;
1584 con->in_msg_pos.data_pos = 0;
1585 }
1586
1587 /* front */
1588 ret = read_partial_message_section(con, &m->front, front_len,
1589 &con->in_front_crc);
1590 if (ret <= 0)
1591 return ret;
1592
1593 /* middle */
1594 if (m->middle) {
1595 ret = read_partial_message_section(con, &m->middle->vec,
1596 middle_len,
1597 &con->in_middle_crc);
1598 if (ret <= 0)
1599 return ret;
1600 }
1601 #ifdef CONFIG_BLOCK
1602 if (m->bio && !m->bio_iter)
1603 init_bio_iter(m->bio, &m->bio_iter, &m->bio_seg);
1604 #endif
1605
1606 /* (page) data */
1607 while (con->in_msg_pos.data_pos < data_len) {
1608 if (m->pages) {
1609 ret = read_partial_message_pages(con, m->pages,
1610 data_len, datacrc);
1611 if (ret <= 0)
1612 return ret;
1613 #ifdef CONFIG_BLOCK
1614 } else if (m->bio) {
1615
1616 ret = read_partial_message_bio(con,
1617 &m->bio_iter, &m->bio_seg,
1618 data_len, datacrc);
1619 if (ret <= 0)
1620 return ret;
1621 #endif
1622 } else {
1623 BUG_ON(1);
1624 }
1625 }
1626
1627 /* footer */
1628 to = sizeof(m->hdr) + sizeof(m->footer);
1629 while (con->in_base_pos < to) {
1630 left = to - con->in_base_pos;
1631 ret = ceph_tcp_recvmsg(con->sock, (char *)&m->footer +
1632 (con->in_base_pos - sizeof(m->hdr)),
1633 left);
1634 if (ret <= 0)
1635 return ret;
1636 con->in_base_pos += ret;
1637 }
1638 dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
1639 m, front_len, m->footer.front_crc, middle_len,
1640 m->footer.middle_crc, data_len, m->footer.data_crc);
1641
1642 /* crc ok? */
1643 if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
1644 pr_err("read_partial_message %p front crc %u != exp. %u\n",
1645 m, con->in_front_crc, m->footer.front_crc);
1646 return -EBADMSG;
1647 }
1648 if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
1649 pr_err("read_partial_message %p middle crc %u != exp %u\n",
1650 m, con->in_middle_crc, m->footer.middle_crc);
1651 return -EBADMSG;
1652 }
1653 if (datacrc &&
1654 (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
1655 con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
1656 pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
1657 con->in_data_crc, le32_to_cpu(m->footer.data_crc));
1658 return -EBADMSG;
1659 }
1660
1661 return 1; /* done! */
1662 }
1663
1664 /*
1665 * Process message. This happens in the worker thread. The callback should
1666 * be careful not to do anything that waits on other incoming messages or it
1667 * may deadlock.
1668 */
1669 static void process_message(struct ceph_connection *con)
1670 {
1671 struct ceph_msg *msg;
1672
1673 msg = con->in_msg;
1674 con->in_msg = NULL;
1675
1676 /* if first message, set peer_name */
1677 if (con->peer_name.type == 0)
1678 con->peer_name = msg->hdr.src;
1679
1680 con->in_seq++;
1681 mutex_unlock(&con->mutex);
1682
1683 dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
1684 msg, le64_to_cpu(msg->hdr.seq),
1685 ENTITY_NAME(msg->hdr.src),
1686 le16_to_cpu(msg->hdr.type),
1687 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
1688 le32_to_cpu(msg->hdr.front_len),
1689 le32_to_cpu(msg->hdr.data_len),
1690 con->in_front_crc, con->in_middle_crc, con->in_data_crc);
1691 con->ops->dispatch(con, msg);
1692
1693 mutex_lock(&con->mutex);
1694 prepare_read_tag(con);
1695 }
1696
1697
1698 /*
1699 * Write something to the socket. Called in a worker thread when the
1700 * socket appears to be writeable and we have something ready to send.
1701 */
1702 static int try_write(struct ceph_connection *con)
1703 {
1704 struct ceph_messenger *msgr = con->msgr;
1705 int ret = 1;
1706
1707 dout("try_write start %p state %lu nref %d\n", con, con->state,
1708 atomic_read(&con->nref));
1709
1710 more:
1711 dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
1712
1713 /* open the socket first? */
1714 if (con->sock == NULL) {
1715 prepare_write_banner(msgr, con);
1716 prepare_write_connect(msgr, con, 1);
1717 prepare_read_banner(con);
1718 set_bit(CONNECTING, &con->state);
1719 clear_bit(NEGOTIATING, &con->state);
1720
1721 BUG_ON(con->in_msg);
1722 con->in_tag = CEPH_MSGR_TAG_READY;
1723 dout("try_write initiating connect on %p new state %lu\n",
1724 con, con->state);
1725 con->sock = ceph_tcp_connect(con);
1726 if (IS_ERR(con->sock)) {
1727 con->sock = NULL;
1728 con->error_msg = "connect error";
1729 ret = -1;
1730 goto out;
1731 }
1732 }
1733
1734 more_kvec:
1735 /* kvec data queued? */
1736 if (con->out_skip) {
1737 ret = write_partial_skip(con);
1738 if (ret <= 0)
1739 goto out;
1740 }
1741 if (con->out_kvec_left) {
1742 ret = write_partial_kvec(con);
1743 if (ret <= 0)
1744 goto out;
1745 }
1746
1747 /* msg pages? */
1748 if (con->out_msg) {
1749 if (con->out_msg_done) {
1750 ceph_msg_put(con->out_msg);
1751 con->out_msg = NULL; /* we're done with this one */
1752 goto do_next;
1753 }
1754
1755 ret = write_partial_msg_pages(con);
1756 if (ret == 1)
1757 goto more_kvec; /* we need to send the footer, too! */
1758 if (ret == 0)
1759 goto out;
1760 if (ret < 0) {
1761 dout("try_write write_partial_msg_pages err %d\n",
1762 ret);
1763 goto out;
1764 }
1765 }
1766
1767 do_next:
1768 if (!test_bit(CONNECTING, &con->state)) {
1769 /* is anything else pending? */
1770 if (!list_empty(&con->out_queue)) {
1771 prepare_write_message(con);
1772 goto more;
1773 }
1774 if (con->in_seq > con->in_seq_acked) {
1775 prepare_write_ack(con);
1776 goto more;
1777 }
1778 if (test_and_clear_bit(KEEPALIVE_PENDING, &con->state)) {
1779 prepare_write_keepalive(con);
1780 goto more;
1781 }
1782 }
1783
1784 /* Nothing to do! */
1785 clear_bit(WRITE_PENDING, &con->state);
1786 dout("try_write nothing else to write.\n");
1787 ret = 0;
1788 out:
1789 dout("try_write done on %p ret %d\n", con, ret);
1790 return ret;
1791 }
1792
1793
1794
1795 /*
1796 * Read what we can from the socket.
1797 */
1798 static int try_read(struct ceph_connection *con)
1799 {
1800 int ret = -1;
1801
1802 if (!con->sock)
1803 return 0;
1804
1805 if (test_bit(STANDBY, &con->state))
1806 return 0;
1807
1808 dout("try_read start on %p\n", con);
1809
1810 more:
1811 dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
1812 con->in_base_pos);
1813 if (test_bit(CONNECTING, &con->state)) {
1814 if (!test_bit(NEGOTIATING, &con->state)) {
1815 dout("try_read connecting\n");
1816 ret = read_partial_banner(con);
1817 if (ret <= 0)
1818 goto out;
1819 ret = process_banner(con);
1820 if (ret < 0)
1821 goto out;
1822 }
1823 ret = read_partial_connect(con);
1824 if (ret <= 0)
1825 goto out;
1826 ret = process_connect(con);
1827 if (ret < 0)
1828 goto out;
1829 goto more;
1830 }
1831
1832 if (con->in_base_pos < 0) {
1833 /*
1834 * skipping + discarding content.
1835 *
1836 * FIXME: there must be a better way to do this!
1837 */
1838 static char buf[1024];
1839 int skip = min(1024, -con->in_base_pos);
1840 dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
1841 ret = ceph_tcp_recvmsg(con->sock, buf, skip);
1842 if (ret <= 0)
1843 goto out;
1844 con->in_base_pos += ret;
1845 if (con->in_base_pos)
1846 goto more;
1847 }
1848 if (con->in_tag == CEPH_MSGR_TAG_READY) {
1849 /*
1850 * what's next?
1851 */
1852 ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
1853 if (ret <= 0)
1854 goto out;
1855 dout("try_read got tag %d\n", (int)con->in_tag);
1856 switch (con->in_tag) {
1857 case CEPH_MSGR_TAG_MSG:
1858 prepare_read_message(con);
1859 break;
1860 case CEPH_MSGR_TAG_ACK:
1861 prepare_read_ack(con);
1862 break;
1863 case CEPH_MSGR_TAG_CLOSE:
1864 set_bit(CLOSED, &con->state); /* fixme */
1865 goto out;
1866 default:
1867 goto bad_tag;
1868 }
1869 }
1870 if (con->in_tag == CEPH_MSGR_TAG_MSG) {
1871 ret = read_partial_message(con);
1872 if (ret <= 0) {
1873 switch (ret) {
1874 case -EBADMSG:
1875 con->error_msg = "bad crc";
1876 ret = -EIO;
1877 break;
1878 case -EIO:
1879 con->error_msg = "io error";
1880 break;
1881 }
1882 goto out;
1883 }
1884 if (con->in_tag == CEPH_MSGR_TAG_READY)
1885 goto more;
1886 process_message(con);
1887 goto more;
1888 }
1889 if (con->in_tag == CEPH_MSGR_TAG_ACK) {
1890 ret = read_partial_ack(con);
1891 if (ret <= 0)
1892 goto out;
1893 process_ack(con);
1894 goto more;
1895 }
1896
1897 out:
1898 dout("try_read done on %p ret %d\n", con, ret);
1899 return ret;
1900
1901 bad_tag:
1902 pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
1903 con->error_msg = "protocol error, garbage tag";
1904 ret = -1;
1905 goto out;
1906 }
1907
1908
1909 /*
1910 * Atomically queue work on a connection. Bump @con reference to
1911 * avoid races with connection teardown.
1912 */
1913 static void queue_con(struct ceph_connection *con)
1914 {
1915 if (test_bit(DEAD, &con->state)) {
1916 dout("queue_con %p ignoring: DEAD\n",
1917 con);
1918 return;
1919 }
1920
1921 if (!con->ops->get(con)) {
1922 dout("queue_con %p ref count 0\n", con);
1923 return;
1924 }
1925
1926 if (!queue_delayed_work(ceph_msgr_wq, &con->work, 0)) {
1927 dout("queue_con %p - already queued\n", con);
1928 con->ops->put(con);
1929 } else {
1930 dout("queue_con %p\n", con);
1931 }
1932 }
1933
1934 /*
1935 * Do some work on a connection. Drop a connection ref when we're done.
1936 */
1937 static void con_work(struct work_struct *work)
1938 {
1939 struct ceph_connection *con = container_of(work, struct ceph_connection,
1940 work.work);
1941
1942 mutex_lock(&con->mutex);
1943 if (test_and_clear_bit(BACKOFF, &con->state)) {
1944 dout("con_work %p backing off\n", con);
1945 if (queue_delayed_work(ceph_msgr_wq, &con->work,
1946 round_jiffies_relative(con->delay))) {
1947 dout("con_work %p backoff %lu\n", con, con->delay);
1948 mutex_unlock(&con->mutex);
1949 return;
1950 } else {
1951 con->ops->put(con);
1952 dout("con_work %p FAILED to back off %lu\n", con,
1953 con->delay);
1954 }
1955 }
1956
1957 if (test_bit(STANDBY, &con->state)) {
1958 dout("con_work %p STANDBY\n", con);
1959 goto done;
1960 }
1961 if (test_bit(CLOSED, &con->state)) { /* e.g. if we are replaced */
1962 dout("con_work CLOSED\n");
1963 con_close_socket(con);
1964 goto done;
1965 }
1966 if (test_and_clear_bit(OPENING, &con->state)) {
1967 /* reopen w/ new peer */
1968 dout("con_work OPENING\n");
1969 con_close_socket(con);
1970 }
1971
1972 if (test_and_clear_bit(SOCK_CLOSED, &con->state) ||
1973 try_read(con) < 0 ||
1974 try_write(con) < 0) {
1975 mutex_unlock(&con->mutex);
1976 ceph_fault(con); /* error/fault path */
1977 goto done_unlocked;
1978 }
1979
1980 done:
1981 mutex_unlock(&con->mutex);
1982 done_unlocked:
1983 con->ops->put(con);
1984 }
1985
1986
1987 /*
1988 * Generic error/fault handler. A retry mechanism is used with
1989 * exponential backoff
1990 */
1991 static void ceph_fault(struct ceph_connection *con)
1992 {
1993 pr_err("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
1994 ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
1995 dout("fault %p state %lu to peer %s\n",
1996 con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
1997
1998 if (test_bit(LOSSYTX, &con->state)) {
1999 dout("fault on LOSSYTX channel\n");
2000 goto out;
2001 }
2002
2003 mutex_lock(&con->mutex);
2004 if (test_bit(CLOSED, &con->state))
2005 goto out_unlock;
2006
2007 con_close_socket(con);
2008
2009 if (con->in_msg) {
2010 ceph_msg_put(con->in_msg);
2011 con->in_msg = NULL;
2012 }
2013
2014 /* Requeue anything that hasn't been acked */
2015 list_splice_init(&con->out_sent, &con->out_queue);
2016
2017 /* If there are no messages queued or keepalive pending, place
2018 * the connection in a STANDBY state */
2019 if (list_empty(&con->out_queue) &&
2020 !test_bit(KEEPALIVE_PENDING, &con->state)) {
2021 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
2022 clear_bit(WRITE_PENDING, &con->state);
2023 set_bit(STANDBY, &con->state);
2024 } else {
2025 /* retry after a delay. */
2026 if (con->delay == 0)
2027 con->delay = BASE_DELAY_INTERVAL;
2028 else if (con->delay < MAX_DELAY_INTERVAL)
2029 con->delay *= 2;
2030 con->ops->get(con);
2031 if (queue_delayed_work(ceph_msgr_wq, &con->work,
2032 round_jiffies_relative(con->delay))) {
2033 dout("fault queued %p delay %lu\n", con, con->delay);
2034 } else {
2035 con->ops->put(con);
2036 dout("fault failed to queue %p delay %lu, backoff\n",
2037 con, con->delay);
2038 /*
2039 * In many cases we see a socket state change
2040 * while con_work is running and end up
2041 * queuing (non-delayed) work, such that we
2042 * can't backoff with a delay. Set a flag so
2043 * that when con_work restarts we schedule the
2044 * delay then.
2045 */
2046 set_bit(BACKOFF, &con->state);
2047 }
2048 }
2049
2050 out_unlock:
2051 mutex_unlock(&con->mutex);
2052 out:
2053 /*
2054 * in case we faulted due to authentication, invalidate our
2055 * current tickets so that we can get new ones.
2056 */
2057 if (con->auth_retry && con->ops->invalidate_authorizer) {
2058 dout("calling invalidate_authorizer()\n");
2059 con->ops->invalidate_authorizer(con);
2060 }
2061
2062 if (con->ops->fault)
2063 con->ops->fault(con);
2064 }
2065
2066
2067
2068 /*
2069 * create a new messenger instance
2070 */
2071 struct ceph_messenger *ceph_messenger_create(struct ceph_entity_addr *myaddr,
2072 u32 supported_features,
2073 u32 required_features)
2074 {
2075 struct ceph_messenger *msgr;
2076
2077 msgr = kzalloc(sizeof(*msgr), GFP_KERNEL);
2078 if (msgr == NULL)
2079 return ERR_PTR(-ENOMEM);
2080
2081 msgr->supported_features = supported_features;
2082 msgr->required_features = required_features;
2083
2084 spin_lock_init(&msgr->global_seq_lock);
2085
2086 /* the zero page is needed if a request is "canceled" while the message
2087 * is being written over the socket */
2088 msgr->zero_page = __page_cache_alloc(GFP_KERNEL | __GFP_ZERO);
2089 if (!msgr->zero_page) {
2090 kfree(msgr);
2091 return ERR_PTR(-ENOMEM);
2092 }
2093 kmap(msgr->zero_page);
2094
2095 if (myaddr)
2096 msgr->inst.addr = *myaddr;
2097
2098 /* select a random nonce */
2099 msgr->inst.addr.type = 0;
2100 get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
2101 encode_my_addr(msgr);
2102
2103 dout("messenger_create %p\n", msgr);
2104 return msgr;
2105 }
2106 EXPORT_SYMBOL(ceph_messenger_create);
2107
2108 void ceph_messenger_destroy(struct ceph_messenger *msgr)
2109 {
2110 dout("destroy %p\n", msgr);
2111 kunmap(msgr->zero_page);
2112 __free_page(msgr->zero_page);
2113 kfree(msgr);
2114 dout("destroyed messenger %p\n", msgr);
2115 }
2116 EXPORT_SYMBOL(ceph_messenger_destroy);
2117
2118 static void clear_standby(struct ceph_connection *con)
2119 {
2120 /* come back from STANDBY? */
2121 if (test_and_clear_bit(STANDBY, &con->state)) {
2122 mutex_lock(&con->mutex);
2123 dout("clear_standby %p and ++connect_seq\n", con);
2124 con->connect_seq++;
2125 WARN_ON(test_bit(WRITE_PENDING, &con->state));
2126 WARN_ON(test_bit(KEEPALIVE_PENDING, &con->state));
2127 mutex_unlock(&con->mutex);
2128 }
2129 }
2130
2131 /*
2132 * Queue up an outgoing message on the given connection.
2133 */
2134 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
2135 {
2136 if (test_bit(CLOSED, &con->state)) {
2137 dout("con_send %p closed, dropping %p\n", con, msg);
2138 ceph_msg_put(msg);
2139 return;
2140 }
2141
2142 /* set src+dst */
2143 msg->hdr.src = con->msgr->inst.name;
2144
2145 BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
2146
2147 msg->needs_out_seq = true;
2148
2149 /* queue */
2150 mutex_lock(&con->mutex);
2151 BUG_ON(!list_empty(&msg->list_head));
2152 list_add_tail(&msg->list_head, &con->out_queue);
2153 dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
2154 ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
2155 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2156 le32_to_cpu(msg->hdr.front_len),
2157 le32_to_cpu(msg->hdr.middle_len),
2158 le32_to_cpu(msg->hdr.data_len));
2159 mutex_unlock(&con->mutex);
2160
2161 /* if there wasn't anything waiting to send before, queue
2162 * new work */
2163 clear_standby(con);
2164 if (test_and_set_bit(WRITE_PENDING, &con->state) == 0)
2165 queue_con(con);
2166 }
2167 EXPORT_SYMBOL(ceph_con_send);
2168
2169 /*
2170 * Revoke a message that was previously queued for send
2171 */
2172 void ceph_con_revoke(struct ceph_connection *con, struct ceph_msg *msg)
2173 {
2174 mutex_lock(&con->mutex);
2175 if (!list_empty(&msg->list_head)) {
2176 dout("con_revoke %p msg %p - was on queue\n", con, msg);
2177 list_del_init(&msg->list_head);
2178 ceph_msg_put(msg);
2179 msg->hdr.seq = 0;
2180 }
2181 if (con->out_msg == msg) {
2182 dout("con_revoke %p msg %p - was sending\n", con, msg);
2183 con->out_msg = NULL;
2184 if (con->out_kvec_is_msg) {
2185 con->out_skip = con->out_kvec_bytes;
2186 con->out_kvec_is_msg = false;
2187 }
2188 ceph_msg_put(msg);
2189 msg->hdr.seq = 0;
2190 }
2191 mutex_unlock(&con->mutex);
2192 }
2193
2194 /*
2195 * Revoke a message that we may be reading data into
2196 */
2197 void ceph_con_revoke_message(struct ceph_connection *con, struct ceph_msg *msg)
2198 {
2199 mutex_lock(&con->mutex);
2200 if (con->in_msg && con->in_msg == msg) {
2201 unsigned front_len = le32_to_cpu(con->in_hdr.front_len);
2202 unsigned middle_len = le32_to_cpu(con->in_hdr.middle_len);
2203 unsigned data_len = le32_to_cpu(con->in_hdr.data_len);
2204
2205 /* skip rest of message */
2206 dout("con_revoke_pages %p msg %p revoked\n", con, msg);
2207 con->in_base_pos = con->in_base_pos -
2208 sizeof(struct ceph_msg_header) -
2209 front_len -
2210 middle_len -
2211 data_len -
2212 sizeof(struct ceph_msg_footer);
2213 ceph_msg_put(con->in_msg);
2214 con->in_msg = NULL;
2215 con->in_tag = CEPH_MSGR_TAG_READY;
2216 con->in_seq++;
2217 } else {
2218 dout("con_revoke_pages %p msg %p pages %p no-op\n",
2219 con, con->in_msg, msg);
2220 }
2221 mutex_unlock(&con->mutex);
2222 }
2223
2224 /*
2225 * Queue a keepalive byte to ensure the tcp connection is alive.
2226 */
2227 void ceph_con_keepalive(struct ceph_connection *con)
2228 {
2229 dout("con_keepalive %p\n", con);
2230 clear_standby(con);
2231 if (test_and_set_bit(KEEPALIVE_PENDING, &con->state) == 0 &&
2232 test_and_set_bit(WRITE_PENDING, &con->state) == 0)
2233 queue_con(con);
2234 }
2235 EXPORT_SYMBOL(ceph_con_keepalive);
2236
2237
2238 /*
2239 * construct a new message with given type, size
2240 * the new msg has a ref count of 1.
2241 */
2242 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags)
2243 {
2244 struct ceph_msg *m;
2245
2246 m = kmalloc(sizeof(*m), flags);
2247 if (m == NULL)
2248 goto out;
2249 kref_init(&m->kref);
2250 INIT_LIST_HEAD(&m->list_head);
2251
2252 m->hdr.tid = 0;
2253 m->hdr.type = cpu_to_le16(type);
2254 m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
2255 m->hdr.version = 0;
2256 m->hdr.front_len = cpu_to_le32(front_len);
2257 m->hdr.middle_len = 0;
2258 m->hdr.data_len = 0;
2259 m->hdr.data_off = 0;
2260 m->hdr.reserved = 0;
2261 m->footer.front_crc = 0;
2262 m->footer.middle_crc = 0;
2263 m->footer.data_crc = 0;
2264 m->footer.flags = 0;
2265 m->front_max = front_len;
2266 m->front_is_vmalloc = false;
2267 m->more_to_follow = false;
2268 m->pool = NULL;
2269
2270 /* front */
2271 if (front_len) {
2272 if (front_len > PAGE_CACHE_SIZE) {
2273 m->front.iov_base = __vmalloc(front_len, flags,
2274 PAGE_KERNEL);
2275 m->front_is_vmalloc = true;
2276 } else {
2277 m->front.iov_base = kmalloc(front_len, flags);
2278 }
2279 if (m->front.iov_base == NULL) {
2280 pr_err("msg_new can't allocate %d bytes\n",
2281 front_len);
2282 goto out2;
2283 }
2284 } else {
2285 m->front.iov_base = NULL;
2286 }
2287 m->front.iov_len = front_len;
2288
2289 /* middle */
2290 m->middle = NULL;
2291
2292 /* data */
2293 m->nr_pages = 0;
2294 m->page_alignment = 0;
2295 m->pages = NULL;
2296 m->pagelist = NULL;
2297 m->bio = NULL;
2298 m->bio_iter = NULL;
2299 m->bio_seg = 0;
2300 m->trail = NULL;
2301
2302 dout("ceph_msg_new %p front %d\n", m, front_len);
2303 return m;
2304
2305 out2:
2306 ceph_msg_put(m);
2307 out:
2308 pr_err("msg_new can't create type %d front %d\n", type, front_len);
2309 return NULL;
2310 }
2311 EXPORT_SYMBOL(ceph_msg_new);
2312
2313 /*
2314 * Allocate "middle" portion of a message, if it is needed and wasn't
2315 * allocated by alloc_msg. This allows us to read a small fixed-size
2316 * per-type header in the front and then gracefully fail (i.e.,
2317 * propagate the error to the caller based on info in the front) when
2318 * the middle is too large.
2319 */
2320 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
2321 {
2322 int type = le16_to_cpu(msg->hdr.type);
2323 int middle_len = le32_to_cpu(msg->hdr.middle_len);
2324
2325 dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
2326 ceph_msg_type_name(type), middle_len);
2327 BUG_ON(!middle_len);
2328 BUG_ON(msg->middle);
2329
2330 msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
2331 if (!msg->middle)
2332 return -ENOMEM;
2333 return 0;
2334 }
2335
2336 /*
2337 * Generic message allocator, for incoming messages.
2338 */
2339 static struct ceph_msg *ceph_alloc_msg(struct ceph_connection *con,
2340 struct ceph_msg_header *hdr,
2341 int *skip)
2342 {
2343 int type = le16_to_cpu(hdr->type);
2344 int front_len = le32_to_cpu(hdr->front_len);
2345 int middle_len = le32_to_cpu(hdr->middle_len);
2346 struct ceph_msg *msg = NULL;
2347 int ret;
2348
2349 if (con->ops->alloc_msg) {
2350 mutex_unlock(&con->mutex);
2351 msg = con->ops->alloc_msg(con, hdr, skip);
2352 mutex_lock(&con->mutex);
2353 if (!msg || *skip)
2354 return NULL;
2355 }
2356 if (!msg) {
2357 *skip = 0;
2358 msg = ceph_msg_new(type, front_len, GFP_NOFS);
2359 if (!msg) {
2360 pr_err("unable to allocate msg type %d len %d\n",
2361 type, front_len);
2362 return NULL;
2363 }
2364 msg->page_alignment = le16_to_cpu(hdr->data_off);
2365 }
2366 memcpy(&msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
2367
2368 if (middle_len && !msg->middle) {
2369 ret = ceph_alloc_middle(con, msg);
2370 if (ret < 0) {
2371 ceph_msg_put(msg);
2372 return NULL;
2373 }
2374 }
2375
2376 return msg;
2377 }
2378
2379
2380 /*
2381 * Free a generically kmalloc'd message.
2382 */
2383 void ceph_msg_kfree(struct ceph_msg *m)
2384 {
2385 dout("msg_kfree %p\n", m);
2386 if (m->front_is_vmalloc)
2387 vfree(m->front.iov_base);
2388 else
2389 kfree(m->front.iov_base);
2390 kfree(m);
2391 }
2392
2393 /*
2394 * Drop a msg ref. Destroy as needed.
2395 */
2396 void ceph_msg_last_put(struct kref *kref)
2397 {
2398 struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
2399
2400 dout("ceph_msg_put last one on %p\n", m);
2401 WARN_ON(!list_empty(&m->list_head));
2402
2403 /* drop middle, data, if any */
2404 if (m->middle) {
2405 ceph_buffer_put(m->middle);
2406 m->middle = NULL;
2407 }
2408 m->nr_pages = 0;
2409 m->pages = NULL;
2410
2411 if (m->pagelist) {
2412 ceph_pagelist_release(m->pagelist);
2413 kfree(m->pagelist);
2414 m->pagelist = NULL;
2415 }
2416
2417 m->trail = NULL;
2418
2419 if (m->pool)
2420 ceph_msgpool_put(m->pool, m);
2421 else
2422 ceph_msg_kfree(m);
2423 }
2424 EXPORT_SYMBOL(ceph_msg_last_put);
2425
2426 void ceph_msg_dump(struct ceph_msg *msg)
2427 {
2428 pr_debug("msg_dump %p (front_max %d nr_pages %d)\n", msg,
2429 msg->front_max, msg->nr_pages);
2430 print_hex_dump(KERN_DEBUG, "header: ",
2431 DUMP_PREFIX_OFFSET, 16, 1,
2432 &msg->hdr, sizeof(msg->hdr), true);
2433 print_hex_dump(KERN_DEBUG, " front: ",
2434 DUMP_PREFIX_OFFSET, 16, 1,
2435 msg->front.iov_base, msg->front.iov_len, true);
2436 if (msg->middle)
2437 print_hex_dump(KERN_DEBUG, "middle: ",
2438 DUMP_PREFIX_OFFSET, 16, 1,
2439 msg->middle->vec.iov_base,
2440 msg->middle->vec.iov_len, true);
2441 print_hex_dump(KERN_DEBUG, "footer: ",
2442 DUMP_PREFIX_OFFSET, 16, 1,
2443 &msg->footer, sizeof(msg->footer), true);
2444 }
2445 EXPORT_SYMBOL(ceph_msg_dump);