drivers: power: report battery voltage in AOSP compatible format
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / ceph / messenger.c
1 #include <linux/ceph/ceph_debug.h>
2
3 #include <linux/crc32c.h>
4 #include <linux/ctype.h>
5 #include <linux/highmem.h>
6 #include <linux/inet.h>
7 #include <linux/kthread.h>
8 #include <linux/net.h>
9 #include <linux/sched.h>
10 #include <linux/slab.h>
11 #include <linux/socket.h>
12 #include <linux/string.h>
13 #ifdef CONFIG_BLOCK
14 #include <linux/bio.h>
15 #endif /* CONFIG_BLOCK */
16 #include <linux/dns_resolver.h>
17 #include <net/tcp.h>
18
19 #include <linux/ceph/libceph.h>
20 #include <linux/ceph/messenger.h>
21 #include <linux/ceph/decode.h>
22 #include <linux/ceph/pagelist.h>
23 #include <linux/export.h>
24
25 #define list_entry_next(pos, member) \
26 list_entry(pos->member.next, typeof(*pos), member)
27
28 /*
29 * Ceph uses the messenger to exchange ceph_msg messages with other
30 * hosts in the system. The messenger provides ordered and reliable
31 * delivery. We tolerate TCP disconnects by reconnecting (with
32 * exponential backoff) in the case of a fault (disconnection, bad
33 * crc, protocol error). Acks allow sent messages to be discarded by
34 * the sender.
35 */
36
37 /*
38 * We track the state of the socket on a given connection using
39 * values defined below. The transition to a new socket state is
40 * handled by a function which verifies we aren't coming from an
41 * unexpected state.
42 *
43 * --------
44 * | NEW* | transient initial state
45 * --------
46 * | con_sock_state_init()
47 * v
48 * ----------
49 * | CLOSED | initialized, but no socket (and no
50 * ---------- TCP connection)
51 * ^ \
52 * | \ con_sock_state_connecting()
53 * | ----------------------
54 * | \
55 * + con_sock_state_closed() \
56 * |+--------------------------- \
57 * | \ \ \
58 * | ----------- \ \
59 * | | CLOSING | socket event; \ \
60 * | ----------- await close \ \
61 * | ^ \ |
62 * | | \ |
63 * | + con_sock_state_closing() \ |
64 * | / \ | |
65 * | / --------------- | |
66 * | / \ v v
67 * | / --------------
68 * | / -----------------| CONNECTING | socket created, TCP
69 * | | / -------------- connect initiated
70 * | | | con_sock_state_connected()
71 * | | v
72 * -------------
73 * | CONNECTED | TCP connection established
74 * -------------
75 *
76 * State values for ceph_connection->sock_state; NEW is assumed to be 0.
77 */
78
79 #define CON_SOCK_STATE_NEW 0 /* -> CLOSED */
80 #define CON_SOCK_STATE_CLOSED 1 /* -> CONNECTING */
81 #define CON_SOCK_STATE_CONNECTING 2 /* -> CONNECTED or -> CLOSING */
82 #define CON_SOCK_STATE_CONNECTED 3 /* -> CLOSING or -> CLOSED */
83 #define CON_SOCK_STATE_CLOSING 4 /* -> CLOSED */
84
85 /*
86 * connection states
87 */
88 #define CON_STATE_CLOSED 1 /* -> PREOPEN */
89 #define CON_STATE_PREOPEN 2 /* -> CONNECTING, CLOSED */
90 #define CON_STATE_CONNECTING 3 /* -> NEGOTIATING, CLOSED */
91 #define CON_STATE_NEGOTIATING 4 /* -> OPEN, CLOSED */
92 #define CON_STATE_OPEN 5 /* -> STANDBY, CLOSED */
93 #define CON_STATE_STANDBY 6 /* -> PREOPEN, CLOSED */
94
95 /*
96 * ceph_connection flag bits
97 */
98 #define CON_FLAG_LOSSYTX 0 /* we can close channel or drop
99 * messages on errors */
100 #define CON_FLAG_KEEPALIVE_PENDING 1 /* we need to send a keepalive */
101 #define CON_FLAG_WRITE_PENDING 2 /* we have data ready to send */
102 #define CON_FLAG_SOCK_CLOSED 3 /* socket state changed to closed */
103 #define CON_FLAG_BACKOFF 4 /* need to retry queuing delayed work */
104
105 static bool con_flag_valid(unsigned long con_flag)
106 {
107 switch (con_flag) {
108 case CON_FLAG_LOSSYTX:
109 case CON_FLAG_KEEPALIVE_PENDING:
110 case CON_FLAG_WRITE_PENDING:
111 case CON_FLAG_SOCK_CLOSED:
112 case CON_FLAG_BACKOFF:
113 return true;
114 default:
115 return false;
116 }
117 }
118
119 static void con_flag_clear(struct ceph_connection *con, unsigned long con_flag)
120 {
121 BUG_ON(!con_flag_valid(con_flag));
122
123 clear_bit(con_flag, &con->flags);
124 }
125
126 static void con_flag_set(struct ceph_connection *con, unsigned long con_flag)
127 {
128 BUG_ON(!con_flag_valid(con_flag));
129
130 set_bit(con_flag, &con->flags);
131 }
132
133 static bool con_flag_test(struct ceph_connection *con, unsigned long con_flag)
134 {
135 BUG_ON(!con_flag_valid(con_flag));
136
137 return test_bit(con_flag, &con->flags);
138 }
139
140 static bool con_flag_test_and_clear(struct ceph_connection *con,
141 unsigned long con_flag)
142 {
143 BUG_ON(!con_flag_valid(con_flag));
144
145 return test_and_clear_bit(con_flag, &con->flags);
146 }
147
148 static bool con_flag_test_and_set(struct ceph_connection *con,
149 unsigned long con_flag)
150 {
151 BUG_ON(!con_flag_valid(con_flag));
152
153 return test_and_set_bit(con_flag, &con->flags);
154 }
155
156 /* Slab caches for frequently-allocated structures */
157
158 static struct kmem_cache *ceph_msg_cache;
159 static struct kmem_cache *ceph_msg_data_cache;
160
161 /* static tag bytes (protocol control messages) */
162 static char tag_msg = CEPH_MSGR_TAG_MSG;
163 static char tag_ack = CEPH_MSGR_TAG_ACK;
164 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
165
166 #ifdef CONFIG_LOCKDEP
167 static struct lock_class_key socket_class;
168 #endif
169
170 /*
171 * When skipping (ignoring) a block of input we read it into a "skip
172 * buffer," which is this many bytes in size.
173 */
174 #define SKIP_BUF_SIZE 1024
175
176 static void queue_con(struct ceph_connection *con);
177 static void con_work(struct work_struct *);
178 static void con_fault(struct ceph_connection *con);
179
180 /*
181 * Nicely render a sockaddr as a string. An array of formatted
182 * strings is used, to approximate reentrancy.
183 */
184 #define ADDR_STR_COUNT_LOG 5 /* log2(# address strings in array) */
185 #define ADDR_STR_COUNT (1 << ADDR_STR_COUNT_LOG)
186 #define ADDR_STR_COUNT_MASK (ADDR_STR_COUNT - 1)
187 #define MAX_ADDR_STR_LEN 64 /* 54 is enough */
188
189 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
190 static atomic_t addr_str_seq = ATOMIC_INIT(0);
191
192 static struct page *zero_page; /* used in certain error cases */
193
194 const char *ceph_pr_addr(const struct sockaddr_storage *ss)
195 {
196 int i;
197 char *s;
198 struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
199 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
200
201 i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
202 s = addr_str[i];
203
204 switch (ss->ss_family) {
205 case AF_INET:
206 snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr,
207 ntohs(in4->sin_port));
208 break;
209
210 case AF_INET6:
211 snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr,
212 ntohs(in6->sin6_port));
213 break;
214
215 default:
216 snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
217 ss->ss_family);
218 }
219
220 return s;
221 }
222 EXPORT_SYMBOL(ceph_pr_addr);
223
224 static void encode_my_addr(struct ceph_messenger *msgr)
225 {
226 memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
227 ceph_encode_addr(&msgr->my_enc_addr);
228 }
229
230 /*
231 * work queue for all reading and writing to/from the socket.
232 */
233 static struct workqueue_struct *ceph_msgr_wq;
234
235 static int ceph_msgr_slab_init(void)
236 {
237 BUG_ON(ceph_msg_cache);
238 ceph_msg_cache = kmem_cache_create("ceph_msg",
239 sizeof (struct ceph_msg),
240 __alignof__(struct ceph_msg), 0, NULL);
241
242 if (!ceph_msg_cache)
243 return -ENOMEM;
244
245 BUG_ON(ceph_msg_data_cache);
246 ceph_msg_data_cache = kmem_cache_create("ceph_msg_data",
247 sizeof (struct ceph_msg_data),
248 __alignof__(struct ceph_msg_data),
249 0, NULL);
250 if (ceph_msg_data_cache)
251 return 0;
252
253 kmem_cache_destroy(ceph_msg_cache);
254 ceph_msg_cache = NULL;
255
256 return -ENOMEM;
257 }
258
259 static void ceph_msgr_slab_exit(void)
260 {
261 BUG_ON(!ceph_msg_data_cache);
262 kmem_cache_destroy(ceph_msg_data_cache);
263 ceph_msg_data_cache = NULL;
264
265 BUG_ON(!ceph_msg_cache);
266 kmem_cache_destroy(ceph_msg_cache);
267 ceph_msg_cache = NULL;
268 }
269
270 static void _ceph_msgr_exit(void)
271 {
272 if (ceph_msgr_wq) {
273 destroy_workqueue(ceph_msgr_wq);
274 ceph_msgr_wq = NULL;
275 }
276
277 ceph_msgr_slab_exit();
278
279 BUG_ON(zero_page == NULL);
280 kunmap(zero_page);
281 page_cache_release(zero_page);
282 zero_page = NULL;
283 }
284
285 int ceph_msgr_init(void)
286 {
287 BUG_ON(zero_page != NULL);
288 zero_page = ZERO_PAGE(0);
289 page_cache_get(zero_page);
290
291 if (ceph_msgr_slab_init())
292 return -ENOMEM;
293
294 ceph_msgr_wq = alloc_workqueue("ceph-msgr",
295 WQ_NON_REENTRANT | WQ_MEM_RECLAIM, 0);
296 if (ceph_msgr_wq)
297 return 0;
298
299 pr_err("msgr_init failed to create workqueue\n");
300 _ceph_msgr_exit();
301
302 return -ENOMEM;
303 }
304 EXPORT_SYMBOL(ceph_msgr_init);
305
306 void ceph_msgr_exit(void)
307 {
308 BUG_ON(ceph_msgr_wq == NULL);
309
310 _ceph_msgr_exit();
311 }
312 EXPORT_SYMBOL(ceph_msgr_exit);
313
314 void ceph_msgr_flush(void)
315 {
316 flush_workqueue(ceph_msgr_wq);
317 }
318 EXPORT_SYMBOL(ceph_msgr_flush);
319
320 /* Connection socket state transition functions */
321
322 static void con_sock_state_init(struct ceph_connection *con)
323 {
324 int old_state;
325
326 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
327 if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
328 printk("%s: unexpected old state %d\n", __func__, old_state);
329 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
330 CON_SOCK_STATE_CLOSED);
331 }
332
333 static void con_sock_state_connecting(struct ceph_connection *con)
334 {
335 int old_state;
336
337 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
338 if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
339 printk("%s: unexpected old state %d\n", __func__, old_state);
340 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
341 CON_SOCK_STATE_CONNECTING);
342 }
343
344 static void con_sock_state_connected(struct ceph_connection *con)
345 {
346 int old_state;
347
348 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
349 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
350 printk("%s: unexpected old state %d\n", __func__, old_state);
351 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
352 CON_SOCK_STATE_CONNECTED);
353 }
354
355 static void con_sock_state_closing(struct ceph_connection *con)
356 {
357 int old_state;
358
359 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
360 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
361 old_state != CON_SOCK_STATE_CONNECTED &&
362 old_state != CON_SOCK_STATE_CLOSING))
363 printk("%s: unexpected old state %d\n", __func__, old_state);
364 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
365 CON_SOCK_STATE_CLOSING);
366 }
367
368 static void con_sock_state_closed(struct ceph_connection *con)
369 {
370 int old_state;
371
372 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
373 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
374 old_state != CON_SOCK_STATE_CLOSING &&
375 old_state != CON_SOCK_STATE_CONNECTING &&
376 old_state != CON_SOCK_STATE_CLOSED))
377 printk("%s: unexpected old state %d\n", __func__, old_state);
378 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
379 CON_SOCK_STATE_CLOSED);
380 }
381
382 /*
383 * socket callback functions
384 */
385
386 /* data available on socket, or listen socket received a connect */
387 static void ceph_sock_data_ready(struct sock *sk, int count_unused)
388 {
389 struct ceph_connection *con = sk->sk_user_data;
390 if (atomic_read(&con->msgr->stopping)) {
391 return;
392 }
393
394 if (sk->sk_state != TCP_CLOSE_WAIT) {
395 dout("%s on %p state = %lu, queueing work\n", __func__,
396 con, con->state);
397 queue_con(con);
398 }
399 }
400
401 /* socket has buffer space for writing */
402 static void ceph_sock_write_space(struct sock *sk)
403 {
404 struct ceph_connection *con = sk->sk_user_data;
405
406 /* only queue to workqueue if there is data we want to write,
407 * and there is sufficient space in the socket buffer to accept
408 * more data. clear SOCK_NOSPACE so that ceph_sock_write_space()
409 * doesn't get called again until try_write() fills the socket
410 * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
411 * and net/core/stream.c:sk_stream_write_space().
412 */
413 if (con_flag_test(con, CON_FLAG_WRITE_PENDING)) {
414 if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
415 dout("%s %p queueing write work\n", __func__, con);
416 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
417 queue_con(con);
418 }
419 } else {
420 dout("%s %p nothing to write\n", __func__, con);
421 }
422 }
423
424 /* socket's state has changed */
425 static void ceph_sock_state_change(struct sock *sk)
426 {
427 struct ceph_connection *con = sk->sk_user_data;
428
429 dout("%s %p state = %lu sk_state = %u\n", __func__,
430 con, con->state, sk->sk_state);
431
432 switch (sk->sk_state) {
433 case TCP_CLOSE:
434 dout("%s TCP_CLOSE\n", __func__);
435 case TCP_CLOSE_WAIT:
436 dout("%s TCP_CLOSE_WAIT\n", __func__);
437 con_sock_state_closing(con);
438 con_flag_set(con, CON_FLAG_SOCK_CLOSED);
439 queue_con(con);
440 break;
441 case TCP_ESTABLISHED:
442 dout("%s TCP_ESTABLISHED\n", __func__);
443 con_sock_state_connected(con);
444 queue_con(con);
445 break;
446 default: /* Everything else is uninteresting */
447 break;
448 }
449 }
450
451 /*
452 * set up socket callbacks
453 */
454 static void set_sock_callbacks(struct socket *sock,
455 struct ceph_connection *con)
456 {
457 struct sock *sk = sock->sk;
458 sk->sk_user_data = con;
459 sk->sk_data_ready = ceph_sock_data_ready;
460 sk->sk_write_space = ceph_sock_write_space;
461 sk->sk_state_change = ceph_sock_state_change;
462 }
463
464
465 /*
466 * socket helpers
467 */
468
469 /*
470 * initiate connection to a remote socket.
471 */
472 static int ceph_tcp_connect(struct ceph_connection *con)
473 {
474 struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
475 struct socket *sock;
476 unsigned int noio_flag;
477 int ret;
478
479 BUG_ON(con->sock);
480
481 /* sock_create_kern() allocates with GFP_KERNEL */
482 noio_flag = memalloc_noio_save();
483 ret = sock_create_kern(con->peer_addr.in_addr.ss_family, SOCK_STREAM,
484 IPPROTO_TCP, &sock);
485 memalloc_noio_restore(noio_flag);
486 if (ret)
487 return ret;
488 sock->sk->sk_allocation = GFP_NOFS;
489
490 #ifdef CONFIG_LOCKDEP
491 lockdep_set_class(&sock->sk->sk_lock, &socket_class);
492 #endif
493
494 set_sock_callbacks(sock, con);
495
496 dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
497
498 con_sock_state_connecting(con);
499 ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
500 O_NONBLOCK);
501 if (ret == -EINPROGRESS) {
502 dout("connect %s EINPROGRESS sk_state = %u\n",
503 ceph_pr_addr(&con->peer_addr.in_addr),
504 sock->sk->sk_state);
505 } else if (ret < 0) {
506 pr_err("connect %s error %d\n",
507 ceph_pr_addr(&con->peer_addr.in_addr), ret);
508 sock_release(sock);
509 con->error_msg = "connect error";
510
511 return ret;
512 }
513 con->sock = sock;
514 return 0;
515 }
516
517 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
518 {
519 struct kvec iov = {buf, len};
520 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
521 int r;
522
523 r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
524 if (r == -EAGAIN)
525 r = 0;
526 return r;
527 }
528
529 static int ceph_tcp_recvpage(struct socket *sock, struct page *page,
530 int page_offset, size_t length)
531 {
532 void *kaddr;
533 int ret;
534
535 BUG_ON(page_offset + length > PAGE_SIZE);
536
537 kaddr = kmap(page);
538 BUG_ON(!kaddr);
539 ret = ceph_tcp_recvmsg(sock, kaddr + page_offset, length);
540 kunmap(page);
541
542 return ret;
543 }
544
545 /*
546 * write something. @more is true if caller will be sending more data
547 * shortly.
548 */
549 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
550 size_t kvlen, size_t len, int more)
551 {
552 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
553 int r;
554
555 if (more)
556 msg.msg_flags |= MSG_MORE;
557 else
558 msg.msg_flags |= MSG_EOR; /* superfluous, but what the hell */
559
560 r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
561 if (r == -EAGAIN)
562 r = 0;
563 return r;
564 }
565
566 static int __ceph_tcp_sendpage(struct socket *sock, struct page *page,
567 int offset, size_t size, bool more)
568 {
569 int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR);
570 int ret;
571
572 ret = kernel_sendpage(sock, page, offset, size, flags);
573 if (ret == -EAGAIN)
574 ret = 0;
575
576 return ret;
577 }
578
579 static int ceph_tcp_sendpage(struct socket *sock, struct page *page,
580 int offset, size_t size, bool more)
581 {
582 int ret;
583 struct kvec iov;
584
585 /* sendpage cannot properly handle pages with page_count == 0,
586 * we need to fallback to sendmsg if that's the case */
587 if (page_count(page) >= 1)
588 return __ceph_tcp_sendpage(sock, page, offset, size, more);
589
590 iov.iov_base = kmap(page) + offset;
591 iov.iov_len = size;
592 ret = ceph_tcp_sendmsg(sock, &iov, 1, size, more);
593 kunmap(page);
594
595 return ret;
596 }
597
598 /*
599 * Shutdown/close the socket for the given connection.
600 */
601 static int con_close_socket(struct ceph_connection *con)
602 {
603 int rc = 0;
604
605 dout("con_close_socket on %p sock %p\n", con, con->sock);
606 if (con->sock) {
607 rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
608 sock_release(con->sock);
609 con->sock = NULL;
610 }
611
612 /*
613 * Forcibly clear the SOCK_CLOSED flag. It gets set
614 * independent of the connection mutex, and we could have
615 * received a socket close event before we had the chance to
616 * shut the socket down.
617 */
618 con_flag_clear(con, CON_FLAG_SOCK_CLOSED);
619
620 con_sock_state_closed(con);
621 return rc;
622 }
623
624 /*
625 * Reset a connection. Discard all incoming and outgoing messages
626 * and clear *_seq state.
627 */
628 static void ceph_msg_remove(struct ceph_msg *msg)
629 {
630 list_del_init(&msg->list_head);
631 BUG_ON(msg->con == NULL);
632 msg->con->ops->put(msg->con);
633 msg->con = NULL;
634
635 ceph_msg_put(msg);
636 }
637 static void ceph_msg_remove_list(struct list_head *head)
638 {
639 while (!list_empty(head)) {
640 struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
641 list_head);
642 ceph_msg_remove(msg);
643 }
644 }
645
646 static void reset_connection(struct ceph_connection *con)
647 {
648 /* reset connection, out_queue, msg_ and connect_seq */
649 /* discard existing out_queue and msg_seq */
650 dout("reset_connection %p\n", con);
651 ceph_msg_remove_list(&con->out_queue);
652 ceph_msg_remove_list(&con->out_sent);
653
654 if (con->in_msg) {
655 BUG_ON(con->in_msg->con != con);
656 con->in_msg->con = NULL;
657 ceph_msg_put(con->in_msg);
658 con->in_msg = NULL;
659 con->ops->put(con);
660 }
661
662 con->connect_seq = 0;
663 con->out_seq = 0;
664 if (con->out_msg) {
665 ceph_msg_put(con->out_msg);
666 con->out_msg = NULL;
667 }
668 con->in_seq = 0;
669 con->in_seq_acked = 0;
670 }
671
672 /*
673 * mark a peer down. drop any open connections.
674 */
675 void ceph_con_close(struct ceph_connection *con)
676 {
677 mutex_lock(&con->mutex);
678 dout("con_close %p peer %s\n", con,
679 ceph_pr_addr(&con->peer_addr.in_addr));
680 con->state = CON_STATE_CLOSED;
681
682 con_flag_clear(con, CON_FLAG_LOSSYTX); /* so we retry next connect */
683 con_flag_clear(con, CON_FLAG_KEEPALIVE_PENDING);
684 con_flag_clear(con, CON_FLAG_WRITE_PENDING);
685 con_flag_clear(con, CON_FLAG_BACKOFF);
686
687 reset_connection(con);
688 con->peer_global_seq = 0;
689 cancel_delayed_work(&con->work);
690 con_close_socket(con);
691 mutex_unlock(&con->mutex);
692 }
693 EXPORT_SYMBOL(ceph_con_close);
694
695 /*
696 * Reopen a closed connection, with a new peer address.
697 */
698 void ceph_con_open(struct ceph_connection *con,
699 __u8 entity_type, __u64 entity_num,
700 struct ceph_entity_addr *addr)
701 {
702 mutex_lock(&con->mutex);
703 dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
704
705 WARN_ON(con->state != CON_STATE_CLOSED);
706 con->state = CON_STATE_PREOPEN;
707
708 con->peer_name.type = (__u8) entity_type;
709 con->peer_name.num = cpu_to_le64(entity_num);
710
711 memcpy(&con->peer_addr, addr, sizeof(*addr));
712 con->delay = 0; /* reset backoff memory */
713 mutex_unlock(&con->mutex);
714 queue_con(con);
715 }
716 EXPORT_SYMBOL(ceph_con_open);
717
718 /*
719 * return true if this connection ever successfully opened
720 */
721 bool ceph_con_opened(struct ceph_connection *con)
722 {
723 return con->connect_seq > 0;
724 }
725
726 /*
727 * initialize a new connection.
728 */
729 void ceph_con_init(struct ceph_connection *con, void *private,
730 const struct ceph_connection_operations *ops,
731 struct ceph_messenger *msgr)
732 {
733 dout("con_init %p\n", con);
734 memset(con, 0, sizeof(*con));
735 con->private = private;
736 con->ops = ops;
737 con->msgr = msgr;
738
739 con_sock_state_init(con);
740
741 mutex_init(&con->mutex);
742 INIT_LIST_HEAD(&con->out_queue);
743 INIT_LIST_HEAD(&con->out_sent);
744 INIT_DELAYED_WORK(&con->work, con_work);
745
746 con->state = CON_STATE_CLOSED;
747 }
748 EXPORT_SYMBOL(ceph_con_init);
749
750
751 /*
752 * We maintain a global counter to order connection attempts. Get
753 * a unique seq greater than @gt.
754 */
755 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
756 {
757 u32 ret;
758
759 spin_lock(&msgr->global_seq_lock);
760 if (msgr->global_seq < gt)
761 msgr->global_seq = gt;
762 ret = ++msgr->global_seq;
763 spin_unlock(&msgr->global_seq_lock);
764 return ret;
765 }
766
767 static void con_out_kvec_reset(struct ceph_connection *con)
768 {
769 con->out_kvec_left = 0;
770 con->out_kvec_bytes = 0;
771 con->out_kvec_cur = &con->out_kvec[0];
772 }
773
774 static void con_out_kvec_add(struct ceph_connection *con,
775 size_t size, void *data)
776 {
777 int index;
778
779 index = con->out_kvec_left;
780 BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
781
782 con->out_kvec[index].iov_len = size;
783 con->out_kvec[index].iov_base = data;
784 con->out_kvec_left++;
785 con->out_kvec_bytes += size;
786 }
787
788 #ifdef CONFIG_BLOCK
789
790 /*
791 * For a bio data item, a piece is whatever remains of the next
792 * entry in the current bio iovec, or the first entry in the next
793 * bio in the list.
794 */
795 static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor *cursor,
796 size_t length)
797 {
798 struct ceph_msg_data *data = cursor->data;
799 struct bio *bio;
800
801 BUG_ON(data->type != CEPH_MSG_DATA_BIO);
802
803 bio = data->bio;
804 BUG_ON(!bio);
805 BUG_ON(!bio->bi_vcnt);
806
807 cursor->resid = min(length, data->bio_length);
808 cursor->bio = bio;
809 cursor->vector_index = 0;
810 cursor->vector_offset = 0;
811 cursor->last_piece = length <= bio->bi_io_vec[0].bv_len;
812 }
813
814 static struct page *ceph_msg_data_bio_next(struct ceph_msg_data_cursor *cursor,
815 size_t *page_offset,
816 size_t *length)
817 {
818 struct ceph_msg_data *data = cursor->data;
819 struct bio *bio;
820 struct bio_vec *bio_vec;
821 unsigned int index;
822
823 BUG_ON(data->type != CEPH_MSG_DATA_BIO);
824
825 bio = cursor->bio;
826 BUG_ON(!bio);
827
828 index = cursor->vector_index;
829 BUG_ON(index >= (unsigned int) bio->bi_vcnt);
830
831 bio_vec = &bio->bi_io_vec[index];
832 BUG_ON(cursor->vector_offset >= bio_vec->bv_len);
833 *page_offset = (size_t) (bio_vec->bv_offset + cursor->vector_offset);
834 BUG_ON(*page_offset >= PAGE_SIZE);
835 if (cursor->last_piece) /* pagelist offset is always 0 */
836 *length = cursor->resid;
837 else
838 *length = (size_t) (bio_vec->bv_len - cursor->vector_offset);
839 BUG_ON(*length > cursor->resid);
840 BUG_ON(*page_offset + *length > PAGE_SIZE);
841
842 return bio_vec->bv_page;
843 }
844
845 static bool ceph_msg_data_bio_advance(struct ceph_msg_data_cursor *cursor,
846 size_t bytes)
847 {
848 struct bio *bio;
849 struct bio_vec *bio_vec;
850 unsigned int index;
851
852 BUG_ON(cursor->data->type != CEPH_MSG_DATA_BIO);
853
854 bio = cursor->bio;
855 BUG_ON(!bio);
856
857 index = cursor->vector_index;
858 BUG_ON(index >= (unsigned int) bio->bi_vcnt);
859 bio_vec = &bio->bi_io_vec[index];
860
861 /* Advance the cursor offset */
862
863 BUG_ON(cursor->resid < bytes);
864 cursor->resid -= bytes;
865 cursor->vector_offset += bytes;
866 if (cursor->vector_offset < bio_vec->bv_len)
867 return false; /* more bytes to process in this segment */
868 BUG_ON(cursor->vector_offset != bio_vec->bv_len);
869
870 /* Move on to the next segment, and possibly the next bio */
871
872 if (++index == (unsigned int) bio->bi_vcnt) {
873 bio = bio->bi_next;
874 index = 0;
875 }
876 cursor->bio = bio;
877 cursor->vector_index = index;
878 cursor->vector_offset = 0;
879
880 if (!cursor->last_piece) {
881 BUG_ON(!cursor->resid);
882 BUG_ON(!bio);
883 /* A short read is OK, so use <= rather than == */
884 if (cursor->resid <= bio->bi_io_vec[index].bv_len)
885 cursor->last_piece = true;
886 }
887
888 return true;
889 }
890 #endif /* CONFIG_BLOCK */
891
892 /*
893 * For a page array, a piece comes from the first page in the array
894 * that has not already been fully consumed.
895 */
896 static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor *cursor,
897 size_t length)
898 {
899 struct ceph_msg_data *data = cursor->data;
900 int page_count;
901
902 BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
903
904 BUG_ON(!data->pages);
905 BUG_ON(!data->length);
906
907 cursor->resid = min(length, data->length);
908 page_count = calc_pages_for(data->alignment, (u64)data->length);
909 cursor->page_offset = data->alignment & ~PAGE_MASK;
910 cursor->page_index = 0;
911 BUG_ON(page_count > (int)USHRT_MAX);
912 cursor->page_count = (unsigned short)page_count;
913 BUG_ON(length > SIZE_MAX - cursor->page_offset);
914 cursor->last_piece = cursor->page_offset + cursor->resid <= PAGE_SIZE;
915 }
916
917 static struct page *
918 ceph_msg_data_pages_next(struct ceph_msg_data_cursor *cursor,
919 size_t *page_offset, size_t *length)
920 {
921 struct ceph_msg_data *data = cursor->data;
922
923 BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
924
925 BUG_ON(cursor->page_index >= cursor->page_count);
926 BUG_ON(cursor->page_offset >= PAGE_SIZE);
927
928 *page_offset = cursor->page_offset;
929 if (cursor->last_piece)
930 *length = cursor->resid;
931 else
932 *length = PAGE_SIZE - *page_offset;
933
934 return data->pages[cursor->page_index];
935 }
936
937 static bool ceph_msg_data_pages_advance(struct ceph_msg_data_cursor *cursor,
938 size_t bytes)
939 {
940 BUG_ON(cursor->data->type != CEPH_MSG_DATA_PAGES);
941
942 BUG_ON(cursor->page_offset + bytes > PAGE_SIZE);
943
944 /* Advance the cursor page offset */
945
946 cursor->resid -= bytes;
947 cursor->page_offset = (cursor->page_offset + bytes) & ~PAGE_MASK;
948 if (!bytes || cursor->page_offset)
949 return false; /* more bytes to process in the current page */
950
951 /* Move on to the next page; offset is already at 0 */
952
953 BUG_ON(cursor->page_index >= cursor->page_count);
954 cursor->page_index++;
955 cursor->last_piece = cursor->resid <= PAGE_SIZE;
956
957 return true;
958 }
959
960 /*
961 * For a pagelist, a piece is whatever remains to be consumed in the
962 * first page in the list, or the front of the next page.
963 */
964 static void
965 ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor *cursor,
966 size_t length)
967 {
968 struct ceph_msg_data *data = cursor->data;
969 struct ceph_pagelist *pagelist;
970 struct page *page;
971
972 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
973
974 pagelist = data->pagelist;
975 BUG_ON(!pagelist);
976
977 if (!length)
978 return; /* pagelist can be assigned but empty */
979
980 BUG_ON(list_empty(&pagelist->head));
981 page = list_first_entry(&pagelist->head, struct page, lru);
982
983 cursor->resid = min(length, pagelist->length);
984 cursor->page = page;
985 cursor->offset = 0;
986 cursor->last_piece = cursor->resid <= PAGE_SIZE;
987 }
988
989 static struct page *
990 ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor *cursor,
991 size_t *page_offset, size_t *length)
992 {
993 struct ceph_msg_data *data = cursor->data;
994 struct ceph_pagelist *pagelist;
995
996 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
997
998 pagelist = data->pagelist;
999 BUG_ON(!pagelist);
1000
1001 BUG_ON(!cursor->page);
1002 BUG_ON(cursor->offset + cursor->resid != pagelist->length);
1003
1004 /* offset of first page in pagelist is always 0 */
1005 *page_offset = cursor->offset & ~PAGE_MASK;
1006 if (cursor->last_piece)
1007 *length = cursor->resid;
1008 else
1009 *length = PAGE_SIZE - *page_offset;
1010
1011 return cursor->page;
1012 }
1013
1014 static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor *cursor,
1015 size_t bytes)
1016 {
1017 struct ceph_msg_data *data = cursor->data;
1018 struct ceph_pagelist *pagelist;
1019
1020 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
1021
1022 pagelist = data->pagelist;
1023 BUG_ON(!pagelist);
1024
1025 BUG_ON(cursor->offset + cursor->resid != pagelist->length);
1026 BUG_ON((cursor->offset & ~PAGE_MASK) + bytes > PAGE_SIZE);
1027
1028 /* Advance the cursor offset */
1029
1030 cursor->resid -= bytes;
1031 cursor->offset += bytes;
1032 /* offset of first page in pagelist is always 0 */
1033 if (!bytes || cursor->offset & ~PAGE_MASK)
1034 return false; /* more bytes to process in the current page */
1035
1036 /* Move on to the next page */
1037
1038 BUG_ON(list_is_last(&cursor->page->lru, &pagelist->head));
1039 cursor->page = list_entry_next(cursor->page, lru);
1040 cursor->last_piece = cursor->resid <= PAGE_SIZE;
1041
1042 return true;
1043 }
1044
1045 /*
1046 * Message data is handled (sent or received) in pieces, where each
1047 * piece resides on a single page. The network layer might not
1048 * consume an entire piece at once. A data item's cursor keeps
1049 * track of which piece is next to process and how much remains to
1050 * be processed in that piece. It also tracks whether the current
1051 * piece is the last one in the data item.
1052 */
1053 static void __ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor)
1054 {
1055 size_t length = cursor->total_resid;
1056
1057 switch (cursor->data->type) {
1058 case CEPH_MSG_DATA_PAGELIST:
1059 ceph_msg_data_pagelist_cursor_init(cursor, length);
1060 break;
1061 case CEPH_MSG_DATA_PAGES:
1062 ceph_msg_data_pages_cursor_init(cursor, length);
1063 break;
1064 #ifdef CONFIG_BLOCK
1065 case CEPH_MSG_DATA_BIO:
1066 ceph_msg_data_bio_cursor_init(cursor, length);
1067 break;
1068 #endif /* CONFIG_BLOCK */
1069 case CEPH_MSG_DATA_NONE:
1070 default:
1071 /* BUG(); */
1072 break;
1073 }
1074 cursor->need_crc = true;
1075 }
1076
1077 static void ceph_msg_data_cursor_init(struct ceph_msg *msg, size_t length)
1078 {
1079 struct ceph_msg_data_cursor *cursor = &msg->cursor;
1080 struct ceph_msg_data *data;
1081
1082 BUG_ON(!length);
1083 BUG_ON(length > msg->data_length);
1084 BUG_ON(list_empty(&msg->data));
1085
1086 cursor->data_head = &msg->data;
1087 cursor->total_resid = length;
1088 data = list_first_entry(&msg->data, struct ceph_msg_data, links);
1089 cursor->data = data;
1090
1091 __ceph_msg_data_cursor_init(cursor);
1092 }
1093
1094 /*
1095 * Return the page containing the next piece to process for a given
1096 * data item, and supply the page offset and length of that piece.
1097 * Indicate whether this is the last piece in this data item.
1098 */
1099 static struct page *ceph_msg_data_next(struct ceph_msg_data_cursor *cursor,
1100 size_t *page_offset, size_t *length,
1101 bool *last_piece)
1102 {
1103 struct page *page;
1104
1105 switch (cursor->data->type) {
1106 case CEPH_MSG_DATA_PAGELIST:
1107 page = ceph_msg_data_pagelist_next(cursor, page_offset, length);
1108 break;
1109 case CEPH_MSG_DATA_PAGES:
1110 page = ceph_msg_data_pages_next(cursor, page_offset, length);
1111 break;
1112 #ifdef CONFIG_BLOCK
1113 case CEPH_MSG_DATA_BIO:
1114 page = ceph_msg_data_bio_next(cursor, page_offset, length);
1115 break;
1116 #endif /* CONFIG_BLOCK */
1117 case CEPH_MSG_DATA_NONE:
1118 default:
1119 page = NULL;
1120 break;
1121 }
1122 BUG_ON(!page);
1123 BUG_ON(*page_offset + *length > PAGE_SIZE);
1124 BUG_ON(!*length);
1125 if (last_piece)
1126 *last_piece = cursor->last_piece;
1127
1128 return page;
1129 }
1130
1131 /*
1132 * Returns true if the result moves the cursor on to the next piece
1133 * of the data item.
1134 */
1135 static bool ceph_msg_data_advance(struct ceph_msg_data_cursor *cursor,
1136 size_t bytes)
1137 {
1138 bool new_piece;
1139
1140 BUG_ON(bytes > cursor->resid);
1141 switch (cursor->data->type) {
1142 case CEPH_MSG_DATA_PAGELIST:
1143 new_piece = ceph_msg_data_pagelist_advance(cursor, bytes);
1144 break;
1145 case CEPH_MSG_DATA_PAGES:
1146 new_piece = ceph_msg_data_pages_advance(cursor, bytes);
1147 break;
1148 #ifdef CONFIG_BLOCK
1149 case CEPH_MSG_DATA_BIO:
1150 new_piece = ceph_msg_data_bio_advance(cursor, bytes);
1151 break;
1152 #endif /* CONFIG_BLOCK */
1153 case CEPH_MSG_DATA_NONE:
1154 default:
1155 BUG();
1156 break;
1157 }
1158 cursor->total_resid -= bytes;
1159
1160 if (!cursor->resid && cursor->total_resid) {
1161 WARN_ON(!cursor->last_piece);
1162 BUG_ON(list_is_last(&cursor->data->links, cursor->data_head));
1163 cursor->data = list_entry_next(cursor->data, links);
1164 __ceph_msg_data_cursor_init(cursor);
1165 new_piece = true;
1166 }
1167 cursor->need_crc = new_piece;
1168
1169 return new_piece;
1170 }
1171
1172 static void prepare_message_data(struct ceph_msg *msg, u32 data_len)
1173 {
1174 BUG_ON(!msg);
1175 BUG_ON(!data_len);
1176
1177 /* Initialize data cursor */
1178
1179 ceph_msg_data_cursor_init(msg, (size_t)data_len);
1180 }
1181
1182 /*
1183 * Prepare footer for currently outgoing message, and finish things
1184 * off. Assumes out_kvec* are already valid.. we just add on to the end.
1185 */
1186 static void prepare_write_message_footer(struct ceph_connection *con)
1187 {
1188 struct ceph_msg *m = con->out_msg;
1189 int v = con->out_kvec_left;
1190
1191 m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE;
1192
1193 dout("prepare_write_message_footer %p\n", con);
1194 con->out_kvec_is_msg = true;
1195 con->out_kvec[v].iov_base = &m->footer;
1196 con->out_kvec[v].iov_len = sizeof(m->footer);
1197 con->out_kvec_bytes += sizeof(m->footer);
1198 con->out_kvec_left++;
1199 con->out_more = m->more_to_follow;
1200 con->out_msg_done = true;
1201 }
1202
1203 /*
1204 * Prepare headers for the next outgoing message.
1205 */
1206 static void prepare_write_message(struct ceph_connection *con)
1207 {
1208 struct ceph_msg *m;
1209 u32 crc;
1210
1211 con_out_kvec_reset(con);
1212 con->out_kvec_is_msg = true;
1213 con->out_msg_done = false;
1214
1215 /* Sneak an ack in there first? If we can get it into the same
1216 * TCP packet that's a good thing. */
1217 if (con->in_seq > con->in_seq_acked) {
1218 con->in_seq_acked = con->in_seq;
1219 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1220 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1221 con_out_kvec_add(con, sizeof (con->out_temp_ack),
1222 &con->out_temp_ack);
1223 }
1224
1225 BUG_ON(list_empty(&con->out_queue));
1226 m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
1227 con->out_msg = m;
1228 BUG_ON(m->con != con);
1229
1230 /* put message on sent list */
1231 ceph_msg_get(m);
1232 list_move_tail(&m->list_head, &con->out_sent);
1233
1234 /*
1235 * only assign outgoing seq # if we haven't sent this message
1236 * yet. if it is requeued, resend with it's original seq.
1237 */
1238 if (m->needs_out_seq) {
1239 m->hdr.seq = cpu_to_le64(++con->out_seq);
1240 m->needs_out_seq = false;
1241 }
1242 WARN_ON(m->data_length != le32_to_cpu(m->hdr.data_len));
1243
1244 dout("prepare_write_message %p seq %lld type %d len %d+%d+%zd\n",
1245 m, con->out_seq, le16_to_cpu(m->hdr.type),
1246 le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
1247 m->data_length);
1248 BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
1249
1250 /* tag + hdr + front + middle */
1251 con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
1252 con_out_kvec_add(con, sizeof (m->hdr), &m->hdr);
1253 con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
1254
1255 if (m->middle)
1256 con_out_kvec_add(con, m->middle->vec.iov_len,
1257 m->middle->vec.iov_base);
1258
1259 /* fill in crc (except data pages), footer */
1260 crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
1261 con->out_msg->hdr.crc = cpu_to_le32(crc);
1262 con->out_msg->footer.flags = 0;
1263
1264 crc = crc32c(0, m->front.iov_base, m->front.iov_len);
1265 con->out_msg->footer.front_crc = cpu_to_le32(crc);
1266 if (m->middle) {
1267 crc = crc32c(0, m->middle->vec.iov_base,
1268 m->middle->vec.iov_len);
1269 con->out_msg->footer.middle_crc = cpu_to_le32(crc);
1270 } else
1271 con->out_msg->footer.middle_crc = 0;
1272 dout("%s front_crc %u middle_crc %u\n", __func__,
1273 le32_to_cpu(con->out_msg->footer.front_crc),
1274 le32_to_cpu(con->out_msg->footer.middle_crc));
1275
1276 /* is there a data payload? */
1277 con->out_msg->footer.data_crc = 0;
1278 if (m->data_length) {
1279 prepare_message_data(con->out_msg, m->data_length);
1280 con->out_more = 1; /* data + footer will follow */
1281 } else {
1282 /* no, queue up footer too and be done */
1283 prepare_write_message_footer(con);
1284 }
1285
1286 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1287 }
1288
1289 /*
1290 * Prepare an ack.
1291 */
1292 static void prepare_write_ack(struct ceph_connection *con)
1293 {
1294 dout("prepare_write_ack %p %llu -> %llu\n", con,
1295 con->in_seq_acked, con->in_seq);
1296 con->in_seq_acked = con->in_seq;
1297
1298 con_out_kvec_reset(con);
1299
1300 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1301
1302 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1303 con_out_kvec_add(con, sizeof (con->out_temp_ack),
1304 &con->out_temp_ack);
1305
1306 con->out_more = 1; /* more will follow.. eventually.. */
1307 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1308 }
1309
1310 /*
1311 * Prepare to share the seq during handshake
1312 */
1313 static void prepare_write_seq(struct ceph_connection *con)
1314 {
1315 dout("prepare_write_seq %p %llu -> %llu\n", con,
1316 con->in_seq_acked, con->in_seq);
1317 con->in_seq_acked = con->in_seq;
1318
1319 con_out_kvec_reset(con);
1320
1321 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1322 con_out_kvec_add(con, sizeof (con->out_temp_ack),
1323 &con->out_temp_ack);
1324
1325 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1326 }
1327
1328 /*
1329 * Prepare to write keepalive byte.
1330 */
1331 static void prepare_write_keepalive(struct ceph_connection *con)
1332 {
1333 dout("prepare_write_keepalive %p\n", con);
1334 con_out_kvec_reset(con);
1335 con_out_kvec_add(con, sizeof (tag_keepalive), &tag_keepalive);
1336 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1337 }
1338
1339 /*
1340 * Connection negotiation.
1341 */
1342
1343 static struct ceph_auth_handshake *get_connect_authorizer(struct ceph_connection *con,
1344 int *auth_proto)
1345 {
1346 struct ceph_auth_handshake *auth;
1347
1348 if (!con->ops->get_authorizer) {
1349 con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN;
1350 con->out_connect.authorizer_len = 0;
1351 return NULL;
1352 }
1353
1354 /* Can't hold the mutex while getting authorizer */
1355 mutex_unlock(&con->mutex);
1356 auth = con->ops->get_authorizer(con, auth_proto, con->auth_retry);
1357 mutex_lock(&con->mutex);
1358
1359 if (IS_ERR(auth))
1360 return auth;
1361 if (con->state != CON_STATE_NEGOTIATING)
1362 return ERR_PTR(-EAGAIN);
1363
1364 con->auth_reply_buf = auth->authorizer_reply_buf;
1365 con->auth_reply_buf_len = auth->authorizer_reply_buf_len;
1366 return auth;
1367 }
1368
1369 /*
1370 * We connected to a peer and are saying hello.
1371 */
1372 static void prepare_write_banner(struct ceph_connection *con)
1373 {
1374 con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
1375 con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr),
1376 &con->msgr->my_enc_addr);
1377
1378 con->out_more = 0;
1379 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1380 }
1381
1382 static int prepare_write_connect(struct ceph_connection *con)
1383 {
1384 unsigned int global_seq = get_global_seq(con->msgr, 0);
1385 int proto;
1386 int auth_proto;
1387 struct ceph_auth_handshake *auth;
1388
1389 switch (con->peer_name.type) {
1390 case CEPH_ENTITY_TYPE_MON:
1391 proto = CEPH_MONC_PROTOCOL;
1392 break;
1393 case CEPH_ENTITY_TYPE_OSD:
1394 proto = CEPH_OSDC_PROTOCOL;
1395 break;
1396 case CEPH_ENTITY_TYPE_MDS:
1397 proto = CEPH_MDSC_PROTOCOL;
1398 break;
1399 default:
1400 BUG();
1401 }
1402
1403 dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
1404 con->connect_seq, global_seq, proto);
1405
1406 con->out_connect.features = cpu_to_le64(con->msgr->supported_features);
1407 con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
1408 con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
1409 con->out_connect.global_seq = cpu_to_le32(global_seq);
1410 con->out_connect.protocol_version = cpu_to_le32(proto);
1411 con->out_connect.flags = 0;
1412
1413 auth_proto = CEPH_AUTH_UNKNOWN;
1414 auth = get_connect_authorizer(con, &auth_proto);
1415 if (IS_ERR(auth))
1416 return PTR_ERR(auth);
1417
1418 con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto);
1419 con->out_connect.authorizer_len = auth ?
1420 cpu_to_le32(auth->authorizer_buf_len) : 0;
1421
1422 con_out_kvec_add(con, sizeof (con->out_connect),
1423 &con->out_connect);
1424 if (auth && auth->authorizer_buf_len)
1425 con_out_kvec_add(con, auth->authorizer_buf_len,
1426 auth->authorizer_buf);
1427
1428 con->out_more = 0;
1429 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1430
1431 return 0;
1432 }
1433
1434 /*
1435 * write as much of pending kvecs to the socket as we can.
1436 * 1 -> done
1437 * 0 -> socket full, but more to do
1438 * <0 -> error
1439 */
1440 static int write_partial_kvec(struct ceph_connection *con)
1441 {
1442 int ret;
1443
1444 dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
1445 while (con->out_kvec_bytes > 0) {
1446 ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
1447 con->out_kvec_left, con->out_kvec_bytes,
1448 con->out_more);
1449 if (ret <= 0)
1450 goto out;
1451 con->out_kvec_bytes -= ret;
1452 if (con->out_kvec_bytes == 0)
1453 break; /* done */
1454
1455 /* account for full iov entries consumed */
1456 while (ret >= con->out_kvec_cur->iov_len) {
1457 BUG_ON(!con->out_kvec_left);
1458 ret -= con->out_kvec_cur->iov_len;
1459 con->out_kvec_cur++;
1460 con->out_kvec_left--;
1461 }
1462 /* and for a partially-consumed entry */
1463 if (ret) {
1464 con->out_kvec_cur->iov_len -= ret;
1465 con->out_kvec_cur->iov_base += ret;
1466 }
1467 }
1468 con->out_kvec_left = 0;
1469 con->out_kvec_is_msg = false;
1470 ret = 1;
1471 out:
1472 dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
1473 con->out_kvec_bytes, con->out_kvec_left, ret);
1474 return ret; /* done! */
1475 }
1476
1477 static u32 ceph_crc32c_page(u32 crc, struct page *page,
1478 unsigned int page_offset,
1479 unsigned int length)
1480 {
1481 char *kaddr;
1482
1483 kaddr = kmap(page);
1484 BUG_ON(kaddr == NULL);
1485 crc = crc32c(crc, kaddr + page_offset, length);
1486 kunmap(page);
1487
1488 return crc;
1489 }
1490 /*
1491 * Write as much message data payload as we can. If we finish, queue
1492 * up the footer.
1493 * 1 -> done, footer is now queued in out_kvec[].
1494 * 0 -> socket full, but more to do
1495 * <0 -> error
1496 */
1497 static int write_partial_message_data(struct ceph_connection *con)
1498 {
1499 struct ceph_msg *msg = con->out_msg;
1500 struct ceph_msg_data_cursor *cursor = &msg->cursor;
1501 bool do_datacrc = !con->msgr->nocrc;
1502 u32 crc;
1503
1504 dout("%s %p msg %p\n", __func__, con, msg);
1505
1506 if (list_empty(&msg->data))
1507 return -EINVAL;
1508
1509 /*
1510 * Iterate through each page that contains data to be
1511 * written, and send as much as possible for each.
1512 *
1513 * If we are calculating the data crc (the default), we will
1514 * need to map the page. If we have no pages, they have
1515 * been revoked, so use the zero page.
1516 */
1517 crc = do_datacrc ? le32_to_cpu(msg->footer.data_crc) : 0;
1518 while (cursor->resid) {
1519 struct page *page;
1520 size_t page_offset;
1521 size_t length;
1522 bool last_piece;
1523 bool need_crc;
1524 int ret;
1525
1526 page = ceph_msg_data_next(&msg->cursor, &page_offset, &length,
1527 &last_piece);
1528 ret = ceph_tcp_sendpage(con->sock, page, page_offset,
1529 length, last_piece);
1530 if (ret <= 0) {
1531 if (do_datacrc)
1532 msg->footer.data_crc = cpu_to_le32(crc);
1533
1534 return ret;
1535 }
1536 if (do_datacrc && cursor->need_crc)
1537 crc = ceph_crc32c_page(crc, page, page_offset, length);
1538 need_crc = ceph_msg_data_advance(&msg->cursor, (size_t)ret);
1539 }
1540
1541 dout("%s %p msg %p done\n", __func__, con, msg);
1542
1543 /* prepare and queue up footer, too */
1544 if (do_datacrc)
1545 msg->footer.data_crc = cpu_to_le32(crc);
1546 else
1547 msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
1548 con_out_kvec_reset(con);
1549 prepare_write_message_footer(con);
1550
1551 return 1; /* must return > 0 to indicate success */
1552 }
1553
1554 /*
1555 * write some zeros
1556 */
1557 static int write_partial_skip(struct ceph_connection *con)
1558 {
1559 int ret;
1560
1561 while (con->out_skip > 0) {
1562 size_t size = min(con->out_skip, (int) PAGE_CACHE_SIZE);
1563
1564 ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, true);
1565 if (ret <= 0)
1566 goto out;
1567 con->out_skip -= ret;
1568 }
1569 ret = 1;
1570 out:
1571 return ret;
1572 }
1573
1574 /*
1575 * Prepare to read connection handshake, or an ack.
1576 */
1577 static void prepare_read_banner(struct ceph_connection *con)
1578 {
1579 dout("prepare_read_banner %p\n", con);
1580 con->in_base_pos = 0;
1581 }
1582
1583 static void prepare_read_connect(struct ceph_connection *con)
1584 {
1585 dout("prepare_read_connect %p\n", con);
1586 con->in_base_pos = 0;
1587 }
1588
1589 static void prepare_read_ack(struct ceph_connection *con)
1590 {
1591 dout("prepare_read_ack %p\n", con);
1592 con->in_base_pos = 0;
1593 }
1594
1595 static void prepare_read_seq(struct ceph_connection *con)
1596 {
1597 dout("prepare_read_seq %p\n", con);
1598 con->in_base_pos = 0;
1599 con->in_tag = CEPH_MSGR_TAG_SEQ;
1600 }
1601
1602 static void prepare_read_tag(struct ceph_connection *con)
1603 {
1604 dout("prepare_read_tag %p\n", con);
1605 con->in_base_pos = 0;
1606 con->in_tag = CEPH_MSGR_TAG_READY;
1607 }
1608
1609 /*
1610 * Prepare to read a message.
1611 */
1612 static int prepare_read_message(struct ceph_connection *con)
1613 {
1614 dout("prepare_read_message %p\n", con);
1615 BUG_ON(con->in_msg != NULL);
1616 con->in_base_pos = 0;
1617 con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
1618 return 0;
1619 }
1620
1621
1622 static int read_partial(struct ceph_connection *con,
1623 int end, int size, void *object)
1624 {
1625 while (con->in_base_pos < end) {
1626 int left = end - con->in_base_pos;
1627 int have = size - left;
1628 int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
1629 if (ret <= 0)
1630 return ret;
1631 con->in_base_pos += ret;
1632 }
1633 return 1;
1634 }
1635
1636
1637 /*
1638 * Read all or part of the connect-side handshake on a new connection
1639 */
1640 static int read_partial_banner(struct ceph_connection *con)
1641 {
1642 int size;
1643 int end;
1644 int ret;
1645
1646 dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
1647
1648 /* peer's banner */
1649 size = strlen(CEPH_BANNER);
1650 end = size;
1651 ret = read_partial(con, end, size, con->in_banner);
1652 if (ret <= 0)
1653 goto out;
1654
1655 size = sizeof (con->actual_peer_addr);
1656 end += size;
1657 ret = read_partial(con, end, size, &con->actual_peer_addr);
1658 if (ret <= 0)
1659 goto out;
1660
1661 size = sizeof (con->peer_addr_for_me);
1662 end += size;
1663 ret = read_partial(con, end, size, &con->peer_addr_for_me);
1664 if (ret <= 0)
1665 goto out;
1666
1667 out:
1668 return ret;
1669 }
1670
1671 static int read_partial_connect(struct ceph_connection *con)
1672 {
1673 int size;
1674 int end;
1675 int ret;
1676
1677 dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1678
1679 size = sizeof (con->in_reply);
1680 end = size;
1681 ret = read_partial(con, end, size, &con->in_reply);
1682 if (ret <= 0)
1683 goto out;
1684
1685 size = le32_to_cpu(con->in_reply.authorizer_len);
1686 end += size;
1687 ret = read_partial(con, end, size, con->auth_reply_buf);
1688 if (ret <= 0)
1689 goto out;
1690
1691 dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1692 con, (int)con->in_reply.tag,
1693 le32_to_cpu(con->in_reply.connect_seq),
1694 le32_to_cpu(con->in_reply.global_seq));
1695 out:
1696 return ret;
1697
1698 }
1699
1700 /*
1701 * Verify the hello banner looks okay.
1702 */
1703 static int verify_hello(struct ceph_connection *con)
1704 {
1705 if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1706 pr_err("connect to %s got bad banner\n",
1707 ceph_pr_addr(&con->peer_addr.in_addr));
1708 con->error_msg = "protocol error, bad banner";
1709 return -1;
1710 }
1711 return 0;
1712 }
1713
1714 static bool addr_is_blank(struct sockaddr_storage *ss)
1715 {
1716 switch (ss->ss_family) {
1717 case AF_INET:
1718 return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0;
1719 case AF_INET6:
1720 return
1721 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 &&
1722 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 &&
1723 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 &&
1724 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0;
1725 }
1726 return false;
1727 }
1728
1729 static int addr_port(struct sockaddr_storage *ss)
1730 {
1731 switch (ss->ss_family) {
1732 case AF_INET:
1733 return ntohs(((struct sockaddr_in *)ss)->sin_port);
1734 case AF_INET6:
1735 return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
1736 }
1737 return 0;
1738 }
1739
1740 static void addr_set_port(struct sockaddr_storage *ss, int p)
1741 {
1742 switch (ss->ss_family) {
1743 case AF_INET:
1744 ((struct sockaddr_in *)ss)->sin_port = htons(p);
1745 break;
1746 case AF_INET6:
1747 ((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
1748 break;
1749 }
1750 }
1751
1752 /*
1753 * Unlike other *_pton function semantics, zero indicates success.
1754 */
1755 static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
1756 char delim, const char **ipend)
1757 {
1758 struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
1759 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
1760
1761 memset(ss, 0, sizeof(*ss));
1762
1763 if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
1764 ss->ss_family = AF_INET;
1765 return 0;
1766 }
1767
1768 if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
1769 ss->ss_family = AF_INET6;
1770 return 0;
1771 }
1772
1773 return -EINVAL;
1774 }
1775
1776 /*
1777 * Extract hostname string and resolve using kernel DNS facility.
1778 */
1779 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1780 static int ceph_dns_resolve_name(const char *name, size_t namelen,
1781 struct sockaddr_storage *ss, char delim, const char **ipend)
1782 {
1783 const char *end, *delim_p;
1784 char *colon_p, *ip_addr = NULL;
1785 int ip_len, ret;
1786
1787 /*
1788 * The end of the hostname occurs immediately preceding the delimiter or
1789 * the port marker (':') where the delimiter takes precedence.
1790 */
1791 delim_p = memchr(name, delim, namelen);
1792 colon_p = memchr(name, ':', namelen);
1793
1794 if (delim_p && colon_p)
1795 end = delim_p < colon_p ? delim_p : colon_p;
1796 else if (!delim_p && colon_p)
1797 end = colon_p;
1798 else {
1799 end = delim_p;
1800 if (!end) /* case: hostname:/ */
1801 end = name + namelen;
1802 }
1803
1804 if (end <= name)
1805 return -EINVAL;
1806
1807 /* do dns_resolve upcall */
1808 ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
1809 if (ip_len > 0)
1810 ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
1811 else
1812 ret = -ESRCH;
1813
1814 kfree(ip_addr);
1815
1816 *ipend = end;
1817
1818 pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1819 ret, ret ? "failed" : ceph_pr_addr(ss));
1820
1821 return ret;
1822 }
1823 #else
1824 static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1825 struct sockaddr_storage *ss, char delim, const char **ipend)
1826 {
1827 return -EINVAL;
1828 }
1829 #endif
1830
1831 /*
1832 * Parse a server name (IP or hostname). If a valid IP address is not found
1833 * then try to extract a hostname to resolve using userspace DNS upcall.
1834 */
1835 static int ceph_parse_server_name(const char *name, size_t namelen,
1836 struct sockaddr_storage *ss, char delim, const char **ipend)
1837 {
1838 int ret;
1839
1840 ret = ceph_pton(name, namelen, ss, delim, ipend);
1841 if (ret)
1842 ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
1843
1844 return ret;
1845 }
1846
1847 /*
1848 * Parse an ip[:port] list into an addr array. Use the default
1849 * monitor port if a port isn't specified.
1850 */
1851 int ceph_parse_ips(const char *c, const char *end,
1852 struct ceph_entity_addr *addr,
1853 int max_count, int *count)
1854 {
1855 int i, ret = -EINVAL;
1856 const char *p = c;
1857
1858 dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1859 for (i = 0; i < max_count; i++) {
1860 const char *ipend;
1861 struct sockaddr_storage *ss = &addr[i].in_addr;
1862 int port;
1863 char delim = ',';
1864
1865 if (*p == '[') {
1866 delim = ']';
1867 p++;
1868 }
1869
1870 ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
1871 if (ret)
1872 goto bad;
1873 ret = -EINVAL;
1874
1875 p = ipend;
1876
1877 if (delim == ']') {
1878 if (*p != ']') {
1879 dout("missing matching ']'\n");
1880 goto bad;
1881 }
1882 p++;
1883 }
1884
1885 /* port? */
1886 if (p < end && *p == ':') {
1887 port = 0;
1888 p++;
1889 while (p < end && *p >= '0' && *p <= '9') {
1890 port = (port * 10) + (*p - '0');
1891 p++;
1892 }
1893 if (port > 65535 || port == 0)
1894 goto bad;
1895 } else {
1896 port = CEPH_MON_PORT;
1897 }
1898
1899 addr_set_port(ss, port);
1900
1901 dout("parse_ips got %s\n", ceph_pr_addr(ss));
1902
1903 if (p == end)
1904 break;
1905 if (*p != ',')
1906 goto bad;
1907 p++;
1908 }
1909
1910 if (p != end)
1911 goto bad;
1912
1913 if (count)
1914 *count = i + 1;
1915 return 0;
1916
1917 bad:
1918 pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
1919 return ret;
1920 }
1921 EXPORT_SYMBOL(ceph_parse_ips);
1922
1923 static int process_banner(struct ceph_connection *con)
1924 {
1925 dout("process_banner on %p\n", con);
1926
1927 if (verify_hello(con) < 0)
1928 return -1;
1929
1930 ceph_decode_addr(&con->actual_peer_addr);
1931 ceph_decode_addr(&con->peer_addr_for_me);
1932
1933 /*
1934 * Make sure the other end is who we wanted. note that the other
1935 * end may not yet know their ip address, so if it's 0.0.0.0, give
1936 * them the benefit of the doubt.
1937 */
1938 if (memcmp(&con->peer_addr, &con->actual_peer_addr,
1939 sizeof(con->peer_addr)) != 0 &&
1940 !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
1941 con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
1942 pr_warning("wrong peer, want %s/%d, got %s/%d\n",
1943 ceph_pr_addr(&con->peer_addr.in_addr),
1944 (int)le32_to_cpu(con->peer_addr.nonce),
1945 ceph_pr_addr(&con->actual_peer_addr.in_addr),
1946 (int)le32_to_cpu(con->actual_peer_addr.nonce));
1947 con->error_msg = "wrong peer at address";
1948 return -1;
1949 }
1950
1951 /*
1952 * did we learn our address?
1953 */
1954 if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
1955 int port = addr_port(&con->msgr->inst.addr.in_addr);
1956
1957 memcpy(&con->msgr->inst.addr.in_addr,
1958 &con->peer_addr_for_me.in_addr,
1959 sizeof(con->peer_addr_for_me.in_addr));
1960 addr_set_port(&con->msgr->inst.addr.in_addr, port);
1961 encode_my_addr(con->msgr);
1962 dout("process_banner learned my addr is %s\n",
1963 ceph_pr_addr(&con->msgr->inst.addr.in_addr));
1964 }
1965
1966 return 0;
1967 }
1968
1969 static int process_connect(struct ceph_connection *con)
1970 {
1971 u64 sup_feat = con->msgr->supported_features;
1972 u64 req_feat = con->msgr->required_features;
1973 u64 server_feat = le64_to_cpu(con->in_reply.features);
1974 int ret;
1975
1976 dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
1977
1978 if (con->auth_reply_buf) {
1979 /*
1980 * Any connection that defines ->get_authorizer()
1981 * should also define ->verify_authorizer_reply().
1982 * See get_connect_authorizer().
1983 */
1984 ret = con->ops->verify_authorizer_reply(con, 0);
1985 if (ret < 0) {
1986 con->error_msg = "bad authorize reply";
1987 return ret;
1988 }
1989 }
1990
1991 switch (con->in_reply.tag) {
1992 case CEPH_MSGR_TAG_FEATURES:
1993 pr_err("%s%lld %s feature set mismatch,"
1994 " my %llx < server's %llx, missing %llx\n",
1995 ENTITY_NAME(con->peer_name),
1996 ceph_pr_addr(&con->peer_addr.in_addr),
1997 sup_feat, server_feat, server_feat & ~sup_feat);
1998 con->error_msg = "missing required protocol features";
1999 reset_connection(con);
2000 return -1;
2001
2002 case CEPH_MSGR_TAG_BADPROTOVER:
2003 pr_err("%s%lld %s protocol version mismatch,"
2004 " my %d != server's %d\n",
2005 ENTITY_NAME(con->peer_name),
2006 ceph_pr_addr(&con->peer_addr.in_addr),
2007 le32_to_cpu(con->out_connect.protocol_version),
2008 le32_to_cpu(con->in_reply.protocol_version));
2009 con->error_msg = "protocol version mismatch";
2010 reset_connection(con);
2011 return -1;
2012
2013 case CEPH_MSGR_TAG_BADAUTHORIZER:
2014 con->auth_retry++;
2015 dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
2016 con->auth_retry);
2017 if (con->auth_retry == 2) {
2018 con->error_msg = "connect authorization failure";
2019 return -1;
2020 }
2021 con_out_kvec_reset(con);
2022 ret = prepare_write_connect(con);
2023 if (ret < 0)
2024 return ret;
2025 prepare_read_connect(con);
2026 break;
2027
2028 case CEPH_MSGR_TAG_RESETSESSION:
2029 /*
2030 * If we connected with a large connect_seq but the peer
2031 * has no record of a session with us (no connection, or
2032 * connect_seq == 0), they will send RESETSESION to indicate
2033 * that they must have reset their session, and may have
2034 * dropped messages.
2035 */
2036 dout("process_connect got RESET peer seq %u\n",
2037 le32_to_cpu(con->in_reply.connect_seq));
2038 pr_err("%s%lld %s connection reset\n",
2039 ENTITY_NAME(con->peer_name),
2040 ceph_pr_addr(&con->peer_addr.in_addr));
2041 reset_connection(con);
2042 con_out_kvec_reset(con);
2043 ret = prepare_write_connect(con);
2044 if (ret < 0)
2045 return ret;
2046 prepare_read_connect(con);
2047
2048 /* Tell ceph about it. */
2049 mutex_unlock(&con->mutex);
2050 pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
2051 if (con->ops->peer_reset)
2052 con->ops->peer_reset(con);
2053 mutex_lock(&con->mutex);
2054 if (con->state != CON_STATE_NEGOTIATING)
2055 return -EAGAIN;
2056 break;
2057
2058 case CEPH_MSGR_TAG_RETRY_SESSION:
2059 /*
2060 * If we sent a smaller connect_seq than the peer has, try
2061 * again with a larger value.
2062 */
2063 dout("process_connect got RETRY_SESSION my seq %u, peer %u\n",
2064 le32_to_cpu(con->out_connect.connect_seq),
2065 le32_to_cpu(con->in_reply.connect_seq));
2066 con->connect_seq = le32_to_cpu(con->in_reply.connect_seq);
2067 con_out_kvec_reset(con);
2068 ret = prepare_write_connect(con);
2069 if (ret < 0)
2070 return ret;
2071 prepare_read_connect(con);
2072 break;
2073
2074 case CEPH_MSGR_TAG_RETRY_GLOBAL:
2075 /*
2076 * If we sent a smaller global_seq than the peer has, try
2077 * again with a larger value.
2078 */
2079 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
2080 con->peer_global_seq,
2081 le32_to_cpu(con->in_reply.global_seq));
2082 get_global_seq(con->msgr,
2083 le32_to_cpu(con->in_reply.global_seq));
2084 con_out_kvec_reset(con);
2085 ret = prepare_write_connect(con);
2086 if (ret < 0)
2087 return ret;
2088 prepare_read_connect(con);
2089 break;
2090
2091 case CEPH_MSGR_TAG_SEQ:
2092 case CEPH_MSGR_TAG_READY:
2093 if (req_feat & ~server_feat) {
2094 pr_err("%s%lld %s protocol feature mismatch,"
2095 " my required %llx > server's %llx, need %llx\n",
2096 ENTITY_NAME(con->peer_name),
2097 ceph_pr_addr(&con->peer_addr.in_addr),
2098 req_feat, server_feat, req_feat & ~server_feat);
2099 con->error_msg = "missing required protocol features";
2100 reset_connection(con);
2101 return -1;
2102 }
2103
2104 WARN_ON(con->state != CON_STATE_NEGOTIATING);
2105 con->state = CON_STATE_OPEN;
2106 con->auth_retry = 0; /* we authenticated; clear flag */
2107 con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
2108 con->connect_seq++;
2109 con->peer_features = server_feat;
2110 dout("process_connect got READY gseq %d cseq %d (%d)\n",
2111 con->peer_global_seq,
2112 le32_to_cpu(con->in_reply.connect_seq),
2113 con->connect_seq);
2114 WARN_ON(con->connect_seq !=
2115 le32_to_cpu(con->in_reply.connect_seq));
2116
2117 if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
2118 con_flag_set(con, CON_FLAG_LOSSYTX);
2119
2120 con->delay = 0; /* reset backoff memory */
2121
2122 if (con->in_reply.tag == CEPH_MSGR_TAG_SEQ) {
2123 prepare_write_seq(con);
2124 prepare_read_seq(con);
2125 } else {
2126 prepare_read_tag(con);
2127 }
2128 break;
2129
2130 case CEPH_MSGR_TAG_WAIT:
2131 /*
2132 * If there is a connection race (we are opening
2133 * connections to each other), one of us may just have
2134 * to WAIT. This shouldn't happen if we are the
2135 * client.
2136 */
2137 pr_err("process_connect got WAIT as client\n");
2138 con->error_msg = "protocol error, got WAIT as client";
2139 return -1;
2140
2141 default:
2142 pr_err("connect protocol error, will retry\n");
2143 con->error_msg = "protocol error, garbage tag during connect";
2144 return -1;
2145 }
2146 return 0;
2147 }
2148
2149
2150 /*
2151 * read (part of) an ack
2152 */
2153 static int read_partial_ack(struct ceph_connection *con)
2154 {
2155 int size = sizeof (con->in_temp_ack);
2156 int end = size;
2157
2158 return read_partial(con, end, size, &con->in_temp_ack);
2159 }
2160
2161 /*
2162 * We can finally discard anything that's been acked.
2163 */
2164 static void process_ack(struct ceph_connection *con)
2165 {
2166 struct ceph_msg *m;
2167 u64 ack = le64_to_cpu(con->in_temp_ack);
2168 u64 seq;
2169
2170 while (!list_empty(&con->out_sent)) {
2171 m = list_first_entry(&con->out_sent, struct ceph_msg,
2172 list_head);
2173 seq = le64_to_cpu(m->hdr.seq);
2174 if (seq > ack)
2175 break;
2176 dout("got ack for seq %llu type %d at %p\n", seq,
2177 le16_to_cpu(m->hdr.type), m);
2178 m->ack_stamp = jiffies;
2179 ceph_msg_remove(m);
2180 }
2181 prepare_read_tag(con);
2182 }
2183
2184
2185 static int read_partial_message_section(struct ceph_connection *con,
2186 struct kvec *section,
2187 unsigned int sec_len, u32 *crc)
2188 {
2189 int ret, left;
2190
2191 BUG_ON(!section);
2192
2193 while (section->iov_len < sec_len) {
2194 BUG_ON(section->iov_base == NULL);
2195 left = sec_len - section->iov_len;
2196 ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
2197 section->iov_len, left);
2198 if (ret <= 0)
2199 return ret;
2200 section->iov_len += ret;
2201 }
2202 if (section->iov_len == sec_len)
2203 *crc = crc32c(0, section->iov_base, section->iov_len);
2204
2205 return 1;
2206 }
2207
2208 static int read_partial_msg_data(struct ceph_connection *con)
2209 {
2210 struct ceph_msg *msg = con->in_msg;
2211 struct ceph_msg_data_cursor *cursor = &msg->cursor;
2212 const bool do_datacrc = !con->msgr->nocrc;
2213 struct page *page;
2214 size_t page_offset;
2215 size_t length;
2216 u32 crc = 0;
2217 int ret;
2218
2219 BUG_ON(!msg);
2220 if (list_empty(&msg->data))
2221 return -EIO;
2222
2223 if (do_datacrc)
2224 crc = con->in_data_crc;
2225 while (cursor->resid) {
2226 page = ceph_msg_data_next(&msg->cursor, &page_offset, &length,
2227 NULL);
2228 ret = ceph_tcp_recvpage(con->sock, page, page_offset, length);
2229 if (ret <= 0) {
2230 if (do_datacrc)
2231 con->in_data_crc = crc;
2232
2233 return ret;
2234 }
2235
2236 if (do_datacrc)
2237 crc = ceph_crc32c_page(crc, page, page_offset, ret);
2238 (void) ceph_msg_data_advance(&msg->cursor, (size_t)ret);
2239 }
2240 if (do_datacrc)
2241 con->in_data_crc = crc;
2242
2243 return 1; /* must return > 0 to indicate success */
2244 }
2245
2246 /*
2247 * read (part of) a message.
2248 */
2249 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip);
2250
2251 static int read_partial_message(struct ceph_connection *con)
2252 {
2253 struct ceph_msg *m = con->in_msg;
2254 int size;
2255 int end;
2256 int ret;
2257 unsigned int front_len, middle_len, data_len;
2258 bool do_datacrc = !con->msgr->nocrc;
2259 u64 seq;
2260 u32 crc;
2261
2262 dout("read_partial_message con %p msg %p\n", con, m);
2263
2264 /* header */
2265 size = sizeof (con->in_hdr);
2266 end = size;
2267 ret = read_partial(con, end, size, &con->in_hdr);
2268 if (ret <= 0)
2269 return ret;
2270
2271 crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
2272 if (cpu_to_le32(crc) != con->in_hdr.crc) {
2273 pr_err("read_partial_message bad hdr "
2274 " crc %u != expected %u\n",
2275 crc, con->in_hdr.crc);
2276 return -EBADMSG;
2277 }
2278
2279 front_len = le32_to_cpu(con->in_hdr.front_len);
2280 if (front_len > CEPH_MSG_MAX_FRONT_LEN)
2281 return -EIO;
2282 middle_len = le32_to_cpu(con->in_hdr.middle_len);
2283 if (middle_len > CEPH_MSG_MAX_MIDDLE_LEN)
2284 return -EIO;
2285 data_len = le32_to_cpu(con->in_hdr.data_len);
2286 if (data_len > CEPH_MSG_MAX_DATA_LEN)
2287 return -EIO;
2288
2289 /* verify seq# */
2290 seq = le64_to_cpu(con->in_hdr.seq);
2291 if ((s64)seq - (s64)con->in_seq < 1) {
2292 pr_info("skipping %s%lld %s seq %lld expected %lld\n",
2293 ENTITY_NAME(con->peer_name),
2294 ceph_pr_addr(&con->peer_addr.in_addr),
2295 seq, con->in_seq + 1);
2296 con->in_base_pos = -front_len - middle_len - data_len -
2297 sizeof(m->footer);
2298 con->in_tag = CEPH_MSGR_TAG_READY;
2299 return 1;
2300 } else if ((s64)seq - (s64)con->in_seq > 1) {
2301 pr_err("read_partial_message bad seq %lld expected %lld\n",
2302 seq, con->in_seq + 1);
2303 con->error_msg = "bad message sequence # for incoming message";
2304 return -EBADMSG;
2305 }
2306
2307 /* allocate message? */
2308 if (!con->in_msg) {
2309 int skip = 0;
2310
2311 dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
2312 front_len, data_len);
2313 ret = ceph_con_in_msg_alloc(con, &skip);
2314 if (ret < 0)
2315 return ret;
2316
2317 BUG_ON(!con->in_msg ^ skip);
2318 if (con->in_msg && data_len > con->in_msg->data_length) {
2319 pr_warning("%s skipping long message (%u > %zd)\n",
2320 __func__, data_len, con->in_msg->data_length);
2321 ceph_msg_put(con->in_msg);
2322 con->in_msg = NULL;
2323 skip = 1;
2324 }
2325 if (skip) {
2326 /* skip this message */
2327 dout("alloc_msg said skip message\n");
2328 con->in_base_pos = -front_len - middle_len - data_len -
2329 sizeof(m->footer);
2330 con->in_tag = CEPH_MSGR_TAG_READY;
2331 con->in_seq++;
2332 return 1;
2333 }
2334
2335 BUG_ON(!con->in_msg);
2336 BUG_ON(con->in_msg->con != con);
2337 m = con->in_msg;
2338 m->front.iov_len = 0; /* haven't read it yet */
2339 if (m->middle)
2340 m->middle->vec.iov_len = 0;
2341
2342 /* prepare for data payload, if any */
2343
2344 if (data_len)
2345 prepare_message_data(con->in_msg, data_len);
2346 }
2347
2348 /* front */
2349 ret = read_partial_message_section(con, &m->front, front_len,
2350 &con->in_front_crc);
2351 if (ret <= 0)
2352 return ret;
2353
2354 /* middle */
2355 if (m->middle) {
2356 ret = read_partial_message_section(con, &m->middle->vec,
2357 middle_len,
2358 &con->in_middle_crc);
2359 if (ret <= 0)
2360 return ret;
2361 }
2362
2363 /* (page) data */
2364 if (data_len) {
2365 ret = read_partial_msg_data(con);
2366 if (ret <= 0)
2367 return ret;
2368 }
2369
2370 /* footer */
2371 size = sizeof (m->footer);
2372 end += size;
2373 ret = read_partial(con, end, size, &m->footer);
2374 if (ret <= 0)
2375 return ret;
2376
2377 dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
2378 m, front_len, m->footer.front_crc, middle_len,
2379 m->footer.middle_crc, data_len, m->footer.data_crc);
2380
2381 /* crc ok? */
2382 if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
2383 pr_err("read_partial_message %p front crc %u != exp. %u\n",
2384 m, con->in_front_crc, m->footer.front_crc);
2385 return -EBADMSG;
2386 }
2387 if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
2388 pr_err("read_partial_message %p middle crc %u != exp %u\n",
2389 m, con->in_middle_crc, m->footer.middle_crc);
2390 return -EBADMSG;
2391 }
2392 if (do_datacrc &&
2393 (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
2394 con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
2395 pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
2396 con->in_data_crc, le32_to_cpu(m->footer.data_crc));
2397 return -EBADMSG;
2398 }
2399
2400 return 1; /* done! */
2401 }
2402
2403 /*
2404 * Process message. This happens in the worker thread. The callback should
2405 * be careful not to do anything that waits on other incoming messages or it
2406 * may deadlock.
2407 */
2408 static void process_message(struct ceph_connection *con)
2409 {
2410 struct ceph_msg *msg;
2411
2412 BUG_ON(con->in_msg->con != con);
2413 con->in_msg->con = NULL;
2414 msg = con->in_msg;
2415 con->in_msg = NULL;
2416 con->ops->put(con);
2417
2418 /* if first message, set peer_name */
2419 if (con->peer_name.type == 0)
2420 con->peer_name = msg->hdr.src;
2421
2422 con->in_seq++;
2423 mutex_unlock(&con->mutex);
2424
2425 dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
2426 msg, le64_to_cpu(msg->hdr.seq),
2427 ENTITY_NAME(msg->hdr.src),
2428 le16_to_cpu(msg->hdr.type),
2429 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2430 le32_to_cpu(msg->hdr.front_len),
2431 le32_to_cpu(msg->hdr.data_len),
2432 con->in_front_crc, con->in_middle_crc, con->in_data_crc);
2433 con->ops->dispatch(con, msg);
2434
2435 mutex_lock(&con->mutex);
2436 }
2437
2438
2439 /*
2440 * Write something to the socket. Called in a worker thread when the
2441 * socket appears to be writeable and we have something ready to send.
2442 */
2443 static int try_write(struct ceph_connection *con)
2444 {
2445 int ret = 1;
2446
2447 dout("try_write start %p state %lu\n", con, con->state);
2448
2449 more:
2450 dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
2451
2452 /* open the socket first? */
2453 if (con->state == CON_STATE_PREOPEN) {
2454 BUG_ON(con->sock);
2455 con->state = CON_STATE_CONNECTING;
2456
2457 con_out_kvec_reset(con);
2458 prepare_write_banner(con);
2459 prepare_read_banner(con);
2460
2461 BUG_ON(con->in_msg);
2462 con->in_tag = CEPH_MSGR_TAG_READY;
2463 dout("try_write initiating connect on %p new state %lu\n",
2464 con, con->state);
2465 ret = ceph_tcp_connect(con);
2466 if (ret < 0) {
2467 con->error_msg = "connect error";
2468 goto out;
2469 }
2470 }
2471
2472 more_kvec:
2473 /* kvec data queued? */
2474 if (con->out_skip) {
2475 ret = write_partial_skip(con);
2476 if (ret <= 0)
2477 goto out;
2478 }
2479 if (con->out_kvec_left) {
2480 ret = write_partial_kvec(con);
2481 if (ret <= 0)
2482 goto out;
2483 }
2484
2485 /* msg pages? */
2486 if (con->out_msg) {
2487 if (con->out_msg_done) {
2488 ceph_msg_put(con->out_msg);
2489 con->out_msg = NULL; /* we're done with this one */
2490 goto do_next;
2491 }
2492
2493 ret = write_partial_message_data(con);
2494 if (ret == 1)
2495 goto more_kvec; /* we need to send the footer, too! */
2496 if (ret == 0)
2497 goto out;
2498 if (ret < 0) {
2499 dout("try_write write_partial_message_data err %d\n",
2500 ret);
2501 goto out;
2502 }
2503 }
2504
2505 do_next:
2506 if (con->state == CON_STATE_OPEN) {
2507 /* is anything else pending? */
2508 if (!list_empty(&con->out_queue)) {
2509 prepare_write_message(con);
2510 goto more;
2511 }
2512 if (con->in_seq > con->in_seq_acked) {
2513 prepare_write_ack(con);
2514 goto more;
2515 }
2516 if (con_flag_test_and_clear(con, CON_FLAG_KEEPALIVE_PENDING)) {
2517 prepare_write_keepalive(con);
2518 goto more;
2519 }
2520 }
2521
2522 /* Nothing to do! */
2523 con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2524 dout("try_write nothing else to write.\n");
2525 ret = 0;
2526 out:
2527 dout("try_write done on %p ret %d\n", con, ret);
2528 return ret;
2529 }
2530
2531
2532
2533 /*
2534 * Read what we can from the socket.
2535 */
2536 static int try_read(struct ceph_connection *con)
2537 {
2538 int ret = -1;
2539
2540 more:
2541 dout("try_read start on %p state %lu\n", con, con->state);
2542 if (con->state != CON_STATE_CONNECTING &&
2543 con->state != CON_STATE_NEGOTIATING &&
2544 con->state != CON_STATE_OPEN)
2545 return 0;
2546
2547 BUG_ON(!con->sock);
2548
2549 dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
2550 con->in_base_pos);
2551
2552 if (con->state == CON_STATE_CONNECTING) {
2553 dout("try_read connecting\n");
2554 ret = read_partial_banner(con);
2555 if (ret <= 0)
2556 goto out;
2557 ret = process_banner(con);
2558 if (ret < 0)
2559 goto out;
2560
2561 con->state = CON_STATE_NEGOTIATING;
2562
2563 /*
2564 * Received banner is good, exchange connection info.
2565 * Do not reset out_kvec, as sending our banner raced
2566 * with receiving peer banner after connect completed.
2567 */
2568 ret = prepare_write_connect(con);
2569 if (ret < 0)
2570 goto out;
2571 prepare_read_connect(con);
2572
2573 /* Send connection info before awaiting response */
2574 goto out;
2575 }
2576
2577 if (con->state == CON_STATE_NEGOTIATING) {
2578 dout("try_read negotiating\n");
2579 ret = read_partial_connect(con);
2580 if (ret <= 0)
2581 goto out;
2582 ret = process_connect(con);
2583 if (ret < 0)
2584 goto out;
2585 goto more;
2586 }
2587
2588 WARN_ON(con->state != CON_STATE_OPEN);
2589
2590 if (con->in_base_pos < 0) {
2591 /*
2592 * skipping + discarding content.
2593 *
2594 * FIXME: there must be a better way to do this!
2595 */
2596 static char buf[SKIP_BUF_SIZE];
2597 int skip = min((int) sizeof (buf), -con->in_base_pos);
2598
2599 dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
2600 ret = ceph_tcp_recvmsg(con->sock, buf, skip);
2601 if (ret <= 0)
2602 goto out;
2603 con->in_base_pos += ret;
2604 if (con->in_base_pos)
2605 goto more;
2606 }
2607 if (con->in_tag == CEPH_MSGR_TAG_READY) {
2608 /*
2609 * what's next?
2610 */
2611 ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
2612 if (ret <= 0)
2613 goto out;
2614 dout("try_read got tag %d\n", (int)con->in_tag);
2615 switch (con->in_tag) {
2616 case CEPH_MSGR_TAG_MSG:
2617 prepare_read_message(con);
2618 break;
2619 case CEPH_MSGR_TAG_ACK:
2620 prepare_read_ack(con);
2621 break;
2622 case CEPH_MSGR_TAG_CLOSE:
2623 con_close_socket(con);
2624 con->state = CON_STATE_CLOSED;
2625 goto out;
2626 default:
2627 goto bad_tag;
2628 }
2629 }
2630 if (con->in_tag == CEPH_MSGR_TAG_MSG) {
2631 ret = read_partial_message(con);
2632 if (ret <= 0) {
2633 switch (ret) {
2634 case -EBADMSG:
2635 con->error_msg = "bad crc";
2636 ret = -EIO;
2637 break;
2638 case -EIO:
2639 con->error_msg = "io error";
2640 break;
2641 }
2642 goto out;
2643 }
2644 if (con->in_tag == CEPH_MSGR_TAG_READY)
2645 goto more;
2646 process_message(con);
2647 if (con->state == CON_STATE_OPEN)
2648 prepare_read_tag(con);
2649 goto more;
2650 }
2651 if (con->in_tag == CEPH_MSGR_TAG_ACK ||
2652 con->in_tag == CEPH_MSGR_TAG_SEQ) {
2653 /*
2654 * the final handshake seq exchange is semantically
2655 * equivalent to an ACK
2656 */
2657 ret = read_partial_ack(con);
2658 if (ret <= 0)
2659 goto out;
2660 process_ack(con);
2661 goto more;
2662 }
2663
2664 out:
2665 dout("try_read done on %p ret %d\n", con, ret);
2666 return ret;
2667
2668 bad_tag:
2669 pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
2670 con->error_msg = "protocol error, garbage tag";
2671 ret = -1;
2672 goto out;
2673 }
2674
2675
2676 /*
2677 * Atomically queue work on a connection after the specified delay.
2678 * Bump @con reference to avoid races with connection teardown.
2679 * Returns 0 if work was queued, or an error code otherwise.
2680 */
2681 static int queue_con_delay(struct ceph_connection *con, unsigned long delay)
2682 {
2683 if (!con->ops->get(con)) {
2684 dout("%s %p ref count 0\n", __func__, con);
2685
2686 return -ENOENT;
2687 }
2688
2689 if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) {
2690 dout("%s %p - already queued\n", __func__, con);
2691 con->ops->put(con);
2692
2693 return -EBUSY;
2694 }
2695
2696 dout("%s %p %lu\n", __func__, con, delay);
2697
2698 return 0;
2699 }
2700
2701 static void queue_con(struct ceph_connection *con)
2702 {
2703 (void) queue_con_delay(con, 0);
2704 }
2705
2706 static bool con_sock_closed(struct ceph_connection *con)
2707 {
2708 if (!con_flag_test_and_clear(con, CON_FLAG_SOCK_CLOSED))
2709 return false;
2710
2711 #define CASE(x) \
2712 case CON_STATE_ ## x: \
2713 con->error_msg = "socket closed (con state " #x ")"; \
2714 break;
2715
2716 switch (con->state) {
2717 CASE(CLOSED);
2718 CASE(PREOPEN);
2719 CASE(CONNECTING);
2720 CASE(NEGOTIATING);
2721 CASE(OPEN);
2722 CASE(STANDBY);
2723 default:
2724 pr_warning("%s con %p unrecognized state %lu\n",
2725 __func__, con, con->state);
2726 con->error_msg = "unrecognized con state";
2727 BUG();
2728 break;
2729 }
2730 #undef CASE
2731
2732 return true;
2733 }
2734
2735 static bool con_backoff(struct ceph_connection *con)
2736 {
2737 int ret;
2738
2739 if (!con_flag_test_and_clear(con, CON_FLAG_BACKOFF))
2740 return false;
2741
2742 ret = queue_con_delay(con, round_jiffies_relative(con->delay));
2743 if (ret) {
2744 dout("%s: con %p FAILED to back off %lu\n", __func__,
2745 con, con->delay);
2746 BUG_ON(ret == -ENOENT);
2747 con_flag_set(con, CON_FLAG_BACKOFF);
2748 }
2749
2750 return true;
2751 }
2752
2753 /* Finish fault handling; con->mutex must *not* be held here */
2754
2755 static void con_fault_finish(struct ceph_connection *con)
2756 {
2757 /*
2758 * in case we faulted due to authentication, invalidate our
2759 * current tickets so that we can get new ones.
2760 */
2761 if (con->auth_retry && con->ops->invalidate_authorizer) {
2762 dout("calling invalidate_authorizer()\n");
2763 con->ops->invalidate_authorizer(con);
2764 }
2765
2766 if (con->ops->fault)
2767 con->ops->fault(con);
2768 }
2769
2770 /*
2771 * Do some work on a connection. Drop a connection ref when we're done.
2772 */
2773 static void con_work(struct work_struct *work)
2774 {
2775 struct ceph_connection *con = container_of(work, struct ceph_connection,
2776 work.work);
2777 bool fault;
2778
2779 mutex_lock(&con->mutex);
2780 while (true) {
2781 int ret;
2782
2783 if ((fault = con_sock_closed(con))) {
2784 dout("%s: con %p SOCK_CLOSED\n", __func__, con);
2785 break;
2786 }
2787 if (con_backoff(con)) {
2788 dout("%s: con %p BACKOFF\n", __func__, con);
2789 break;
2790 }
2791 if (con->state == CON_STATE_STANDBY) {
2792 dout("%s: con %p STANDBY\n", __func__, con);
2793 break;
2794 }
2795 if (con->state == CON_STATE_CLOSED) {
2796 dout("%s: con %p CLOSED\n", __func__, con);
2797 BUG_ON(con->sock);
2798 break;
2799 }
2800 if (con->state == CON_STATE_PREOPEN) {
2801 dout("%s: con %p PREOPEN\n", __func__, con);
2802 BUG_ON(con->sock);
2803 }
2804
2805 ret = try_read(con);
2806 if (ret < 0) {
2807 if (ret == -EAGAIN)
2808 continue;
2809 con->error_msg = "socket error on read";
2810 fault = true;
2811 break;
2812 }
2813
2814 ret = try_write(con);
2815 if (ret < 0) {
2816 if (ret == -EAGAIN)
2817 continue;
2818 con->error_msg = "socket error on write";
2819 fault = true;
2820 }
2821
2822 break; /* If we make it to here, we're done */
2823 }
2824 if (fault)
2825 con_fault(con);
2826 mutex_unlock(&con->mutex);
2827
2828 if (fault)
2829 con_fault_finish(con);
2830
2831 con->ops->put(con);
2832 }
2833
2834 /*
2835 * Generic error/fault handler. A retry mechanism is used with
2836 * exponential backoff
2837 */
2838 static void con_fault(struct ceph_connection *con)
2839 {
2840 pr_warning("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
2841 ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
2842 dout("fault %p state %lu to peer %s\n",
2843 con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
2844
2845 WARN_ON(con->state != CON_STATE_CONNECTING &&
2846 con->state != CON_STATE_NEGOTIATING &&
2847 con->state != CON_STATE_OPEN);
2848
2849 con_close_socket(con);
2850
2851 if (con_flag_test(con, CON_FLAG_LOSSYTX)) {
2852 dout("fault on LOSSYTX channel, marking CLOSED\n");
2853 con->state = CON_STATE_CLOSED;
2854 return;
2855 }
2856
2857 if (con->in_msg) {
2858 BUG_ON(con->in_msg->con != con);
2859 con->in_msg->con = NULL;
2860 ceph_msg_put(con->in_msg);
2861 con->in_msg = NULL;
2862 con->ops->put(con);
2863 }
2864
2865 /* Requeue anything that hasn't been acked */
2866 list_splice_init(&con->out_sent, &con->out_queue);
2867
2868 /* If there are no messages queued or keepalive pending, place
2869 * the connection in a STANDBY state */
2870 if (list_empty(&con->out_queue) &&
2871 !con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING)) {
2872 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
2873 con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2874 con->state = CON_STATE_STANDBY;
2875 } else {
2876 /* retry after a delay. */
2877 con->state = CON_STATE_PREOPEN;
2878 if (con->delay == 0)
2879 con->delay = BASE_DELAY_INTERVAL;
2880 else if (con->delay < MAX_DELAY_INTERVAL)
2881 con->delay *= 2;
2882 con_flag_set(con, CON_FLAG_BACKOFF);
2883 queue_con(con);
2884 }
2885 }
2886
2887
2888
2889 /*
2890 * initialize a new messenger instance
2891 */
2892 void ceph_messenger_init(struct ceph_messenger *msgr,
2893 struct ceph_entity_addr *myaddr,
2894 u32 supported_features,
2895 u32 required_features,
2896 bool nocrc)
2897 {
2898 msgr->supported_features = supported_features;
2899 msgr->required_features = required_features;
2900
2901 spin_lock_init(&msgr->global_seq_lock);
2902
2903 if (myaddr)
2904 msgr->inst.addr = *myaddr;
2905
2906 /* select a random nonce */
2907 msgr->inst.addr.type = 0;
2908 get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
2909 encode_my_addr(msgr);
2910 msgr->nocrc = nocrc;
2911
2912 atomic_set(&msgr->stopping, 0);
2913
2914 dout("%s %p\n", __func__, msgr);
2915 }
2916 EXPORT_SYMBOL(ceph_messenger_init);
2917
2918 static void clear_standby(struct ceph_connection *con)
2919 {
2920 /* come back from STANDBY? */
2921 if (con->state == CON_STATE_STANDBY) {
2922 dout("clear_standby %p and ++connect_seq\n", con);
2923 con->state = CON_STATE_PREOPEN;
2924 con->connect_seq++;
2925 WARN_ON(con_flag_test(con, CON_FLAG_WRITE_PENDING));
2926 WARN_ON(con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING));
2927 }
2928 }
2929
2930 /*
2931 * Queue up an outgoing message on the given connection.
2932 */
2933 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
2934 {
2935 /* set src+dst */
2936 msg->hdr.src = con->msgr->inst.name;
2937 BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
2938 msg->needs_out_seq = true;
2939
2940 mutex_lock(&con->mutex);
2941
2942 if (con->state == CON_STATE_CLOSED) {
2943 dout("con_send %p closed, dropping %p\n", con, msg);
2944 ceph_msg_put(msg);
2945 mutex_unlock(&con->mutex);
2946 return;
2947 }
2948
2949 BUG_ON(msg->con != NULL);
2950 msg->con = con->ops->get(con);
2951 BUG_ON(msg->con == NULL);
2952
2953 BUG_ON(!list_empty(&msg->list_head));
2954 list_add_tail(&msg->list_head, &con->out_queue);
2955 dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
2956 ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
2957 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2958 le32_to_cpu(msg->hdr.front_len),
2959 le32_to_cpu(msg->hdr.middle_len),
2960 le32_to_cpu(msg->hdr.data_len));
2961
2962 clear_standby(con);
2963 mutex_unlock(&con->mutex);
2964
2965 /* if there wasn't anything waiting to send before, queue
2966 * new work */
2967 if (con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
2968 queue_con(con);
2969 }
2970 EXPORT_SYMBOL(ceph_con_send);
2971
2972 /*
2973 * Revoke a message that was previously queued for send
2974 */
2975 void ceph_msg_revoke(struct ceph_msg *msg)
2976 {
2977 struct ceph_connection *con = msg->con;
2978
2979 if (!con)
2980 return; /* Message not in our possession */
2981
2982 mutex_lock(&con->mutex);
2983 if (!list_empty(&msg->list_head)) {
2984 dout("%s %p msg %p - was on queue\n", __func__, con, msg);
2985 list_del_init(&msg->list_head);
2986 BUG_ON(msg->con == NULL);
2987 msg->con->ops->put(msg->con);
2988 msg->con = NULL;
2989 msg->hdr.seq = 0;
2990
2991 ceph_msg_put(msg);
2992 }
2993 if (con->out_msg == msg) {
2994 dout("%s %p msg %p - was sending\n", __func__, con, msg);
2995 con->out_msg = NULL;
2996 if (con->out_kvec_is_msg) {
2997 con->out_skip = con->out_kvec_bytes;
2998 con->out_kvec_is_msg = false;
2999 }
3000 msg->hdr.seq = 0;
3001
3002 ceph_msg_put(msg);
3003 }
3004 mutex_unlock(&con->mutex);
3005 }
3006
3007 /*
3008 * Revoke a message that we may be reading data into
3009 */
3010 void ceph_msg_revoke_incoming(struct ceph_msg *msg)
3011 {
3012 struct ceph_connection *con;
3013
3014 BUG_ON(msg == NULL);
3015 if (!msg->con) {
3016 dout("%s msg %p null con\n", __func__, msg);
3017
3018 return; /* Message not in our possession */
3019 }
3020
3021 con = msg->con;
3022 mutex_lock(&con->mutex);
3023 if (con->in_msg == msg) {
3024 unsigned int front_len = le32_to_cpu(con->in_hdr.front_len);
3025 unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len);
3026 unsigned int data_len = le32_to_cpu(con->in_hdr.data_len);
3027
3028 /* skip rest of message */
3029 dout("%s %p msg %p revoked\n", __func__, con, msg);
3030 con->in_base_pos = con->in_base_pos -
3031 sizeof(struct ceph_msg_header) -
3032 front_len -
3033 middle_len -
3034 data_len -
3035 sizeof(struct ceph_msg_footer);
3036 ceph_msg_put(con->in_msg);
3037 con->in_msg = NULL;
3038 con->in_tag = CEPH_MSGR_TAG_READY;
3039 con->in_seq++;
3040 } else {
3041 dout("%s %p in_msg %p msg %p no-op\n",
3042 __func__, con, con->in_msg, msg);
3043 }
3044 mutex_unlock(&con->mutex);
3045 }
3046
3047 /*
3048 * Queue a keepalive byte to ensure the tcp connection is alive.
3049 */
3050 void ceph_con_keepalive(struct ceph_connection *con)
3051 {
3052 dout("con_keepalive %p\n", con);
3053 mutex_lock(&con->mutex);
3054 clear_standby(con);
3055 mutex_unlock(&con->mutex);
3056 if (con_flag_test_and_set(con, CON_FLAG_KEEPALIVE_PENDING) == 0 &&
3057 con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
3058 queue_con(con);
3059 }
3060 EXPORT_SYMBOL(ceph_con_keepalive);
3061
3062 static struct ceph_msg_data *ceph_msg_data_create(enum ceph_msg_data_type type)
3063 {
3064 struct ceph_msg_data *data;
3065
3066 if (WARN_ON(!ceph_msg_data_type_valid(type)))
3067 return NULL;
3068
3069 data = kmem_cache_zalloc(ceph_msg_data_cache, GFP_NOFS);
3070 if (data)
3071 data->type = type;
3072 INIT_LIST_HEAD(&data->links);
3073
3074 return data;
3075 }
3076
3077 static void ceph_msg_data_destroy(struct ceph_msg_data *data)
3078 {
3079 if (!data)
3080 return;
3081
3082 WARN_ON(!list_empty(&data->links));
3083 if (data->type == CEPH_MSG_DATA_PAGELIST) {
3084 ceph_pagelist_release(data->pagelist);
3085 kfree(data->pagelist);
3086 }
3087 kmem_cache_free(ceph_msg_data_cache, data);
3088 }
3089
3090 void ceph_msg_data_add_pages(struct ceph_msg *msg, struct page **pages,
3091 size_t length, size_t alignment)
3092 {
3093 struct ceph_msg_data *data;
3094
3095 BUG_ON(!pages);
3096 BUG_ON(!length);
3097
3098 data = ceph_msg_data_create(CEPH_MSG_DATA_PAGES);
3099 BUG_ON(!data);
3100 data->pages = pages;
3101 data->length = length;
3102 data->alignment = alignment & ~PAGE_MASK;
3103
3104 list_add_tail(&data->links, &msg->data);
3105 msg->data_length += length;
3106 }
3107 EXPORT_SYMBOL(ceph_msg_data_add_pages);
3108
3109 void ceph_msg_data_add_pagelist(struct ceph_msg *msg,
3110 struct ceph_pagelist *pagelist)
3111 {
3112 struct ceph_msg_data *data;
3113
3114 BUG_ON(!pagelist);
3115 BUG_ON(!pagelist->length);
3116
3117 data = ceph_msg_data_create(CEPH_MSG_DATA_PAGELIST);
3118 BUG_ON(!data);
3119 data->pagelist = pagelist;
3120
3121 list_add_tail(&data->links, &msg->data);
3122 msg->data_length += pagelist->length;
3123 }
3124 EXPORT_SYMBOL(ceph_msg_data_add_pagelist);
3125
3126 #ifdef CONFIG_BLOCK
3127 void ceph_msg_data_add_bio(struct ceph_msg *msg, struct bio *bio,
3128 size_t length)
3129 {
3130 struct ceph_msg_data *data;
3131
3132 BUG_ON(!bio);
3133
3134 data = ceph_msg_data_create(CEPH_MSG_DATA_BIO);
3135 BUG_ON(!data);
3136 data->bio = bio;
3137 data->bio_length = length;
3138
3139 list_add_tail(&data->links, &msg->data);
3140 msg->data_length += length;
3141 }
3142 EXPORT_SYMBOL(ceph_msg_data_add_bio);
3143 #endif /* CONFIG_BLOCK */
3144
3145 /*
3146 * construct a new message with given type, size
3147 * the new msg has a ref count of 1.
3148 */
3149 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
3150 bool can_fail)
3151 {
3152 struct ceph_msg *m;
3153
3154 m = kmem_cache_zalloc(ceph_msg_cache, flags);
3155 if (m == NULL)
3156 goto out;
3157
3158 m->hdr.type = cpu_to_le16(type);
3159 m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
3160 m->hdr.front_len = cpu_to_le32(front_len);
3161
3162 INIT_LIST_HEAD(&m->list_head);
3163 kref_init(&m->kref);
3164 INIT_LIST_HEAD(&m->data);
3165
3166 /* front */
3167 m->front_alloc_len = front_len;
3168 if (front_len) {
3169 if (front_len > PAGE_CACHE_SIZE) {
3170 m->front.iov_base = __vmalloc(front_len, flags,
3171 PAGE_KERNEL);
3172 m->front_is_vmalloc = true;
3173 } else {
3174 m->front.iov_base = kmalloc(front_len, flags);
3175 }
3176 if (m->front.iov_base == NULL) {
3177 dout("ceph_msg_new can't allocate %d bytes\n",
3178 front_len);
3179 goto out2;
3180 }
3181 } else {
3182 m->front.iov_base = NULL;
3183 }
3184 m->front.iov_len = front_len;
3185
3186 dout("ceph_msg_new %p front %d\n", m, front_len);
3187 return m;
3188
3189 out2:
3190 ceph_msg_put(m);
3191 out:
3192 if (!can_fail) {
3193 pr_err("msg_new can't create type %d front %d\n", type,
3194 front_len);
3195 WARN_ON(1);
3196 } else {
3197 dout("msg_new can't create type %d front %d\n", type,
3198 front_len);
3199 }
3200 return NULL;
3201 }
3202 EXPORT_SYMBOL(ceph_msg_new);
3203
3204 /*
3205 * Allocate "middle" portion of a message, if it is needed and wasn't
3206 * allocated by alloc_msg. This allows us to read a small fixed-size
3207 * per-type header in the front and then gracefully fail (i.e.,
3208 * propagate the error to the caller based on info in the front) when
3209 * the middle is too large.
3210 */
3211 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
3212 {
3213 int type = le16_to_cpu(msg->hdr.type);
3214 int middle_len = le32_to_cpu(msg->hdr.middle_len);
3215
3216 dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
3217 ceph_msg_type_name(type), middle_len);
3218 BUG_ON(!middle_len);
3219 BUG_ON(msg->middle);
3220
3221 msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
3222 if (!msg->middle)
3223 return -ENOMEM;
3224 return 0;
3225 }
3226
3227 /*
3228 * Allocate a message for receiving an incoming message on a
3229 * connection, and save the result in con->in_msg. Uses the
3230 * connection's private alloc_msg op if available.
3231 *
3232 * Returns 0 on success, or a negative error code.
3233 *
3234 * On success, if we set *skip = 1:
3235 * - the next message should be skipped and ignored.
3236 * - con->in_msg == NULL
3237 * or if we set *skip = 0:
3238 * - con->in_msg is non-null.
3239 * On error (ENOMEM, EAGAIN, ...),
3240 * - con->in_msg == NULL
3241 */
3242 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip)
3243 {
3244 struct ceph_msg_header *hdr = &con->in_hdr;
3245 int middle_len = le32_to_cpu(hdr->middle_len);
3246 struct ceph_msg *msg;
3247 int ret = 0;
3248
3249 BUG_ON(con->in_msg != NULL);
3250 BUG_ON(!con->ops->alloc_msg);
3251
3252 mutex_unlock(&con->mutex);
3253 msg = con->ops->alloc_msg(con, hdr, skip);
3254 mutex_lock(&con->mutex);
3255 if (con->state != CON_STATE_OPEN) {
3256 if (msg)
3257 ceph_msg_put(msg);
3258 return -EAGAIN;
3259 }
3260 if (msg) {
3261 BUG_ON(*skip);
3262 con->in_msg = msg;
3263 con->in_msg->con = con->ops->get(con);
3264 BUG_ON(con->in_msg->con == NULL);
3265 } else {
3266 /*
3267 * Null message pointer means either we should skip
3268 * this message or we couldn't allocate memory. The
3269 * former is not an error.
3270 */
3271 if (*skip)
3272 return 0;
3273 con->error_msg = "error allocating memory for incoming message";
3274
3275 return -ENOMEM;
3276 }
3277 memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
3278
3279 if (middle_len && !con->in_msg->middle) {
3280 ret = ceph_alloc_middle(con, con->in_msg);
3281 if (ret < 0) {
3282 ceph_msg_put(con->in_msg);
3283 con->in_msg = NULL;
3284 }
3285 }
3286
3287 return ret;
3288 }
3289
3290
3291 /*
3292 * Free a generically kmalloc'd message.
3293 */
3294 void ceph_msg_kfree(struct ceph_msg *m)
3295 {
3296 dout("msg_kfree %p\n", m);
3297 if (m->front_is_vmalloc)
3298 vfree(m->front.iov_base);
3299 else
3300 kfree(m->front.iov_base);
3301 kmem_cache_free(ceph_msg_cache, m);
3302 }
3303
3304 /*
3305 * Drop a msg ref. Destroy as needed.
3306 */
3307 void ceph_msg_last_put(struct kref *kref)
3308 {
3309 struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
3310 LIST_HEAD(data);
3311 struct list_head *links;
3312 struct list_head *next;
3313
3314 dout("ceph_msg_put last one on %p\n", m);
3315 WARN_ON(!list_empty(&m->list_head));
3316
3317 /* drop middle, data, if any */
3318 if (m->middle) {
3319 ceph_buffer_put(m->middle);
3320 m->middle = NULL;
3321 }
3322
3323 list_splice_init(&m->data, &data);
3324 list_for_each_safe(links, next, &data) {
3325 struct ceph_msg_data *data;
3326
3327 data = list_entry(links, struct ceph_msg_data, links);
3328 list_del_init(links);
3329 ceph_msg_data_destroy(data);
3330 }
3331 m->data_length = 0;
3332
3333 if (m->pool)
3334 ceph_msgpool_put(m->pool, m);
3335 else
3336 ceph_msg_kfree(m);
3337 }
3338 EXPORT_SYMBOL(ceph_msg_last_put);
3339
3340 void ceph_msg_dump(struct ceph_msg *msg)
3341 {
3342 pr_debug("msg_dump %p (front_alloc_len %d length %zd)\n", msg,
3343 msg->front_alloc_len, msg->data_length);
3344 print_hex_dump(KERN_DEBUG, "header: ",
3345 DUMP_PREFIX_OFFSET, 16, 1,
3346 &msg->hdr, sizeof(msg->hdr), true);
3347 print_hex_dump(KERN_DEBUG, " front: ",
3348 DUMP_PREFIX_OFFSET, 16, 1,
3349 msg->front.iov_base, msg->front.iov_len, true);
3350 if (msg->middle)
3351 print_hex_dump(KERN_DEBUG, "middle: ",
3352 DUMP_PREFIX_OFFSET, 16, 1,
3353 msg->middle->vec.iov_base,
3354 msg->middle->vec.iov_len, true);
3355 print_hex_dump(KERN_DEBUG, "footer: ",
3356 DUMP_PREFIX_OFFSET, 16, 1,
3357 &msg->footer, sizeof(msg->footer), true);
3358 }
3359 EXPORT_SYMBOL(ceph_msg_dump);