Merge remote-tracking branch 'spi/fix/grant' into spi-linus
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / ceph / messenger.c
1 #include <linux/ceph/ceph_debug.h>
2
3 #include <linux/crc32c.h>
4 #include <linux/ctype.h>
5 #include <linux/highmem.h>
6 #include <linux/inet.h>
7 #include <linux/kthread.h>
8 #include <linux/net.h>
9 #include <linux/slab.h>
10 #include <linux/socket.h>
11 #include <linux/string.h>
12 #ifdef CONFIG_BLOCK
13 #include <linux/bio.h>
14 #endif /* CONFIG_BLOCK */
15 #include <linux/dns_resolver.h>
16 #include <net/tcp.h>
17
18 #include <linux/ceph/libceph.h>
19 #include <linux/ceph/messenger.h>
20 #include <linux/ceph/decode.h>
21 #include <linux/ceph/pagelist.h>
22 #include <linux/export.h>
23
24 #define list_entry_next(pos, member) \
25 list_entry(pos->member.next, typeof(*pos), member)
26
27 /*
28 * Ceph uses the messenger to exchange ceph_msg messages with other
29 * hosts in the system. The messenger provides ordered and reliable
30 * delivery. We tolerate TCP disconnects by reconnecting (with
31 * exponential backoff) in the case of a fault (disconnection, bad
32 * crc, protocol error). Acks allow sent messages to be discarded by
33 * the sender.
34 */
35
36 /*
37 * We track the state of the socket on a given connection using
38 * values defined below. The transition to a new socket state is
39 * handled by a function which verifies we aren't coming from an
40 * unexpected state.
41 *
42 * --------
43 * | NEW* | transient initial state
44 * --------
45 * | con_sock_state_init()
46 * v
47 * ----------
48 * | CLOSED | initialized, but no socket (and no
49 * ---------- TCP connection)
50 * ^ \
51 * | \ con_sock_state_connecting()
52 * | ----------------------
53 * | \
54 * + con_sock_state_closed() \
55 * |+--------------------------- \
56 * | \ \ \
57 * | ----------- \ \
58 * | | CLOSING | socket event; \ \
59 * | ----------- await close \ \
60 * | ^ \ |
61 * | | \ |
62 * | + con_sock_state_closing() \ |
63 * | / \ | |
64 * | / --------------- | |
65 * | / \ v v
66 * | / --------------
67 * | / -----------------| CONNECTING | socket created, TCP
68 * | | / -------------- connect initiated
69 * | | | con_sock_state_connected()
70 * | | v
71 * -------------
72 * | CONNECTED | TCP connection established
73 * -------------
74 *
75 * State values for ceph_connection->sock_state; NEW is assumed to be 0.
76 */
77
78 #define CON_SOCK_STATE_NEW 0 /* -> CLOSED */
79 #define CON_SOCK_STATE_CLOSED 1 /* -> CONNECTING */
80 #define CON_SOCK_STATE_CONNECTING 2 /* -> CONNECTED or -> CLOSING */
81 #define CON_SOCK_STATE_CONNECTED 3 /* -> CLOSING or -> CLOSED */
82 #define CON_SOCK_STATE_CLOSING 4 /* -> CLOSED */
83
84 /*
85 * connection states
86 */
87 #define CON_STATE_CLOSED 1 /* -> PREOPEN */
88 #define CON_STATE_PREOPEN 2 /* -> CONNECTING, CLOSED */
89 #define CON_STATE_CONNECTING 3 /* -> NEGOTIATING, CLOSED */
90 #define CON_STATE_NEGOTIATING 4 /* -> OPEN, CLOSED */
91 #define CON_STATE_OPEN 5 /* -> STANDBY, CLOSED */
92 #define CON_STATE_STANDBY 6 /* -> PREOPEN, CLOSED */
93
94 /*
95 * ceph_connection flag bits
96 */
97 #define CON_FLAG_LOSSYTX 0 /* we can close channel or drop
98 * messages on errors */
99 #define CON_FLAG_KEEPALIVE_PENDING 1 /* we need to send a keepalive */
100 #define CON_FLAG_WRITE_PENDING 2 /* we have data ready to send */
101 #define CON_FLAG_SOCK_CLOSED 3 /* socket state changed to closed */
102 #define CON_FLAG_BACKOFF 4 /* need to retry queuing delayed work */
103
104 static bool con_flag_valid(unsigned long con_flag)
105 {
106 switch (con_flag) {
107 case CON_FLAG_LOSSYTX:
108 case CON_FLAG_KEEPALIVE_PENDING:
109 case CON_FLAG_WRITE_PENDING:
110 case CON_FLAG_SOCK_CLOSED:
111 case CON_FLAG_BACKOFF:
112 return true;
113 default:
114 return false;
115 }
116 }
117
118 static void con_flag_clear(struct ceph_connection *con, unsigned long con_flag)
119 {
120 BUG_ON(!con_flag_valid(con_flag));
121
122 clear_bit(con_flag, &con->flags);
123 }
124
125 static void con_flag_set(struct ceph_connection *con, unsigned long con_flag)
126 {
127 BUG_ON(!con_flag_valid(con_flag));
128
129 set_bit(con_flag, &con->flags);
130 }
131
132 static bool con_flag_test(struct ceph_connection *con, unsigned long con_flag)
133 {
134 BUG_ON(!con_flag_valid(con_flag));
135
136 return test_bit(con_flag, &con->flags);
137 }
138
139 static bool con_flag_test_and_clear(struct ceph_connection *con,
140 unsigned long con_flag)
141 {
142 BUG_ON(!con_flag_valid(con_flag));
143
144 return test_and_clear_bit(con_flag, &con->flags);
145 }
146
147 static bool con_flag_test_and_set(struct ceph_connection *con,
148 unsigned long con_flag)
149 {
150 BUG_ON(!con_flag_valid(con_flag));
151
152 return test_and_set_bit(con_flag, &con->flags);
153 }
154
155 /* Slab caches for frequently-allocated structures */
156
157 static struct kmem_cache *ceph_msg_cache;
158 static struct kmem_cache *ceph_msg_data_cache;
159
160 /* static tag bytes (protocol control messages) */
161 static char tag_msg = CEPH_MSGR_TAG_MSG;
162 static char tag_ack = CEPH_MSGR_TAG_ACK;
163 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
164
165 #ifdef CONFIG_LOCKDEP
166 static struct lock_class_key socket_class;
167 #endif
168
169 /*
170 * When skipping (ignoring) a block of input we read it into a "skip
171 * buffer," which is this many bytes in size.
172 */
173 #define SKIP_BUF_SIZE 1024
174
175 static void queue_con(struct ceph_connection *con);
176 static void con_work(struct work_struct *);
177 static void con_fault(struct ceph_connection *con);
178
179 /*
180 * Nicely render a sockaddr as a string. An array of formatted
181 * strings is used, to approximate reentrancy.
182 */
183 #define ADDR_STR_COUNT_LOG 5 /* log2(# address strings in array) */
184 #define ADDR_STR_COUNT (1 << ADDR_STR_COUNT_LOG)
185 #define ADDR_STR_COUNT_MASK (ADDR_STR_COUNT - 1)
186 #define MAX_ADDR_STR_LEN 64 /* 54 is enough */
187
188 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
189 static atomic_t addr_str_seq = ATOMIC_INIT(0);
190
191 static struct page *zero_page; /* used in certain error cases */
192
193 const char *ceph_pr_addr(const struct sockaddr_storage *ss)
194 {
195 int i;
196 char *s;
197 struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
198 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
199
200 i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
201 s = addr_str[i];
202
203 switch (ss->ss_family) {
204 case AF_INET:
205 snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr,
206 ntohs(in4->sin_port));
207 break;
208
209 case AF_INET6:
210 snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr,
211 ntohs(in6->sin6_port));
212 break;
213
214 default:
215 snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
216 ss->ss_family);
217 }
218
219 return s;
220 }
221 EXPORT_SYMBOL(ceph_pr_addr);
222
223 static void encode_my_addr(struct ceph_messenger *msgr)
224 {
225 memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
226 ceph_encode_addr(&msgr->my_enc_addr);
227 }
228
229 /*
230 * work queue for all reading and writing to/from the socket.
231 */
232 static struct workqueue_struct *ceph_msgr_wq;
233
234 static int ceph_msgr_slab_init(void)
235 {
236 BUG_ON(ceph_msg_cache);
237 ceph_msg_cache = kmem_cache_create("ceph_msg",
238 sizeof (struct ceph_msg),
239 __alignof__(struct ceph_msg), 0, NULL);
240
241 if (!ceph_msg_cache)
242 return -ENOMEM;
243
244 BUG_ON(ceph_msg_data_cache);
245 ceph_msg_data_cache = kmem_cache_create("ceph_msg_data",
246 sizeof (struct ceph_msg_data),
247 __alignof__(struct ceph_msg_data),
248 0, NULL);
249 if (ceph_msg_data_cache)
250 return 0;
251
252 kmem_cache_destroy(ceph_msg_cache);
253 ceph_msg_cache = NULL;
254
255 return -ENOMEM;
256 }
257
258 static void ceph_msgr_slab_exit(void)
259 {
260 BUG_ON(!ceph_msg_data_cache);
261 kmem_cache_destroy(ceph_msg_data_cache);
262 ceph_msg_data_cache = NULL;
263
264 BUG_ON(!ceph_msg_cache);
265 kmem_cache_destroy(ceph_msg_cache);
266 ceph_msg_cache = NULL;
267 }
268
269 static void _ceph_msgr_exit(void)
270 {
271 if (ceph_msgr_wq) {
272 destroy_workqueue(ceph_msgr_wq);
273 ceph_msgr_wq = NULL;
274 }
275
276 ceph_msgr_slab_exit();
277
278 BUG_ON(zero_page == NULL);
279 kunmap(zero_page);
280 page_cache_release(zero_page);
281 zero_page = NULL;
282 }
283
284 int ceph_msgr_init(void)
285 {
286 BUG_ON(zero_page != NULL);
287 zero_page = ZERO_PAGE(0);
288 page_cache_get(zero_page);
289
290 if (ceph_msgr_slab_init())
291 return -ENOMEM;
292
293 ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_NON_REENTRANT, 0);
294 if (ceph_msgr_wq)
295 return 0;
296
297 pr_err("msgr_init failed to create workqueue\n");
298 _ceph_msgr_exit();
299
300 return -ENOMEM;
301 }
302 EXPORT_SYMBOL(ceph_msgr_init);
303
304 void ceph_msgr_exit(void)
305 {
306 BUG_ON(ceph_msgr_wq == NULL);
307
308 _ceph_msgr_exit();
309 }
310 EXPORT_SYMBOL(ceph_msgr_exit);
311
312 void ceph_msgr_flush(void)
313 {
314 flush_workqueue(ceph_msgr_wq);
315 }
316 EXPORT_SYMBOL(ceph_msgr_flush);
317
318 /* Connection socket state transition functions */
319
320 static void con_sock_state_init(struct ceph_connection *con)
321 {
322 int old_state;
323
324 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
325 if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
326 printk("%s: unexpected old state %d\n", __func__, old_state);
327 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
328 CON_SOCK_STATE_CLOSED);
329 }
330
331 static void con_sock_state_connecting(struct ceph_connection *con)
332 {
333 int old_state;
334
335 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
336 if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
337 printk("%s: unexpected old state %d\n", __func__, old_state);
338 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
339 CON_SOCK_STATE_CONNECTING);
340 }
341
342 static void con_sock_state_connected(struct ceph_connection *con)
343 {
344 int old_state;
345
346 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
347 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
348 printk("%s: unexpected old state %d\n", __func__, old_state);
349 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
350 CON_SOCK_STATE_CONNECTED);
351 }
352
353 static void con_sock_state_closing(struct ceph_connection *con)
354 {
355 int old_state;
356
357 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
358 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
359 old_state != CON_SOCK_STATE_CONNECTED &&
360 old_state != CON_SOCK_STATE_CLOSING))
361 printk("%s: unexpected old state %d\n", __func__, old_state);
362 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
363 CON_SOCK_STATE_CLOSING);
364 }
365
366 static void con_sock_state_closed(struct ceph_connection *con)
367 {
368 int old_state;
369
370 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
371 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
372 old_state != CON_SOCK_STATE_CLOSING &&
373 old_state != CON_SOCK_STATE_CONNECTING &&
374 old_state != CON_SOCK_STATE_CLOSED))
375 printk("%s: unexpected old state %d\n", __func__, old_state);
376 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
377 CON_SOCK_STATE_CLOSED);
378 }
379
380 /*
381 * socket callback functions
382 */
383
384 /* data available on socket, or listen socket received a connect */
385 static void ceph_sock_data_ready(struct sock *sk, int count_unused)
386 {
387 struct ceph_connection *con = sk->sk_user_data;
388 if (atomic_read(&con->msgr->stopping)) {
389 return;
390 }
391
392 if (sk->sk_state != TCP_CLOSE_WAIT) {
393 dout("%s on %p state = %lu, queueing work\n", __func__,
394 con, con->state);
395 queue_con(con);
396 }
397 }
398
399 /* socket has buffer space for writing */
400 static void ceph_sock_write_space(struct sock *sk)
401 {
402 struct ceph_connection *con = sk->sk_user_data;
403
404 /* only queue to workqueue if there is data we want to write,
405 * and there is sufficient space in the socket buffer to accept
406 * more data. clear SOCK_NOSPACE so that ceph_sock_write_space()
407 * doesn't get called again until try_write() fills the socket
408 * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
409 * and net/core/stream.c:sk_stream_write_space().
410 */
411 if (con_flag_test(con, CON_FLAG_WRITE_PENDING)) {
412 if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
413 dout("%s %p queueing write work\n", __func__, con);
414 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
415 queue_con(con);
416 }
417 } else {
418 dout("%s %p nothing to write\n", __func__, con);
419 }
420 }
421
422 /* socket's state has changed */
423 static void ceph_sock_state_change(struct sock *sk)
424 {
425 struct ceph_connection *con = sk->sk_user_data;
426
427 dout("%s %p state = %lu sk_state = %u\n", __func__,
428 con, con->state, sk->sk_state);
429
430 switch (sk->sk_state) {
431 case TCP_CLOSE:
432 dout("%s TCP_CLOSE\n", __func__);
433 case TCP_CLOSE_WAIT:
434 dout("%s TCP_CLOSE_WAIT\n", __func__);
435 con_sock_state_closing(con);
436 con_flag_set(con, CON_FLAG_SOCK_CLOSED);
437 queue_con(con);
438 break;
439 case TCP_ESTABLISHED:
440 dout("%s TCP_ESTABLISHED\n", __func__);
441 con_sock_state_connected(con);
442 queue_con(con);
443 break;
444 default: /* Everything else is uninteresting */
445 break;
446 }
447 }
448
449 /*
450 * set up socket callbacks
451 */
452 static void set_sock_callbacks(struct socket *sock,
453 struct ceph_connection *con)
454 {
455 struct sock *sk = sock->sk;
456 sk->sk_user_data = con;
457 sk->sk_data_ready = ceph_sock_data_ready;
458 sk->sk_write_space = ceph_sock_write_space;
459 sk->sk_state_change = ceph_sock_state_change;
460 }
461
462
463 /*
464 * socket helpers
465 */
466
467 /*
468 * initiate connection to a remote socket.
469 */
470 static int ceph_tcp_connect(struct ceph_connection *con)
471 {
472 struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
473 struct socket *sock;
474 int ret;
475
476 BUG_ON(con->sock);
477 ret = sock_create_kern(con->peer_addr.in_addr.ss_family, SOCK_STREAM,
478 IPPROTO_TCP, &sock);
479 if (ret)
480 return ret;
481 sock->sk->sk_allocation = GFP_NOFS;
482
483 #ifdef CONFIG_LOCKDEP
484 lockdep_set_class(&sock->sk->sk_lock, &socket_class);
485 #endif
486
487 set_sock_callbacks(sock, con);
488
489 dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
490
491 con_sock_state_connecting(con);
492 ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
493 O_NONBLOCK);
494 if (ret == -EINPROGRESS) {
495 dout("connect %s EINPROGRESS sk_state = %u\n",
496 ceph_pr_addr(&con->peer_addr.in_addr),
497 sock->sk->sk_state);
498 } else if (ret < 0) {
499 pr_err("connect %s error %d\n",
500 ceph_pr_addr(&con->peer_addr.in_addr), ret);
501 sock_release(sock);
502 con->error_msg = "connect error";
503
504 return ret;
505 }
506 con->sock = sock;
507 return 0;
508 }
509
510 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
511 {
512 struct kvec iov = {buf, len};
513 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
514 int r;
515
516 r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
517 if (r == -EAGAIN)
518 r = 0;
519 return r;
520 }
521
522 static int ceph_tcp_recvpage(struct socket *sock, struct page *page,
523 int page_offset, size_t length)
524 {
525 void *kaddr;
526 int ret;
527
528 BUG_ON(page_offset + length > PAGE_SIZE);
529
530 kaddr = kmap(page);
531 BUG_ON(!kaddr);
532 ret = ceph_tcp_recvmsg(sock, kaddr + page_offset, length);
533 kunmap(page);
534
535 return ret;
536 }
537
538 /*
539 * write something. @more is true if caller will be sending more data
540 * shortly.
541 */
542 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
543 size_t kvlen, size_t len, int more)
544 {
545 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
546 int r;
547
548 if (more)
549 msg.msg_flags |= MSG_MORE;
550 else
551 msg.msg_flags |= MSG_EOR; /* superfluous, but what the hell */
552
553 r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
554 if (r == -EAGAIN)
555 r = 0;
556 return r;
557 }
558
559 static int ceph_tcp_sendpage(struct socket *sock, struct page *page,
560 int offset, size_t size, bool more)
561 {
562 int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR);
563 int ret;
564
565 ret = kernel_sendpage(sock, page, offset, size, flags);
566 if (ret == -EAGAIN)
567 ret = 0;
568
569 return ret;
570 }
571
572
573 /*
574 * Shutdown/close the socket for the given connection.
575 */
576 static int con_close_socket(struct ceph_connection *con)
577 {
578 int rc = 0;
579
580 dout("con_close_socket on %p sock %p\n", con, con->sock);
581 if (con->sock) {
582 rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
583 sock_release(con->sock);
584 con->sock = NULL;
585 }
586
587 /*
588 * Forcibly clear the SOCK_CLOSED flag. It gets set
589 * independent of the connection mutex, and we could have
590 * received a socket close event before we had the chance to
591 * shut the socket down.
592 */
593 con_flag_clear(con, CON_FLAG_SOCK_CLOSED);
594
595 con_sock_state_closed(con);
596 return rc;
597 }
598
599 /*
600 * Reset a connection. Discard all incoming and outgoing messages
601 * and clear *_seq state.
602 */
603 static void ceph_msg_remove(struct ceph_msg *msg)
604 {
605 list_del_init(&msg->list_head);
606 BUG_ON(msg->con == NULL);
607 msg->con->ops->put(msg->con);
608 msg->con = NULL;
609
610 ceph_msg_put(msg);
611 }
612 static void ceph_msg_remove_list(struct list_head *head)
613 {
614 while (!list_empty(head)) {
615 struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
616 list_head);
617 ceph_msg_remove(msg);
618 }
619 }
620
621 static void reset_connection(struct ceph_connection *con)
622 {
623 /* reset connection, out_queue, msg_ and connect_seq */
624 /* discard existing out_queue and msg_seq */
625 dout("reset_connection %p\n", con);
626 ceph_msg_remove_list(&con->out_queue);
627 ceph_msg_remove_list(&con->out_sent);
628
629 if (con->in_msg) {
630 BUG_ON(con->in_msg->con != con);
631 con->in_msg->con = NULL;
632 ceph_msg_put(con->in_msg);
633 con->in_msg = NULL;
634 con->ops->put(con);
635 }
636
637 con->connect_seq = 0;
638 con->out_seq = 0;
639 if (con->out_msg) {
640 ceph_msg_put(con->out_msg);
641 con->out_msg = NULL;
642 }
643 con->in_seq = 0;
644 con->in_seq_acked = 0;
645 }
646
647 /*
648 * mark a peer down. drop any open connections.
649 */
650 void ceph_con_close(struct ceph_connection *con)
651 {
652 mutex_lock(&con->mutex);
653 dout("con_close %p peer %s\n", con,
654 ceph_pr_addr(&con->peer_addr.in_addr));
655 con->state = CON_STATE_CLOSED;
656
657 con_flag_clear(con, CON_FLAG_LOSSYTX); /* so we retry next connect */
658 con_flag_clear(con, CON_FLAG_KEEPALIVE_PENDING);
659 con_flag_clear(con, CON_FLAG_WRITE_PENDING);
660 con_flag_clear(con, CON_FLAG_BACKOFF);
661
662 reset_connection(con);
663 con->peer_global_seq = 0;
664 cancel_delayed_work(&con->work);
665 con_close_socket(con);
666 mutex_unlock(&con->mutex);
667 }
668 EXPORT_SYMBOL(ceph_con_close);
669
670 /*
671 * Reopen a closed connection, with a new peer address.
672 */
673 void ceph_con_open(struct ceph_connection *con,
674 __u8 entity_type, __u64 entity_num,
675 struct ceph_entity_addr *addr)
676 {
677 mutex_lock(&con->mutex);
678 dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
679
680 WARN_ON(con->state != CON_STATE_CLOSED);
681 con->state = CON_STATE_PREOPEN;
682
683 con->peer_name.type = (__u8) entity_type;
684 con->peer_name.num = cpu_to_le64(entity_num);
685
686 memcpy(&con->peer_addr, addr, sizeof(*addr));
687 con->delay = 0; /* reset backoff memory */
688 mutex_unlock(&con->mutex);
689 queue_con(con);
690 }
691 EXPORT_SYMBOL(ceph_con_open);
692
693 /*
694 * return true if this connection ever successfully opened
695 */
696 bool ceph_con_opened(struct ceph_connection *con)
697 {
698 return con->connect_seq > 0;
699 }
700
701 /*
702 * initialize a new connection.
703 */
704 void ceph_con_init(struct ceph_connection *con, void *private,
705 const struct ceph_connection_operations *ops,
706 struct ceph_messenger *msgr)
707 {
708 dout("con_init %p\n", con);
709 memset(con, 0, sizeof(*con));
710 con->private = private;
711 con->ops = ops;
712 con->msgr = msgr;
713
714 con_sock_state_init(con);
715
716 mutex_init(&con->mutex);
717 INIT_LIST_HEAD(&con->out_queue);
718 INIT_LIST_HEAD(&con->out_sent);
719 INIT_DELAYED_WORK(&con->work, con_work);
720
721 con->state = CON_STATE_CLOSED;
722 }
723 EXPORT_SYMBOL(ceph_con_init);
724
725
726 /*
727 * We maintain a global counter to order connection attempts. Get
728 * a unique seq greater than @gt.
729 */
730 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
731 {
732 u32 ret;
733
734 spin_lock(&msgr->global_seq_lock);
735 if (msgr->global_seq < gt)
736 msgr->global_seq = gt;
737 ret = ++msgr->global_seq;
738 spin_unlock(&msgr->global_seq_lock);
739 return ret;
740 }
741
742 static void con_out_kvec_reset(struct ceph_connection *con)
743 {
744 con->out_kvec_left = 0;
745 con->out_kvec_bytes = 0;
746 con->out_kvec_cur = &con->out_kvec[0];
747 }
748
749 static void con_out_kvec_add(struct ceph_connection *con,
750 size_t size, void *data)
751 {
752 int index;
753
754 index = con->out_kvec_left;
755 BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
756
757 con->out_kvec[index].iov_len = size;
758 con->out_kvec[index].iov_base = data;
759 con->out_kvec_left++;
760 con->out_kvec_bytes += size;
761 }
762
763 #ifdef CONFIG_BLOCK
764
765 /*
766 * For a bio data item, a piece is whatever remains of the next
767 * entry in the current bio iovec, or the first entry in the next
768 * bio in the list.
769 */
770 static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor *cursor,
771 size_t length)
772 {
773 struct ceph_msg_data *data = cursor->data;
774 struct bio *bio;
775
776 BUG_ON(data->type != CEPH_MSG_DATA_BIO);
777
778 bio = data->bio;
779 BUG_ON(!bio);
780 BUG_ON(!bio->bi_vcnt);
781
782 cursor->resid = min(length, data->bio_length);
783 cursor->bio = bio;
784 cursor->vector_index = 0;
785 cursor->vector_offset = 0;
786 cursor->last_piece = length <= bio->bi_io_vec[0].bv_len;
787 }
788
789 static struct page *ceph_msg_data_bio_next(struct ceph_msg_data_cursor *cursor,
790 size_t *page_offset,
791 size_t *length)
792 {
793 struct ceph_msg_data *data = cursor->data;
794 struct bio *bio;
795 struct bio_vec *bio_vec;
796 unsigned int index;
797
798 BUG_ON(data->type != CEPH_MSG_DATA_BIO);
799
800 bio = cursor->bio;
801 BUG_ON(!bio);
802
803 index = cursor->vector_index;
804 BUG_ON(index >= (unsigned int) bio->bi_vcnt);
805
806 bio_vec = &bio->bi_io_vec[index];
807 BUG_ON(cursor->vector_offset >= bio_vec->bv_len);
808 *page_offset = (size_t) (bio_vec->bv_offset + cursor->vector_offset);
809 BUG_ON(*page_offset >= PAGE_SIZE);
810 if (cursor->last_piece) /* pagelist offset is always 0 */
811 *length = cursor->resid;
812 else
813 *length = (size_t) (bio_vec->bv_len - cursor->vector_offset);
814 BUG_ON(*length > cursor->resid);
815 BUG_ON(*page_offset + *length > PAGE_SIZE);
816
817 return bio_vec->bv_page;
818 }
819
820 static bool ceph_msg_data_bio_advance(struct ceph_msg_data_cursor *cursor,
821 size_t bytes)
822 {
823 struct bio *bio;
824 struct bio_vec *bio_vec;
825 unsigned int index;
826
827 BUG_ON(cursor->data->type != CEPH_MSG_DATA_BIO);
828
829 bio = cursor->bio;
830 BUG_ON(!bio);
831
832 index = cursor->vector_index;
833 BUG_ON(index >= (unsigned int) bio->bi_vcnt);
834 bio_vec = &bio->bi_io_vec[index];
835
836 /* Advance the cursor offset */
837
838 BUG_ON(cursor->resid < bytes);
839 cursor->resid -= bytes;
840 cursor->vector_offset += bytes;
841 if (cursor->vector_offset < bio_vec->bv_len)
842 return false; /* more bytes to process in this segment */
843 BUG_ON(cursor->vector_offset != bio_vec->bv_len);
844
845 /* Move on to the next segment, and possibly the next bio */
846
847 if (++index == (unsigned int) bio->bi_vcnt) {
848 bio = bio->bi_next;
849 index = 0;
850 }
851 cursor->bio = bio;
852 cursor->vector_index = index;
853 cursor->vector_offset = 0;
854
855 if (!cursor->last_piece) {
856 BUG_ON(!cursor->resid);
857 BUG_ON(!bio);
858 /* A short read is OK, so use <= rather than == */
859 if (cursor->resid <= bio->bi_io_vec[index].bv_len)
860 cursor->last_piece = true;
861 }
862
863 return true;
864 }
865 #endif /* CONFIG_BLOCK */
866
867 /*
868 * For a page array, a piece comes from the first page in the array
869 * that has not already been fully consumed.
870 */
871 static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor *cursor,
872 size_t length)
873 {
874 struct ceph_msg_data *data = cursor->data;
875 int page_count;
876
877 BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
878
879 BUG_ON(!data->pages);
880 BUG_ON(!data->length);
881
882 cursor->resid = min(length, data->length);
883 page_count = calc_pages_for(data->alignment, (u64)data->length);
884 cursor->page_offset = data->alignment & ~PAGE_MASK;
885 cursor->page_index = 0;
886 BUG_ON(page_count > (int)USHRT_MAX);
887 cursor->page_count = (unsigned short)page_count;
888 BUG_ON(length > SIZE_MAX - cursor->page_offset);
889 cursor->last_piece = (size_t)cursor->page_offset + length <= PAGE_SIZE;
890 }
891
892 static struct page *
893 ceph_msg_data_pages_next(struct ceph_msg_data_cursor *cursor,
894 size_t *page_offset, size_t *length)
895 {
896 struct ceph_msg_data *data = cursor->data;
897
898 BUG_ON(data->type != CEPH_MSG_DATA_PAGES);
899
900 BUG_ON(cursor->page_index >= cursor->page_count);
901 BUG_ON(cursor->page_offset >= PAGE_SIZE);
902
903 *page_offset = cursor->page_offset;
904 if (cursor->last_piece)
905 *length = cursor->resid;
906 else
907 *length = PAGE_SIZE - *page_offset;
908
909 return data->pages[cursor->page_index];
910 }
911
912 static bool ceph_msg_data_pages_advance(struct ceph_msg_data_cursor *cursor,
913 size_t bytes)
914 {
915 BUG_ON(cursor->data->type != CEPH_MSG_DATA_PAGES);
916
917 BUG_ON(cursor->page_offset + bytes > PAGE_SIZE);
918
919 /* Advance the cursor page offset */
920
921 cursor->resid -= bytes;
922 cursor->page_offset = (cursor->page_offset + bytes) & ~PAGE_MASK;
923 if (!bytes || cursor->page_offset)
924 return false; /* more bytes to process in the current page */
925
926 /* Move on to the next page; offset is already at 0 */
927
928 BUG_ON(cursor->page_index >= cursor->page_count);
929 cursor->page_index++;
930 cursor->last_piece = cursor->resid <= PAGE_SIZE;
931
932 return true;
933 }
934
935 /*
936 * For a pagelist, a piece is whatever remains to be consumed in the
937 * first page in the list, or the front of the next page.
938 */
939 static void
940 ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor *cursor,
941 size_t length)
942 {
943 struct ceph_msg_data *data = cursor->data;
944 struct ceph_pagelist *pagelist;
945 struct page *page;
946
947 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
948
949 pagelist = data->pagelist;
950 BUG_ON(!pagelist);
951
952 if (!length)
953 return; /* pagelist can be assigned but empty */
954
955 BUG_ON(list_empty(&pagelist->head));
956 page = list_first_entry(&pagelist->head, struct page, lru);
957
958 cursor->resid = min(length, pagelist->length);
959 cursor->page = page;
960 cursor->offset = 0;
961 cursor->last_piece = cursor->resid <= PAGE_SIZE;
962 }
963
964 static struct page *
965 ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor *cursor,
966 size_t *page_offset, size_t *length)
967 {
968 struct ceph_msg_data *data = cursor->data;
969 struct ceph_pagelist *pagelist;
970
971 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
972
973 pagelist = data->pagelist;
974 BUG_ON(!pagelist);
975
976 BUG_ON(!cursor->page);
977 BUG_ON(cursor->offset + cursor->resid != pagelist->length);
978
979 /* offset of first page in pagelist is always 0 */
980 *page_offset = cursor->offset & ~PAGE_MASK;
981 if (cursor->last_piece)
982 *length = cursor->resid;
983 else
984 *length = PAGE_SIZE - *page_offset;
985
986 return cursor->page;
987 }
988
989 static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor *cursor,
990 size_t bytes)
991 {
992 struct ceph_msg_data *data = cursor->data;
993 struct ceph_pagelist *pagelist;
994
995 BUG_ON(data->type != CEPH_MSG_DATA_PAGELIST);
996
997 pagelist = data->pagelist;
998 BUG_ON(!pagelist);
999
1000 BUG_ON(cursor->offset + cursor->resid != pagelist->length);
1001 BUG_ON((cursor->offset & ~PAGE_MASK) + bytes > PAGE_SIZE);
1002
1003 /* Advance the cursor offset */
1004
1005 cursor->resid -= bytes;
1006 cursor->offset += bytes;
1007 /* offset of first page in pagelist is always 0 */
1008 if (!bytes || cursor->offset & ~PAGE_MASK)
1009 return false; /* more bytes to process in the current page */
1010
1011 /* Move on to the next page */
1012
1013 BUG_ON(list_is_last(&cursor->page->lru, &pagelist->head));
1014 cursor->page = list_entry_next(cursor->page, lru);
1015 cursor->last_piece = cursor->resid <= PAGE_SIZE;
1016
1017 return true;
1018 }
1019
1020 /*
1021 * Message data is handled (sent or received) in pieces, where each
1022 * piece resides on a single page. The network layer might not
1023 * consume an entire piece at once. A data item's cursor keeps
1024 * track of which piece is next to process and how much remains to
1025 * be processed in that piece. It also tracks whether the current
1026 * piece is the last one in the data item.
1027 */
1028 static void __ceph_msg_data_cursor_init(struct ceph_msg_data_cursor *cursor)
1029 {
1030 size_t length = cursor->total_resid;
1031
1032 switch (cursor->data->type) {
1033 case CEPH_MSG_DATA_PAGELIST:
1034 ceph_msg_data_pagelist_cursor_init(cursor, length);
1035 break;
1036 case CEPH_MSG_DATA_PAGES:
1037 ceph_msg_data_pages_cursor_init(cursor, length);
1038 break;
1039 #ifdef CONFIG_BLOCK
1040 case CEPH_MSG_DATA_BIO:
1041 ceph_msg_data_bio_cursor_init(cursor, length);
1042 break;
1043 #endif /* CONFIG_BLOCK */
1044 case CEPH_MSG_DATA_NONE:
1045 default:
1046 /* BUG(); */
1047 break;
1048 }
1049 cursor->need_crc = true;
1050 }
1051
1052 static void ceph_msg_data_cursor_init(struct ceph_msg *msg, size_t length)
1053 {
1054 struct ceph_msg_data_cursor *cursor = &msg->cursor;
1055 struct ceph_msg_data *data;
1056
1057 BUG_ON(!length);
1058 BUG_ON(length > msg->data_length);
1059 BUG_ON(list_empty(&msg->data));
1060
1061 cursor->data_head = &msg->data;
1062 cursor->total_resid = length;
1063 data = list_first_entry(&msg->data, struct ceph_msg_data, links);
1064 cursor->data = data;
1065
1066 __ceph_msg_data_cursor_init(cursor);
1067 }
1068
1069 /*
1070 * Return the page containing the next piece to process for a given
1071 * data item, and supply the page offset and length of that piece.
1072 * Indicate whether this is the last piece in this data item.
1073 */
1074 static struct page *ceph_msg_data_next(struct ceph_msg_data_cursor *cursor,
1075 size_t *page_offset, size_t *length,
1076 bool *last_piece)
1077 {
1078 struct page *page;
1079
1080 switch (cursor->data->type) {
1081 case CEPH_MSG_DATA_PAGELIST:
1082 page = ceph_msg_data_pagelist_next(cursor, page_offset, length);
1083 break;
1084 case CEPH_MSG_DATA_PAGES:
1085 page = ceph_msg_data_pages_next(cursor, page_offset, length);
1086 break;
1087 #ifdef CONFIG_BLOCK
1088 case CEPH_MSG_DATA_BIO:
1089 page = ceph_msg_data_bio_next(cursor, page_offset, length);
1090 break;
1091 #endif /* CONFIG_BLOCK */
1092 case CEPH_MSG_DATA_NONE:
1093 default:
1094 page = NULL;
1095 break;
1096 }
1097 BUG_ON(!page);
1098 BUG_ON(*page_offset + *length > PAGE_SIZE);
1099 BUG_ON(!*length);
1100 if (last_piece)
1101 *last_piece = cursor->last_piece;
1102
1103 return page;
1104 }
1105
1106 /*
1107 * Returns true if the result moves the cursor on to the next piece
1108 * of the data item.
1109 */
1110 static bool ceph_msg_data_advance(struct ceph_msg_data_cursor *cursor,
1111 size_t bytes)
1112 {
1113 bool new_piece;
1114
1115 BUG_ON(bytes > cursor->resid);
1116 switch (cursor->data->type) {
1117 case CEPH_MSG_DATA_PAGELIST:
1118 new_piece = ceph_msg_data_pagelist_advance(cursor, bytes);
1119 break;
1120 case CEPH_MSG_DATA_PAGES:
1121 new_piece = ceph_msg_data_pages_advance(cursor, bytes);
1122 break;
1123 #ifdef CONFIG_BLOCK
1124 case CEPH_MSG_DATA_BIO:
1125 new_piece = ceph_msg_data_bio_advance(cursor, bytes);
1126 break;
1127 #endif /* CONFIG_BLOCK */
1128 case CEPH_MSG_DATA_NONE:
1129 default:
1130 BUG();
1131 break;
1132 }
1133 cursor->total_resid -= bytes;
1134
1135 if (!cursor->resid && cursor->total_resid) {
1136 WARN_ON(!cursor->last_piece);
1137 BUG_ON(list_is_last(&cursor->data->links, cursor->data_head));
1138 cursor->data = list_entry_next(cursor->data, links);
1139 __ceph_msg_data_cursor_init(cursor);
1140 new_piece = true;
1141 }
1142 cursor->need_crc = new_piece;
1143
1144 return new_piece;
1145 }
1146
1147 static void prepare_message_data(struct ceph_msg *msg, u32 data_len)
1148 {
1149 BUG_ON(!msg);
1150 BUG_ON(!data_len);
1151
1152 /* Initialize data cursor */
1153
1154 ceph_msg_data_cursor_init(msg, (size_t)data_len);
1155 }
1156
1157 /*
1158 * Prepare footer for currently outgoing message, and finish things
1159 * off. Assumes out_kvec* are already valid.. we just add on to the end.
1160 */
1161 static void prepare_write_message_footer(struct ceph_connection *con)
1162 {
1163 struct ceph_msg *m = con->out_msg;
1164 int v = con->out_kvec_left;
1165
1166 m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE;
1167
1168 dout("prepare_write_message_footer %p\n", con);
1169 con->out_kvec_is_msg = true;
1170 con->out_kvec[v].iov_base = &m->footer;
1171 con->out_kvec[v].iov_len = sizeof(m->footer);
1172 con->out_kvec_bytes += sizeof(m->footer);
1173 con->out_kvec_left++;
1174 con->out_more = m->more_to_follow;
1175 con->out_msg_done = true;
1176 }
1177
1178 /*
1179 * Prepare headers for the next outgoing message.
1180 */
1181 static void prepare_write_message(struct ceph_connection *con)
1182 {
1183 struct ceph_msg *m;
1184 u32 crc;
1185
1186 con_out_kvec_reset(con);
1187 con->out_kvec_is_msg = true;
1188 con->out_msg_done = false;
1189
1190 /* Sneak an ack in there first? If we can get it into the same
1191 * TCP packet that's a good thing. */
1192 if (con->in_seq > con->in_seq_acked) {
1193 con->in_seq_acked = con->in_seq;
1194 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1195 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1196 con_out_kvec_add(con, sizeof (con->out_temp_ack),
1197 &con->out_temp_ack);
1198 }
1199
1200 BUG_ON(list_empty(&con->out_queue));
1201 m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
1202 con->out_msg = m;
1203 BUG_ON(m->con != con);
1204
1205 /* put message on sent list */
1206 ceph_msg_get(m);
1207 list_move_tail(&m->list_head, &con->out_sent);
1208
1209 /*
1210 * only assign outgoing seq # if we haven't sent this message
1211 * yet. if it is requeued, resend with it's original seq.
1212 */
1213 if (m->needs_out_seq) {
1214 m->hdr.seq = cpu_to_le64(++con->out_seq);
1215 m->needs_out_seq = false;
1216 }
1217 WARN_ON(m->data_length != le32_to_cpu(m->hdr.data_len));
1218
1219 dout("prepare_write_message %p seq %lld type %d len %d+%d+%zd\n",
1220 m, con->out_seq, le16_to_cpu(m->hdr.type),
1221 le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
1222 m->data_length);
1223 BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
1224
1225 /* tag + hdr + front + middle */
1226 con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
1227 con_out_kvec_add(con, sizeof (m->hdr), &m->hdr);
1228 con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
1229
1230 if (m->middle)
1231 con_out_kvec_add(con, m->middle->vec.iov_len,
1232 m->middle->vec.iov_base);
1233
1234 /* fill in crc (except data pages), footer */
1235 crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
1236 con->out_msg->hdr.crc = cpu_to_le32(crc);
1237 con->out_msg->footer.flags = 0;
1238
1239 crc = crc32c(0, m->front.iov_base, m->front.iov_len);
1240 con->out_msg->footer.front_crc = cpu_to_le32(crc);
1241 if (m->middle) {
1242 crc = crc32c(0, m->middle->vec.iov_base,
1243 m->middle->vec.iov_len);
1244 con->out_msg->footer.middle_crc = cpu_to_le32(crc);
1245 } else
1246 con->out_msg->footer.middle_crc = 0;
1247 dout("%s front_crc %u middle_crc %u\n", __func__,
1248 le32_to_cpu(con->out_msg->footer.front_crc),
1249 le32_to_cpu(con->out_msg->footer.middle_crc));
1250
1251 /* is there a data payload? */
1252 con->out_msg->footer.data_crc = 0;
1253 if (m->data_length) {
1254 prepare_message_data(con->out_msg, m->data_length);
1255 con->out_more = 1; /* data + footer will follow */
1256 } else {
1257 /* no, queue up footer too and be done */
1258 prepare_write_message_footer(con);
1259 }
1260
1261 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1262 }
1263
1264 /*
1265 * Prepare an ack.
1266 */
1267 static void prepare_write_ack(struct ceph_connection *con)
1268 {
1269 dout("prepare_write_ack %p %llu -> %llu\n", con,
1270 con->in_seq_acked, con->in_seq);
1271 con->in_seq_acked = con->in_seq;
1272
1273 con_out_kvec_reset(con);
1274
1275 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
1276
1277 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1278 con_out_kvec_add(con, sizeof (con->out_temp_ack),
1279 &con->out_temp_ack);
1280
1281 con->out_more = 1; /* more will follow.. eventually.. */
1282 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1283 }
1284
1285 /*
1286 * Prepare to share the seq during handshake
1287 */
1288 static void prepare_write_seq(struct ceph_connection *con)
1289 {
1290 dout("prepare_write_seq %p %llu -> %llu\n", con,
1291 con->in_seq_acked, con->in_seq);
1292 con->in_seq_acked = con->in_seq;
1293
1294 con_out_kvec_reset(con);
1295
1296 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
1297 con_out_kvec_add(con, sizeof (con->out_temp_ack),
1298 &con->out_temp_ack);
1299
1300 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1301 }
1302
1303 /*
1304 * Prepare to write keepalive byte.
1305 */
1306 static void prepare_write_keepalive(struct ceph_connection *con)
1307 {
1308 dout("prepare_write_keepalive %p\n", con);
1309 con_out_kvec_reset(con);
1310 con_out_kvec_add(con, sizeof (tag_keepalive), &tag_keepalive);
1311 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1312 }
1313
1314 /*
1315 * Connection negotiation.
1316 */
1317
1318 static struct ceph_auth_handshake *get_connect_authorizer(struct ceph_connection *con,
1319 int *auth_proto)
1320 {
1321 struct ceph_auth_handshake *auth;
1322
1323 if (!con->ops->get_authorizer) {
1324 con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN;
1325 con->out_connect.authorizer_len = 0;
1326 return NULL;
1327 }
1328
1329 /* Can't hold the mutex while getting authorizer */
1330 mutex_unlock(&con->mutex);
1331 auth = con->ops->get_authorizer(con, auth_proto, con->auth_retry);
1332 mutex_lock(&con->mutex);
1333
1334 if (IS_ERR(auth))
1335 return auth;
1336 if (con->state != CON_STATE_NEGOTIATING)
1337 return ERR_PTR(-EAGAIN);
1338
1339 con->auth_reply_buf = auth->authorizer_reply_buf;
1340 con->auth_reply_buf_len = auth->authorizer_reply_buf_len;
1341 return auth;
1342 }
1343
1344 /*
1345 * We connected to a peer and are saying hello.
1346 */
1347 static void prepare_write_banner(struct ceph_connection *con)
1348 {
1349 con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
1350 con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr),
1351 &con->msgr->my_enc_addr);
1352
1353 con->out_more = 0;
1354 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1355 }
1356
1357 static int prepare_write_connect(struct ceph_connection *con)
1358 {
1359 unsigned int global_seq = get_global_seq(con->msgr, 0);
1360 int proto;
1361 int auth_proto;
1362 struct ceph_auth_handshake *auth;
1363
1364 switch (con->peer_name.type) {
1365 case CEPH_ENTITY_TYPE_MON:
1366 proto = CEPH_MONC_PROTOCOL;
1367 break;
1368 case CEPH_ENTITY_TYPE_OSD:
1369 proto = CEPH_OSDC_PROTOCOL;
1370 break;
1371 case CEPH_ENTITY_TYPE_MDS:
1372 proto = CEPH_MDSC_PROTOCOL;
1373 break;
1374 default:
1375 BUG();
1376 }
1377
1378 dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
1379 con->connect_seq, global_seq, proto);
1380
1381 con->out_connect.features = cpu_to_le64(con->msgr->supported_features);
1382 con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
1383 con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
1384 con->out_connect.global_seq = cpu_to_le32(global_seq);
1385 con->out_connect.protocol_version = cpu_to_le32(proto);
1386 con->out_connect.flags = 0;
1387
1388 auth_proto = CEPH_AUTH_UNKNOWN;
1389 auth = get_connect_authorizer(con, &auth_proto);
1390 if (IS_ERR(auth))
1391 return PTR_ERR(auth);
1392
1393 con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto);
1394 con->out_connect.authorizer_len = auth ?
1395 cpu_to_le32(auth->authorizer_buf_len) : 0;
1396
1397 con_out_kvec_add(con, sizeof (con->out_connect),
1398 &con->out_connect);
1399 if (auth && auth->authorizer_buf_len)
1400 con_out_kvec_add(con, auth->authorizer_buf_len,
1401 auth->authorizer_buf);
1402
1403 con->out_more = 0;
1404 con_flag_set(con, CON_FLAG_WRITE_PENDING);
1405
1406 return 0;
1407 }
1408
1409 /*
1410 * write as much of pending kvecs to the socket as we can.
1411 * 1 -> done
1412 * 0 -> socket full, but more to do
1413 * <0 -> error
1414 */
1415 static int write_partial_kvec(struct ceph_connection *con)
1416 {
1417 int ret;
1418
1419 dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
1420 while (con->out_kvec_bytes > 0) {
1421 ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
1422 con->out_kvec_left, con->out_kvec_bytes,
1423 con->out_more);
1424 if (ret <= 0)
1425 goto out;
1426 con->out_kvec_bytes -= ret;
1427 if (con->out_kvec_bytes == 0)
1428 break; /* done */
1429
1430 /* account for full iov entries consumed */
1431 while (ret >= con->out_kvec_cur->iov_len) {
1432 BUG_ON(!con->out_kvec_left);
1433 ret -= con->out_kvec_cur->iov_len;
1434 con->out_kvec_cur++;
1435 con->out_kvec_left--;
1436 }
1437 /* and for a partially-consumed entry */
1438 if (ret) {
1439 con->out_kvec_cur->iov_len -= ret;
1440 con->out_kvec_cur->iov_base += ret;
1441 }
1442 }
1443 con->out_kvec_left = 0;
1444 con->out_kvec_is_msg = false;
1445 ret = 1;
1446 out:
1447 dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
1448 con->out_kvec_bytes, con->out_kvec_left, ret);
1449 return ret; /* done! */
1450 }
1451
1452 static u32 ceph_crc32c_page(u32 crc, struct page *page,
1453 unsigned int page_offset,
1454 unsigned int length)
1455 {
1456 char *kaddr;
1457
1458 kaddr = kmap(page);
1459 BUG_ON(kaddr == NULL);
1460 crc = crc32c(crc, kaddr + page_offset, length);
1461 kunmap(page);
1462
1463 return crc;
1464 }
1465 /*
1466 * Write as much message data payload as we can. If we finish, queue
1467 * up the footer.
1468 * 1 -> done, footer is now queued in out_kvec[].
1469 * 0 -> socket full, but more to do
1470 * <0 -> error
1471 */
1472 static int write_partial_message_data(struct ceph_connection *con)
1473 {
1474 struct ceph_msg *msg = con->out_msg;
1475 struct ceph_msg_data_cursor *cursor = &msg->cursor;
1476 bool do_datacrc = !con->msgr->nocrc;
1477 u32 crc;
1478
1479 dout("%s %p msg %p\n", __func__, con, msg);
1480
1481 if (list_empty(&msg->data))
1482 return -EINVAL;
1483
1484 /*
1485 * Iterate through each page that contains data to be
1486 * written, and send as much as possible for each.
1487 *
1488 * If we are calculating the data crc (the default), we will
1489 * need to map the page. If we have no pages, they have
1490 * been revoked, so use the zero page.
1491 */
1492 crc = do_datacrc ? le32_to_cpu(msg->footer.data_crc) : 0;
1493 while (cursor->resid) {
1494 struct page *page;
1495 size_t page_offset;
1496 size_t length;
1497 bool last_piece;
1498 bool need_crc;
1499 int ret;
1500
1501 page = ceph_msg_data_next(&msg->cursor, &page_offset, &length,
1502 &last_piece);
1503 ret = ceph_tcp_sendpage(con->sock, page, page_offset,
1504 length, last_piece);
1505 if (ret <= 0) {
1506 if (do_datacrc)
1507 msg->footer.data_crc = cpu_to_le32(crc);
1508
1509 return ret;
1510 }
1511 if (do_datacrc && cursor->need_crc)
1512 crc = ceph_crc32c_page(crc, page, page_offset, length);
1513 need_crc = ceph_msg_data_advance(&msg->cursor, (size_t)ret);
1514 }
1515
1516 dout("%s %p msg %p done\n", __func__, con, msg);
1517
1518 /* prepare and queue up footer, too */
1519 if (do_datacrc)
1520 msg->footer.data_crc = cpu_to_le32(crc);
1521 else
1522 msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
1523 con_out_kvec_reset(con);
1524 prepare_write_message_footer(con);
1525
1526 return 1; /* must return > 0 to indicate success */
1527 }
1528
1529 /*
1530 * write some zeros
1531 */
1532 static int write_partial_skip(struct ceph_connection *con)
1533 {
1534 int ret;
1535
1536 while (con->out_skip > 0) {
1537 size_t size = min(con->out_skip, (int) PAGE_CACHE_SIZE);
1538
1539 ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, true);
1540 if (ret <= 0)
1541 goto out;
1542 con->out_skip -= ret;
1543 }
1544 ret = 1;
1545 out:
1546 return ret;
1547 }
1548
1549 /*
1550 * Prepare to read connection handshake, or an ack.
1551 */
1552 static void prepare_read_banner(struct ceph_connection *con)
1553 {
1554 dout("prepare_read_banner %p\n", con);
1555 con->in_base_pos = 0;
1556 }
1557
1558 static void prepare_read_connect(struct ceph_connection *con)
1559 {
1560 dout("prepare_read_connect %p\n", con);
1561 con->in_base_pos = 0;
1562 }
1563
1564 static void prepare_read_ack(struct ceph_connection *con)
1565 {
1566 dout("prepare_read_ack %p\n", con);
1567 con->in_base_pos = 0;
1568 }
1569
1570 static void prepare_read_seq(struct ceph_connection *con)
1571 {
1572 dout("prepare_read_seq %p\n", con);
1573 con->in_base_pos = 0;
1574 con->in_tag = CEPH_MSGR_TAG_SEQ;
1575 }
1576
1577 static void prepare_read_tag(struct ceph_connection *con)
1578 {
1579 dout("prepare_read_tag %p\n", con);
1580 con->in_base_pos = 0;
1581 con->in_tag = CEPH_MSGR_TAG_READY;
1582 }
1583
1584 /*
1585 * Prepare to read a message.
1586 */
1587 static int prepare_read_message(struct ceph_connection *con)
1588 {
1589 dout("prepare_read_message %p\n", con);
1590 BUG_ON(con->in_msg != NULL);
1591 con->in_base_pos = 0;
1592 con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
1593 return 0;
1594 }
1595
1596
1597 static int read_partial(struct ceph_connection *con,
1598 int end, int size, void *object)
1599 {
1600 while (con->in_base_pos < end) {
1601 int left = end - con->in_base_pos;
1602 int have = size - left;
1603 int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
1604 if (ret <= 0)
1605 return ret;
1606 con->in_base_pos += ret;
1607 }
1608 return 1;
1609 }
1610
1611
1612 /*
1613 * Read all or part of the connect-side handshake on a new connection
1614 */
1615 static int read_partial_banner(struct ceph_connection *con)
1616 {
1617 int size;
1618 int end;
1619 int ret;
1620
1621 dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
1622
1623 /* peer's banner */
1624 size = strlen(CEPH_BANNER);
1625 end = size;
1626 ret = read_partial(con, end, size, con->in_banner);
1627 if (ret <= 0)
1628 goto out;
1629
1630 size = sizeof (con->actual_peer_addr);
1631 end += size;
1632 ret = read_partial(con, end, size, &con->actual_peer_addr);
1633 if (ret <= 0)
1634 goto out;
1635
1636 size = sizeof (con->peer_addr_for_me);
1637 end += size;
1638 ret = read_partial(con, end, size, &con->peer_addr_for_me);
1639 if (ret <= 0)
1640 goto out;
1641
1642 out:
1643 return ret;
1644 }
1645
1646 static int read_partial_connect(struct ceph_connection *con)
1647 {
1648 int size;
1649 int end;
1650 int ret;
1651
1652 dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1653
1654 size = sizeof (con->in_reply);
1655 end = size;
1656 ret = read_partial(con, end, size, &con->in_reply);
1657 if (ret <= 0)
1658 goto out;
1659
1660 size = le32_to_cpu(con->in_reply.authorizer_len);
1661 end += size;
1662 ret = read_partial(con, end, size, con->auth_reply_buf);
1663 if (ret <= 0)
1664 goto out;
1665
1666 dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1667 con, (int)con->in_reply.tag,
1668 le32_to_cpu(con->in_reply.connect_seq),
1669 le32_to_cpu(con->in_reply.global_seq));
1670 out:
1671 return ret;
1672
1673 }
1674
1675 /*
1676 * Verify the hello banner looks okay.
1677 */
1678 static int verify_hello(struct ceph_connection *con)
1679 {
1680 if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1681 pr_err("connect to %s got bad banner\n",
1682 ceph_pr_addr(&con->peer_addr.in_addr));
1683 con->error_msg = "protocol error, bad banner";
1684 return -1;
1685 }
1686 return 0;
1687 }
1688
1689 static bool addr_is_blank(struct sockaddr_storage *ss)
1690 {
1691 switch (ss->ss_family) {
1692 case AF_INET:
1693 return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0;
1694 case AF_INET6:
1695 return
1696 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 &&
1697 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 &&
1698 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 &&
1699 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0;
1700 }
1701 return false;
1702 }
1703
1704 static int addr_port(struct sockaddr_storage *ss)
1705 {
1706 switch (ss->ss_family) {
1707 case AF_INET:
1708 return ntohs(((struct sockaddr_in *)ss)->sin_port);
1709 case AF_INET6:
1710 return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
1711 }
1712 return 0;
1713 }
1714
1715 static void addr_set_port(struct sockaddr_storage *ss, int p)
1716 {
1717 switch (ss->ss_family) {
1718 case AF_INET:
1719 ((struct sockaddr_in *)ss)->sin_port = htons(p);
1720 break;
1721 case AF_INET6:
1722 ((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
1723 break;
1724 }
1725 }
1726
1727 /*
1728 * Unlike other *_pton function semantics, zero indicates success.
1729 */
1730 static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
1731 char delim, const char **ipend)
1732 {
1733 struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
1734 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
1735
1736 memset(ss, 0, sizeof(*ss));
1737
1738 if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
1739 ss->ss_family = AF_INET;
1740 return 0;
1741 }
1742
1743 if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
1744 ss->ss_family = AF_INET6;
1745 return 0;
1746 }
1747
1748 return -EINVAL;
1749 }
1750
1751 /*
1752 * Extract hostname string and resolve using kernel DNS facility.
1753 */
1754 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1755 static int ceph_dns_resolve_name(const char *name, size_t namelen,
1756 struct sockaddr_storage *ss, char delim, const char **ipend)
1757 {
1758 const char *end, *delim_p;
1759 char *colon_p, *ip_addr = NULL;
1760 int ip_len, ret;
1761
1762 /*
1763 * The end of the hostname occurs immediately preceding the delimiter or
1764 * the port marker (':') where the delimiter takes precedence.
1765 */
1766 delim_p = memchr(name, delim, namelen);
1767 colon_p = memchr(name, ':', namelen);
1768
1769 if (delim_p && colon_p)
1770 end = delim_p < colon_p ? delim_p : colon_p;
1771 else if (!delim_p && colon_p)
1772 end = colon_p;
1773 else {
1774 end = delim_p;
1775 if (!end) /* case: hostname:/ */
1776 end = name + namelen;
1777 }
1778
1779 if (end <= name)
1780 return -EINVAL;
1781
1782 /* do dns_resolve upcall */
1783 ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
1784 if (ip_len > 0)
1785 ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
1786 else
1787 ret = -ESRCH;
1788
1789 kfree(ip_addr);
1790
1791 *ipend = end;
1792
1793 pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1794 ret, ret ? "failed" : ceph_pr_addr(ss));
1795
1796 return ret;
1797 }
1798 #else
1799 static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1800 struct sockaddr_storage *ss, char delim, const char **ipend)
1801 {
1802 return -EINVAL;
1803 }
1804 #endif
1805
1806 /*
1807 * Parse a server name (IP or hostname). If a valid IP address is not found
1808 * then try to extract a hostname to resolve using userspace DNS upcall.
1809 */
1810 static int ceph_parse_server_name(const char *name, size_t namelen,
1811 struct sockaddr_storage *ss, char delim, const char **ipend)
1812 {
1813 int ret;
1814
1815 ret = ceph_pton(name, namelen, ss, delim, ipend);
1816 if (ret)
1817 ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
1818
1819 return ret;
1820 }
1821
1822 /*
1823 * Parse an ip[:port] list into an addr array. Use the default
1824 * monitor port if a port isn't specified.
1825 */
1826 int ceph_parse_ips(const char *c, const char *end,
1827 struct ceph_entity_addr *addr,
1828 int max_count, int *count)
1829 {
1830 int i, ret = -EINVAL;
1831 const char *p = c;
1832
1833 dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1834 for (i = 0; i < max_count; i++) {
1835 const char *ipend;
1836 struct sockaddr_storage *ss = &addr[i].in_addr;
1837 int port;
1838 char delim = ',';
1839
1840 if (*p == '[') {
1841 delim = ']';
1842 p++;
1843 }
1844
1845 ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
1846 if (ret)
1847 goto bad;
1848 ret = -EINVAL;
1849
1850 p = ipend;
1851
1852 if (delim == ']') {
1853 if (*p != ']') {
1854 dout("missing matching ']'\n");
1855 goto bad;
1856 }
1857 p++;
1858 }
1859
1860 /* port? */
1861 if (p < end && *p == ':') {
1862 port = 0;
1863 p++;
1864 while (p < end && *p >= '0' && *p <= '9') {
1865 port = (port * 10) + (*p - '0');
1866 p++;
1867 }
1868 if (port > 65535 || port == 0)
1869 goto bad;
1870 } else {
1871 port = CEPH_MON_PORT;
1872 }
1873
1874 addr_set_port(ss, port);
1875
1876 dout("parse_ips got %s\n", ceph_pr_addr(ss));
1877
1878 if (p == end)
1879 break;
1880 if (*p != ',')
1881 goto bad;
1882 p++;
1883 }
1884
1885 if (p != end)
1886 goto bad;
1887
1888 if (count)
1889 *count = i + 1;
1890 return 0;
1891
1892 bad:
1893 pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
1894 return ret;
1895 }
1896 EXPORT_SYMBOL(ceph_parse_ips);
1897
1898 static int process_banner(struct ceph_connection *con)
1899 {
1900 dout("process_banner on %p\n", con);
1901
1902 if (verify_hello(con) < 0)
1903 return -1;
1904
1905 ceph_decode_addr(&con->actual_peer_addr);
1906 ceph_decode_addr(&con->peer_addr_for_me);
1907
1908 /*
1909 * Make sure the other end is who we wanted. note that the other
1910 * end may not yet know their ip address, so if it's 0.0.0.0, give
1911 * them the benefit of the doubt.
1912 */
1913 if (memcmp(&con->peer_addr, &con->actual_peer_addr,
1914 sizeof(con->peer_addr)) != 0 &&
1915 !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
1916 con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
1917 pr_warning("wrong peer, want %s/%d, got %s/%d\n",
1918 ceph_pr_addr(&con->peer_addr.in_addr),
1919 (int)le32_to_cpu(con->peer_addr.nonce),
1920 ceph_pr_addr(&con->actual_peer_addr.in_addr),
1921 (int)le32_to_cpu(con->actual_peer_addr.nonce));
1922 con->error_msg = "wrong peer at address";
1923 return -1;
1924 }
1925
1926 /*
1927 * did we learn our address?
1928 */
1929 if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
1930 int port = addr_port(&con->msgr->inst.addr.in_addr);
1931
1932 memcpy(&con->msgr->inst.addr.in_addr,
1933 &con->peer_addr_for_me.in_addr,
1934 sizeof(con->peer_addr_for_me.in_addr));
1935 addr_set_port(&con->msgr->inst.addr.in_addr, port);
1936 encode_my_addr(con->msgr);
1937 dout("process_banner learned my addr is %s\n",
1938 ceph_pr_addr(&con->msgr->inst.addr.in_addr));
1939 }
1940
1941 return 0;
1942 }
1943
1944 static int process_connect(struct ceph_connection *con)
1945 {
1946 u64 sup_feat = con->msgr->supported_features;
1947 u64 req_feat = con->msgr->required_features;
1948 u64 server_feat = le64_to_cpu(con->in_reply.features);
1949 int ret;
1950
1951 dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
1952
1953 switch (con->in_reply.tag) {
1954 case CEPH_MSGR_TAG_FEATURES:
1955 pr_err("%s%lld %s feature set mismatch,"
1956 " my %llx < server's %llx, missing %llx\n",
1957 ENTITY_NAME(con->peer_name),
1958 ceph_pr_addr(&con->peer_addr.in_addr),
1959 sup_feat, server_feat, server_feat & ~sup_feat);
1960 con->error_msg = "missing required protocol features";
1961 reset_connection(con);
1962 return -1;
1963
1964 case CEPH_MSGR_TAG_BADPROTOVER:
1965 pr_err("%s%lld %s protocol version mismatch,"
1966 " my %d != server's %d\n",
1967 ENTITY_NAME(con->peer_name),
1968 ceph_pr_addr(&con->peer_addr.in_addr),
1969 le32_to_cpu(con->out_connect.protocol_version),
1970 le32_to_cpu(con->in_reply.protocol_version));
1971 con->error_msg = "protocol version mismatch";
1972 reset_connection(con);
1973 return -1;
1974
1975 case CEPH_MSGR_TAG_BADAUTHORIZER:
1976 con->auth_retry++;
1977 dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
1978 con->auth_retry);
1979 if (con->auth_retry == 2) {
1980 con->error_msg = "connect authorization failure";
1981 return -1;
1982 }
1983 con_out_kvec_reset(con);
1984 ret = prepare_write_connect(con);
1985 if (ret < 0)
1986 return ret;
1987 prepare_read_connect(con);
1988 break;
1989
1990 case CEPH_MSGR_TAG_RESETSESSION:
1991 /*
1992 * If we connected with a large connect_seq but the peer
1993 * has no record of a session with us (no connection, or
1994 * connect_seq == 0), they will send RESETSESION to indicate
1995 * that they must have reset their session, and may have
1996 * dropped messages.
1997 */
1998 dout("process_connect got RESET peer seq %u\n",
1999 le32_to_cpu(con->in_reply.connect_seq));
2000 pr_err("%s%lld %s connection reset\n",
2001 ENTITY_NAME(con->peer_name),
2002 ceph_pr_addr(&con->peer_addr.in_addr));
2003 reset_connection(con);
2004 con_out_kvec_reset(con);
2005 ret = prepare_write_connect(con);
2006 if (ret < 0)
2007 return ret;
2008 prepare_read_connect(con);
2009
2010 /* Tell ceph about it. */
2011 mutex_unlock(&con->mutex);
2012 pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
2013 if (con->ops->peer_reset)
2014 con->ops->peer_reset(con);
2015 mutex_lock(&con->mutex);
2016 if (con->state != CON_STATE_NEGOTIATING)
2017 return -EAGAIN;
2018 break;
2019
2020 case CEPH_MSGR_TAG_RETRY_SESSION:
2021 /*
2022 * If we sent a smaller connect_seq than the peer has, try
2023 * again with a larger value.
2024 */
2025 dout("process_connect got RETRY_SESSION my seq %u, peer %u\n",
2026 le32_to_cpu(con->out_connect.connect_seq),
2027 le32_to_cpu(con->in_reply.connect_seq));
2028 con->connect_seq = le32_to_cpu(con->in_reply.connect_seq);
2029 con_out_kvec_reset(con);
2030 ret = prepare_write_connect(con);
2031 if (ret < 0)
2032 return ret;
2033 prepare_read_connect(con);
2034 break;
2035
2036 case CEPH_MSGR_TAG_RETRY_GLOBAL:
2037 /*
2038 * If we sent a smaller global_seq than the peer has, try
2039 * again with a larger value.
2040 */
2041 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
2042 con->peer_global_seq,
2043 le32_to_cpu(con->in_reply.global_seq));
2044 get_global_seq(con->msgr,
2045 le32_to_cpu(con->in_reply.global_seq));
2046 con_out_kvec_reset(con);
2047 ret = prepare_write_connect(con);
2048 if (ret < 0)
2049 return ret;
2050 prepare_read_connect(con);
2051 break;
2052
2053 case CEPH_MSGR_TAG_SEQ:
2054 case CEPH_MSGR_TAG_READY:
2055 if (req_feat & ~server_feat) {
2056 pr_err("%s%lld %s protocol feature mismatch,"
2057 " my required %llx > server's %llx, need %llx\n",
2058 ENTITY_NAME(con->peer_name),
2059 ceph_pr_addr(&con->peer_addr.in_addr),
2060 req_feat, server_feat, req_feat & ~server_feat);
2061 con->error_msg = "missing required protocol features";
2062 reset_connection(con);
2063 return -1;
2064 }
2065
2066 WARN_ON(con->state != CON_STATE_NEGOTIATING);
2067 con->state = CON_STATE_OPEN;
2068 con->auth_retry = 0; /* we authenticated; clear flag */
2069 con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
2070 con->connect_seq++;
2071 con->peer_features = server_feat;
2072 dout("process_connect got READY gseq %d cseq %d (%d)\n",
2073 con->peer_global_seq,
2074 le32_to_cpu(con->in_reply.connect_seq),
2075 con->connect_seq);
2076 WARN_ON(con->connect_seq !=
2077 le32_to_cpu(con->in_reply.connect_seq));
2078
2079 if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
2080 con_flag_set(con, CON_FLAG_LOSSYTX);
2081
2082 con->delay = 0; /* reset backoff memory */
2083
2084 if (con->in_reply.tag == CEPH_MSGR_TAG_SEQ) {
2085 prepare_write_seq(con);
2086 prepare_read_seq(con);
2087 } else {
2088 prepare_read_tag(con);
2089 }
2090 break;
2091
2092 case CEPH_MSGR_TAG_WAIT:
2093 /*
2094 * If there is a connection race (we are opening
2095 * connections to each other), one of us may just have
2096 * to WAIT. This shouldn't happen if we are the
2097 * client.
2098 */
2099 pr_err("process_connect got WAIT as client\n");
2100 con->error_msg = "protocol error, got WAIT as client";
2101 return -1;
2102
2103 default:
2104 pr_err("connect protocol error, will retry\n");
2105 con->error_msg = "protocol error, garbage tag during connect";
2106 return -1;
2107 }
2108 return 0;
2109 }
2110
2111
2112 /*
2113 * read (part of) an ack
2114 */
2115 static int read_partial_ack(struct ceph_connection *con)
2116 {
2117 int size = sizeof (con->in_temp_ack);
2118 int end = size;
2119
2120 return read_partial(con, end, size, &con->in_temp_ack);
2121 }
2122
2123 /*
2124 * We can finally discard anything that's been acked.
2125 */
2126 static void process_ack(struct ceph_connection *con)
2127 {
2128 struct ceph_msg *m;
2129 u64 ack = le64_to_cpu(con->in_temp_ack);
2130 u64 seq;
2131
2132 while (!list_empty(&con->out_sent)) {
2133 m = list_first_entry(&con->out_sent, struct ceph_msg,
2134 list_head);
2135 seq = le64_to_cpu(m->hdr.seq);
2136 if (seq > ack)
2137 break;
2138 dout("got ack for seq %llu type %d at %p\n", seq,
2139 le16_to_cpu(m->hdr.type), m);
2140 m->ack_stamp = jiffies;
2141 ceph_msg_remove(m);
2142 }
2143 prepare_read_tag(con);
2144 }
2145
2146
2147 static int read_partial_message_section(struct ceph_connection *con,
2148 struct kvec *section,
2149 unsigned int sec_len, u32 *crc)
2150 {
2151 int ret, left;
2152
2153 BUG_ON(!section);
2154
2155 while (section->iov_len < sec_len) {
2156 BUG_ON(section->iov_base == NULL);
2157 left = sec_len - section->iov_len;
2158 ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
2159 section->iov_len, left);
2160 if (ret <= 0)
2161 return ret;
2162 section->iov_len += ret;
2163 }
2164 if (section->iov_len == sec_len)
2165 *crc = crc32c(0, section->iov_base, section->iov_len);
2166
2167 return 1;
2168 }
2169
2170 static int read_partial_msg_data(struct ceph_connection *con)
2171 {
2172 struct ceph_msg *msg = con->in_msg;
2173 struct ceph_msg_data_cursor *cursor = &msg->cursor;
2174 const bool do_datacrc = !con->msgr->nocrc;
2175 struct page *page;
2176 size_t page_offset;
2177 size_t length;
2178 u32 crc = 0;
2179 int ret;
2180
2181 BUG_ON(!msg);
2182 if (list_empty(&msg->data))
2183 return -EIO;
2184
2185 if (do_datacrc)
2186 crc = con->in_data_crc;
2187 while (cursor->resid) {
2188 page = ceph_msg_data_next(&msg->cursor, &page_offset, &length,
2189 NULL);
2190 ret = ceph_tcp_recvpage(con->sock, page, page_offset, length);
2191 if (ret <= 0) {
2192 if (do_datacrc)
2193 con->in_data_crc = crc;
2194
2195 return ret;
2196 }
2197
2198 if (do_datacrc)
2199 crc = ceph_crc32c_page(crc, page, page_offset, ret);
2200 (void) ceph_msg_data_advance(&msg->cursor, (size_t)ret);
2201 }
2202 if (do_datacrc)
2203 con->in_data_crc = crc;
2204
2205 return 1; /* must return > 0 to indicate success */
2206 }
2207
2208 /*
2209 * read (part of) a message.
2210 */
2211 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip);
2212
2213 static int read_partial_message(struct ceph_connection *con)
2214 {
2215 struct ceph_msg *m = con->in_msg;
2216 int size;
2217 int end;
2218 int ret;
2219 unsigned int front_len, middle_len, data_len;
2220 bool do_datacrc = !con->msgr->nocrc;
2221 u64 seq;
2222 u32 crc;
2223
2224 dout("read_partial_message con %p msg %p\n", con, m);
2225
2226 /* header */
2227 size = sizeof (con->in_hdr);
2228 end = size;
2229 ret = read_partial(con, end, size, &con->in_hdr);
2230 if (ret <= 0)
2231 return ret;
2232
2233 crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
2234 if (cpu_to_le32(crc) != con->in_hdr.crc) {
2235 pr_err("read_partial_message bad hdr "
2236 " crc %u != expected %u\n",
2237 crc, con->in_hdr.crc);
2238 return -EBADMSG;
2239 }
2240
2241 front_len = le32_to_cpu(con->in_hdr.front_len);
2242 if (front_len > CEPH_MSG_MAX_FRONT_LEN)
2243 return -EIO;
2244 middle_len = le32_to_cpu(con->in_hdr.middle_len);
2245 if (middle_len > CEPH_MSG_MAX_MIDDLE_LEN)
2246 return -EIO;
2247 data_len = le32_to_cpu(con->in_hdr.data_len);
2248 if (data_len > CEPH_MSG_MAX_DATA_LEN)
2249 return -EIO;
2250
2251 /* verify seq# */
2252 seq = le64_to_cpu(con->in_hdr.seq);
2253 if ((s64)seq - (s64)con->in_seq < 1) {
2254 pr_info("skipping %s%lld %s seq %lld expected %lld\n",
2255 ENTITY_NAME(con->peer_name),
2256 ceph_pr_addr(&con->peer_addr.in_addr),
2257 seq, con->in_seq + 1);
2258 con->in_base_pos = -front_len - middle_len - data_len -
2259 sizeof(m->footer);
2260 con->in_tag = CEPH_MSGR_TAG_READY;
2261 return 0;
2262 } else if ((s64)seq - (s64)con->in_seq > 1) {
2263 pr_err("read_partial_message bad seq %lld expected %lld\n",
2264 seq, con->in_seq + 1);
2265 con->error_msg = "bad message sequence # for incoming message";
2266 return -EBADMSG;
2267 }
2268
2269 /* allocate message? */
2270 if (!con->in_msg) {
2271 int skip = 0;
2272
2273 dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
2274 front_len, data_len);
2275 ret = ceph_con_in_msg_alloc(con, &skip);
2276 if (ret < 0)
2277 return ret;
2278
2279 BUG_ON(!con->in_msg ^ skip);
2280 if (con->in_msg && data_len > con->in_msg->data_length) {
2281 pr_warning("%s skipping long message (%u > %zd)\n",
2282 __func__, data_len, con->in_msg->data_length);
2283 ceph_msg_put(con->in_msg);
2284 con->in_msg = NULL;
2285 skip = 1;
2286 }
2287 if (skip) {
2288 /* skip this message */
2289 dout("alloc_msg said skip message\n");
2290 con->in_base_pos = -front_len - middle_len - data_len -
2291 sizeof(m->footer);
2292 con->in_tag = CEPH_MSGR_TAG_READY;
2293 con->in_seq++;
2294 return 0;
2295 }
2296
2297 BUG_ON(!con->in_msg);
2298 BUG_ON(con->in_msg->con != con);
2299 m = con->in_msg;
2300 m->front.iov_len = 0; /* haven't read it yet */
2301 if (m->middle)
2302 m->middle->vec.iov_len = 0;
2303
2304 /* prepare for data payload, if any */
2305
2306 if (data_len)
2307 prepare_message_data(con->in_msg, data_len);
2308 }
2309
2310 /* front */
2311 ret = read_partial_message_section(con, &m->front, front_len,
2312 &con->in_front_crc);
2313 if (ret <= 0)
2314 return ret;
2315
2316 /* middle */
2317 if (m->middle) {
2318 ret = read_partial_message_section(con, &m->middle->vec,
2319 middle_len,
2320 &con->in_middle_crc);
2321 if (ret <= 0)
2322 return ret;
2323 }
2324
2325 /* (page) data */
2326 if (data_len) {
2327 ret = read_partial_msg_data(con);
2328 if (ret <= 0)
2329 return ret;
2330 }
2331
2332 /* footer */
2333 size = sizeof (m->footer);
2334 end += size;
2335 ret = read_partial(con, end, size, &m->footer);
2336 if (ret <= 0)
2337 return ret;
2338
2339 dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
2340 m, front_len, m->footer.front_crc, middle_len,
2341 m->footer.middle_crc, data_len, m->footer.data_crc);
2342
2343 /* crc ok? */
2344 if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
2345 pr_err("read_partial_message %p front crc %u != exp. %u\n",
2346 m, con->in_front_crc, m->footer.front_crc);
2347 return -EBADMSG;
2348 }
2349 if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
2350 pr_err("read_partial_message %p middle crc %u != exp %u\n",
2351 m, con->in_middle_crc, m->footer.middle_crc);
2352 return -EBADMSG;
2353 }
2354 if (do_datacrc &&
2355 (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
2356 con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
2357 pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
2358 con->in_data_crc, le32_to_cpu(m->footer.data_crc));
2359 return -EBADMSG;
2360 }
2361
2362 return 1; /* done! */
2363 }
2364
2365 /*
2366 * Process message. This happens in the worker thread. The callback should
2367 * be careful not to do anything that waits on other incoming messages or it
2368 * may deadlock.
2369 */
2370 static void process_message(struct ceph_connection *con)
2371 {
2372 struct ceph_msg *msg;
2373
2374 BUG_ON(con->in_msg->con != con);
2375 con->in_msg->con = NULL;
2376 msg = con->in_msg;
2377 con->in_msg = NULL;
2378 con->ops->put(con);
2379
2380 /* if first message, set peer_name */
2381 if (con->peer_name.type == 0)
2382 con->peer_name = msg->hdr.src;
2383
2384 con->in_seq++;
2385 mutex_unlock(&con->mutex);
2386
2387 dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
2388 msg, le64_to_cpu(msg->hdr.seq),
2389 ENTITY_NAME(msg->hdr.src),
2390 le16_to_cpu(msg->hdr.type),
2391 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2392 le32_to_cpu(msg->hdr.front_len),
2393 le32_to_cpu(msg->hdr.data_len),
2394 con->in_front_crc, con->in_middle_crc, con->in_data_crc);
2395 con->ops->dispatch(con, msg);
2396
2397 mutex_lock(&con->mutex);
2398 }
2399
2400
2401 /*
2402 * Write something to the socket. Called in a worker thread when the
2403 * socket appears to be writeable and we have something ready to send.
2404 */
2405 static int try_write(struct ceph_connection *con)
2406 {
2407 int ret = 1;
2408
2409 dout("try_write start %p state %lu\n", con, con->state);
2410
2411 more:
2412 dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
2413
2414 /* open the socket first? */
2415 if (con->state == CON_STATE_PREOPEN) {
2416 BUG_ON(con->sock);
2417 con->state = CON_STATE_CONNECTING;
2418
2419 con_out_kvec_reset(con);
2420 prepare_write_banner(con);
2421 prepare_read_banner(con);
2422
2423 BUG_ON(con->in_msg);
2424 con->in_tag = CEPH_MSGR_TAG_READY;
2425 dout("try_write initiating connect on %p new state %lu\n",
2426 con, con->state);
2427 ret = ceph_tcp_connect(con);
2428 if (ret < 0) {
2429 con->error_msg = "connect error";
2430 goto out;
2431 }
2432 }
2433
2434 more_kvec:
2435 /* kvec data queued? */
2436 if (con->out_skip) {
2437 ret = write_partial_skip(con);
2438 if (ret <= 0)
2439 goto out;
2440 }
2441 if (con->out_kvec_left) {
2442 ret = write_partial_kvec(con);
2443 if (ret <= 0)
2444 goto out;
2445 }
2446
2447 /* msg pages? */
2448 if (con->out_msg) {
2449 if (con->out_msg_done) {
2450 ceph_msg_put(con->out_msg);
2451 con->out_msg = NULL; /* we're done with this one */
2452 goto do_next;
2453 }
2454
2455 ret = write_partial_message_data(con);
2456 if (ret == 1)
2457 goto more_kvec; /* we need to send the footer, too! */
2458 if (ret == 0)
2459 goto out;
2460 if (ret < 0) {
2461 dout("try_write write_partial_message_data err %d\n",
2462 ret);
2463 goto out;
2464 }
2465 }
2466
2467 do_next:
2468 if (con->state == CON_STATE_OPEN) {
2469 /* is anything else pending? */
2470 if (!list_empty(&con->out_queue)) {
2471 prepare_write_message(con);
2472 goto more;
2473 }
2474 if (con->in_seq > con->in_seq_acked) {
2475 prepare_write_ack(con);
2476 goto more;
2477 }
2478 if (con_flag_test_and_clear(con, CON_FLAG_KEEPALIVE_PENDING)) {
2479 prepare_write_keepalive(con);
2480 goto more;
2481 }
2482 }
2483
2484 /* Nothing to do! */
2485 con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2486 dout("try_write nothing else to write.\n");
2487 ret = 0;
2488 out:
2489 dout("try_write done on %p ret %d\n", con, ret);
2490 return ret;
2491 }
2492
2493
2494
2495 /*
2496 * Read what we can from the socket.
2497 */
2498 static int try_read(struct ceph_connection *con)
2499 {
2500 int ret = -1;
2501
2502 more:
2503 dout("try_read start on %p state %lu\n", con, con->state);
2504 if (con->state != CON_STATE_CONNECTING &&
2505 con->state != CON_STATE_NEGOTIATING &&
2506 con->state != CON_STATE_OPEN)
2507 return 0;
2508
2509 BUG_ON(!con->sock);
2510
2511 dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
2512 con->in_base_pos);
2513
2514 if (con->state == CON_STATE_CONNECTING) {
2515 dout("try_read connecting\n");
2516 ret = read_partial_banner(con);
2517 if (ret <= 0)
2518 goto out;
2519 ret = process_banner(con);
2520 if (ret < 0)
2521 goto out;
2522
2523 con->state = CON_STATE_NEGOTIATING;
2524
2525 /*
2526 * Received banner is good, exchange connection info.
2527 * Do not reset out_kvec, as sending our banner raced
2528 * with receiving peer banner after connect completed.
2529 */
2530 ret = prepare_write_connect(con);
2531 if (ret < 0)
2532 goto out;
2533 prepare_read_connect(con);
2534
2535 /* Send connection info before awaiting response */
2536 goto out;
2537 }
2538
2539 if (con->state == CON_STATE_NEGOTIATING) {
2540 dout("try_read negotiating\n");
2541 ret = read_partial_connect(con);
2542 if (ret <= 0)
2543 goto out;
2544 ret = process_connect(con);
2545 if (ret < 0)
2546 goto out;
2547 goto more;
2548 }
2549
2550 WARN_ON(con->state != CON_STATE_OPEN);
2551
2552 if (con->in_base_pos < 0) {
2553 /*
2554 * skipping + discarding content.
2555 *
2556 * FIXME: there must be a better way to do this!
2557 */
2558 static char buf[SKIP_BUF_SIZE];
2559 int skip = min((int) sizeof (buf), -con->in_base_pos);
2560
2561 dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
2562 ret = ceph_tcp_recvmsg(con->sock, buf, skip);
2563 if (ret <= 0)
2564 goto out;
2565 con->in_base_pos += ret;
2566 if (con->in_base_pos)
2567 goto more;
2568 }
2569 if (con->in_tag == CEPH_MSGR_TAG_READY) {
2570 /*
2571 * what's next?
2572 */
2573 ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
2574 if (ret <= 0)
2575 goto out;
2576 dout("try_read got tag %d\n", (int)con->in_tag);
2577 switch (con->in_tag) {
2578 case CEPH_MSGR_TAG_MSG:
2579 prepare_read_message(con);
2580 break;
2581 case CEPH_MSGR_TAG_ACK:
2582 prepare_read_ack(con);
2583 break;
2584 case CEPH_MSGR_TAG_CLOSE:
2585 con_close_socket(con);
2586 con->state = CON_STATE_CLOSED;
2587 goto out;
2588 default:
2589 goto bad_tag;
2590 }
2591 }
2592 if (con->in_tag == CEPH_MSGR_TAG_MSG) {
2593 ret = read_partial_message(con);
2594 if (ret <= 0) {
2595 switch (ret) {
2596 case -EBADMSG:
2597 con->error_msg = "bad crc";
2598 ret = -EIO;
2599 break;
2600 case -EIO:
2601 con->error_msg = "io error";
2602 break;
2603 }
2604 goto out;
2605 }
2606 if (con->in_tag == CEPH_MSGR_TAG_READY)
2607 goto more;
2608 process_message(con);
2609 if (con->state == CON_STATE_OPEN)
2610 prepare_read_tag(con);
2611 goto more;
2612 }
2613 if (con->in_tag == CEPH_MSGR_TAG_ACK ||
2614 con->in_tag == CEPH_MSGR_TAG_SEQ) {
2615 /*
2616 * the final handshake seq exchange is semantically
2617 * equivalent to an ACK
2618 */
2619 ret = read_partial_ack(con);
2620 if (ret <= 0)
2621 goto out;
2622 process_ack(con);
2623 goto more;
2624 }
2625
2626 out:
2627 dout("try_read done on %p ret %d\n", con, ret);
2628 return ret;
2629
2630 bad_tag:
2631 pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
2632 con->error_msg = "protocol error, garbage tag";
2633 ret = -1;
2634 goto out;
2635 }
2636
2637
2638 /*
2639 * Atomically queue work on a connection after the specified delay.
2640 * Bump @con reference to avoid races with connection teardown.
2641 * Returns 0 if work was queued, or an error code otherwise.
2642 */
2643 static int queue_con_delay(struct ceph_connection *con, unsigned long delay)
2644 {
2645 if (!con->ops->get(con)) {
2646 dout("%s %p ref count 0\n", __func__, con);
2647
2648 return -ENOENT;
2649 }
2650
2651 if (!queue_delayed_work(ceph_msgr_wq, &con->work, delay)) {
2652 dout("%s %p - already queued\n", __func__, con);
2653 con->ops->put(con);
2654
2655 return -EBUSY;
2656 }
2657
2658 dout("%s %p %lu\n", __func__, con, delay);
2659
2660 return 0;
2661 }
2662
2663 static void queue_con(struct ceph_connection *con)
2664 {
2665 (void) queue_con_delay(con, 0);
2666 }
2667
2668 static bool con_sock_closed(struct ceph_connection *con)
2669 {
2670 if (!con_flag_test_and_clear(con, CON_FLAG_SOCK_CLOSED))
2671 return false;
2672
2673 #define CASE(x) \
2674 case CON_STATE_ ## x: \
2675 con->error_msg = "socket closed (con state " #x ")"; \
2676 break;
2677
2678 switch (con->state) {
2679 CASE(CLOSED);
2680 CASE(PREOPEN);
2681 CASE(CONNECTING);
2682 CASE(NEGOTIATING);
2683 CASE(OPEN);
2684 CASE(STANDBY);
2685 default:
2686 pr_warning("%s con %p unrecognized state %lu\n",
2687 __func__, con, con->state);
2688 con->error_msg = "unrecognized con state";
2689 BUG();
2690 break;
2691 }
2692 #undef CASE
2693
2694 return true;
2695 }
2696
2697 static bool con_backoff(struct ceph_connection *con)
2698 {
2699 int ret;
2700
2701 if (!con_flag_test_and_clear(con, CON_FLAG_BACKOFF))
2702 return false;
2703
2704 ret = queue_con_delay(con, round_jiffies_relative(con->delay));
2705 if (ret) {
2706 dout("%s: con %p FAILED to back off %lu\n", __func__,
2707 con, con->delay);
2708 BUG_ON(ret == -ENOENT);
2709 con_flag_set(con, CON_FLAG_BACKOFF);
2710 }
2711
2712 return true;
2713 }
2714
2715 /* Finish fault handling; con->mutex must *not* be held here */
2716
2717 static void con_fault_finish(struct ceph_connection *con)
2718 {
2719 /*
2720 * in case we faulted due to authentication, invalidate our
2721 * current tickets so that we can get new ones.
2722 */
2723 if (con->auth_retry && con->ops->invalidate_authorizer) {
2724 dout("calling invalidate_authorizer()\n");
2725 con->ops->invalidate_authorizer(con);
2726 }
2727
2728 if (con->ops->fault)
2729 con->ops->fault(con);
2730 }
2731
2732 /*
2733 * Do some work on a connection. Drop a connection ref when we're done.
2734 */
2735 static void con_work(struct work_struct *work)
2736 {
2737 struct ceph_connection *con = container_of(work, struct ceph_connection,
2738 work.work);
2739 bool fault;
2740
2741 mutex_lock(&con->mutex);
2742 while (true) {
2743 int ret;
2744
2745 if ((fault = con_sock_closed(con))) {
2746 dout("%s: con %p SOCK_CLOSED\n", __func__, con);
2747 break;
2748 }
2749 if (con_backoff(con)) {
2750 dout("%s: con %p BACKOFF\n", __func__, con);
2751 break;
2752 }
2753 if (con->state == CON_STATE_STANDBY) {
2754 dout("%s: con %p STANDBY\n", __func__, con);
2755 break;
2756 }
2757 if (con->state == CON_STATE_CLOSED) {
2758 dout("%s: con %p CLOSED\n", __func__, con);
2759 BUG_ON(con->sock);
2760 break;
2761 }
2762 if (con->state == CON_STATE_PREOPEN) {
2763 dout("%s: con %p PREOPEN\n", __func__, con);
2764 BUG_ON(con->sock);
2765 }
2766
2767 ret = try_read(con);
2768 if (ret < 0) {
2769 if (ret == -EAGAIN)
2770 continue;
2771 con->error_msg = "socket error on read";
2772 fault = true;
2773 break;
2774 }
2775
2776 ret = try_write(con);
2777 if (ret < 0) {
2778 if (ret == -EAGAIN)
2779 continue;
2780 con->error_msg = "socket error on write";
2781 fault = true;
2782 }
2783
2784 break; /* If we make it to here, we're done */
2785 }
2786 if (fault)
2787 con_fault(con);
2788 mutex_unlock(&con->mutex);
2789
2790 if (fault)
2791 con_fault_finish(con);
2792
2793 con->ops->put(con);
2794 }
2795
2796 /*
2797 * Generic error/fault handler. A retry mechanism is used with
2798 * exponential backoff
2799 */
2800 static void con_fault(struct ceph_connection *con)
2801 {
2802 pr_warning("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
2803 ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
2804 dout("fault %p state %lu to peer %s\n",
2805 con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
2806
2807 WARN_ON(con->state != CON_STATE_CONNECTING &&
2808 con->state != CON_STATE_NEGOTIATING &&
2809 con->state != CON_STATE_OPEN);
2810
2811 con_close_socket(con);
2812
2813 if (con_flag_test(con, CON_FLAG_LOSSYTX)) {
2814 dout("fault on LOSSYTX channel, marking CLOSED\n");
2815 con->state = CON_STATE_CLOSED;
2816 return;
2817 }
2818
2819 if (con->in_msg) {
2820 BUG_ON(con->in_msg->con != con);
2821 con->in_msg->con = NULL;
2822 ceph_msg_put(con->in_msg);
2823 con->in_msg = NULL;
2824 con->ops->put(con);
2825 }
2826
2827 /* Requeue anything that hasn't been acked */
2828 list_splice_init(&con->out_sent, &con->out_queue);
2829
2830 /* If there are no messages queued or keepalive pending, place
2831 * the connection in a STANDBY state */
2832 if (list_empty(&con->out_queue) &&
2833 !con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING)) {
2834 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
2835 con_flag_clear(con, CON_FLAG_WRITE_PENDING);
2836 con->state = CON_STATE_STANDBY;
2837 } else {
2838 /* retry after a delay. */
2839 con->state = CON_STATE_PREOPEN;
2840 if (con->delay == 0)
2841 con->delay = BASE_DELAY_INTERVAL;
2842 else if (con->delay < MAX_DELAY_INTERVAL)
2843 con->delay *= 2;
2844 con_flag_set(con, CON_FLAG_BACKOFF);
2845 queue_con(con);
2846 }
2847 }
2848
2849
2850
2851 /*
2852 * initialize a new messenger instance
2853 */
2854 void ceph_messenger_init(struct ceph_messenger *msgr,
2855 struct ceph_entity_addr *myaddr,
2856 u32 supported_features,
2857 u32 required_features,
2858 bool nocrc)
2859 {
2860 msgr->supported_features = supported_features;
2861 msgr->required_features = required_features;
2862
2863 spin_lock_init(&msgr->global_seq_lock);
2864
2865 if (myaddr)
2866 msgr->inst.addr = *myaddr;
2867
2868 /* select a random nonce */
2869 msgr->inst.addr.type = 0;
2870 get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
2871 encode_my_addr(msgr);
2872 msgr->nocrc = nocrc;
2873
2874 atomic_set(&msgr->stopping, 0);
2875
2876 dout("%s %p\n", __func__, msgr);
2877 }
2878 EXPORT_SYMBOL(ceph_messenger_init);
2879
2880 static void clear_standby(struct ceph_connection *con)
2881 {
2882 /* come back from STANDBY? */
2883 if (con->state == CON_STATE_STANDBY) {
2884 dout("clear_standby %p and ++connect_seq\n", con);
2885 con->state = CON_STATE_PREOPEN;
2886 con->connect_seq++;
2887 WARN_ON(con_flag_test(con, CON_FLAG_WRITE_PENDING));
2888 WARN_ON(con_flag_test(con, CON_FLAG_KEEPALIVE_PENDING));
2889 }
2890 }
2891
2892 /*
2893 * Queue up an outgoing message on the given connection.
2894 */
2895 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
2896 {
2897 /* set src+dst */
2898 msg->hdr.src = con->msgr->inst.name;
2899 BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
2900 msg->needs_out_seq = true;
2901
2902 mutex_lock(&con->mutex);
2903
2904 if (con->state == CON_STATE_CLOSED) {
2905 dout("con_send %p closed, dropping %p\n", con, msg);
2906 ceph_msg_put(msg);
2907 mutex_unlock(&con->mutex);
2908 return;
2909 }
2910
2911 BUG_ON(msg->con != NULL);
2912 msg->con = con->ops->get(con);
2913 BUG_ON(msg->con == NULL);
2914
2915 BUG_ON(!list_empty(&msg->list_head));
2916 list_add_tail(&msg->list_head, &con->out_queue);
2917 dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
2918 ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
2919 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2920 le32_to_cpu(msg->hdr.front_len),
2921 le32_to_cpu(msg->hdr.middle_len),
2922 le32_to_cpu(msg->hdr.data_len));
2923
2924 clear_standby(con);
2925 mutex_unlock(&con->mutex);
2926
2927 /* if there wasn't anything waiting to send before, queue
2928 * new work */
2929 if (con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
2930 queue_con(con);
2931 }
2932 EXPORT_SYMBOL(ceph_con_send);
2933
2934 /*
2935 * Revoke a message that was previously queued for send
2936 */
2937 void ceph_msg_revoke(struct ceph_msg *msg)
2938 {
2939 struct ceph_connection *con = msg->con;
2940
2941 if (!con)
2942 return; /* Message not in our possession */
2943
2944 mutex_lock(&con->mutex);
2945 if (!list_empty(&msg->list_head)) {
2946 dout("%s %p msg %p - was on queue\n", __func__, con, msg);
2947 list_del_init(&msg->list_head);
2948 BUG_ON(msg->con == NULL);
2949 msg->con->ops->put(msg->con);
2950 msg->con = NULL;
2951 msg->hdr.seq = 0;
2952
2953 ceph_msg_put(msg);
2954 }
2955 if (con->out_msg == msg) {
2956 dout("%s %p msg %p - was sending\n", __func__, con, msg);
2957 con->out_msg = NULL;
2958 if (con->out_kvec_is_msg) {
2959 con->out_skip = con->out_kvec_bytes;
2960 con->out_kvec_is_msg = false;
2961 }
2962 msg->hdr.seq = 0;
2963
2964 ceph_msg_put(msg);
2965 }
2966 mutex_unlock(&con->mutex);
2967 }
2968
2969 /*
2970 * Revoke a message that we may be reading data into
2971 */
2972 void ceph_msg_revoke_incoming(struct ceph_msg *msg)
2973 {
2974 struct ceph_connection *con;
2975
2976 BUG_ON(msg == NULL);
2977 if (!msg->con) {
2978 dout("%s msg %p null con\n", __func__, msg);
2979
2980 return; /* Message not in our possession */
2981 }
2982
2983 con = msg->con;
2984 mutex_lock(&con->mutex);
2985 if (con->in_msg == msg) {
2986 unsigned int front_len = le32_to_cpu(con->in_hdr.front_len);
2987 unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len);
2988 unsigned int data_len = le32_to_cpu(con->in_hdr.data_len);
2989
2990 /* skip rest of message */
2991 dout("%s %p msg %p revoked\n", __func__, con, msg);
2992 con->in_base_pos = con->in_base_pos -
2993 sizeof(struct ceph_msg_header) -
2994 front_len -
2995 middle_len -
2996 data_len -
2997 sizeof(struct ceph_msg_footer);
2998 ceph_msg_put(con->in_msg);
2999 con->in_msg = NULL;
3000 con->in_tag = CEPH_MSGR_TAG_READY;
3001 con->in_seq++;
3002 } else {
3003 dout("%s %p in_msg %p msg %p no-op\n",
3004 __func__, con, con->in_msg, msg);
3005 }
3006 mutex_unlock(&con->mutex);
3007 }
3008
3009 /*
3010 * Queue a keepalive byte to ensure the tcp connection is alive.
3011 */
3012 void ceph_con_keepalive(struct ceph_connection *con)
3013 {
3014 dout("con_keepalive %p\n", con);
3015 mutex_lock(&con->mutex);
3016 clear_standby(con);
3017 mutex_unlock(&con->mutex);
3018 if (con_flag_test_and_set(con, CON_FLAG_KEEPALIVE_PENDING) == 0 &&
3019 con_flag_test_and_set(con, CON_FLAG_WRITE_PENDING) == 0)
3020 queue_con(con);
3021 }
3022 EXPORT_SYMBOL(ceph_con_keepalive);
3023
3024 static struct ceph_msg_data *ceph_msg_data_create(enum ceph_msg_data_type type)
3025 {
3026 struct ceph_msg_data *data;
3027
3028 if (WARN_ON(!ceph_msg_data_type_valid(type)))
3029 return NULL;
3030
3031 data = kmem_cache_zalloc(ceph_msg_data_cache, GFP_NOFS);
3032 if (data)
3033 data->type = type;
3034 INIT_LIST_HEAD(&data->links);
3035
3036 return data;
3037 }
3038
3039 static void ceph_msg_data_destroy(struct ceph_msg_data *data)
3040 {
3041 if (!data)
3042 return;
3043
3044 WARN_ON(!list_empty(&data->links));
3045 if (data->type == CEPH_MSG_DATA_PAGELIST) {
3046 ceph_pagelist_release(data->pagelist);
3047 kfree(data->pagelist);
3048 }
3049 kmem_cache_free(ceph_msg_data_cache, data);
3050 }
3051
3052 void ceph_msg_data_add_pages(struct ceph_msg *msg, struct page **pages,
3053 size_t length, size_t alignment)
3054 {
3055 struct ceph_msg_data *data;
3056
3057 BUG_ON(!pages);
3058 BUG_ON(!length);
3059
3060 data = ceph_msg_data_create(CEPH_MSG_DATA_PAGES);
3061 BUG_ON(!data);
3062 data->pages = pages;
3063 data->length = length;
3064 data->alignment = alignment & ~PAGE_MASK;
3065
3066 list_add_tail(&data->links, &msg->data);
3067 msg->data_length += length;
3068 }
3069 EXPORT_SYMBOL(ceph_msg_data_add_pages);
3070
3071 void ceph_msg_data_add_pagelist(struct ceph_msg *msg,
3072 struct ceph_pagelist *pagelist)
3073 {
3074 struct ceph_msg_data *data;
3075
3076 BUG_ON(!pagelist);
3077 BUG_ON(!pagelist->length);
3078
3079 data = ceph_msg_data_create(CEPH_MSG_DATA_PAGELIST);
3080 BUG_ON(!data);
3081 data->pagelist = pagelist;
3082
3083 list_add_tail(&data->links, &msg->data);
3084 msg->data_length += pagelist->length;
3085 }
3086 EXPORT_SYMBOL(ceph_msg_data_add_pagelist);
3087
3088 #ifdef CONFIG_BLOCK
3089 void ceph_msg_data_add_bio(struct ceph_msg *msg, struct bio *bio,
3090 size_t length)
3091 {
3092 struct ceph_msg_data *data;
3093
3094 BUG_ON(!bio);
3095
3096 data = ceph_msg_data_create(CEPH_MSG_DATA_BIO);
3097 BUG_ON(!data);
3098 data->bio = bio;
3099 data->bio_length = length;
3100
3101 list_add_tail(&data->links, &msg->data);
3102 msg->data_length += length;
3103 }
3104 EXPORT_SYMBOL(ceph_msg_data_add_bio);
3105 #endif /* CONFIG_BLOCK */
3106
3107 /*
3108 * construct a new message with given type, size
3109 * the new msg has a ref count of 1.
3110 */
3111 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
3112 bool can_fail)
3113 {
3114 struct ceph_msg *m;
3115
3116 m = kmem_cache_zalloc(ceph_msg_cache, flags);
3117 if (m == NULL)
3118 goto out;
3119
3120 m->hdr.type = cpu_to_le16(type);
3121 m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
3122 m->hdr.front_len = cpu_to_le32(front_len);
3123
3124 INIT_LIST_HEAD(&m->list_head);
3125 kref_init(&m->kref);
3126 INIT_LIST_HEAD(&m->data);
3127
3128 /* front */
3129 m->front_max = front_len;
3130 if (front_len) {
3131 if (front_len > PAGE_CACHE_SIZE) {
3132 m->front.iov_base = __vmalloc(front_len, flags,
3133 PAGE_KERNEL);
3134 m->front_is_vmalloc = true;
3135 } else {
3136 m->front.iov_base = kmalloc(front_len, flags);
3137 }
3138 if (m->front.iov_base == NULL) {
3139 dout("ceph_msg_new can't allocate %d bytes\n",
3140 front_len);
3141 goto out2;
3142 }
3143 } else {
3144 m->front.iov_base = NULL;
3145 }
3146 m->front.iov_len = front_len;
3147
3148 dout("ceph_msg_new %p front %d\n", m, front_len);
3149 return m;
3150
3151 out2:
3152 ceph_msg_put(m);
3153 out:
3154 if (!can_fail) {
3155 pr_err("msg_new can't create type %d front %d\n", type,
3156 front_len);
3157 WARN_ON(1);
3158 } else {
3159 dout("msg_new can't create type %d front %d\n", type,
3160 front_len);
3161 }
3162 return NULL;
3163 }
3164 EXPORT_SYMBOL(ceph_msg_new);
3165
3166 /*
3167 * Allocate "middle" portion of a message, if it is needed and wasn't
3168 * allocated by alloc_msg. This allows us to read a small fixed-size
3169 * per-type header in the front and then gracefully fail (i.e.,
3170 * propagate the error to the caller based on info in the front) when
3171 * the middle is too large.
3172 */
3173 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
3174 {
3175 int type = le16_to_cpu(msg->hdr.type);
3176 int middle_len = le32_to_cpu(msg->hdr.middle_len);
3177
3178 dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
3179 ceph_msg_type_name(type), middle_len);
3180 BUG_ON(!middle_len);
3181 BUG_ON(msg->middle);
3182
3183 msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
3184 if (!msg->middle)
3185 return -ENOMEM;
3186 return 0;
3187 }
3188
3189 /*
3190 * Allocate a message for receiving an incoming message on a
3191 * connection, and save the result in con->in_msg. Uses the
3192 * connection's private alloc_msg op if available.
3193 *
3194 * Returns 0 on success, or a negative error code.
3195 *
3196 * On success, if we set *skip = 1:
3197 * - the next message should be skipped and ignored.
3198 * - con->in_msg == NULL
3199 * or if we set *skip = 0:
3200 * - con->in_msg is non-null.
3201 * On error (ENOMEM, EAGAIN, ...),
3202 * - con->in_msg == NULL
3203 */
3204 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip)
3205 {
3206 struct ceph_msg_header *hdr = &con->in_hdr;
3207 int middle_len = le32_to_cpu(hdr->middle_len);
3208 struct ceph_msg *msg;
3209 int ret = 0;
3210
3211 BUG_ON(con->in_msg != NULL);
3212 BUG_ON(!con->ops->alloc_msg);
3213
3214 mutex_unlock(&con->mutex);
3215 msg = con->ops->alloc_msg(con, hdr, skip);
3216 mutex_lock(&con->mutex);
3217 if (con->state != CON_STATE_OPEN) {
3218 if (msg)
3219 ceph_msg_put(msg);
3220 return -EAGAIN;
3221 }
3222 if (msg) {
3223 BUG_ON(*skip);
3224 con->in_msg = msg;
3225 con->in_msg->con = con->ops->get(con);
3226 BUG_ON(con->in_msg->con == NULL);
3227 } else {
3228 /*
3229 * Null message pointer means either we should skip
3230 * this message or we couldn't allocate memory. The
3231 * former is not an error.
3232 */
3233 if (*skip)
3234 return 0;
3235 con->error_msg = "error allocating memory for incoming message";
3236
3237 return -ENOMEM;
3238 }
3239 memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
3240
3241 if (middle_len && !con->in_msg->middle) {
3242 ret = ceph_alloc_middle(con, con->in_msg);
3243 if (ret < 0) {
3244 ceph_msg_put(con->in_msg);
3245 con->in_msg = NULL;
3246 }
3247 }
3248
3249 return ret;
3250 }
3251
3252
3253 /*
3254 * Free a generically kmalloc'd message.
3255 */
3256 void ceph_msg_kfree(struct ceph_msg *m)
3257 {
3258 dout("msg_kfree %p\n", m);
3259 if (m->front_is_vmalloc)
3260 vfree(m->front.iov_base);
3261 else
3262 kfree(m->front.iov_base);
3263 kmem_cache_free(ceph_msg_cache, m);
3264 }
3265
3266 /*
3267 * Drop a msg ref. Destroy as needed.
3268 */
3269 void ceph_msg_last_put(struct kref *kref)
3270 {
3271 struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
3272 LIST_HEAD(data);
3273 struct list_head *links;
3274 struct list_head *next;
3275
3276 dout("ceph_msg_put last one on %p\n", m);
3277 WARN_ON(!list_empty(&m->list_head));
3278
3279 /* drop middle, data, if any */
3280 if (m->middle) {
3281 ceph_buffer_put(m->middle);
3282 m->middle = NULL;
3283 }
3284
3285 list_splice_init(&m->data, &data);
3286 list_for_each_safe(links, next, &data) {
3287 struct ceph_msg_data *data;
3288
3289 data = list_entry(links, struct ceph_msg_data, links);
3290 list_del_init(links);
3291 ceph_msg_data_destroy(data);
3292 }
3293 m->data_length = 0;
3294
3295 if (m->pool)
3296 ceph_msgpool_put(m->pool, m);
3297 else
3298 ceph_msg_kfree(m);
3299 }
3300 EXPORT_SYMBOL(ceph_msg_last_put);
3301
3302 void ceph_msg_dump(struct ceph_msg *msg)
3303 {
3304 pr_debug("msg_dump %p (front_max %d length %zd)\n", msg,
3305 msg->front_max, msg->data_length);
3306 print_hex_dump(KERN_DEBUG, "header: ",
3307 DUMP_PREFIX_OFFSET, 16, 1,
3308 &msg->hdr, sizeof(msg->hdr), true);
3309 print_hex_dump(KERN_DEBUG, " front: ",
3310 DUMP_PREFIX_OFFSET, 16, 1,
3311 msg->front.iov_base, msg->front.iov_len, true);
3312 if (msg->middle)
3313 print_hex_dump(KERN_DEBUG, "middle: ",
3314 DUMP_PREFIX_OFFSET, 16, 1,
3315 msg->middle->vec.iov_base,
3316 msg->middle->vec.iov_len, true);
3317 print_hex_dump(KERN_DEBUG, "footer: ",
3318 DUMP_PREFIX_OFFSET, 16, 1,
3319 &msg->footer, sizeof(msg->footer), true);
3320 }
3321 EXPORT_SYMBOL(ceph_msg_dump);