Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/sage/ceph...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / ceph / messenger.c
1 #include <linux/ceph/ceph_debug.h>
2
3 #include <linux/crc32c.h>
4 #include <linux/ctype.h>
5 #include <linux/highmem.h>
6 #include <linux/inet.h>
7 #include <linux/kthread.h>
8 #include <linux/net.h>
9 #include <linux/slab.h>
10 #include <linux/socket.h>
11 #include <linux/string.h>
12 #include <linux/bio.h>
13 #include <linux/blkdev.h>
14 #include <linux/dns_resolver.h>
15 #include <net/tcp.h>
16
17 #include <linux/ceph/libceph.h>
18 #include <linux/ceph/messenger.h>
19 #include <linux/ceph/decode.h>
20 #include <linux/ceph/pagelist.h>
21 #include <linux/export.h>
22
23 /*
24 * Ceph uses the messenger to exchange ceph_msg messages with other
25 * hosts in the system. The messenger provides ordered and reliable
26 * delivery. We tolerate TCP disconnects by reconnecting (with
27 * exponential backoff) in the case of a fault (disconnection, bad
28 * crc, protocol error). Acks allow sent messages to be discarded by
29 * the sender.
30 */
31
32 /*
33 * We track the state of the socket on a given connection using
34 * values defined below. The transition to a new socket state is
35 * handled by a function which verifies we aren't coming from an
36 * unexpected state.
37 *
38 * --------
39 * | NEW* | transient initial state
40 * --------
41 * | con_sock_state_init()
42 * v
43 * ----------
44 * | CLOSED | initialized, but no socket (and no
45 * ---------- TCP connection)
46 * ^ \
47 * | \ con_sock_state_connecting()
48 * | ----------------------
49 * | \
50 * + con_sock_state_closed() \
51 * |+--------------------------- \
52 * | \ \ \
53 * | ----------- \ \
54 * | | CLOSING | socket event; \ \
55 * | ----------- await close \ \
56 * | ^ \ |
57 * | | \ |
58 * | + con_sock_state_closing() \ |
59 * | / \ | |
60 * | / --------------- | |
61 * | / \ v v
62 * | / --------------
63 * | / -----------------| CONNECTING | socket created, TCP
64 * | | / -------------- connect initiated
65 * | | | con_sock_state_connected()
66 * | | v
67 * -------------
68 * | CONNECTED | TCP connection established
69 * -------------
70 *
71 * State values for ceph_connection->sock_state; NEW is assumed to be 0.
72 */
73
74 #define CON_SOCK_STATE_NEW 0 /* -> CLOSED */
75 #define CON_SOCK_STATE_CLOSED 1 /* -> CONNECTING */
76 #define CON_SOCK_STATE_CONNECTING 2 /* -> CONNECTED or -> CLOSING */
77 #define CON_SOCK_STATE_CONNECTED 3 /* -> CLOSING or -> CLOSED */
78 #define CON_SOCK_STATE_CLOSING 4 /* -> CLOSED */
79
80 /*
81 * connection states
82 */
83 #define CON_STATE_CLOSED 1 /* -> PREOPEN */
84 #define CON_STATE_PREOPEN 2 /* -> CONNECTING, CLOSED */
85 #define CON_STATE_CONNECTING 3 /* -> NEGOTIATING, CLOSED */
86 #define CON_STATE_NEGOTIATING 4 /* -> OPEN, CLOSED */
87 #define CON_STATE_OPEN 5 /* -> STANDBY, CLOSED */
88 #define CON_STATE_STANDBY 6 /* -> PREOPEN, CLOSED */
89
90 /*
91 * ceph_connection flag bits
92 */
93 #define CON_FLAG_LOSSYTX 0 /* we can close channel or drop
94 * messages on errors */
95 #define CON_FLAG_KEEPALIVE_PENDING 1 /* we need to send a keepalive */
96 #define CON_FLAG_WRITE_PENDING 2 /* we have data ready to send */
97 #define CON_FLAG_SOCK_CLOSED 3 /* socket state changed to closed */
98 #define CON_FLAG_BACKOFF 4 /* need to retry queuing delayed work */
99
100 /* static tag bytes (protocol control messages) */
101 static char tag_msg = CEPH_MSGR_TAG_MSG;
102 static char tag_ack = CEPH_MSGR_TAG_ACK;
103 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
104
105 #ifdef CONFIG_LOCKDEP
106 static struct lock_class_key socket_class;
107 #endif
108
109 /*
110 * When skipping (ignoring) a block of input we read it into a "skip
111 * buffer," which is this many bytes in size.
112 */
113 #define SKIP_BUF_SIZE 1024
114
115 static void queue_con(struct ceph_connection *con);
116 static void con_work(struct work_struct *);
117 static void ceph_fault(struct ceph_connection *con);
118
119 /*
120 * Nicely render a sockaddr as a string. An array of formatted
121 * strings is used, to approximate reentrancy.
122 */
123 #define ADDR_STR_COUNT_LOG 5 /* log2(# address strings in array) */
124 #define ADDR_STR_COUNT (1 << ADDR_STR_COUNT_LOG)
125 #define ADDR_STR_COUNT_MASK (ADDR_STR_COUNT - 1)
126 #define MAX_ADDR_STR_LEN 64 /* 54 is enough */
127
128 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
129 static atomic_t addr_str_seq = ATOMIC_INIT(0);
130
131 static struct page *zero_page; /* used in certain error cases */
132
133 const char *ceph_pr_addr(const struct sockaddr_storage *ss)
134 {
135 int i;
136 char *s;
137 struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
138 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
139
140 i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
141 s = addr_str[i];
142
143 switch (ss->ss_family) {
144 case AF_INET:
145 snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr,
146 ntohs(in4->sin_port));
147 break;
148
149 case AF_INET6:
150 snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr,
151 ntohs(in6->sin6_port));
152 break;
153
154 default:
155 snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
156 ss->ss_family);
157 }
158
159 return s;
160 }
161 EXPORT_SYMBOL(ceph_pr_addr);
162
163 static void encode_my_addr(struct ceph_messenger *msgr)
164 {
165 memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
166 ceph_encode_addr(&msgr->my_enc_addr);
167 }
168
169 /*
170 * work queue for all reading and writing to/from the socket.
171 */
172 static struct workqueue_struct *ceph_msgr_wq;
173
174 void _ceph_msgr_exit(void)
175 {
176 if (ceph_msgr_wq) {
177 destroy_workqueue(ceph_msgr_wq);
178 ceph_msgr_wq = NULL;
179 }
180
181 BUG_ON(zero_page == NULL);
182 kunmap(zero_page);
183 page_cache_release(zero_page);
184 zero_page = NULL;
185 }
186
187 int ceph_msgr_init(void)
188 {
189 BUG_ON(zero_page != NULL);
190 zero_page = ZERO_PAGE(0);
191 page_cache_get(zero_page);
192
193 ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_NON_REENTRANT, 0);
194 if (ceph_msgr_wq)
195 return 0;
196
197 pr_err("msgr_init failed to create workqueue\n");
198 _ceph_msgr_exit();
199
200 return -ENOMEM;
201 }
202 EXPORT_SYMBOL(ceph_msgr_init);
203
204 void ceph_msgr_exit(void)
205 {
206 BUG_ON(ceph_msgr_wq == NULL);
207
208 _ceph_msgr_exit();
209 }
210 EXPORT_SYMBOL(ceph_msgr_exit);
211
212 void ceph_msgr_flush(void)
213 {
214 flush_workqueue(ceph_msgr_wq);
215 }
216 EXPORT_SYMBOL(ceph_msgr_flush);
217
218 /* Connection socket state transition functions */
219
220 static void con_sock_state_init(struct ceph_connection *con)
221 {
222 int old_state;
223
224 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
225 if (WARN_ON(old_state != CON_SOCK_STATE_NEW))
226 printk("%s: unexpected old state %d\n", __func__, old_state);
227 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
228 CON_SOCK_STATE_CLOSED);
229 }
230
231 static void con_sock_state_connecting(struct ceph_connection *con)
232 {
233 int old_state;
234
235 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTING);
236 if (WARN_ON(old_state != CON_SOCK_STATE_CLOSED))
237 printk("%s: unexpected old state %d\n", __func__, old_state);
238 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
239 CON_SOCK_STATE_CONNECTING);
240 }
241
242 static void con_sock_state_connected(struct ceph_connection *con)
243 {
244 int old_state;
245
246 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CONNECTED);
247 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING))
248 printk("%s: unexpected old state %d\n", __func__, old_state);
249 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
250 CON_SOCK_STATE_CONNECTED);
251 }
252
253 static void con_sock_state_closing(struct ceph_connection *con)
254 {
255 int old_state;
256
257 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSING);
258 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTING &&
259 old_state != CON_SOCK_STATE_CONNECTED &&
260 old_state != CON_SOCK_STATE_CLOSING))
261 printk("%s: unexpected old state %d\n", __func__, old_state);
262 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
263 CON_SOCK_STATE_CLOSING);
264 }
265
266 static void con_sock_state_closed(struct ceph_connection *con)
267 {
268 int old_state;
269
270 old_state = atomic_xchg(&con->sock_state, CON_SOCK_STATE_CLOSED);
271 if (WARN_ON(old_state != CON_SOCK_STATE_CONNECTED &&
272 old_state != CON_SOCK_STATE_CLOSING &&
273 old_state != CON_SOCK_STATE_CONNECTING &&
274 old_state != CON_SOCK_STATE_CLOSED))
275 printk("%s: unexpected old state %d\n", __func__, old_state);
276 dout("%s con %p sock %d -> %d\n", __func__, con, old_state,
277 CON_SOCK_STATE_CLOSED);
278 }
279
280 /*
281 * socket callback functions
282 */
283
284 /* data available on socket, or listen socket received a connect */
285 static void ceph_sock_data_ready(struct sock *sk, int count_unused)
286 {
287 struct ceph_connection *con = sk->sk_user_data;
288 if (atomic_read(&con->msgr->stopping)) {
289 return;
290 }
291
292 if (sk->sk_state != TCP_CLOSE_WAIT) {
293 dout("%s on %p state = %lu, queueing work\n", __func__,
294 con, con->state);
295 queue_con(con);
296 }
297 }
298
299 /* socket has buffer space for writing */
300 static void ceph_sock_write_space(struct sock *sk)
301 {
302 struct ceph_connection *con = sk->sk_user_data;
303
304 /* only queue to workqueue if there is data we want to write,
305 * and there is sufficient space in the socket buffer to accept
306 * more data. clear SOCK_NOSPACE so that ceph_sock_write_space()
307 * doesn't get called again until try_write() fills the socket
308 * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
309 * and net/core/stream.c:sk_stream_write_space().
310 */
311 if (test_bit(CON_FLAG_WRITE_PENDING, &con->flags)) {
312 if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
313 dout("%s %p queueing write work\n", __func__, con);
314 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
315 queue_con(con);
316 }
317 } else {
318 dout("%s %p nothing to write\n", __func__, con);
319 }
320 }
321
322 /* socket's state has changed */
323 static void ceph_sock_state_change(struct sock *sk)
324 {
325 struct ceph_connection *con = sk->sk_user_data;
326
327 dout("%s %p state = %lu sk_state = %u\n", __func__,
328 con, con->state, sk->sk_state);
329
330 switch (sk->sk_state) {
331 case TCP_CLOSE:
332 dout("%s TCP_CLOSE\n", __func__);
333 case TCP_CLOSE_WAIT:
334 dout("%s TCP_CLOSE_WAIT\n", __func__);
335 con_sock_state_closing(con);
336 set_bit(CON_FLAG_SOCK_CLOSED, &con->flags);
337 queue_con(con);
338 break;
339 case TCP_ESTABLISHED:
340 dout("%s TCP_ESTABLISHED\n", __func__);
341 con_sock_state_connected(con);
342 queue_con(con);
343 break;
344 default: /* Everything else is uninteresting */
345 break;
346 }
347 }
348
349 /*
350 * set up socket callbacks
351 */
352 static void set_sock_callbacks(struct socket *sock,
353 struct ceph_connection *con)
354 {
355 struct sock *sk = sock->sk;
356 sk->sk_user_data = con;
357 sk->sk_data_ready = ceph_sock_data_ready;
358 sk->sk_write_space = ceph_sock_write_space;
359 sk->sk_state_change = ceph_sock_state_change;
360 }
361
362
363 /*
364 * socket helpers
365 */
366
367 /*
368 * initiate connection to a remote socket.
369 */
370 static int ceph_tcp_connect(struct ceph_connection *con)
371 {
372 struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
373 struct socket *sock;
374 int ret;
375
376 BUG_ON(con->sock);
377 ret = sock_create_kern(con->peer_addr.in_addr.ss_family, SOCK_STREAM,
378 IPPROTO_TCP, &sock);
379 if (ret)
380 return ret;
381 sock->sk->sk_allocation = GFP_NOFS;
382
383 #ifdef CONFIG_LOCKDEP
384 lockdep_set_class(&sock->sk->sk_lock, &socket_class);
385 #endif
386
387 set_sock_callbacks(sock, con);
388
389 dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
390
391 con_sock_state_connecting(con);
392 ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
393 O_NONBLOCK);
394 if (ret == -EINPROGRESS) {
395 dout("connect %s EINPROGRESS sk_state = %u\n",
396 ceph_pr_addr(&con->peer_addr.in_addr),
397 sock->sk->sk_state);
398 } else if (ret < 0) {
399 pr_err("connect %s error %d\n",
400 ceph_pr_addr(&con->peer_addr.in_addr), ret);
401 sock_release(sock);
402 con->error_msg = "connect error";
403
404 return ret;
405 }
406 con->sock = sock;
407 return 0;
408 }
409
410 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
411 {
412 struct kvec iov = {buf, len};
413 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
414 int r;
415
416 r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
417 if (r == -EAGAIN)
418 r = 0;
419 return r;
420 }
421
422 /*
423 * write something. @more is true if caller will be sending more data
424 * shortly.
425 */
426 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
427 size_t kvlen, size_t len, int more)
428 {
429 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
430 int r;
431
432 if (more)
433 msg.msg_flags |= MSG_MORE;
434 else
435 msg.msg_flags |= MSG_EOR; /* superfluous, but what the hell */
436
437 r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
438 if (r == -EAGAIN)
439 r = 0;
440 return r;
441 }
442
443 static int ceph_tcp_sendpage(struct socket *sock, struct page *page,
444 int offset, size_t size, int more)
445 {
446 int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR);
447 int ret;
448
449 ret = kernel_sendpage(sock, page, offset, size, flags);
450 if (ret == -EAGAIN)
451 ret = 0;
452
453 return ret;
454 }
455
456
457 /*
458 * Shutdown/close the socket for the given connection.
459 */
460 static int con_close_socket(struct ceph_connection *con)
461 {
462 int rc = 0;
463
464 dout("con_close_socket on %p sock %p\n", con, con->sock);
465 if (con->sock) {
466 rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
467 sock_release(con->sock);
468 con->sock = NULL;
469 }
470
471 /*
472 * Forcibly clear the SOCK_CLOSED flag. It gets set
473 * independent of the connection mutex, and we could have
474 * received a socket close event before we had the chance to
475 * shut the socket down.
476 */
477 clear_bit(CON_FLAG_SOCK_CLOSED, &con->flags);
478
479 con_sock_state_closed(con);
480 return rc;
481 }
482
483 /*
484 * Reset a connection. Discard all incoming and outgoing messages
485 * and clear *_seq state.
486 */
487 static void ceph_msg_remove(struct ceph_msg *msg)
488 {
489 list_del_init(&msg->list_head);
490 BUG_ON(msg->con == NULL);
491 msg->con->ops->put(msg->con);
492 msg->con = NULL;
493
494 ceph_msg_put(msg);
495 }
496 static void ceph_msg_remove_list(struct list_head *head)
497 {
498 while (!list_empty(head)) {
499 struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
500 list_head);
501 ceph_msg_remove(msg);
502 }
503 }
504
505 static void reset_connection(struct ceph_connection *con)
506 {
507 /* reset connection, out_queue, msg_ and connect_seq */
508 /* discard existing out_queue and msg_seq */
509 ceph_msg_remove_list(&con->out_queue);
510 ceph_msg_remove_list(&con->out_sent);
511
512 if (con->in_msg) {
513 BUG_ON(con->in_msg->con != con);
514 con->in_msg->con = NULL;
515 ceph_msg_put(con->in_msg);
516 con->in_msg = NULL;
517 con->ops->put(con);
518 }
519
520 con->connect_seq = 0;
521 con->out_seq = 0;
522 if (con->out_msg) {
523 ceph_msg_put(con->out_msg);
524 con->out_msg = NULL;
525 }
526 con->in_seq = 0;
527 con->in_seq_acked = 0;
528 }
529
530 /*
531 * mark a peer down. drop any open connections.
532 */
533 void ceph_con_close(struct ceph_connection *con)
534 {
535 mutex_lock(&con->mutex);
536 dout("con_close %p peer %s\n", con,
537 ceph_pr_addr(&con->peer_addr.in_addr));
538 con->state = CON_STATE_CLOSED;
539
540 clear_bit(CON_FLAG_LOSSYTX, &con->flags); /* so we retry next connect */
541 clear_bit(CON_FLAG_KEEPALIVE_PENDING, &con->flags);
542 clear_bit(CON_FLAG_WRITE_PENDING, &con->flags);
543 clear_bit(CON_FLAG_KEEPALIVE_PENDING, &con->flags);
544 clear_bit(CON_FLAG_BACKOFF, &con->flags);
545
546 reset_connection(con);
547 con->peer_global_seq = 0;
548 cancel_delayed_work(&con->work);
549 con_close_socket(con);
550 mutex_unlock(&con->mutex);
551 }
552 EXPORT_SYMBOL(ceph_con_close);
553
554 /*
555 * Reopen a closed connection, with a new peer address.
556 */
557 void ceph_con_open(struct ceph_connection *con,
558 __u8 entity_type, __u64 entity_num,
559 struct ceph_entity_addr *addr)
560 {
561 mutex_lock(&con->mutex);
562 dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
563
564 BUG_ON(con->state != CON_STATE_CLOSED);
565 con->state = CON_STATE_PREOPEN;
566
567 con->peer_name.type = (__u8) entity_type;
568 con->peer_name.num = cpu_to_le64(entity_num);
569
570 memcpy(&con->peer_addr, addr, sizeof(*addr));
571 con->delay = 0; /* reset backoff memory */
572 mutex_unlock(&con->mutex);
573 queue_con(con);
574 }
575 EXPORT_SYMBOL(ceph_con_open);
576
577 /*
578 * return true if this connection ever successfully opened
579 */
580 bool ceph_con_opened(struct ceph_connection *con)
581 {
582 return con->connect_seq > 0;
583 }
584
585 /*
586 * initialize a new connection.
587 */
588 void ceph_con_init(struct ceph_connection *con, void *private,
589 const struct ceph_connection_operations *ops,
590 struct ceph_messenger *msgr)
591 {
592 dout("con_init %p\n", con);
593 memset(con, 0, sizeof(*con));
594 con->private = private;
595 con->ops = ops;
596 con->msgr = msgr;
597
598 con_sock_state_init(con);
599
600 mutex_init(&con->mutex);
601 INIT_LIST_HEAD(&con->out_queue);
602 INIT_LIST_HEAD(&con->out_sent);
603 INIT_DELAYED_WORK(&con->work, con_work);
604
605 con->state = CON_STATE_CLOSED;
606 }
607 EXPORT_SYMBOL(ceph_con_init);
608
609
610 /*
611 * We maintain a global counter to order connection attempts. Get
612 * a unique seq greater than @gt.
613 */
614 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
615 {
616 u32 ret;
617
618 spin_lock(&msgr->global_seq_lock);
619 if (msgr->global_seq < gt)
620 msgr->global_seq = gt;
621 ret = ++msgr->global_seq;
622 spin_unlock(&msgr->global_seq_lock);
623 return ret;
624 }
625
626 static void con_out_kvec_reset(struct ceph_connection *con)
627 {
628 con->out_kvec_left = 0;
629 con->out_kvec_bytes = 0;
630 con->out_kvec_cur = &con->out_kvec[0];
631 }
632
633 static void con_out_kvec_add(struct ceph_connection *con,
634 size_t size, void *data)
635 {
636 int index;
637
638 index = con->out_kvec_left;
639 BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
640
641 con->out_kvec[index].iov_len = size;
642 con->out_kvec[index].iov_base = data;
643 con->out_kvec_left++;
644 con->out_kvec_bytes += size;
645 }
646
647 #ifdef CONFIG_BLOCK
648 static void init_bio_iter(struct bio *bio, struct bio **iter, int *seg)
649 {
650 if (!bio) {
651 *iter = NULL;
652 *seg = 0;
653 return;
654 }
655 *iter = bio;
656 *seg = bio->bi_idx;
657 }
658
659 static void iter_bio_next(struct bio **bio_iter, int *seg)
660 {
661 if (*bio_iter == NULL)
662 return;
663
664 BUG_ON(*seg >= (*bio_iter)->bi_vcnt);
665
666 (*seg)++;
667 if (*seg == (*bio_iter)->bi_vcnt)
668 init_bio_iter((*bio_iter)->bi_next, bio_iter, seg);
669 }
670 #endif
671
672 static void prepare_write_message_data(struct ceph_connection *con)
673 {
674 struct ceph_msg *msg = con->out_msg;
675
676 BUG_ON(!msg);
677 BUG_ON(!msg->hdr.data_len);
678
679 /* initialize page iterator */
680 con->out_msg_pos.page = 0;
681 if (msg->pages)
682 con->out_msg_pos.page_pos = msg->page_alignment;
683 else
684 con->out_msg_pos.page_pos = 0;
685 #ifdef CONFIG_BLOCK
686 if (msg->bio)
687 init_bio_iter(msg->bio, &msg->bio_iter, &msg->bio_seg);
688 #endif
689 con->out_msg_pos.data_pos = 0;
690 con->out_msg_pos.did_page_crc = false;
691 con->out_more = 1; /* data + footer will follow */
692 }
693
694 /*
695 * Prepare footer for currently outgoing message, and finish things
696 * off. Assumes out_kvec* are already valid.. we just add on to the end.
697 */
698 static void prepare_write_message_footer(struct ceph_connection *con)
699 {
700 struct ceph_msg *m = con->out_msg;
701 int v = con->out_kvec_left;
702
703 m->footer.flags |= CEPH_MSG_FOOTER_COMPLETE;
704
705 dout("prepare_write_message_footer %p\n", con);
706 con->out_kvec_is_msg = true;
707 con->out_kvec[v].iov_base = &m->footer;
708 con->out_kvec[v].iov_len = sizeof(m->footer);
709 con->out_kvec_bytes += sizeof(m->footer);
710 con->out_kvec_left++;
711 con->out_more = m->more_to_follow;
712 con->out_msg_done = true;
713 }
714
715 /*
716 * Prepare headers for the next outgoing message.
717 */
718 static void prepare_write_message(struct ceph_connection *con)
719 {
720 struct ceph_msg *m;
721 u32 crc;
722
723 con_out_kvec_reset(con);
724 con->out_kvec_is_msg = true;
725 con->out_msg_done = false;
726
727 /* Sneak an ack in there first? If we can get it into the same
728 * TCP packet that's a good thing. */
729 if (con->in_seq > con->in_seq_acked) {
730 con->in_seq_acked = con->in_seq;
731 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
732 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
733 con_out_kvec_add(con, sizeof (con->out_temp_ack),
734 &con->out_temp_ack);
735 }
736
737 BUG_ON(list_empty(&con->out_queue));
738 m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
739 con->out_msg = m;
740 BUG_ON(m->con != con);
741
742 /* put message on sent list */
743 ceph_msg_get(m);
744 list_move_tail(&m->list_head, &con->out_sent);
745
746 /*
747 * only assign outgoing seq # if we haven't sent this message
748 * yet. if it is requeued, resend with it's original seq.
749 */
750 if (m->needs_out_seq) {
751 m->hdr.seq = cpu_to_le64(++con->out_seq);
752 m->needs_out_seq = false;
753 }
754 #ifdef CONFIG_BLOCK
755 else
756 m->bio_iter = NULL;
757 #endif
758
759 dout("prepare_write_message %p seq %lld type %d len %d+%d+%d %d pgs\n",
760 m, con->out_seq, le16_to_cpu(m->hdr.type),
761 le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
762 le32_to_cpu(m->hdr.data_len),
763 m->nr_pages);
764 BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
765
766 /* tag + hdr + front + middle */
767 con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
768 con_out_kvec_add(con, sizeof (m->hdr), &m->hdr);
769 con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
770
771 if (m->middle)
772 con_out_kvec_add(con, m->middle->vec.iov_len,
773 m->middle->vec.iov_base);
774
775 /* fill in crc (except data pages), footer */
776 crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
777 con->out_msg->hdr.crc = cpu_to_le32(crc);
778 con->out_msg->footer.flags = 0;
779
780 crc = crc32c(0, m->front.iov_base, m->front.iov_len);
781 con->out_msg->footer.front_crc = cpu_to_le32(crc);
782 if (m->middle) {
783 crc = crc32c(0, m->middle->vec.iov_base,
784 m->middle->vec.iov_len);
785 con->out_msg->footer.middle_crc = cpu_to_le32(crc);
786 } else
787 con->out_msg->footer.middle_crc = 0;
788 dout("%s front_crc %u middle_crc %u\n", __func__,
789 le32_to_cpu(con->out_msg->footer.front_crc),
790 le32_to_cpu(con->out_msg->footer.middle_crc));
791
792 /* is there a data payload? */
793 con->out_msg->footer.data_crc = 0;
794 if (m->hdr.data_len)
795 prepare_write_message_data(con);
796 else
797 /* no, queue up footer too and be done */
798 prepare_write_message_footer(con);
799
800 set_bit(CON_FLAG_WRITE_PENDING, &con->flags);
801 }
802
803 /*
804 * Prepare an ack.
805 */
806 static void prepare_write_ack(struct ceph_connection *con)
807 {
808 dout("prepare_write_ack %p %llu -> %llu\n", con,
809 con->in_seq_acked, con->in_seq);
810 con->in_seq_acked = con->in_seq;
811
812 con_out_kvec_reset(con);
813
814 con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
815
816 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
817 con_out_kvec_add(con, sizeof (con->out_temp_ack),
818 &con->out_temp_ack);
819
820 con->out_more = 1; /* more will follow.. eventually.. */
821 set_bit(CON_FLAG_WRITE_PENDING, &con->flags);
822 }
823
824 /*
825 * Prepare to write keepalive byte.
826 */
827 static void prepare_write_keepalive(struct ceph_connection *con)
828 {
829 dout("prepare_write_keepalive %p\n", con);
830 con_out_kvec_reset(con);
831 con_out_kvec_add(con, sizeof (tag_keepalive), &tag_keepalive);
832 set_bit(CON_FLAG_WRITE_PENDING, &con->flags);
833 }
834
835 /*
836 * Connection negotiation.
837 */
838
839 static struct ceph_auth_handshake *get_connect_authorizer(struct ceph_connection *con,
840 int *auth_proto)
841 {
842 struct ceph_auth_handshake *auth;
843
844 if (!con->ops->get_authorizer) {
845 con->out_connect.authorizer_protocol = CEPH_AUTH_UNKNOWN;
846 con->out_connect.authorizer_len = 0;
847 return NULL;
848 }
849
850 /* Can't hold the mutex while getting authorizer */
851 mutex_unlock(&con->mutex);
852 auth = con->ops->get_authorizer(con, auth_proto, con->auth_retry);
853 mutex_lock(&con->mutex);
854
855 if (IS_ERR(auth))
856 return auth;
857 if (con->state != CON_STATE_NEGOTIATING)
858 return ERR_PTR(-EAGAIN);
859
860 con->auth_reply_buf = auth->authorizer_reply_buf;
861 con->auth_reply_buf_len = auth->authorizer_reply_buf_len;
862 return auth;
863 }
864
865 /*
866 * We connected to a peer and are saying hello.
867 */
868 static void prepare_write_banner(struct ceph_connection *con)
869 {
870 con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
871 con_out_kvec_add(con, sizeof (con->msgr->my_enc_addr),
872 &con->msgr->my_enc_addr);
873
874 con->out_more = 0;
875 set_bit(CON_FLAG_WRITE_PENDING, &con->flags);
876 }
877
878 static int prepare_write_connect(struct ceph_connection *con)
879 {
880 unsigned int global_seq = get_global_seq(con->msgr, 0);
881 int proto;
882 int auth_proto;
883 struct ceph_auth_handshake *auth;
884
885 switch (con->peer_name.type) {
886 case CEPH_ENTITY_TYPE_MON:
887 proto = CEPH_MONC_PROTOCOL;
888 break;
889 case CEPH_ENTITY_TYPE_OSD:
890 proto = CEPH_OSDC_PROTOCOL;
891 break;
892 case CEPH_ENTITY_TYPE_MDS:
893 proto = CEPH_MDSC_PROTOCOL;
894 break;
895 default:
896 BUG();
897 }
898
899 dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
900 con->connect_seq, global_seq, proto);
901
902 con->out_connect.features = cpu_to_le64(con->msgr->supported_features);
903 con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
904 con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
905 con->out_connect.global_seq = cpu_to_le32(global_seq);
906 con->out_connect.protocol_version = cpu_to_le32(proto);
907 con->out_connect.flags = 0;
908
909 auth_proto = CEPH_AUTH_UNKNOWN;
910 auth = get_connect_authorizer(con, &auth_proto);
911 if (IS_ERR(auth))
912 return PTR_ERR(auth);
913
914 con->out_connect.authorizer_protocol = cpu_to_le32(auth_proto);
915 con->out_connect.authorizer_len = auth ?
916 cpu_to_le32(auth->authorizer_buf_len) : 0;
917
918 con_out_kvec_reset(con);
919 con_out_kvec_add(con, sizeof (con->out_connect),
920 &con->out_connect);
921 if (auth && auth->authorizer_buf_len)
922 con_out_kvec_add(con, auth->authorizer_buf_len,
923 auth->authorizer_buf);
924
925 con->out_more = 0;
926 set_bit(CON_FLAG_WRITE_PENDING, &con->flags);
927
928 return 0;
929 }
930
931 /*
932 * write as much of pending kvecs to the socket as we can.
933 * 1 -> done
934 * 0 -> socket full, but more to do
935 * <0 -> error
936 */
937 static int write_partial_kvec(struct ceph_connection *con)
938 {
939 int ret;
940
941 dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
942 while (con->out_kvec_bytes > 0) {
943 ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
944 con->out_kvec_left, con->out_kvec_bytes,
945 con->out_more);
946 if (ret <= 0)
947 goto out;
948 con->out_kvec_bytes -= ret;
949 if (con->out_kvec_bytes == 0)
950 break; /* done */
951
952 /* account for full iov entries consumed */
953 while (ret >= con->out_kvec_cur->iov_len) {
954 BUG_ON(!con->out_kvec_left);
955 ret -= con->out_kvec_cur->iov_len;
956 con->out_kvec_cur++;
957 con->out_kvec_left--;
958 }
959 /* and for a partially-consumed entry */
960 if (ret) {
961 con->out_kvec_cur->iov_len -= ret;
962 con->out_kvec_cur->iov_base += ret;
963 }
964 }
965 con->out_kvec_left = 0;
966 con->out_kvec_is_msg = false;
967 ret = 1;
968 out:
969 dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
970 con->out_kvec_bytes, con->out_kvec_left, ret);
971 return ret; /* done! */
972 }
973
974 static void out_msg_pos_next(struct ceph_connection *con, struct page *page,
975 size_t len, size_t sent, bool in_trail)
976 {
977 struct ceph_msg *msg = con->out_msg;
978
979 BUG_ON(!msg);
980 BUG_ON(!sent);
981
982 con->out_msg_pos.data_pos += sent;
983 con->out_msg_pos.page_pos += sent;
984 if (sent < len)
985 return;
986
987 BUG_ON(sent != len);
988 con->out_msg_pos.page_pos = 0;
989 con->out_msg_pos.page++;
990 con->out_msg_pos.did_page_crc = false;
991 if (in_trail)
992 list_move_tail(&page->lru,
993 &msg->trail->head);
994 else if (msg->pagelist)
995 list_move_tail(&page->lru,
996 &msg->pagelist->head);
997 #ifdef CONFIG_BLOCK
998 else if (msg->bio)
999 iter_bio_next(&msg->bio_iter, &msg->bio_seg);
1000 #endif
1001 }
1002
1003 /*
1004 * Write as much message data payload as we can. If we finish, queue
1005 * up the footer.
1006 * 1 -> done, footer is now queued in out_kvec[].
1007 * 0 -> socket full, but more to do
1008 * <0 -> error
1009 */
1010 static int write_partial_msg_pages(struct ceph_connection *con)
1011 {
1012 struct ceph_msg *msg = con->out_msg;
1013 unsigned int data_len = le32_to_cpu(msg->hdr.data_len);
1014 size_t len;
1015 bool do_datacrc = !con->msgr->nocrc;
1016 int ret;
1017 int total_max_write;
1018 bool in_trail = false;
1019 const size_t trail_len = (msg->trail ? msg->trail->length : 0);
1020 const size_t trail_off = data_len - trail_len;
1021
1022 dout("write_partial_msg_pages %p msg %p page %d/%d offset %d\n",
1023 con, msg, con->out_msg_pos.page, msg->nr_pages,
1024 con->out_msg_pos.page_pos);
1025
1026 /*
1027 * Iterate through each page that contains data to be
1028 * written, and send as much as possible for each.
1029 *
1030 * If we are calculating the data crc (the default), we will
1031 * need to map the page. If we have no pages, they have
1032 * been revoked, so use the zero page.
1033 */
1034 while (data_len > con->out_msg_pos.data_pos) {
1035 struct page *page = NULL;
1036 int max_write = PAGE_SIZE;
1037 int bio_offset = 0;
1038
1039 in_trail = in_trail || con->out_msg_pos.data_pos >= trail_off;
1040 if (!in_trail)
1041 total_max_write = trail_off - con->out_msg_pos.data_pos;
1042
1043 if (in_trail) {
1044 total_max_write = data_len - con->out_msg_pos.data_pos;
1045
1046 page = list_first_entry(&msg->trail->head,
1047 struct page, lru);
1048 } else if (msg->pages) {
1049 page = msg->pages[con->out_msg_pos.page];
1050 } else if (msg->pagelist) {
1051 page = list_first_entry(&msg->pagelist->head,
1052 struct page, lru);
1053 #ifdef CONFIG_BLOCK
1054 } else if (msg->bio) {
1055 struct bio_vec *bv;
1056
1057 bv = bio_iovec_idx(msg->bio_iter, msg->bio_seg);
1058 page = bv->bv_page;
1059 bio_offset = bv->bv_offset;
1060 max_write = bv->bv_len;
1061 #endif
1062 } else {
1063 page = zero_page;
1064 }
1065 len = min_t(int, max_write - con->out_msg_pos.page_pos,
1066 total_max_write);
1067
1068 if (do_datacrc && !con->out_msg_pos.did_page_crc) {
1069 void *base;
1070 u32 crc = le32_to_cpu(msg->footer.data_crc);
1071 char *kaddr;
1072
1073 kaddr = kmap(page);
1074 BUG_ON(kaddr == NULL);
1075 base = kaddr + con->out_msg_pos.page_pos + bio_offset;
1076 crc = crc32c(crc, base, len);
1077 msg->footer.data_crc = cpu_to_le32(crc);
1078 con->out_msg_pos.did_page_crc = true;
1079 }
1080 ret = ceph_tcp_sendpage(con->sock, page,
1081 con->out_msg_pos.page_pos + bio_offset,
1082 len, 1);
1083
1084 if (do_datacrc)
1085 kunmap(page);
1086
1087 if (ret <= 0)
1088 goto out;
1089
1090 out_msg_pos_next(con, page, len, (size_t) ret, in_trail);
1091 }
1092
1093 dout("write_partial_msg_pages %p msg %p done\n", con, msg);
1094
1095 /* prepare and queue up footer, too */
1096 if (!do_datacrc)
1097 msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
1098 con_out_kvec_reset(con);
1099 prepare_write_message_footer(con);
1100 ret = 1;
1101 out:
1102 return ret;
1103 }
1104
1105 /*
1106 * write some zeros
1107 */
1108 static int write_partial_skip(struct ceph_connection *con)
1109 {
1110 int ret;
1111
1112 while (con->out_skip > 0) {
1113 size_t size = min(con->out_skip, (int) PAGE_CACHE_SIZE);
1114
1115 ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, 1);
1116 if (ret <= 0)
1117 goto out;
1118 con->out_skip -= ret;
1119 }
1120 ret = 1;
1121 out:
1122 return ret;
1123 }
1124
1125 /*
1126 * Prepare to read connection handshake, or an ack.
1127 */
1128 static void prepare_read_banner(struct ceph_connection *con)
1129 {
1130 dout("prepare_read_banner %p\n", con);
1131 con->in_base_pos = 0;
1132 }
1133
1134 static void prepare_read_connect(struct ceph_connection *con)
1135 {
1136 dout("prepare_read_connect %p\n", con);
1137 con->in_base_pos = 0;
1138 }
1139
1140 static void prepare_read_ack(struct ceph_connection *con)
1141 {
1142 dout("prepare_read_ack %p\n", con);
1143 con->in_base_pos = 0;
1144 }
1145
1146 static void prepare_read_tag(struct ceph_connection *con)
1147 {
1148 dout("prepare_read_tag %p\n", con);
1149 con->in_base_pos = 0;
1150 con->in_tag = CEPH_MSGR_TAG_READY;
1151 }
1152
1153 /*
1154 * Prepare to read a message.
1155 */
1156 static int prepare_read_message(struct ceph_connection *con)
1157 {
1158 dout("prepare_read_message %p\n", con);
1159 BUG_ON(con->in_msg != NULL);
1160 con->in_base_pos = 0;
1161 con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
1162 return 0;
1163 }
1164
1165
1166 static int read_partial(struct ceph_connection *con,
1167 int end, int size, void *object)
1168 {
1169 while (con->in_base_pos < end) {
1170 int left = end - con->in_base_pos;
1171 int have = size - left;
1172 int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
1173 if (ret <= 0)
1174 return ret;
1175 con->in_base_pos += ret;
1176 }
1177 return 1;
1178 }
1179
1180
1181 /*
1182 * Read all or part of the connect-side handshake on a new connection
1183 */
1184 static int read_partial_banner(struct ceph_connection *con)
1185 {
1186 int size;
1187 int end;
1188 int ret;
1189
1190 dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
1191
1192 /* peer's banner */
1193 size = strlen(CEPH_BANNER);
1194 end = size;
1195 ret = read_partial(con, end, size, con->in_banner);
1196 if (ret <= 0)
1197 goto out;
1198
1199 size = sizeof (con->actual_peer_addr);
1200 end += size;
1201 ret = read_partial(con, end, size, &con->actual_peer_addr);
1202 if (ret <= 0)
1203 goto out;
1204
1205 size = sizeof (con->peer_addr_for_me);
1206 end += size;
1207 ret = read_partial(con, end, size, &con->peer_addr_for_me);
1208 if (ret <= 0)
1209 goto out;
1210
1211 out:
1212 return ret;
1213 }
1214
1215 static int read_partial_connect(struct ceph_connection *con)
1216 {
1217 int size;
1218 int end;
1219 int ret;
1220
1221 dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1222
1223 size = sizeof (con->in_reply);
1224 end = size;
1225 ret = read_partial(con, end, size, &con->in_reply);
1226 if (ret <= 0)
1227 goto out;
1228
1229 size = le32_to_cpu(con->in_reply.authorizer_len);
1230 end += size;
1231 ret = read_partial(con, end, size, con->auth_reply_buf);
1232 if (ret <= 0)
1233 goto out;
1234
1235 dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1236 con, (int)con->in_reply.tag,
1237 le32_to_cpu(con->in_reply.connect_seq),
1238 le32_to_cpu(con->in_reply.global_seq));
1239 out:
1240 return ret;
1241
1242 }
1243
1244 /*
1245 * Verify the hello banner looks okay.
1246 */
1247 static int verify_hello(struct ceph_connection *con)
1248 {
1249 if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1250 pr_err("connect to %s got bad banner\n",
1251 ceph_pr_addr(&con->peer_addr.in_addr));
1252 con->error_msg = "protocol error, bad banner";
1253 return -1;
1254 }
1255 return 0;
1256 }
1257
1258 static bool addr_is_blank(struct sockaddr_storage *ss)
1259 {
1260 switch (ss->ss_family) {
1261 case AF_INET:
1262 return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0;
1263 case AF_INET6:
1264 return
1265 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 &&
1266 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 &&
1267 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 &&
1268 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0;
1269 }
1270 return false;
1271 }
1272
1273 static int addr_port(struct sockaddr_storage *ss)
1274 {
1275 switch (ss->ss_family) {
1276 case AF_INET:
1277 return ntohs(((struct sockaddr_in *)ss)->sin_port);
1278 case AF_INET6:
1279 return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
1280 }
1281 return 0;
1282 }
1283
1284 static void addr_set_port(struct sockaddr_storage *ss, int p)
1285 {
1286 switch (ss->ss_family) {
1287 case AF_INET:
1288 ((struct sockaddr_in *)ss)->sin_port = htons(p);
1289 break;
1290 case AF_INET6:
1291 ((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
1292 break;
1293 }
1294 }
1295
1296 /*
1297 * Unlike other *_pton function semantics, zero indicates success.
1298 */
1299 static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
1300 char delim, const char **ipend)
1301 {
1302 struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
1303 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
1304
1305 memset(ss, 0, sizeof(*ss));
1306
1307 if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
1308 ss->ss_family = AF_INET;
1309 return 0;
1310 }
1311
1312 if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
1313 ss->ss_family = AF_INET6;
1314 return 0;
1315 }
1316
1317 return -EINVAL;
1318 }
1319
1320 /*
1321 * Extract hostname string and resolve using kernel DNS facility.
1322 */
1323 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1324 static int ceph_dns_resolve_name(const char *name, size_t namelen,
1325 struct sockaddr_storage *ss, char delim, const char **ipend)
1326 {
1327 const char *end, *delim_p;
1328 char *colon_p, *ip_addr = NULL;
1329 int ip_len, ret;
1330
1331 /*
1332 * The end of the hostname occurs immediately preceding the delimiter or
1333 * the port marker (':') where the delimiter takes precedence.
1334 */
1335 delim_p = memchr(name, delim, namelen);
1336 colon_p = memchr(name, ':', namelen);
1337
1338 if (delim_p && colon_p)
1339 end = delim_p < colon_p ? delim_p : colon_p;
1340 else if (!delim_p && colon_p)
1341 end = colon_p;
1342 else {
1343 end = delim_p;
1344 if (!end) /* case: hostname:/ */
1345 end = name + namelen;
1346 }
1347
1348 if (end <= name)
1349 return -EINVAL;
1350
1351 /* do dns_resolve upcall */
1352 ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
1353 if (ip_len > 0)
1354 ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
1355 else
1356 ret = -ESRCH;
1357
1358 kfree(ip_addr);
1359
1360 *ipend = end;
1361
1362 pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1363 ret, ret ? "failed" : ceph_pr_addr(ss));
1364
1365 return ret;
1366 }
1367 #else
1368 static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1369 struct sockaddr_storage *ss, char delim, const char **ipend)
1370 {
1371 return -EINVAL;
1372 }
1373 #endif
1374
1375 /*
1376 * Parse a server name (IP or hostname). If a valid IP address is not found
1377 * then try to extract a hostname to resolve using userspace DNS upcall.
1378 */
1379 static int ceph_parse_server_name(const char *name, size_t namelen,
1380 struct sockaddr_storage *ss, char delim, const char **ipend)
1381 {
1382 int ret;
1383
1384 ret = ceph_pton(name, namelen, ss, delim, ipend);
1385 if (ret)
1386 ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
1387
1388 return ret;
1389 }
1390
1391 /*
1392 * Parse an ip[:port] list into an addr array. Use the default
1393 * monitor port if a port isn't specified.
1394 */
1395 int ceph_parse_ips(const char *c, const char *end,
1396 struct ceph_entity_addr *addr,
1397 int max_count, int *count)
1398 {
1399 int i, ret = -EINVAL;
1400 const char *p = c;
1401
1402 dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1403 for (i = 0; i < max_count; i++) {
1404 const char *ipend;
1405 struct sockaddr_storage *ss = &addr[i].in_addr;
1406 int port;
1407 char delim = ',';
1408
1409 if (*p == '[') {
1410 delim = ']';
1411 p++;
1412 }
1413
1414 ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
1415 if (ret)
1416 goto bad;
1417 ret = -EINVAL;
1418
1419 p = ipend;
1420
1421 if (delim == ']') {
1422 if (*p != ']') {
1423 dout("missing matching ']'\n");
1424 goto bad;
1425 }
1426 p++;
1427 }
1428
1429 /* port? */
1430 if (p < end && *p == ':') {
1431 port = 0;
1432 p++;
1433 while (p < end && *p >= '0' && *p <= '9') {
1434 port = (port * 10) + (*p - '0');
1435 p++;
1436 }
1437 if (port > 65535 || port == 0)
1438 goto bad;
1439 } else {
1440 port = CEPH_MON_PORT;
1441 }
1442
1443 addr_set_port(ss, port);
1444
1445 dout("parse_ips got %s\n", ceph_pr_addr(ss));
1446
1447 if (p == end)
1448 break;
1449 if (*p != ',')
1450 goto bad;
1451 p++;
1452 }
1453
1454 if (p != end)
1455 goto bad;
1456
1457 if (count)
1458 *count = i + 1;
1459 return 0;
1460
1461 bad:
1462 pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
1463 return ret;
1464 }
1465 EXPORT_SYMBOL(ceph_parse_ips);
1466
1467 static int process_banner(struct ceph_connection *con)
1468 {
1469 dout("process_banner on %p\n", con);
1470
1471 if (verify_hello(con) < 0)
1472 return -1;
1473
1474 ceph_decode_addr(&con->actual_peer_addr);
1475 ceph_decode_addr(&con->peer_addr_for_me);
1476
1477 /*
1478 * Make sure the other end is who we wanted. note that the other
1479 * end may not yet know their ip address, so if it's 0.0.0.0, give
1480 * them the benefit of the doubt.
1481 */
1482 if (memcmp(&con->peer_addr, &con->actual_peer_addr,
1483 sizeof(con->peer_addr)) != 0 &&
1484 !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
1485 con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
1486 pr_warning("wrong peer, want %s/%d, got %s/%d\n",
1487 ceph_pr_addr(&con->peer_addr.in_addr),
1488 (int)le32_to_cpu(con->peer_addr.nonce),
1489 ceph_pr_addr(&con->actual_peer_addr.in_addr),
1490 (int)le32_to_cpu(con->actual_peer_addr.nonce));
1491 con->error_msg = "wrong peer at address";
1492 return -1;
1493 }
1494
1495 /*
1496 * did we learn our address?
1497 */
1498 if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
1499 int port = addr_port(&con->msgr->inst.addr.in_addr);
1500
1501 memcpy(&con->msgr->inst.addr.in_addr,
1502 &con->peer_addr_for_me.in_addr,
1503 sizeof(con->peer_addr_for_me.in_addr));
1504 addr_set_port(&con->msgr->inst.addr.in_addr, port);
1505 encode_my_addr(con->msgr);
1506 dout("process_banner learned my addr is %s\n",
1507 ceph_pr_addr(&con->msgr->inst.addr.in_addr));
1508 }
1509
1510 return 0;
1511 }
1512
1513 static void fail_protocol(struct ceph_connection *con)
1514 {
1515 reset_connection(con);
1516 BUG_ON(con->state != CON_STATE_NEGOTIATING);
1517 con->state = CON_STATE_CLOSED;
1518 }
1519
1520 static int process_connect(struct ceph_connection *con)
1521 {
1522 u64 sup_feat = con->msgr->supported_features;
1523 u64 req_feat = con->msgr->required_features;
1524 u64 server_feat = le64_to_cpu(con->in_reply.features);
1525 int ret;
1526
1527 dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
1528
1529 switch (con->in_reply.tag) {
1530 case CEPH_MSGR_TAG_FEATURES:
1531 pr_err("%s%lld %s feature set mismatch,"
1532 " my %llx < server's %llx, missing %llx\n",
1533 ENTITY_NAME(con->peer_name),
1534 ceph_pr_addr(&con->peer_addr.in_addr),
1535 sup_feat, server_feat, server_feat & ~sup_feat);
1536 con->error_msg = "missing required protocol features";
1537 fail_protocol(con);
1538 return -1;
1539
1540 case CEPH_MSGR_TAG_BADPROTOVER:
1541 pr_err("%s%lld %s protocol version mismatch,"
1542 " my %d != server's %d\n",
1543 ENTITY_NAME(con->peer_name),
1544 ceph_pr_addr(&con->peer_addr.in_addr),
1545 le32_to_cpu(con->out_connect.protocol_version),
1546 le32_to_cpu(con->in_reply.protocol_version));
1547 con->error_msg = "protocol version mismatch";
1548 fail_protocol(con);
1549 return -1;
1550
1551 case CEPH_MSGR_TAG_BADAUTHORIZER:
1552 con->auth_retry++;
1553 dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
1554 con->auth_retry);
1555 if (con->auth_retry == 2) {
1556 con->error_msg = "connect authorization failure";
1557 return -1;
1558 }
1559 con->auth_retry = 1;
1560 ret = prepare_write_connect(con);
1561 if (ret < 0)
1562 return ret;
1563 prepare_read_connect(con);
1564 break;
1565
1566 case CEPH_MSGR_TAG_RESETSESSION:
1567 /*
1568 * If we connected with a large connect_seq but the peer
1569 * has no record of a session with us (no connection, or
1570 * connect_seq == 0), they will send RESETSESION to indicate
1571 * that they must have reset their session, and may have
1572 * dropped messages.
1573 */
1574 dout("process_connect got RESET peer seq %u\n",
1575 le32_to_cpu(con->in_reply.connect_seq));
1576 pr_err("%s%lld %s connection reset\n",
1577 ENTITY_NAME(con->peer_name),
1578 ceph_pr_addr(&con->peer_addr.in_addr));
1579 reset_connection(con);
1580 ret = prepare_write_connect(con);
1581 if (ret < 0)
1582 return ret;
1583 prepare_read_connect(con);
1584
1585 /* Tell ceph about it. */
1586 mutex_unlock(&con->mutex);
1587 pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
1588 if (con->ops->peer_reset)
1589 con->ops->peer_reset(con);
1590 mutex_lock(&con->mutex);
1591 if (con->state != CON_STATE_NEGOTIATING)
1592 return -EAGAIN;
1593 break;
1594
1595 case CEPH_MSGR_TAG_RETRY_SESSION:
1596 /*
1597 * If we sent a smaller connect_seq than the peer has, try
1598 * again with a larger value.
1599 */
1600 dout("process_connect got RETRY_SESSION my seq %u, peer %u\n",
1601 le32_to_cpu(con->out_connect.connect_seq),
1602 le32_to_cpu(con->in_reply.connect_seq));
1603 con->connect_seq = le32_to_cpu(con->in_reply.connect_seq);
1604 ret = prepare_write_connect(con);
1605 if (ret < 0)
1606 return ret;
1607 prepare_read_connect(con);
1608 break;
1609
1610 case CEPH_MSGR_TAG_RETRY_GLOBAL:
1611 /*
1612 * If we sent a smaller global_seq than the peer has, try
1613 * again with a larger value.
1614 */
1615 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
1616 con->peer_global_seq,
1617 le32_to_cpu(con->in_reply.global_seq));
1618 get_global_seq(con->msgr,
1619 le32_to_cpu(con->in_reply.global_seq));
1620 ret = prepare_write_connect(con);
1621 if (ret < 0)
1622 return ret;
1623 prepare_read_connect(con);
1624 break;
1625
1626 case CEPH_MSGR_TAG_READY:
1627 if (req_feat & ~server_feat) {
1628 pr_err("%s%lld %s protocol feature mismatch,"
1629 " my required %llx > server's %llx, need %llx\n",
1630 ENTITY_NAME(con->peer_name),
1631 ceph_pr_addr(&con->peer_addr.in_addr),
1632 req_feat, server_feat, req_feat & ~server_feat);
1633 con->error_msg = "missing required protocol features";
1634 fail_protocol(con);
1635 return -1;
1636 }
1637
1638 BUG_ON(con->state != CON_STATE_NEGOTIATING);
1639 con->state = CON_STATE_OPEN;
1640
1641 con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
1642 con->connect_seq++;
1643 con->peer_features = server_feat;
1644 dout("process_connect got READY gseq %d cseq %d (%d)\n",
1645 con->peer_global_seq,
1646 le32_to_cpu(con->in_reply.connect_seq),
1647 con->connect_seq);
1648 WARN_ON(con->connect_seq !=
1649 le32_to_cpu(con->in_reply.connect_seq));
1650
1651 if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
1652 set_bit(CON_FLAG_LOSSYTX, &con->flags);
1653
1654 con->delay = 0; /* reset backoff memory */
1655
1656 prepare_read_tag(con);
1657 break;
1658
1659 case CEPH_MSGR_TAG_WAIT:
1660 /*
1661 * If there is a connection race (we are opening
1662 * connections to each other), one of us may just have
1663 * to WAIT. This shouldn't happen if we are the
1664 * client.
1665 */
1666 pr_err("process_connect got WAIT as client\n");
1667 con->error_msg = "protocol error, got WAIT as client";
1668 return -1;
1669
1670 default:
1671 pr_err("connect protocol error, will retry\n");
1672 con->error_msg = "protocol error, garbage tag during connect";
1673 return -1;
1674 }
1675 return 0;
1676 }
1677
1678
1679 /*
1680 * read (part of) an ack
1681 */
1682 static int read_partial_ack(struct ceph_connection *con)
1683 {
1684 int size = sizeof (con->in_temp_ack);
1685 int end = size;
1686
1687 return read_partial(con, end, size, &con->in_temp_ack);
1688 }
1689
1690
1691 /*
1692 * We can finally discard anything that's been acked.
1693 */
1694 static void process_ack(struct ceph_connection *con)
1695 {
1696 struct ceph_msg *m;
1697 u64 ack = le64_to_cpu(con->in_temp_ack);
1698 u64 seq;
1699
1700 while (!list_empty(&con->out_sent)) {
1701 m = list_first_entry(&con->out_sent, struct ceph_msg,
1702 list_head);
1703 seq = le64_to_cpu(m->hdr.seq);
1704 if (seq > ack)
1705 break;
1706 dout("got ack for seq %llu type %d at %p\n", seq,
1707 le16_to_cpu(m->hdr.type), m);
1708 m->ack_stamp = jiffies;
1709 ceph_msg_remove(m);
1710 }
1711 prepare_read_tag(con);
1712 }
1713
1714
1715
1716
1717 static int read_partial_message_section(struct ceph_connection *con,
1718 struct kvec *section,
1719 unsigned int sec_len, u32 *crc)
1720 {
1721 int ret, left;
1722
1723 BUG_ON(!section);
1724
1725 while (section->iov_len < sec_len) {
1726 BUG_ON(section->iov_base == NULL);
1727 left = sec_len - section->iov_len;
1728 ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
1729 section->iov_len, left);
1730 if (ret <= 0)
1731 return ret;
1732 section->iov_len += ret;
1733 }
1734 if (section->iov_len == sec_len)
1735 *crc = crc32c(0, section->iov_base, section->iov_len);
1736
1737 return 1;
1738 }
1739
1740 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip);
1741
1742 static int read_partial_message_pages(struct ceph_connection *con,
1743 struct page **pages,
1744 unsigned int data_len, bool do_datacrc)
1745 {
1746 void *p;
1747 int ret;
1748 int left;
1749
1750 left = min((int)(data_len - con->in_msg_pos.data_pos),
1751 (int)(PAGE_SIZE - con->in_msg_pos.page_pos));
1752 /* (page) data */
1753 BUG_ON(pages == NULL);
1754 p = kmap(pages[con->in_msg_pos.page]);
1755 ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
1756 left);
1757 if (ret > 0 && do_datacrc)
1758 con->in_data_crc =
1759 crc32c(con->in_data_crc,
1760 p + con->in_msg_pos.page_pos, ret);
1761 kunmap(pages[con->in_msg_pos.page]);
1762 if (ret <= 0)
1763 return ret;
1764 con->in_msg_pos.data_pos += ret;
1765 con->in_msg_pos.page_pos += ret;
1766 if (con->in_msg_pos.page_pos == PAGE_SIZE) {
1767 con->in_msg_pos.page_pos = 0;
1768 con->in_msg_pos.page++;
1769 }
1770
1771 return ret;
1772 }
1773
1774 #ifdef CONFIG_BLOCK
1775 static int read_partial_message_bio(struct ceph_connection *con,
1776 struct bio **bio_iter, int *bio_seg,
1777 unsigned int data_len, bool do_datacrc)
1778 {
1779 struct bio_vec *bv = bio_iovec_idx(*bio_iter, *bio_seg);
1780 void *p;
1781 int ret, left;
1782
1783 left = min((int)(data_len - con->in_msg_pos.data_pos),
1784 (int)(bv->bv_len - con->in_msg_pos.page_pos));
1785
1786 p = kmap(bv->bv_page) + bv->bv_offset;
1787
1788 ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
1789 left);
1790 if (ret > 0 && do_datacrc)
1791 con->in_data_crc =
1792 crc32c(con->in_data_crc,
1793 p + con->in_msg_pos.page_pos, ret);
1794 kunmap(bv->bv_page);
1795 if (ret <= 0)
1796 return ret;
1797 con->in_msg_pos.data_pos += ret;
1798 con->in_msg_pos.page_pos += ret;
1799 if (con->in_msg_pos.page_pos == bv->bv_len) {
1800 con->in_msg_pos.page_pos = 0;
1801 iter_bio_next(bio_iter, bio_seg);
1802 }
1803
1804 return ret;
1805 }
1806 #endif
1807
1808 /*
1809 * read (part of) a message.
1810 */
1811 static int read_partial_message(struct ceph_connection *con)
1812 {
1813 struct ceph_msg *m = con->in_msg;
1814 int size;
1815 int end;
1816 int ret;
1817 unsigned int front_len, middle_len, data_len;
1818 bool do_datacrc = !con->msgr->nocrc;
1819 u64 seq;
1820 u32 crc;
1821
1822 dout("read_partial_message con %p msg %p\n", con, m);
1823
1824 /* header */
1825 size = sizeof (con->in_hdr);
1826 end = size;
1827 ret = read_partial(con, end, size, &con->in_hdr);
1828 if (ret <= 0)
1829 return ret;
1830
1831 crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
1832 if (cpu_to_le32(crc) != con->in_hdr.crc) {
1833 pr_err("read_partial_message bad hdr "
1834 " crc %u != expected %u\n",
1835 crc, con->in_hdr.crc);
1836 return -EBADMSG;
1837 }
1838
1839 front_len = le32_to_cpu(con->in_hdr.front_len);
1840 if (front_len > CEPH_MSG_MAX_FRONT_LEN)
1841 return -EIO;
1842 middle_len = le32_to_cpu(con->in_hdr.middle_len);
1843 if (middle_len > CEPH_MSG_MAX_DATA_LEN)
1844 return -EIO;
1845 data_len = le32_to_cpu(con->in_hdr.data_len);
1846 if (data_len > CEPH_MSG_MAX_DATA_LEN)
1847 return -EIO;
1848
1849 /* verify seq# */
1850 seq = le64_to_cpu(con->in_hdr.seq);
1851 if ((s64)seq - (s64)con->in_seq < 1) {
1852 pr_info("skipping %s%lld %s seq %lld expected %lld\n",
1853 ENTITY_NAME(con->peer_name),
1854 ceph_pr_addr(&con->peer_addr.in_addr),
1855 seq, con->in_seq + 1);
1856 con->in_base_pos = -front_len - middle_len - data_len -
1857 sizeof(m->footer);
1858 con->in_tag = CEPH_MSGR_TAG_READY;
1859 return 0;
1860 } else if ((s64)seq - (s64)con->in_seq > 1) {
1861 pr_err("read_partial_message bad seq %lld expected %lld\n",
1862 seq, con->in_seq + 1);
1863 con->error_msg = "bad message sequence # for incoming message";
1864 return -EBADMSG;
1865 }
1866
1867 /* allocate message? */
1868 if (!con->in_msg) {
1869 int skip = 0;
1870
1871 dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
1872 con->in_hdr.front_len, con->in_hdr.data_len);
1873 ret = ceph_con_in_msg_alloc(con, &skip);
1874 if (ret < 0)
1875 return ret;
1876 if (skip) {
1877 /* skip this message */
1878 dout("alloc_msg said skip message\n");
1879 BUG_ON(con->in_msg);
1880 con->in_base_pos = -front_len - middle_len - data_len -
1881 sizeof(m->footer);
1882 con->in_tag = CEPH_MSGR_TAG_READY;
1883 con->in_seq++;
1884 return 0;
1885 }
1886
1887 BUG_ON(!con->in_msg);
1888 BUG_ON(con->in_msg->con != con);
1889 m = con->in_msg;
1890 m->front.iov_len = 0; /* haven't read it yet */
1891 if (m->middle)
1892 m->middle->vec.iov_len = 0;
1893
1894 con->in_msg_pos.page = 0;
1895 if (m->pages)
1896 con->in_msg_pos.page_pos = m->page_alignment;
1897 else
1898 con->in_msg_pos.page_pos = 0;
1899 con->in_msg_pos.data_pos = 0;
1900
1901 #ifdef CONFIG_BLOCK
1902 if (m->bio)
1903 init_bio_iter(m->bio, &m->bio_iter, &m->bio_seg);
1904 #endif
1905 }
1906
1907 /* front */
1908 ret = read_partial_message_section(con, &m->front, front_len,
1909 &con->in_front_crc);
1910 if (ret <= 0)
1911 return ret;
1912
1913 /* middle */
1914 if (m->middle) {
1915 ret = read_partial_message_section(con, &m->middle->vec,
1916 middle_len,
1917 &con->in_middle_crc);
1918 if (ret <= 0)
1919 return ret;
1920 }
1921
1922 /* (page) data */
1923 while (con->in_msg_pos.data_pos < data_len) {
1924 if (m->pages) {
1925 ret = read_partial_message_pages(con, m->pages,
1926 data_len, do_datacrc);
1927 if (ret <= 0)
1928 return ret;
1929 #ifdef CONFIG_BLOCK
1930 } else if (m->bio) {
1931 BUG_ON(!m->bio_iter);
1932 ret = read_partial_message_bio(con,
1933 &m->bio_iter, &m->bio_seg,
1934 data_len, do_datacrc);
1935 if (ret <= 0)
1936 return ret;
1937 #endif
1938 } else {
1939 BUG_ON(1);
1940 }
1941 }
1942
1943 /* footer */
1944 size = sizeof (m->footer);
1945 end += size;
1946 ret = read_partial(con, end, size, &m->footer);
1947 if (ret <= 0)
1948 return ret;
1949
1950 dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
1951 m, front_len, m->footer.front_crc, middle_len,
1952 m->footer.middle_crc, data_len, m->footer.data_crc);
1953
1954 /* crc ok? */
1955 if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
1956 pr_err("read_partial_message %p front crc %u != exp. %u\n",
1957 m, con->in_front_crc, m->footer.front_crc);
1958 return -EBADMSG;
1959 }
1960 if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
1961 pr_err("read_partial_message %p middle crc %u != exp %u\n",
1962 m, con->in_middle_crc, m->footer.middle_crc);
1963 return -EBADMSG;
1964 }
1965 if (do_datacrc &&
1966 (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
1967 con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
1968 pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
1969 con->in_data_crc, le32_to_cpu(m->footer.data_crc));
1970 return -EBADMSG;
1971 }
1972
1973 return 1; /* done! */
1974 }
1975
1976 /*
1977 * Process message. This happens in the worker thread. The callback should
1978 * be careful not to do anything that waits on other incoming messages or it
1979 * may deadlock.
1980 */
1981 static void process_message(struct ceph_connection *con)
1982 {
1983 struct ceph_msg *msg;
1984
1985 BUG_ON(con->in_msg->con != con);
1986 con->in_msg->con = NULL;
1987 msg = con->in_msg;
1988 con->in_msg = NULL;
1989 con->ops->put(con);
1990
1991 /* if first message, set peer_name */
1992 if (con->peer_name.type == 0)
1993 con->peer_name = msg->hdr.src;
1994
1995 con->in_seq++;
1996 mutex_unlock(&con->mutex);
1997
1998 dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
1999 msg, le64_to_cpu(msg->hdr.seq),
2000 ENTITY_NAME(msg->hdr.src),
2001 le16_to_cpu(msg->hdr.type),
2002 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2003 le32_to_cpu(msg->hdr.front_len),
2004 le32_to_cpu(msg->hdr.data_len),
2005 con->in_front_crc, con->in_middle_crc, con->in_data_crc);
2006 con->ops->dispatch(con, msg);
2007
2008 mutex_lock(&con->mutex);
2009 }
2010
2011
2012 /*
2013 * Write something to the socket. Called in a worker thread when the
2014 * socket appears to be writeable and we have something ready to send.
2015 */
2016 static int try_write(struct ceph_connection *con)
2017 {
2018 int ret = 1;
2019
2020 dout("try_write start %p state %lu\n", con, con->state);
2021
2022 more:
2023 dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
2024
2025 /* open the socket first? */
2026 if (con->state == CON_STATE_PREOPEN) {
2027 BUG_ON(con->sock);
2028 con->state = CON_STATE_CONNECTING;
2029
2030 con_out_kvec_reset(con);
2031 prepare_write_banner(con);
2032 prepare_read_banner(con);
2033
2034 BUG_ON(con->in_msg);
2035 con->in_tag = CEPH_MSGR_TAG_READY;
2036 dout("try_write initiating connect on %p new state %lu\n",
2037 con, con->state);
2038 ret = ceph_tcp_connect(con);
2039 if (ret < 0) {
2040 con->error_msg = "connect error";
2041 goto out;
2042 }
2043 }
2044
2045 more_kvec:
2046 /* kvec data queued? */
2047 if (con->out_skip) {
2048 ret = write_partial_skip(con);
2049 if (ret <= 0)
2050 goto out;
2051 }
2052 if (con->out_kvec_left) {
2053 ret = write_partial_kvec(con);
2054 if (ret <= 0)
2055 goto out;
2056 }
2057
2058 /* msg pages? */
2059 if (con->out_msg) {
2060 if (con->out_msg_done) {
2061 ceph_msg_put(con->out_msg);
2062 con->out_msg = NULL; /* we're done with this one */
2063 goto do_next;
2064 }
2065
2066 ret = write_partial_msg_pages(con);
2067 if (ret == 1)
2068 goto more_kvec; /* we need to send the footer, too! */
2069 if (ret == 0)
2070 goto out;
2071 if (ret < 0) {
2072 dout("try_write write_partial_msg_pages err %d\n",
2073 ret);
2074 goto out;
2075 }
2076 }
2077
2078 do_next:
2079 if (con->state == CON_STATE_OPEN) {
2080 /* is anything else pending? */
2081 if (!list_empty(&con->out_queue)) {
2082 prepare_write_message(con);
2083 goto more;
2084 }
2085 if (con->in_seq > con->in_seq_acked) {
2086 prepare_write_ack(con);
2087 goto more;
2088 }
2089 if (test_and_clear_bit(CON_FLAG_KEEPALIVE_PENDING,
2090 &con->flags)) {
2091 prepare_write_keepalive(con);
2092 goto more;
2093 }
2094 }
2095
2096 /* Nothing to do! */
2097 clear_bit(CON_FLAG_WRITE_PENDING, &con->flags);
2098 dout("try_write nothing else to write.\n");
2099 ret = 0;
2100 out:
2101 dout("try_write done on %p ret %d\n", con, ret);
2102 return ret;
2103 }
2104
2105
2106
2107 /*
2108 * Read what we can from the socket.
2109 */
2110 static int try_read(struct ceph_connection *con)
2111 {
2112 int ret = -1;
2113
2114 more:
2115 dout("try_read start on %p state %lu\n", con, con->state);
2116 if (con->state != CON_STATE_CONNECTING &&
2117 con->state != CON_STATE_NEGOTIATING &&
2118 con->state != CON_STATE_OPEN)
2119 return 0;
2120
2121 BUG_ON(!con->sock);
2122
2123 dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
2124 con->in_base_pos);
2125
2126 if (con->state == CON_STATE_CONNECTING) {
2127 dout("try_read connecting\n");
2128 ret = read_partial_banner(con);
2129 if (ret <= 0)
2130 goto out;
2131 ret = process_banner(con);
2132 if (ret < 0)
2133 goto out;
2134
2135 BUG_ON(con->state != CON_STATE_CONNECTING);
2136 con->state = CON_STATE_NEGOTIATING;
2137
2138 /* Banner is good, exchange connection info */
2139 ret = prepare_write_connect(con);
2140 if (ret < 0)
2141 goto out;
2142 prepare_read_connect(con);
2143
2144 /* Send connection info before awaiting response */
2145 goto out;
2146 }
2147
2148 if (con->state == CON_STATE_NEGOTIATING) {
2149 dout("try_read negotiating\n");
2150 ret = read_partial_connect(con);
2151 if (ret <= 0)
2152 goto out;
2153 ret = process_connect(con);
2154 if (ret < 0)
2155 goto out;
2156 goto more;
2157 }
2158
2159 BUG_ON(con->state != CON_STATE_OPEN);
2160
2161 if (con->in_base_pos < 0) {
2162 /*
2163 * skipping + discarding content.
2164 *
2165 * FIXME: there must be a better way to do this!
2166 */
2167 static char buf[SKIP_BUF_SIZE];
2168 int skip = min((int) sizeof (buf), -con->in_base_pos);
2169
2170 dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
2171 ret = ceph_tcp_recvmsg(con->sock, buf, skip);
2172 if (ret <= 0)
2173 goto out;
2174 con->in_base_pos += ret;
2175 if (con->in_base_pos)
2176 goto more;
2177 }
2178 if (con->in_tag == CEPH_MSGR_TAG_READY) {
2179 /*
2180 * what's next?
2181 */
2182 ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
2183 if (ret <= 0)
2184 goto out;
2185 dout("try_read got tag %d\n", (int)con->in_tag);
2186 switch (con->in_tag) {
2187 case CEPH_MSGR_TAG_MSG:
2188 prepare_read_message(con);
2189 break;
2190 case CEPH_MSGR_TAG_ACK:
2191 prepare_read_ack(con);
2192 break;
2193 case CEPH_MSGR_TAG_CLOSE:
2194 con_close_socket(con);
2195 con->state = CON_STATE_CLOSED;
2196 goto out;
2197 default:
2198 goto bad_tag;
2199 }
2200 }
2201 if (con->in_tag == CEPH_MSGR_TAG_MSG) {
2202 ret = read_partial_message(con);
2203 if (ret <= 0) {
2204 switch (ret) {
2205 case -EBADMSG:
2206 con->error_msg = "bad crc";
2207 ret = -EIO;
2208 break;
2209 case -EIO:
2210 con->error_msg = "io error";
2211 break;
2212 }
2213 goto out;
2214 }
2215 if (con->in_tag == CEPH_MSGR_TAG_READY)
2216 goto more;
2217 process_message(con);
2218 if (con->state == CON_STATE_OPEN)
2219 prepare_read_tag(con);
2220 goto more;
2221 }
2222 if (con->in_tag == CEPH_MSGR_TAG_ACK) {
2223 ret = read_partial_ack(con);
2224 if (ret <= 0)
2225 goto out;
2226 process_ack(con);
2227 goto more;
2228 }
2229
2230 out:
2231 dout("try_read done on %p ret %d\n", con, ret);
2232 return ret;
2233
2234 bad_tag:
2235 pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
2236 con->error_msg = "protocol error, garbage tag";
2237 ret = -1;
2238 goto out;
2239 }
2240
2241
2242 /*
2243 * Atomically queue work on a connection. Bump @con reference to
2244 * avoid races with connection teardown.
2245 */
2246 static void queue_con(struct ceph_connection *con)
2247 {
2248 if (!con->ops->get(con)) {
2249 dout("queue_con %p ref count 0\n", con);
2250 return;
2251 }
2252
2253 if (!queue_delayed_work(ceph_msgr_wq, &con->work, 0)) {
2254 dout("queue_con %p - already queued\n", con);
2255 con->ops->put(con);
2256 } else {
2257 dout("queue_con %p\n", con);
2258 }
2259 }
2260
2261 /*
2262 * Do some work on a connection. Drop a connection ref when we're done.
2263 */
2264 static void con_work(struct work_struct *work)
2265 {
2266 struct ceph_connection *con = container_of(work, struct ceph_connection,
2267 work.work);
2268 int ret;
2269
2270 mutex_lock(&con->mutex);
2271 restart:
2272 if (test_and_clear_bit(CON_FLAG_SOCK_CLOSED, &con->flags)) {
2273 switch (con->state) {
2274 case CON_STATE_CONNECTING:
2275 con->error_msg = "connection failed";
2276 break;
2277 case CON_STATE_NEGOTIATING:
2278 con->error_msg = "negotiation failed";
2279 break;
2280 case CON_STATE_OPEN:
2281 con->error_msg = "socket closed";
2282 break;
2283 default:
2284 dout("unrecognized con state %d\n", (int)con->state);
2285 con->error_msg = "unrecognized con state";
2286 BUG();
2287 }
2288 goto fault;
2289 }
2290
2291 if (test_and_clear_bit(CON_FLAG_BACKOFF, &con->flags)) {
2292 dout("con_work %p backing off\n", con);
2293 if (queue_delayed_work(ceph_msgr_wq, &con->work,
2294 round_jiffies_relative(con->delay))) {
2295 dout("con_work %p backoff %lu\n", con, con->delay);
2296 mutex_unlock(&con->mutex);
2297 return;
2298 } else {
2299 con->ops->put(con);
2300 dout("con_work %p FAILED to back off %lu\n", con,
2301 con->delay);
2302 }
2303 }
2304
2305 if (con->state == CON_STATE_STANDBY) {
2306 dout("con_work %p STANDBY\n", con);
2307 goto done;
2308 }
2309 if (con->state == CON_STATE_CLOSED) {
2310 dout("con_work %p CLOSED\n", con);
2311 BUG_ON(con->sock);
2312 goto done;
2313 }
2314 if (con->state == CON_STATE_PREOPEN) {
2315 dout("con_work OPENING\n");
2316 BUG_ON(con->sock);
2317 }
2318
2319 ret = try_read(con);
2320 if (ret == -EAGAIN)
2321 goto restart;
2322 if (ret < 0) {
2323 con->error_msg = "socket error on read";
2324 goto fault;
2325 }
2326
2327 ret = try_write(con);
2328 if (ret == -EAGAIN)
2329 goto restart;
2330 if (ret < 0) {
2331 con->error_msg = "socket error on write";
2332 goto fault;
2333 }
2334
2335 done:
2336 mutex_unlock(&con->mutex);
2337 done_unlocked:
2338 con->ops->put(con);
2339 return;
2340
2341 fault:
2342 ceph_fault(con); /* error/fault path */
2343 goto done_unlocked;
2344 }
2345
2346
2347 /*
2348 * Generic error/fault handler. A retry mechanism is used with
2349 * exponential backoff
2350 */
2351 static void ceph_fault(struct ceph_connection *con)
2352 __releases(con->mutex)
2353 {
2354 pr_err("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
2355 ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
2356 dout("fault %p state %lu to peer %s\n",
2357 con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
2358
2359 BUG_ON(con->state != CON_STATE_CONNECTING &&
2360 con->state != CON_STATE_NEGOTIATING &&
2361 con->state != CON_STATE_OPEN);
2362
2363 con_close_socket(con);
2364
2365 if (test_bit(CON_FLAG_LOSSYTX, &con->flags)) {
2366 dout("fault on LOSSYTX channel, marking CLOSED\n");
2367 con->state = CON_STATE_CLOSED;
2368 goto out_unlock;
2369 }
2370
2371 if (con->in_msg) {
2372 BUG_ON(con->in_msg->con != con);
2373 con->in_msg->con = NULL;
2374 ceph_msg_put(con->in_msg);
2375 con->in_msg = NULL;
2376 con->ops->put(con);
2377 }
2378
2379 /* Requeue anything that hasn't been acked */
2380 list_splice_init(&con->out_sent, &con->out_queue);
2381
2382 /* If there are no messages queued or keepalive pending, place
2383 * the connection in a STANDBY state */
2384 if (list_empty(&con->out_queue) &&
2385 !test_bit(CON_FLAG_KEEPALIVE_PENDING, &con->flags)) {
2386 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
2387 clear_bit(CON_FLAG_WRITE_PENDING, &con->flags);
2388 con->state = CON_STATE_STANDBY;
2389 } else {
2390 /* retry after a delay. */
2391 con->state = CON_STATE_PREOPEN;
2392 if (con->delay == 0)
2393 con->delay = BASE_DELAY_INTERVAL;
2394 else if (con->delay < MAX_DELAY_INTERVAL)
2395 con->delay *= 2;
2396 con->ops->get(con);
2397 if (queue_delayed_work(ceph_msgr_wq, &con->work,
2398 round_jiffies_relative(con->delay))) {
2399 dout("fault queued %p delay %lu\n", con, con->delay);
2400 } else {
2401 con->ops->put(con);
2402 dout("fault failed to queue %p delay %lu, backoff\n",
2403 con, con->delay);
2404 /*
2405 * In many cases we see a socket state change
2406 * while con_work is running and end up
2407 * queuing (non-delayed) work, such that we
2408 * can't backoff with a delay. Set a flag so
2409 * that when con_work restarts we schedule the
2410 * delay then.
2411 */
2412 set_bit(CON_FLAG_BACKOFF, &con->flags);
2413 }
2414 }
2415
2416 out_unlock:
2417 mutex_unlock(&con->mutex);
2418 /*
2419 * in case we faulted due to authentication, invalidate our
2420 * current tickets so that we can get new ones.
2421 */
2422 if (con->auth_retry && con->ops->invalidate_authorizer) {
2423 dout("calling invalidate_authorizer()\n");
2424 con->ops->invalidate_authorizer(con);
2425 }
2426
2427 if (con->ops->fault)
2428 con->ops->fault(con);
2429 }
2430
2431
2432
2433 /*
2434 * initialize a new messenger instance
2435 */
2436 void ceph_messenger_init(struct ceph_messenger *msgr,
2437 struct ceph_entity_addr *myaddr,
2438 u32 supported_features,
2439 u32 required_features,
2440 bool nocrc)
2441 {
2442 msgr->supported_features = supported_features;
2443 msgr->required_features = required_features;
2444
2445 spin_lock_init(&msgr->global_seq_lock);
2446
2447 if (myaddr)
2448 msgr->inst.addr = *myaddr;
2449
2450 /* select a random nonce */
2451 msgr->inst.addr.type = 0;
2452 get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
2453 encode_my_addr(msgr);
2454 msgr->nocrc = nocrc;
2455
2456 atomic_set(&msgr->stopping, 0);
2457
2458 dout("%s %p\n", __func__, msgr);
2459 }
2460 EXPORT_SYMBOL(ceph_messenger_init);
2461
2462 static void clear_standby(struct ceph_connection *con)
2463 {
2464 /* come back from STANDBY? */
2465 if (con->state == CON_STATE_STANDBY) {
2466 dout("clear_standby %p and ++connect_seq\n", con);
2467 con->state = CON_STATE_PREOPEN;
2468 con->connect_seq++;
2469 WARN_ON(test_bit(CON_FLAG_WRITE_PENDING, &con->flags));
2470 WARN_ON(test_bit(CON_FLAG_KEEPALIVE_PENDING, &con->flags));
2471 }
2472 }
2473
2474 /*
2475 * Queue up an outgoing message on the given connection.
2476 */
2477 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
2478 {
2479 /* set src+dst */
2480 msg->hdr.src = con->msgr->inst.name;
2481 BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
2482 msg->needs_out_seq = true;
2483
2484 mutex_lock(&con->mutex);
2485
2486 if (con->state == CON_STATE_CLOSED) {
2487 dout("con_send %p closed, dropping %p\n", con, msg);
2488 ceph_msg_put(msg);
2489 mutex_unlock(&con->mutex);
2490 return;
2491 }
2492
2493 BUG_ON(msg->con != NULL);
2494 msg->con = con->ops->get(con);
2495 BUG_ON(msg->con == NULL);
2496
2497 BUG_ON(!list_empty(&msg->list_head));
2498 list_add_tail(&msg->list_head, &con->out_queue);
2499 dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
2500 ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
2501 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2502 le32_to_cpu(msg->hdr.front_len),
2503 le32_to_cpu(msg->hdr.middle_len),
2504 le32_to_cpu(msg->hdr.data_len));
2505
2506 clear_standby(con);
2507 mutex_unlock(&con->mutex);
2508
2509 /* if there wasn't anything waiting to send before, queue
2510 * new work */
2511 if (test_and_set_bit(CON_FLAG_WRITE_PENDING, &con->flags) == 0)
2512 queue_con(con);
2513 }
2514 EXPORT_SYMBOL(ceph_con_send);
2515
2516 /*
2517 * Revoke a message that was previously queued for send
2518 */
2519 void ceph_msg_revoke(struct ceph_msg *msg)
2520 {
2521 struct ceph_connection *con = msg->con;
2522
2523 if (!con)
2524 return; /* Message not in our possession */
2525
2526 mutex_lock(&con->mutex);
2527 if (!list_empty(&msg->list_head)) {
2528 dout("%s %p msg %p - was on queue\n", __func__, con, msg);
2529 list_del_init(&msg->list_head);
2530 BUG_ON(msg->con == NULL);
2531 msg->con->ops->put(msg->con);
2532 msg->con = NULL;
2533 msg->hdr.seq = 0;
2534
2535 ceph_msg_put(msg);
2536 }
2537 if (con->out_msg == msg) {
2538 dout("%s %p msg %p - was sending\n", __func__, con, msg);
2539 con->out_msg = NULL;
2540 if (con->out_kvec_is_msg) {
2541 con->out_skip = con->out_kvec_bytes;
2542 con->out_kvec_is_msg = false;
2543 }
2544 msg->hdr.seq = 0;
2545
2546 ceph_msg_put(msg);
2547 }
2548 mutex_unlock(&con->mutex);
2549 }
2550
2551 /*
2552 * Revoke a message that we may be reading data into
2553 */
2554 void ceph_msg_revoke_incoming(struct ceph_msg *msg)
2555 {
2556 struct ceph_connection *con;
2557
2558 BUG_ON(msg == NULL);
2559 if (!msg->con) {
2560 dout("%s msg %p null con\n", __func__, msg);
2561
2562 return; /* Message not in our possession */
2563 }
2564
2565 con = msg->con;
2566 mutex_lock(&con->mutex);
2567 if (con->in_msg == msg) {
2568 unsigned int front_len = le32_to_cpu(con->in_hdr.front_len);
2569 unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len);
2570 unsigned int data_len = le32_to_cpu(con->in_hdr.data_len);
2571
2572 /* skip rest of message */
2573 dout("%s %p msg %p revoked\n", __func__, con, msg);
2574 con->in_base_pos = con->in_base_pos -
2575 sizeof(struct ceph_msg_header) -
2576 front_len -
2577 middle_len -
2578 data_len -
2579 sizeof(struct ceph_msg_footer);
2580 ceph_msg_put(con->in_msg);
2581 con->in_msg = NULL;
2582 con->in_tag = CEPH_MSGR_TAG_READY;
2583 con->in_seq++;
2584 } else {
2585 dout("%s %p in_msg %p msg %p no-op\n",
2586 __func__, con, con->in_msg, msg);
2587 }
2588 mutex_unlock(&con->mutex);
2589 }
2590
2591 /*
2592 * Queue a keepalive byte to ensure the tcp connection is alive.
2593 */
2594 void ceph_con_keepalive(struct ceph_connection *con)
2595 {
2596 dout("con_keepalive %p\n", con);
2597 mutex_lock(&con->mutex);
2598 clear_standby(con);
2599 mutex_unlock(&con->mutex);
2600 if (test_and_set_bit(CON_FLAG_KEEPALIVE_PENDING, &con->flags) == 0 &&
2601 test_and_set_bit(CON_FLAG_WRITE_PENDING, &con->flags) == 0)
2602 queue_con(con);
2603 }
2604 EXPORT_SYMBOL(ceph_con_keepalive);
2605
2606
2607 /*
2608 * construct a new message with given type, size
2609 * the new msg has a ref count of 1.
2610 */
2611 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
2612 bool can_fail)
2613 {
2614 struct ceph_msg *m;
2615
2616 m = kmalloc(sizeof(*m), flags);
2617 if (m == NULL)
2618 goto out;
2619 kref_init(&m->kref);
2620
2621 m->con = NULL;
2622 INIT_LIST_HEAD(&m->list_head);
2623
2624 m->hdr.tid = 0;
2625 m->hdr.type = cpu_to_le16(type);
2626 m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
2627 m->hdr.version = 0;
2628 m->hdr.front_len = cpu_to_le32(front_len);
2629 m->hdr.middle_len = 0;
2630 m->hdr.data_len = 0;
2631 m->hdr.data_off = 0;
2632 m->hdr.reserved = 0;
2633 m->footer.front_crc = 0;
2634 m->footer.middle_crc = 0;
2635 m->footer.data_crc = 0;
2636 m->footer.flags = 0;
2637 m->front_max = front_len;
2638 m->front_is_vmalloc = false;
2639 m->more_to_follow = false;
2640 m->ack_stamp = 0;
2641 m->pool = NULL;
2642
2643 /* middle */
2644 m->middle = NULL;
2645
2646 /* data */
2647 m->nr_pages = 0;
2648 m->page_alignment = 0;
2649 m->pages = NULL;
2650 m->pagelist = NULL;
2651 m->bio = NULL;
2652 m->bio_iter = NULL;
2653 m->bio_seg = 0;
2654 m->trail = NULL;
2655
2656 /* front */
2657 if (front_len) {
2658 if (front_len > PAGE_CACHE_SIZE) {
2659 m->front.iov_base = __vmalloc(front_len, flags,
2660 PAGE_KERNEL);
2661 m->front_is_vmalloc = true;
2662 } else {
2663 m->front.iov_base = kmalloc(front_len, flags);
2664 }
2665 if (m->front.iov_base == NULL) {
2666 dout("ceph_msg_new can't allocate %d bytes\n",
2667 front_len);
2668 goto out2;
2669 }
2670 } else {
2671 m->front.iov_base = NULL;
2672 }
2673 m->front.iov_len = front_len;
2674
2675 dout("ceph_msg_new %p front %d\n", m, front_len);
2676 return m;
2677
2678 out2:
2679 ceph_msg_put(m);
2680 out:
2681 if (!can_fail) {
2682 pr_err("msg_new can't create type %d front %d\n", type,
2683 front_len);
2684 WARN_ON(1);
2685 } else {
2686 dout("msg_new can't create type %d front %d\n", type,
2687 front_len);
2688 }
2689 return NULL;
2690 }
2691 EXPORT_SYMBOL(ceph_msg_new);
2692
2693 /*
2694 * Allocate "middle" portion of a message, if it is needed and wasn't
2695 * allocated by alloc_msg. This allows us to read a small fixed-size
2696 * per-type header in the front and then gracefully fail (i.e.,
2697 * propagate the error to the caller based on info in the front) when
2698 * the middle is too large.
2699 */
2700 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
2701 {
2702 int type = le16_to_cpu(msg->hdr.type);
2703 int middle_len = le32_to_cpu(msg->hdr.middle_len);
2704
2705 dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
2706 ceph_msg_type_name(type), middle_len);
2707 BUG_ON(!middle_len);
2708 BUG_ON(msg->middle);
2709
2710 msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
2711 if (!msg->middle)
2712 return -ENOMEM;
2713 return 0;
2714 }
2715
2716 /*
2717 * Allocate a message for receiving an incoming message on a
2718 * connection, and save the result in con->in_msg. Uses the
2719 * connection's private alloc_msg op if available.
2720 *
2721 * Returns 0 on success, or a negative error code.
2722 *
2723 * On success, if we set *skip = 1:
2724 * - the next message should be skipped and ignored.
2725 * - con->in_msg == NULL
2726 * or if we set *skip = 0:
2727 * - con->in_msg is non-null.
2728 * On error (ENOMEM, EAGAIN, ...),
2729 * - con->in_msg == NULL
2730 */
2731 static int ceph_con_in_msg_alloc(struct ceph_connection *con, int *skip)
2732 {
2733 struct ceph_msg_header *hdr = &con->in_hdr;
2734 int type = le16_to_cpu(hdr->type);
2735 int front_len = le32_to_cpu(hdr->front_len);
2736 int middle_len = le32_to_cpu(hdr->middle_len);
2737 int ret = 0;
2738
2739 BUG_ON(con->in_msg != NULL);
2740
2741 if (con->ops->alloc_msg) {
2742 struct ceph_msg *msg;
2743
2744 mutex_unlock(&con->mutex);
2745 msg = con->ops->alloc_msg(con, hdr, skip);
2746 mutex_lock(&con->mutex);
2747 if (con->state != CON_STATE_OPEN) {
2748 ceph_msg_put(msg);
2749 return -EAGAIN;
2750 }
2751 con->in_msg = msg;
2752 if (con->in_msg) {
2753 con->in_msg->con = con->ops->get(con);
2754 BUG_ON(con->in_msg->con == NULL);
2755 }
2756 if (*skip) {
2757 con->in_msg = NULL;
2758 return 0;
2759 }
2760 if (!con->in_msg) {
2761 con->error_msg =
2762 "error allocating memory for incoming message";
2763 return -ENOMEM;
2764 }
2765 }
2766 if (!con->in_msg) {
2767 con->in_msg = ceph_msg_new(type, front_len, GFP_NOFS, false);
2768 if (!con->in_msg) {
2769 pr_err("unable to allocate msg type %d len %d\n",
2770 type, front_len);
2771 return -ENOMEM;
2772 }
2773 con->in_msg->con = con->ops->get(con);
2774 BUG_ON(con->in_msg->con == NULL);
2775 con->in_msg->page_alignment = le16_to_cpu(hdr->data_off);
2776 }
2777 memcpy(&con->in_msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
2778
2779 if (middle_len && !con->in_msg->middle) {
2780 ret = ceph_alloc_middle(con, con->in_msg);
2781 if (ret < 0) {
2782 ceph_msg_put(con->in_msg);
2783 con->in_msg = NULL;
2784 }
2785 }
2786
2787 return ret;
2788 }
2789
2790
2791 /*
2792 * Free a generically kmalloc'd message.
2793 */
2794 void ceph_msg_kfree(struct ceph_msg *m)
2795 {
2796 dout("msg_kfree %p\n", m);
2797 if (m->front_is_vmalloc)
2798 vfree(m->front.iov_base);
2799 else
2800 kfree(m->front.iov_base);
2801 kfree(m);
2802 }
2803
2804 /*
2805 * Drop a msg ref. Destroy as needed.
2806 */
2807 void ceph_msg_last_put(struct kref *kref)
2808 {
2809 struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
2810
2811 dout("ceph_msg_put last one on %p\n", m);
2812 WARN_ON(!list_empty(&m->list_head));
2813
2814 /* drop middle, data, if any */
2815 if (m->middle) {
2816 ceph_buffer_put(m->middle);
2817 m->middle = NULL;
2818 }
2819 m->nr_pages = 0;
2820 m->pages = NULL;
2821
2822 if (m->pagelist) {
2823 ceph_pagelist_release(m->pagelist);
2824 kfree(m->pagelist);
2825 m->pagelist = NULL;
2826 }
2827
2828 m->trail = NULL;
2829
2830 if (m->pool)
2831 ceph_msgpool_put(m->pool, m);
2832 else
2833 ceph_msg_kfree(m);
2834 }
2835 EXPORT_SYMBOL(ceph_msg_last_put);
2836
2837 void ceph_msg_dump(struct ceph_msg *msg)
2838 {
2839 pr_debug("msg_dump %p (front_max %d nr_pages %d)\n", msg,
2840 msg->front_max, msg->nr_pages);
2841 print_hex_dump(KERN_DEBUG, "header: ",
2842 DUMP_PREFIX_OFFSET, 16, 1,
2843 &msg->hdr, sizeof(msg->hdr), true);
2844 print_hex_dump(KERN_DEBUG, " front: ",
2845 DUMP_PREFIX_OFFSET, 16, 1,
2846 msg->front.iov_base, msg->front.iov_len, true);
2847 if (msg->middle)
2848 print_hex_dump(KERN_DEBUG, "middle: ",
2849 DUMP_PREFIX_OFFSET, 16, 1,
2850 msg->middle->vec.iov_base,
2851 msg->middle->vec.iov_len, true);
2852 print_hex_dump(KERN_DEBUG, "footer: ",
2853 DUMP_PREFIX_OFFSET, 16, 1,
2854 &msg->footer, sizeof(msg->footer), true);
2855 }
2856 EXPORT_SYMBOL(ceph_msg_dump);