net: cleanup unsigned to unsigned int
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / net / ceph / messenger.c
1 #include <linux/ceph/ceph_debug.h>
2
3 #include <linux/crc32c.h>
4 #include <linux/ctype.h>
5 #include <linux/highmem.h>
6 #include <linux/inet.h>
7 #include <linux/kthread.h>
8 #include <linux/net.h>
9 #include <linux/slab.h>
10 #include <linux/socket.h>
11 #include <linux/string.h>
12 #include <linux/bio.h>
13 #include <linux/blkdev.h>
14 #include <linux/dns_resolver.h>
15 #include <net/tcp.h>
16
17 #include <linux/ceph/libceph.h>
18 #include <linux/ceph/messenger.h>
19 #include <linux/ceph/decode.h>
20 #include <linux/ceph/pagelist.h>
21 #include <linux/export.h>
22
23 /*
24 * Ceph uses the messenger to exchange ceph_msg messages with other
25 * hosts in the system. The messenger provides ordered and reliable
26 * delivery. We tolerate TCP disconnects by reconnecting (with
27 * exponential backoff) in the case of a fault (disconnection, bad
28 * crc, protocol error). Acks allow sent messages to be discarded by
29 * the sender.
30 */
31
32 /* static tag bytes (protocol control messages) */
33 static char tag_msg = CEPH_MSGR_TAG_MSG;
34 static char tag_ack = CEPH_MSGR_TAG_ACK;
35 static char tag_keepalive = CEPH_MSGR_TAG_KEEPALIVE;
36
37 #ifdef CONFIG_LOCKDEP
38 static struct lock_class_key socket_class;
39 #endif
40
41 /*
42 * When skipping (ignoring) a block of input we read it into a "skip
43 * buffer," which is this many bytes in size.
44 */
45 #define SKIP_BUF_SIZE 1024
46
47 static void queue_con(struct ceph_connection *con);
48 static void con_work(struct work_struct *);
49 static void ceph_fault(struct ceph_connection *con);
50
51 /*
52 * Nicely render a sockaddr as a string. An array of formatted
53 * strings is used, to approximate reentrancy.
54 */
55 #define ADDR_STR_COUNT_LOG 5 /* log2(# address strings in array) */
56 #define ADDR_STR_COUNT (1 << ADDR_STR_COUNT_LOG)
57 #define ADDR_STR_COUNT_MASK (ADDR_STR_COUNT - 1)
58 #define MAX_ADDR_STR_LEN 64 /* 54 is enough */
59
60 static char addr_str[ADDR_STR_COUNT][MAX_ADDR_STR_LEN];
61 static atomic_t addr_str_seq = ATOMIC_INIT(0);
62
63 static struct page *zero_page; /* used in certain error cases */
64
65 const char *ceph_pr_addr(const struct sockaddr_storage *ss)
66 {
67 int i;
68 char *s;
69 struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
70 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
71
72 i = atomic_inc_return(&addr_str_seq) & ADDR_STR_COUNT_MASK;
73 s = addr_str[i];
74
75 switch (ss->ss_family) {
76 case AF_INET:
77 snprintf(s, MAX_ADDR_STR_LEN, "%pI4:%hu", &in4->sin_addr,
78 ntohs(in4->sin_port));
79 break;
80
81 case AF_INET6:
82 snprintf(s, MAX_ADDR_STR_LEN, "[%pI6c]:%hu", &in6->sin6_addr,
83 ntohs(in6->sin6_port));
84 break;
85
86 default:
87 snprintf(s, MAX_ADDR_STR_LEN, "(unknown sockaddr family %hu)",
88 ss->ss_family);
89 }
90
91 return s;
92 }
93 EXPORT_SYMBOL(ceph_pr_addr);
94
95 static void encode_my_addr(struct ceph_messenger *msgr)
96 {
97 memcpy(&msgr->my_enc_addr, &msgr->inst.addr, sizeof(msgr->my_enc_addr));
98 ceph_encode_addr(&msgr->my_enc_addr);
99 }
100
101 /*
102 * work queue for all reading and writing to/from the socket.
103 */
104 static struct workqueue_struct *ceph_msgr_wq;
105
106 void _ceph_msgr_exit(void)
107 {
108 if (ceph_msgr_wq) {
109 destroy_workqueue(ceph_msgr_wq);
110 ceph_msgr_wq = NULL;
111 }
112
113 BUG_ON(zero_page == NULL);
114 kunmap(zero_page);
115 page_cache_release(zero_page);
116 zero_page = NULL;
117 }
118
119 int ceph_msgr_init(void)
120 {
121 BUG_ON(zero_page != NULL);
122 zero_page = ZERO_PAGE(0);
123 page_cache_get(zero_page);
124
125 ceph_msgr_wq = alloc_workqueue("ceph-msgr", WQ_NON_REENTRANT, 0);
126 if (ceph_msgr_wq)
127 return 0;
128
129 pr_err("msgr_init failed to create workqueue\n");
130 _ceph_msgr_exit();
131
132 return -ENOMEM;
133 }
134 EXPORT_SYMBOL(ceph_msgr_init);
135
136 void ceph_msgr_exit(void)
137 {
138 BUG_ON(ceph_msgr_wq == NULL);
139
140 _ceph_msgr_exit();
141 }
142 EXPORT_SYMBOL(ceph_msgr_exit);
143
144 void ceph_msgr_flush(void)
145 {
146 flush_workqueue(ceph_msgr_wq);
147 }
148 EXPORT_SYMBOL(ceph_msgr_flush);
149
150
151 /*
152 * socket callback functions
153 */
154
155 /* data available on socket, or listen socket received a connect */
156 static void ceph_data_ready(struct sock *sk, int count_unused)
157 {
158 struct ceph_connection *con = sk->sk_user_data;
159
160 if (sk->sk_state != TCP_CLOSE_WAIT) {
161 dout("ceph_data_ready on %p state = %lu, queueing work\n",
162 con, con->state);
163 queue_con(con);
164 }
165 }
166
167 /* socket has buffer space for writing */
168 static void ceph_write_space(struct sock *sk)
169 {
170 struct ceph_connection *con = sk->sk_user_data;
171
172 /* only queue to workqueue if there is data we want to write,
173 * and there is sufficient space in the socket buffer to accept
174 * more data. clear SOCK_NOSPACE so that ceph_write_space()
175 * doesn't get called again until try_write() fills the socket
176 * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
177 * and net/core/stream.c:sk_stream_write_space().
178 */
179 if (test_bit(WRITE_PENDING, &con->state)) {
180 if (sk_stream_wspace(sk) >= sk_stream_min_wspace(sk)) {
181 dout("ceph_write_space %p queueing write work\n", con);
182 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
183 queue_con(con);
184 }
185 } else {
186 dout("ceph_write_space %p nothing to write\n", con);
187 }
188 }
189
190 /* socket's state has changed */
191 static void ceph_state_change(struct sock *sk)
192 {
193 struct ceph_connection *con = sk->sk_user_data;
194
195 dout("ceph_state_change %p state = %lu sk_state = %u\n",
196 con, con->state, sk->sk_state);
197
198 if (test_bit(CLOSED, &con->state))
199 return;
200
201 switch (sk->sk_state) {
202 case TCP_CLOSE:
203 dout("ceph_state_change TCP_CLOSE\n");
204 case TCP_CLOSE_WAIT:
205 dout("ceph_state_change TCP_CLOSE_WAIT\n");
206 if (test_and_set_bit(SOCK_CLOSED, &con->state) == 0) {
207 if (test_bit(CONNECTING, &con->state))
208 con->error_msg = "connection failed";
209 else
210 con->error_msg = "socket closed";
211 queue_con(con);
212 }
213 break;
214 case TCP_ESTABLISHED:
215 dout("ceph_state_change TCP_ESTABLISHED\n");
216 queue_con(con);
217 break;
218 default: /* Everything else is uninteresting */
219 break;
220 }
221 }
222
223 /*
224 * set up socket callbacks
225 */
226 static void set_sock_callbacks(struct socket *sock,
227 struct ceph_connection *con)
228 {
229 struct sock *sk = sock->sk;
230 sk->sk_user_data = con;
231 sk->sk_data_ready = ceph_data_ready;
232 sk->sk_write_space = ceph_write_space;
233 sk->sk_state_change = ceph_state_change;
234 }
235
236
237 /*
238 * socket helpers
239 */
240
241 /*
242 * initiate connection to a remote socket.
243 */
244 static int ceph_tcp_connect(struct ceph_connection *con)
245 {
246 struct sockaddr_storage *paddr = &con->peer_addr.in_addr;
247 struct socket *sock;
248 int ret;
249
250 BUG_ON(con->sock);
251 ret = sock_create_kern(con->peer_addr.in_addr.ss_family, SOCK_STREAM,
252 IPPROTO_TCP, &sock);
253 if (ret)
254 return ret;
255 sock->sk->sk_allocation = GFP_NOFS;
256
257 #ifdef CONFIG_LOCKDEP
258 lockdep_set_class(&sock->sk->sk_lock, &socket_class);
259 #endif
260
261 set_sock_callbacks(sock, con);
262
263 dout("connect %s\n", ceph_pr_addr(&con->peer_addr.in_addr));
264
265 ret = sock->ops->connect(sock, (struct sockaddr *)paddr, sizeof(*paddr),
266 O_NONBLOCK);
267 if (ret == -EINPROGRESS) {
268 dout("connect %s EINPROGRESS sk_state = %u\n",
269 ceph_pr_addr(&con->peer_addr.in_addr),
270 sock->sk->sk_state);
271 } else if (ret < 0) {
272 pr_err("connect %s error %d\n",
273 ceph_pr_addr(&con->peer_addr.in_addr), ret);
274 sock_release(sock);
275 con->error_msg = "connect error";
276
277 return ret;
278 }
279 con->sock = sock;
280
281 return 0;
282 }
283
284 static int ceph_tcp_recvmsg(struct socket *sock, void *buf, size_t len)
285 {
286 struct kvec iov = {buf, len};
287 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
288 int r;
289
290 r = kernel_recvmsg(sock, &msg, &iov, 1, len, msg.msg_flags);
291 if (r == -EAGAIN)
292 r = 0;
293 return r;
294 }
295
296 /*
297 * write something. @more is true if caller will be sending more data
298 * shortly.
299 */
300 static int ceph_tcp_sendmsg(struct socket *sock, struct kvec *iov,
301 size_t kvlen, size_t len, int more)
302 {
303 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_NOSIGNAL };
304 int r;
305
306 if (more)
307 msg.msg_flags |= MSG_MORE;
308 else
309 msg.msg_flags |= MSG_EOR; /* superfluous, but what the hell */
310
311 r = kernel_sendmsg(sock, &msg, iov, kvlen, len);
312 if (r == -EAGAIN)
313 r = 0;
314 return r;
315 }
316
317 static int ceph_tcp_sendpage(struct socket *sock, struct page *page,
318 int offset, size_t size, int more)
319 {
320 int flags = MSG_DONTWAIT | MSG_NOSIGNAL | (more ? MSG_MORE : MSG_EOR);
321 int ret;
322
323 ret = kernel_sendpage(sock, page, offset, size, flags);
324 if (ret == -EAGAIN)
325 ret = 0;
326
327 return ret;
328 }
329
330
331 /*
332 * Shutdown/close the socket for the given connection.
333 */
334 static int con_close_socket(struct ceph_connection *con)
335 {
336 int rc;
337
338 dout("con_close_socket on %p sock %p\n", con, con->sock);
339 if (!con->sock)
340 return 0;
341 set_bit(SOCK_CLOSED, &con->state);
342 rc = con->sock->ops->shutdown(con->sock, SHUT_RDWR);
343 sock_release(con->sock);
344 con->sock = NULL;
345 clear_bit(SOCK_CLOSED, &con->state);
346 return rc;
347 }
348
349 /*
350 * Reset a connection. Discard all incoming and outgoing messages
351 * and clear *_seq state.
352 */
353 static void ceph_msg_remove(struct ceph_msg *msg)
354 {
355 list_del_init(&msg->list_head);
356 ceph_msg_put(msg);
357 }
358 static void ceph_msg_remove_list(struct list_head *head)
359 {
360 while (!list_empty(head)) {
361 struct ceph_msg *msg = list_first_entry(head, struct ceph_msg,
362 list_head);
363 ceph_msg_remove(msg);
364 }
365 }
366
367 static void reset_connection(struct ceph_connection *con)
368 {
369 /* reset connection, out_queue, msg_ and connect_seq */
370 /* discard existing out_queue and msg_seq */
371 ceph_msg_remove_list(&con->out_queue);
372 ceph_msg_remove_list(&con->out_sent);
373
374 if (con->in_msg) {
375 ceph_msg_put(con->in_msg);
376 con->in_msg = NULL;
377 }
378
379 con->connect_seq = 0;
380 con->out_seq = 0;
381 if (con->out_msg) {
382 ceph_msg_put(con->out_msg);
383 con->out_msg = NULL;
384 }
385 con->in_seq = 0;
386 con->in_seq_acked = 0;
387 }
388
389 /*
390 * mark a peer down. drop any open connections.
391 */
392 void ceph_con_close(struct ceph_connection *con)
393 {
394 dout("con_close %p peer %s\n", con,
395 ceph_pr_addr(&con->peer_addr.in_addr));
396 set_bit(CLOSED, &con->state); /* in case there's queued work */
397 clear_bit(STANDBY, &con->state); /* avoid connect_seq bump */
398 clear_bit(LOSSYTX, &con->state); /* so we retry next connect */
399 clear_bit(KEEPALIVE_PENDING, &con->state);
400 clear_bit(WRITE_PENDING, &con->state);
401 mutex_lock(&con->mutex);
402 reset_connection(con);
403 con->peer_global_seq = 0;
404 cancel_delayed_work(&con->work);
405 mutex_unlock(&con->mutex);
406 queue_con(con);
407 }
408 EXPORT_SYMBOL(ceph_con_close);
409
410 /*
411 * Reopen a closed connection, with a new peer address.
412 */
413 void ceph_con_open(struct ceph_connection *con, struct ceph_entity_addr *addr)
414 {
415 dout("con_open %p %s\n", con, ceph_pr_addr(&addr->in_addr));
416 set_bit(OPENING, &con->state);
417 clear_bit(CLOSED, &con->state);
418 memcpy(&con->peer_addr, addr, sizeof(*addr));
419 con->delay = 0; /* reset backoff memory */
420 queue_con(con);
421 }
422 EXPORT_SYMBOL(ceph_con_open);
423
424 /*
425 * return true if this connection ever successfully opened
426 */
427 bool ceph_con_opened(struct ceph_connection *con)
428 {
429 return con->connect_seq > 0;
430 }
431
432 /*
433 * generic get/put
434 */
435 struct ceph_connection *ceph_con_get(struct ceph_connection *con)
436 {
437 int nref = __atomic_add_unless(&con->nref, 1, 0);
438
439 dout("con_get %p nref = %d -> %d\n", con, nref, nref + 1);
440
441 return nref ? con : NULL;
442 }
443
444 void ceph_con_put(struct ceph_connection *con)
445 {
446 int nref = atomic_dec_return(&con->nref);
447
448 BUG_ON(nref < 0);
449 if (nref == 0) {
450 BUG_ON(con->sock);
451 kfree(con);
452 }
453 dout("con_put %p nref = %d -> %d\n", con, nref + 1, nref);
454 }
455
456 /*
457 * initialize a new connection.
458 */
459 void ceph_con_init(struct ceph_messenger *msgr, struct ceph_connection *con)
460 {
461 dout("con_init %p\n", con);
462 memset(con, 0, sizeof(*con));
463 atomic_set(&con->nref, 1);
464 con->msgr = msgr;
465 mutex_init(&con->mutex);
466 INIT_LIST_HEAD(&con->out_queue);
467 INIT_LIST_HEAD(&con->out_sent);
468 INIT_DELAYED_WORK(&con->work, con_work);
469 }
470 EXPORT_SYMBOL(ceph_con_init);
471
472
473 /*
474 * We maintain a global counter to order connection attempts. Get
475 * a unique seq greater than @gt.
476 */
477 static u32 get_global_seq(struct ceph_messenger *msgr, u32 gt)
478 {
479 u32 ret;
480
481 spin_lock(&msgr->global_seq_lock);
482 if (msgr->global_seq < gt)
483 msgr->global_seq = gt;
484 ret = ++msgr->global_seq;
485 spin_unlock(&msgr->global_seq_lock);
486 return ret;
487 }
488
489 static void ceph_con_out_kvec_reset(struct ceph_connection *con)
490 {
491 con->out_kvec_left = 0;
492 con->out_kvec_bytes = 0;
493 con->out_kvec_cur = &con->out_kvec[0];
494 }
495
496 static void ceph_con_out_kvec_add(struct ceph_connection *con,
497 size_t size, void *data)
498 {
499 int index;
500
501 index = con->out_kvec_left;
502 BUG_ON(index >= ARRAY_SIZE(con->out_kvec));
503
504 con->out_kvec[index].iov_len = size;
505 con->out_kvec[index].iov_base = data;
506 con->out_kvec_left++;
507 con->out_kvec_bytes += size;
508 }
509
510 /*
511 * Prepare footer for currently outgoing message, and finish things
512 * off. Assumes out_kvec* are already valid.. we just add on to the end.
513 */
514 static void prepare_write_message_footer(struct ceph_connection *con)
515 {
516 struct ceph_msg *m = con->out_msg;
517 int v = con->out_kvec_left;
518
519 dout("prepare_write_message_footer %p\n", con);
520 con->out_kvec_is_msg = true;
521 con->out_kvec[v].iov_base = &m->footer;
522 con->out_kvec[v].iov_len = sizeof(m->footer);
523 con->out_kvec_bytes += sizeof(m->footer);
524 con->out_kvec_left++;
525 con->out_more = m->more_to_follow;
526 con->out_msg_done = true;
527 }
528
529 /*
530 * Prepare headers for the next outgoing message.
531 */
532 static void prepare_write_message(struct ceph_connection *con)
533 {
534 struct ceph_msg *m;
535 u32 crc;
536
537 ceph_con_out_kvec_reset(con);
538 con->out_kvec_is_msg = true;
539 con->out_msg_done = false;
540
541 /* Sneak an ack in there first? If we can get it into the same
542 * TCP packet that's a good thing. */
543 if (con->in_seq > con->in_seq_acked) {
544 con->in_seq_acked = con->in_seq;
545 ceph_con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
546 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
547 ceph_con_out_kvec_add(con, sizeof (con->out_temp_ack),
548 &con->out_temp_ack);
549 }
550
551 m = list_first_entry(&con->out_queue, struct ceph_msg, list_head);
552 con->out_msg = m;
553
554 /* put message on sent list */
555 ceph_msg_get(m);
556 list_move_tail(&m->list_head, &con->out_sent);
557
558 /*
559 * only assign outgoing seq # if we haven't sent this message
560 * yet. if it is requeued, resend with it's original seq.
561 */
562 if (m->needs_out_seq) {
563 m->hdr.seq = cpu_to_le64(++con->out_seq);
564 m->needs_out_seq = false;
565 }
566
567 dout("prepare_write_message %p seq %lld type %d len %d+%d+%d %d pgs\n",
568 m, con->out_seq, le16_to_cpu(m->hdr.type),
569 le32_to_cpu(m->hdr.front_len), le32_to_cpu(m->hdr.middle_len),
570 le32_to_cpu(m->hdr.data_len),
571 m->nr_pages);
572 BUG_ON(le32_to_cpu(m->hdr.front_len) != m->front.iov_len);
573
574 /* tag + hdr + front + middle */
575 ceph_con_out_kvec_add(con, sizeof (tag_msg), &tag_msg);
576 ceph_con_out_kvec_add(con, sizeof (m->hdr), &m->hdr);
577 ceph_con_out_kvec_add(con, m->front.iov_len, m->front.iov_base);
578
579 if (m->middle)
580 ceph_con_out_kvec_add(con, m->middle->vec.iov_len,
581 m->middle->vec.iov_base);
582
583 /* fill in crc (except data pages), footer */
584 crc = crc32c(0, &m->hdr, offsetof(struct ceph_msg_header, crc));
585 con->out_msg->hdr.crc = cpu_to_le32(crc);
586 con->out_msg->footer.flags = CEPH_MSG_FOOTER_COMPLETE;
587
588 crc = crc32c(0, m->front.iov_base, m->front.iov_len);
589 con->out_msg->footer.front_crc = cpu_to_le32(crc);
590 if (m->middle) {
591 crc = crc32c(0, m->middle->vec.iov_base,
592 m->middle->vec.iov_len);
593 con->out_msg->footer.middle_crc = cpu_to_le32(crc);
594 } else
595 con->out_msg->footer.middle_crc = 0;
596 con->out_msg->footer.data_crc = 0;
597 dout("prepare_write_message front_crc %u data_crc %u\n",
598 le32_to_cpu(con->out_msg->footer.front_crc),
599 le32_to_cpu(con->out_msg->footer.middle_crc));
600
601 /* is there a data payload? */
602 if (le32_to_cpu(m->hdr.data_len) > 0) {
603 /* initialize page iterator */
604 con->out_msg_pos.page = 0;
605 if (m->pages)
606 con->out_msg_pos.page_pos = m->page_alignment;
607 else
608 con->out_msg_pos.page_pos = 0;
609 con->out_msg_pos.data_pos = 0;
610 con->out_msg_pos.did_page_crc = false;
611 con->out_more = 1; /* data + footer will follow */
612 } else {
613 /* no, queue up footer too and be done */
614 prepare_write_message_footer(con);
615 }
616
617 set_bit(WRITE_PENDING, &con->state);
618 }
619
620 /*
621 * Prepare an ack.
622 */
623 static void prepare_write_ack(struct ceph_connection *con)
624 {
625 dout("prepare_write_ack %p %llu -> %llu\n", con,
626 con->in_seq_acked, con->in_seq);
627 con->in_seq_acked = con->in_seq;
628
629 ceph_con_out_kvec_reset(con);
630
631 ceph_con_out_kvec_add(con, sizeof (tag_ack), &tag_ack);
632
633 con->out_temp_ack = cpu_to_le64(con->in_seq_acked);
634 ceph_con_out_kvec_add(con, sizeof (con->out_temp_ack),
635 &con->out_temp_ack);
636
637 con->out_more = 1; /* more will follow.. eventually.. */
638 set_bit(WRITE_PENDING, &con->state);
639 }
640
641 /*
642 * Prepare to write keepalive byte.
643 */
644 static void prepare_write_keepalive(struct ceph_connection *con)
645 {
646 dout("prepare_write_keepalive %p\n", con);
647 ceph_con_out_kvec_reset(con);
648 ceph_con_out_kvec_add(con, sizeof (tag_keepalive), &tag_keepalive);
649 set_bit(WRITE_PENDING, &con->state);
650 }
651
652 /*
653 * Connection negotiation.
654 */
655
656 static int prepare_connect_authorizer(struct ceph_connection *con)
657 {
658 void *auth_buf;
659 int auth_len = 0;
660 int auth_protocol = 0;
661
662 mutex_unlock(&con->mutex);
663 if (con->ops->get_authorizer)
664 con->ops->get_authorizer(con, &auth_buf, &auth_len,
665 &auth_protocol, &con->auth_reply_buf,
666 &con->auth_reply_buf_len,
667 con->auth_retry);
668 mutex_lock(&con->mutex);
669
670 if (test_bit(CLOSED, &con->state) ||
671 test_bit(OPENING, &con->state))
672 return -EAGAIN;
673
674 con->out_connect.authorizer_protocol = cpu_to_le32(auth_protocol);
675 con->out_connect.authorizer_len = cpu_to_le32(auth_len);
676
677 if (auth_len)
678 ceph_con_out_kvec_add(con, auth_len, auth_buf);
679
680 return 0;
681 }
682
683 /*
684 * We connected to a peer and are saying hello.
685 */
686 static void prepare_write_banner(struct ceph_messenger *msgr,
687 struct ceph_connection *con)
688 {
689 ceph_con_out_kvec_reset(con);
690 ceph_con_out_kvec_add(con, strlen(CEPH_BANNER), CEPH_BANNER);
691 ceph_con_out_kvec_add(con, sizeof (msgr->my_enc_addr),
692 &msgr->my_enc_addr);
693
694 con->out_more = 0;
695 set_bit(WRITE_PENDING, &con->state);
696 }
697
698 static int prepare_write_connect(struct ceph_messenger *msgr,
699 struct ceph_connection *con,
700 int include_banner)
701 {
702 unsigned int global_seq = get_global_seq(con->msgr, 0);
703 int proto;
704
705 switch (con->peer_name.type) {
706 case CEPH_ENTITY_TYPE_MON:
707 proto = CEPH_MONC_PROTOCOL;
708 break;
709 case CEPH_ENTITY_TYPE_OSD:
710 proto = CEPH_OSDC_PROTOCOL;
711 break;
712 case CEPH_ENTITY_TYPE_MDS:
713 proto = CEPH_MDSC_PROTOCOL;
714 break;
715 default:
716 BUG();
717 }
718
719 dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con,
720 con->connect_seq, global_seq, proto);
721
722 con->out_connect.features = cpu_to_le64(msgr->supported_features);
723 con->out_connect.host_type = cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT);
724 con->out_connect.connect_seq = cpu_to_le32(con->connect_seq);
725 con->out_connect.global_seq = cpu_to_le32(global_seq);
726 con->out_connect.protocol_version = cpu_to_le32(proto);
727 con->out_connect.flags = 0;
728
729 if (include_banner)
730 prepare_write_banner(msgr, con);
731 else
732 ceph_con_out_kvec_reset(con);
733 ceph_con_out_kvec_add(con, sizeof (con->out_connect), &con->out_connect);
734
735 con->out_more = 0;
736 set_bit(WRITE_PENDING, &con->state);
737
738 return prepare_connect_authorizer(con);
739 }
740
741 /*
742 * write as much of pending kvecs to the socket as we can.
743 * 1 -> done
744 * 0 -> socket full, but more to do
745 * <0 -> error
746 */
747 static int write_partial_kvec(struct ceph_connection *con)
748 {
749 int ret;
750
751 dout("write_partial_kvec %p %d left\n", con, con->out_kvec_bytes);
752 while (con->out_kvec_bytes > 0) {
753 ret = ceph_tcp_sendmsg(con->sock, con->out_kvec_cur,
754 con->out_kvec_left, con->out_kvec_bytes,
755 con->out_more);
756 if (ret <= 0)
757 goto out;
758 con->out_kvec_bytes -= ret;
759 if (con->out_kvec_bytes == 0)
760 break; /* done */
761
762 /* account for full iov entries consumed */
763 while (ret >= con->out_kvec_cur->iov_len) {
764 BUG_ON(!con->out_kvec_left);
765 ret -= con->out_kvec_cur->iov_len;
766 con->out_kvec_cur++;
767 con->out_kvec_left--;
768 }
769 /* and for a partially-consumed entry */
770 if (ret) {
771 con->out_kvec_cur->iov_len -= ret;
772 con->out_kvec_cur->iov_base += ret;
773 }
774 }
775 con->out_kvec_left = 0;
776 con->out_kvec_is_msg = false;
777 ret = 1;
778 out:
779 dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con,
780 con->out_kvec_bytes, con->out_kvec_left, ret);
781 return ret; /* done! */
782 }
783
784 #ifdef CONFIG_BLOCK
785 static void init_bio_iter(struct bio *bio, struct bio **iter, int *seg)
786 {
787 if (!bio) {
788 *iter = NULL;
789 *seg = 0;
790 return;
791 }
792 *iter = bio;
793 *seg = bio->bi_idx;
794 }
795
796 static void iter_bio_next(struct bio **bio_iter, int *seg)
797 {
798 if (*bio_iter == NULL)
799 return;
800
801 BUG_ON(*seg >= (*bio_iter)->bi_vcnt);
802
803 (*seg)++;
804 if (*seg == (*bio_iter)->bi_vcnt)
805 init_bio_iter((*bio_iter)->bi_next, bio_iter, seg);
806 }
807 #endif
808
809 /*
810 * Write as much message data payload as we can. If we finish, queue
811 * up the footer.
812 * 1 -> done, footer is now queued in out_kvec[].
813 * 0 -> socket full, but more to do
814 * <0 -> error
815 */
816 static int write_partial_msg_pages(struct ceph_connection *con)
817 {
818 struct ceph_msg *msg = con->out_msg;
819 unsigned int data_len = le32_to_cpu(msg->hdr.data_len);
820 size_t len;
821 bool do_datacrc = !con->msgr->nocrc;
822 int ret;
823 int total_max_write;
824 int in_trail = 0;
825 size_t trail_len = (msg->trail ? msg->trail->length : 0);
826
827 dout("write_partial_msg_pages %p msg %p page %d/%d offset %d\n",
828 con, con->out_msg, con->out_msg_pos.page, con->out_msg->nr_pages,
829 con->out_msg_pos.page_pos);
830
831 #ifdef CONFIG_BLOCK
832 if (msg->bio && !msg->bio_iter)
833 init_bio_iter(msg->bio, &msg->bio_iter, &msg->bio_seg);
834 #endif
835
836 while (data_len > con->out_msg_pos.data_pos) {
837 struct page *page = NULL;
838 int max_write = PAGE_SIZE;
839 int bio_offset = 0;
840
841 total_max_write = data_len - trail_len -
842 con->out_msg_pos.data_pos;
843
844 /*
845 * if we are calculating the data crc (the default), we need
846 * to map the page. if our pages[] has been revoked, use the
847 * zero page.
848 */
849
850 /* have we reached the trail part of the data? */
851 if (con->out_msg_pos.data_pos >= data_len - trail_len) {
852 in_trail = 1;
853
854 total_max_write = data_len - con->out_msg_pos.data_pos;
855
856 page = list_first_entry(&msg->trail->head,
857 struct page, lru);
858 max_write = PAGE_SIZE;
859 } else if (msg->pages) {
860 page = msg->pages[con->out_msg_pos.page];
861 } else if (msg->pagelist) {
862 page = list_first_entry(&msg->pagelist->head,
863 struct page, lru);
864 #ifdef CONFIG_BLOCK
865 } else if (msg->bio) {
866 struct bio_vec *bv;
867
868 bv = bio_iovec_idx(msg->bio_iter, msg->bio_seg);
869 page = bv->bv_page;
870 bio_offset = bv->bv_offset;
871 max_write = bv->bv_len;
872 #endif
873 } else {
874 page = zero_page;
875 }
876 len = min_t(int, max_write - con->out_msg_pos.page_pos,
877 total_max_write);
878
879 if (do_datacrc && !con->out_msg_pos.did_page_crc) {
880 void *base;
881 u32 crc;
882 u32 tmpcrc = le32_to_cpu(con->out_msg->footer.data_crc);
883 char *kaddr;
884
885 kaddr = kmap(page);
886 BUG_ON(kaddr == NULL);
887 base = kaddr + con->out_msg_pos.page_pos + bio_offset;
888 crc = crc32c(tmpcrc, base, len);
889 con->out_msg->footer.data_crc = cpu_to_le32(crc);
890 con->out_msg_pos.did_page_crc = true;
891 }
892 ret = ceph_tcp_sendpage(con->sock, page,
893 con->out_msg_pos.page_pos + bio_offset,
894 len, 1);
895
896 if (do_datacrc)
897 kunmap(page);
898
899 if (ret <= 0)
900 goto out;
901
902 con->out_msg_pos.data_pos += ret;
903 con->out_msg_pos.page_pos += ret;
904 if (ret == len) {
905 con->out_msg_pos.page_pos = 0;
906 con->out_msg_pos.page++;
907 con->out_msg_pos.did_page_crc = false;
908 if (in_trail)
909 list_move_tail(&page->lru,
910 &msg->trail->head);
911 else if (msg->pagelist)
912 list_move_tail(&page->lru,
913 &msg->pagelist->head);
914 #ifdef CONFIG_BLOCK
915 else if (msg->bio)
916 iter_bio_next(&msg->bio_iter, &msg->bio_seg);
917 #endif
918 }
919 }
920
921 dout("write_partial_msg_pages %p msg %p done\n", con, msg);
922
923 /* prepare and queue up footer, too */
924 if (!do_datacrc)
925 con->out_msg->footer.flags |= CEPH_MSG_FOOTER_NOCRC;
926 ceph_con_out_kvec_reset(con);
927 prepare_write_message_footer(con);
928 ret = 1;
929 out:
930 return ret;
931 }
932
933 /*
934 * write some zeros
935 */
936 static int write_partial_skip(struct ceph_connection *con)
937 {
938 int ret;
939
940 while (con->out_skip > 0) {
941 size_t size = min(con->out_skip, (int) PAGE_CACHE_SIZE);
942
943 ret = ceph_tcp_sendpage(con->sock, zero_page, 0, size, 1);
944 if (ret <= 0)
945 goto out;
946 con->out_skip -= ret;
947 }
948 ret = 1;
949 out:
950 return ret;
951 }
952
953 /*
954 * Prepare to read connection handshake, or an ack.
955 */
956 static void prepare_read_banner(struct ceph_connection *con)
957 {
958 dout("prepare_read_banner %p\n", con);
959 con->in_base_pos = 0;
960 }
961
962 static void prepare_read_connect(struct ceph_connection *con)
963 {
964 dout("prepare_read_connect %p\n", con);
965 con->in_base_pos = 0;
966 }
967
968 static void prepare_read_ack(struct ceph_connection *con)
969 {
970 dout("prepare_read_ack %p\n", con);
971 con->in_base_pos = 0;
972 }
973
974 static void prepare_read_tag(struct ceph_connection *con)
975 {
976 dout("prepare_read_tag %p\n", con);
977 con->in_base_pos = 0;
978 con->in_tag = CEPH_MSGR_TAG_READY;
979 }
980
981 /*
982 * Prepare to read a message.
983 */
984 static int prepare_read_message(struct ceph_connection *con)
985 {
986 dout("prepare_read_message %p\n", con);
987 BUG_ON(con->in_msg != NULL);
988 con->in_base_pos = 0;
989 con->in_front_crc = con->in_middle_crc = con->in_data_crc = 0;
990 return 0;
991 }
992
993
994 static int read_partial(struct ceph_connection *con,
995 int *to, int size, void *object)
996 {
997 *to += size;
998 while (con->in_base_pos < *to) {
999 int left = *to - con->in_base_pos;
1000 int have = size - left;
1001 int ret = ceph_tcp_recvmsg(con->sock, object + have, left);
1002 if (ret <= 0)
1003 return ret;
1004 con->in_base_pos += ret;
1005 }
1006 return 1;
1007 }
1008
1009
1010 /*
1011 * Read all or part of the connect-side handshake on a new connection
1012 */
1013 static int read_partial_banner(struct ceph_connection *con)
1014 {
1015 int ret, to = 0;
1016
1017 dout("read_partial_banner %p at %d\n", con, con->in_base_pos);
1018
1019 /* peer's banner */
1020 ret = read_partial(con, &to, strlen(CEPH_BANNER), con->in_banner);
1021 if (ret <= 0)
1022 goto out;
1023 ret = read_partial(con, &to, sizeof(con->actual_peer_addr),
1024 &con->actual_peer_addr);
1025 if (ret <= 0)
1026 goto out;
1027 ret = read_partial(con, &to, sizeof(con->peer_addr_for_me),
1028 &con->peer_addr_for_me);
1029 if (ret <= 0)
1030 goto out;
1031 out:
1032 return ret;
1033 }
1034
1035 static int read_partial_connect(struct ceph_connection *con)
1036 {
1037 int ret, to = 0;
1038
1039 dout("read_partial_connect %p at %d\n", con, con->in_base_pos);
1040
1041 ret = read_partial(con, &to, sizeof(con->in_reply), &con->in_reply);
1042 if (ret <= 0)
1043 goto out;
1044 ret = read_partial(con, &to, le32_to_cpu(con->in_reply.authorizer_len),
1045 con->auth_reply_buf);
1046 if (ret <= 0)
1047 goto out;
1048
1049 dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1050 con, (int)con->in_reply.tag,
1051 le32_to_cpu(con->in_reply.connect_seq),
1052 le32_to_cpu(con->in_reply.global_seq));
1053 out:
1054 return ret;
1055
1056 }
1057
1058 /*
1059 * Verify the hello banner looks okay.
1060 */
1061 static int verify_hello(struct ceph_connection *con)
1062 {
1063 if (memcmp(con->in_banner, CEPH_BANNER, strlen(CEPH_BANNER))) {
1064 pr_err("connect to %s got bad banner\n",
1065 ceph_pr_addr(&con->peer_addr.in_addr));
1066 con->error_msg = "protocol error, bad banner";
1067 return -1;
1068 }
1069 return 0;
1070 }
1071
1072 static bool addr_is_blank(struct sockaddr_storage *ss)
1073 {
1074 switch (ss->ss_family) {
1075 case AF_INET:
1076 return ((struct sockaddr_in *)ss)->sin_addr.s_addr == 0;
1077 case AF_INET6:
1078 return
1079 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[0] == 0 &&
1080 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[1] == 0 &&
1081 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[2] == 0 &&
1082 ((struct sockaddr_in6 *)ss)->sin6_addr.s6_addr32[3] == 0;
1083 }
1084 return false;
1085 }
1086
1087 static int addr_port(struct sockaddr_storage *ss)
1088 {
1089 switch (ss->ss_family) {
1090 case AF_INET:
1091 return ntohs(((struct sockaddr_in *)ss)->sin_port);
1092 case AF_INET6:
1093 return ntohs(((struct sockaddr_in6 *)ss)->sin6_port);
1094 }
1095 return 0;
1096 }
1097
1098 static void addr_set_port(struct sockaddr_storage *ss, int p)
1099 {
1100 switch (ss->ss_family) {
1101 case AF_INET:
1102 ((struct sockaddr_in *)ss)->sin_port = htons(p);
1103 break;
1104 case AF_INET6:
1105 ((struct sockaddr_in6 *)ss)->sin6_port = htons(p);
1106 break;
1107 }
1108 }
1109
1110 /*
1111 * Unlike other *_pton function semantics, zero indicates success.
1112 */
1113 static int ceph_pton(const char *str, size_t len, struct sockaddr_storage *ss,
1114 char delim, const char **ipend)
1115 {
1116 struct sockaddr_in *in4 = (struct sockaddr_in *) ss;
1117 struct sockaddr_in6 *in6 = (struct sockaddr_in6 *) ss;
1118
1119 memset(ss, 0, sizeof(*ss));
1120
1121 if (in4_pton(str, len, (u8 *)&in4->sin_addr.s_addr, delim, ipend)) {
1122 ss->ss_family = AF_INET;
1123 return 0;
1124 }
1125
1126 if (in6_pton(str, len, (u8 *)&in6->sin6_addr.s6_addr, delim, ipend)) {
1127 ss->ss_family = AF_INET6;
1128 return 0;
1129 }
1130
1131 return -EINVAL;
1132 }
1133
1134 /*
1135 * Extract hostname string and resolve using kernel DNS facility.
1136 */
1137 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1138 static int ceph_dns_resolve_name(const char *name, size_t namelen,
1139 struct sockaddr_storage *ss, char delim, const char **ipend)
1140 {
1141 const char *end, *delim_p;
1142 char *colon_p, *ip_addr = NULL;
1143 int ip_len, ret;
1144
1145 /*
1146 * The end of the hostname occurs immediately preceding the delimiter or
1147 * the port marker (':') where the delimiter takes precedence.
1148 */
1149 delim_p = memchr(name, delim, namelen);
1150 colon_p = memchr(name, ':', namelen);
1151
1152 if (delim_p && colon_p)
1153 end = delim_p < colon_p ? delim_p : colon_p;
1154 else if (!delim_p && colon_p)
1155 end = colon_p;
1156 else {
1157 end = delim_p;
1158 if (!end) /* case: hostname:/ */
1159 end = name + namelen;
1160 }
1161
1162 if (end <= name)
1163 return -EINVAL;
1164
1165 /* do dns_resolve upcall */
1166 ip_len = dns_query(NULL, name, end - name, NULL, &ip_addr, NULL);
1167 if (ip_len > 0)
1168 ret = ceph_pton(ip_addr, ip_len, ss, -1, NULL);
1169 else
1170 ret = -ESRCH;
1171
1172 kfree(ip_addr);
1173
1174 *ipend = end;
1175
1176 pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end - name), name,
1177 ret, ret ? "failed" : ceph_pr_addr(ss));
1178
1179 return ret;
1180 }
1181 #else
1182 static inline int ceph_dns_resolve_name(const char *name, size_t namelen,
1183 struct sockaddr_storage *ss, char delim, const char **ipend)
1184 {
1185 return -EINVAL;
1186 }
1187 #endif
1188
1189 /*
1190 * Parse a server name (IP or hostname). If a valid IP address is not found
1191 * then try to extract a hostname to resolve using userspace DNS upcall.
1192 */
1193 static int ceph_parse_server_name(const char *name, size_t namelen,
1194 struct sockaddr_storage *ss, char delim, const char **ipend)
1195 {
1196 int ret;
1197
1198 ret = ceph_pton(name, namelen, ss, delim, ipend);
1199 if (ret)
1200 ret = ceph_dns_resolve_name(name, namelen, ss, delim, ipend);
1201
1202 return ret;
1203 }
1204
1205 /*
1206 * Parse an ip[:port] list into an addr array. Use the default
1207 * monitor port if a port isn't specified.
1208 */
1209 int ceph_parse_ips(const char *c, const char *end,
1210 struct ceph_entity_addr *addr,
1211 int max_count, int *count)
1212 {
1213 int i, ret = -EINVAL;
1214 const char *p = c;
1215
1216 dout("parse_ips on '%.*s'\n", (int)(end-c), c);
1217 for (i = 0; i < max_count; i++) {
1218 const char *ipend;
1219 struct sockaddr_storage *ss = &addr[i].in_addr;
1220 int port;
1221 char delim = ',';
1222
1223 if (*p == '[') {
1224 delim = ']';
1225 p++;
1226 }
1227
1228 ret = ceph_parse_server_name(p, end - p, ss, delim, &ipend);
1229 if (ret)
1230 goto bad;
1231 ret = -EINVAL;
1232
1233 p = ipend;
1234
1235 if (delim == ']') {
1236 if (*p != ']') {
1237 dout("missing matching ']'\n");
1238 goto bad;
1239 }
1240 p++;
1241 }
1242
1243 /* port? */
1244 if (p < end && *p == ':') {
1245 port = 0;
1246 p++;
1247 while (p < end && *p >= '0' && *p <= '9') {
1248 port = (port * 10) + (*p - '0');
1249 p++;
1250 }
1251 if (port > 65535 || port == 0)
1252 goto bad;
1253 } else {
1254 port = CEPH_MON_PORT;
1255 }
1256
1257 addr_set_port(ss, port);
1258
1259 dout("parse_ips got %s\n", ceph_pr_addr(ss));
1260
1261 if (p == end)
1262 break;
1263 if (*p != ',')
1264 goto bad;
1265 p++;
1266 }
1267
1268 if (p != end)
1269 goto bad;
1270
1271 if (count)
1272 *count = i + 1;
1273 return 0;
1274
1275 bad:
1276 pr_err("parse_ips bad ip '%.*s'\n", (int)(end - c), c);
1277 return ret;
1278 }
1279 EXPORT_SYMBOL(ceph_parse_ips);
1280
1281 static int process_banner(struct ceph_connection *con)
1282 {
1283 dout("process_banner on %p\n", con);
1284
1285 if (verify_hello(con) < 0)
1286 return -1;
1287
1288 ceph_decode_addr(&con->actual_peer_addr);
1289 ceph_decode_addr(&con->peer_addr_for_me);
1290
1291 /*
1292 * Make sure the other end is who we wanted. note that the other
1293 * end may not yet know their ip address, so if it's 0.0.0.0, give
1294 * them the benefit of the doubt.
1295 */
1296 if (memcmp(&con->peer_addr, &con->actual_peer_addr,
1297 sizeof(con->peer_addr)) != 0 &&
1298 !(addr_is_blank(&con->actual_peer_addr.in_addr) &&
1299 con->actual_peer_addr.nonce == con->peer_addr.nonce)) {
1300 pr_warning("wrong peer, want %s/%d, got %s/%d\n",
1301 ceph_pr_addr(&con->peer_addr.in_addr),
1302 (int)le32_to_cpu(con->peer_addr.nonce),
1303 ceph_pr_addr(&con->actual_peer_addr.in_addr),
1304 (int)le32_to_cpu(con->actual_peer_addr.nonce));
1305 con->error_msg = "wrong peer at address";
1306 return -1;
1307 }
1308
1309 /*
1310 * did we learn our address?
1311 */
1312 if (addr_is_blank(&con->msgr->inst.addr.in_addr)) {
1313 int port = addr_port(&con->msgr->inst.addr.in_addr);
1314
1315 memcpy(&con->msgr->inst.addr.in_addr,
1316 &con->peer_addr_for_me.in_addr,
1317 sizeof(con->peer_addr_for_me.in_addr));
1318 addr_set_port(&con->msgr->inst.addr.in_addr, port);
1319 encode_my_addr(con->msgr);
1320 dout("process_banner learned my addr is %s\n",
1321 ceph_pr_addr(&con->msgr->inst.addr.in_addr));
1322 }
1323
1324 set_bit(NEGOTIATING, &con->state);
1325 prepare_read_connect(con);
1326 return 0;
1327 }
1328
1329 static void fail_protocol(struct ceph_connection *con)
1330 {
1331 reset_connection(con);
1332 set_bit(CLOSED, &con->state); /* in case there's queued work */
1333
1334 mutex_unlock(&con->mutex);
1335 if (con->ops->bad_proto)
1336 con->ops->bad_proto(con);
1337 mutex_lock(&con->mutex);
1338 }
1339
1340 static int process_connect(struct ceph_connection *con)
1341 {
1342 u64 sup_feat = con->msgr->supported_features;
1343 u64 req_feat = con->msgr->required_features;
1344 u64 server_feat = le64_to_cpu(con->in_reply.features);
1345 int ret;
1346
1347 dout("process_connect on %p tag %d\n", con, (int)con->in_tag);
1348
1349 switch (con->in_reply.tag) {
1350 case CEPH_MSGR_TAG_FEATURES:
1351 pr_err("%s%lld %s feature set mismatch,"
1352 " my %llx < server's %llx, missing %llx\n",
1353 ENTITY_NAME(con->peer_name),
1354 ceph_pr_addr(&con->peer_addr.in_addr),
1355 sup_feat, server_feat, server_feat & ~sup_feat);
1356 con->error_msg = "missing required protocol features";
1357 fail_protocol(con);
1358 return -1;
1359
1360 case CEPH_MSGR_TAG_BADPROTOVER:
1361 pr_err("%s%lld %s protocol version mismatch,"
1362 " my %d != server's %d\n",
1363 ENTITY_NAME(con->peer_name),
1364 ceph_pr_addr(&con->peer_addr.in_addr),
1365 le32_to_cpu(con->out_connect.protocol_version),
1366 le32_to_cpu(con->in_reply.protocol_version));
1367 con->error_msg = "protocol version mismatch";
1368 fail_protocol(con);
1369 return -1;
1370
1371 case CEPH_MSGR_TAG_BADAUTHORIZER:
1372 con->auth_retry++;
1373 dout("process_connect %p got BADAUTHORIZER attempt %d\n", con,
1374 con->auth_retry);
1375 if (con->auth_retry == 2) {
1376 con->error_msg = "connect authorization failure";
1377 return -1;
1378 }
1379 con->auth_retry = 1;
1380 ret = prepare_write_connect(con->msgr, con, 0);
1381 if (ret < 0)
1382 return ret;
1383 prepare_read_connect(con);
1384 break;
1385
1386 case CEPH_MSGR_TAG_RESETSESSION:
1387 /*
1388 * If we connected with a large connect_seq but the peer
1389 * has no record of a session with us (no connection, or
1390 * connect_seq == 0), they will send RESETSESION to indicate
1391 * that they must have reset their session, and may have
1392 * dropped messages.
1393 */
1394 dout("process_connect got RESET peer seq %u\n",
1395 le32_to_cpu(con->in_connect.connect_seq));
1396 pr_err("%s%lld %s connection reset\n",
1397 ENTITY_NAME(con->peer_name),
1398 ceph_pr_addr(&con->peer_addr.in_addr));
1399 reset_connection(con);
1400 prepare_write_connect(con->msgr, con, 0);
1401 prepare_read_connect(con);
1402
1403 /* Tell ceph about it. */
1404 mutex_unlock(&con->mutex);
1405 pr_info("reset on %s%lld\n", ENTITY_NAME(con->peer_name));
1406 if (con->ops->peer_reset)
1407 con->ops->peer_reset(con);
1408 mutex_lock(&con->mutex);
1409 if (test_bit(CLOSED, &con->state) ||
1410 test_bit(OPENING, &con->state))
1411 return -EAGAIN;
1412 break;
1413
1414 case CEPH_MSGR_TAG_RETRY_SESSION:
1415 /*
1416 * If we sent a smaller connect_seq than the peer has, try
1417 * again with a larger value.
1418 */
1419 dout("process_connect got RETRY my seq = %u, peer_seq = %u\n",
1420 le32_to_cpu(con->out_connect.connect_seq),
1421 le32_to_cpu(con->in_connect.connect_seq));
1422 con->connect_seq = le32_to_cpu(con->in_connect.connect_seq);
1423 prepare_write_connect(con->msgr, con, 0);
1424 prepare_read_connect(con);
1425 break;
1426
1427 case CEPH_MSGR_TAG_RETRY_GLOBAL:
1428 /*
1429 * If we sent a smaller global_seq than the peer has, try
1430 * again with a larger value.
1431 */
1432 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
1433 con->peer_global_seq,
1434 le32_to_cpu(con->in_connect.global_seq));
1435 get_global_seq(con->msgr,
1436 le32_to_cpu(con->in_connect.global_seq));
1437 prepare_write_connect(con->msgr, con, 0);
1438 prepare_read_connect(con);
1439 break;
1440
1441 case CEPH_MSGR_TAG_READY:
1442 if (req_feat & ~server_feat) {
1443 pr_err("%s%lld %s protocol feature mismatch,"
1444 " my required %llx > server's %llx, need %llx\n",
1445 ENTITY_NAME(con->peer_name),
1446 ceph_pr_addr(&con->peer_addr.in_addr),
1447 req_feat, server_feat, req_feat & ~server_feat);
1448 con->error_msg = "missing required protocol features";
1449 fail_protocol(con);
1450 return -1;
1451 }
1452 clear_bit(CONNECTING, &con->state);
1453 con->peer_global_seq = le32_to_cpu(con->in_reply.global_seq);
1454 con->connect_seq++;
1455 con->peer_features = server_feat;
1456 dout("process_connect got READY gseq %d cseq %d (%d)\n",
1457 con->peer_global_seq,
1458 le32_to_cpu(con->in_reply.connect_seq),
1459 con->connect_seq);
1460 WARN_ON(con->connect_seq !=
1461 le32_to_cpu(con->in_reply.connect_seq));
1462
1463 if (con->in_reply.flags & CEPH_MSG_CONNECT_LOSSY)
1464 set_bit(LOSSYTX, &con->state);
1465
1466 prepare_read_tag(con);
1467 break;
1468
1469 case CEPH_MSGR_TAG_WAIT:
1470 /*
1471 * If there is a connection race (we are opening
1472 * connections to each other), one of us may just have
1473 * to WAIT. This shouldn't happen if we are the
1474 * client.
1475 */
1476 pr_err("process_connect got WAIT as client\n");
1477 con->error_msg = "protocol error, got WAIT as client";
1478 return -1;
1479
1480 default:
1481 pr_err("connect protocol error, will retry\n");
1482 con->error_msg = "protocol error, garbage tag during connect";
1483 return -1;
1484 }
1485 return 0;
1486 }
1487
1488
1489 /*
1490 * read (part of) an ack
1491 */
1492 static int read_partial_ack(struct ceph_connection *con)
1493 {
1494 int to = 0;
1495
1496 return read_partial(con, &to, sizeof(con->in_temp_ack),
1497 &con->in_temp_ack);
1498 }
1499
1500
1501 /*
1502 * We can finally discard anything that's been acked.
1503 */
1504 static void process_ack(struct ceph_connection *con)
1505 {
1506 struct ceph_msg *m;
1507 u64 ack = le64_to_cpu(con->in_temp_ack);
1508 u64 seq;
1509
1510 while (!list_empty(&con->out_sent)) {
1511 m = list_first_entry(&con->out_sent, struct ceph_msg,
1512 list_head);
1513 seq = le64_to_cpu(m->hdr.seq);
1514 if (seq > ack)
1515 break;
1516 dout("got ack for seq %llu type %d at %p\n", seq,
1517 le16_to_cpu(m->hdr.type), m);
1518 m->ack_stamp = jiffies;
1519 ceph_msg_remove(m);
1520 }
1521 prepare_read_tag(con);
1522 }
1523
1524
1525
1526
1527 static int read_partial_message_section(struct ceph_connection *con,
1528 struct kvec *section,
1529 unsigned int sec_len, u32 *crc)
1530 {
1531 int ret, left;
1532
1533 BUG_ON(!section);
1534
1535 while (section->iov_len < sec_len) {
1536 BUG_ON(section->iov_base == NULL);
1537 left = sec_len - section->iov_len;
1538 ret = ceph_tcp_recvmsg(con->sock, (char *)section->iov_base +
1539 section->iov_len, left);
1540 if (ret <= 0)
1541 return ret;
1542 section->iov_len += ret;
1543 }
1544 if (section->iov_len == sec_len)
1545 *crc = crc32c(0, section->iov_base, section->iov_len);
1546
1547 return 1;
1548 }
1549
1550 static struct ceph_msg *ceph_alloc_msg(struct ceph_connection *con,
1551 struct ceph_msg_header *hdr,
1552 int *skip);
1553
1554
1555 static int read_partial_message_pages(struct ceph_connection *con,
1556 struct page **pages,
1557 unsigned int data_len, bool do_datacrc)
1558 {
1559 void *p;
1560 int ret;
1561 int left;
1562
1563 left = min((int)(data_len - con->in_msg_pos.data_pos),
1564 (int)(PAGE_SIZE - con->in_msg_pos.page_pos));
1565 /* (page) data */
1566 BUG_ON(pages == NULL);
1567 p = kmap(pages[con->in_msg_pos.page]);
1568 ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
1569 left);
1570 if (ret > 0 && do_datacrc)
1571 con->in_data_crc =
1572 crc32c(con->in_data_crc,
1573 p + con->in_msg_pos.page_pos, ret);
1574 kunmap(pages[con->in_msg_pos.page]);
1575 if (ret <= 0)
1576 return ret;
1577 con->in_msg_pos.data_pos += ret;
1578 con->in_msg_pos.page_pos += ret;
1579 if (con->in_msg_pos.page_pos == PAGE_SIZE) {
1580 con->in_msg_pos.page_pos = 0;
1581 con->in_msg_pos.page++;
1582 }
1583
1584 return ret;
1585 }
1586
1587 #ifdef CONFIG_BLOCK
1588 static int read_partial_message_bio(struct ceph_connection *con,
1589 struct bio **bio_iter, int *bio_seg,
1590 unsigned int data_len, bool do_datacrc)
1591 {
1592 struct bio_vec *bv = bio_iovec_idx(*bio_iter, *bio_seg);
1593 void *p;
1594 int ret, left;
1595
1596 if (IS_ERR(bv))
1597 return PTR_ERR(bv);
1598
1599 left = min((int)(data_len - con->in_msg_pos.data_pos),
1600 (int)(bv->bv_len - con->in_msg_pos.page_pos));
1601
1602 p = kmap(bv->bv_page) + bv->bv_offset;
1603
1604 ret = ceph_tcp_recvmsg(con->sock, p + con->in_msg_pos.page_pos,
1605 left);
1606 if (ret > 0 && do_datacrc)
1607 con->in_data_crc =
1608 crc32c(con->in_data_crc,
1609 p + con->in_msg_pos.page_pos, ret);
1610 kunmap(bv->bv_page);
1611 if (ret <= 0)
1612 return ret;
1613 con->in_msg_pos.data_pos += ret;
1614 con->in_msg_pos.page_pos += ret;
1615 if (con->in_msg_pos.page_pos == bv->bv_len) {
1616 con->in_msg_pos.page_pos = 0;
1617 iter_bio_next(bio_iter, bio_seg);
1618 }
1619
1620 return ret;
1621 }
1622 #endif
1623
1624 /*
1625 * read (part of) a message.
1626 */
1627 static int read_partial_message(struct ceph_connection *con)
1628 {
1629 struct ceph_msg *m = con->in_msg;
1630 int ret;
1631 int to, left;
1632 unsigned int front_len, middle_len, data_len;
1633 bool do_datacrc = !con->msgr->nocrc;
1634 int skip;
1635 u64 seq;
1636 u32 crc;
1637
1638 dout("read_partial_message con %p msg %p\n", con, m);
1639
1640 /* header */
1641 while (con->in_base_pos < sizeof(con->in_hdr)) {
1642 left = sizeof(con->in_hdr) - con->in_base_pos;
1643 ret = ceph_tcp_recvmsg(con->sock,
1644 (char *)&con->in_hdr + con->in_base_pos,
1645 left);
1646 if (ret <= 0)
1647 return ret;
1648 con->in_base_pos += ret;
1649 }
1650
1651 crc = crc32c(0, &con->in_hdr, offsetof(struct ceph_msg_header, crc));
1652 if (cpu_to_le32(crc) != con->in_hdr.crc) {
1653 pr_err("read_partial_message bad hdr "
1654 " crc %u != expected %u\n",
1655 crc, con->in_hdr.crc);
1656 return -EBADMSG;
1657 }
1658
1659 front_len = le32_to_cpu(con->in_hdr.front_len);
1660 if (front_len > CEPH_MSG_MAX_FRONT_LEN)
1661 return -EIO;
1662 middle_len = le32_to_cpu(con->in_hdr.middle_len);
1663 if (middle_len > CEPH_MSG_MAX_DATA_LEN)
1664 return -EIO;
1665 data_len = le32_to_cpu(con->in_hdr.data_len);
1666 if (data_len > CEPH_MSG_MAX_DATA_LEN)
1667 return -EIO;
1668
1669 /* verify seq# */
1670 seq = le64_to_cpu(con->in_hdr.seq);
1671 if ((s64)seq - (s64)con->in_seq < 1) {
1672 pr_info("skipping %s%lld %s seq %lld expected %lld\n",
1673 ENTITY_NAME(con->peer_name),
1674 ceph_pr_addr(&con->peer_addr.in_addr),
1675 seq, con->in_seq + 1);
1676 con->in_base_pos = -front_len - middle_len - data_len -
1677 sizeof(m->footer);
1678 con->in_tag = CEPH_MSGR_TAG_READY;
1679 return 0;
1680 } else if ((s64)seq - (s64)con->in_seq > 1) {
1681 pr_err("read_partial_message bad seq %lld expected %lld\n",
1682 seq, con->in_seq + 1);
1683 con->error_msg = "bad message sequence # for incoming message";
1684 return -EBADMSG;
1685 }
1686
1687 /* allocate message? */
1688 if (!con->in_msg) {
1689 dout("got hdr type %d front %d data %d\n", con->in_hdr.type,
1690 con->in_hdr.front_len, con->in_hdr.data_len);
1691 skip = 0;
1692 con->in_msg = ceph_alloc_msg(con, &con->in_hdr, &skip);
1693 if (skip) {
1694 /* skip this message */
1695 dout("alloc_msg said skip message\n");
1696 BUG_ON(con->in_msg);
1697 con->in_base_pos = -front_len - middle_len - data_len -
1698 sizeof(m->footer);
1699 con->in_tag = CEPH_MSGR_TAG_READY;
1700 con->in_seq++;
1701 return 0;
1702 }
1703 if (!con->in_msg) {
1704 con->error_msg =
1705 "error allocating memory for incoming message";
1706 return -ENOMEM;
1707 }
1708 m = con->in_msg;
1709 m->front.iov_len = 0; /* haven't read it yet */
1710 if (m->middle)
1711 m->middle->vec.iov_len = 0;
1712
1713 con->in_msg_pos.page = 0;
1714 if (m->pages)
1715 con->in_msg_pos.page_pos = m->page_alignment;
1716 else
1717 con->in_msg_pos.page_pos = 0;
1718 con->in_msg_pos.data_pos = 0;
1719 }
1720
1721 /* front */
1722 ret = read_partial_message_section(con, &m->front, front_len,
1723 &con->in_front_crc);
1724 if (ret <= 0)
1725 return ret;
1726
1727 /* middle */
1728 if (m->middle) {
1729 ret = read_partial_message_section(con, &m->middle->vec,
1730 middle_len,
1731 &con->in_middle_crc);
1732 if (ret <= 0)
1733 return ret;
1734 }
1735 #ifdef CONFIG_BLOCK
1736 if (m->bio && !m->bio_iter)
1737 init_bio_iter(m->bio, &m->bio_iter, &m->bio_seg);
1738 #endif
1739
1740 /* (page) data */
1741 while (con->in_msg_pos.data_pos < data_len) {
1742 if (m->pages) {
1743 ret = read_partial_message_pages(con, m->pages,
1744 data_len, do_datacrc);
1745 if (ret <= 0)
1746 return ret;
1747 #ifdef CONFIG_BLOCK
1748 } else if (m->bio) {
1749
1750 ret = read_partial_message_bio(con,
1751 &m->bio_iter, &m->bio_seg,
1752 data_len, do_datacrc);
1753 if (ret <= 0)
1754 return ret;
1755 #endif
1756 } else {
1757 BUG_ON(1);
1758 }
1759 }
1760
1761 /* footer */
1762 to = sizeof(m->hdr) + sizeof(m->footer);
1763 while (con->in_base_pos < to) {
1764 left = to - con->in_base_pos;
1765 ret = ceph_tcp_recvmsg(con->sock, (char *)&m->footer +
1766 (con->in_base_pos - sizeof(m->hdr)),
1767 left);
1768 if (ret <= 0)
1769 return ret;
1770 con->in_base_pos += ret;
1771 }
1772 dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
1773 m, front_len, m->footer.front_crc, middle_len,
1774 m->footer.middle_crc, data_len, m->footer.data_crc);
1775
1776 /* crc ok? */
1777 if (con->in_front_crc != le32_to_cpu(m->footer.front_crc)) {
1778 pr_err("read_partial_message %p front crc %u != exp. %u\n",
1779 m, con->in_front_crc, m->footer.front_crc);
1780 return -EBADMSG;
1781 }
1782 if (con->in_middle_crc != le32_to_cpu(m->footer.middle_crc)) {
1783 pr_err("read_partial_message %p middle crc %u != exp %u\n",
1784 m, con->in_middle_crc, m->footer.middle_crc);
1785 return -EBADMSG;
1786 }
1787 if (do_datacrc &&
1788 (m->footer.flags & CEPH_MSG_FOOTER_NOCRC) == 0 &&
1789 con->in_data_crc != le32_to_cpu(m->footer.data_crc)) {
1790 pr_err("read_partial_message %p data crc %u != exp. %u\n", m,
1791 con->in_data_crc, le32_to_cpu(m->footer.data_crc));
1792 return -EBADMSG;
1793 }
1794
1795 return 1; /* done! */
1796 }
1797
1798 /*
1799 * Process message. This happens in the worker thread. The callback should
1800 * be careful not to do anything that waits on other incoming messages or it
1801 * may deadlock.
1802 */
1803 static void process_message(struct ceph_connection *con)
1804 {
1805 struct ceph_msg *msg;
1806
1807 msg = con->in_msg;
1808 con->in_msg = NULL;
1809
1810 /* if first message, set peer_name */
1811 if (con->peer_name.type == 0)
1812 con->peer_name = msg->hdr.src;
1813
1814 con->in_seq++;
1815 mutex_unlock(&con->mutex);
1816
1817 dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
1818 msg, le64_to_cpu(msg->hdr.seq),
1819 ENTITY_NAME(msg->hdr.src),
1820 le16_to_cpu(msg->hdr.type),
1821 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
1822 le32_to_cpu(msg->hdr.front_len),
1823 le32_to_cpu(msg->hdr.data_len),
1824 con->in_front_crc, con->in_middle_crc, con->in_data_crc);
1825 con->ops->dispatch(con, msg);
1826
1827 mutex_lock(&con->mutex);
1828 prepare_read_tag(con);
1829 }
1830
1831
1832 /*
1833 * Write something to the socket. Called in a worker thread when the
1834 * socket appears to be writeable and we have something ready to send.
1835 */
1836 static int try_write(struct ceph_connection *con)
1837 {
1838 struct ceph_messenger *msgr = con->msgr;
1839 int ret = 1;
1840
1841 dout("try_write start %p state %lu nref %d\n", con, con->state,
1842 atomic_read(&con->nref));
1843
1844 more:
1845 dout("try_write out_kvec_bytes %d\n", con->out_kvec_bytes);
1846
1847 /* open the socket first? */
1848 if (con->sock == NULL) {
1849 prepare_write_connect(msgr, con, 1);
1850 prepare_read_banner(con);
1851 set_bit(CONNECTING, &con->state);
1852 clear_bit(NEGOTIATING, &con->state);
1853
1854 BUG_ON(con->in_msg);
1855 con->in_tag = CEPH_MSGR_TAG_READY;
1856 dout("try_write initiating connect on %p new state %lu\n",
1857 con, con->state);
1858 ret = ceph_tcp_connect(con);
1859 if (ret < 0) {
1860 con->error_msg = "connect error";
1861 goto out;
1862 }
1863 }
1864
1865 more_kvec:
1866 /* kvec data queued? */
1867 if (con->out_skip) {
1868 ret = write_partial_skip(con);
1869 if (ret <= 0)
1870 goto out;
1871 }
1872 if (con->out_kvec_left) {
1873 ret = write_partial_kvec(con);
1874 if (ret <= 0)
1875 goto out;
1876 }
1877
1878 /* msg pages? */
1879 if (con->out_msg) {
1880 if (con->out_msg_done) {
1881 ceph_msg_put(con->out_msg);
1882 con->out_msg = NULL; /* we're done with this one */
1883 goto do_next;
1884 }
1885
1886 ret = write_partial_msg_pages(con);
1887 if (ret == 1)
1888 goto more_kvec; /* we need to send the footer, too! */
1889 if (ret == 0)
1890 goto out;
1891 if (ret < 0) {
1892 dout("try_write write_partial_msg_pages err %d\n",
1893 ret);
1894 goto out;
1895 }
1896 }
1897
1898 do_next:
1899 if (!test_bit(CONNECTING, &con->state)) {
1900 /* is anything else pending? */
1901 if (!list_empty(&con->out_queue)) {
1902 prepare_write_message(con);
1903 goto more;
1904 }
1905 if (con->in_seq > con->in_seq_acked) {
1906 prepare_write_ack(con);
1907 goto more;
1908 }
1909 if (test_and_clear_bit(KEEPALIVE_PENDING, &con->state)) {
1910 prepare_write_keepalive(con);
1911 goto more;
1912 }
1913 }
1914
1915 /* Nothing to do! */
1916 clear_bit(WRITE_PENDING, &con->state);
1917 dout("try_write nothing else to write.\n");
1918 ret = 0;
1919 out:
1920 dout("try_write done on %p ret %d\n", con, ret);
1921 return ret;
1922 }
1923
1924
1925
1926 /*
1927 * Read what we can from the socket.
1928 */
1929 static int try_read(struct ceph_connection *con)
1930 {
1931 int ret = -1;
1932
1933 if (!con->sock)
1934 return 0;
1935
1936 if (test_bit(STANDBY, &con->state))
1937 return 0;
1938
1939 dout("try_read start on %p\n", con);
1940
1941 more:
1942 dout("try_read tag %d in_base_pos %d\n", (int)con->in_tag,
1943 con->in_base_pos);
1944
1945 /*
1946 * process_connect and process_message drop and re-take
1947 * con->mutex. make sure we handle a racing close or reopen.
1948 */
1949 if (test_bit(CLOSED, &con->state) ||
1950 test_bit(OPENING, &con->state)) {
1951 ret = -EAGAIN;
1952 goto out;
1953 }
1954
1955 if (test_bit(CONNECTING, &con->state)) {
1956 if (!test_bit(NEGOTIATING, &con->state)) {
1957 dout("try_read connecting\n");
1958 ret = read_partial_banner(con);
1959 if (ret <= 0)
1960 goto out;
1961 ret = process_banner(con);
1962 if (ret < 0)
1963 goto out;
1964 }
1965 ret = read_partial_connect(con);
1966 if (ret <= 0)
1967 goto out;
1968 ret = process_connect(con);
1969 if (ret < 0)
1970 goto out;
1971 goto more;
1972 }
1973
1974 if (con->in_base_pos < 0) {
1975 /*
1976 * skipping + discarding content.
1977 *
1978 * FIXME: there must be a better way to do this!
1979 */
1980 static char buf[SKIP_BUF_SIZE];
1981 int skip = min((int) sizeof (buf), -con->in_base_pos);
1982
1983 dout("skipping %d / %d bytes\n", skip, -con->in_base_pos);
1984 ret = ceph_tcp_recvmsg(con->sock, buf, skip);
1985 if (ret <= 0)
1986 goto out;
1987 con->in_base_pos += ret;
1988 if (con->in_base_pos)
1989 goto more;
1990 }
1991 if (con->in_tag == CEPH_MSGR_TAG_READY) {
1992 /*
1993 * what's next?
1994 */
1995 ret = ceph_tcp_recvmsg(con->sock, &con->in_tag, 1);
1996 if (ret <= 0)
1997 goto out;
1998 dout("try_read got tag %d\n", (int)con->in_tag);
1999 switch (con->in_tag) {
2000 case CEPH_MSGR_TAG_MSG:
2001 prepare_read_message(con);
2002 break;
2003 case CEPH_MSGR_TAG_ACK:
2004 prepare_read_ack(con);
2005 break;
2006 case CEPH_MSGR_TAG_CLOSE:
2007 set_bit(CLOSED, &con->state); /* fixme */
2008 goto out;
2009 default:
2010 goto bad_tag;
2011 }
2012 }
2013 if (con->in_tag == CEPH_MSGR_TAG_MSG) {
2014 ret = read_partial_message(con);
2015 if (ret <= 0) {
2016 switch (ret) {
2017 case -EBADMSG:
2018 con->error_msg = "bad crc";
2019 ret = -EIO;
2020 break;
2021 case -EIO:
2022 con->error_msg = "io error";
2023 break;
2024 }
2025 goto out;
2026 }
2027 if (con->in_tag == CEPH_MSGR_TAG_READY)
2028 goto more;
2029 process_message(con);
2030 goto more;
2031 }
2032 if (con->in_tag == CEPH_MSGR_TAG_ACK) {
2033 ret = read_partial_ack(con);
2034 if (ret <= 0)
2035 goto out;
2036 process_ack(con);
2037 goto more;
2038 }
2039
2040 out:
2041 dout("try_read done on %p ret %d\n", con, ret);
2042 return ret;
2043
2044 bad_tag:
2045 pr_err("try_read bad con->in_tag = %d\n", (int)con->in_tag);
2046 con->error_msg = "protocol error, garbage tag";
2047 ret = -1;
2048 goto out;
2049 }
2050
2051
2052 /*
2053 * Atomically queue work on a connection. Bump @con reference to
2054 * avoid races with connection teardown.
2055 */
2056 static void queue_con(struct ceph_connection *con)
2057 {
2058 if (test_bit(DEAD, &con->state)) {
2059 dout("queue_con %p ignoring: DEAD\n",
2060 con);
2061 return;
2062 }
2063
2064 if (!con->ops->get(con)) {
2065 dout("queue_con %p ref count 0\n", con);
2066 return;
2067 }
2068
2069 if (!queue_delayed_work(ceph_msgr_wq, &con->work, 0)) {
2070 dout("queue_con %p - already queued\n", con);
2071 con->ops->put(con);
2072 } else {
2073 dout("queue_con %p\n", con);
2074 }
2075 }
2076
2077 /*
2078 * Do some work on a connection. Drop a connection ref when we're done.
2079 */
2080 static void con_work(struct work_struct *work)
2081 {
2082 struct ceph_connection *con = container_of(work, struct ceph_connection,
2083 work.work);
2084 int ret;
2085
2086 mutex_lock(&con->mutex);
2087 restart:
2088 if (test_and_clear_bit(BACKOFF, &con->state)) {
2089 dout("con_work %p backing off\n", con);
2090 if (queue_delayed_work(ceph_msgr_wq, &con->work,
2091 round_jiffies_relative(con->delay))) {
2092 dout("con_work %p backoff %lu\n", con, con->delay);
2093 mutex_unlock(&con->mutex);
2094 return;
2095 } else {
2096 con->ops->put(con);
2097 dout("con_work %p FAILED to back off %lu\n", con,
2098 con->delay);
2099 }
2100 }
2101
2102 if (test_bit(STANDBY, &con->state)) {
2103 dout("con_work %p STANDBY\n", con);
2104 goto done;
2105 }
2106 if (test_bit(CLOSED, &con->state)) { /* e.g. if we are replaced */
2107 dout("con_work CLOSED\n");
2108 con_close_socket(con);
2109 goto done;
2110 }
2111 if (test_and_clear_bit(OPENING, &con->state)) {
2112 /* reopen w/ new peer */
2113 dout("con_work OPENING\n");
2114 con_close_socket(con);
2115 }
2116
2117 if (test_and_clear_bit(SOCK_CLOSED, &con->state))
2118 goto fault;
2119
2120 ret = try_read(con);
2121 if (ret == -EAGAIN)
2122 goto restart;
2123 if (ret < 0)
2124 goto fault;
2125
2126 ret = try_write(con);
2127 if (ret == -EAGAIN)
2128 goto restart;
2129 if (ret < 0)
2130 goto fault;
2131
2132 done:
2133 mutex_unlock(&con->mutex);
2134 done_unlocked:
2135 con->ops->put(con);
2136 return;
2137
2138 fault:
2139 mutex_unlock(&con->mutex);
2140 ceph_fault(con); /* error/fault path */
2141 goto done_unlocked;
2142 }
2143
2144
2145 /*
2146 * Generic error/fault handler. A retry mechanism is used with
2147 * exponential backoff
2148 */
2149 static void ceph_fault(struct ceph_connection *con)
2150 {
2151 pr_err("%s%lld %s %s\n", ENTITY_NAME(con->peer_name),
2152 ceph_pr_addr(&con->peer_addr.in_addr), con->error_msg);
2153 dout("fault %p state %lu to peer %s\n",
2154 con, con->state, ceph_pr_addr(&con->peer_addr.in_addr));
2155
2156 if (test_bit(LOSSYTX, &con->state)) {
2157 dout("fault on LOSSYTX channel\n");
2158 goto out;
2159 }
2160
2161 mutex_lock(&con->mutex);
2162 if (test_bit(CLOSED, &con->state))
2163 goto out_unlock;
2164
2165 con_close_socket(con);
2166
2167 if (con->in_msg) {
2168 ceph_msg_put(con->in_msg);
2169 con->in_msg = NULL;
2170 }
2171
2172 /* Requeue anything that hasn't been acked */
2173 list_splice_init(&con->out_sent, &con->out_queue);
2174
2175 /* If there are no messages queued or keepalive pending, place
2176 * the connection in a STANDBY state */
2177 if (list_empty(&con->out_queue) &&
2178 !test_bit(KEEPALIVE_PENDING, &con->state)) {
2179 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con);
2180 clear_bit(WRITE_PENDING, &con->state);
2181 set_bit(STANDBY, &con->state);
2182 } else {
2183 /* retry after a delay. */
2184 if (con->delay == 0)
2185 con->delay = BASE_DELAY_INTERVAL;
2186 else if (con->delay < MAX_DELAY_INTERVAL)
2187 con->delay *= 2;
2188 con->ops->get(con);
2189 if (queue_delayed_work(ceph_msgr_wq, &con->work,
2190 round_jiffies_relative(con->delay))) {
2191 dout("fault queued %p delay %lu\n", con, con->delay);
2192 } else {
2193 con->ops->put(con);
2194 dout("fault failed to queue %p delay %lu, backoff\n",
2195 con, con->delay);
2196 /*
2197 * In many cases we see a socket state change
2198 * while con_work is running and end up
2199 * queuing (non-delayed) work, such that we
2200 * can't backoff with a delay. Set a flag so
2201 * that when con_work restarts we schedule the
2202 * delay then.
2203 */
2204 set_bit(BACKOFF, &con->state);
2205 }
2206 }
2207
2208 out_unlock:
2209 mutex_unlock(&con->mutex);
2210 out:
2211 /*
2212 * in case we faulted due to authentication, invalidate our
2213 * current tickets so that we can get new ones.
2214 */
2215 if (con->auth_retry && con->ops->invalidate_authorizer) {
2216 dout("calling invalidate_authorizer()\n");
2217 con->ops->invalidate_authorizer(con);
2218 }
2219
2220 if (con->ops->fault)
2221 con->ops->fault(con);
2222 }
2223
2224
2225
2226 /*
2227 * create a new messenger instance
2228 */
2229 struct ceph_messenger *ceph_messenger_create(struct ceph_entity_addr *myaddr,
2230 u32 supported_features,
2231 u32 required_features)
2232 {
2233 struct ceph_messenger *msgr;
2234
2235 msgr = kzalloc(sizeof(*msgr), GFP_KERNEL);
2236 if (msgr == NULL)
2237 return ERR_PTR(-ENOMEM);
2238
2239 msgr->supported_features = supported_features;
2240 msgr->required_features = required_features;
2241
2242 spin_lock_init(&msgr->global_seq_lock);
2243
2244 if (myaddr)
2245 msgr->inst.addr = *myaddr;
2246
2247 /* select a random nonce */
2248 msgr->inst.addr.type = 0;
2249 get_random_bytes(&msgr->inst.addr.nonce, sizeof(msgr->inst.addr.nonce));
2250 encode_my_addr(msgr);
2251
2252 dout("messenger_create %p\n", msgr);
2253 return msgr;
2254 }
2255 EXPORT_SYMBOL(ceph_messenger_create);
2256
2257 void ceph_messenger_destroy(struct ceph_messenger *msgr)
2258 {
2259 dout("destroy %p\n", msgr);
2260 kfree(msgr);
2261 dout("destroyed messenger %p\n", msgr);
2262 }
2263 EXPORT_SYMBOL(ceph_messenger_destroy);
2264
2265 static void clear_standby(struct ceph_connection *con)
2266 {
2267 /* come back from STANDBY? */
2268 if (test_and_clear_bit(STANDBY, &con->state)) {
2269 mutex_lock(&con->mutex);
2270 dout("clear_standby %p and ++connect_seq\n", con);
2271 con->connect_seq++;
2272 WARN_ON(test_bit(WRITE_PENDING, &con->state));
2273 WARN_ON(test_bit(KEEPALIVE_PENDING, &con->state));
2274 mutex_unlock(&con->mutex);
2275 }
2276 }
2277
2278 /*
2279 * Queue up an outgoing message on the given connection.
2280 */
2281 void ceph_con_send(struct ceph_connection *con, struct ceph_msg *msg)
2282 {
2283 if (test_bit(CLOSED, &con->state)) {
2284 dout("con_send %p closed, dropping %p\n", con, msg);
2285 ceph_msg_put(msg);
2286 return;
2287 }
2288
2289 /* set src+dst */
2290 msg->hdr.src = con->msgr->inst.name;
2291
2292 BUG_ON(msg->front.iov_len != le32_to_cpu(msg->hdr.front_len));
2293
2294 msg->needs_out_seq = true;
2295
2296 /* queue */
2297 mutex_lock(&con->mutex);
2298 BUG_ON(!list_empty(&msg->list_head));
2299 list_add_tail(&msg->list_head, &con->out_queue);
2300 dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg,
2301 ENTITY_NAME(con->peer_name), le16_to_cpu(msg->hdr.type),
2302 ceph_msg_type_name(le16_to_cpu(msg->hdr.type)),
2303 le32_to_cpu(msg->hdr.front_len),
2304 le32_to_cpu(msg->hdr.middle_len),
2305 le32_to_cpu(msg->hdr.data_len));
2306 mutex_unlock(&con->mutex);
2307
2308 /* if there wasn't anything waiting to send before, queue
2309 * new work */
2310 clear_standby(con);
2311 if (test_and_set_bit(WRITE_PENDING, &con->state) == 0)
2312 queue_con(con);
2313 }
2314 EXPORT_SYMBOL(ceph_con_send);
2315
2316 /*
2317 * Revoke a message that was previously queued for send
2318 */
2319 void ceph_con_revoke(struct ceph_connection *con, struct ceph_msg *msg)
2320 {
2321 mutex_lock(&con->mutex);
2322 if (!list_empty(&msg->list_head)) {
2323 dout("con_revoke %p msg %p - was on queue\n", con, msg);
2324 list_del_init(&msg->list_head);
2325 ceph_msg_put(msg);
2326 msg->hdr.seq = 0;
2327 }
2328 if (con->out_msg == msg) {
2329 dout("con_revoke %p msg %p - was sending\n", con, msg);
2330 con->out_msg = NULL;
2331 if (con->out_kvec_is_msg) {
2332 con->out_skip = con->out_kvec_bytes;
2333 con->out_kvec_is_msg = false;
2334 }
2335 ceph_msg_put(msg);
2336 msg->hdr.seq = 0;
2337 }
2338 mutex_unlock(&con->mutex);
2339 }
2340
2341 /*
2342 * Revoke a message that we may be reading data into
2343 */
2344 void ceph_con_revoke_message(struct ceph_connection *con, struct ceph_msg *msg)
2345 {
2346 mutex_lock(&con->mutex);
2347 if (con->in_msg && con->in_msg == msg) {
2348 unsigned int front_len = le32_to_cpu(con->in_hdr.front_len);
2349 unsigned int middle_len = le32_to_cpu(con->in_hdr.middle_len);
2350 unsigned int data_len = le32_to_cpu(con->in_hdr.data_len);
2351
2352 /* skip rest of message */
2353 dout("con_revoke_pages %p msg %p revoked\n", con, msg);
2354 con->in_base_pos = con->in_base_pos -
2355 sizeof(struct ceph_msg_header) -
2356 front_len -
2357 middle_len -
2358 data_len -
2359 sizeof(struct ceph_msg_footer);
2360 ceph_msg_put(con->in_msg);
2361 con->in_msg = NULL;
2362 con->in_tag = CEPH_MSGR_TAG_READY;
2363 con->in_seq++;
2364 } else {
2365 dout("con_revoke_pages %p msg %p pages %p no-op\n",
2366 con, con->in_msg, msg);
2367 }
2368 mutex_unlock(&con->mutex);
2369 }
2370
2371 /*
2372 * Queue a keepalive byte to ensure the tcp connection is alive.
2373 */
2374 void ceph_con_keepalive(struct ceph_connection *con)
2375 {
2376 dout("con_keepalive %p\n", con);
2377 clear_standby(con);
2378 if (test_and_set_bit(KEEPALIVE_PENDING, &con->state) == 0 &&
2379 test_and_set_bit(WRITE_PENDING, &con->state) == 0)
2380 queue_con(con);
2381 }
2382 EXPORT_SYMBOL(ceph_con_keepalive);
2383
2384
2385 /*
2386 * construct a new message with given type, size
2387 * the new msg has a ref count of 1.
2388 */
2389 struct ceph_msg *ceph_msg_new(int type, int front_len, gfp_t flags,
2390 bool can_fail)
2391 {
2392 struct ceph_msg *m;
2393
2394 m = kmalloc(sizeof(*m), flags);
2395 if (m == NULL)
2396 goto out;
2397 kref_init(&m->kref);
2398 INIT_LIST_HEAD(&m->list_head);
2399
2400 m->hdr.tid = 0;
2401 m->hdr.type = cpu_to_le16(type);
2402 m->hdr.priority = cpu_to_le16(CEPH_MSG_PRIO_DEFAULT);
2403 m->hdr.version = 0;
2404 m->hdr.front_len = cpu_to_le32(front_len);
2405 m->hdr.middle_len = 0;
2406 m->hdr.data_len = 0;
2407 m->hdr.data_off = 0;
2408 m->hdr.reserved = 0;
2409 m->footer.front_crc = 0;
2410 m->footer.middle_crc = 0;
2411 m->footer.data_crc = 0;
2412 m->footer.flags = 0;
2413 m->front_max = front_len;
2414 m->front_is_vmalloc = false;
2415 m->more_to_follow = false;
2416 m->ack_stamp = 0;
2417 m->pool = NULL;
2418
2419 /* middle */
2420 m->middle = NULL;
2421
2422 /* data */
2423 m->nr_pages = 0;
2424 m->page_alignment = 0;
2425 m->pages = NULL;
2426 m->pagelist = NULL;
2427 m->bio = NULL;
2428 m->bio_iter = NULL;
2429 m->bio_seg = 0;
2430 m->trail = NULL;
2431
2432 /* front */
2433 if (front_len) {
2434 if (front_len > PAGE_CACHE_SIZE) {
2435 m->front.iov_base = __vmalloc(front_len, flags,
2436 PAGE_KERNEL);
2437 m->front_is_vmalloc = true;
2438 } else {
2439 m->front.iov_base = kmalloc(front_len, flags);
2440 }
2441 if (m->front.iov_base == NULL) {
2442 dout("ceph_msg_new can't allocate %d bytes\n",
2443 front_len);
2444 goto out2;
2445 }
2446 } else {
2447 m->front.iov_base = NULL;
2448 }
2449 m->front.iov_len = front_len;
2450
2451 dout("ceph_msg_new %p front %d\n", m, front_len);
2452 return m;
2453
2454 out2:
2455 ceph_msg_put(m);
2456 out:
2457 if (!can_fail) {
2458 pr_err("msg_new can't create type %d front %d\n", type,
2459 front_len);
2460 WARN_ON(1);
2461 } else {
2462 dout("msg_new can't create type %d front %d\n", type,
2463 front_len);
2464 }
2465 return NULL;
2466 }
2467 EXPORT_SYMBOL(ceph_msg_new);
2468
2469 /*
2470 * Allocate "middle" portion of a message, if it is needed and wasn't
2471 * allocated by alloc_msg. This allows us to read a small fixed-size
2472 * per-type header in the front and then gracefully fail (i.e.,
2473 * propagate the error to the caller based on info in the front) when
2474 * the middle is too large.
2475 */
2476 static int ceph_alloc_middle(struct ceph_connection *con, struct ceph_msg *msg)
2477 {
2478 int type = le16_to_cpu(msg->hdr.type);
2479 int middle_len = le32_to_cpu(msg->hdr.middle_len);
2480
2481 dout("alloc_middle %p type %d %s middle_len %d\n", msg, type,
2482 ceph_msg_type_name(type), middle_len);
2483 BUG_ON(!middle_len);
2484 BUG_ON(msg->middle);
2485
2486 msg->middle = ceph_buffer_new(middle_len, GFP_NOFS);
2487 if (!msg->middle)
2488 return -ENOMEM;
2489 return 0;
2490 }
2491
2492 /*
2493 * Generic message allocator, for incoming messages.
2494 */
2495 static struct ceph_msg *ceph_alloc_msg(struct ceph_connection *con,
2496 struct ceph_msg_header *hdr,
2497 int *skip)
2498 {
2499 int type = le16_to_cpu(hdr->type);
2500 int front_len = le32_to_cpu(hdr->front_len);
2501 int middle_len = le32_to_cpu(hdr->middle_len);
2502 struct ceph_msg *msg = NULL;
2503 int ret;
2504
2505 if (con->ops->alloc_msg) {
2506 mutex_unlock(&con->mutex);
2507 msg = con->ops->alloc_msg(con, hdr, skip);
2508 mutex_lock(&con->mutex);
2509 if (!msg || *skip)
2510 return NULL;
2511 }
2512 if (!msg) {
2513 *skip = 0;
2514 msg = ceph_msg_new(type, front_len, GFP_NOFS, false);
2515 if (!msg) {
2516 pr_err("unable to allocate msg type %d len %d\n",
2517 type, front_len);
2518 return NULL;
2519 }
2520 msg->page_alignment = le16_to_cpu(hdr->data_off);
2521 }
2522 memcpy(&msg->hdr, &con->in_hdr, sizeof(con->in_hdr));
2523
2524 if (middle_len && !msg->middle) {
2525 ret = ceph_alloc_middle(con, msg);
2526 if (ret < 0) {
2527 ceph_msg_put(msg);
2528 return NULL;
2529 }
2530 }
2531
2532 return msg;
2533 }
2534
2535
2536 /*
2537 * Free a generically kmalloc'd message.
2538 */
2539 void ceph_msg_kfree(struct ceph_msg *m)
2540 {
2541 dout("msg_kfree %p\n", m);
2542 if (m->front_is_vmalloc)
2543 vfree(m->front.iov_base);
2544 else
2545 kfree(m->front.iov_base);
2546 kfree(m);
2547 }
2548
2549 /*
2550 * Drop a msg ref. Destroy as needed.
2551 */
2552 void ceph_msg_last_put(struct kref *kref)
2553 {
2554 struct ceph_msg *m = container_of(kref, struct ceph_msg, kref);
2555
2556 dout("ceph_msg_put last one on %p\n", m);
2557 WARN_ON(!list_empty(&m->list_head));
2558
2559 /* drop middle, data, if any */
2560 if (m->middle) {
2561 ceph_buffer_put(m->middle);
2562 m->middle = NULL;
2563 }
2564 m->nr_pages = 0;
2565 m->pages = NULL;
2566
2567 if (m->pagelist) {
2568 ceph_pagelist_release(m->pagelist);
2569 kfree(m->pagelist);
2570 m->pagelist = NULL;
2571 }
2572
2573 m->trail = NULL;
2574
2575 if (m->pool)
2576 ceph_msgpool_put(m->pool, m);
2577 else
2578 ceph_msg_kfree(m);
2579 }
2580 EXPORT_SYMBOL(ceph_msg_last_put);
2581
2582 void ceph_msg_dump(struct ceph_msg *msg)
2583 {
2584 pr_debug("msg_dump %p (front_max %d nr_pages %d)\n", msg,
2585 msg->front_max, msg->nr_pages);
2586 print_hex_dump(KERN_DEBUG, "header: ",
2587 DUMP_PREFIX_OFFSET, 16, 1,
2588 &msg->hdr, sizeof(msg->hdr), true);
2589 print_hex_dump(KERN_DEBUG, " front: ",
2590 DUMP_PREFIX_OFFSET, 16, 1,
2591 msg->front.iov_base, msg->front.iov_len, true);
2592 if (msg->middle)
2593 print_hex_dump(KERN_DEBUG, "middle: ",
2594 DUMP_PREFIX_OFFSET, 16, 1,
2595 msg->middle->vec.iov_base,
2596 msg->middle->vec.iov_len, true);
2597 print_hex_dump(KERN_DEBUG, "footer: ",
2598 DUMP_PREFIX_OFFSET, 16, 1,
2599 &msg->footer, sizeof(msg->footer), true);
2600 }
2601 EXPORT_SYMBOL(ceph_msg_dump);